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Abstract

Ligand binding thermodynamics and kinetics are critical parameters for drug design. However, it
has proven challenging to efficiently predict ligand binding thermodynamics and kinetics from
molecular simulations due to limited simulation timescales. Protein dynamics especially in the
ligand binding pocket often plays an important role in ligand binding. Based on our previously
developed Ligand Gaussian accelerated molecular dynamics (LiGaMD), here we present
LiGaMD?2 in which a selective boost potential was applied to both the ligand and protein residues
in the binding pocket to improve sampling of ligand binding and dissociation. To validate the
performance of LiGaMD?2, the T4 lysozyme (T4L) mutants with open and closed pockets bound
by different ligands were chosen as model systems. LiGaMD2 could efficiently capture repetitive
ligand dissociation and binding within microsecond simulations of all T4L systems. The obtained
ligand binding kinetic rates and free energies agreed well with available experimental values and
previous modeling results. Therefore, LiGaMD2 provides an improved approach to sample
opening of closed protein pockets for ligand dissociation and binding, thereby allowing for

efficient calculations of ligand binding thermodynamics and kinetics.



Introduction

ligand binding to target receptors plays a critical role in many fundamental biological processes!,
as well as in the design of more effective and selective drugs for treating human diseases?. A
number of experimental techniques® have been developed to explore protein-small molecule
interactions. For example, structural biology techniques®® have been widely applied to determine
protein-ligand complex structures. However, X-ray crystallography and cryo-electron microscopy
(cryo-EM) could provide only static snapshots of protein-small molecule interactions. It is rather
challenging for experimental methods to capture ligand binding and dissociation pathways and
determine potential intermediate states of ligand binding to the protein target site.

Recently, ligand binding kinetics has been recognized to be critical for drug design®. The
ligand dissociation rate (k,z) or residence time (1/ k,5) appears to correlate with drug efficacy better
than ligand binding free energy. However, ligand binding kinetic rates have proven more
challenging to predict, due to slow processes of ligand dissociation and rebinding*® 5. With
remarkable advances in computer hardware and method developments, conventional molecular
dynamics (cMD) simulations nowadays are able to capture spontaneous ligand binding to target
proteins and predict corresponding binding association rates (ko,)®. However, it remains
challenging to use cMD to simulate repetitive ligand binding and dissociation processes,
precluding accurate prediction of ligand binding kinetic rates. For example, based on tens-of-
microsecond ¢cMD simulations, Shan et al. 7 successfully captured spontaneous binding of the
Dasatinib drug to its target Src kinase and accurately predicted the ligand association rate (kon).
However, no dissociation event was observed in the cMD simulations. Similar results were
observed in the binding of benzene (BEN) to the L99A mutant of T4 lysozyme (T4L)3. The cMD

simulations with lengths of 2 to 8 ps successfully captured BEN binding to the L99A T4L®. Tens



to hundreds of repetitive guest binding and dissociation from the B-CD host were observed in

microsecond ¢MD simulations’, which enabled accurate prediction of host-guest binding

thermodynamics and kinetics. Tens-of-microsecond ¢cMD simulations® captured repetitive
binding and dissociation of six small-molecule fragments with weak millimolar binding affinities
to the protein FKBP, which enabled accurate prediction of fragment binding free energies and
kinetic rates. Nevertheless, cMD simulations have not captured repetitive binding and dissociation

of typical small-molecule ligands to target proteins so far.

In this regard, enhanced sampling methods!'® have been developed to extend accessible
timescale of MD simulations, including Metadynamics'!, Steered MD'2, Umbrella Sampling!?® 13,
Replica Exchange MD !4, Random Acceleration Molecular Dynamics (RAMD) !°, Scaled MD 19,
accelerated MD (aMD) 7, Gaussian accelerated MD (GaMD) '8, Markov State Model (MSM)? 19,
Weighted Ensemble?’ , and so on. Using T4L as a model system, a total of ~12 ps infrequent

Metadynamics!!® 11

simulations successfully captured 20 times of ligand binding and dissociation
events and predicted the values of ko, and kop at 3.5 £ 2 x 10*M's'and 7 + 2 s, being
comparable to experimental values of 0.8+1x10°M!s! and 950+20 s’!, respectively. However,
Metadynamics requires predefined collective variables (CVs) before running the simulations. Thus,
a priori knowledge of the systems is often required. In comparison, Weighted Ensemble?! and
MSM?? combine a large number of short cMD simulations to predict ligand binding kinetic rates.

For example, Weighted Ensemble??®

of a total of 29 pus cMD was able to accurately predict the
dissociation rate of BEN from the L99A T4L as 1000s, being highly consistent with the
experimental value of 950+200s™!. One MSMS built on a total of 69 ps cMD simulations predicted

the values of kon and ko at 21+91x10° M-'s"t and 311+130 s°!, being in reasonable agreement with



experiment values of 0.8+1x10°M!s™! and 950420 s, respectively. However, these calculations

required very expensive computational resources.

GaMD was developed to provide both unconstrained enhanced sampling and free energy
calculations of large biomolecules!®. It works by applying a harmonic boost potential to reduce
system energy barriers. The boost potential normally exhibits a near Gaussian distribution, which
enables proper reweighting of the free energy profiles through cumulant expansion to the second
order'®. Ligand GaMD (LiGaMD)* has recently been developed to allow for more efficient
sampling of ligand dissociation and rebinding processes, being able to accurately predict ligand
binding thermodynamics and kinetics. In LiGaMD, one selective boost was applied to the ligand
non-bonded interaction potential energy to accelerate ligand dissociation. Another boost was
applied on the remaining potential to facilitate ligand rebinding. Recently, an increasing number
of studies suggested that the flexibility of proteins, particularly those with closed pockets, played

824 Protein structural flexibility allows the opening, closing,

an important role in ligand binding
and adaptation of the binding pocket, which are critical for ligand binding to protein® 2.
Additionally, enhanced sampling of the protein binding pocket has proven to significantly improve
the efficiency and accuracy of simulating protein-ligand interaction!4% 26, Wang et al.2® proposed
FEP/REST to improve the accuracy of ligand binding free energy calculation, which combined the
free energy perturbation (FEP) and replica exchange with solute tempering (REST) to enhance
sampling of protein residues in the binding site. FEP/REST was demonstrated to achieve much
quicker simulation convergence and more accurate binding free energy calculations. Sugita et al.!*
developed the generalized replica exchange with solute tempering (gREST) to simulate small

molecule binding to the L99A T4L. By enhanced sampling of ligand and protein residues in the

binding site, the gREST simulations successfully captured ligand binding to the L99A T4L in a



total of 2.4 us simulations. The obtained free energy profiles of binders (BEN, ethylbenzene, and
n-hexylbenzene) were distinct from those of nonbinders (phenol and benzaldehyde). Another

252 from the same group combined the gREST with the replica exchange umbrella sampling

study
(gREST/REUS) to capture the binding of compound PPl to its target Src kinase. The

gREST/REUS simulations?** could capture multiple ligand binding and unbinding events.

Built on our previously developed LiGaMD, here we developed a novel approach termed
LiGaMD2, in which a selective boost was added to both the ligand and protein pocket residues to
accelerate ligand dissociation and binding. Various T4L mutants bound by BEN and indole (IND)
with open and closed pockets were chosen as testing systems. The T4L mutants with small
hydrophobic cavities that can accommodate different ligands have been widely used as model
systems for benchmarking computational methods?’. Microsecond LiGaMD?2 simulations could
capture repetitive ligand binding and unbinding processes in all the simulated T4L systems.
LiGaMD?2 thus enabled highly efficient and accurate prediction of ligand binding thermodynamics
and kinetics. Simulation predictions agreed well with experimental binding free energy and kinetic
rates. Since the chosen systems included different ligands and protein mutants with distinct binding
pockets, the simulations validated the robustness of LiGaMD?2. Furthermore, multiple ligand
binding and dissociation pathways were identified by LiGaMD2 simulations, being highly

consistent with published simulation results® 133 205,28,

Methods

LiGaMD?2: Selectively boosting both the ligand and protein pocket



LiGaMD is an enhanced sampling technique for characterizing ligand binding thermodynamics
and kinetics. It works by adding a selective harmonic boost potential to the non-bonded ligand
interaction potential energy. Detail of the LiGaMD method has been described in our previous

study?’. Here, we briefly describe the algorithm for further development of the LiGaMD2 method.

We consider a system of ligand L binding to a protein P in a biological environment £. The
system comprises of N atoms with their coordinates r = {ry,--,7y} and momenta p =

{p1, -, pn} . The system Hamiltonian can be expressed as:

H(r,p) = K(p) + V(r), (1)

where K (p) and V() are the system kinetic and total potential energies, respectively. The protein
P could be further divided into two parts: residues in the binding pocket (Pb) and other parts (Po).

We decompose the potential energy into the following terms:
V(r) = Veus(Ten) + Vpo,b (Tpo) + Vevpo, (Tevpo) + Vip (1) + Vi ()
+ Vevponb (Ten) + Veoroan (Tpo) +ViLmn (1) + Vg np (1)
+ Veornb ("po) + Vepens (Teve) + Vebponb (Tebpo)

+Vpornb (por) + VboEnb (Tpor) + ViEnb (rie) ()

where Vpp, , Vpop, Vi p and Vg, are the bonded potential energies in the binding pocket of protein
Pb, the remaining atoms of protein Po, ligand L and environment E, respectively. Vpppo » (Tpppo)
is the bonded potential energies involving atoms between the protein binding pocket and the other
parts. Vepppnb» Veoronbs ViLnp and Vgg np are the self non-bonded potential energies in the
protein binding pocket Pb, the remaining atoms of protein Po, ligand L and environment E,

respectively. Vppponp (pbpo)s VebLnb (rppL) VbbEnb (TpbE), VboLnb ("por)s VboEnb (rpog) and



Vig np are the non-bonded interaction energies between Pb-Po, Pb-L, Pb-E, Po-L, Po-E and L-E,
respectively. According to classical molecular mechanics force fields*°, the non-bonded potential

energies are usually calculated as:

Vab = Vetec + Voaw (3)

where V.. and V4, are the system electrostatic and van der Waals potential energies. The

bonded potential energies are usually calculated as
Vo = Voona + Vangie T Vainedrai 4)

where Viyonas Vangie a0d Vginearar are the system bond, angle and dihedral potential energies. As

mentioned above, flexibility of the protein pocket often plays a critical role in ligand binding.

Therefore, the ligand essential potential energy in the LiGaMD?2 is defined as

V.(r) = Vip () + VPb,b(er) + Vienb () + Vbbnb (rpp) + VebLnb (rpp) + VboLnb (rpor) +

Vignb (TE) + Vebponb (Tevpo) + Vepens (Tebe) (5)
In the Pd-GaMD, we add boost potential selectively to the ligand essential potential energy
according to the GaMD algorithm:

%kL(EL - VL(T'))Z' V,(r) <E|,

6
0, V,(r) = E,, ©

AV, (r) = {

where E; is the threshold energy for applying boost potential and 4z is the harmonic constant. The
LiGaMD?2 simulation parameters are derived similarly as in the previous LiGaMD. When F is set
to the lower bound as the system maximum potential energy (E=Vua), the effective harmonic

force constant k can be calculated as:



ko = min(1.0, k}) = min (1.0, 2 Ymax=Vminy (7)

ov Vimax—Vavg

where Viaxs Vinins Vavg @and oy, are the maximum, minimum, average and standard deviation of the
boosted system potential energy, and g, is the user-specified upper limit of the standard deviation

of AV (e.g., 10kgT) for proper reweighting. The harmonic constant is calculated as k = kg -

with 0 < k, < 1. Alternatively, when the threshold energy F is set to its upper bound

Vimax—Vmin

E =Vyin + %, kg is set to:

kO — k;’) = (1 _ @) Vmax—Vmin , (8)

ov” Vavg=Vmin
if k, is found to be between 0 and 1. Otherwise, k, is calculated using Eqn. (7).

In addition to selectively boosting the ligand and surrounding protein residues in the
binding site, another boost potential is applied on the protein and solvent to enhance
conformational sampling of the protein and facilitate ligand rebinding. The second boost potential
is calculated using the total system potential energy other than the ligand essential potential energy
as:

2kp(Ep = Vo(M)", Vo) < Ep

9
0, Vp(r) 2 Ep ®

AVp(r) = {

Where Vp is the total system potential energy other than the ligand essential potential energy, Ep
is the corresponding threshold energy for applying the second boost potential and kp is the
harmonic constant. This leads to dual-boost LiGaMD2 with the total boost potential AV (r) =

AV, (r) + AV, (7).

Energetic Reweighting of LiGaMD2



To calculate potential of mean force (PMF)’! from LiGaMD?2 simulations, the probability
distribution along a reaction coordinate is written as p*(A4). Given the boost potential AV () of

each frame, p*(A4) can be reweighted to recover the canonical ensemble distribution, p(A), as:

« (eBAV(?)) i
p(4)) = p"(4) I raervey s J = Lo M, (10)

where M is the number of bins, f = kzT and (eﬁAV(F) ) j 1s the ensemble-averaged Boltzmann

factor of AV () for simulation frames found in the /™ bin. The ensemble-averaged reweighting

factor can be approximated using cumulant expansion:

N k
(VD) = exp (¥, TG}, (11)
where the first two cumulants are given by

¢, = (AV),

C, = (AVZ) — (AV)? = g2, (12)

The boost potential obtained from LiGaMD2 simulations usually follows near-Gaussian
distribution. Cumulant expansion to the second order thus provides a good approximation for
computing the reweighting factor!®® 32, The reweighted free energy F(A) = —kgT In p(4) is

calculated as:
* 2 ﬁk
F(A) = F*(A) = Xie=1 77 G + E, (13)

where F*(A) = —kgT In p*(A) is the modified free energy obtained from LiGaMD2 simulation

and F, is a constant.



Ligand binding free energy calculations from 3D potential of mean force

We calculate ligand binding free energy from 3D potential of mean force (PMF) of ligand

displacements from the target protein as the following?:

AG® = —AW,,, — RTLn%, (14)

where Vj is the standard volume, V}, = fb e BW ) dr is the average sampled bound volume of the

ligand with § = 1/kgT, kg is the Boltzmann constant, 7'is the temperature, and AW5, is the depth
of the 3D PMF. AW;,, can be calculated by integrating Boltzmann distribution of the 3D PMF

W (r) over all system coordinates except the x, y, z of the ligand:

-BwW(r)
AW,y = —RTLnfuefT‘", (15)

where V, = fu dr is the sampled unbound volume of the ligand. The exact definitions of the

bound and unbound volumes V}, and V;, are not important as the exponential average cut off

contributions far away from the PMF minima*3®. A python script “PyReweighting-3D.py” in the

PyReweighting tool kit (http://miao.compbio.ku.edu/PyReweighting/)** was applied for

reweighting LiGaMD?2 simulations to calculate the 3D reweighted PMF and associated ligand

binding free energies.

Ligand binding Kkinetics obtained from reweighting of LiGaMD2 Simulations

Reweighting of ligand binding kinetics from LiGaMD2 simulations followed a similar protocol
using Kramers’ rate theory that has been recently implemented in kinetics reweighting of the
GaMD?*, LiGaMD?3#, Pep-GaMD? and PPI-GaMD?* simulations. Provided sufficient sampling

of repetitive ligand dissociation and binding in the simulations, we record the time periods and



calculate their averages for the ligand found in the bound (zz) and unbound (z;) states from the
simulation trajectories. The T corresponds to residence time in drug design®’. Then the ligand

dissociation and binding rate constants (kofr and kon) were calculated as:

1

Kon = — (17)

Ty[L)

where [L] is the ligand concentration in the simulation system.

According to Kramers’ rate theory, the rate of a chemical reaction in the large viscosity

limit is calculated as’>:

kg = =7 e AR kT, (18)

where w,,, and w,, are frequencies of the approximated harmonic oscillators (also referred to as
curvatures of free energy surface®) near the energy minimum and barrier, respectively, ¢ is the
frictional rate constant and AF is the free energy barrier of transition. The friction constant ¢ is
related to the diffusion coefficient D with & = kzT /D. The apparent diffusion coefficient D can
be obtained by dividing the kinetic rate calculated directly using the transition time series collected
directly from simulations by that using the probability density solution of the Smoluchowski
equation®”. In order to reweight ligand kinetics from the LiGaMD2 simulations using the Kramers’
rate theory, the free energy barriers of ligand binding and dissociation are calculated from the
original (reweighted, AF) and modified (no reweighting, AF¥*) PMF profiles, similarly for
curvatures of the reweighed (w) and modified (w*, no reweighting) PMF profiles near the ligand
bound (“B”) and unbound (“U”) low-energy wells and the energy barrier (“Br”), and the ratio of

apparent diffusion coefficients from simulations without reweighting (modified, D*) and with



reweighting (D). The resulting numbers are then plugged into Eq. (17) to estimate accelerations of
the ligand binding and dissociation rates during LiGaMD2 simulations®>, which allows us to

recover the original kinetic rate constants.
System Setup

The complex structures of benzene (BEN) bound to the L99A T4L, M102A T4L and F104A T4L
were obtained from the 3HH4*°, 220L*" and 227L* PDB files, respectively. The crystal structure
of indole (IND) bound to the L99A T4L was obtained from the 185L% PDB file. The AMBER
ff14SB force field*® was used for the protein and the GAFF force field** for the ligand with AM1-
BCC charges. Each system was solvated in a periodic box of TIP3P water molecules with a
distance of 18 A from the solute to the box edge using tleap. Therefore, the ligand concentration
was 0.0034 M in the simulation system. Appropriate number of Cl- ions were added to achieve

system neutrality.

Simulation Protocol

Each system was energy minimized and gradually heated to 300 K in 1 ns with the Langevin
thermostat and harmonic restraints of 50 kcal/mol/A? on all non-hydrogen atoms of the protein
and the ligand using the AMBER22 software*. The simulation system was firstly energy
minimized with 1.0 kcal/mol/A? constraints on the heavy atoms of the proteins, including the
steepest descent minimization for 50,000 steps and conjugate gradient minimization for 50,000
steps. The system was then heated from 0 K to 300 K for 200 ps. It was further equilibrated using
the NVT ensemble at 300 for 200 ps and the NPT ensemble at 300 K and 1 bar for 1 ns with 1
kcal/mol/A? constraints on the heavy atoms of the protein, followed by 2 ns short cMD without

any constraint. The LiGaMD?2 simulations proceeded with 14 ns short cMD to collect the potential



statistics, 49.2 ns LiGaMD?2 equilibration after adding the boost potential and then three
independent 1,000 ns production runs. It provided more powerful sampling to set the threshold
energy for applying the boost potential to the upper bound (i.e., E = Vmint1/k) in our previous study
ligand dissociation and binding using LiGaMD?. Therefore, the threshold energy for applying the
ligand essential potential was also set to the upper bound in the LiGaMD2 simulations. The
selective boost potential was applied to both the ligand and protein pocket residues within 5A of
ligand in the LiGaMD2 simulations. For the second boost potential applied on the system total
potential energy other than the ligand essential potential energy, sufficient acceleration was
obtained by setting the threshold energy to the lower bound. In order to observe ligand dissociation
during LiGaMD?2 equilibration while keeping the boost potential as low as possible for accurate
energetic reweighting, the (cop, cop) parameters were finally set to (9.0 kcal/mol, 6.0 kcal/mol),
(7.0 kcal/mol, 6.0 kcal/mol), (9.0 kcal/mol, 6.0 kcal/mol) and (9.0 kcal/mol, 6.0 kcal/mol) for the
LiGaMD2 simulations of the BEN bound to the L99A T4L (T4L:L99A-BEN), F104A T4L
(TAL:F104A-BEN), M102A T4L (T4L:M102A-BEN) and IND bound to the L99A T4L

(T4L:L99A-IND). LiGaMD?2 production simulation frames were saved every 0.4 ps for analysis.

Simulation Analysis

The VMD*® and CPPTRAJ* tools were used for simulation analysis. The number of ligand
dissociation and binding events (Np and Np) and the ligand binding and unbinding time periods
(tp and ty) were recorded from individual simulations (Tables 1 &S1). With high fluctuations, 15
and Ty were recorded for only the time periods longer than 1 ns. The 1D, 2D and 3D PMF profiles,
as well as the ligand binding free energy, were calculated through energetic reweighting of the
LiGaMD?2 simulations. The center-of-mass distance between the ligand and the protein pocket

(defined by protein residues within 5 A of ligand) and ligand heavy atom RMSDs relative to X-



ray structures with the protein aligned were chosen as the reaction coordinate for calculating the
1D PMF profiles. The bin size was set to 1.0 A. The software rj cavity®® implemented in
GROMACS was used to calculate the pocket volume. 2D PMF profiles of the ligand RMSD and
pocket volume were calculated to analyze conformational changes of the protein upon ligand
binding. The bin size was set to 50 A3 for pocket volume. The cutoff for the number of simulation
frames in one bin was set to 500 for reweighting 1D and 2D PMF profiles. The 3D PMF profiles
of ligand displacements from the T4L mutants in the X, Y and Z directions were further calculated
from the LiGaMD?2 simulations. The bin sizes were set to 1 A in the X, Y and Z directions. The
cutoff of simulation frames in one bin for 3D PMF reweighting (ranging from 100-400 for three
individual LiGaMD2 simulations) was set to the minimum number below which the calculated 3D
PMF minimum will be shifted. The ligand binding free energies (AG) were calculated using the
reweighted 3D PMF profiles and binding kinetic rates by AG = —RTLn(kof/kon), respectively. The
ligand dissociation and binding rate constants (k., and ko) were calculated from the LiGaMD?2

simulations with their accelerations analyzed using the Kramers’ rate theory (Table S2).

Results

Flexibity of the protein pocket plays an important role in dissociation of buried ligands

The ligand binding pockets are different in the L99A and F104A mutants of T4 lysozyme (T4L).
The binding pocket in L99A T4L is deeply buried (Fig. 1A), while the pocket is exposed to the
solvent in the F104A mutant (Fig. 1D). LiGaMD and LiGaMD?2 testing simulations with gyp
increasing from 6.0 to 10.0 kcal/mol and oy, at 6.0 kca/mol were performed on these two systems.

Ligand dissociation was captured in both LiGaMD and LiGaMD?2 simulations of benzene (BEN)



binding in the F104A mutant with an exposed binding pocket (Fig. 1IE& 1F). With LiGaMD, the
ligand dissociated from the F104A T4L at 5.45 ns, 7.20 ns, 18.22 ns and 7.80 ns with the g,p values
of 6.0, 7.0, 8.0 and 9.0 kcal/mol, respectively. Interestingly, LiGaMD with the g,p value at 9.0
could capture both the ligand dissociation and rebinding within the 49.2 ns equilibration simulation.
LiGaMD2 captured the ligand dissociation at 3.60 ns, 11.20 ns, 4.50 ns and 29.60 ns with the gyp
value of 6.0, 7.0, 8.0 and 9.0 kcal/mol, respectively. The LiGaMD?2 with the o,p values of 7.0 and
8.0 kcal/mol could capture the ligand dissociation and rebinding within the 49.2 ns equilibration

simulation.

For the L99A T4L with a buried protein pocket, the LiGaMD could not capture ligand
dissociation even with the value of gyp increased to 10.0 kcal/mol (Fig. 1B). In comparison, the
LiGaMD?2 simulations could capture the ligand dissociation and rebinding with the gyp values of
9.0 and 10.0 kcal/mol (Fig. 1B&1C). The ligand dissociated at 12.52 ns and rebound at ~29.50 ns
in the LiGaMD?2 simulation with the g,p value of 9.0 kcal/mol. In the LiGaMD2 simulation with
the gyp value of 10.0 kcal/mol, the ligand dissociation and rebinding occurred at ~23.60 ns and

~26.80 ns, respectively.

Next, we identified correlation of the ligand dissociation and conformational changes of the
protein pocket in the L99A T4L (Fig. S1). The binding pocket exhibited low RMSD of ~1-2 A in
the LiGaMD simulations with all the tested parameters as no selective boost potential was applied
to the protein pocket (Fig. S1A). In comparison, RMSD of the binding pocket significantly
increased in the LiGaMD?2 simulations with the o,p values of 9.0 and 10.0 kcal/mol, respectively
(Fig. S1B). As the g,p value of 9.0 kcal/mol was the lowest value that enabled the ligand
dissociation and rebinding, we further focused on the binding pocket in this simulation. During

ligand dissociation around 12 ns, RMSD of the binding pocket increased to ~1.7 A. RMSD of the



binding pocket decreased to mostly <1.0 A when the ligand completely dissociated to the solvent.
The binding pocket RMSD increased to ~2 A when the ligand rebound to the pocket at ~30 ns (Fig
S1C). After the ligand bound completely to the protein pocket, RMSD of the binding pocket
deceased to ~1 A again. We further calculated volume of the protein pocket during the LiGaMD2
simulation (Fig S1D). The volume of the protein pocket was overall smaller in the ligand-free (apo)
state than in the ligand-bound (40l0) state (Fig S1D). Similar opening of the binding pocket was
observed in previous aMD simulation of BEN dissociation from the L99A T4L*. In summary,
LiGaMD2 showed improved sampling of ligand binding to the buried protein pockets, where
dynamics of the binding pocket played an important role in the ligand dissociation and rebinding.

For the system with an open pocket, both LiGaMD and LiGaMD2 worked well.

Microsecond LiGaMD2 simulations captured repetitive ligand dissociation and rebinding to
the T4L mutants

As the gypvalues of 9.0 and 7.0 kcal/mol were the lowest to capture the ligand dissociation and
rebinding in LiGaMD2 equilibration simulations of the L99A and F104A T4L systems (Figs. 1C
& 1F), they were used for further three independent 1,000 ns production simulations. Furthermore,
two more systems with buried binding pockets were added to demonstrate the robustness of
LiGaMD?2, including the M102A T4L bound by BEN and the L99A T4L bound by a different
ligand indole (IND). In summary, LiGaMD2 simulations were performed on three complexes of
BEN bound to the L99A T4L (T4L:L99A-BEN), M102A T4L (T4L:M102A-BEN) and F104A
TAL (T4L:F104A-BEN), and another complex of IND bound to the L99A T4L (T4L:L99A-IND)
(Figs. 2A-D). Three independent 1,000 ns LiGaMD?2 production simulations were performed on
each of the four systems (Table 1). The LiGaMD2 simulations of the T4L:L99A-BEN system

recorded an average boost potential of 107.77-109.84 kcal/mol with 9.58-9.67 kcal/mol standard



deviation. The LiGaMD?2 simulations of the T4L:M102A-BEN system recorded an average boost
potential of 108.04-109.21 kcal/mol with 9.49-10.04 kcal/mol standard deviation. In comparison,
the average boost potential was 70.45-72.53 kcal/mol with 7.81-8.11 kcal/mol standard deviation
in the three simulations of the T4L:F104A-BEN. The boost potential applied in simulations of the
T4L:L99A-IND system was slightly larger than that of the T4L:L99A-BEN system, with average

of 115.80-118.16 kcal/mol and 9.68-9.79 kcal/mol standard deviation (Table 1).

RMSDs of the ligand relative to the X-ray structures with the T4L aligned were calculated (Figs.
2A-2D) to record the number of ligand dissociation and binding events (Np and Np) in each of the
1,000 ns LiGaMD?2 simulations. With close examination of the ligand binding trajectories, RMSD
cutoffs of the ligand unbound and bound states were setto >15 A and <5.0 A, respectively. Because
of ligand fluctuations, we recorded only the corresponding binding and dissociation events that
lasted for more than 1.0 ns. In each simulation of the T4L:L99A-BEN system, about 5-6 binding
and 5-6 dissociation events were observed (Fig. 2A & Table 1). In each simulation of the
T4L:F104A-BEN system, about 3-4 dissociation and 3-4 binding events were observed (Fig. 2B
& Table 1). In each simulation of the T4L:M102A-BEN system, about 3-7 dissociation and 3-7
binding events were observed (Fig. 2C & Table 1). A similar number of ligand dissociation (3-6)
and binding (3-7) events were observed in simulations of the T4L:L99A-IND system (Fig. 2D &
Table 1). In summary, repetitive ligand dissociation and rebinding were successfully captured in
each of the 1,000 ns LiGaMD2 simulations of various T4L mutants bound by different ligands

(Figs. 2).

Next, we explored the correlation between conformational changes of the binding pocket and
ligand binding in the LiGaMD2 production simulations. The ligand RMSD and volume of the

binding pocket were used as reaction coordinates to calculate 2D PMF (Fig. 3). Five low-energy



states were identified in the 2D PMF profile of the T4L:LL99A-BEN system including the Bound
(“B”), Intermediate (“I”), Unbound U1l (“U1”), Unbound U2 (“U2”) and Unbound U3 (“U3”)
states (Fig. 3A). The ligand RMSD and pocket volume in the B, I, U1, U2 and U3 states centered
around (2.5 A, 300 A%), (9.3 A, 425.7 A%), (24.5 A, 259.9 A?), (34.8 A, 360.3 A3), and (41.6 A,
251.9 A3), respectively (Fig 3A). In the T4L:F104A-BEN system, three low-energy states were
identified, including the Bound (“B”), Intermediate (“I”) and Unbound (“U”) states (Fig. 3B). The
ligand RMSD and the pocket volume in the B, I and U centered around (3.8 A, 176.80 A?), (11.6
A, 59.6 A% and (35.0 A, 54.7 A?), respectively (Fig. 3B). In the T4L:M102A-BEN system, five
low-energy states were identified including the Bound (“B”), Intermediate (“I”), Intermediate
(“I2), Unbound (“U1”) and Unbound (“U2”) states (Fig. 3C). The ligand RMSD and pocket
volume in the B, I, 12, U1 and U2 states centered around (2.7 A, 219.7 A3), (10.7 A, 356.5 A3),
(11.0 A, 113.4 A%), (32.9 A, 258.8 A%, and (37.8 A, 132.9 A3), respectively (Fig 3C). In the
T4L:L99A-IND system, four low-energy states were identified including the Bound (“B”),
Intermediate (“1”), Intermediate (“I2”) and Unbound (“U”) states (Fig. 3D). The ligand RMSD
and pocket volume in the B, I, 12, and U states centered around (1.9 A, 363.2 A3), (5.0 A, 468.8
A%, (11.5A,357.4 A%), and (28.8 A, 155.4 A3), respectively (Fig 3D). In compared with the bound
state, a larger binding pocket volume was identified in the intermediate I state in the systems with
an burred protein pocket including the T4L:L99A-BEN, T4L:M102A-BEN and T4L:L99A-IND
(Figs. 3A, 3B & 3D). In contrast, the binding pocket volume was significantly smaller in the
intermediate I state in the T4L:F104A-BEN with an exposed binding pocket (Fig. 3B). The
representative intermediate conformational states from the four systems were shown in Fig. 3E-
3H. Compared to the bound X-ray structures, helices C and G in the intermediate “I” state moved

outward in the T4L:L99A-BEN system, leading to opening of the binding pocket (Fig. 3E). In the



T4L:F104A-BEN system, major conformational changes upon ligand binding involved helices C
and B, which moved inwards and reduced volume of the binding pocket (Fig. 3F). In the
T4L:M102A-BEN system, helices D, F and G moved outwards in the intermediate “I” state with
opening of the ligand binding pocket, accompanied by inward movement of helix C (Fig. 3G). In
the T4L:L99A-IND system, outward movements were observed in helices C, D and G in the
intermediate I state (Fig. 3H). Therefore, conformational changes of the protein pocket greatly
facilitated the ligand dissociation and binding in the L99A and M104A systems with a buried

binding pocket.

Ligand binding Kinetic rates and free energies calculated from LiGaMD2 agreed well with

experimental data

LiGaMD2 simulations that successfully captured repetitive ligand binding and dissociation
allowed us to calculate the ligand binding kinetic rate constants. We recorded the time periods for
the ligand found in the bound (zz) and unbound (zy) states throughout the LiGaMD2 simulations.
Without reweighting, the ligand binding rate constants (k.,*) were calculated directly from the
LiGaMD?2 trajectories as 8.22 + 5.48x10” M!-s! | 7.79+1.36 x 10 M7, 6.81+1.27x10" M !-s7!
and 1.67+0.67x10° M!-s’! in the system of T4L:L99A-BEN, T4L:M102A-BEN, T4L:F104A-
BEN and T4L:L99A-IND systems, respectively (Table 2). The accelerated dissociation rate
constants (kos*) were calculated as 3.47 £ 2.31x10°s™!, 3.46 £1.81x10%s™!, 1.72+1.44x10°s"! and
2.49+1.25x107 57! in the T4L:L99A-BEN, T4L:M102A-BEN, T4L:F104A-BEN and T4L:L99A-

IND systems, respectively (Table 2).

Next, we reweighted the LiGaMD2 simulations of ligand-T4L mutants to calculate acceleration

factors of ligand binding and dissociation processes (Table S1) and recovered the original kinetic



rate constants using the Kramers’ rate theory (Table 2). The dissociation free energy barrier (AF,p)
significantly decreased from 10.5+0.86, 9.00+£1.07, 8.554+0.54, and 7.11+0.34 kcal/mol in the
reweighted PMF profiles to 2.554+0.43, 2.354+0.34, 2.36+0.35 and 2.23+0.26 kcal/mol in the
modified PMF profiles for the system of T4L:L99A-BEN, T4L:M102A-BEN, T4L:F104A-BEN
and T4L:L99A-IND, respectively, respectively (Table S1 and Fig. S2). The free energy barrier
for ligand binding (AF,,) slightly decreased from 4.93+1.38, 6.03+0.11, 5.40+1.07, 4.37+0.33
kcal/mol in the reweighted profiles to 0.57+0.14, 1.154+0.50, 0.54+0.053, 0.53+0.10 kcal/mol in
the modified PMF profiles for the system of T4L:L99A-BEN, T4L:M102A-BEN, T4L:F104A-
BEN and T4L:L99A-IND, respectively (Table S1 and Fig. S2). Curvatures of the reweighed (w)
and modified (w*, no reweighting) free energy profiles were calculated near the ligand Bound
(“B”) and Unbound (“U”) low-energy wells and the energy barrier (“Br”), as well as the ratio of
apparent diffusion coefficients calculated from LiGaMD2 simulations with reweighting (D) and
without reweighting (modified, D*) (Table S1). According to the Kramers’ rate theory, the ligand
association was accelerated by 11.07, 0.81, 0.02 and 558.5 times for the systems of T4L:L.99A-
BEN, T4L:M102A-BEN, T4L:F104A-BEN and T4L:L99A-IND, respectively. The ligand
dissociation was significantly accelerated by 2.40x102, 1.72x10°, 1.24x10° and 7.13x10° times in
the T4L:L99A-BEN, T4L:M102A-BEN, T4L:F104A-BEN and T4L:L99A-IND systems,
respectively. Therefore, the reweighted k., in the T4L:L99A-BEN, T4L:M102A-BEN,
T4L:F104A-BEN and T4L:L99A-IND systems were calculated as 7.42+4.81x10°, 9.57+6.29x10°,
3.16+2.29x10° and 2.99+2.87x10° M!-s’l, being highly consistent with the corresponding
experimental values®® of 0.8-1.0x106, 3.0-5.0x10°, >10x10% and 0.7-1.0x10° M-!-s’!, respectively
(Table 2). The reweighted ko in the T4L:L99A-BEN, T4L:M102A-BEN, T4L:F104A-BEN and

T4L:L99A-IND systems were calculated as 1441+883, 20111606, 1.38+0.67x10° and 3494+559



s'l, in good agreement with the corresponding experimental values®® of 950, 3000, >10000 and

325 571, respectively.

Based on the ligand binding kinetic rates (ko» and k,z), we calculated the ligand binding free
energies as AG = —RTLn(kof/kon ). The resulting binding free energies in the T4L:L99A-BEN,
T4L:M102A-BEN, T4L:F104A-BEN and T4L:L99A-IND systems (Table 1) were -5.17+0.72
kcal/mol, -5.01+0.73 kcal/mol, -3.42+0.72 kcal/mol and -4.87£1.06 kcal/mol, being highly
consistent with the corresponding experimental values of -4.12 kcal/mol, -4.18 kcal/mol, -4.02
kcal/mol and -4.82 kcal/mol, respectively. The root-mean square error (RMSE) of binding free
energy was only 0.73 kcal/mol. Alternatively, we could calculate the ligand binding free energy
using the 3D reweighted PMF profiles of the ligand displacement from the T4L binding pocket in
the X, Y and Z directions (Table 1). The ligand binding free energies in the T4L:L99A-BEN,
T4L:M102A-BEN, T4L:F104A-BEN and T4L:L99A-IND systems (Table 1) were estimated as -
5.88+0.61 kcal/mol, -6.43+0.70 kcal/mol, -4.57+ 0.12 kcal/mol and -7.40+0.39 kcal/mol,
respectively. The RMSE of binding free energies predicted from the 3D PMF was greater as 1.94
kcal/mol, but still within the acceptable range of binding free energy predictions (2.0 kcal/mol)>!.
Therefore, both efficient conformational sampling and accurate ligand binding thermodynamic

and kinetic calculations were achieved through the LiGaMD2 simulations.

Multiple ligand binding and dissociation pathways were identified from LiGaMD2

simulations

We closely examined the LiGaMD?2 trajectories to explore ligand binding and dissociation
pathways. For dissociation of BEN from the T4L:LL99A, four pathways between the CD, CF, DG
and FGH helices were identified (Fig. 4). All these pathways were involved in the BEN rebinding

to the T4L:L99A. One extra binding pathway of HG was found in the BEN binding to the



T4L:L99A. LiGaMD?2 captured 5, 3, 6 and 3 times of BEN dissociation events through pathways
of CD, CF, DG and FGH, respectively (Fig 4). The BEN rebinding events through pathways of
CD, CF, DG, FGH and HG were 3, 2, 3, 6 and 2, respectively. The same ligand dissociation
pathways of CD, CF, DG and FGH were identified in the LiGaMD2 simulations of T4L:M102A-
BEN and T4L:L99A-IND systems (Fig. 4). Two pathways of DG and FGH were observed in the
simulations of BEN binding to the T4L:M102A. The ligand dissociation events in T4L:M102A
system along pathways of CD, CF, DG and FGH were 1, 2, 1 and 12, respectively (Fig 4). The
ligand rebinding events in the T4L:M102A-BEN through pathways of DG and FGH were 2 and
11, respectively. For dissociation of BEN from the T4L:F104A, two pathways near the A and C
helices were identified. The dissociation events in the T4L:F104A-BEN were 8 and 1 via pathways
A and C, respectively (Fig. 4). Pathway C was observed in BEN binding to the F104A T4L mutant
(Fig. 4). For the dissociation of IND from the T4L:L99A, four pathways between the CD, CF, DG
and FGH helices were identified. While only pathways CF and FGH were observed in the
rebinding of IND to the L99A T4L mutant. The dissociating event via pathways CD, CF, DG and
FGH in the T4L:L99A-IND system were 3, 3, 5, and 3, respectively. The IND binding events via
pathways CF and FGH were 3 and 9, respectively (Fig. 4). The binding and dissociating pathways
were consistent with earlier simulation findings using Metadynamics?® %2, Weighted Ensemble?®,
Machine Learning®, tRAMD!® and aMD* simulations. In summary, multiple ligand binding and
dissociation pathways were observed in the LiGaMD?2 simulations of the T4L mutants. The ligand

binding and dissociation mostly followed the same pathways.



Discussions

We have presented LiGaMD2 that improved enhanced sampling and accurate prediction
of protein-ligand binding thermodynamics and kinetics for especially proteins with closed binding
pockets. LiGaMD?2 works by selectively boosting the potential of both ligand and protein residues
in the binding pocket. LiGaMD2 shows significantly improved sampling of systems with buried
binding pockets, where flexibility of the binding pocket plays a critical role in ligand binding.
Microsecond LiGaMD2 simulations have allowed us to capture repetitive ligand dissociation and
rebinding processes as demonstrated on four T4L mutant model systems. These simulations then

enabled accurate predictions of ligand binding free energies and kinetic rate constants.

LiGaMD2 simulations revealed the critical role of protein flexibility for ligand binding,
especially in the case of solvent-inaccessible buried pockets, in good agreement with previous

experimental®?® 3* and computational studies'#d 20049

. Protein flexibility has been recognized as
one of the main factors that regulates protein-ligand binding kinetics?>*. The influence of protein
flexibility on ligand binding site can vary from small changes like opening or closing of an existing
pocket to the formation of a new pocket®°. For example, the MSM?® built with 60 pus cMD
simulations revealed that the movement of helix D/G/H/J could transiently open a channel for
ligand binding to the target site of the L99A T4L. Such movement of helix D/G/H were also
observed in the intermediate states in the LiGaMD2 simulations (Fig. 3). Additionally, multiple
ligand binding and dissociation pathways were identified from LiGaMD2 simulations (Fig. 4),
being highly consistent with previous enhanced sampling simulations, including the RAMD!3%,
aMD*, Metadynamics?®, MSM® and Weighted Ensemble’®. For example, the dissociation

pathway FGH with highest probability observed in LiGaMD2 was also captured in the simulations

of RAMD'3?, Metadynamics?®, aMD*, MSM?® and Weighted Ensemble?®,



Compared with the cMD*, Metadynamics®S, Weighted Ensemble,”” MSM? and Replica

252 LiGaMD?2 provides an efficient and/or easier-to-use approach to

Exchange MD simulations
simulation of ligand binding and dissociation and calculations of ligand binding thermodynamics
and kinetics. It is advantageous over previous LiGaMD for proteins with buried binding pockets.
Microsecond ¢cMD simulations were able to capture benzene binding to the L99A T4L3. However,
slower ligand dissociation was still beyond the accessibility of cMD. Weighted Ensemble?®® and
MSM were able to accurately predict ligand binding kinetics®. However, tens of microsecond cMD
simulations were needed for the Weighted Ensemble?®® and MSM®. For the Replica Exchange
method®®, a large number of replica simulations were often needed to model protein-ligand binding.
In the case of gREST simulations'4d, eight replicas were needed to capture ligand binding to the
L99A T4L. With carefully designed CV, Metadynamics could capture both ligand binding and
unbinding with high efficiency. However, the predefined CVs could potentially lead to certain
constraints on the ligand binding pathways and conformational space. Such simulations could also
suffer from the “hidden energy barrier” problem and slow convergence if important CVs were
missing.> Overall, the previous methods appeared computationally expensive, requiring mostly
tens-of-microsecond simulations to characterize ligand binding thermodynamics and kinetics. In
this context, LiGaMD?2 that has allowed us to capture repetitive ligand binding and unbinding

within microsecond simulations. It provides an improved approach to characterization of ligand

binding thermodynamics and kinetics, especially for proteins with buried binding pockets.
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Table 1. Summary of LiGaMD?2 simulations performed on ligand binding to the T4L mutants. AV
is the total boost potential. Np and Np are the number of observed ligand dissociation and binding
events, respectively. AGsin and AGey, are the ligand-T4L binding free energies obtained from
LiGaMD2 simulations and experiments, respectively. AGS,, and AG?,, were calculated with 3D PMF
and reweighted binding kinetic rates by AG = —RTLn(kofs/kon ), respectively.

T4L | Ligand | ID | Ng | Np | AV (kcal/mol) (kf;%;lnol) (kfaGliil’fol) (k?aGlj;fol)
Siml 1616 1 107.7729.67

L99A | BEN |[Sim2| 6 | 6 | 109.84+9.58 |-5.88+0.61 |-5.17+0.72 |-4.12
Sim3 | 5 109.63+9.59
Siml | 6 108.10+10.04

MI102A | BEN |Sim2| 3 | 3 | 108.04£9.97 |-6.43£0.12 | -5.01+0.73 | -4.18
Sim3| 7 | 7 | 109.21£9.49
Siml | 4 | 4 | 70.96+8.11

F104A | BEN | Sim2 3 | 72.53+7.84 |-6.02£0.70 | -3.42£0.72 | .4.02
Sim3 | 3 | 3 | 70.45+7.81
Siml | 6 | 7 | 115.80+9.68

L99A | IND |Sim2| 3 | 3 | 118.1629.79 |-7.40+0.39 |-4.87+1.06 |-4.82
Sim3 | 4 | 4 | 116.49+9.71




Table 2 Comparison of kinetic rates obtained from experiments and LiGaMD2 simulations for

ligand binding to T4L mutants. k., and k.4 are the kinetic dissociation and binding rate constants,

respectively, from experimental data or LiGaMD2 simulations with reweighting using Kramers’

rate theory. k.»* and k,;* are the accelerated kinetic dissociation and binding rate constants

calculated directly from LiGaMD2 simulations without reweighting.

System Method kon M7 kogr(sh) kon™ (M 1-s71) kog(s™)
T4L:L99A- Experiment 0.8-1.0x10° 9.50x10? - -

BEN LiGaMD2 7.42+4.81x10° | 1.44+0.88x10° | 8.22+5.48x107 | 3.474+2.31x 10°
T4L:M102A- | Experiment 3.0-5.0x108 3.00x10°

BEN LiGaMD2 9.57+6.29x10° | 2.01+1.61x10° | 7.79+1.36x10°¢ | 3.46+1.81x 10°
T4L:F104A- | Experiment >10x10° >1.00x10*

BEN LiGaMD2 3.16+£2.29x10° | 1.38+0.67x10° | 6.81+£1.27x107 | 1.72+1.44x 10°
T4L:L99A- Experiment 0.7-1.0x10% 3.25%10?

IND LiGaMD2 2.99+2.87x10° | 3.49+0.56x10° | 1.67+0.67 x10° | 2.49+1.25% 107
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Figure 1. Comparison of LiGaMD and LiGaMD2 simulations on the T4L mutant systems with
buried and open binding pockets: Computational models of benzene binding to the T4L:L.99A with
a burred binding pocket (A) and T4L:F104A with an open binding pocket (D); Time courses of
ligand root-mean-square deviation (RMSD) in T4L:L99A calculated from 49.2 ns LiGaMD (B)
and LiGaMD?2 (C) equilibration simulations, respectively. Time courses of ligand RMSD in
F104A TA4L calculated from 49.2 ns LiGaMD (E) and LiGaMD?2 (F) equilibration simulations,

respectively.
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Figure 2. LiGaMD2 simulations captured repetitive dissociation and binding of two different
ligands (benzene and indole) to T4AL mutants: (A-D) time courses of ligand heavy atom RMSDs
relative to X-ray structures calculated from three independent 1 pus LiGaMD?2 simulations of (A)
benzene binding to T4L:L99A, (B) benzene binding to T4L:F104A, (C) benzene binding to the
T4L:M102A and (D) indole binding to the T4L:L99A. (E-H) The corresponding PMF profiles of
the ligand RMSDs averaged over three LiGaMD2 simulations of (E) benzene binding to
T4L:L99A, (F) benzene binding to T4L:F104A, (G) benzene binding to the T4L:M102A and (H)
indole binding to the T4L:L99A. Error bars are standard deviations of the free energy values
calculated from three LiGaMD?2 simulations.
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Figure 3. 2D Free energy profiles and low-energy intermediate conformational states of ligand
binding to the T4L mutants: (A-D) 2D PMF profiles regarding the ligand heavy atom RMSD and
the pocket volume in LiGaMD2 simulations of (A) benzene binding to T4L:L99A, (B) benzene
binding to T4L:F104A, (C) benzene binding to T4L:M102A, (D) indole binding to T4L:F99A. (E-
H) Low-energy “Intermediate” (“I”’) conformations (blue) as identified from the 2D PMF profiles
of (E) benzene binding to T4L:LL99A, (F) benzene binding to T4L:F104A, (G) benzene binding to
T4L:M102A and (H) indole binding to T4L:L99A. X-ray structures of the ligand-bound
complexes (“Bound”) are shown in green. The ligands are shown in balls and sticks, and the helix
are shown in cartoon. The helix C, D, F and G are labeled as they show significant changes between
the “Bound” and “Intermediate” conformational states.
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Table S1 The ligand bound and unbound time periods (ts and 1) recorded from LiGaMD2
simulations of the ligand-T4L binding system.

System 1D 18 (ns) Ty (ns)
L99A- | Siml | 85.3,77.3,70.5,21.0,140.4,41.9 42.0,35.3,61.8,70.7,170.6,83.3
BEN | Sim2 | 212.49,26.2,19.6,13.0,111.2,32.9 218.80,106.3,38.0,64.6,13.2,43.8
Sim3 | 113.9,35.5,14.3,94.4,278.2 19.7,136.34,173.3,110.1,25.17
M102A- | Siml | 12.99,187,6,45.8,26.2 490.7,56.1,156.2,24.2
BEN | Sim2 | 54.94,36.0,362.6 240.01,281.4,25.5
Sim3 | 112.9,419.21,40.9 87.78,240.1,101.1
F104A- | Siml | 360.7,191.6,64.29,10.5,32.9,17.1 85.2,17.1,26.3,40.5,43.3,101.5
BEN | Sim2 | 456.4,47.2,18.4 261.1,110.6,96.3
Sim3 | 68.17,147.0,57.6,10.5,9.8,45.0,8.9 129.8,35.4,56.6,45.4,108.2,59.2,221.0
L99A- | Siml | 6.84,26.7,14.8,100.8,20.7,9.9 11.85,329.0,127.5,97.8,23.0,41.5,189.9
IND Sim2 | 89.14,151.3,26.7 347.5,88.9,412.3
Sim3 | 16.87,81.4,21.0,171.7 284.8,73.9,217.7,122.7

Table S2 Energy barriers of ligand dissociation (“off”’) and binding (“on”) calculated from the
reweighed (AF) and modified (no reweighting, AF¥*) free energy profiles, curvatures of the
reweighed (w) and modified (w*) free energy profiles near the ligand Bound (“B”), Barrier (“Br”)
and Unbound (“U”) states, and the ratio of apparent diffusion coefficients calculated from the
LiGaMD2 simulations without reweighting (modified, D*) and with reweighting (D).

Si AF (kcal/mol) AF* (kcal/mol) w w* D*D
1m
Off On Off On B Br U B Br U Off On
0.07 | 087 | 0.077
493+ | 255+ | 05720 | 9.78+ | 0.95+ 0.02+
LO9ABEN | 1055086 | 00 | 2555 | 0750 | 78 | 00 ig.o i(;.S i0403 ooop | 442 | 176
0.035
000 | eose | 235 | s | 2238 | 505, | 015 | 050 | 00sa | 00
F104A-BEN e MR RSN : s | ooop | 616 | 81301
: : 034 | © 1142 | @ 0.05 | 011 [ 0037 | *2
0.002
855+ | 540+ | 230 | 0544 | 301e | 198+ | 037 | 057 | 0018 | T 3519.2
MI02A-BEN 0.54 107 | = | 0053 | 029 | 123 | F * = N oonn | 3931 s
: : 035 | : : 0.14 | 014 [ 0014 [ *9
0.007
223 027 | 021
711+ | 437+ 053+ | 2.12¢ | 0.14% 21 0q4x | e
L99A-IND + L + 2689 | 46756
034 033 | o6 | 010 [ 083 | 009 | | T | 007 0.201
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Figure S1. Time courses of RMSD of the ligand binding pocket relative to the X-ray structure in
L99A T4L calculated from 49.2 ns LiGaMD (A) and LiGaMD?2 (B) equilibration simulations; (C)
Time courses of RMSD of the ligand relative to the X-ray structure and ligand binding pocket
relative to the X-ray structure in L99A T4L calculated from 49.2 ns LiGaMD2 with o,p at 9.0
kcal/mol. (D) Time courses of RMSD of ligand relative to the X-ray structure in L99A T4L and
pocket volume calculated from 49.2 ns LiGaMD2 with g, at 9.0 kcal/mol.
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Figure S2. (A-D) time courses of the center-of-mass distance between the ligand and the protein
pocket (defined by protein residues within 5 A of ligand) calculated from three independent 1 ps
LiGaMD2 simulations of (A) benzene binding to the L99A T4L, (B) benzene binding to the F104A
T4L, (C) benzene binding to the M102A T4L, and (D) indole binding to the L99A T4L. (E-H)
The corresponding PMF profiles of the ligand-pocket distance averaged over three LiGaMD2
simulations of (E) benzene binding to L99A T4L, (F) benzene binding to F104A T4L, (G) benzene
binding to M102A T4L, and (H) indole binding to L99A T4L. Error bars are standard deviations
of the free energy values calculated from three LiGaMD2 simulations.
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