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We investigate the formation of magnetic Bose polaron, an impurity atom dressed by spin-wave ex-
citations, in a one-dimensional spinor Bose gas. In terms of an effective potential model the impurity
is strongly confined by the host excitations which can even overcome the impurity-medium repulsion
leading to a self-localized quasi-particle state. The phase diagram of the attractive and self-bound
repulsive magnetic polaron, repulsive non-magnetic (Fröhlich-type) polaron and impurity-medium
phase-separation regimes is explored with respect to the Rabi-coupling between the spin compo-
nents, spin-spin interactions and impurity-medium coupling. The residue of such magnetic polarons
decreases substantially in both strong attractive and repulsive branches with strong impurity-spin
interactions, illustrating significant dressing of the impurity. The impurity can be used to probe and
maneuver the spin polarization of the magnetic medium while suppressing ferromagnetic spin-spin
correlations. It is shown that mean-field theory fails as the spinor gas approaches immiscibility since
the generated spin-wave excitations are prominent. Our findings illustrate that impurities can be
utilized to generate controllable spin-spin correlations and magnetic polaron states which can be
realized with current cold atom setups.

I. INTRODUCTION

Numerous aspects of quasiparticle physics, first intro-
duced by Pekkar and Landau [1, 2], have been explored in
a multitude of ultracold atom experiments [3–6]. Their
implications range from condensed matter systems [7],
e.g. organic semiconductors [8], to chemistry [9] and
biophysics [10]. A widely studied quasiparticle in the
cold-atom realm is the polaron [11, 12]; an impurity
dressed by the elementary excitations of the bath with
distinct bosonic and fermionic quantum statistics [5, 13–
15]. Fascinating static features of these states include
their effective mass [16, 17], induced interactions [18, 19]
and formation of bound states [20–22]. Typical nonequi-
librium phenomena associated with these structures re-
vealed, among others, their induced correlations [23, 24],
dynamical decay and relaxation [25–27], as well as trans-
port [28–30].

In nearly all studies of polaron physics, the bath in
which the impurity is immersed in is structureless. For
the case of a bosonic host, which we are interested in,
the amplitude of the phononic excitations triggered by
the impurity are suppressed [24, 31], rendering the ob-
servation of the polaron cloud challenging. This com-
plication can be alleviated by immersing the impurities
into a spinor host where they act as the local perturbers
modifying the underlying spin-order. These distortions
of the magnetic environment give rise to spin-wave ex-
citations [32] leading to the formation of magnetic Bose

polaron. This quasiparticle is arguably far less explored
than its fermionic counterpart [33–36], and non-magnetic
polarons. A proposal to detect the polaron cloud, com-
posed of many-body bound states in the strong-coupling
regime, using interferometric techniques in a ferromag-
netic gas was made [37]. Also, it was argued that a spinor
bath can lead to polaronic subdiffusive behavior [38].

A spin-carrying medium features the premise of con-
trolling the spin-order and stability of magnetic configu-
rations by deploying an impurity as a probe. This point
of view, we expect to provide a fresh impetus for study-
ing impurity physics and novel many-body phenomena
that would be otherwise be challenging to detect. Of
particular is the stability properties of ferromagnetic do-
mains constituting a longstanding open problem in con-
densed matter physics [39]. Another promising direction
is the understanding of the time-evolution and interac-
tions of magnetic polarons, which is an active topic in
spinor fermionic systems [35, 36]. They are thought to
provide insights into the nature of high-temperature su-
perconductivity [40].

An intriguing question is whether a crossover from
a non-magnetic to a magnetic Bose polaron can be re-
alized. Indeed, since the magnetic character of the
medium can be in principle controlled via external ra-
diofrequency fields it might be possible to suppress spin-
excitations by appropriately tuning the impurity-medium
spin-dependent interactions, in relation to the imposed
Rabi-coupling of the spin states. In fact, it has been
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demonstrated that the impurity-impurity induced inter-
actions can be tuned via the Rabi-coupling [41].
To shed light on the impact of an impurity subsystem

to a magnetic environment and unravel the magnetic po-
laron characteristics, we deploy an impurity immersed
in a one-dimensional (1D) harmonically trapped spin-
1/2 Bose gas. We use the variational nonperturbative
multi-layer multi-configuration time-dependent Hartree
method for atomic mixtures (ML-MCTDHX) [42] to cal-
culate the spin-order properties of an impurity immersed
in a Bose gas. This method treats the impurity-gas sys-
tem beyond the usual Bogoliubov treatment and thus the
Fröhlich model [43], as well as to account for boson-boson
correlations beyond the Lee-Low-Pines approach [44].
We map out the 1D magnetic polaron phase diagram

with respect to the impurity-medium coupling, the spin-
spin interactions and the Rabi-coupling of the host spin
constituents. In particular, attractive and self-bound re-
pulsive magnetic polaron states are identified. The self-
bound character of the latter stems from the pronounced
magnetic excitations of the host binding the impurity
within the gas despite the strong density-density repul-
sion. Additionally, the intervals where either the non-
magnetic polaron takes place or the quasiparticle pic-
ture is no longer valid (due to medium-impurity phase-
separation) are delineated. The latter two phases are
known to also occur in the genuine three-component sys-
tem [45, 46]. However, here we demonstrate that it is the
presence of Rabi-coupling that proliferates the develop-
ment of magnetization phenomena and consequently the
magnetic polaron [37].
The standing spin-wave excitations dressing the im-

purity are captured by monitoring the spin-flips of each
component of the medium. The magnetic character of
the latter is inferred by the suppression of ferromag-
netic spin-spin correlations. The latter, being suscep-
tible to parameter variations, are found to be substantial
near the miscibility-immiscibility transition of the host
spin components. These manifest at specific interaction-
dependent Rabi-couplings and importantly are tunable
via the impurity-medium interaction. As such the im-
purity serves as a knob for manipulating the spin-order.
The magnetic polaron residue decreases with increasing
impurity-medium interactions illustrating increased mag-
netic dressing. Importantly, the residue suppression for
large host particle numbers hints towards the suscepti-
bility of the magnetic polaron to the Anderson orthog-
onality catastrophe [47, 48]. The energy of the mag-
netic polaron is negative (positive) for attractive (re-
pulsive) impurity-medium coupling and it increases for
larger Rabi-coupling.
This work is structured as follows. Section IIA in-

troduces the magnetic polaron setting and its intrinsic
spin-symmetries while elucidating the role of the impu-
rity to probe spin-wave background excitations. The
phase diagram of the magnetic polaron is discussed in
Section III while its properties are analyzed in detail in
Section IV including the associated spin-spin correlations

and transfer processes. A summary of our findings to-
gether with future perspectives are provided in Section V.
Appendix A presents the persistence of the magnetic po-
laron for miscible interacting spin components. In Ap-
pendix B we analyze the phase transition induced by the
Rabi-coupling in a magnetic Bose gas from a mean-field
perspective. In Appendix C we elaborate on the effective
potential approach of the magnetic polaron. Appendix D
explicates the variational many-body method used to elu-
cidate the magnetic polaron properties.

II. MAGNETIC POLARON SETUP

To study the magnetic Bose polaron we use a three-
component highly particle imbalanced bosonic setting.
Specifically, a structureless impurity (I) atom is im-
mersed in a spin-1/2 bosonic medium having N = N↑ +
N↓ = 100 particles. The multicomponent setup is mass-
balanced (unless stated otherwise), namely mI = mB,
and all components are confined in the same 1D har-
monic trap, ωB = ωI = ω. A corresponding exper-
imental realization is possible by emulating the spin
degrees-of-freedom of the medium e.g. via the Rabi-
coupled hyperfine states |↑〉 ≡ |F = 1,mF = −1〉 and
|↓〉 ≡ |F = 2,mF = 1〉 of 87Rb [49, 50]. The impurity
atoms might refer to either the |F = 1,mF = 1〉 state of
87Rb or the isotope 85Rb.

A. Impurity in a magnetic environment

The underlying many-body Hamiltonian

Ĥ =
∑

a=↑,↓

Ĥa +
∑

a,a′=↑,↓

Ĥaa′

1 + δaa′

+ ĤI +
∑

a=↑,↓

ĤaI + ĤS ,
(1)

with the non-interacting parts of the spinor gas

Ĥa =
∫

dx Ψ̂†
a(x)

(

− !
2

2mB

∂2

∂x2 + 1
2mBω2x2

)

Ψ̂a(x)

where a =↑, ↓ and the impurity ĤI =
∫

dx Ψ̂†
I(x)

(

− !
2

2mI

∂2

∂x2 + 1
2mIω2x2

)

Ψ̂I(x). The field

operators Ψ̂a(x) act on the spin-a component of the
Bose medium and Ψ̂I(x) on the impurity atom. Here, we
consider ultracold temperatures ensuring the relevance
of solely the s-wave interactions that are essentially
described by a contact potential [51]. These are char-
acterized by the spin-spin medium effective couplings
gaa′ with a, a′ =↑, ↓ and the impurity-spin interaction
strengths gIa. In this sense, the contact spin-spin interac-
tion term is Ĥaa′ = gaa′

∫

dx Ψ̂†
a(x)Ψ̂

†
a′(x)Ψ̂a′(x)Ψ̂a(x),

while the impurity-spin-a interactions are given by
ĤIa = gIa

∫

dx Ψ̂†
I(x)Ψ̂

†
a(x)Ψ̂a(x)Ψ̂I(x).

These effective coupling constants are related to the
three-dimensional s-wave scattering length, asσσ′ (with
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FIG. 1. Schematic magnetic Bose polaron setup: an impurity with a spatial density profile (purple Gaussian) is immersed in
a spin-1/2 Bose gas (blue region). Initially, the spins are aligned along the -x direction (black arrows) when a homogeneous
radiofrequency ΩR (orange long arrow) is applied. The impurity-spin interaction imparts a fictitious magnetic field ∆(x),
modifying the spin polarization (red arrows) and giving rise to spin-wave excitations thus creating the magnetic Bose polaron.

σ,σ′ =↑, ↓, I being the species index) and the transver-
sal confinement ω⊥ [51]. Consequently, the interaction
coefficients can be experimentally adjusted either via
Feshbach resonances [52, 53] through asσσ′ or utilizing
confinement-induced resonances [51] by tuning ω⊥.
The spinor contribution facilitating magnetic processes

reads

ĤS =
!ΩR

2
Ŝx +

!δ

2
Ŝz. (2)

The Rabi-coupling ΩR favors the spin-superposition
(1/

√
2)(|↑〉 − |↓〉) for the medium atoms and therefore

admixes different numbers of spin-↑ and spin-↓ atoms in
the ground state. The detuning δ = ν − ν0 provides
the frequency difference of the Rabi-coupling laser from
the corresponding non-interacting (g↑↑ = g↓↓ = g↑↓ = 0)
resonance transition frequency (ν0) among the |↑〉 and
|↓〉 states. Here, we consider δ = 0, corresponding to a
resonant driving in the non-interacting case.

B. Spin-symmetries

The total spin operator is Ŝ =
∫

dx Ŝ(x) =
∫

dx
∑

ab Ψ̂
†
a(x)σabΨ̂b(x), where σ is the Pauli vector.

Accordingly, the total spin magnitude operator is ex-
pressed as

Ŝ2 = Ŝ+Ŝ− + Ŝz(Ŝz − 2), (3)

where the so-called spin ladder operators Ŝ± = Ŝx± iŜy.
Importantly, the Hamiltonian of Eq. (1) preserves the
SU(2) symmetry, i.e. [Ŝ2, Ĥ ] = 0 only in the case of gI↑ =

gI↓ and g↑↑ = g↓↓ = g↑↓. Otherwise, the eigenvalues of Ŝ2

are not good quantum numbers. Also, in the presence of

Rabi-coupling, ΩR '= 0, Sz is not conserved, allowing the
system become spin-imbalance, i. e. superposition of |↑〉
and |↓〉 1. Here, we focus on g↑↑ = g↓↓ ≡ g and therefore
in the absence of impurity, the system respects the Z2

symmetry implying invariance under spin-inversion along
the z-spin axis. However, since the impurity can exhibit
different interactions with each of the spin-components,
namely gI↑ '= gI↓, breaking Z2 it can thus modify the
magnetization of the system because Sz is broken.

C. Rescaling and suggested experimental
procedure

In the following, the many-body Hamiltonian de-
scribed by Eq. (1) is expressed in terms of !ω. Then, the
length, time, Rabi-coupling and interaction strengths are
provided with respect to

√

!/(mω), ω, and
√

(!3ω)/m
respectively. Experimentally our 1D multicomponent
setup is realizable, for instance, by using two hyper-
fine states of 87Rb (see above) with g↑↑ = g↓↓ =
0.5
√

!3ω/m ≈ 3.55 × 10−38 Jm and a longitudi-
nal (transversal) trap frequency ω = 2π × 100 Hz
(ω⊥ ≈ 2π × 5.1 kHz). The respective temperature ef-
fects are suppressed as long as the condition kBT *
34/3

16 (
α2

⊥N2
↑

as
↑↑

α )2/3!ω = 316!ω ≈ 1.5 µK is fulfilled [54].

In the latter expression kB is the Boltzmann constant,
α⊥ =

√

!/(mω⊥) denotes the transversal confinement
length scale and T refers to the temperature of the spinor
Bose gas.

1 Notice that the term ∝ δ in Eq. (2) breaks the Sx symmetry.
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FIG. 2. (a) Phase diagram of the emergent magnetic polaron states for varying impurity-spin (gI↑, while we fix gI↓ = 0)
interactions and different Rabi-couplings (ΩR) among the spin-states of the host. Here, g2↑↓ > g↑↑g↓↓ = g2 is further assumed.
The dashed line in (a) indicates gmag c being the maximal value of gI↑ for which the repulsive magnetic polaron is the ground
state of the system for a given ΩR. (b1)-(b4) Effective potential experienced by the impurity due to the presence of the spinor
gas [see also Eq. (4)]. Ωcrit

R refers to the critical Rabi-coupling for a given gαα′ , with α ∈ {↑, ↓}, determining the miscible-
immiscible phase-transition of the magnetic Bose gas. Ωsingle

R
corresponds to the Rabi-coupling below which magnetic effects

diminish. Rout and Rin denote the TF radii of each spin component and the spin density imbalance respectively.

In an experiment our results can be probed by coupling
the spin components of the medium via a radiofrequency
field [55]. The corresponding implementation involves an
adiabatic ramp (within a time-interval τ + ω−1

B ) of ΩR.
The rf field creates a superposition spin state |↑〉 and |↓〉
that crucially depends on gaa′ and gIa.

D. Phases of the spin-1/2 Bose gas in the absence
of the impurity

In the absence of impurity, the considered setting re-
duces to a binary Rabi-coupled Bose-Einstein conden-
sate (BEC) [49, 55–57]. The fundamental building block
of such a Rabi-coupled mixture is the case of ΩR = 0
where it boils down to a two-component mixture with
particle number conservation in each component. Then,
it is well-known [58] that the system enters the phase-
separated (miscible) state when g2↑↓ > g↑↑g↓↓ (in the op-
posite case). Switching on the Rabi-coupling breaks the
Sz spin symmetry of the gas meaning that spin-transfer
between the components is allowed. As a general rule the
effect of the Rabi-coupling reduces the degree of immis-
cibility (or spin segregation) even when the spin interac-
tions lie deeply inside the immiscible region. Specifically,
for a larger ΩR the gas features a second-order phase
transition entering the miscible state and spin-demixing
is prohibited [49, 56, 57], see more details in Appendix B
and also Fig. 11.

E. Probing the spin order with the impurity

The spinor bosonic medium is initially in the ground
state configuration, characterized by specific spin-spin in-
teractions g↑↑ = g↓↓ ≡ g and g↑↓ and Rabi-coupling ΩR.

In the absence of the impurity, i.e. gI↑ = gI↓ = 0 or

equivalently 〈ĤIa〉 = 0, the spins are aligned and the as-
sociated spin configuration is almost2 identical to a fully
polarized state along the x-axis, see Fig. 1. It reads
|Px〉 = 2−N/2

⊗N
i=1 (|↑〉i − |↓〉i) with i = 1, 2, . . . , N .

Then, for gI↑ '= gI↓ i.e. when the impurity-medium in-
teraction is spin-dependent, the initial polarization vec-
tor 〈Ŝ〉 = −Nex, with ex the unit vector, rotates away
from the x-spin axis.
Importantly, the localization of the impurity deter-

mined by its spatial width acts as a local perturber dis-
torting the polarization of the medium. The local spin
vector 〈Ŝ(x)〉 '= 〈Ŝ(x′)〉 for x '= x′ is strongly influenced
by the localized impurity dynamics, see Fig. 1, in turn
dressing the impurity with the spin fluctuations; the mag-
netic polaron. An adequate measure to identify the de-
gree of local perturbation in the bath is the spin-spin
correlation function (see Eq. (13) below). For cases that
the spin-order of the host remains intact by the pres-
ence of the impurity, the emergent quasiparticle will be
referred to as a non-magnetic polaron.
To address the magnetic polaron properties, we employ

the variational ML-MCTDHX approach which has been
extensively used to study impurity dynamics and spec-
troscopy [23, 24, 26, 27, 45]. ML-MCTDHX is based on
the expansion of the many-body wave function in terms of
a time-dependent and variationally optimized basis set,
see Appendix D for details. It is tailored to capture inter-
particle spatial and spin-spin correlations [27], while effi-
ciently truncating the Hilbert, even for mesoscopic par-
ticle numbers. To expose the role of correlations, we

2 Deviations from the fully polarized (product) state occur due to
the development of spin-spin host correlations. Nevertheless, the
polarization lies along the x spin axis.
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compare our results with the predictions of the three-
component Gross-Pitaevskii equation (GPE) [Eq. (16)].
An effective potential model is constructed, see in partic-
ular Appendix C and Eq. (4), for the interpretation of the
mechanisms accompanying the generation and properties
of the magnetic polaron.

III. PHASE DIAGRAM OF THE MAGNETIC
POLARON

The phase diagram in Fig. 2 is calculated with the
variational machinery of ML-MCTDHX. The interpreta-
tion of the different phase properties is greatly elucidated
with an effective potential [see also Appendix C]. By ig-
noring the elementary BEC excitations, i.e. assuming
Ψ̂α(x) = Ψ̂†

α(x) =
√

ρα(x), the effective potential of an
impurity embedded in a spin-1/2 Bose gas can be derived
as,

Veff(x) =
1

2
mIω

2
Ix

2 + gI↑ρ↑(x) + gI↓ρ↓(x). (4)

The density of the a : {↑, ↓} spin components is ρa(x), see
Eq. (6). Typical effective potential approaches [24, 31]
incorporate the density ρa(x) in the absence of impu-
rity (gI↑ = gI↓ = 0) thereby neglecting all impurity-bath
correlations. Here in order to account for the impurity
backaction on the medium3, we construct an effective po-
tential, V ′

eff(x), where ρa(x) corresponds now to the spin
density obtained from the variational ML-MCTDHX ap-
proach. This comparison reveals the alteration of the
quasiparticle phase diagram due to the above-mentioned
correlations.
For simplicity, below, we focus on the case where gI↑ is

finite, but gI↓ = 0. Initially we aim to analyze the com-
petition between the Rabi-coupling ΩR and the impurity-
spin-↑ interaction as shown in Fig. 2 (a). We are partic-
ularly interested in the case g↑↓ >

√
g↑↑g↓↓ = g, where

spin-excitations dominate [see also Appendix C].
To elucidate the main features of the different spin-

orders that can emergent in the host we first briefly
analyze its phases in the absence of the impurity. In
the Gross-Pitaevskii mean-field description for the binary
Rabi-coupled bosonic bath [56], and within the Thomas-
Fermi (TF) approximation [see Appendix B], it can be
proved that there are three different ΩR regimes with
distinct spatial configurations; this result agrees with
the correlated ML-MCTDHX calculations (not shown for
brevity). The first two regimes are determined by the
Rabi-coupling in comparison to the effective spin-spin

3 As we will argue below the dominant contribution of impurity-
medium correlations stems from the coupling of the spin and
spatial degrees-of-freedom in the many-body wave function, see
section IVD. Spatial medium correlations are suppressed in our
setup for weak boson-boson interactions.

interaction strength. In particular, there exists an im-
miscibility threshold at

Ωcrit
R = n(0)(g↑↓ − g), (5)

below (above) which the host components are immisci-
ble (miscible) for gI↑ = gI↓ = 0. Notice that n(0) =
ρ↑(0) + ρ↓(0). Importantly, for this choice of interaction
parameters, i.e. g↑↓ > g, the host becomes fully-polarized
along the z-spin direction for ΩR = 0 [59–61]. Hence, the
third ΩR regime appears characterized by negligible pop-
ulation of one BEC component. To estimate the extent of
this regime, we define Ωsingle

R below which the minority
medium spin-component is populated by less than one
atom [see also Appendix C].
Next we turn into the coupled impurity-spin-1/2 gas

setting. Let us first consider the case ΩR + Ωcrit
R where

due to the strong effective magnetic field associated with
ΩR, see Eq. (2), the host becomes fully-polarized along
the x spin-axis. As such the BEC components are misci-
ble implying that spin-excitations are rather inert, as dis-
cussed in Ref. [56]. Therefore, only very weak impurity-
medium correlations can be induced. Then the medium
can be viewed as an effective single-component BEC
with a renormalized coupling geffBB = g + g↑↓ (see also
Appendix C). As a consequence, the Bose polaron for-
mation reduces to the well-understood case of a single-
component host [62], where only phononic dressing is
possible. Here, attractive (repulsive) Bose polaron states
emerge for gI↑ < 0 (0 < gI↑ < geffBB), see Fig. 2(a),
while for gI↑ > geffBB, impurity-medium phase separa-
tion is observed and the polaron ceases to exist [18, 24].
The latter regime is associated with the temporal or-
thogonality catastrophe phenomenon elucidated in the
dynamical studies in Refs. [27, 31]. The effective poten-
tial, Veff(x), deforms from a harmonic oscillator poten-

tial, with an effective frequency ωeff = ω
√

1− gI↑/geffBB,

for gI↑ < geffBB to a double-well profile in the opposite
case, see Fig. 2(b2), (b3). As expected due to the sup-
pressed impurity-medium correlations, V ′

eff(x) ≈ Veff(x)
holds.
As ΩR → Ωcrit

R , the magnetic degrees-of-freedom of
the host gas become relevant. Here new features in addi-
tion appear due to spin-excitations. In particular, in the
vicinity of the transition point between the repulsive Bose
polaron and the phase-separated states at gI↑ ! g + g↑↓,
another interspecies interaction regime appears. Here,
the induced magnetic excitations modify the effective
confinement of the impurity.
This effect is readily observed in Fig. 2(b4), where

V ′
eff(x) possesses a third well located at x = 0, in con-

trast to the double-well structure of Veff(x). This demon-
strates the emergence of a magnetic Bose polaron state
that is self-localized in the sense that the impurity is
confined within the magnetic excitations it induces to
its host. As ΩR → Ωcrit

R the magnetic polaron is sta-
ble for larger gI↑, see Fig. 2(a). Due to the interaction
energy cost associated with the involved magnetic dress-
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FIG. 3. Density distributions of an impurity embedded in an immiscible spinor bosonic medium with ΩR/ω = 5 and g↑↓/g = 1.6.
The ground state configurations of (a) the spin-↑ and (b) the impurity are depicted for different impurity-spin-↑ interactions.
The density of the spin-↓ state is complementary to the spin-↑ and it is not shown. (c) The non-zero magnetization 〈Ŝz(x)〉 =
ρ↑(x) − ρ↓(x) of the medium justifies the emergence of standing spin-waves and thus the emergence of the magnetic Bose
polaron. The atoms of the medium possess spin-spin interactions g↑↑ = g↓↓ ≡ g = 0.5, gI↓ = 0 while the system is harmonically
trapped.

ing cloud, this polaron is the ground state of the system4

only for gI↑ < gmag c, see the dashed line in Fig. 2(a). For
gI↓ < 0 the impurity also disturbs the polarization of its
host giving rise to magnetic excitations inducing an addi-
tional effective attractive force, captured within V ′

eff(x),
which lies beyond the Veff(x) picture, see Fig. 2(b1).
For ΩR ≤ Ωcrit

R , the host exhibits a phase separated
character around x ≈ 0, leading to an attractive Veff(x)
confining the impurity within the BEC independently of
gI↑. Furthermore, the population of the spin-↑ com-
ponent, which interacts with the impurity, is amplified
(diminished) for gI↑ < 0 (gI↑ > 0) which aids the de-
velopment of impurity-medium correlations. The pro-
nounced magnetic excitations of the host, captured by
V ′
eff(x), modify the effective confinement of the impu-

rity Veff(x) and thus the polaron possesses a magnetic
character. The latter ceases to exist for ΩR < Ωsingle

R
since the population of the minority spin-component be-
comes negligible. In particular, for repulsive gI↑ > 0
it is energetically preferable for the host atoms to oc-
cupy the non-interacting with the impurity spin-↓ compo-
nent, thus preventing quasi-particle formation. However,
gI↓ < 0, favors the spin-↑ configuration and as a con-
sequence an attractive Bose polaron forms, akin to the
single-component case analyzed e.g. in Ref. [24, 26, 27].
Finally, we remark that for g↑↓ < g, no phase-

separated regime for the host is encountered, see Ap-
pendix B. In this case the phase diagram of the sys-
tem is similar to the one analyzed above but importantly
Ωcrit

R = 0 preventing the occurrence of the regimes with
ΩR < Ωcrit

R . In addition, the repulsive magnetic Bose
polaron regime is exhibited within a smaller range of gI↑

4 Notice that the magnetic Bose polaron can be also stable for
gI↑ > gmag c despite possessing larger energy than the phase
separated ground state. The coexistence of two stable phases
within the same interaction interval indicates a hysteresis phe-
nomenon with respect to ΩR referring to the presence or absence
of the magnetic polaron.

values, but nevertheless it possesses similar properties to
those analyzed above.

IV. IMPURITY IMMERSED IN AN
IMMISCIBLE SPINOR BOSE GAS

Since the spin-demixing processes in the case of a spin-
1/2 Bose gas are enhanced for immiscible spin-spin in-
teractions (g2↑↓ > g↑↑g↓↓) our main focus is placed in this
interaction regime for providing a clean manifestation of
the magnetic polaron. As we argue in Appendix A where
we analyze the scenario of miscible spin interactions the
spin-demixing is indeed reduced in this regime also in
the presence of the impurity. Below, we seek the ground
state of the composite system. Specifically, we choose
as a representative setting a spinor medium experiencing
g = 0.5 and g↑↓/g = 1.6 at a fixed ΩR while gI↓ = 0 and
gI↑ is either attractive or repulsive in order to realize the
different magnetic polaron branches.

A. Magnetic Polaron configurations and
magnetization

To elucidate the impact of the impurity on the spatial
distribution of the medium’s spin components we invoke
the one-body density of each component

ρσ(x) = 〈Ψ|Ψ̂†
σ(x)Ψ̂σ(x)|Ψ〉. (6)

Here, Ψ̂σ(x) is the σ =↑, ↓, I-component bosonic field
operator acting at position x and |Ψ〉 denotes the many-
body ground state of the three-component system. This
particle density can be observed by single-shot aver-
aging [63]. Notice that ρ↑(x) + ρ↓(x) = ρTF (x) =
(2/(g+g↑↓))(µB−mω2x2+|ΩR| /2), see also Appendix B,
and thus below we only present the ρ↑(x) since the struc-
tures emerging in ρ↓(x) are complementary to it. The
dependence of ρσ(x) with the bath-impurity coupling is
shown in Fig. 3 for gI↑ ranging from attractive to strong
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FIG. 4. Two-body spatial configurations of the spins as well as of the impurity and a spin state for different interactions gI↑
(see legends). The structural two-body deformations for gI↑ (= 0 evince the impact of the impurity on the spin-order (panels
(a1)-(a3), (b1)-(b3)) and reveal induced effectively attractive (repulsive) impurity-spin-↓ interactions when gI↑ > 0 (gI↑ < 0)
(panels (a5), (b5)). In the case of gI↑ = 0 the two-body distributions are symmetric by means of x1 ↔ x2 and are localized
around x1 = x2 = 0 implying that effective interactions vanish (not shown). An impurity is immersed in an immiscible spinor
medium characterized by ΩR/ω = 5, while other system parameters are the same as in Fig. 3.

repulsive with gI↓ = 0 and ΩR = 5ω. This value of
ΩR > Ωcrit

R ≈ 4.8ω enforces the miscibility among the
spin components in the absence of the impurity, i.e. when
gI↑ = 0 or equivalently in the case of no polaron, see also
Sec. III and Appendix B.
Finite repulsive impurity-spin-↑ interactions lead to a

depletion of ρ↑(x) around the trap center, see Fig. 3 (a).
Simultaneously, the impurity features a progressive lo-
calization tendency for larger gI↑ [Fig. 3(b)] thus form-
ing a quasiparticle. This is the first key difference to
the non-magnetic repulsive Bose polaron [24, 31] which
is known to delocalize for increasingly repulsive impurity-
host interactions causing its decay. Turning to gI↑ < 0, a
behavior similar to the attractive non-magnetic Bose po-
laron [24] is detected. Here, the spin-↑ component shows
a sizable density peak at the location of the impurity
[Fig. 3(a)], with the concomitant localization of the impu-
rity [Fig. 3(b)]. However, the most striking distinction of
the quasiparticle realized herein from the non-magnetic
polaron stems from the response of the spin-↓ state. In-
deed, ρ↓(x) is complementary to ρ↑(x), with the former
being accumulated (depleted) in the spatial extent of the
impurity for repulsive (attractive) gI↑ (not shown). This
behavior of ρ↓(x) is mediated by the immiscible g↑↓ in-
teractions which lead to an effective attraction, geffI↓ < 0

(repulsion, geffI↓ > 0), among the spin-↓ and the impu-
rity for gI↑ > 0 (gI↑ < 0), see also Fig. 4 (a5), (c5) and
the related discussion in Sec. IVB. In general, these ef-
fective interactions are mediated by the magnonic excita-
tions due finite difference (gI↑−gI↓) interaction. Notably,
our observations necessitate the construction of effective
Hamiltonians similar to [64] in order to appreciate the
strength of induced interactions in three-component set-
tings.
The above-described response of ρ↑(x) and ρ↓(x) hints

towards the presence of magnetic processes in the system.

These processes can be analyzed by studying the local
magnetization response, 〈Ŝz(x)〉 = ρ↑(x)−ρ↓(x) provided
in Fig. 3(c). The emergence of local magnetization in the
host is related to a spatially varying effective magnetic
field, ∆(x) ∼ (gI↑−gI↓)ρI(x), due to the impurity-spin-↑
interactions [see also Fig. 1] which in turn gives rise to
standing spin-waves. Without the impurity (gI↑ = 0) it
holds that 〈Ŝz(x)〉 = 0, due to the polarization of the host
in the spin-x axis, while in the case of gI↑ > 0 (gI↓ < 0)

we find 〈Ŝz(x)〉 < 0 (〈Ŝz(x)〉 > 0). It is therefore the
presence of the impurity that triggers a gI↑-dependent
correlated standing spin-wave, which we analyze further
in Sec. IVC and IVD.

B. Two-body magnetic polaron distributions

A more concrete demonstration of the spatial distribu-
tions of the magnetic polaron is obtained by inspecting
the underlying two-body configurations. For this reason
we determine the diagonal elements of the two-body re-
duced density matrix

ρ(2)σσ′(x1, x2) = 〈Ψ|Ψ̂†
σ(x2)Ψ̂

†
σ′(x1)Ψ̂σ′(x1)Ψ̂σ(x2)|Ψ〉.

(7)
This provides the probability to simultaneously detect a
σ-component boson at position x1 and a σ′ atom at x2.
The spatially resolved two-body configurations for the
immiscible interacting medium with ΩR/ω = 5 exhibit
involved structures for both attractive [Fig. 4 (a1)-(a5)]
and repulsive [Fig. 4 (b1)-(b5)] impurity-spin-↑ interac-
tion strengths. Otherwise, for gI↑ = 0 they feature a
symmetry under the exchange of x1 ↔ x2 and a localiza-
tion around x1 = x2 = 0. This implies that the detection
of the two atoms of the same or different components are
largely independent, while the atoms are likely to reside
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FIG. 5. (a) Difference between the two-body impurity-medium correlation functions in the comoving impurity frame ∆ρ̄(2)
Ia

(xr)
for ΩR/ω = 5. The magnetic polaron configuration has a form ∼ sech2(x/w). Dressing cloud of the (b) phononic and (c)
magnonic impurity cloud. Apparently, the magnonic dressing is stronger justifying the magnetic nature of the polaron.

around the trap center.
As explained above, an attractive impurity-medium

coupling enforces the spin-↑ bosons to lie in the vicinity

of the impurity. Consequently, ρ(2)↑↑ (x1, x2) is highly lo-
calized [Fig. 4 (a1)] around the trap center demonstrating
the portion of spin-↑ atoms bound to the impurity, see in

particular ρ(2)↑↑ (x1, x2) [Fig. 4 (a4)]. The low density tails

of ρ(2)↑↑ (x1, x2) infer the existence of spin-↑ bosons that re-
main unbound. On the other hand, ρ(2)↓↓ (x1, x2) exhibits
localization in four disjoint spatial domains [Fig. 4 (a2)]
stemming from the phase-separation between the spin
components which is evident by the elongated two-hump

shape of ρ(2)↑↓ (x1, x2) [Fig. 4(a3)]. As a consequence, the
impurity and the spin-↓ are also phase-separated, despite
being non-interacting gI↓ = 0 [see Fig. 3(b)]. Therefore,

ρ(2)I↓ (x1, x2) shows a finite probability at two distinct do-
mains characterized by |x↓| > |xI | [Fig. 4(a5)] which cer-
tifies the emergence of repulsive induced impurity-spin-↓
interactions caused by the attractive gI↑.
Turning to strong repulsive gI↑, an inversion in the

roles of the spin-↑ and spin-↓ bosons takes place, com-
pare e.g. Fig. 4(a2) and (b1). Indeed, in this case the
spin-↑ atoms and the impurity tend to phase-separate
[Fig. 4(b4)] due to their strong repulsion gI↑ + g, while
the spin-↓ particles are effectively attracted towards the
impurity [Fig. 4(b5)], i.e. geffI↓ < 0 besides the fact
that gI↓ = 0. Similar to the non-magnetic polaron
case [24, 31], we observe that also here the quasiparti-
cle character in the repulsive branch is less pronounced
than in its attractive counterpart. Hence, the emergent
patterns in Fig. 4(bi) are less prominent than those de-
picted in Fig. 4(ai) with i = 1, . . . , 5.

C. Dressing cloud and waveform of the magnetic
polaron

To reveal the imprint of the impurity into the spa-
tial configuration of the spinor gas we operate in the co-
moving impurity frame. This is the natural frame of
reference to measure the magnonic or phononic dressing
cloud since it avoids effects stemming from the disper-

sion of the impurity within the confining potential. Such
a procedure has been already successfully implemented
in the experiment for monitoring the internal structure
of magnetic Fermi polarons [65]. Focusing on the bosonic
case described above and in order to extract the spatial
distribution of the polaron dressing cloud we consider the
following two-body density ansatz

ρ(2)Ia (xa, xI) ≈
[

ρ0a(xa) + ua(xa − xI)
]

ρ0I(xI), (8)

where ρ0a(x), ρ
0
I(x) are the background5 densities of the

spin-a component and the impurity respectively. These
do not directly contribute to the binding of the impu-
rity to the host excitations but they account for the den-
sity inhomogeneity originating from the harmonic con-
finement. The function ua(xa − xI) captures the impu-
rity dressing by the atoms of its host. It is assumed to
be solely a function of xa − xI , due to the short range
character of the impurity-host interactions. As such,
it results in significant variations of the BEC density
only for |xa − xI | ∼ ξa, where ξa is the healing length
of the spin-a component. For a homogeneous system
ρ0a(x) → Na/L and ρ0I(x) → 1/L, where L is the length

of the system, and thus ρ(2)Ia (xa, xI) reduces to the form
expected within the Lee-Low-Pines mean-field descrip-
tion [16, 44, 66]. Therefore, we anticipate that Eq. (8)

describes adequately the structure of ρ(2)Ia (xa, xI) only in
the case that the local density approximation is justified,
i.e. ξa * Rout.
Provided that Eq. (8) is valid we can extract infor-

mation regarding the dressing cloud of the impurity by
employing the impurity-spin-a correlation function in the
comoving frame xr = xa − xI , namely

ρ̄(2)Ia (xr) ≡
∫

dxIρ
(2)
Ia (xI + xr, xI)

≈ ua(xr) +

∫

dxI ρ
0
a(xI + xr , xI)ρ

0
I(xI).

(9)

5 Notice that in the case ua(xa − xI) #= 0, ρ0a(xa) #= ρa(xa) =
∫

dxI ρ
(2)
Ia

(xa, xI) and ρ0
I
(xI ) #= ρI(xI ) =

∫

dxa ρ
(2)
Ia

(xa, xI)
hold.
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FIG. 6. Spin-Spin correlation function of an immiscible interacting medium with respect to gI↑ for various Rabi-couplings,

gI↓ and mass ratios (see legends). A value of C(2)
↑↓ < 1 signifies suppression of ferromagnetic medium correlations and thus

the generation of the magnetic polaron. (c) Comparison between the mean-field and many-body predictions shows negligible
deviations and therefore the spin-spatial correlations are important. Other parameters are the same as in Fig. 3.

Then ∆ρ̄(2)Ia (xr) = ρ̄(2)I↑ (xr) − ρ̄(2)I↓ (xr) is related to
the existence of spin-wave excitation (magnon) dress-

ing, captured by u↑(xr) − u↓(xr). Moreover, n̄(2)
IB(xr) =

∑

a=↑,↓ ρ̄
(2)
Ia (xr) is associated to the presence of phonons.

Note that for the case of a miscible spinor host (here
achieved for ΩR = 5ω) it holds that 〈Ŝz(xa)〉 = 0 for
gI↑ = 0. Therefore, we expect that any deviation in
the magnetization of the system for gI↑ '= 0 stems from
the magnetic dressing cloud of the impurity. This im-

plies that ρ0↑(x) = ρ0↓(x) and consequently ∆ρ̄(2)Ia (xr) =

u↑(xr) − u↓(xr). In this way, ∆ρ̄(2)Ia (xr) captures the
waveform of the standing spin-wave dressing cloud. We

present ∆ρ̄(2)Ia (xr) for ΩR = 5ω with respect to gI↑ in

Fig. 5 (a). It features ∆ρ̄(2)Ia (xr) < 0 (∆ρ̄(2)Ia (xr) > 0) for
gI↑ > 0 (gI↑ > 0) indicating the respective magnetization

tendency. The shape of ∆ρ̄(2)Ia (xr) is found upon fitting
to be well-described by

∆ρ̄(2)Ia (xr) = −sign(gI↑ + gI↓)Amag sech
2

(
xr

w

)

, (10)

with Amag (w) denoting its amplitude (width). We ex-
pect that operating in the Lee-Low-Pines framework one
should be able to extract Eq. (10) as the solution of the
magnetic polaron dressing cloud, an analysis that will be
addressed in a future work.
On the other hand, it is more involved to extract

the phononic dressing cloud as the non-vanishing con-
tribution from the last term of Eq. (9) implies u↑(xr) +

u↓(xr) '= n̄(2)
IB(xr). To account for this correction we

employ the following spin-independent pair-correlation
ansatz

n̄(2)
IB(xr) = nTF(xr)−AphnTF(xr) sech

2

(
xr

w′

)

︸ ︷︷ ︸

=u↑(xr)+u↓(xr)

,
(11)

Here, w′ refers to the width of the polaron and Aph is
the amplitude of the phonon dressing cloud. In the above

expression we have assumed a TF (Gaussian) background
density for the BEC (impurity). With this choice the
background two-body density, nTF(xr), reads

nTF(xr) =

∫

dxI




∑

α∈{↑,↓}

ρTF
α (xI + xr)



 ρlI(xI)

=
mω2

4geff

[(

erf
xr +Rout

l
+ erf

xr −Rout

l

)

×
(

R2
out −

l2

2
− x2

r

)

+
l(Rout − xr)√

π
e−

(Rout+xr)2

l2

+
l(Rout + xr)√

π
e−

(Rout−xr)2

l2

]

,

(12)

where ρTF
α (x) corresponds to the TF profile of the spin-

α BEC component (see also Appendix B) and ρlI(xI) =
1

l
√
π
e−

x2

2l2 . Also, the fitting parameters Rout and geff ac-

count for the width and height of the BEC density profile,
while l corresponds to the width of the impurity density.
Recall that in the un-trapped case using the Lee-Low-
Pines transformation leads to a similar form to Eq. (11)
for the dressing cloud of the Bose polaron [44, 66, 67].

Upon fitting the ansatz of Eq. (10) to ∆ρ̄(2)Ia (xr) and

the one of Eq. (11) into
∑

a=↑,↓ ρ̄
(2)
Ia (xr) we determine

the width and amplitude of the magnetic polaron and
the polaron respectively. Next, in order to discern the
dressing cloud stemming from the magnons and the
phonons we find the number of medium atoms lying
in the waveforms u↑(xr) ± u↓(xr), see Eq. (10) and

Eq. (11). These populations, Nmag =
∫

dxr∆ρ̄
(2)
Ia (xr)

and Nph =
∫

dxr(n̄
(2)
IB(xr)−nTF(xr)) depicted in Figs. 5

(b), (c) feature an increasing tendency for a larger magni-
tude of impurity-spin-↑ interactions testifying quasipar-
ticle formation. It can also be inferred that indepen-
dently of gI↑ the magnonic excitations prevail over the
phononic ones. This means that the emergent quasiparti-
cle, being genuinely dressed by an admixture of magnons
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FIG. 7. Spin transfer between the components of an immiscible medium interacting with an impurity for varying gI↑ and distinct
Rabi-couplings ΩR, or interactions gI↑, g↑↓ (see legends). A finite atom migration, i.e. ∆P = P↑ − P↓ (= 0, demonstrates the
emergence of spin-wave excitations leading to the polaron dressing.

and phonons, possesses a dominant magnetic component.
Particularly, the magnetic dressing cloud acquires a max-
imal value of about 30% of the medium atoms around
Ωcrit

R ≈ 4.8, whilst the phonon branch is at most 3.5%.
For ΩR = 10ω > Ωcrit

R the magnonic excitation branch
is again pronounced as compared to the phononic one es-
pecially for gI↑ < 0, while both branches are suppressed
for gI↑/g > 3.8 where phase-separation occurs. Natu-
rally, if ΩR = 0 magnetic dressing is diminished for every
gI↑, while the phononic one is finite for gI↑ < 0 since
only in this case the impurity lies within the spin-↑ host.
Regarding ΩR = 40ω + Ωcrit

R , we observe that Nmag is
suppressed. In this scenario the spin degrees-of-freedom
are almost frozen because of the large energy gap for ex-
citing spin-waves [56]. Concluding, from the above we
can deduce that the magnonic cloud should be easier ex-
perimentally detectable when compared to its phononic
counterpart.

D. Broken spin-order and spin-spin correlations

To inspect the rise of spin-fluctuations in the medium
and thus attest the emergence of the magnetic polaron
we track the spin-spin correlation [68]

C(2)
↑↓ =

〈Ψ|Ŝ2|Ψ〉 − 3!2N

!2N(N − 1)
. (13)

Here, Ŝ2 is the total-spin operator of the system defined
in Eq. (3). This correlation function probes the align-
ment among two spins and dinstinguishes ferromagnetic

C(2)
↑↓ ≈ 1, antiferromagnetic C(2)

↑↓ ≈ −1 and paramag-

netic C(2)
↑↓ = 0 spin configurations6. It is showcased in

6 A fully ferromagnetic gas has 〈Ŝ2〉 = N(N+2) for every N . The
minimal value of 〈Ŝ2〉 = 0 does not allow for a perfectly anti-

ferromagnetic configuration, since C
(2)
↑↓ = −3/(N − 1). Indeed,

it is impossible that every pair of spins is anti-oriented which
suppresses the perfect anti-ferromagnetic order.

Fig. 6 (a) for immiscible spin-spin interactions and sev-
eral Rabi-couplings as a function of the impurity-spin-
↑ interaction strength. As it can be readily seen, for
suppressed Rabi-coupling (ΩR = 0) the medium remains

ferromagnetic (i.e. C(2)
↑↓ = 1) irrespectively of gI↑. Re-

call that the interacting eigenstate of the multicompo-
nent setting corresponds to the one where all atoms are
in the spin-↑ (↓) state for gI↑ > 0 (gI↑ < 0). In this sce-
nario, a polaron dressed by the phononic excitations of
the bosonic bath occurs as long as gI↑ < g + g↑↓. Other-
wise, an impurity-medium phase-separation takes place
evincing the polaron decay [24].
In sharp contrast, switching on the Rabi-coupling re-

sults generally to the suppression of the ferromagnetic

order as evidenced by the reduction of C(2)
↑↓ for increas-

ing |gI↑| [Fig. 6 (a)]. Particularly, spin correlations be-
come enhanced within the critical magnetization region
Ωcrit

R ≈ nB(0)(g↑↓−g↑↑) ≈ 4.8 where spin-mixing is dom-

inant [Appendix B]. This behavior of C(2)
↑↓ testifies the

existence of the magnetic polaron being dressed by the
spin-wave excitations of the spinorial medium [37], see

also the discussion in Section IVE. Notably, C(2)
↑↓ ≈ 1

for ΩR + Ωcr
R , see e.g. ΩR/ω = 10, where impurity

spin-↑ spatial separation occurs. On the other hand,

C(2)
↑↓ '= 1 for gI↑ < 0 (gI↑ > 0) supporting the occur-

rence of a self-bound attractive (stable repulsive) mag-
netic Bose polaron.
A similar to the above-described response of the spin-

fluctuations takes place for a heavy impurity (mI + mB)
or finite impurity spin-↓ couplings, see Fig. 6 (b). No-

tice that C(2)
↑↓ → 1 for gI↓/g > 1.6 since then a phase-

separation between the impurity and the spinor medium
is favored as long as gI↑ > g + g↑↓ − gI↓.

E. Spin transfer processes

Having exemplified the role of spin-fluctuations caused
exclusively by the impurity-medium interactions we next
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FIG. 8. (a) Magnetic polaron residue in the case of an immiscible interacting medium with varying gI↑ and different ΩR (see
legend). A decrease of Z for finite |gI↑| shows the formation of an attractive (gI↑ < 0) or a repulsive (gI↑ > 0) magnetic
polaron state for ΩR (= 0. The fact that Z → 0 for increasing gI↑ > g hints towards the catastrophe of the magnetic polaron.
The predictions of the mean-field theory are in good agreement with the many-body residue outcome for weak intraspecies
bath interactions. (b) The mean-field framework overestimates the magnetic polaron residue for a strongly interacting medium,
compare Z as obtained within the variational approach and the GPE. The remaining system parameters are shown in the
legends.

aim to unravel the accompanied spin-demixing mecha-
nisms. These refer to the migration of spin-↑ to spin-↓
particles and vice versa leading ultimately to interaction
dependent spin configurations. The latter naturally pro-
vide further evidence of the presence of spin-wave excita-
tions identified in Fig. 5 (a). These are quantified herein
by the portion of the spin-flipped atoms with respect to
the gI↑ = 0 configuration. To capture the spin-demixing
of the bosonic medium, due to gI↑ '= 0, for various Rabi-
couplings ΩR we monitor the fraction of bosons in each
spin-a component

Pa(ΩR; gaa′ , gIa) =
〈Na(ΩR; gaa′ , gIa)〉

N
, (14)

where N = N↑ + N↓. The respective fraction of spin-
a atoms for several ΩR is depicted in Fig. 7(a). In the
miscible regime, i.e. ΩR > Ωcrit

R ≈ 4.8ω, it holds that
Pa(ΩR; g, gIa = 0) = 1/2, i.e. ∆P = P↑ − P↓ = 0.
For gI↑ > 0 (gI↑ < 0) ∆P decreases (increases). In the
case of ΩR + Ωcrit

R and gI↑ > g + g↑↓, ∆P = 0 due to
phase-separation. In the immiscible scenario, ΩR < Ωcrit

R ,
∆P '= 0 even for gI↑ = 0 and it follows the same behavior
as in the miscible regime with gI↑. For ΩR = 0, ∆P =

±1 because the spinor two-component host reduces to a
single-component since ΩR < Ωsingle

R [see also Fig. 2].
This response of ∆P in the miscible regime (here

ΩR = 5ω) does not alter also for a finite value of gI↓
as long as gI↓ < g, see Fig. 7 (b). Of course, due to
gI↓ '= 0 the population balance scenario is achieved for
gI↑ = gI↓. This becomes more pronounced for gI↓/g = 1
where we also observe that ∆P → 0 when gI↑ > g↑↓,
see Appendix C. The fact that ∆P → 0 is essentially a
manifestation of the impurity-medium phase-separation
for these non-negligibly repulsive values of gI↓. Conse-
quently, the impurity lies outside of the BEC and thus
spin-demixing is diminished. Such a suppression of ∆P
for gI↑+ gI↓ > g+ g↑↓ takes equally place upon consider-
ing a ΩR + Ωcrit

R which in general produces a reduction
of ∆P for each gI↑ (not shown).

F. Magnetic polaron residue and energy

The quasiparticle residue [11] refers to the overlap be-
tween the non-interacting (gIa = 0) and the interacting
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FIG. 9. Energy of the magnetic polaron for an immiscible
interacting medium as a function of gI↑ for different Rabi-
couplings (see legend). Attractive (gI↑ < 0) and repulsive
(gI↑ > 0) magnetic polaron branches exist for non-zero ΩR

characterized by a negative and a positive energy respec-
tively. Stronger binding occurs in the vicinity of the mis-
cibility threshold, ΩR ≈ 4.8. Other system parameters are
provided in the legends.

(polaronic) state

Z = |〈Ψ(gIa)|Ψ(gIa = 0)〉| , (15)

with a =↑, ↓. It can be experimentally tracked e.g. via
radiofrequency spectroscopy [3, 5]. The behavior of Z
with respect to gI↑ and distinct ΩR is presented in Fig. 8
(a). Apparently, for ΩR = 0 the residue Z = 1 for
gI↑ > 0 implying that the impurity is not dressed by
its environment, thus corresponding to a free particle.
This is in contrast to gI↑ < 0 where Z reduces for
stronger attractions being a consequence of the attrac-
tive polaron dressed by the phononic excitations of the
bosonic medium. Turning to larger ΩR, in the vicinity
of Ωcrit

R , we find that Z reduces for increasing |gB↑| sig-
nifying a tendency towards a completely deformed inter-
acting state. For repulsive gI↑ it is caused by the phase-
separation, while for attractive interactions it stems from
the impurity-medium bound state. This overall behav-
ior of Z appears to be similar for a heavy impurity. For
ΩR > Ωcrit

R the polaronic residue is dramatically differ-
ent. Focusing on gI↑ < 0 it decreases for larger attrac-
tions but it is always larger than for ΩR/ω = 5. However,
repulsive impurity-spin-↑ interactions result in a smooth
decrease of Z for gI↑ < g + g↑↓. Otherwise a sharp re-
duction of Z → 0 takes place which is associated with
the phase-separation among the impurity and the spin-↑
state. A similar response is observed for a heavy medium
and ΩR/ω = 5.
We then compare our variational findings with the

results from the mean-field approximation. Such a di-
rect comparison is especially motivated by recent stud-
ies on the 1D Bose polaron which have been argued
that its ground state characteristics can be described (at
least to some extent [69–71]) within a mean-field frame-
work [67]. This issue has been carefully benchmarked, for

instance, against Quantum Monte carlo techniques [21],
the Lee-Low-Pines transformation [17, 44] as well as the
ML-MCTDHX and the flow equation (IM-SRG) meth-
ods [69, 70]. The respective mean-field approximation
for our system is described by the following system of
three coupled Gross-Pitaevskii equations
[

−
!2

2mB

d2

dx2
+

1

2
mBω

2
Bx

2 − µB + g̃↑↑ |ψ↑(x)|2

+ g̃↑↓ |ψ↓(x)|2 + gI↑ |ψI(x)|2
]

ψ↑(x) +
ΩR

2
ψ↓(x) = 0

[

−
!2

2mB

d2

dx2
+

1

2
mBω

2
Bx

2 − µB + g̃↓↓ |ψ↓(x)|2

+ g̃↑↓ |ψ↑(x)|2 + gI↓ |ψI(x)|2
]

ψ↓(x) +
ΩR

2
ψ↑(x) = 0

[

−
!2

2mI

d2

dx2
+

1

2
mIω

2
Ix

2 − µI + gI↑ |ψ↑(x)|2

+ gI↓ |ψ↓(x)|2
]

ψI(x) = 0,

(16)

where g̃aa′ = (1−1/N)gaa′. The chemical potential of the
medium µB is inherently related with the particle num-
ber7 N = N↑ + N↓, see also Appendix C. Importantly,
the mean-field framework accounts for the hybridization
of the spin and spatial degrees-of-freedom ignoring the
excited state contributions or effects originating from
quantum fluctuations [71]. Comparing the quasiparticle
weight between the many-body approach [Appendix D]
and the mean-field theory [Eq. (16)] reveals only small
deviations for weak boson-boson interactions, see Fig. 8
(a). From this we can conclude that spin-spatial corre-
lations play the dominant role in the behavior of Z and
thus on the generation of the magnetic polaron. Spatial
correlations giving rise to deviations from the mean-field
picture become relevant for stronger boson-boson inter-
actions.
Indeed, deviations from the mean-field become in par-

ticular noticeable for repulsive impurity-medium inter-
actions and around Ωcrit

R , implying that in this region
spatial correlations become non-negligible. The imprint
of spatial correlations on Z is especially pronounced by
considering stronger interparticle interactions, compare
the many-body and the mean-field results in Fig. 8 (b).
In particular, the presence of correlations lead to smaller
residue for repulsive gI↑ due to the superposition of the
many-body wave function as compared to the mean-field
one. For attractive gI↓ the situation is reversed because
the impurity is less spatially localized in the mean-field
case.

7 µB , µI correspond to the solution of two algebraic equa-
tions, namely

∫

dx |ψ↑(x;µB , µI )|2 + |ψ↓(x;µB , µI)|2 = N and
∫

dx |ψI(x;µB , µI )|2 = 1, where ψσ(x;µB , µI ) is the wave func-
tion obtained from Eq. (16) as a function of µB , µI .
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Since the mean-field solution is adequate for weak
medium interactions, we have also studied the behav-
ior of Z for substantially larger atom numbers. For
this investigation we systematically approach the ther-
modynamic limit8 observing that Z ∼ | 〈ψ↑|ψ↑0〉 +
〈ψ↓|ψ↓0〉 |NB | 〈φI |φI0〉 |NI , where |φσ〉 and |φσ0〉, with σ ∈
{↑, ↓, I} are the mean-field order parameters for gI↑ '= 0

and gI↑ = 0 respectively. Thus, Z(NB, NI) ≈ Z̃
NB
100 → 0

for large NB and NI , where Z̃ corresponds to the residue
for N = 100. This exponentially decaying behavior of Z
manifests the Anderson catastrophe of the magnetic po-
laron in the thermodynamic limit in 1D [11, 47]. It fur-
ther supports the generalization of our results and their
experimental detection in the large atom number limit as
long as the impurities density is low to ensure that their
interactions are negligible.
The energy of the quasiparticle is naturally determined

by the energy difference among the interacting impurity-
medium setting and the non-interacting one

Epol = 〈Ĥ(gIa)〉 − 〈Ĥ(gIa = 0)〉 . (17)

As it can be verified by inspecting Fig. 9 the polaron en-
ergy shows a continuously increasing (decreasing) trend
for stronger repulsive (attractive) gI↑ as long as ΩR '= 0.
Moreover, for ΩR > Ωcrit

R and in the case of gI↑ > g+ g↑↓
the energy saturates due to the impurity-spin-↑ phase-
separation process [see also Fig. 3]. The saturation value
of the polaron energy caused by the impurity-medium
phase-separation can also be predicted within Veff(x) [see
Eq. (C4) in Appendix C] and it corresponds roughly to
Eph.s. ∼ (1/2)mIω2

IR
2
out with Rout being the TF radius

of the interacting component. However, for ΩR ≈ Ωcrit
R

the magnetic polaron energy does not exhibit an upper
bound due to the absence of phase-separation. Notice
that in the case of ΩR = 0 the energy Epol = 0 in the re-
pulsive gI↑ > 0 regime since there is no dressing, whilst
Epol < 0 for gI↑ < 0 due to the self-bound attractive
Bose polaron.

V. CONCLUSIONS AND OUTLOOK

We have investigated the ground state properties of
a structureless impurity embedded in a spin-1/2 Bose
gas. The interaction of the impurity with one spin com-
ponent is switched on, leading to spin-wave excitations
of the host atoms and formation of magnetic Bose po-
larons. To evaluate beyond mean-field correlations in the
magnetic polaron formation, we compare results obtained
within the variational approach and the three-component

8 Namely, we keep constant the healing length of the medium,
i.e. ξ ∝ 1/

√
µB [Eq. (B7)], while simultaneously increasing the

medium density, nB(0) ∝ µB/(g↑↓ + g) which is achieved by
fixing gaa′N = const while increasing N and NI by the same
factor.

Gross-Pitaevskii equations. The spin-spatial correlations
play the dominant role for weak boson-boson interac-
tions, while spatial correlations become important for
stronger interparticle couplings, invalidating the mean-
field treatment. An effective potential for the impurity
immersed in the bosonic bath is constructed to elucidate
the polaron characteristics. Interestingly in the magnetic
polaron regime the impurity is confined within an effec-
tive attractive potential well originating from the host
excitations it triggers. Particularly, regarding the repul-
sive branch this emergent attraction stabilizes the quasi-
particle against impurity-bath phase separation.

The phase diagram of the 1D magnetic polaron, as
a function of impurity-medium, spin-spin interactions,
and Rabi coupling among the spin components is calcu-
lated. The new phases include attractive and self-bound
repulsive magnetic polaron configurations, and impurity-
medium phase-separated regions where the quasiparticle
decays. The transition from non-magnetic to magnetic
polaron states strongly depends on the Rabi coupling.
The spin-wave excitations emerge as a localized distur-
bance of the host magnetization, affecting the occupa-
tion of the individual spin components. This mechanism
is tunable by varying the impurity-medium interactions
while keeping all other system parameters fixed. In the
absence of impurity, it is explicated that the binary mag-
netic gas can be efficiently driven through a miscible to
spin-segregated phase via tuning its Rabi-coupling. It is
in the vicinity of this phase transition where the magnetic
properties of the polaron become more prominent.

We show that spin-spin correlations are affected with
finite impurity-medium coupling, offering the opportu-
nity to use impurity-spin interaction to control the lo-
cal bath spin order. To gain further insights into the
magnetic polaron states, we calculate the residue, show-
ing a decreasing trend for large impurity-medium cou-
pling. The presence of spatial correlations for strong
boson-boson interactions results in a suppressed residue
behavior. Moreover, by inspecting the polaron energy it
is shown to be negative for attractive impurity-medium
couplings indicating the formation of an impurity-
medium bound state. The latter is less bound for larger
Rabi coupling, while for repulsive interactions it experi-
ences an increasing tendency.

It would be intriguing to develop an analytical un-
derstanding of the impact of correlations leading to the
renormalization of the effective potential experienced
by the impurity within the magnetic polaron regime.
Another immediate prospect is to examine the quench
dynamics of the magnetic polaron following a time-
dependent ramp of the intensity of the radiofrequency
field (Rabi coupling) in order to examine the possibility
of spin domain formation. Along these lines, it is impor-
tant to emulate radiofrequency or Ramsey spectroscopy
in the spinor medium for unveiling the many-body prop-
erties of its collective excitations, such as spin-waves. An-
other interesting direction would be to study the induc-
tion of spin-order in the presence of a spin-orbit cou-
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pled impurity atom. The generalization of our findings
to two-dimensions where long-range effective spin-order,
exhibiting also anisotropic character, is a worthy further
pursuit.
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Appendix A: Impurity in a miscible spinor Bose
medium

Below, we showcase that the polaron exists also in the
case of a miscible interacting spinor medium, however,
its magnetic character depends crucially on ΩR. Here,
we assume g = 0.5 and g↑↓/g = 0.9 while gI↓ = 0. The
σ-component densities are provided in Figs. 10 (a)-(c)
for different impurity-spin-↑ interactions and in the case
of ΩR = 0. For repulsive gI↑ we observe that in the re-
gion gI↑ < g↑↓ + g the impurity cloud widens for larger
gI↑ while remaining within ρ↑. Entering gI↑ > g↑↓ + g
the impurity moves to the edges of the TF cloud of
the medium, x = ±Rout, splitting into two symmetri-
cally placed density branches minimizing its overlap with
ρ↑(x). However, ρ↓(x) slightly widens as a result of its
effective attraction (geffI↓ ) mediated by the repulsive gI↑,
see Sec. IVA. The local magnetization in the vicinity
of the impurity is negative in this repulsive interaction
region manifesting the existence of a magnetic polaron
[Fig. 10(d)]. The magnetic quasiparticle nature is also
supported by the occurrence of spin-fluctuations iden-

tified since C(2)
↑↓ '= 1 as shown in Fig. 10(f). Notably,

C(2)
↑↓ → 1 irrespectively of gI↑ for increasing ΩR im-

plying that the magnetic character is diminished. This
is expected as for increasing ΩR the host becomes pro-
gressively more strongly polarized along the spin-x axis
[|Px〉 =

⊗N
i=1(|↑〉i − |↓〉i)/

√
2] and therefore the impu-

rity can hardly induce spin-demixing. Consequently, the
atoms are distributed in an almost equal fashion between
the spin components, see Fig. 10(e). The latter feature
a small population imbalance being more pronounced
before the overlap among the impurity and the spin-↑
bosons becomes minimal and it is further suppressed for
larger ΩR.
Turning to attractive gI↑, a non-negligible portion of

the spin-↑ atoms accumulate close to the impurity and a
self-bound attractive magnetic polaron forms. Simulta-

neously, ρ↓(x) tends to separate with ρ↑(x) as a result of
the repulsive induced interactions (geffI↓ ) mediated by the

attractive gI↑. Here, 〈Ŝz(x)〉 is positive in the location of
the impurity [Fig. 10(d)] verifying the magnetic character
of the polaron which can also be inferred by the fact that

C(2)
↑↓ '= 1 [Fig. 10(f)]. Once again the reduction of C(2)

↑↓
is smaller for a larger ΩR indicating the suppression of
the magnetic polaron character. The population transfer
is enhanced compared to the repulsive case [Fig. 10(e)].
This implies that the polarization is not adequate for
characterizing spin-spin correlations and vice versa [68].

Appendix B: Phase structure of the two-component
magnetic Bose gas

Let us briefly outline the mean-field ground state char-
acteristics of a binary magnetic bosonic gas, analyzed
to some extent in Ref. [56]. A simplified description of
the pseudospinor BEC is obtained by relying on the TF
approximation in the three-component GPE description
[Eq. (16)]. Particularly, the kinetic energy of the medium
is neglected leading to the following coupled set of equa-
tions for the medium
(

µB − ε0(x)−
1

2
mBω

2x2

)(

ψ↑(x)
ψ↓(x)

)

=
1

2

(

∆(x) ΩR

ΩR ∆(x)

)

︸ ︷︷ ︸

≡Ĥs(x)

(

ψ↑(x)
ψ↓(x)

)

︸ ︷︷ ︸

≡〈x|ΨB〉

, (B1)

where ε0(x) ≡ (ε↑(x) + ε↓(x))/2, ∆(x) ≡ ε↑(x) − ε↓(x)

and εα(x) =
∑

β={↑,↓} gβα |ψα(x)|2, with α ∈ {↑, ↓}.
Here we are interested in the magnetic properties of the
BEC in the absence of the impurity and therefore we have
set ψI(x) = 0 in Eq. (16).
Formally any self-consistent solution of Eq. (B1) is an

adequate solution of the GPE within the TF approxima-
tion. However, herein, we are interested in the ground
state of the system and as a consequence we minimize
the energy contribution stemming from 〈ΨB|ĤS(x)|ΨB〉
yielding 〈ΨB|ĤS(x)|ΨB〉 = − 1

2

√

∆2(x) + Ω2
R for all x.

In this case, Eq. (B1) and ∆(x) = ε↑(x) − ε↓(x) de-
fine two algebraic equations for εα(x), α ∈ {↑, ↓} the
solution(s) of which determine the ground state(s) of the
pseudospinor BEC.
However, in order to identify the distinct phases of

the Bose gas in a more transparent manner it is more
convenient to work with quantities based on its wave
function (and thus also its density). Indeed, the choice
〈ΨB|ĤS(x)|ΨB〉 = − 1

2

√

∆2(x) + Ω2
R motivates us to ex-

press the wave function as

(

ψ↑(x)
ψ↓(x)

)

=
√

n(x)

(

sinϕ(x)
− cosϕ(x)

)

, (B2)

with n(x) = ρ↑(x) + ρ↓(x) is the total BEC density. Ac-
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FIG. 10. Ground state of an impurity immersed in a miscible interacting spinor Bose gas characterized by Rabi-coupling ΩR = 0.
The densities of (a) the spin-↑ and (b) the spin-↓ components as well as (c) the impurity are shown for varying impurity-spin-↑
coupling. (d) The respective spatially resolved spin-fluctuations. (e) Spin populations of the individual components of a miscible
medium interacting with an impurity upon tuning gI↑ for different ΩR (see legends). (f) the spn-spin correlation function. The
multicomponent interacting Bose system with g↑↑ = g↓↓ ≡ g = 0.5, g↑↓/g = 0.9 and gI↓ = 0 is harmonically trapped with
ω = 1.

cordingly, the phase factor

ϕ(x) = −
1

2
cos−1

(

∆(x)
√

∆2(x) + Ω2
R

)

. (B3)

Equation (B2) expresses the wave function of the system
solely in terms of the functions n(x) and ∆(x). The ren-
der clear the physical interpretation of these functions,
we note that the densities of the individual BEC compo-
nents read

ρ(1)↑
↓

(x) =
n(x)

2

[

1∓
∆(x)

√

∆2(x) + Ω2
R

]

. (B4)

As such, ∆(x) signifies the degree of local spin-imbalance
among the distinct components. In this sense ∆(x) '= 0
indicates spin-component immiscibility.

To derive the ground state solutions of the pseu-
dospinor Bose gas we insert Eqs. (B2), (B3) into Eq. (B1)
resulting in the self-consistency equations

µB =
n(x)

2

(
g↑↑ + g↓↓

2
+ g↑↓

)

−
g↑↑ − g↓↓

4

n(x)∆(x)
√

∆2(x) + Ω2
R

+
1

2
mBω

2
Bx

2

−
1

2

√

∆2(x) + Ω2
R.

∆(x) =
n(x)

2
(g↑↑ − g↓↓)

+

(
g↑↑ + g↓↓

2
− g↑↓

)
n(x)∆(x)

√

∆2(x) + Ω2
R

(B5)

Notice here the appearance of the chemical potential, µB,
which is fixed by demanding N =

∫

dx n(x), yielding a
third equation for obtaining the TF profile. For sim-
plicity, below, we consider a two-component system with
g↑↑ = g↓↓ = g. Therefore, the solutions of Eq. (B5) read
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n(x) =
1

g

(

µB −
1

2
mBω

2
Bx

2

)

∆(x) = ±
√

(g − g↑↓)2n2(x)− Ω2
R

for |x| < Rin = 3

(√

2[(g↑↓ − g)µB − g|ΩR|]
|g↑↓ − g|mBω2

B

)

n(x) =
2

g + g↑↓

(

µB −
1

2
mBω

2
Bx

2 +
|ΩR|
2

)

∆(x) = 0

for Rin ≤ |x| < Rout =

√

2µB + |ΩR|
mBω2

B

n(x) = 0

∆(x) = 0
for |x| ≥ Rout

(B6)

where Rin denotes the TF radius of the spin density im-
balance, ρ↑(x) − ρ↓(x) = −∆(x)/(g↑↓ − g), and Rout is
the TF radius of each component. Also, the chemical po-
tential µB refers to the solution of the following algebraic
equation

N =
2

g + g↑↓

[

(2µB + |ΩR|) (Rout −Rin)

−
1

3
mBω

2
B(R

3
out −R3

in)

]

+
1

g

[

2µBRin −
1

3
mBω

2
BR

3
in

]

.

(B7)

The solutions provided in Eq. (B6) reveal that the
pseudospinor BEC experiences a phase transition in
terms of ΩR and g↑↓. For large Rabi couplings, i.e.
|ΩR| ≥ Ωcrit

R = n(0)(g↑↓ − g), a unique solution ex-
ists (since Rin = 0 and the first branch does not con-
tribute) characterized by a completely miscible phase
with ∆(x) = 0 and therefore ρ↑(x) = ρ↓(x). In contrast,
reducing the Rabi coupling such that |ΩR| < Ωcrit

R the
ground state is characterized by the coexistence of two
separate spatial domains in terms of Rin and Rout. In
particular, since in this case Rin > 0, there is an immis-
cible region close to the trap center, namely for |x| ≤ Rin.
Since the system is symmetric to spin inversions, namely
it exhibits a Z2 symmetry (see discussion in Sec. II B) ow-
ing to the fact that g = g↑↑ = g↓↓, there are two distinct
solutions in this regime. These possess either ∆(x) < 0
or ∆(x) > 0, corresponding to a predominant occupa-
tion of the spin-↑ or the spin-↓ state at the trap center
respectively, see Eq. (B4). Therefore, we conclude that in
the immiscible case the ground state of the BEC is dou-
bly degenerate. Furthermore, assuming a non-zero Rabi
coupling, ΩR '= 0, we obtain Rin < Rout and therefore
a miscible region always appears for Rin ≤ |x| ≤ Rout.
In this spatial extent the densities of the components
are perfectly overlapping, as in the case |ΩR| ≥ Ωcrit

R
discussed above. Notice that this partially immiscible
regime does not appear for g↑↓ < g, since the state of
the Bose gas is miscible even for ΩR = 0. Indeed, in this
case it is impossible to satisfy the immiscibility condi-
tion |ΩR| < Ωcrit

R = n(0)(g↑↓ − g), because n(0) > 0 and

|ΩR| > 0.

To gain deeper insight into the behavior of the pseu-
dospinor BEC for varying ΩR and g↑↓ we present its un-
derlying phase diagram in Fig. 11 (a) for the parameters
employed in the main text, namely g = 0.5 and N = 100.
Apparently, the partially immiscible phase emerges for
strong g↑↓ and weak ΩR. Furthermore, the variation of
Rin and Rout for g↑↓ = 0.8 is illustrated in Fig. 11 (b). It
can be readily verified that Rin = Rout holds for ΩR = 0,
while an increasing Rabi-coupling leads to a decrease of
Rin, ultimately reaching Rin = 0 for ΩR = Ωcrit

R . In con-
trast, Rout increases compensating for the constant par-
ticle number (N) in the BEC. The miscible-immiscible
phase transition for larger ΩR is directly captured by the
population of the individual componentNα =

∫

dx ρα(x)
depicted in Fig. 11 (c). As it can be seen within the TF
approximation and for ΩR = 0 the system is fully po-
larized along the z spin axis. For higher values of ΩR

the particle imbalance decreases and eventually vanishes
within the miscible regime.

It should be, however, stressed that the TF approx-
imation is not quantitatively reliable in the immiscible
regime since the derivative of the component wave func-
tions, Ψα(x), is discontinuous at |x| = Rin

9. Therefore,
the kinetic energy of the BEC becomes infinite in the
vicinity of these points. In order to correctly evaluate
the BEC density profiles of the partially immiscible sys-
tem one has to solve the full GPE equations of motion
[Eq. (16)] and thus account for the impact of the kinetic
energy term. Indeed, upon considering the GPE modeled
Nα is altered in the vicinity of the transition region from
the TF results, see Fig. 11 (c). Nevertheless, the TF ap-
proximation is found to provide an adequate qualitative
description of the phase of the Bose gas. Below, we shall
employ this approximation to elucidate the phase dia-
gram of the impurity immersed in a pseudospinor BEC.

9 Notice that lim
x→R

−
in

d

dx

√

ρα(x) − lim
x→R

+
in

d

dx

√

ρα(x) #= 0

where the appropriate for each region n(x) and ∆(x) given in
Eq. (B6) are substituted to Eq. (B4).
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FIG. 11. Ground state properties of the pseudospinor BEC in the absence of impurities. (a) Phase diagram for g = 0.5 and
N = 100. (b) Dependence of the TF radii Rin and Rout on ΩR for g↑↓ = 0.8, g = 0.5 and N = 100. (c) Number of atoms in
the |↑〉 (N↑) and |↓〉 (N↓) components for varying ΩR within the TF and the GPE frameworks. The system parameters are the
same as in (b).

Appendix C: Effective potential and its range of
applicability

Previous studies focussing on a spinless BEC host [24,
26, 27, 31] argued that important insights regarding
the equilibrium and the dynamical Bose polaron prop-
erties are obtained by merely considering the Bose gas
acting as a material barrier to the impurity. This is
the concept of the so-called effective potential which of
course neglects correlations among the impurity and the
medium. Its success can be traced back to the sepa-
ration of energy scales between density-density interac-
tions giving rise to the effective potential and the cor-
responding bath-phonon interactions predicted within
the Fröhlich model [72, 73]. Indeed, the energy scale
of density-density interactions is Eden−den ∼ gBIn0,
with gBI being the impurity-medium effective coupling
strength and n0 denoting the BEC density. In contrast,
the impurity-phonon coupling within the Fröhlich model
is Eimp−phon ∼ gBI

√

n0/ξ [72], where ξ is the BEC heal-
ing length. Thus, the energy scale defined by the density-
density interactions is larger, since for a BEC the healing
length should be larger than the corresponding interpar-
ticle distance Eden−den/Eimp−phon ∼

√
n0ξ + 1 [74].

Consequently, the impact of the effective-potential is
more pronounced than the phononic dressing.
The generalized form of the effective potential for the

case of a pseudospinor BEC reads

Veff(x) =
1

2
mIω

2
Ix

2 + gI↑ρ↑(x) + gI↓ρ↓(x), (C1)

where ρα(x), with α ∈ {↑, ↓}, is the density of the corre-
sponding BEC component for gI↑ = gI↓ = 0. To estab-
lish the limitations of the effective potential approach,
Veff(x) is also compared to the improved effective poten-
tial V ′

eff(x). The latter possesses the same form as Veff(x)
but ρα(x) corresponds to the BEC density calculated
for the proper values of gI↑, gI↓ within ML-MCTDHX.
Therefore, V ′

eff(x) incorporates effects stemming from the
impurity-medium correlations allowing us to characterize

their impact in the polaronic state and identify effects be-
yond the effective potential framework. This inclusion is
important due to the pseudospin degree-of-freedom of the
BEC. As shown in Ref. [56] except for the phononic exci-
tations (which retain the same structure as in the spinless
scenario within the miscible regime, ΩR < Ωcrit

R ) a new
branch of spin-excitations emerges referring to out-of-
phase density fluctuations among the BEC components.
Here we are not interested in a detailed study of the cou-
pling mechanism between spin-excitations and the im-
purity. However, such contributions lead to pronounced
impurity-medium correlations beyond Veff(x). These can
be directly captured by comparing Veff(x) with V ′

eff(x).
Below, we derive the explicit form of Veff(x) [Eq. (C1)]

within the TF approximation utilizing the results of Ap-
pendix B, for both miscible and immiscible BEC com-
ponents. This exploration will allow us to interpret the
phase diagram of the different polaronic excitations em-
anating for repulsive impurity-medium interactions but
also unravel the limitations of this effective approach.

1. Miscible regime

Referring to miscible spinor components (Rin = 0),
according to Eq. (B6), the effective potential reads

Veff(x) =

















1

2
mBDmiscω

2
Bx

2

+
gI↑ + gI↓
g + g↑↓

(

µB +
|ΩR|
2

)

,
for |x| ≤ Rout,

1

2
mIω2

Ix
2, for |x| > Rout,

(C2)
here the factorDmisc determines the shape of the effective
potential and reads

Dmisc =
mIω2

I

mBω2
B

−
gI↑ + gI↓
g + g↑↓

. (C3)

Therefore, Veff(x) possesses a harmonic oscillator shape
for Dmisc > 0, or equivalently gI↑ + gI↓ < gBIcrit = (g +
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g↑↓)
mIω

2
I

mBω2
B

deforming into a double-well in the opposite

case, Dmisc < 0, with minima located at xmin = ±Rout.
As such, in line with the results of Ref. [24, 27] for a
single-component host, we expect that the impurity and
the medium bath become immiscible in the case of gI↑ +
gI↓ > gBIcrit. This ultimately results in the instability
of the repulsive Bose polaron being inherently related
to its decaying character in this interspecies interaction
regime [24, 31]. This provides the first threshold for the
stability of the Bose polaron indicated in Fig. 12(a), see
in particular the edge of the blue region for g↑↓ = gI↑ −
g. This is equivalent to the edge of the repulsive Bose
polaron regime for gI↑ = g + g↑↓ appearing in Fig. 2(a).

It should be emphasized that within Veff(x) we com-
pletely neglect backaction effects of the impurity to the
BEC, which in the case of a pseudo-spinor Rabi-coupled
BEC can be important for determining the stability of
the Bose polaron. Nevertheless, by comparing Veff(x)
with the corrected V ′

eff(x) potential incorporating the ef-
fect of impurity-medium correlations we do not observe
significant deviations among the two approaches as long
as, the Rabi-coupling is strong enough, see Fig. 2(b2) for
the repulsive polaron and Fig. 2(b3) for the immiscible
impurity-medium case. Similar findings are obtained for
g↑↓ * g (not shown here for brevity). The above can be
interpreted in view of Ref. [56], where it was demon-
strated that the spin-excitations possess a sizable gap
when the system is deep into the miscible regime of the
pseudospinor BEC. Therefore, within the latter regime
the generation of spin-wave excitations into the host is
prohibited. Recall that also the phonon-impurity cou-
pling is much weaker than the Veff(x) contribution, thus

suppressing possible density excitations of the medium.
As such, both excitations pathways are essentially frozen
within this miscible BEC regime and consequently the
impurity-medium correlations are expected to be insignif-
icant. This explains the fact that Veff(x) ≈ V ′

eff(x) as
shown in Fig. 2(b2), (b3).
As the miscibility-immiscibility threshold is ap-

proached, i.e. for ΩR ≈ Ωcrit
R or g↑↓ ≈ gcrit↑↓ , the above-

mentioned energy gap among the spin and the phononic
excitations closes [56] allowing for the coupling of the
impurity state with the spin-fluctuations of its host. As
a consequence we expect pronounced impurity-medium
correlations in this regime. Indeed, by incorporating
this correction into a new effective potential, V ′

eff(x),
we observe the emergence of an additional well around
x = 0 which is responsible for binding the impurity
into the Bose gas provided that V ′

eff(0) < V ′
eff(Rout), see

Fig. 2(b4). This behavior is reminiscent of the so-called
Pekkar polaron according to which the density excita-
tions of the host are maximized in the vicinity of the
impurity leading to its spatial localization [2, 75]. Im-
portantly though, in our case the excitations dressing
the impurity possess a magnetic character (see Sec. IVD)
and therefore we refer to the structure emerging in this
regime as the Pekkar-magnetic polaron.

2. Immiscible spin interactions

For a medium with immiscible spin components one
has to consider a larger number of cases since depending
on the sign of gI↑−gI↓ distinct medium configurations are
favored. Indeed, if gI↑ > gI↓ (gI↑ < gI↓) it is preferable
that n↑ > n↓, ∆(x) < 0 (n↑ < n↓, ∆(x) > 0). This leads
to a discontinuity in nα at gI↑ = gI↓. Then the effective
potential in the TF approximation becomes

Veff(x) =
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To further elucidate the form of Veff(x) we perform an
expansion with respect to x around |x| ≤ Rin. Within
the harmonic approximation (i.e. dropping terms ∝ xn

for n > 2) we obtain

V approx
eff (x) =
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FIG. 12. (a) Phase diagram of the Bose polaron for varying impurity-spin (gI↑, gI↓ = 0) and intercomponent (g↑↓) interactions.
The dashed line in (a) indicates gmag c being the maximal value of gI↑ for which the repulsive magnetic polaron is the ground
state of the system for a given g↑↓. gcrit↑↓ refers to the critical bath intercomponent interaction, for given Ωcrit

R , determining

the miscible-immiscible phase-transition of the spinor Bose gas. gsingle↑↓ corresponds to the intercomponent interaction strength
above which magnetic effects diminish. (b) The factor λ(ΩR) determining the stability regime of the Bose polaron in the case
of an immiscible spinor BEC within the TF approximation for g↑↓/g = 1.6, g = 0.5, N = 100, ωI = ωB and mI = mB. The
inset depicts an exemplary stability diagram in the gI↑-gI↓ plane for ΩR = 4ω. The dashed lines correspond to the boundaries
of the stability region gI↓ = g + λ(ΩR = 4ω)(gI↓ − g) and gI↑ = g + λ(ΩR = 4ω)(gI↑ − g).

Consequently, whether Veff(x) exhibits a double- or
single-well structure depends on the sign of

Dim =
mIω2

I

mBω2
B

−
1

2g

[

gI↑ + gI↓

−
|gI↑ − gI↓|

√

1−
(

ΩR

Ωcrit
R

)2

]

.
(C6)

Indeed, Dim > 0 designates a single-well potential around
x = 0, whilst Dim < 0 implies a double-well with min-
ima at x = ±Rout. A first simplification occurs in the
case of gI↓ = 0 (due to the Z2 symmetry we can equiva-
lently assume gI↑ = 0), where Dim > 0 for all gI↑. This
means that in the immiscible case and for gI↓ = 0, the
impurity can not escape from the BEC within the TF
approximation and the polaron exists for every gI↑.
By comparing, Veff(x) with V ′

eff(x) within the immisci-
ble regime, we observe a qualitative agreement between
these two approaches see Fig. 2(b5). The notable dif-
ferences lie in the modification of the effective potential
around x = 0 owing to the magnon dressing. This leads
to a stronger binding of the impurity in the BEC when
impurity-medium correlations are incorporated. As such,
the Bose polaron in this parameter range possesses a sim-
ilar structure as the magnetic one identified in the mis-
cible regime, despite that the former does not show a
self-bound character. For this reason we do not differ-
entiate among these two regimes in the phase diagram
of Fig. 2(a), (b) and refer to the emerging structures
as magnetic Bose polarons. An additional alteration of
V ′
eff(x) occurs near x = ±Rin, originating from the non-

negligible kinetic energy of the bosons in this spatial re-
gion which is neglected within the TF approximation.

Further, for gI↑ = 0 (or gI↓ = 0), we note that deep in
the immiscible regime, i.e. for ΩR * Ωcrit

R (or equiva-
lently for g↑↓ + gcrit↑↓ ) the BEC tends to be fully polar-
ized. Then, all atoms occupy the spin-state that is non-
interacting with the impurity and therefore in this case
no polaron exists. Of course, as the system approaches
this regime it exhibits a crossover character and conse-
quently no phase-boundary emerges. In order to estimate
the parameter region where the behavior of the system
changes we define, gsingle↑↓ possessing the property that for

g↑↓ > gsingle↑↓ and fixed ΩR less than a single BEC atom
occupies the component that is interacting with the im-
purity, see Fig. 12(a). Similarly, we have defined Ωsingle

R ,

see Fig. 2(a), such that for ΩR < Ωsingle
R and fixed g↑↓

the component interacting with the impurity is occupied
by less than one atom.

Let us now briefly comment on the case of gI↑ '=
0 '= gI↓, by examining the expected regimes where
a polaron appears within the TF approximation (i.e.
Dim > 0). The behavior of the system is the simplest
for ΩR * Ωcrit

R , where the spin components are strongly
imbalanced and almost only one of them is occupied [see
also Fig. 11]. It naturally follows from Eq. (C6) that the

polaron exists for min(gI↑, gI↓) < g mIω
2
I

mBω2
B
. These results

are in agreement to the ones regarding an impurity im-
mersed in a spinless BEC [24, 27, 31]. On the contrary,
in the region ΩR ≈ Ωcrit

R , i.e. close to the miscibility-
immiscibility threshold, Dimm < 0 signifying that a po-
tential minimum at x = 0 always exists independently
of the impurity-medium interaction strength. Finally, in
the intermediate case, 0 < ΩR < Ωcrit

R , there is a thresh-
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old

min(gI↑, gI↓)− g
mIω2

I

mBω2
B

< λ(ΩR)×
(

max(gI↑, gI↓)− g
mIω2

I

mBω2
B

)

,

(C7)

below which the Bose polaron exists. Here, the function
λ(ΩR) features an increasing behavior for 0 < ΩR <
Ωcrit

R , and exhibits the extrema λ(ΩR = 0) = 0 and
λ(ΩR = Ωcrit

R ) = 1. The precise values of λ(ΩR) in the
above-mentioned domain, depend solely on the param-
eters characterizing the medium, namely g, g↑↓ and N .
For illustration, Fig. 12(b) provides λ(ΩR) alongside with
an example stability phase diagram in the inset for the
host parameters employed within this work.
Concluding, Veff(x) provides insight into the existence

of polaronic states, but not whether they correspond to
the system’s ground state. Indeed, if the impurity re-
mains within the BEC its energy increases without bound
for a larger gIα. In contrast, the phase-separated states
possess an energy that saturates for strongly repulsive
impurity-medium interaction strengths since the inter-
species spatial overlap is small. Therefore, it is expected
that the impurity energy in these cases will saturate to-
wards Eph.s. ∼ 1

2mIω2
IR

2
out. This implies that even in

the cases that the Bose polaron persists for large inter-
actions, the phase-separated states might be the over-
all ground states of the system and therefore explicit
investigations are required to determine the energy of
both branches. Here a hint towards the stability of
the polaronic states relies on the fact that the state of
the BEC is highly perturbed for the cases of the mag-
netic polaron and almost completely intact for a phase-
separated impurity-medium configuration. As a conse-
quence, the corresponding coupling among the polaronic
and phase-separated states that would render the former
configuration unstable is small. This can be understood
from the fact that the state overlap typically scales as
∝ [
∑

α

∫

dx
√

ρα(x)ρ′α(x)]
N , where ρα(x), ρ′α(x) are the

original and perturbed single-particle densities respec-
tively.

Appendix D: Variational treatment of the magnetic
polaron

In order to capture the correlation properties of the
magnetic polaron we solve the many-body Schrödinger
equation of the underlying multicomponent system using
the variational ML-MCTDHX method [42]. Specifically,
a two-step truncation scheme is performed in the many-
body wave function. First, the impurity-medium corre-
lations are taken into account by expanding the many-
body wave function |Ψ(t)〉 with respect toD orthonormal
species functions, i.e. |Ψσ

k (t)〉 with k = 1, 2, . . . , D [42] for
each component σ = B, I. Namely, we use the following

truncated Schmidt decomposition

|Ψ(t)〉 =
D∑

k=1

√

λk(t)|ΨB
k (t)〉|ΨI

k(t)〉, (D1)

with the expansion coefficients λk known as the Schmidt
weights and corresponding to the eigenvalues of the
σ-component reduced density matrix. The latter is
ρNσ
σ (/x, /x′; t) = 〈Ψ(t)|

∏Nσ

i=1 Ψ
†
σ(xi)

∏Nσ

i=1 Ψσ(x′
i)|Ψ(t)〉,

with /x = (x1, · · · , xNσ). A pre-requisite for the system
to be entangled [76], or otherwise impurity-medium cor-
relations are present, is that at least two different λk are
populated.
Next, we express each of the above-described species

functions as a linear superposition of time-dependent
number-states |/n(t)〉σ with time-dependent expansion co-
efficients, Aσ

i;'n(t),

|Ψσ
i (t)〉 =

∑

'n

Aσ
i;'n(t)|/n(t)〉σ . (D2)

A particular number state |/n(t)〉σ ≡ |n1, . . . , ndσ〉 corre-
sponds to a permanent. It is constructed by dσ time-
dependent variationally optimized single-particle func-
tions (SPFs) |φσl (t)〉, where l = 1, 2, . . . , dσ and nl de-
note their occupation numbers. At this stage of the wave
function truncation we account for intracomponent cor-
relations.
Finally, the SPFs are expanded on a time-independent

primitive basis. The latter is an M dimensional discrete
variable representation (DVR) for the impurity denoted
by {|k〉}. For the spinor bosonic medium it is the ten-
sor product ({|k, s〉},) of the DVR basis for the spatial
degrees-of-freedom and the two-dimensional pseudospin-
1/2 basis {|↑〉 , |↓〉}. Particularly, a SPF of the medium
takes the spinor wave function form

|φBj (t)〉 =
M
∑

k=1

(

BB
jk↑(t) |k〉 |↑〉+BB

jk↓(t) |k〉 |↓〉
)

, (D3)

with BI
jk↑(t) and BI

jk↓(t) being the time-dependent ex-
pansion coefficients of the spin-↑, ↓ respectively, see also
Refs. [26, 27] for further details.
To calculate the ground state of the underlying (N↑ +

N↓+1)-body wave function |Ψ(t)〉 describing the Hamil-
tonian of Eq. (1) we solve the respective ML-MCTDHX
equations of motion [42] within the imaginary time prop-
agation method. These equations are found upon ap-
plying, for instance, the Dirac-Frenkel variational prin-
ciple [77] for the ansatz of Eqs. (D1), (D2) and (D3).
This process leads to a coupled set of D2 linear differen-
tial equations of motion for the λk(t) coefficients as well

as D( (N+dB−1)!
N !(dB−1)! + (NI+dI−1)!

NI !(dI−1)! ) and dB + dI nonlinear in-
tegrodifferential equations for the species functions and
the SPFs respectively. The orbital configuration space
C = (D; dB; dI) assigns the Hilbert space truncation.
Here, the weakly interacting spinor Bose gas has a meso-
scopic atom number resulting in suppressed intracompo-
nent correlations which can be captured by a relatively
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small number of orbitals, here dB < 4. For the impurity
we are able to employ a substantially larger orbital num-

ber, herein dI = 8, in order to describe strong impurity-
medium correlations. As such, it is feasible to numeri-
cally solve the ML-MCTDHX equations of motion.
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