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Many-body parametric resonances in the driven sine-Gordon model
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We study a quantum many-body variant of the parametric oscillator by investigating the driven sine-Gordon
model with a modulated tunnel coupling via a semiclassical truncated Wigner approximation (TWA). We first
analyze the parametric resonant regime for driving protocols that retain our model gapped, and compare the
TWA to a time-dependent Gaussian variational ansatz (TGVA). We then turn to a drive which closes the gap,
resulting in an enhanced energy absorption. While the TGVA approach breaks down in this regime, we can apply
TWA to explore the dynamics of the mode-resolved energy density and the higher-order correlations between
modes in the prethermal heating regime. For weak driving amplitude, we find an exponentially fast energy
absorption in the main resonant mode, while the heating of all remaining modes is almost perfectly suppressed
on short timescales. At later times, the highly excited main resonance provides effective resonant driving terms
for its higher harmonics through the nonlinearities in the Hamiltonian, and gives rise to an exponentially fast
heating in these particular modes. We capture the strong correlations induced by these resonant processes by
evaluating higher-order connected correlation functions. Our results can be experimentally probed in ultracold-
atomic settings, with parallel one-dimensional quasicondensates in the presence of a modulated tunnel coupling.
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I. INTRODUCTION

In recent years, the advances in ultracold-atomic exper-
iments paved the way to study novel quantum many-body
states, as well as nonequilibrium phenomena in unprecedented
detail [1–3]. These systems provide an ideal platform to
prepare interesting interacting many-body states in a con-
trolled way, and allow for probing their dynamics. One of
the paradigmatic many-body models investigated in these
settings is the sine-Gordon model [4], realized by coupling
two parallel quasi-one-dimensional bosonic condensates in
a double-well potential [5–13]. The experimental realization
of this model enabled the demonstration and characterization
of non-Gaussian higher-order correlations in the system, re-
vealed the presence of topological soliton excitations through
the full distribution of the spatially resolved relative phase be-
tween the two condensates [6], and also led to the observation
of prethermalization in the nonequilibrium dynamics of the
model [6,7].

One of the interesting, only partially explored, aspects of
the out-of-equilibrium dynamics of the sine-Gordon model
is the nature of transient states in the presence of a peri-
odic drive. Previous works on this model have focused either
on regimes of small modulations, within the reach of linear

response [14,15], or on the limit of fast modulations, revealing
a sharp crossover in the heating rate, separating regimes of
strongly suppressed heating from regions with efficient energy
absorption [16]. The less explored regime of slow driving fre-
quencies offers many open questions regarding the quantum
counterpart of well-established classical phenomena, such as
parametric resonance or amplification due to a resonant driv-
ing force [17–24], as well as about the universal aspects of the
heating [15,19,25]. In particular, the nonlinear coupling be-
tween modes redistributes the energy absorbed by the resonant
mode, and can transiently stop the heating at a finite-energy
density, while at late times, when many-body scattering is
taken into account, the system is expected to heat to an
infinite-temperature state [19]. This Floquet prethermalization
effect has been demonstrated by investigating the total energy
of various slowly driven many-body systems [18,19], how-
ever, the detailed mode-resolved energy absorption, shedding
light on the dominant nonlinearities in quantum systems, is
much less explored. The driven sine-Gordon model provides
an ideal, experimentally accessible, platform to address these
unresolved questions.

In this work, we investigate the mode-resolved energy
absorption of the slowly driven sine-Gordon model in the
presence of a modulated tunnel coupling, constituting a
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FIG. 1. Parametric resonance in quasi-one-dimensional con-
densates in a modulated double-well potential. (a) Experimental
realization of the driven sine-Gordon model with coupled con-
densates in an oscillating trap. (b) Phase diagram of a classical
parametric oscillator, revealing lobes of unstable heating regions
(blue) as a function of frequency ratio 2ω/γ and driving amplitude g,
with natural frequency ω and driving frequency γ . (c) Exponentially
fast energy absorption in the resonant mode kres of the sine-Gordon
model. Heating at short times is analogous to a single resonant
parametric oscillator, whereas the saturation on longer timescales
reflects a collection of oscillators, coupled through the interaction
term.

quantum many-body analog of a parametric oscillator. This
system is experimentally accessible in various cold-atomic
platforms, in particular, by coupling two parallel, quasi-
one-dimensional bosonic condensates through a modulated
double-well potential [6,26–28] [see Fig. 1(a)]. Alternatively,
the modulated tunnel coupling can also be realized by intro-
ducing a Raman coupling between two internal states of the
cold atoms [29–31]. In contrast to previous studies focusing
on the limit of fast modulations [16], we consider a slow
driving frequency tuned to parametric resonance with one
of the low-energy modes of the static Hamiltonian. Hence,
this system realizes a quantum many-body counterpart of the
parametric oscillator, with nonlinear coupling terms between
modes.

A single classical parametric oscillator is described by the
Hamiltonian function

H(t ) = p2

2
+ 1

2
ω2[1 − 2g sin (γ t )]x2, (1)

with natural frequency ω, driving frequency γ , and driving
amplitude g. The phase diagram of this classical single os-
cillator is shown in Fig. 1(b), displaying lobes of unstable
heating regions as a function of the frequency γ and amplitude
g of the drive [32,33]. In particular, a resonant drive leads to
an exponentially fast energy absorption for arbitrarily weak
driving amplitude. The quantum many-body counterpart of
this parametric oscillator can be obtained by first substituting
x2/2 → 1 − cos(x) in Eq. (1) to get the Hamiltonian function

of a driven pendulum, and then constructing and quantizing
the Hamiltonian for a chain of driven pendulums, with the
neighboring pendulums coupled through springs [see inset of
Fig. 1(c)]. This procedure leads to the quantum sine-Gordon
model (for an explicit expression as well as for an alterna-
tive derivation, starting from the Hamiltonian of Josephson
coupled quasicondensates, see Sec. II A). We demonstrate the
exponential heating for the resonant mode in the full quan-
tum many-body system, analogous to the heating of a single
parametric oscillator, in Fig. 1(c), evaluated with the semiclas-
sical truncated Wigner approximation [34] (TWA), allowing
for calculating the time evolution for various driving proto-
cols. We also compare these results to another approach, the
time-dependent Gaussian variational ansatz (TGVA), when-
ever applicable. The TWA results show that the early stages of
the dynamics can be well understood in terms of a single para-
metric oscillator, without considering its coupling to the other
modes. However, at longer timescales the nonlinear coupling
between modes becomes dominant and cuts off the fast energy
absorption, and leads to saturation, similarly to the prethermal
behavior found in the driven O(N) model [18,19]. Moreover,
we find that the highly excited resonant mode can serve as
an effective resonant drive for the higher harmonics through
the nonlinear coupling terms, leading to an efficient heating in
these modes. This heating process occurs in separate stages.
First, the main resonance is occupied, while the heating of
other modes remains strongly suppressed. Second, the highly
excited main resonance serves as a drive for its higher har-
monics, with strength increasing in time as the resonant mode
becomes even stronger populated. We show that these efficient
coupling terms between the main resonance and its higher
harmonics give rise to a characteristic pattern in higher-order
correlation functions.

The paper is organized as follows. We briefly review the
derivation of the sine-Gordon model from the Hamiltonian of
two coupled one-dimensional quasicondensates in Sec. II A,
and discuss the effect of a parametric drive within a linear
approximation in Sec. II B. We first focus on driving protocols
that keep the gap of the spectrum open in in Sec III, allowing
us to compare TWA to the TGVA. We sketch the derivation
of the TGVA in Sec. III A, and present the results of both
approaches in Sec. III B. We turn to driving protocols which
close the gap in Sec. IV, resulting in an enhanced energy ab-
sorption. In this regime we have to rely on TWA to follow the
time evolution of the mode-resolved energy absorption of the
system. We concentrate on the heating of the main resonance
and its higher harmonics in Sec. IV A, and find deviations
from the behavior of uncoupled oscillators. We construct a
simple toy model to explain the main features of our findings
in Sec. IV B, and test it by examining the correlations between
modes in Sec. IV C. We summarize our results and comment
on the experimental realization in Sec. IV C. Technical details
are discussed in the Appendixes.

II. DRIVEN SINE-GORDON MODEL

A. Sine-Gordon description of coupled
one-dimensional quasicondensates

The dynamics of two Josephson-coupled one-dimensional
interacting quasicondensates can be well approximated by
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the sine-Gordon model. In this section we briefly review this
derivation from the literature. The reader only interested in the
driving protocol considered in this paper may go directly to
Sec. II B. To this end, we consider two quasi-one-dimensional
bosonic gases, described by the Hamiltonian [5,35]

H0 =
∑

j=1,2

∫
dx

{
1

2m
∂xψ

†
j (x)∂xψ j (x)

+ g
2
ψ†

j (x)ψ†
j (x)ψ j (x)ψ j (x)

}
, (2)

that are coupled by a time-dependent Josephson tunneling
term

HJ = −J (t )
∫

dx[ψ†
1 (x)ψ2(x) + ψ†

2 (x)ψ1(x)]. (3)

Here ψ1(x), ψ2(x) stand for the bosonic fields of the two
quasicondensates, g denotes the effective one-dimensional in-
teraction, depending sensitively on the shape of the transverse
trapping potential, J (t ) is the modulated tunneling amplitude,
and we have set h̄ = 1. For simplicity, we focus on homo-
geneous condensates, moreover, we use periodic boundary
conditions in the numerical simulations. We will discuss the
effects of open boundary conditions where relevant.

It is convenient to rewrite the field operators in terms of the
conjugate phase ϕ j (x) and density ρ j (x) operators

ψ j (x) =
√

ρ j (x) eiϕ j (x). (4)

Substituting Eq. (4) into the Hamiltonian, and performing an
expansion in terms of the small density fluctuations on the top
of the homogeneous mean density of the quasicondensates,
as well as in terms of the fluctuations in the gradient of the
phase, leads to a hydrodynamical description of the system
[36,37]. To leading order in the density and phase fluctuations,
the relative phase ϕ = ϕ2 − ϕ1 and density δρ = ρ2 − ρ1 de-
couples from the total phase and density, ϕ1 + ϕ2 and ρ1 + ρ2.
The dynamics of the relative coordinates is governed by the
sine-Gordon Hamiltonian (see Appendix A and Refs. [5,38])

H = c
2

∫
dx

{
π

K
δρ2 + K

π
(∂xϕ)2

}
− 2J (t )ρ0

∫
dx cos ϕ,

(5)

with c denoting the sound velocity, K the Luttinger param-
eter, and ρ0 the average density of the homogeneous gas.
Here, the Luttinger parameter K characterizes the strength of
interactions, with K → ∞ and K = 1 representing the nonin-
teracting limit and the limit of hard-core bosons, respectively.
In the absence of tunnel coupling, J (t ) ≡ 0, Hamiltonian
Eq. (5) reduces to a Luttinger-liquid with a linear spectrum,

εk = ck. (6)

By contrast, a nonzero static tunnel coupling J (t ) ≡ J0 intro-
duces a gap to the dispersion relation. For large J0, where the
phase is pinned around ϕ(x) ∼ 0, the expansion of the cosine
function gives the approximation

ε
gap
k ≈

√
c2k2 + *2

0, (7)

with

*0 =
√

2πJ0ρ0c
K

. (8)

In the numerical calculations, we focus on the lattice-
regularized version of Eq. (5), obtained by introducing a lat-
tice spacing a, and particle-number operators nj = a δρ( ja),

HLat = c
2

Ns∑

j=1

(
π

Ka
n2

j + K
πa

(ϕ j − ϕ j−1)2
)

− 2J (t )ρ0a
Ns∑

j=1

cos ϕ j . (9)

Here Ns denotes the number of lattice sites, and the
particle-number and phase operators satisfy the canonical
commutation relations

[ni,ϕ j] = −iδi, j .

The model Eq. (9) is known as the quantum Frenkel-
Kontorova [39,40] chain.

Our main tool used for exploring the dynamics of
Hamiltonian Eq. (9) is the semiclassical truncated Wigner
approximation (TWA). This approach allows us to calcu-
late time-dependent expectation values and correlations by
sampling the classical phase and particle-number variables
{ϕ j, n j} randomly at t = 0, according to the Wigner distribu-
tion of the initial state, and by calculating the time evolution
from the mean-field equations of motion [34]. We note that
TWA can only be rigorously justified on short timescales
based on a perturbative expansion. At intermediate times, the
approximation becomes uncontrolled, and its range of validity
can only be estimated by direct comparison to more controlled
numerical methods or analytical approaches. For quantum
quenches in the sine-Gordon model, such a benchmark has
been performed in various works [34,38,41,42], establishing
TWA as a reliable approach up to intermediate times and com-
paratively weak interactions, for the regime that is the main
focus of the paper. While none of these works studied a Flo-
quet drive, due to the difficulties in applying well-controlled
approximations to highly excited states, generic considera-
tions suggest that TWA performs even better in the presence of
a high-energy density, rendering the dynamics more classical.
These arguments support the expectation that TWA correctly
captures the transient parametric heating dynamics studied in
this paper.

B. Parametric drive

We consider the sine-Gordon Hamiltonian Eq. (9) in the
presence of a periodically modulated tunnel coupling,

J (t ) = J0 + J1 sin(γ t ). (10)

First we comment on driving protocols where J (t ) > 0 at
all times, i.e., the instantaneous spectrum remains gapped
throughout the time evolution, in Sec. III. In this case we can
compare the semiclassical TWA to another widely used ap-
proximation, the TGVA. Then in Sec. IV we turn to the main
focus of the paper, the case with zero static component J0 = 0.
Here, the gap closes and the potential energy ∼J (t ) cos ϕ
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changes sign in each half period of the drive, giving rise to an
enhanced energy absorption. For that case the TGVA breaks
down because the gap closes; however, the TWA is still well
suited for studying the mode-resolved energy absorption. Note
that for J0 = 0 the static part of the Hamiltonian is a purely
quadratic Luttinger liquid, displaying the spectrum Eq. (6),
and allowing to resolve the dynamics according to the modes
of the static Hamiltonian.

In order to study the quantum many-body counterpart of
the classical parametric oscillator, we tune the driving fre-
quency γ to parametric resonance with one of the low-energy
modes

γ = 2 εkres (11)

with kres = 2πnres/Ns, nres ∈ Z. To gain more insight into the
dynamics, it is convenient to consider the classical equation of
motion for the phase field ϕ j ,

∂2
t ϕ j = c2

a2
(ϕ j+1 + ϕ j−1 − 2ϕ j ) − 2πJ (t )ρ0c

K
sin ϕ j, (12)

and apply the linear expansion sin ϕ j ≈ ϕ j . For simplicity,
here we set the static tunnel coupling to zero, J0 = 0. By
performing a Fourier transformation and introducing the di-
mensionless time τ = εkrest and wave number k̃ = k/kres, we
obtain the following Mathieu equation [32,43]:

(
∂2
τ + k̃2 + 2g̃ sin(2τ )

)
ϕk̃ = 0. (13)

Here, we have introduced the dimensionless driving ampli-
tude1

g̃ = 4πJ1ρ0c
γ 2K

. (14)

The Mathieu Eq. (13) has been obtained by neglecting the
coupling between modes, therefore describing a collection
of independent parametric oscillators. The solutions of this
differential equation have been studied extensively, and we
review some of their important properties below. The reader
only interested in our numerical results may go directly to
Sec. III. The Mathieu Eq. (13) can be solved exactly in terms
of Mathieu functions [32,43], and the solution takes the form
ϕk̃ = eiν(k̃,g̃)P(τ ), where the function P(τ ) is periodic in τ .
The energy absorption of mode k̃ is thus determined by the
so-called Mathieu exponent ν(k̃, g̃). A negative imaginary
part Imν(k̃, g̃) < 0 gives rise to exponentially fast heating,
whereas a real ν(k̃, g̃) corresponds to a stable, oscillating
solution. Inspecting the imaginary part of ν(k̃, g̃) as a function
of k̃ and g̃ gives rise to the single-oscillator phase diagram,
Fig. 1(b), with the substitution ω ↔ k̃.

The Mathieu exponent ν(k̃, g̃) depends sensitively on k̃,
characterizing the ratio of the natural frequency of the oscilla-
tor and the driving frequency, as well as on the dimensionless
driving amplitude g̃, as depicted in Fig. 1(b). In the regime
of weak driving amplitude g̃ ! 1, sharp unstable regions with
strong heating Imν(k̃, g̃) < 0 appear in the vicinity of the

1The Mathieu equation is usually written with an opposite sign in
front of the term 2g̃ sin 2τ . We are using a different sign convention
in Eq. (13) to keep the dimensionless driving amplitude g̃ appearing
in our numerical simulations positive.

main resonance k̃ = 1, satisfying the resonance condition
Eq. (11), as well as around its higher harmonics k̃ ∈ Z. In par-
ticular, the unstable region around the main resonance k̃ = 1
extends to

1 − g̃ < k̃2 < 1 + g̃.

The higher-order resonances around k̃ = 2, 3, . . . are weaker
with a smaller |Imν(k̃, g̃)|, thus the heating of these modes
occurs on longer timescales then the heating of the main
resonance. In contrast, in the regime of strong driving g̃ > 1,
the resonances become very broad, with large unstable regions
displaying an exponential energy absorption. We note that a
similar phase diagram holds in the more general case J0 > 0,
with unstable lobes appearing around the main resonance and
its higher harmonics εk/εkres ∈ Z.

III. DRIVING PROTOCOLS RETAINING THE GAP

In this section, we consider driving protocols that keep the
gap open throughout the time evolution J (t ) > 0 for all t . In
this case we can compare TWA to the TGVA, which neglects
the higher-order correlations between modes and breaks down
for driving protocols where the gap closes, i.e., J (t ) = 0 at
certain times t . Therefore, we expect that TWA is better suited
for examining the energy absorption of the system in the limit
of strong modulation, J1 > J0. Nonetheless, TGVA can be
used as a consistency check for our TWA results in certain
limits.

A. Time-dependent Gaussian variational ansatz

We briefly sketch the main ingredients of the time-
dependent Gaussian variational ansatz (TGVA) from the
literature, before turning to our numerical results in
Sec. III B. Further details on the method are relegated to
Appendixes B–E.

We consider the time-dependent sine-Gordon Hamiltonian
density of Eq. (5):

H[ϕ, ρ] = πc
2K

δρ2 + cK
2π

(∂xϕ)2 − 2J (t )ρ0 cos ϕ. (15)

Here, ϕ(x) and δρ(x) = −iδ/δϕ(x) satisfy the canonical com-
mutation relation. Deep in the gapped phase, the ground state
of the system can be well approximated by a Gaussian func-
tional of the field ϕ(x), localized near one of the minima of the
cosine potential [44,45]. In time-dependent problems starting
from a localized state, ϕ remains localized as long as the
gap is finite. The time evolution of the system can then be
approximated by a time-dependent Gaussian wave function
introduced by Cooper et al. [46]:

-v[ϕ(x)] = A exp
(

−
∫

x,y
ϕ(x)

[G−1
x,y

4
− i.x,y

]
ϕ(y)

)
.

(16)

Here Gx,y denotes the connected two-point correlator

Gx,y = 〈ϕ(x) ϕ(y)〉 − ϕcl(x)ϕcl(y),

where ϕcl(x) is the classical expectation value of the field
〈ϕ(x)〉 = ϕcl(x). The correlator .x,y corresponds to the
conjugate function of Gx,y, and the prefactor A ∼ (det G)−1/4
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ensures that the wave function remains normalized at all
times,

〈-v|-v〉 =
∫

D[ϕ]-v[ϕ]∗ -v[ϕ] = 1. (17)

The functions Gx,y,.x,y constitute variational parameters
that can be determined from the Dirac variational principle.
To this end, it is convenient to define an effective classical
Lagrangian density

Lcl[Gx,y,.x,y,ϕcl(x), pcl(x)]

=
∫

D[ϕ] -v[ϕ](i∂t − H[ϕ, ∂/∂ϕ])-v[ϕ]. (18)

The equations of motion are obtained by making Scl ≡∫
dt

∫
dx Lcl stationary. For a translationally invariant system,

it is convenient the perform a Fourier transformation Gk ≡∫ /

−/
dk Gx−y e−ik(x−y), with / denoting a UV cutoff. A similar

expression holds for .k . After some algebra, the saddle-point
condition δScl = 0 leads to the following equations of motion:

Ġk = 4πc
K

Gk.k, (19a)

.̇k = πc
8K

G−2
k − 2πc

K
.2

k − cK
2π

k2 − J (t ) Z (t ) ρ0. (19b)

Here, the factor

Z (t ) = exp
(

−1
2

∫ /

−/

dk
2π

Gk

)
(20)

describes a renormalization of the tunnel coupling by the
phase fluctuations. An equivalent Gaussian approximation
for the dynamics can be obtained by replacing the time-
dependent variational principle arguments sketched above
by an alternative [47,48] self-consistent time-dependent har-
monic approximation (SCTDHA) (see Appendix B). In that
approach, the nonquadratic term −2J (t )ρ0 cos ϕ is replaced
with −2J (t )ρ0〈cos ϕ〉(1 − ϕ2/2), making the operator equa-
tions of motion linear. The expectation value 〈cos ϕ〉 is then
calculated self-consistently. We provide details on the equiva-
lence of the two approaches in Appendix C.

B. Numerical results for gapped driving protocols

In this section we compare the TGVA to the semiclassical
TWA for gapped driving protocols J1 < J0. We note that the
TGVA breaks down once the modulated Hamiltonian crosses
a gapless point. Indeed, the closing of the gap amplifies the
quantum fluctuations Gk , leading to the suppression of the
renormalization factor Z (t ) → 0, and ensuring that the gap
remains closed for the rest of the time evolution. This effect
is an artifact of the harmonic approximation. In the gapped
regime J1 < J0, however, the quantum fluctuations can remain
bounded, such that Z (t ) stays finite at all times, and ϕ remains
localized (see Appendix D for more details).

We consider the dynamics of the lattice Hamiltonian
Eq. (9), starting from the approximate ground state of the
system at t = 0, obtained by expanding the cosine function
up to second order, cos ϕi ≈ 1 − ϕ2

i . In the TGVA, this initial

FIG. 2. Parametric excitation of the sine-Gordon model in the
gapped regime. We plot the absorbed total energy density *εtot/γ of
the static Hamiltonian on a log-linear scale as a function of rescaled
time γ t/(2π ), obtained from the truncated Wigner approximation
(TWA) and the time-dependent Gaussian variational ansatz (TGVA).
The energy absorption is exponentially fast up to intermediate times,
but eventually gets suppressed due to the coupling between modes.
The two approaches show a good agreement in the regime of ex-
ponential heating, but at longer times TGVA predicts a stronger
suppression in the energy absorption due to the overestimation of the
coupling renormalization. We used J0/J1 = 1.5, Ns = 200, K = 40,
g̃ = 0.1, kres a = 12π/Ns, and *0/γ = 0.28.

state corresponds to .k (t = 0) = 0 and

Gk (t = 0) = π

2K
1

√
4c2/a2 sin2 (ka/2) + *2

0

, (21)

with the approximate gap *0 given by Eq. (7). We focus on
the total energy density of the static Hamiltonian

εtot (t ) = 〈Hstat〉(t )
Ns

,

where the static component Hstat is obtained by replacing
J (t ) → J0 in Eq. (9).

We set the driving frequency to satisfy the parametric reso-
nance condition Eq. (11) for one of the low-energy modes kres,
and study the energy absorption *εtot (t ) = εtot (t ) − εtot (0)
using the TGVA and TWA approaches. The TGVA result is
obtained by solving Eqs. (19) numerically, with initial con-
ditions specified by Eq. (21). The Wigner distribution of the
initial state, required for the TWA method, is also determined
by Eq. (21), resulting in a Gaussian distribution for the initial
phase and particle-number fluctuations.

The results are shown in Fig. 2 for a moderate modula-
tion strength g̃ = 0.1, tunnel coupling ratio J0/J1 = 1.5, and
static gap *0/γ = 0.28. The parametric resonance leads to
an exponentially fast energy absorption at short and inter-
mediate timescales, and we find a good agreement between
the TWA and TGVA results in this regime. At longer times,
however, the coupling between modes leads to the suppression
of the energy absorption in the system, with TGVA yielding
a stronger suppression compared to TWA. This discrepancy
stems from the rapid increase of phase fluctuations within
TGVA, leading to strong phase decoherence and a pronounced
renormalization of the tunnel coupling. A similar suppres-
sion of tunneling within a Gaussian approximation has been
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observed for quantum quenches in the sine-Gordon model.2

In that scenario, it was shown that the Gaussian approach
overestimates the renormalization of the tunnel coupling con-
siderably, due to neglecting important mode-coupling terms.
In contrast, TWA yielded a moderate suppression of tun-
neling, in good agreement with more controlled numerical
approaches. Based on this insight, we interpret the discrep-
ancy in Fig. 2 on longer timescales as the breakdown of
TGVA, due to neglecting higher-order correlations that are
incorporated to the time evolution in TWA.

IV. DRIVING PROTOCOLS CLOSING THE GAP

In this section we turn to modulations in the regime J1 > J0,
resulting in the closing of the instantaneous gap during the
time evolution. Here, we rely solely on TWA simulations
because the TGVA approach breaks down for these driving
protocols. For simplicity, we focus on J0 = 0, such that the
static Hamiltonian is a quadratic Luttinger liquid, convenient
for studying the mode-resolved energy absorption of different
modes k. First we discuss the heating in the main resonance,
satisfying Eq. (11) and its higher harmonics in Sec. IV A.
Then we present a simple toy model capturing the most rel-
evant coupling terms in Sec. IV B, and test its predictions in
Sec. IV C.

A. Heating of main resonance and its higher harmonics

The Mathieu Eq. (13), describing the dynamics of the sine-
Gordon model up to linear order, predicts sharp resonances for
a parametric drive satisfying the resonance condition Eq. (11)
around the main resonance and its higher harmonics, k̃ ∈ Z,
for weak driving amplitude g̃ < 1. To test these predictions,
and to identify the effect of nonlinear mode couplings in the
full many-body dynamics, we investigate the mode-resolved
energy absorption of the sine-Gordon model, by applying
TWA. As before, we focus on the lattice-regularized model
Eq. (9), where the modulated tunnel coupling J (t ) is given by
Eq. (10) with J0 = 0. This Hamiltonian is quadratic at t = 0,
and we initialize the system in its ground state.

The quadratic part of the lattice Hamiltonian Eq. (9) can
be easily diagonalized by Fourier transformation, yielding the
spectrum

εk = 2c
a

∣∣∣∣sin
ka
2

∣∣∣∣, (22)

reducing to the linear Luttinger-liquid spectrum Eq. (6) for
small wave numbers k , 1/a. We tune the driving frequency
to parametric resonance with one of the low-energy modes
according to Eq. (11), and consider the energy absorption of
different modes,

Ek (t ) = c
(

π

2Ka
〈nkn−k〉(t ) + 2K

πa
sin2 ka

2
〈ϕkϕ−k〉(t )

)
. (23)

Here, we defined nk = 1/
√

Ns
∑

j n je−i jak , with a similar re-
lation for ϕk . We can then apply the semiclassical truncated
Wigner approximation [34], for evaluating the mode-resolved

2I. Lovas, E. Demler, and G. Zaránd (unpublished).

FIG. 3. Parametric excitation of the resonant mode and its higher
harmonics. We plot the energy Ek on a log-linear scale as a func-
tion of rescaled time γ t/(2π ) for modes k̃ ≡ k/kres = 1, 2, 3. The
main resonance k̃ = 1 shows an exponentially fast energy absorption
due the external parametric drive. The energy absorption in higher
harmonics is suppressed on short timescales, but crosses over to an
intermediate regime with efficient heating at later times, consistent
with exponential increase, due to an effective drive provided by the
nonlinear coupling to the highly excited main resonance. We used
Ns = 200, K = 40, g̃ = 0.2, and kres a = 8π/Ns.

energy Eq. (23) as a function of time. Below we parametrize
the modes by the dimensionless wave number introduced in
Sec. II A, k̃ ≡ k/kres.

We plot the energy Eq. (23) for the main resonance k̃ = 1,
as well as the higher harmonics k̃ = 2 and 3 as a function of
time in Fig. 3 for a moderate modulation strength g̃ = 0.2.
We find exponentially fast energy absorption in the main
resonance k̃ = 1 already at early times, in accordance with
the linear Mathieu equation discussed in Sec. II B. At later
times, the energy saturates due to the strong coupling to other
modes. However, the heating of the higher harmonics k̃ = 2
and 3 differs substantially from the dynamics of uncoupled
oscillators. In contrast to a higher-order parametric resonance,
displaying a steady, albeit slow, heating, the energy absorption
in modes k̃ = 2 and 3 is almost completely suppressed at early
times. We then observe a crossover to an unstable regime at in-
termediate times, where the numerical results point towards an
exponentially fast heating, followed by an eventual saturation
at even later times. This peculiar behavior is a consequence of
the mode coupling in the driven sine-Gordon Hamiltonian.

B. Simplified model for mode coupling

In order to identify the most relevant coupling terms be-
tween modes, and to shed more light to the results shown
above, we present a simplified toy model for the dynamics,
focusing on the main resonance and its higher harmonics.
To this end, we consider Eq. (12), and apply the expansion
sin ϕ j ≈ ϕ j − ϕ3

j /6, thereby keeping the lowest-order non-
linearity in the equation of motion. By applying a Fourier
transformation and changing to the dimensionless variables
introduced in Sec. II B, we obtain

(
∂2
τ + k̃2 + 2g̃ sin(2τ )

)
ϕk̃ = g̃

6Ns
sin(2τ )

∑

k̃1,k̃2

ϕk̃1
ϕk̃2

ϕk̃−k̃1−k̃2
.

(24)

075426-6



MANY-BODY PARAMETRIC RESONANCES IN THE DRIVEN … PHYSICAL REVIEW B 106, 075426 (2022)

From our numerical results we conclude that the energy ab-
sorption at short and intermediate times is dominated by the
main resonance and a few higher harmonics for weak drives.
Therefore, we keep only the resonant indices k̃ ∈ Z in Eq. (24)
and drop the others. We focus on the dynamics of the main
resonance k̃ = 1, and the two lowest harmonics k̃ = 2 and
3, and identify the most important coupling terms on the
right-hand side of Eq. (24).

Due to the rapid heating of the main resonance k̃ = 1, and
because of the small population of modes k̃ = 2 and 3 on short
timescales, to leading order we can neglect all coupling terms
to higher harmonics in the equation of motion for mode k̃ = 1.
This reasoning leads to the following simplified equation for
the main resonance:

(
∂2
τ + 1 + 2g̃ sin(2τ )

)
ϕ1 = g̃

2Ns
sin(2τ )|ϕ1|2ϕ1. (25)

Turning to the second harmonics k̃ = 2, we expect that the
coupling to the main resonance k̃ = 1, the mode with the
largest heating rate, will provide the dominant contribution
to the energy absorption of mode k̃ = 2 on short timesscales.
These considerations lead to the following equation of motion
for mode k̃ = 2:

(
∂2
τ + 4 + 2g̃ sin(2τ )

)
ϕ2 = g̃

Ns
sin(2τ )|ϕ1|2ϕ2. (26)

As noted in Sec. II B, the linear Mathieu equation for k̃ = 2
gives rise to a weak resonance for g̃ ! 1 [left-hand side of
Eq. (26)]. The mode heats up exponentially as a function of
time, however, the timescale associated with this heating is
much longer than the typical timescale of energy absorption
for the main resonance k̃ = 1. Consequently, the contribution
from this direct resonance is negligible at the early and in-
termediate stages of the dynamics. In contrast, we find that
the nonlinear coupling term on the right-hand side gives rise
to an effective resonant parametric drive for mode k̃ = 2, and
leads to a fast heating. Note that the time dependence of this
driving term is determined by sin(2τ )|ϕ1|2. In our units, the
natural frequency of mode k̃ = 1 is 1, thus the average 〈|ϕ1|2〉
contains an oscillating contribution ∼ cos(2τ ). Combining
this with the external modulation sin(2τ ), we arrive at an
effective parametric drive ∼ sin(4τ )ϕ2. By comparing to the
resonance condition Eq. (11), we find that this drive satisfies
the parametric resonance condition, giving rise to a strong
first-order resonance, accompanied by an exponentially fast
heating for mode k̃ = 2. Importantly, the amplitude of this
effective drive depends on the occupation of the main reso-
nance through the amplitude |ϕ1|2, leading to a weaker effect
at short timescales, but becoming dominant at intermediate
times, once mode k̃ = 1 has sufficiently heated up.

To qualitatively verify the reasoning presented in the pre-
vious paragraph, we compare the numerical solution of the
simplified Eqs. (25) and (26) to the full TWA dynamics. The
results are plotted in Fig. 4 for a moderate coupling strength
g̃ = 0.2. For the main resonance k̃ = 1, Eq. (25) yields a
larger heating rate than the full TWA solution because we
neglect the coupling and energy transfer to other modes.
For the higher harmonics k̃ = 2, Eq. (26) gives a decreas-
ing energy at early times, whereas the energy of the mode
remains approximately constant in the full TWA. At later

FIG. 4. Simplified description of heating. We compare the ab-
sorption predicted by the simplified Eqs. (25) and (26) (dashed) to
the full TWA time evolution (solid) for modes k̃ ≡ k/kres = 1, 2. We
plot the energy Ek on a log-linear scale as a function of rescaled
time γ t/(2π ). For the main resonance k̃ = 1, Eq. (25) predicts a
faster heating than TWA, due to the absence of coupling to other
modes. For the higher harmonics k̃ = 2, Eq. (26) yields an initial
energy decrease. At later times, however, the emergent parametric
drive provided by the main resonance gives rise to an efficient heat-
ing, pointing towards an exponentially fast energy absorption, albeit
with a smaller rate than the one from the TWA solution. We used
Ns = 200, K = 40, g̃ = 0.2, and kres a = 8π/Ns.

times, the coupling to the main resonance becomes dominant,
giving rise to a steady energy absorption, pointing towards
a mild exponential heating. The heating rate, however, is
considerably smaller than the rate obtained from the TWA
simulations.

While the simplified Eqs. (25) and (26) can not account
for all details of the full TWA dynamics, they are able to
capture some important qualitative features, and illustrate how
the coupling to the main resonance induces fast, seemingly
exponential heating in the second harmonics. To gain a similar
qualitative understanding of the dynamics of higher harmon-
ics, we now examine the analogous simplified equation of
motion for the third harmonics k̃ = 3.

Since lower harmonics are expected to display a larger
heating rate for mode k̃ = 3, we identify the following domi-
nant nonlinear coupling terms, coupling k̃ = 3 to modes k̃ = 1
and 2:

(
∂2
τ + 9 + 2g̃ sin(2τ )

)
ϕ3

= g̃
Ns

sin(2τ )(|ϕ1|2 + |ϕ2|2)ϕ3 + g̃
6Ns

sin(2τ )ϕ3
1 . (27)

The first two terms on the right-hand side give rise to effective
parametric drives, whereas the last term acts as an external
driving force for mode k̃ = 3. The first effective parametric
drive, ∼ sin(2τ )|ϕ1|2, becomes stronger rapidly due to the
exponentially fast heating of mode 1, and starts to induce
an efficient energy absorption in mode k̃ = 3 at intermedi-
ate timescales. The second parametric drive, ∼ sin(2τ )|ϕ2|2,
contains terms oscillating as sin(2τ ) cos(4τ ) ∼ sin(6τ ), sat-
isfying the resonance condition (11) for mode k̃ = 3, and
leading to a first-order parametric resonance. Similarly to
the effective resonant drive identified for mode k̃ = 2, the
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amplitude of the drive depends on the heating of a lower-lying
mode. Therefore, the heating rate induced by this coupling
becomes larger at intermediate timescales, when the occu-
pation of the lower mode is sufficiently large. Finally, the
third term on the right-hand side of Eq. (27) amounts to an
external diving force. Here ϕ3

1 gives rise to oscillating terms
of the form e±3iτ and e±iτ , leading to an effective resonant
drive sin(2τ )e±iτ ∼ e±3iτ for mode k̃ = 3. While a resonant
external force with constant amplitude gives rise to a heat-
ing that is linear in time, the force provided by mode k̃ = 1
increases exponentially with time, as mode k̃ = 1 becomes
more populated. Therefore, this term may contribute towards
an exponentially fast heating of mode k̃ = 3 at intermediate
timescales, similarly to the effective parametric drives dis-
cussed above.

Our simplified model provides a qualitative explanation for
the results plotted in Fig. 3. At short times, the main resonance
starts to heat up exponentially fast due to the external paramet-
ric drive. In contrast, the direct energy absorption of the higher
harmonics k̃ > 1 from the external drive is much less efficient,
moreover, the nonlinear coupling to mode k̃ = 1 is still weak
due to the low population of this mode. Therefore, the heating
of modes k̃ > 1 remains suppressed on short timescales. At
intermediate timescales, the coupling between mode k̃ = 1
and its higher harmonics becomes dominant due to the high
population of the main resonance. The strong effective para-
metric drive and external driving force emerging from this
coupling give rise to a rapid heating in modes k̃ = 2 and 3,
consistent with an exponentially fast energy absorption. We
note that the simplified Eqs. (26) and (27) do not provide a
rigorous evidence for exponential heating since the population
of the main resonance, and consequently the amplitude of the
effective parametric drive, keeps changing on the timescales
considered here. However, both the hand-waving arguments
presented above, and the numerical results obtained for the
simplified model and for the full TWA dynamics, strongly
suggest such an exponential heating regime. Finally, at even
later times the population of all of these modes saturates
due to the coupling to the bath formed by the remaining
modes.

Even though the simplified model yields a qualitative ex-
planation for the results plotted in Fig. 3, it does not capture
the almost perfect suppression of heating in modes k̃ = 2 and
3 at short timescales, instead predicting a slow decrease in
energy (see Fig. 4). This deviation between the simplified de-
scription and the full quantum model is a direct consequence
of the difference between the expansion sin ϕ ≈ ϕ − ϕ3/6,
and the exact function sin ϕ appearing in the mean field equa-
tion of motion, pointing towards the importance of the precise
form of the many-body potential in the dynamics.

C. Distribution of absorbed energy
and higher-order correlations

We examine the heating of different modes, as well as
the higher-order correlations in the system for weak driving
amplitude in Fig. 5. This allows us to test the predictions
of the simplified model presented in the previous section in
more detail. We will briefly comment on the case of stronger
modulations at the end of the section.

FIG. 5. Energy profile and correlations for a weak drive.
(a) Snapshots of the energy profile Ek , averaged over one driving
period, for different times, displaying sharp peaks at the main res-
onance and its higher harmonics. Exponential heating in the main
resonance starts immediately, whereas the absorption in higher-order
resonances is strongly suppressed at short times. At later times
sharp peaks also emerge at the higher harmonics, as they absorb
energy from the highly excited main resonance. (b) Higher-order
correlations between modes obtained from the connected correlator
C (4)

k,−k,k′,−k′ as a function of dimensionless wave numbers k̃ = k/kres

and k̃′ = k′/kres. (c) Higher-order correlators C (4)
k,k,k,−3k as a function

of k̃, averaged over one driving period at time γ t/(2π ) = 12.5. The
correlator C (4)

k,−k,k′,−k′ displays strong correlations between the main
resonance and the higher harmonics k̃ ∈ Z, k̃′ ∈ Z, while C (4)

k,k,k,−3k
reveals a sharp correlation peak between modes 1 and −3. We used
Ns = 200, K = 40, g̃ = 0.2, and kres a = 8π/Ns.

To cancel the rapid oscillations stemming from the external
drive, we average the energy over one period of the drive,

Ek (t ) = 1
T

∫ t+T/2

t−T/2
dt ′Ek (t ′), (28)

with T = 2π/γ . We plot snapshots of the mode-dependent
energy Ek at different times for a weak driving amplitude
g̃ = 0.4 in Fig. 5(a). As anticipated in Sec. IV B, the heating
at short and intermediate timescales is dominated by the main
resonance and its higher harmonics, leading to sharp peaks
in the energy at wave numbers k̃ ∈ Z. In accordance with
the delay of the heating in higher harmonics discussed above,
the resonance peaks around k̃ = 2 and 3 remain strongly sup-
pressed on short timescales, and become more pronounced at
later times.

To further investigate the scope of the effective description
discussed in Sec. IV B, we also examine the higher-order
density correlations in the system. We note that for a
Gaussian state, all connected correlation functions above
second order vanish due to Wick’s theorem. Therefore, by
considering higher-order correlators, we measure the devia-
tion of the many-body wave function from a Gaussian state,
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and reveal a nontrivial correlated structure of the system.
The lowest-order non-Gaussian correlations are captured by
fourth-order correlators. Therefore, we consider two different
fourth-order correlation functions,

C(4)
k,−k,k′,−k′ = 〈nk n−k nk′ n−k′ 〉c (29)

and

C(4)
k,k,k,k′ =

〈
n3

k nk′
〉
c, (30)

with 〈. . . 〉c standing for a connected correlator, and nk de-
noting the Fourier transform of the particle-number operator
nk = 1/

√
Ns

∑
j n je−i jak . The choice to focus on correla-

tions between wave numbers {k,−k, k′,−k′} and {k, k, k, k′}
was motivated by our simplified model, Eqs. (26) and (27),
implying potential strong correlations between these partic-
ular sets of wave numbers. Due to translation invariance,
C(4)

k,k,k,k′ is nonzero only for k′ = −3k, whereas C(4)
k,−k,k′,−k′ can

be finite for arbitrary wave numbers k and k′. Similarly to
Eq. (28), we average these correlators over one period of the
drive.

We show snapshots of the averaged correlators C(4)
k,−k,k′,−k′

and C(4)
k,k,k,−3k at an intermediate time γ t/(2/π ) = 12.5, in the

regime of weak modulation, g̃ ! 1, in Figs. 5(b) and 5(c). We
find that C(4)

k,−k,k′,−k′ displays sharp correlation peaks between
the multiples of the resonant mode k̃ ∈ Z, k̃′ ∈ Z. This be-
havior can be understood based on the simplified Eqs. (26)
and (27). The effective parametric drive appearing on the
right-hand side of these equations induces strong correlations
of the type C(4)

k,−k,k′,−k′ between the main resonance and the
higher harmonics k̃, k̃′ ∈ Z, in accordance with the results
plotted in Fig. 5(b). By contrast, the correlator C(4)

k,k,k,−3k re-
veals strong correlations between n−3k̃ and n3

k̃
for the main

resonance k̃ = 1, as well as much weaker correlation peaks
for the higher harmonics k̃ = 2 and 3 [see Fig. 5(c)]. The
sharp correlation peak at k̃ = 1 is consistent with the effective
driving force appearing on the right-hand side of Eq. (27),
providing a strong coupling between the operators ϕ3

1 and
ϕ−3. In the presence of a large driving amplitude g̃ > 1, the
heating dynamics is modified. We plot the mode-resolved
energy profile Ek (t ) for different times in Fig. 6, using the
driving strength g̃ = 1.5. In contrast to the case of a weak
drive discussed above, a strong modulation leads to a broad
parametric resonance, as well as to strong nonlinear couplings
between modes, resulting in a smoother energy profile Ek at
all times, without well-defined resonance peaks. Instead, we
observe a threshold at k̃thres ≈ 2.25, above which the energy
starts to fall off as a function of k̃. We can gain a qualitative un-
derstanding of this behavior based on the uncoupled Mathieu
Eq. (13), predicting a broadened first and second resonance in
close proximity. The mode-coupling modifies the boundary of
these unstable lobes, merging them into a single broad heating
region Im ν(k̃, g̃) < 0 with exponentially fast heating below
the threshold k̃thres. While this perturbative reasoning explains
the main features in Fig. 6, the details of the dynamics depend
strongly on the pronounced coupling between the modes, and
can only be obtained from a simulation accounting for the full
many-body potential.

FIG. 6. Energy profile for a strong drive. Snapshots of the energy
profile Ek for different times, averaged over one driving period, for
a large modulation g̃ = 1.5. The broadening of the parametric reso-
nance and the strong coupling between modes leads to a smoother
energy profile than the one obtained for weak drives g̃ ! 1. The
threshold k̃thres ≈ 2.25 separates a broad region with fast heating
from the more stable modes with slower energy absorption. We used
Ns = 200, K = 40, and kres a = 8π/Ns.

For the strong drive considered in Fig. 6, the homogeneous
mode k = 0 heats up exponentially fast,3 with a large heating
rate, giving rise to a pronounced peak on short timescales
(compare to the phase diagram of a single oscillator, Fig. 1).
At later times, this high excitation is transferred to the remain-
ing modes, as can be observed in Fig. 6.

V. OUTLOOK AND IMPLICATIONS FOR EXPERIMENTS

We have considered a quantum many-body analog of a
classical parametric oscillator, the sine-Gordon model in the
presence of a modulated cosine potential. For weak driving
amplitudes, we have found an exponentially fast heating of
the main resonance, whereas the energy absorption of the
higher-order resonances is suppressed on short timescales. On
longer timescales the nonlinear coupling terms in the Hamil-
tonian excite higher-order resonances by effective parametric
drives as well as external driving forces generated from the
highly excited main resonance. Such mode coupling allows
the higher resonances to absorb energy from the highly ex-
cited main resonance and gives rise to further sharp resonance
peaks in the mode-resolved energy density. We have identified
the most relevant couplings by exploring the higher-order
correlations between modes, and constructed a simplified
model to explain our findings. While this model provides a
good qualitative understanding for our main results, it fails
to describe some aspects of the dynamics, such as the almost
perfect suppression of energy absorption at short times in all
modes except the main resonance. This indicates the relevance
of the full many-body potential in the time evolution.

3The typical timescale of the exponential heating in mode k = 0 is
shorter than the timescale associated with the heating in modes k > 0.
The snapshots plotted in Fig. 6 were chosen to reflect the change
of population in modes k > 0; at these timescales, the exponential
heating of mode k = 0 has already stopped, instead, the excitation is
transferred gradually from k = 0 to the higher modes k > 0.
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FIG. 7. Proposed experimental protocol. The driven sine-Gordon model is experimentally accessible with quasi-one-dimensional conden-
sates in a double-well potential, coupled through a modulated Josephson tunneling term. A tunnel-coupling oscillating around zero mean can
be realized as follows: In the first half-period, the tunnel coupling is modulated as J (t ) = J1 sin(γ t ), 0 ! t ! π/γ . Upon reaching J (t ) = 0,
the sign of the tunneling is reversed by implementing a global phase rotation π , through switching on a left-right asymmetry in the trapping
potential. Once the desired phase difference π has been imprinted, the asymmetry is switched off. Repeating after this rotation the same
half-period J (t ) = J1 sin(γ t ), 0 ! t ! π/γ , results in a an effective tunnel coupling Jeff (t ) = −J1 sin(γ t ), completing the driving cycle.

The modulated tunnel coupling can be experimentally re-
alized in various ultracold-atomic settings, with one possible
platform relying on coupling two hyperfine states of the cold
atoms by a Raman coupling [29–31]. Here we discuss an-
other possible realization of the driven sine-Gordon model,
in a setting consisting of two parallel quasi-one-dimensional
condensates in the presence of a modulated tunnel coupling.
The one-dimensional description of this system, Eq. (2), fails
when the transverse modes of the double-well potential cannot
be neglected anymore. At late times, these transverse modes
may become populated due to the strong heating, leading to
deviations from the sine-Gordon description. For the parame-
ters used in this work, the total energy density of the system
remains small compared to the chemical potential gN , with N
denoting the total particle number (despite some modes being
exponentially populated). Under these conditions, we expect
that the transverse modes of the trap can be neglected on the
timescales we consider.

While realizing an oscillating coupling of the form of
Eq. (10) with a deformed double-well potential is rela-
tively straightforward in the regime J1 < J0, reversing the
sign of J (t ) is substantially more challenging. We propose
the procedure schematically depicted in Fig. 7 to realize
the tunnel coupling J (t ) = J1 sin(γ t ). The first half-period,
0 ! t ! π/γ , can be realized by deforming the double-well
trapping potential. An effective sign change can then be im-
plemented by changing the global phase difference ϕ1 − ϕ2
of the now uncoupled condensates by π . In the absence of
tunnel coupling, J (t ) = 0, the phase difference π can be im-
printed by switching on an energy difference ε between the
two condensates, by adding a small left-right asymmetry to
the double-well trapping potential [7,28]. The energy differ-
ence results in a global phase accumulation *(ϕ1 − ϕ2) =
εt , reaching the desired value π at time t = π/ε. Once the
phase π has been imprinted, the energy difference ε can
be switched off. Repeating the same modulation sequence,
J (t ) = J1 sin(γ t ), 0 ! t ! π/γ , leads to a time-dependent
cosine potential with an opposite sign, −J (t ) cos(ϕ j + π ) =
J (t ) cos ϕ j , completing the first driving cycle.

We note that we have performed our simulations with
periodic boundary conditions, amounting to a homogeneous
average density and phase 〈nk〉 = 〈ϕk〉 = 0. An experimental
realization typically corresponds to open boundary condi-
tions. The resulting boundary terms are relevant perturbations
modifying the field-theoretical description, and lead to Friedel

oscillations superimposed on the modulations caused by the
parametric drive [15]. Nevertheless, in a box potential the
parametric instability could still be detected through the time-
dependent density and phase correlation functions in the bulk,
〈ρ(x)ρ(x′)〉(t ) and 〈ϕ(x)ϕ(x′)〉(t ), where the distance between
x, x′ and the edge of the system is much larger than the healing
length, as well as through the higher-order correlators. Alter-
natively, boundary effects can be avoided by implementing a
ring geometry.

Aside from the experimental relevance of our results,
studying the mode-resolved energy absorption of other slowly
driven quantum many-body systems remains of interest. The
distribution of the absorbed energy and the emerging correla-
tion patterns can shed light on the dominant coupling terms
between quasiparticles, as well as on the role of conservation
laws or kinetic constraints.
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APPENDIX A: DERIVATION OF THE
BOSONIZED HAMILTONIAN

Using the notations of Ref. [37], the low-energy excitations
of the decoupled Hamiltonian Eq. (2) are described by the
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bosonized Hamiltonian

H0 =
∑

j=1,2

∫
dx
2π

[
u∗K∗(π1 j )2 + u∗

K∗
(∂xφ j )2

]
,

where u∗ is the velocity of excitations, K∗ the Luttinger param-
eters, [φ j (x),1k (x′)] = iδ jkδ(x − x′). As a result of Galilean
invariance [36],

u∗K∗ = πρ0

m
,

while K∗/u∗ can be obtained from the compressibility of the
Lieb-Liniger model. For weak coupling, we have the approx-
imations

u∗ /
√

ρ0g
m

,

K∗ / π

√
ρ0

mg
.

The time-dependent Josephson tunneling term Eq. (3) has the
bosonized expression

HJ = −2J (t )ρ0

∫
dx cos(θ1 − θ2)(x),

with ∂xθ j = π1 j . It is convenient to introduce symmetric and
antisymmetric combinations

φr = 1√
2

(φ1 + rφ2), θr = 1√
2

(θ1 + rθ2)

with r = ±, and rewrite H = H+ + H− with

H∗ =
∫

dx
2π

[
u∗K∗(π1+)2 + u∗

K∗
(∂xφ+)2

]
,

H− =
∫

dx
2π

[
u∗K∗(π1−)2 + u∗

K∗
(∂xφ−)2

]

− 2J (t )ρ0

∫
cos

√
2θ−.

We now introduce ϕ = −
√

2θ− and n = −∂xφ−/
√

2. In
order to discretize, we replace ∂xϕ with (ϕ j+1 − ϕ j )/a and
n( ja) with nj/a. We end up with

H− =
∑

j

[
u∗K∗

4πa
(ϕ j+1 − ϕ j )2 + πu∗

aK∗
n2

j

− 2J (t )ρ0a cos ϕ j

]
,

leading to Eq. (9) with c = u∗ and K = K∗/2.

APPENDIX B: ALTERNATIVE FORMULATION OF
SCTDHA FOR THE FRENKEL-KONTOROVA MODEL

In this Appendix we present an alternative formulation
of the time-dependent self-consistent harmonic approxima-
tion for the Frenkel-Kontorova model, following the approach
described in Refs. [47,48]. As shown in Appendix C, this
approximation is equivalent to the time-dependent variational
principle described in Sec. III A.

This approach relies on approximating the cosine term of
the Frenkel-Kontorova model Eq. (9) as

cos ϕ j / e−
〈ϕ2

j 〉
2

(
1 −

ϕ2
j

2

)
,

such that

HLat / c
2

Ns∑

j=1

[
πn2

j

Ka
+ K

πa
(ϕ j+1 − ϕ j )2 + ρ0J (t )aZ (t )ϕ2

j

]
,

(B1)

with Z (t ) = e−〈ϕ2
j 〉(t )/2.

It is convenient to use the Fourier decomposition

n j = 1√
Ns

∑

k

nkeik j,

ϕ j = 1√
Ns

∑

k

ϕkeik j,

where k = 2π p
Ns

with p integer, and to rewrite Eq. (B1) as

HLat = c
2

∑

k

{
πnkn−k

Ka

+
[

2K
πa

(1 − cos k) + ρ0J (t )aZ (t )
]
ϕkϕ−k

}
.

.

We obtain the equation of motion

d2ϕk (t )
dt2

+
[
ω2

k + 42(t )
]
ϕk (t ) = 0, (B2)

with

ω2
k = 2c2

a2
(1 − cos ka),

42(t ) = 2πcρ0J (t )Z (t )
K

.

The time evolution of ϕk (t ) is fully determined by Eq. (B2)
and the knowledge of ϕk (0) and

(
dϕk (t )

dt

)

t=0
= πcnk (0)

Ka
. (B3)

Those initial conditions are determined by the ground state of
the initial Hamiltonian. Since we have set *(t < 0) = *(0),

HSCTDHA(t < 0) =
∑

k

√
ω2 + 42(0)(a†

kak + 1/2),

with

ϕk =
a†

−k + ak√
2Ka
πc

√
ω2

k + 42(0)

,

nk = i

√
Ka
πc

√
ω2

k + 42(0)
a†

−k − ak√
2

.

Using these expressions and requiring that Z (t ) should be
determined self-consistently from Eq. (B1), we obtain a set of
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differential equations for each k,

d2Yk

dt2
+

[
ω2

k + 2ρ0πcJ (t )Z (t )
K

]
Yk = 0, (B4)

with initial conditions

Yk (0) = 1
[
ω2

k + 42(0)
]1/4 ,

Ẏk (0) = −i
[
ω2

k + 42(0)
]1/4

. (B5)

Finally, the coupling renormalization Z (t ) is determined by

Z (t ) = exp

[

− πc
4NsKa

∑

k

|Yk (t )|2
]

. (B6)

Therefore, the equation giving Z (t ) is reduced to a nonlinear
differential equation for the vector Yk (t ) with initial conditions
given by Eq. (B5). Such equation can be integrated numeri-
cally with the Runge-Kutta algorithm (see [49], p. 897). The
numerical solution of Yk (t ) will be discussed in more detail
below.

To fully determine the initial condition, we have to solve
for 4(0). The self-consistent equation is

a242(0)
c2

= 2πρ0J (0)a2

cK
exp

[

− π

4NsK

∑

k

1
√

4 sin2(ka/2) + (a4/c)2(0)

]

. (B7)

When K > 1
8 , Eq. (B7) has solutions for J (0) , c/(ρ0a2)

with

4(0) = 2πc
a

(
ρ0J (0)a2

2πcK

) 4K
8K−1

,

Z (0) =
(

ρ0J (0)a2

2πcK

) 1
8K−1

.

If we assume that Z (t ) is almost constant, the conditions to
find resonant modes will be

ω2(k∗) +
∫ T

0

dt
T

2πρ0cZ (0)
K

J (t ) = n2γ 2

4
,

with n " 1 integer, so for

γ > 2

√

ω2(π ) +
∫ T

0

dt
T

2πρ0cZ (0)
K

J (t ), (B8)

resonant modes are absent. In such case of high-frequency
driving, Z (t ) can reach a nonzero limit at long times. However,
when the condition Eq. (B8) is not satisfied, an unstable mode
growing exponentially will be present, leading to Z (t ) → 0.
Thus, the approximation of constant Z (t ) breaks down over
a timescale determined by the Floquet exponent with the
largest imaginary part. Besides, the previous argument also
shows that at long times, when γ < 2ω(π ), Z (t ) cannot have
a strictly positive limit. Otherwise, we would find an exponen-
tially growing mode leading to Z (t ) → 0 and a contradiction.
Thus, we are led to expect two regimes, one of high-frequency
driving with Z (t ) approaching a finite limit at long times, and
another of low-frequency driving with Z (t ) going to zero for
long times. In Appendix B 2, we consider a simplified model,
where only the resonant modes are taken into account. The
model shows some periodic revivals of the coherence; albeit
with a duration that decreases as O(1/t ).

1. Numerical results for renormalization term Z(t )

Assuming for a moment that Z (t ) is given, we consider the
linear differential equation

d2Yk

dt2
+

[
ω2

k + 42(t )
]
Yk (t ) = 0,

and its fundamental solutions
(

y1 y2
ẏ1 ẏ2

)
(k, t = 0) =

(
1 0
0 1

)
.

We find that

ϕk (t ) = 1
[
2 Ka

πc

√
ω2

k + 42(0)
]1/2

[
ak

(
y1 − i

√
ω2

k + 42(0)y2

)

+ a†
−k

(
y1 + i

√
ω2

k + 42(0)y2
)]

,

resulting in

Z (t ) = exp



− πc
4NKa

∑

k

y1k (t )2 + y2k (t )2
[
ω2

k + 42(0)
]

√
ω2

k + 42(0)



.

FIG. 8. Plot of the modulus of Yk (t ) versus k at time t = 50. The
two resonant modes at k∗ = π

5 and 2π − k∗ are clearly visible.
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FIG. 9. Plot of |Y (k∗, t )| as a function of time. The amplitude of
the oscillations is increasing with time.

We have solved numerically the differential equation for
Z (t ) and Yk (t ) for J (t ) = J0 + J1 cos(γ t ), where γ T = 2π .
We have picked our unit of time so that c/a = 1 and set K =
π . We show the results for the case of J0 = J1 = 0.1 and γ =
1.5. In Fig. 8, the modulus of Yk (t ) is plotted as a function of k.
We have resonant modes at k∗ = π/5 and 2π − k∗ = 9π/5.

The time evolution of the resonant mode is shown on
Fig. 9. The amplitude is not a monotonous function of time,
but shows a succession of maxima and minima, with the
height of the maxima increasing with time.

Plotting the maxima as a function of time on a semiloga-
rithmic scale (Fig. 10), we find the points are close to a straight
line, compatible with exponential growth at short times.

2. Analytical results for the self-consistent time-dependent
harmonic approximation

We now discuss a few analytical approximations derived
within the SCTDHA. For the differential Eq. (B4) we can
show that for each k,

Y ∗
k (t )

dYk (t )
dt

− Yk (t )
dYk (t )∗

dt
= −2i,

FIG. 10. Plot of |Yk∗ (tmax,n)| versus tmax,n on semilogarithmic
scale. This can be fitted by an exponential.

and we have energy conservation

d
dt

(
∑

k

∣∣∣∣
dY
dt

∣∣∣∣
2

(k, t ) + ω2
k |Yk (t )|2 − 8*(t )Z (t )

)

= −8N
d*

dt
Z (t ), (B9)

where *(t ) = ρ0aJ (t ). After integrating Eq. (B9) over time,
we find that if there is at least one mode Y (k 0= 0, t ) whose
amplitude grows to infinity, then

∫ +∞

0
Z (t )

d*

dt
dt = −∞,

and since 0 < Z (t ) < 1 while *(t ) is also bounded,
∫ +∞

0
*(t )

dZ
dt

dt = +∞.

Using
∣∣∣∣

∫ t

0
Z (t ′)

d*

dt ′ dt ′
∣∣∣∣ <

∫ t

0
Z (t ′)

∣∣∣∣
d*

dt ′

∣∣∣∣dt ′

< max
0<t ′<t

∣∣∣∣
d*

dt ′

∣∣∣∣

∫ t

0
Z (t ′)dt ′,

so if we have modes with a divergent amplitudes,
∫ +∞

0
Z (t )dt = +∞.

Equation (B6), however, implies that having modes with di-
vergent amplitudes leads to Z (t ) → 0. So Z (t ) should decay
to zero sufficiently slowly at long times to yield a diver-
gent integral, implying that the amplitudes of unstable modes
|Y (k, t )| are also growing sufficiently slowly. Now, let us
return to Eq. (B4), with J (t ) given by Eq. (10), and let us con-
sider k = kr where ω(kr ) = γ /2. We will seek Y (kr, t ) in the
form

Y (kr, t ) = A(t )ei γ
2 t + B(t )e−i γ

2 t ,

neglecting 2πρ0cJ0Z (t )/K compared with γ 2/4. We end up
with the system of differential equations

d2A
dt2

+ iγ
dA
dt

− i
πρ0cJ1

K
Z (t )B = 0,

d2B
dt2

− iγ
dB
dt

+ i
πρ0cJ1

K
Z (t )A = 0.

Neglecting the second derivatives, as A(t ) and B(t ) are ex-
pected to vary slowly over one period, and introducing Pauli
matrices, we rewrite our system as

iγ σ3

(
A
B

)
+ πρ0cJ1

K
Z (t )σ2

(
A
B

)
= 0,

that is solved in the form
(

A(t )
B(t )

)
= exp

[∫ t

t0

πρ0cJ1

γ K
σ1Z (t ′)dt ′

](
A(t0)
B(t0)

)
.

We see that when the integral of Z is finite, A and B remain
finite, but if the integral of Z is divergent, A and B will grow
to infinity. With the help of Eq. (B2), we find

Y (kr, t ) = A cos
(

γ t
2

)
exp

[∫ t

0

πρ0cJ1

γ K
Z (t ′)dt ′

]
+ · · · .
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The same equation holds for Y (−kr, t ). The amplitude
squared diverges as

|Y (kr, t )|2 = |A|2

2
[1 − cos γ t]

× exp
[∫ t

0

2πρ0cJ1

γ K
Z (t ′)dt ′

]
+ · · · ,

and we have
∣∣∣∣
dY (kr, t )

dt

∣∣∣∣
2

+ γ 2

4
|Y (kr, t )|2

= γ 2|A|2

4
exp

[∫ t 2πρ0cJ1

γ K
Z (t ′)dt ′

]
. (B10)

Assuming only the modes at ±kr are divergent, and introduc-
ing

ζ (t ) = πc|A|2

4NKa
exp

[∫ t

0

2πρ0cJ1

γ K
Z (t ′)dt ′

]
, (B11)

we obtain

ζ̇

ζ
= 2πρ0cJ1

γ K
exp [−(1 − cos γ t )ζ (t )].

We have the inequality
∫ ζ (t ) dζ ′

ζ ′ e2ζ ′ " 2πJ1ρ0ct
γ K

,

yielding

ζ (t ) " 1
2

ln
[

2πJ1ρ0ct
γ K

ln
(

2πJ1ρ0ct
γ K

)]
+ o(1).

Since ζ (t ) → +∞, Eq. (B2) implies that except in the vicinity
of γ t = 2nπ , with integer n, ζ̇ , 1. Near γ t = 2nπ , we can
expand the cosine in Eq. (B2) to obtain

ζ̇

ζ
/ e−ζ (2nπ/γ )(γ t−2nπ )2/2.

By integrating, we have the relations

ζ

(
2n + 1

γ

)
/ ζ

(
2n
γ

)
exp

[
πρ0cJ1

γ 2K

√
2π

ζ
( 2n

γ

)
]

,

ζ

(
2n − 1

γ

)
/ ζ

(
2n
γ

)
exp

[

−πρ0cJ1

γ 2K

√
2π

ζ
( 2n

γ

)
]

,

provided ζ (2nπ ) 2 1. Using the above expressions to obtain
ζ [(2n + 1)π/γ ] as a function of ζ [2nπ/γ ] and of ζ [(2n +
2)π/γ ], we get

ζ

(
2n
γ

)
exp

[
πρ0cJ1

γ 2K

√
2π

ζ
( 2n

γ

)
]

= ζ

(
2n + 2

γ

)
exp

[

−πρ0cJ1

γ 2K

√
2π

ζ
( 2n+2

γ

)
]

.

We can rewrite this equation in differential form to arrive at

ζ

(
2n
γ

)
/ 2π

(
nπρ0cJ1

γ 2K

)2

,

and for (2n − 1)π < γ t < (2n + 1)π ,

ζ (t ) /2π

(
nπρ0cJ1

γ 2K

)2

× exp
{

1
2n

erf
[

2π3/2ρ0cJ1

γ K
n
(

t − 2nπ

γ

)]}
,

and

Z (t ) / exp
[
−π

(
πρ0cJ1n

γ K

)2(
t − 2n

π

γ

)2]
.

We thus obtain
∫ (2n+1)π

γ

(2n−1)π
γ

dt Z (t ) / γ K
πρ0cJ1n

and
∫ t

0
dt Z (t ) ∼ γ K

πρ0cJ1
ln

γ t
2π

.

Qualitatively, at long times, Z (t ) is nearly zero except in
intervals of size ∼1/n around t = 2nπ/γ , where Z (t ) / 1.

This leads to short-lived periodic revivals of the phase co-
herence between the chains. The nonresonant modes lead to
a blurring of those revivals, but spikes in Z (t ) are visible in
our numerical simulations. If we consider the total energy,
*(t )Z (t ) is bounded, so it is enough to use Eq. (B10) to find
the energy going as

〈H (t )〉 ∼ 2Na
cK

(
πρ0cJ1n

γ

)2

× exp
{

1
2n

erf
[

2π3/2ρ0cJ1

γ K
n
(

t − 2nπ

γ

)]}
,

when t ∼ 2nπ . We find an energy increasing as O(t2).

APPENDIX C: EQUIVALENCE OF THE
TIME-DEPENDENT GAUSSIAN VARIATIONAL ANSATZ

AND THE SELF-CONSISTENT TIME-DEPENDENT
HARMONIC APPROXIMATION

In this Appendix we show the equivalence of the time-
dependent variational principle outlined in Sec. III A, and
the time-dependent self-consistent harmonic approximation
as formulated in Refs. [47,48] and used in Appendix B.

First, expressing .k as a function of Ġk/Gk , the system
Eq. (19) is rewritten as a single second-order differential
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equation for Gk

K
4πc

[
G̈k

Gk
− 1

2

(
Ġk

Gk

)2
]

= πc
8KG2

k

− cK
2π

k2 − J (t )Z (t )ρ0. (C1)

Introducing yk =
√

Gk , one has

1
yk

d2yk

dt2
= 1

2

[
G̈k

Gk
− 1

2

(
Ġk

Gk

)2
]

,

so that in terms of yk , Eq. (C1) becomes

d2yk

dt2
= (πc)2

4K2y3
k

−
(

c2k2 + 2πcJ (t )Z (t )ρ0

K

)
yk . (C2)

Equation (C2) is the equation of motion of a classical parti-
cle moving in a time-dependent harmonic central force field
written in polar coordinates [32]. The term π2c2/(4K2y3

k ) is
the centrifugal force, while the term proportional to yk is the
harmonic restoring force. Equation (C2) is thus linearized by
introducing the angular coordinate θk satisfying

dθk

dt
= πc

2Ky2
k

(C3)

with initial condition θk (0) = 0. In terms of the variable
zk =

√
Gkeiθk , Eq. (C2) becomes

d2zk

dt2
=

(
c2k2 + 2πcJ (t )Z (t )ρ0

K

)
zk. (C4)

That is precisely Eq. (B4), obtained using the self-consistent
time-dependent harmonic approximation (SCTDHA) [47,48].

Having reduced Eq. (19) to a linear second-order equation,
the initial conditions of Eq. (C4) are

zk (0) =
√

Gk (0),

żk (0) = 2πc
K

√
Gk (0).k (0) + iπc

2K
√

Gk (0)
.

Again using the solutions y1k (t ) and y2k (t ) of the differential
equation

d2Yk

dt2
= −

(
c2k2 + 2πcJ (t )Z (t )ρ0

K

)
Yk,

with initial conditions
(

y1(0) y2(0)
ẏ1(0) ẏ2(0)

)
=

(
1 0
0 1

)
,

we find

zk (t ) =
√

Gk (0)
[

y1k (t ) + 2πc
K

.k (0)y2k (t ) + iπcy2k (t )
2KGk (0)

]
.

Since our initial state was a steady state, .k (0) = 0. Then,
Gk (t ) = |zk (t )|2 yields

Gk (t ) = Gk (0)
[

y1k (t )2 + π2c2y2k (t )2

4K2Gk (0)2

]
,

and using the equilibrium Green’s function Eq. (21), we get

Z (t ) = exp
[
−

∫ /

−/

dk

8K
√

k2 + *2
0

×
[
y1k (t )2+c2(k2 + *2

0

)
y2k (t )2]

]
.

APPENDIX D: GAP RENORMALIZATION AND
INFINITE-TEMPERATURE RUNAWAY INSTABILITY

IN SCTDHA IN THE AMPLITUDE-MODULATED
SINE-GORDON MODEL

In Sec. III we approximated the gap of the sine-Gordon
model with J0 0= 0 by Eq. (8). A more precise expression
within SCTDHA takes into account the renormalization of
the tunnel coupling by quantum fluctuations. To this end, the
system is assumed to be in its stationary gapped ground state,
i.e., .k = 0 for t ! 0. The initial correlator for the continuum
version is determined from Eq. (19b),

Gk = π

2K
1

√
k2 + *2

0

,

where *0 is self-consistently given as

*2
0 = 2πJρ0

cK
exp



−1
2

∫ /

−/

dk
4K

1
√

k2 + *2
0



.

Assuming *0 , /, the above equation gives *2
0 ≈

(g0/2)[*0/(2/)]1/(4K ), which implies that Kc = 1
8

(Kosterlitz-Thouless transition). The cosine is relevant
(irrelevant) for K > Kc (K < Kc). In this initial gapped phase,
the classical oscillation frequency

√
g0 is renormalized by the

factor Z due to quantum fluctuations.
In the presence of a modulation in the tunnel coupling,

the system can enter a region of infinite-temperature runaway
instability depending on the strength and frequency of the
modulation. This effect can be understood within the varia-
tional wave-function approach as follows. In the initial gapped
phase, the classical oscillation frequency near the ϕ = 0 min-
imum of the cosine potential is renormalized by the factor Z
due to quantum fluctuations. The introduction of a modulation
to the amplitude of the bare cosine potential can give rise to
an ergodic regime which amplifies quantum fluctuations (i.e.,
leads to “particle generation” via parametric resonance) and
closes the gap, i.e., Z (t ) → 0. Once the gap closes, it remains
closed; we take this as an indication of the runaway to the
infinite-temperature limit. For weaker modulations, however,
the system can stay in a nonergodic regime, where the quan-
tum fluctuations remain bounded, Z (t ) remains finite at all
times, and ϕ remains localized. The phase diagram showing
the ergodic-nonergodic phase transition was previously de-
rived in Ref. [16].
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APPENDIX E: ADIABATIC LIMIT IN THE
SELF-CONSISTENT TIME-DEPENDENT

HARMONIC APPROXIMATION

If we make a WKB approximation [50] in Eq. (B2), we
find

y1k (t ) =
(

ω2
k + 42(0)

ω2
k + 42(t )

)1/4

cos
[∫ t

0

√
ω2

k + 42(t ′)dt ′
]
,

y2k (t ) =
[
ω2

k + 42(0)
]−1/4

[
ω2

k + 42(t )
]1/4 sin

[∫ t

0

√
ω2

k + 42(t ′)dt ′
]
,

and substituting this expression into Eq. (B6) gives

4(t ) = 2πc
a

(
ρ0a2J (t )

2πcK

) 4K
8K−1

.

In the adiabatic regime, the modes adapt instantaneously to
the variations of the hopping J (t ) and the evolution of the gap
is adiabatic. Now, when J (t + T ) = J (t ) is periodic, 4(t ) =
4(t + T ). The WKB solutions Eq. (E1) can then be combined
as y1 ± i[ω2

k + 42(0)]1/2y2 to satisfy a Floquet condition with
Floquet exponent

πν(k) = ±
∫ T

0

√
ω2

k + 42(t )dt .

The condition for the validity of the WKB approximation is
∣∣∣∣

d
dt

(√
ω2

k + 42(t )
)∣∣∣∣ , ω2

k + 42(t ),

so it is always valid for ωk 2 4̇4. For k → 0, the condition
becomes

∣∣∣∣
d4

dt

∣∣∣∣ , 42(t ). (E1)

In the case of a periodic 4(t ) > 0, Eq. (E1) imposes γ <

min0<t<T 4(t ). The resonance condition being
√

ω2
k + 42 =

nγ /2, the only possible resonances are at n 2 1 and their
width and Lyapunov exponent are exponentially suppressed
with 4/γ . This explains the purely real Floquet exponents
in the adiabatic limit. Equation (E1) also indicates that adia-
baticity breaks down when 4(t ) → 0. In the case of J (t ) =
λ(t0 − t ), we enter a nonadiabatic regime at t = t∗ with

t0 − t∗ ∼ a
c

(
c2K

ρ0a3λ

) 4K
12K−1

. (E2)

In particular, the modes with momenta k < k∗ ∼
(ρ0a3λ/c2)

4K
12K−1 start to exhibit nonadiabatic evolution.

But, since the timescale t0 − t∗ is less than one period of
these modes, they behave as if they had been frozen at time
t = t∗. As a result, 〈cos ϕ j〉(t0) = Z (t∗) ∼ λ

1
12K−1 , indicating a

residual coherence.
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