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Abstract 

Ligand binding thermodynamics and kinetics are critical parameters for drug design. However, it 

has proven challenging to efficiently predict ligand binding thermodynamics and kinetics from 

molecular simulations due to limited simulation timescales. Protein dynamics especially in the 

ligand binding pocket often plays an important role in ligand binding. Based on our previously 

developed Ligand Gaussian accelerated molecular dynamics (LiGaMD), here we present 

LiGaMD2 in which a selective boost potential was applied to both the ligand and protein residues 

in the binding pocket to improve sampling of ligand binding and dissociation. To validate the 

performance of LiGaMD2, the T4 lysozyme (T4L) mutants with open and closed pockets bound 

by different ligands were chosen as model systems. LiGaMD2 could efficiently capture repetitive 

ligand dissociation and binding within microsecond simulations of all T4L systems. The obtained 

ligand binding kinetic rates and free energies agreed well with available experimental values and 

previous modeling results. Therefore, LiGaMD2 provides an improved approach to sample 

opening of closed protein pockets for ligand dissociation and binding, thereby allowing for 

efficient calculations of ligand binding thermodynamics and kinetics. 

  



Introduction 

ligand binding to target receptors plays a critical role in many fundamental biological processes1, 

as well as in the design of more effective and selective drugs for treating human diseases2. A 

number of experimental techniques3 have been developed to explore protein-small molecule 

interactions. For example, structural biology techniques3b have been widely applied to determine 

protein-ligand complex structures. However, X-ray crystallography and cryo-electron microscopy 

(cryo-EM) could provide only static snapshots of protein-small molecule interactions. It is rather 

challenging for experimental methods to capture ligand binding and dissociation pathways and 

determine potential intermediate states of ligand binding to the protein target site.   

Recently, ligand binding kinetics has been recognized to be critical for drug design4. The 

ligand dissociation rate (koff) or residence time (1/ koff) appears to correlate with drug efficacy better 

than ligand binding free energy. However, ligand binding kinetic rates have proven more 

challenging to predict, due to slow processes of ligand dissociation and rebinding4b, 5. With 

remarkable advances in computer hardware and method developments, conventional molecular 

dynamics (cMD) simulations nowadays are able to capture spontaneous ligand binding to target 

proteins and predict corresponding binding association rates (kon)6. However, it remains 

challenging to use cMD to simulate repetitive ligand binding and dissociation processes, 

precluding accurate prediction of ligand binding kinetic rates. For example, based on tens-of-

microsecond cMD simulations, Shan et al. 7 successfully captured spontaneous binding of the 

Dasatinib drug to its target Src kinase and accurately predicted the ligand association rate (kon). 

However, no dissociation event was observed in the cMD simulations. Similar results were 

observed in the binding of benzene (BEN) to the L99A mutant of T4 lysozyme (T4L)8. The cMD 

simulations with lengths of 2 to 8 μs successfully captured BEN binding to the L99A T4L8. Tens 



to hundreds of repetitive guest binding and dissociation from the β-CD host were observed in 

microsecond cMD simulations9, which enabled accurate prediction of host-guest binding 

thermodynamics and kinetics. Tens-of-microsecond cMD simulations6d captured repetitive 

binding and dissociation of six small-molecule fragments with weak millimolar binding affinities 

to the protein FKBP, which enabled accurate prediction of fragment binding free energies and 

kinetic rates. Nevertheless, cMD simulations have not captured repetitive binding and dissociation 

of typical small-molecule ligands to target proteins so far.  

In this regard, enhanced sampling methods10 have been developed to extend accessible 

timescale of MD simulations, including Metadynamics11, Steered MD12, Umbrella Sampling12a, 13, 

Replica Exchange MD 14, Random Acceleration Molecular Dynamics (RAMD) 15, Scaled MD 16, 

accelerated MD (aMD) 17, Gaussian accelerated MD (GaMD) 18, Markov State Model (MSM)8, 19, 

Weighted Ensemble20 , and so on. Using T4L as a model system, a total of ~12 μs infrequent 

Metadynamics11a, 11b simulations successfully captured 20 times of ligand binding and dissociation 

events and predicted the values of  kon and koff at 3.5 ± 2 × 104 M−1s−1 and 7 ± 2 s−1, being 

comparable to experimental values of 0.8±1x106M-1s-1 and 950±20 s-1, respectively. However, 

Metadynamics requires predefined collective variables (CVs) before running the simulations. Thus, 

a priori knowledge of the systems is often required. In comparison, Weighted Ensemble21  and 

MSM22 combine a large number of short cMD simulations to predict ligand binding kinetic rates. 

For example, Weighted Ensemble20b of a total of 29 μs cMD was able to accurately predict the 

dissociation rate of BEN from the L99A T4L as 1000s-1, being highly consistent with the 

experimental value of 950±200s-1. One MSM8 built on a total of  69 μs cMD simulations predicted 

the values of kon and koff  at 21±91x106  M-1s-1 and 311±130 s-1, being in reasonable agreement with 



experiment values of 0.8±1x106M-1s-1 and 950±20 s-1, respectively. However, these calculations 

required very expensive computational resources.  

GaMD was developed to provide both unconstrained enhanced sampling and free energy 

calculations of large biomolecules18.  It works by applying a harmonic boost potential to reduce 

system energy barriers. The boost potential normally exhibits a near Gaussian distribution, which 

enables proper reweighting of the free energy profiles through cumulant expansion to the second 

order18. Ligand GaMD (LiGaMD)23 has recently been developed to allow for more efficient 

sampling of ligand dissociation and rebinding processes, being able to accurately predict ligand  

binding thermodynamics and kinetics. In LiGaMD, one selective boost was applied to the ligand 

non-bonded interaction potential energy to accelerate ligand dissociation. Another boost was 

applied on the remaining potential to facilitate ligand rebinding. Recently, an increasing number 

of studies suggested that the flexibility of proteins, particularly those with closed pockets, played 

an important role in ligand binding8, 24. Protein structural flexibility allows the opening, closing, 

and adaptation of the binding pocket, which are critical for ligand binding to protein8, 25. 

Additionally, enhanced sampling of the protein binding pocket has proven to significantly improve 

the efficiency and accuracy of simulating protein-ligand interaction14d, 26. Wang et al.26 proposed 

FEP/REST to improve the accuracy of ligand binding free energy calculation, which combined the 

free energy perturbation (FEP) and replica exchange with solute tempering (REST) to enhance 

sampling of protein residues in the binding site. FEP/REST was demonstrated to achieve much 

quicker simulation convergence and more accurate binding free energy calculations. Sugita et al.14d 

developed the generalized replica exchange with solute tempering (gREST) to simulate small 

molecule binding to the L99A T4L. By enhanced sampling of ligand and protein residues in the 

binding site, the gREST simulations successfully captured ligand binding to the L99A T4L in a 



total of 2.4 μs simulations. The obtained free energy profiles of binders (BEN, ethylbenzene, and 

n-hexylbenzene) were distinct from those of nonbinders (phenol and benzaldehyde). Another 

study25a from the same group combined the gREST with the replica exchange umbrella sampling 

(gREST/REUS) to capture the binding of compound PP1 to its target Src kinase. The 

gREST/REUS simulations25a could capture multiple ligand binding and unbinding events.  

Built on our previously developed LiGaMD, here we developed a novel approach termed 

LiGaMD2, in which a selective boost was added to both the ligand and protein pocket residues to 

accelerate ligand dissociation and binding. Various T4L mutants bound by BEN and indole (IND) 

with open and closed pockets were chosen as testing systems. The T4L mutants with small 

hydrophobic cavities that can accommodate different ligands have been widely used as model 

systems for benchmarking computational methods27. Microsecond LiGaMD2 simulations could 

capture repetitive ligand binding and unbinding processes in all the simulated T4L systems. 

LiGaMD2 thus enabled highly efficient and accurate prediction of ligand binding thermodynamics 

and kinetics. Simulation predictions agreed well with experimental binding free energy and kinetic 

rates. Since the chosen systems included different ligands and protein mutants with distinct binding 

pockets, the simulations validated the robustness of LiGaMD2. Furthermore, multiple ligand 

binding and dissociation pathways were identified by LiGaMD2 simulations, being highly 

consistent with published simulation results8, 15a, 20b, 28. 

 

Methods 

LiGaMD2: Selectively boosting both the ligand and protein pocket 



LiGaMD is an enhanced sampling technique for characterizing ligand binding thermodynamics 

and kinetics. It works by adding a selective harmonic boost potential to the non-bonded ligand 

interaction potential energy. Detail of the LiGaMD method has been described in our previous 

study29. Here, we briefly describe the algorithm for further development of the LiGaMD2 method. 

We consider a system of ligand L binding to a protein P in a biological environment E. The 

system comprises of N atoms with their coordinates 𝑟 ≡ {𝑟!, ⋯ , 𝑟"}	 and momenta 𝑝 ≡

{𝑝!, ⋯ , 𝑝"}	. The system Hamiltonian can be expressed as: 

                                                     𝐻(𝑟, 𝑝) = 𝐾(𝑝) + 𝑉(𝑟),                                            (1) 

where 𝐾(𝑝) and 𝑉(𝑟) are the system kinetic and total potential energies, respectively. The protein 

P could be further divided into two parts: residues in the binding pocket (Pb) and other parts (Po). 

We decompose the potential energy into the following terms: 

𝑉(𝑟) = 𝑉#$,$(𝑟#$) + 𝑉#&,$(𝑟#&) + 𝑉#$#&,$(𝑟#$#&) + 𝑉',$(𝑟') + 𝑉(,$(𝑟() 

+	𝑉#$#$,)$(𝑟#$) +	𝑉#&#&,)$(𝑟#&)+𝑉'',)$(𝑟') + 𝑉((,)$(𝑟() 

																																			+	𝑉#$',)$(𝑟#$') + 𝑉#$(,)$(𝑟#$() + 𝑉#$#&,)$(𝑟#$#&) 

																																			+𝑉#&',)$(𝑟#&') + 𝑉#&(,)$(𝑟#&() + 𝑉'(,)$(𝑟'()	                              (2) 

where 𝑉#$,$,	𝑉#&,$,  𝑉',$ and 𝑉(,$ are the bonded potential energies in the binding pocket of protein 

Pb, the remaining atoms of protein Po,  ligand L and environment E, respectively.	𝑉#$#&,$(𝑟#$#&) 

is the bonded potential energies involving atoms between the protein binding pocket and the other 

parts. 𝑉#$#$,)$ , 	𝑉#&#&,)$ , 𝑉'',)$  and 𝑉((,)$  are the self non-bonded potential energies in the 

protein binding pocket Pb, the remaining atoms of protein Po, ligand L and environment E, 

respectively. 𝑉#$#&,)$(𝑟#$#&),  𝑉#$',)$(𝑟#$') , 	𝑉#$(,)$(𝑟#$(), 𝑉#&',)$(𝑟#&'), 	𝑉#&(,)$(𝑟#&()  and 



𝑉'(,)$ are the non-bonded interaction energies between Pb-Po, Pb-L, Pb-E, Po-L, Po-E and L-E, 

respectively. According to classical molecular mechanics force fields30, the non-bonded potential 

energies are usually calculated as: 

                                                     𝑉)$ = 𝑉*+*, + 𝑉-./,                                                    (3) 

where 𝑉*+*,  and 𝑉-./  are the system electrostatic and van der Waals potential energies. The 

bonded potential energies are usually calculated as 

                                                     𝑉$ = 𝑉$&). + 𝑉0)1+* + 𝑉.23*.40+                                (4) 

where	𝑉$&)., 𝑉0)1+* 	and  𝑉.23*.40+ are the system bond, angle and dihedral potential energies. As 

mentioned above, flexibility of the protein pocket often plays a critical role in ligand binding. 

Therefore, the ligand essential potential energy in the LiGaMD2 is defined as 

							𝑉'(𝑟) = 𝑉',5(𝑟') + 𝑉#$,5(𝑟#$) + 𝑉'',)$(𝑟') + 𝑉#$,65(𝑟#$) + 𝑉#$',65(𝑟#$') + 𝑉#&',65(𝑟#&') +

																									𝑉'(,65(𝑟'() + 𝑉#$#&,65(𝑟#$#&) +	𝑉#$(,)$(𝑟#$()                                           (5) 

In the Pd-GaMD, we add boost potential selectively to the ligand essential potential energy 

according to the GaMD algorithm: 

                                      ∆𝑉'(𝑟) = 2
!
7
𝑘'4𝐸' − 𝑉'(𝑟)7

7, 𝑉'(𝑟) < 𝐸'
0, 𝑉'(𝑟) ≥ 𝐸' ,

                             (6) 

where EL is the threshold energy for applying boost potential and kL is the harmonic constant. The 

LiGaMD2 simulation parameters are derived similarly as in the previous LiGaMD. When E is set 

to the lower bound as the system maximum potential energy (E=Vmax), the effective harmonic 

force constant	𝑘8 can be calculated as: 



 																																									𝑘8 = min(1.0, 𝑘89 ) = min	(1.0, :!
:"

;#$%<;#&'
;#$%<;$()

),                          (7) 

where 𝑉=0>, 𝑉=2), 𝑉0-1 and 𝜎; are the maximum, minimum, average and standard deviation of the 

boosted system potential energy, and 𝜎8 is the user-specified upper limit of the standard deviation 

of ∆𝑉  (e.g., 10kBT) for proper reweighting. The harmonic constant is calculated as 𝑘 = 𝑘8 ∙

!
;#$%<;#&'

  with 0 < 𝑘8 ≤ 1 . Alternatively, when the threshold energy E is set to its upper bound 

	𝐸 = 𝑉=2) +
!
?
, 	𝑘8 is set to: 

                                                  𝑘8 = 𝑘8" ≡ (1 − :!
:"
) ;#$%<;#&'
;$()<;#&'

 ,                                   (8) 

if 𝑘8"  is found to be between 0 and 1. Otherwise, 	𝑘8 is calculated using Eqn. (7). 

In addition to selectively boosting the ligand and surrounding protein residues in the 

binding site, another boost potential is applied on the protein and solvent to enhance 

conformational sampling of the protein and facilitate ligand rebinding. The second boost potential 

is calculated using the total system potential energy other than the ligand essential potential energy 

as:  

   ∆𝑉A(𝑟) = 2
!
7
𝑘A4𝐸A − 𝑉A(𝑟)7

7, 𝑉A(𝑟) < 𝐸A
0, 𝑉A(𝑟) ≥ 𝐸A

                  (9) 

Where VD is the total system potential energy other than the ligand essential potential energy, ED 

is the corresponding threshold energy for applying the second boost potential and kD is the 

harmonic constant. This leads to dual-boost LiGaMD2 with the total boost potential ∆𝑉(𝑟) =

∆𝑉'(𝑟) + ∆𝑉A(𝑟).  

Energetic Reweighting of LiGaMD2 



To calculate potential of mean force (PMF)31 from LiGaMD2 simulations, the probability 

distribution along a reaction coordinate is written as 𝑝∗(𝐴). Given the boost potential ∆𝑉(𝑟)
 
of 

each frame, 𝑝∗(𝐴) can be reweighted to recover the canonical ensemble distribution, 𝑝(𝐴), as: 

 𝑝4𝐴C7 = 𝑝∗4𝐴C7
〈**∆"(-..⃑ )〉1

∑ 〈G∗(I&)**∆"(-..⃑ )〉&3
&45

, 𝑗 = 1,… ,𝑀,  (10) 

where M is the number of bins, 𝛽 = 𝑘K𝑇 and 〈𝑒L∆;(4⃑)〉C  
is the ensemble-averaged Boltzmann 

factor of ∆𝑉(𝑟) for simulation frames found in the jth bin. The ensemble-averaged reweighting 

factor can be approximated using cumulant expansion: 

 〈𝑒L∆;(4⃑)〉 = 𝑒𝑥𝑝 M∑ L6

?!
𝐶?P

?Q! P, (11) 

where the first two cumulants are given by 

 
𝐶! = 〈∆𝑉〉,

𝐶7 = 〈∆𝑉7〉 − 〈∆𝑉〉7 = 𝜎-7.
 (12) 

The boost potential obtained from LiGaMD2 simulations usually follows near-Gaussian 

distribution. Cumulant expansion to the second order thus provides a good approximation for 

computing the reweighting factor18b, 32. The reweighted free energy 𝐹(𝐴) = −𝑘K𝑇	ln	𝑝(𝐴)  is 

calculated as: 

 𝐹(𝐴) = 𝐹∗(𝐴) − ∑ L6

?!
𝐶?7

?Q! + 𝐹,,   (13) 

where 𝐹∗(𝐴) = −𝑘K𝑇	ln	𝑝∗(𝐴) is the modified free energy obtained from LiGaMD2 simulation 

and 𝐹, is a constant. 



Ligand binding free energy calculations from 3D potential of mean force 

We calculate ligand binding free energy from 3D potential of mean force (PMF) of ligand 

displacements from the target protein as the following33: 

 ∆𝐺8 = −∆𝑊RA − 𝑅𝑇𝐿𝑛
;7
;!
 , (14) 

where 𝑉8 is the standard volume, 𝑉$ = ∫ 𝑒<L/(4)
$ 𝑑𝑟 is the average sampled bound volume of the 

ligand with 𝛽 = 1/𝑘K𝑇, 𝑘K is the Boltzmann constant, T is the temperature, and ∆𝑊RA is the depth 

of the 3D PMF. ∆𝑊RA can be calculated by integrating Boltzmann distribution of the 3D PMF 

𝑊(𝑟) over all system coordinates except the x, y, z of the ligand: 

 ∆𝑊RA = −𝑅𝑇𝐿𝑛 ∫ *8*9(-).4:

∫ .4:

 , (15) 

where 𝑉T = ∫ 𝑑𝑟T  is the sampled unbound volume of the ligand. The exact definitions of the 

bound and unbound volumes 𝑉$  and 𝑉T  are not important as the exponential average cut off 

contributions far away from the PMF minima33b. A python script “PyReweighting-3D.py” in the 

PyReweighting tool kit (http://miao.compbio.ku.edu/PyReweighting/)34 was applied for 

reweighting LiGaMD2 simulations to calculate the 3D reweighted PMF and associated ligand 

binding free energies.  

Ligand binding kinetics obtained from reweighting of LiGaMD2 Simulations 

Reweighting of ligand binding kinetics from LiGaMD2 simulations followed a similar protocol 

using Kramers’ rate theory that has been recently implemented in kinetics reweighting of the 

GaMD35, LiGaMD34b, Pep-GaMD29 and PPI-GaMD36 simulations. Provided sufficient sampling 

of repetitive ligand dissociation and binding in the simulations, we record the time periods and 



calculate their averages for the ligand found in the bound (tB) and unbound (𝜏U) states from the 

simulation trajectories. The 𝜏K corresponds to residence time in drug design37. Then the ligand 

dissociation and binding rate constants (koff and kon) were calculated as: 

 𝑘&VV =
!
W;
.  (16) 

 𝑘&) =
!

W<∙[']
,  (17) 

where [L] is the ligand concentration in the simulation system. 

According to Kramers’ rate theory, the rate of a chemical reaction in the large viscosity 

limit is calculated as35: 

 𝑘[ ≅
\#\7
7]^

𝑒<_` ?;a⁄ ,  (18) 

where 𝑤= and 𝑤$ are frequencies of the approximated harmonic oscillators (also referred to as 

curvatures of free energy surface38) near the energy minimum and barrier, respectively, 𝜉 is the 

frictional rate constant and Δ𝐹 is the free energy barrier of transition. The friction constant 𝜉 is 

related to the diffusion coefficient D with 𝜉 = 𝑘K𝑇/𝐷. The apparent diffusion coefficient D can 

be obtained by dividing the kinetic rate calculated directly using the transition time series collected 

directly from simulations by that using the probability density solution of the Smoluchowski 

equation39. In order to reweight ligand kinetics from the LiGaMD2 simulations using the Kramers’ 

rate theory, the free energy barriers of ligand binding and dissociation are calculated from the 

original (reweighted, ∆F) and modified (no reweighting, ∆F*) PMF profiles, similarly for 

curvatures of the reweighed (w) and modified (𝑤∗, no reweighting) PMF profiles near the ligand 

bound (“B”) and unbound (“U”) low-energy wells and the energy barrier (“Br”), and the ratio of 

apparent diffusion coefficients from simulations without reweighting (modified, 𝐷∗) and with 



reweighting (D). The resulting numbers are then plugged into Eq. (17) to estimate accelerations of 

the ligand binding and dissociation rates during LiGaMD2 simulations35, which allows us to 

recover the original kinetic rate constants. 

System Setup 

The complex structures of benzene (BEN) bound to the L99A T4L, M102A T4L and F104A T4L 

were obtained from the 3HH440, 220L41  and 227L41 PDB files, respectively. The crystal structure 

of indole (IND) bound to the L99A T4L was obtained from the 185L42 PDB file. The AMBER 

ff14SB force field43  was used for the protein and the GAFF force field44  for the ligand with AM1-

BCC charges.  Each system was solvated in a periodic box of TIP3P water molecules with a 

distance of 18 Å from the solute to the box edge using tleap. Therefore, the ligand concentration 

was 0.0034 M in the simulation system. Appropriate number of Cl- ions were added to achieve 

system neutrality.  

Simulation Protocol 

Each system was energy minimized and gradually heated to 300 K in 1 ns with the Langevin 

thermostat and harmonic restraints of 50 kcal/mol/Å2 on all non-hydrogen atoms of the protein 

and the ligand using the AMBER22 software45. The simulation system was firstly energy 

minimized with 1.0 kcal/mol/Å2 constraints on the heavy atoms of the proteins, including the 

steepest descent minimization for 50,000 steps and conjugate gradient minimization for 50,000 

steps. The system was then heated from 0 K to 300 K for 200 ps. It was further equilibrated using 

the NVT ensemble at 300 for 200 ps and the NPT ensemble at 300 K and 1 bar for 1 ns with 1 

kcal/mol/Å2 constraints on the heavy atoms of the protein, followed by 2 ns short cMD without 

any constraint. The LiGaMD2 simulations proceeded with 14 ns short cMD to collect the potential 



statistics, 49.2 ns LiGaMD2 equilibration after adding the boost potential and then three 

independent 1,000 ns production runs. It provided more powerful sampling to set the threshold 

energy for applying the boost potential to the upper bound (i.e., E = Vmin+1/k) in our previous study 

ligand dissociation and binding using LiGaMD29. Therefore, the threshold energy for applying the 

ligand essential potential was also set to the upper bound in the LiGaMD2 simulations. The 

selective boost potential was applied to both the ligand and protein pocket residues within 5Å of 

ligand in the LiGaMD2 simulations. For the second boost potential applied on the system total 

potential energy other than the ligand essential potential energy, sufficient acceleration was 

obtained by setting the threshold energy to the lower bound. In order to observe ligand dissociation 

during LiGaMD2 equilibration while keeping the boost potential as low as possible for accurate 

energetic reweighting, the (σ0P, σ0D) parameters were finally set to (9.0 kcal/mol, 6.0 kcal/mol), 

(7.0 kcal/mol, 6.0 kcal/mol), (9.0 kcal/mol, 6.0 kcal/mol) and (9.0 kcal/mol, 6.0 kcal/mol) for the 

LiGaMD2 simulations of the BEN bound to the L99A T4L (T4L:L99A-BEN), F104A T4L 

(T4L:F104A-BEN), M102A T4L (T4L:M102A-BEN) and IND bound to the L99A T4L 

(T4L:L99A-IND).  LiGaMD2 production simulation frames were saved every 0.4 ps for analysis. 

Simulation Analysis 

The VMD46 and CPPTRAJ47 tools were used for simulation analysis. The number of ligand 

dissociation and binding events (ND and NB) and the ligand binding and unbinding time periods 

(tB and tU) were recorded from individual simulations (Tables 1 &S1). With high fluctuations, tB 

and tU were recorded for only the time periods longer than 1 ns. The 1D, 2D and 3D PMF profiles, 

as well as the ligand binding free energy, were calculated through energetic reweighting of the 

LiGaMD2 simulations. The center-of-mass distance between the ligand and the protein pocket 

(defined by protein residues within 5 Å of ligand) and ligand heavy atom RMSDs relative to X-



ray structures with the protein aligned were chosen as the reaction coordinate for calculating the 

1D PMF profiles. The bin size was set to 1.0 Å. The software trj_cavity48 implemented in 

GROMACS was used to calculate the pocket volume. 2D PMF profiles of the ligand RMSD and 

pocket volume were calculated to analyze conformational changes of the protein upon ligand 

binding. The bin size was set to 50 Å3 for pocket volume. The cutoff for the number of simulation 

frames in one bin was set to 500 for reweighting 1D and 2D PMF profiles. The 3D PMF profiles 

of ligand displacements from the T4L mutants in the X, Y and Z directions were further calculated 

from the LiGaMD2 simulations. The bin sizes were set to 1 Å in the X, Y and Z directions. The 

cutoff of simulation frames in one bin for 3D PMF reweighting (ranging from 100-400 for three 

individual LiGaMD2 simulations) was set to the minimum number below which the calculated 3D 

PMF minimum will be shifted. The ligand binding free energies (DG) were calculated using the 

reweighted 3D PMF profiles and binding kinetic rates by ∆𝐺 = −RTLn)𝑘!""/𝑘!#,, respectively. The 

ligand dissociation and binding rate constants (kon and koff) were calculated from the LiGaMD2 

simulations with their accelerations analyzed using the Kramers’ rate theory (Table S2). 

 

Results 

Flexibity of the protein pocket plays an important role in dissociation of buried ligands  

The ligand binding pockets are different in the L99A and F104A mutants of T4 lysozyme (T4L). 

The binding pocket in L99A T4L is deeply buried (Fig. 1A), while the pocket is exposed to the 

solvent in the F104A mutant (Fig. 1D). LiGaMD and LiGaMD2 testing simulations with 𝜎8# 

increasing from 6.0 to 10.0 kcal/mol and 𝜎8A at 6.0 kca/mol were performed on these two systems. 

Ligand dissociation was captured in both LiGaMD and LiGaMD2 simulations of benzene (BEN) 



binding in the F104A mutant with an exposed binding pocket (Fig. 1E& 1F).  With LiGaMD, the 

ligand dissociated from the F104A T4L at 5.45 ns, 7.20 ns, 18.22 ns and 7.80 ns with the 𝜎8#	values 

of 6.0, 7.0, 8.0 and 9.0 kcal/mol, respectively. Interestingly, LiGaMD with the 𝜎8# value at 9.0 

could capture both the ligand dissociation and rebinding within the 49.2 ns equilibration simulation. 

LiGaMD2 captured the ligand dissociation at 3.60 ns, 11.20 ns, 4.50 ns and 29.60 ns with the 𝜎8# 

value of 6.0, 7.0, 8.0 and 9.0 kcal/mol, respectively.  The LiGaMD2 with the 𝜎8# values of 7.0 and 

8.0 kcal/mol could capture the ligand dissociation and rebinding within the 49.2 ns equilibration 

simulation.  

    For the L99A T4L with a buried protein pocket, the LiGaMD could not capture ligand 

dissociation even with the value of 𝜎8# increased to 10.0 kcal/mol (Fig. 1B). In comparison, the 

LiGaMD2 simulations could capture the ligand dissociation and rebinding with the 𝜎8#	values of 

9.0 and 10.0 kcal/mol (Fig. 1B&1C). The ligand dissociated at 12.52 ns and rebound at ~29.50 ns 

in the LiGaMD2 simulation with the 𝜎8# value of 9.0 kcal/mol. In the LiGaMD2 simulation with 

the 𝜎8# value of 10.0 kcal/mol, the ligand dissociation and rebinding occurred at ~23.60 ns and 

~26.80 ns, respectively. 

     Next, we identified correlation of the ligand dissociation and conformational changes of the 

protein pocket in the L99A T4L (Fig. S1). The binding pocket exhibited low RMSD of ~1-2 Å in 

the LiGaMD simulations with all the tested parameters as no selective boost potential was applied 

to the protein pocket (Fig. S1A). In comparison, RMSD of the binding pocket significantly 

increased in the LiGaMD2 simulations with the 𝜎8# values of 9.0 and 10.0 kcal/mol, respectively 

(Fig. S1B). As the 𝜎8#  value of 9.0 kcal/mol was the lowest value that enabled the ligand 

dissociation and rebinding, we further focused on the binding pocket in this simulation. During 

ligand dissociation around 12 ns, RMSD of the binding pocket increased to ~1.7 Å. RMSD of the 



binding pocket decreased to mostly <1.0 Å when the ligand completely dissociated to the solvent. 

The binding pocket RMSD increased to ~2 Å when the ligand rebound to the pocket at ~30 ns (Fig 

S1C). After the ligand bound completely to the protein pocket, RMSD of the binding pocket 

deceased to ~1 Å again. We further calculated volume of the protein pocket during the LiGaMD2 

simulation (Fig S1D). The volume of the protein pocket was overall smaller in the ligand-free (apo) 

state than in the ligand-bound (holo) state (Fig S1D). Similar opening of the binding pocket was 

observed in previous aMD simulation of BEN dissociation from the L99A T4L49. In summary, 

LiGaMD2 showed improved sampling of ligand binding to the buried protein pockets, where 

dynamics of the binding pocket played an important role in the ligand dissociation and rebinding. 

For the system with an open pocket, both LiGaMD and LiGaMD2 worked well.  

Microsecond LiGaMD2 simulations captured repetitive ligand dissociation and rebinding to 

the T4L mutants 

As the 𝜎8#values of  9.0 and 7.0 kcal/mol were the lowest to capture the ligand dissociation and 

rebinding in LiGaMD2 equilibration simulations of the L99A and F104A T4L systems (Figs. 1C 

& 1F), they were used for further three independent 1,000 ns production simulations. Furthermore, 

two more systems with buried binding pockets were added to demonstrate the robustness of 

LiGaMD2, including the M102A T4L bound by BEN and the L99A T4L bound by a different 

ligand indole (IND). In summary, LiGaMD2 simulations were performed on three complexes of 

BEN bound to the L99A T4L (T4L:L99A-BEN), M102A T4L (T4L:M102A-BEN) and F104A 

T4L (T4L:F104A-BEN), and another complex of IND bound to the L99A T4L (T4L:L99A-IND) 

(Figs. 2A-D). Three independent 1,000 ns LiGaMD2 production simulations were performed on 

each of the four systems (Table 1). The LiGaMD2 simulations of the T4L:L99A-BEN system 

recorded an average boost potential of 107.77-109.84 kcal/mol with 9.58-9.67 kcal/mol standard 



deviation. The LiGaMD2 simulations of the T4L:M102A-BEN system recorded an average boost 

potential of 108.04-109.21 kcal/mol with 9.49-10.04 kcal/mol standard deviation. In comparison, 

the average boost potential was 70.45-72.53 kcal/mol with 7.81-8.11 kcal/mol standard deviation 

in the three simulations of the T4L:F104A-BEN. The boost potential applied in simulations of the 

T4L:L99A-IND system was slightly larger than that of the T4L:L99A-BEN system, with average 

of 115.80-118.16 kcal/mol and 9.68-9.79 kcal/mol standard deviation (Table 1).  

    RMSDs of the ligand relative to the X-ray structures with the T4L aligned were calculated (Figs. 

2A-2D) to record the number of ligand dissociation and binding events (ND and NB) in each of the 

1,000 ns LiGaMD2 simulations. With close examination of the ligand binding trajectories, RMSD 

cutoffs of the ligand unbound and bound states were set to >15 Å and <5.0 Å, respectively. Because 

of ligand fluctuations, we recorded only the corresponding binding and dissociation events that 

lasted for more than 1.0 ns. In each simulation of the T4L:L99A-BEN system, about 5-6 binding 

and 5-6 dissociation events were observed (Fig. 2A & Table 1). In each simulation of the 

T4L:F104A-BEN system, about 3-4 dissociation and 3-4 binding events were observed (Fig. 2B 

& Table 1). In each simulation of the T4L:M102A-BEN system, about 3-7 dissociation and 3-7 

binding events were observed (Fig. 2C & Table 1). A similar number of ligand dissociation (3-6) 

and binding (3-7) events were observed in simulations of the T4L:L99A-IND system (Fig. 2D & 

Table 1). In summary, repetitive ligand dissociation and rebinding were successfully captured in 

each of the 1,000 ns LiGaMD2 simulations of various T4L mutants bound by different ligands 

(Figs. 2). 

      Next, we explored the correlation between conformational changes of the binding pocket and 

ligand binding in the LiGaMD2 production simulations. The ligand RMSD and volume of the 

binding pocket were used as reaction coordinates to calculate 2D PMF (Fig. 3). Five low-energy 



states were identified in the 2D PMF profile of the T4L:L99A-BEN system including the Bound 

(“B”), Intermediate (“I”), Unbound U1 (“U1”), Unbound U2 (“U2”) and Unbound U3 (“U3”) 

states (Fig. 3A). The ligand RMSD and pocket volume in the B, I, U1, U2 and U3 states centered 

around (2.5 Å, 300 Å3), (9.3 Å, 425.7 Å3), (24.5 Å, 259.9 Å3), (34.8 Å, 360.3 Å3), and (41.6 Å, 

251.9 Å3), respectively (Fig 3A). In the T4L:F104A-BEN system, three low-energy states were 

identified, including the Bound (“B”), Intermediate (“I”) and Unbound (“U”) states (Fig. 3B). The 

ligand RMSD and the pocket volume in the B, I and U centered around (3.8 Å, 176.80 Å3), (11.6 

Å, 59.6 Å3) and (35.0 Å, 54.7 Å3), respectively (Fig. 3B). In the T4L:M102A-BEN system, five 

low-energy states were identified including the Bound (“B”), Intermediate (“I”), Intermediate 

(“I2”), Unbound (“U1”) and Unbound (“U2”) states (Fig. 3C). The ligand RMSD and pocket 

volume in the B, I, I2, U1 and U2 states centered around (2.7 Å, 219.7 Å3), (10.7 Å, 356.5 Å3), 

(11.0 Å, 113.4 Å3), (32.9 Å, 258.8 Å3), and (37.8 Å, 132.9 Å3), respectively (Fig 3C). In the 

T4L:L99A-IND system, four low-energy states were identified including the Bound (“B”), 

Intermediate (“I”), Intermediate (“I2”) and Unbound (“U”) states (Fig. 3D). The ligand RMSD 

and pocket volume in the B, I, I2, and U states centered around (1.9 Å, 363.2 Å3), (5.0 Å, 468.8 

Å3), (11.5 Å, 357.4 Å3), and (28.8 Å, 155.4 Å3), respectively (Fig 3D). In compared with the bound 

state, a larger binding pocket volume was identified in the intermediate I state in the systems with 

an burred protein pocket including the T4L:L99A-BEN, T4L:M102A-BEN and T4L:L99A-IND 

(Figs. 3A, 3B & 3D). In contrast, the binding pocket volume was significantly smaller in the 

intermediate I state in the T4L:F104A-BEN with an exposed binding pocket (Fig. 3B). The 

representative intermediate conformational states from the four systems were shown in Fig. 3E-

3H. Compared to the bound X-ray structures, helices C and G in the intermediate “I” state moved 

outward in the T4L:L99A-BEN system, leading to opening of the binding pocket (Fig. 3E). In the 



T4L:F104A-BEN system, major conformational changes upon ligand binding involved helices C 

and B, which moved inwards and reduced volume of the binding pocket (Fig. 3F). In the 

T4L:M102A-BEN system, helices D, F and G moved outwards in the intermediate “I” state with 

opening of the ligand binding pocket, accompanied by inward movement of helix C (Fig. 3G). In 

the T4L:L99A-IND system, outward movements were observed in helices C, D and G in the 

intermediate I state (Fig. 3H).  Therefore, conformational changes of the protein pocket greatly 

facilitated the ligand dissociation and binding in the L99A and M104A systems with a buried 

binding pocket. 

 Ligand binding kinetic rates and free energies calculated from LiGaMD2 agreed well with 

experimental data 

LiGaMD2 simulations that successfully captured repetitive ligand binding and dissociation 

allowed us to calculate the ligand binding kinetic rate constants. We recorded the time periods for 

the ligand found in the bound (tB) and unbound (tU) states throughout the LiGaMD2 simulations. 

Without reweighting, the ligand binding rate constants (kon*)  were calculated directly from the 

LiGaMD2 trajectories as 8.22 ± 5.48´107 M-1×s-1 , 7.79±1.36 ´ 106 M-1×s-1, 6.81±1.27´107 M-1×s-1 

and 1.67±0.67´109 M-1×s-1 in the system of T4L:L99A-BEN, T4L:M102A-BEN, T4L:F104A-

BEN and T4L:L99A-IND systems, respectively (Table 2). The accelerated dissociation rate 

constants (koff*) were calculated as 3.47 ± 2.31´105 s-1, 3.46 ±1.81´109 s-1, 1.72±1.44´109 s-1 and 

2.49±1.25´107 s-1 in the T4L:L99A-BEN, T4L:M102A-BEN, T4L:F104A-BEN and T4L:L99A-

IND systems, respectively (Table 2). 

    Next, we reweighted the LiGaMD2 simulations of ligand-T4L mutants to calculate acceleration 

factors of ligand binding and dissociation processes (Table S1) and recovered the original kinetic 



rate constants using the Kramers’ rate theory (Table 2). The dissociation free energy barrier (∆Foff) 

significantly decreased from 10.5±0.86, 9.00±1.07, 8.55±0.54, and 7.11±0.34 kcal/mol in the 

reweighted PMF profiles to 2.55±0.43, 2.35±0.34, 2.36±0.35 and 2.23±0.26 kcal/mol in the 

modified PMF profiles for the system of T4L:L99A-BEN, T4L:M102A-BEN, T4L:F104A-BEN 

and T4L:L99A-IND, respectively, respectively (Table S1 and Fig. S2). The free energy barrier 

for ligand binding (∆Fon) slightly decreased from 4.93±1.38, 6.03±0.11, 5.40±1.07, 4.37±0.33 

kcal/mol in the reweighted profiles to 0.57±0.14, 1.15±0.50, 0.54±0.053, 0.53±0.10 kcal/mol in 

the modified PMF profiles for the system of T4L:L99A-BEN, T4L:M102A-BEN, T4L:F104A-

BEN and T4L:L99A-IND, respectively (Table S1 and Fig. S2). Curvatures of the reweighed (w) 

and modified (𝑤∗, no reweighting) free energy profiles were calculated near the ligand Bound 

(“B”) and Unbound (“U”) low-energy wells and the energy barrier (“Br”), as well as the ratio of 

apparent diffusion coefficients calculated from LiGaMD2 simulations with reweighting (D) and 

without reweighting (modified, 𝐷∗) (Table S1). According to the Kramers’ rate theory, the ligand 

association was accelerated by 11.07, 0.81, 0.02 and 558.5 times for the systems of T4L:L99A-

BEN, T4L:M102A-BEN, T4L:F104A-BEN and T4L:L99A-IND, respectively. The ligand 

dissociation was significantly accelerated by 2.40´102, 1.72´106, 1.24´103 and 7.13´103 times in 

the T4L:L99A-BEN, T4L:M102A-BEN, T4L:F104A-BEN and T4L:L99A-IND systems, 

respectively. Therefore, the reweighted kon in the T4L:L99A-BEN, T4L:M102A-BEN, 

T4L:F104A-BEN and T4L:L99A-IND systems were calculated as 7.42±4.81×106,  9.57±6.29×106, 

3.16±2.29×109 and 2.99±2.87×106 M-1×s-1, being highly consistent with the corresponding 

experimental values50 of 0.8-1.0×106, 3.0-5.0×106, >10×106  and 0.7-1.0×106 M-1×s-1, respectively 

(Table 2). The reweighted koff in the T4L:L99A-BEN, T4L:M102A-BEN, T4L:F104A-BEN and 

T4L:L99A-IND systems were calculated as 1441±883, 2011±1606, 1.38±0.67×106 and 3494±559 



s-1, in good agreement with the corresponding experimental values50 of 950, 3000, >10000 and 

325 s-1, respectively.   

Based on the ligand binding kinetic rates (kon and koff), we calculated the ligand binding free 

energies as ∆𝐺 = −RTLn)𝑘!""/𝑘!#,. The resulting binding free energies in the T4L:L99A-BEN, 

T4L:M102A-BEN, T4L:F104A-BEN and T4L:L99A-IND systems (Table 1) were -5.17±0.72 

kcal/mol, -5.01±0.73 kcal/mol, -3.42±0.72 kcal/mol and -4.87±1.06 kcal/mol, being highly 

consistent with the corresponding experimental values of -4.12 kcal/mol, -4.18 kcal/mol, -4.02 

kcal/mol and -4.82 kcal/mol, respectively. The root-mean square error (RMSE) of binding free 

energy was only 0.73 kcal/mol. Alternatively, we could calculate the ligand binding free energy 

using the 3D reweighted PMF profiles of the ligand displacement from the T4L binding pocket in 

the X, Y and Z directions (Table 1). The ligand binding free energies in the T4L:L99A-BEN, 

T4L:M102A-BEN, T4L:F104A-BEN and T4L:L99A-IND systems (Table 1) were estimated as -

5.88±0.61 kcal/mol, -6.43±0.70 kcal/mol, -4.57± 0.12 kcal/mol and -7.40±0.39 kcal/mol, 

respectively. The RMSE of binding free energies predicted from the 3D PMF was greater as 1.94 

kcal/mol, but still within the acceptable range of binding free energy predictions (2.0 kcal/mol)51. 

Therefore, both efficient conformational sampling and accurate ligand binding thermodynamic 

and kinetic calculations were achieved through the LiGaMD2 simulations. 

Multiple ligand binding and dissociation pathways were identified from LiGaMD2 

simulations 

We closely examined the LiGaMD2 trajectories to explore ligand binding and dissociation 

pathways. For dissociation of BEN from the T4L:L99A, four pathways between the CD, CF, DG 

and FGH helices were identified (Fig. 4). All these pathways were involved in the BEN rebinding 

to the T4L:L99A. One extra binding pathway of HG was found in the BEN binding to the 



T4L:L99A. LiGaMD2 captured 5, 3, 6 and 3 times of BEN dissociation events through pathways 

of CD, CF, DG and FGH, respectively (Fig 4). The BEN rebinding events through pathways of 

CD, CF, DG, FGH and HG were 3, 2, 3, 6 and 2, respectively. The same ligand dissociation 

pathways of CD, CF, DG and FGH were identified in the LiGaMD2 simulations of T4L:M102A-

BEN and T4L:L99A-IND systems (Fig. 4). Two pathways of DG and FGH were observed in the 

simulations of BEN binding to the T4L:M102A. The ligand dissociation events in T4L:M102A 

system along pathways of CD, CF, DG and FGH were 1, 2, 1 and 12, respectively (Fig 4). The 

ligand rebinding events in the T4L:M102A-BEN through pathways of DG and FGH were 2 and 

11, respectively. For dissociation of BEN from the T4L:F104A, two pathways near the A and C 

helices were identified. The dissociation events in the T4L:F104A-BEN were 8 and 1 via pathways 

A and C, respectively (Fig. 4). Pathway C was observed in BEN binding to the F104A T4L mutant 

(Fig. 4). For the dissociation of IND from the T4L:L99A, four pathways between the CD, CF, DG 

and FGH helices were identified. While only pathways CF and FGH were observed in the 

rebinding of IND to the L99A T4L mutant. The dissociating event via pathways CD, CF, DG and 

FGH in the T4L:L99A-IND system were 3, 3, 5, and 3, respectively. The IND binding events via 

pathways CF and FGH were 3 and 9, respectively (Fig. 4).  The binding and dissociating pathways 

were consistent with earlier simulation findings using Metadynamics28, 52, Weighted Ensemble20b, 

Machine Learning53, tRAMD15a and aMD49 simulations. In summary, multiple ligand binding and 

dissociation pathways were observed in the LiGaMD2 simulations of the T4L mutants. The ligand 

binding and dissociation mostly followed the same pathways.  

 



Discussions 

We have presented LiGaMD2 that improved enhanced sampling and accurate prediction 

of protein-ligand binding thermodynamics and kinetics for especially proteins with closed binding 

pockets. LiGaMD2 works by selectively boosting the potential of both ligand and protein residues 

in the binding pocket. LiGaMD2 shows significantly improved sampling of systems with buried 

binding pockets, where flexibility of the binding pocket plays a critical role in ligand binding. 

Microsecond LiGaMD2 simulations have allowed us to capture repetitive ligand dissociation and 

rebinding processes as demonstrated on four T4L mutant model systems. These simulations then 

enabled accurate predictions of ligand binding free energies and kinetic rate constants.  

LiGaMD2 simulations revealed the critical role of protein flexibility for ligand binding, 

especially in the case of solvent-inaccessible buried pockets, in good agreement with previous 

experimental52a, 54 and computational studies14d, 20b, 49. Protein flexibility has been recognized as 

one of the main factors that regulates protein-ligand binding kinetics25c-e. The influence of protein 

flexibility on ligand binding site can vary from small changes like opening or closing of an existing 

pocket to the formation of a new pocket25e. For example, the MSM8 built with 60 μs cMD 

simulations revealed that the movement of helix D/G/H/J could transiently open a channel for 

ligand binding to the target site of the L99A T4L. Such movement of helix D/G/H were also 

observed in the intermediate states in the LiGaMD2 simulations (Fig. 3). Additionally, multiple 

ligand binding and dissociation pathways were identified from LiGaMD2 simulations (Fig. 4), 

being highly consistent with previous enhanced sampling simulations, including the RAMD15a,  

aMD49, Metadynamics28, MSM8 and Weighted Ensemble20b. For example, the dissociation 

pathway FGH with highest probability observed in LiGaMD2 was also captured in the simulations 

of RAMD15a, Metadynamics28,  aMD49, MSM8 and Weighted Ensemble20b.  



Compared with the cMD55, Metadynamics56, Weighted Ensemble,57 MSM8 and Replica 

Exchange MD simulations25a, LiGaMD2 provides an efficient and/or easier-to-use approach to 

simulation of ligand binding and dissociation and calculations of ligand binding thermodynamics 

and kinetics. It is advantageous over previous LiGaMD for proteins with buried binding pockets. 

Microsecond cMD simulations were able to capture benzene binding to the L99A T4L8. However, 

slower ligand dissociation was still beyond the accessibility of cMD. Weighted Ensemble20b and 

MSM were able to accurately predict ligand binding kinetics8. However, tens of microsecond cMD 

simulations were needed for the Weighted Ensemble20b and MSM8.  For the Replica Exchange 

method58, a large number of replica simulations were often needed to model protein-ligand binding. 

In the case of gREST simulations14d,  eight replicas were needed to capture ligand binding to the 

L99A T4L. With carefully designed CV, Metadynamics could capture both ligand binding and 

unbinding with high efficiency. However, the predefined CVs could potentially lead to certain 

constraints on the ligand binding pathways and conformational space. Such simulations could also 

suffer from the “hidden energy barrier” problem and slow convergence if important CVs were 

missing.59 Overall, the previous methods appeared computationally expensive, requiring mostly 

tens-of-microsecond simulations to characterize ligand binding thermodynamics and kinetics. In 

this context, LiGaMD2 that has allowed us to capture repetitive ligand binding and unbinding 

within microsecond simulations. It provides an improved approach to characterization of ligand 

binding thermodynamics and kinetics, especially for proteins with buried binding pockets.  
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Table 1. Summary of LiGaMD2 simulations performed on ligand binding to the T4L mutants. DV 
is the total boost potential. ND and NB are the number of observed ligand dissociation and binding 
events, respectively. DGsim and DGexp are the ligand-T4L binding free energies obtained from 
LiGaMD2 simulations and experiments, respectively.	∆𝐺$%&'  and ∆𝐺$%&( were calculated with 3D PMF 
and reweighted binding kinetic rates by ∆𝐺 = −RTLn)𝑘!""/𝑘!#,, respectively. 

T4L Ligand ID NB ND ∆V (kcal/mol) 
∆𝐺$%&'   

(kcal/mol) 
∆𝐺$%&(   

(kcal/mol) 
 

∆𝐺)*+  
(kcal/mol) 

L99A BEN 

Sim1 6 6 107.77±9.67 
-5.88±0.61 -5.17±0.72 -4.12 Sim2 6 6 109.84±9.58 

Sim3 5 5 109.63±9.59 

M102A BEN 

Sim1 6 6 108.10±10.04 

-6.43±0.12 -5.01±0.73 -4.18 Sim2 3 3 108.04±9.97 

Sim3 7 7 109.21±9.49 

F104A BEN 

Sim1 4 4 70.96±8.11 

-6.02±0.70 -3.42±0.72 
 

-4.02 Sim2 3 3 72.53±7.84 

Sim3 3 3 70.45±7.81 

L99A IND 

Sim1 6 7 115.80±9.68 

-7.40±0.39 -4.87±1.06 -4.82 Sim2 3 3 118.16±9.79 

Sim3 4 4 116.49±9.71 

 

  



Table 2 Comparison of kinetic rates obtained from experiments and LiGaMD2 simulations for 

ligand binding to T4L mutants. kon and koff are the kinetic dissociation and binding rate constants, 

respectively, from experimental data or LiGaMD2 simulations with reweighting using Kramers’ 

rate theory. kon* and koff* are the accelerated kinetic dissociation and binding rate constants 

calculated directly from LiGaMD2 simulations without reweighting. 

System Method kon (M-1·s-1) koff (s-1) kon* (M-1·s-1) koff*(s-1) 
T4L:L99A-
BEN 

Experiment 0.8-1.0×106 9.50×102 - - 
LiGaMD2 7.42±4.81×106 1.44±0.88×103 8.22±5.48×107 3.47±2.31× 105 

T4L:M102A- 
BEN 

Experiment 3.0-5.0×106 3.00×103   
LiGaMD2 9.57±6.29×106 2.01±1.61×103 7.79±1.36×106 3.46±1.81× 109 

T4L:F104A- 
BEN 

Experiment >10×106 >1.00×104   
LiGaMD2 3.16±2.29×109 1.38±0.67×106 6.81±1.27×107 1.72±1.44× 109 

T4L:L99A- 
IND 

Experiment 0.7-1.0×106 3.25×102   
LiGaMD2 2.99±2.87×106 3.49±0.56×103 1.67±0.67 ×109 2.49±1.25× 107 

 

  



 

Figure 1. Comparison of LiGaMD and LiGaMD2 simulations on the T4L mutant systems with 

buried and open binding pockets: Computational models of benzene binding to the T4L:L99A with 

a burred binding pocket (A) and T4L:F104A with an open binding pocket (D); Time courses of 

ligand root-mean-square deviation (RMSD) in T4L:L99A calculated from 49.2 ns LiGaMD (B) 

and LiGaMD2 (C) equilibration simulations, respectively. Time courses of ligand RMSD in 

F104A T4L calculated from 49.2 ns LiGaMD (E) and LiGaMD2 (F) equilibration simulations, 

respectively.    

 

 

  



 

Figure 2. LiGaMD2 simulations captured repetitive dissociation and binding of two different 
ligands (benzene and indole) to T4L mutants: (A-D) time courses of ligand heavy atom RMSDs 
relative to X-ray structures calculated from three independent 1 μs LiGaMD2 simulations of (A) 
benzene binding to T4L:L99A, (B) benzene binding to T4L:F104A, (C) benzene binding to the 
T4L:M102A and (D) indole binding to the T4L:L99A. (E-H) The corresponding PMF profiles of 
the ligand RMSDs averaged over three LiGaMD2 simulations of (E) benzene binding to 
T4L:L99A, (F) benzene binding to T4L:F104A, (G) benzene binding to the T4L:M102A and (H) 
indole binding to the T4L:L99A. Error bars are standard deviations of the free energy values 
calculated from three LiGaMD2 simulations. 

 

  



 

Figure 3. 2D Free energy profiles and low-energy intermediate conformational states of ligand 
binding to the T4L mutants: (A-D) 2D PMF profiles regarding the ligand heavy atom RMSD and 
the pocket volume in LiGaMD2 simulations of (A) benzene binding to T4L:L99A, (B) benzene 
binding to T4L:F104A, (C) benzene binding to T4L:M102A, (D) indole binding to T4L:F99A. (E-
H) Low-energy “Intermediate” (“I”) conformations (blue) as identified from the 2D PMF profiles 
of (E) benzene binding to T4L:L99A, (F) benzene binding to T4L:F104A, (G) benzene binding to 
T4L:M102A and (H) indole binding to T4L:L99A. X-ray structures of the ligand-bound 
complexes (“Bound”) are shown in green. The ligands are shown in balls and sticks, and the helix 
are shown in cartoon. The helix C, D, F and G are labeled as they show significant changes between 
the “Bound” and “Intermediate” conformational states. 

  



 

Figure 4. Pathways of ligand binding and dissociation in the T4L mutants. (A) Cartoon 
representation of the protein with helices labelled. Binding and dissociation pathways are denoted 
by the arrow lines. Number of binding (B) and dissociation (C) events through the different 
pathways captured by the LiGaMD2 simulations. 
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Table S1 The ligand bound and unbound time periods (tB and tU) recorded from LiGaMD2 
simulations of the ligand-T4L binding system. 

System ID tB (ns) tU (ns) 
L99A-
BEN 

Sim1 85.3,77.3,70.5,21.0,140.4,41.9 42.0,35.3,61.8,70.7,170.6,83.3 
Sim2 212.49,26.2,19.6,13.0,111.2,32.9 218.80,106.3,38.0,64.6,13.2,43.8 
Sim3 113.9,35.5,14.3,94.4,278.2 19.7,136.34,173.3,110.1,25.17 

M102A- 
BEN 

Sim1 12.99,187,6,45.8,26.2 490.7,56.1,156.2,24.2 
Sim2 54.94,36.0,362.6 240.01,281.4,25.5 
Sim3 112.9,419.21,40.9 87.78,240.1,101.1 

F104A- 
BEN 

Sim1 360.7,191.6,64.29,10.5,32.9,17.1 85.2,17.1,26.3,40.5,43.3,101.5 
Sim2 456.4,47.2,18.4 261.1,110.6,96.3 
Sim3 68.17,147.0,57.6,10.5,9.8,45.0,8.9 129.8,35.4,56.6,45.4,108.2,59.2,221.0 

L99A- 
IND 

Sim1 6.84,26.7,14.8,100.8,20.7,9.9 11.85,329.0,127.5,97.8,23.0,41.5,189.9 
Sim2 89.14,151.3,26.7 347.5,88.9,412.3 
Sim3 16.87,81.4,21.0,171.7 284.8,73.9,217.7,122.7 

 
 

Table S2 Energy barriers of ligand dissociation (“off”) and binding (“on”) calculated from the 
reweighed (∆F) and modified (no reweighting, ∆F*) free energy profiles, curvatures of the 
reweighed (w) and modified (𝑤∗) free energy profiles near the ligand Bound (“B”), Barrier (“Br”) 
and Unbound (“U”) states, and the ratio of apparent diffusion coefficients calculated from the 
LiGaMD2 simulations without reweighting (modified, 𝐷∗) and with reweighting (D).  

Sim 
∆F (kcal/mol) ∆F* (kcal/mol) w w* D*/D 

Off On Off On B Br U B Br U Off On 

L99A-BEN 10.5±0.86 4.93±
1.38 

2.55±
0.43 

0.57±0
.14 

9.78±
9.20 

0.95±
0.29 

0.07
±0.0
3 

0.87
±0.8
1 

0.077
±0.03
4 

0.02±
0.001 4.42 17.67 

F104A-BEN 9.00 ± 
1.07 

6.03± 
0.11 

2.35 
± 
0.34 

1.15 ± 
0.50 

22.38
± 

11.42 

2.05± 
0.75 

0.15
± 
0.05 

0.50
± 
0.11 

0.054
± 

0.037 

0.035
± 

0.001
7 

6.16 813.11 

M102A-BEN 8.55 ± 
0.54 

5.40± 
1.07 

2.36 
± 
0.35 

0.54 ± 
0.053 

3.11± 
0.29 

1.98± 
1.23 

0.57
± 
0.14 

0.57
± 
0.14 

0.018
± 

0.014 

0.002
8± 
0.011
2 

86.51 3519.2
5 

L99A-IND 7.11 ± 
0.34 

4.37± 
0.33 

2.23 
± 
0.26 

0.53 ± 
0.10 

2.12± 
0.83 

0.14± 
0.09 

0.27
± 
0.15 

0.21
± 
0.06 

0.14± 
0.07 

0.007
5± 
0.001
7 

26.89 467.56 

 
 

  



 

Figure S1. Time courses of RMSD of the ligand binding pocket relative to the X-ray structure in 
L99A T4L calculated from 49.2 ns LiGaMD (A) and LiGaMD2 (B) equilibration simulations; (C) 
Time courses of RMSD of the ligand relative to the X-ray structure and ligand binding pocket 
relative to the X-ray structure in L99A T4L calculated from 49.2 ns LiGaMD2 with 𝜎"# at 9.0 
kcal/mol. (D) Time courses of RMSD of ligand relative to the X-ray structure in L99A T4L and 
pocket volume calculated from 49.2 ns LiGaMD2 with 𝜎"# at 9.0 kcal/mol.  

  



 

Figure S2. (A-D) time courses of the center-of-mass distance between the ligand and the protein 
pocket (defined by protein residues within 5 Å of ligand) calculated from three independent 1 μs 
LiGaMD2 simulations of (A) benzene binding to the L99A T4L, (B) benzene binding to the F104A 
T4L, (C) benzene binding to the M102A T4L, and (D) indole binding to the L99A T4L. (E-H) 
The corresponding PMF profiles of the ligand-pocket distance averaged over three LiGaMD2 
simulations of (E) benzene binding to L99A T4L, (F) benzene binding to F104A T4L, (G) benzene 
binding to M102A T4L, and (H) indole binding to L99A T4L. Error bars are standard deviations 
of the free energy values calculated from three LiGaMD2 simulations. 
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