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Abstract 

Biomolecular binding kinetics including the association (kon) and dissociation (koff) rates are critical 

parameters for therapeutic design of small-molecule drugs, peptides and antibodies. Notably, drug 

molecule residence time or dissociation rate has been shown to correlate with their efficacies better 

than binding affinities. A wide range of modeling approaches including quantitative structure-

kinetic relationship models, Molecular Dynamics simulations, enhanced sampling and Machine 

Learning have been developed to explore biomolecular binding and dissociation mechanisms and 

predict binding kinetic rates. Here, we review recent advances in computational modeling of 

biomolecular binding kinetics, with an outlook for future improvements. 
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1. Introduction 

Life processes are critically dependent on the formation of biomolecular complexes, particularly 

including the protein-small molecule, protein-peptide and protein-protein/antibody structures. 

Biomolecular binding plays a key role in many fundamental biological processes1. Accurate 

characterization of biomolecular binding thermodynamics and kinetics is key for therapeutic 

design2. Recently, drug residence time or dissociation rate appears to correlate with drug efficacy 

better than the binding free energy3. With remarkable theoretical and technical developments, 

increasing numbers of experimental and computational methods are available for calculating the 

biomolecular binding kinetic rates3a, 3e, 3h, 4. However, it remains challenging for both experimental 

and computational approaches to accurately predict biomolecular binding kinetic rates with high 

throughput.  

    In this review, we will first briefly describe available experimental techniques for determining 

biomolecular binding kinetic rates. We will then discuss computational approaches to predict the 

biomolecular binding kinetics, with focus on the Molecular Dynamics (MD) and enhanced 

sampling methods, which have emerged as rapidly evolving techniques for studying biomolecular 

binding kinetics.   

2. Available experimental techniques to measure binding kinetics 

Most experimental techniques5 for determining biomolecular binding kinetic rates are mainly 

relying on monitoring a specific signal over time during the binding and dissociation processes. 

According to signal source, experimental methods could be generally divided into two classes: 

assays with and without a label for detection4b. Radio and spectroscopic labeling are the main 

choices for labeling assays. A radiolabel essentially comes from the presence of radioactive 
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isotopes in the molecule, which could emit special radiation when they decay to more stable states. 

In radiometric binding assays, ligands are tagged to follow the time course of their binding to 

targets, thus allowing for the spontaneous measurement of binding kinetic rates6. In the 

spectroscopy-based assays, ligands are labeled with fluorophore groups. After absorbing a certain 

wavelength’s light, fluorophore groups could emit characteristic light, allowing for detecting the 

binding and dissociation processes7. The fluorescent resonance energy transfer (FRET) is one 

popular spectroscopy based approach7. For the label free approaches, surface plasmon resonance 

(SPR) is one of the most widely used methods, especially in characterizing the biomolecular 

binding kinetics of pharmaceutical interest2a.  

    With developments of experimental techniques, recent years have seen significantly increasing 

numbers of biomolecular binding kinetic data, including the protein-small molecule, protein-

peptide and protein-protein binding kinetic rate constants. Many experimental binding kinetic rates 

have been collected in different publicly accessible databases. A number of databases as listed in 

Table 1 are useful for exploring biomolecular binding kinetics, including the kinetic data of bio-

molecular interactions (KDBI)8,  BindingDB9,  kinetics of featured interactions (KOFFI)10,  

PDBbind11, structural database of kinetics and energetics of mutant protein interactions 

(SKEMPI)12, kinetic and thermodynamic database of mutant protein interactions (dbMPIKT)13 and 

so on3d, 14.   

       KDBI8 is developed to provide experimentally verified binding kinetic rates for interactions 

involving proteins and nucleic acids (RNA and DNA). It includes 19,263 entries of 10,532 

distinguishing biomolecular pathways. The binding kinetic data includes protein-

protein/DNA/RNA/ligand and ligand-DNA/RNA interactions. BindingDB9 is one widely used 

database for exploring protein-small molecule interactions, containing ~1.1 million compounds 
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and 8.9 thousand targets with clearly defined quantitative measurement for binding affinities and 

kinetic rates. BindingDB provides a special kinetic database via link 

https://bindingdb.org/rwd/bind/ByKI.jsp?specified=Kn. The data of BindingDB are extracted from 

published literatures and other databases such as PubChem, CheEMBL, PDSP Ki, and CSAR. 

Additionally, BindingDB provides an option for experimentalists to directly deposit their data. 

KOFFI10 is developed to provide binding kinetic rates along with experimental protocol. It 

includes 1705 individual entries.  Notably, it contains a rating system to assess quality of 

experimental data. A user can perform a direct search within the Anabel's KOFFI database and 

evaluate the quality of their binding data. PDBbind11 was initially developed for collecting binding 

affinity data and complex structures for developing docking score. In 2022, it released a sub-

database (koff set) containing 169 entries of protein-small molecule dissociation rates. One 

advantage of PDBbind is the availability of the protein-small molecule complex structures, which 

could be convenient for molecular modeling. SKEMPI12 and dbMPIKT13 mainly focus on protein-

protein interaction (PPI). SKEMPI12 contains 713 protein–protein binding kinetic rates upon 

mutation. dbMPIKT13 contains 5291 entries of protein-protein binding kinetic rates involving 

mutation. In summary, developments of experimental techniques and increasing biomolecular 

binding kinetic data collected in the databases will greatly facilitate modeling of biomolecular 

binding kinetics and therapeutic design.  

 

3. Quantitative structure-kinetic relationships  

Optimal kinetic parameters for biomolecular binding could significantly improve drug efficacy. 

For that reason, several molecular modeling techniques have been developed to predict 

biomolecular binding kinetic rates and derive quantitative structure-kinetic relationships 
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(QSKRs)15. While these methods are often based on experimental structures, many of them 

consider each biomolecular complex with only one single structure15. Nunes-Alves et al.15 

modified the COMparative BINding Energy (COMBINE) analysis, which uses holo structure to 

predict binding parameters, to include extra options of using multiple protein-small molecule 

complex structures. They did so by docking small molecules to a protein conformational ensemble 

obtained from MD simulations. Specifically, full data set for COMBINE analysis consisted of 33 

inhibitors of p38 MAP kinase, which were chosen given availability of experimental koff values 

and experimental structures of the inhibitor bound to p38 MAP kinase or to other kinases in the 

DFG-out conformation state. 22 and 11 inhibitors were used for training and testing in the 

COMBINE analysis, respectively. The first step in the COMBINE analysis involved modelling of 

the two sets of structures and derivation of COMBINE analysis models. After energy minimization 

of the complex structures, interaction energy components were obtained with the AMBER ff14SB 

force field to describe bonded and non-bonded interactions. Weights to scale the protein-small 

molecule interaction energies were obtained using partial least square regression. To account for 

multiple structures, the COMBINE was modified to retrieve an average response using N 

structures for each protein-small molecule complex, in which each structure was treated 

independently during regression to obtain weights for interaction energies. Here, exponential or 

arithmetic averages could be used: 
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where (log 𝐼)!"#
$%&#  and (log 𝐼)/012

$%&#  were the predictions for the response variable using 

exponential and arithmetic averages, j was the index of the structure used, 𝑙𝑜𝑔	𝐼,  was the 

prediction made using the jth structure, and N was the number of structures to describe one protein-

small molecule complex. In one of the two structure sets used for the COMBINE analysis, each 

complex was represented using one experimental crystal structure. In another set, each complex 

was represented using 10 structures from ensemble docking15. Although COMBINE model 

obtained with multiple structures from ensemble docking took protein-ligand flexibility into 

consideration, the predictive power was lower than the model from a single, energy-minimized 

crystal structures for each protein-ligand complex. Nevertheless, the incorporation of protein-

ligand flexibility highlighted additional important protein-ligand interactions that led to longer 

residence time.  

 In another study, Schuetz et al.16 performed matched molecular pair (MMP) analysis on 

datasets assembled from the Kinetic for Drug Discovery database, which included 3812 small 

molecules annotated to 78 different targets from five diverse protein classes, including G-protein-

coupled receptors (GPCRs), kinases and other enzymes, heat shock proteins (HSPs), and ion 

channels. The kinetic dataset (KIND) contains complex structures along with their respective 

binding kinetic data (kon, koff, KD). To elucidate the impact of small structural changes on the 

binding kinetic behavior, a total of 395 MMPs extracted from KIND were performed. The pairs 

were made of two molecules possessing identical scaffolds and showing minor chemical 

modifications. This dataset included various chemical modifications, with the top 20 representing 

less than 65% of the entire dataset. The most common modification, which was replacement of a 

hydrogen atom by a methyl group, comprised around 15%. To demonstrate that changes in a 

molecule’s polarity are the major factor for the alteration of binding association rate kon, the authors 
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focused on analyzing top 20 MMPs with highest differences in kon values. For 16 out of 20 MMPs, 

a substitution that increases polarity was observed. The largest differences in kon were found with 

the introduction of charged moiety, leading to decrease of 0.5- 2.0 orders of magnitude. The 

decrease in kon might come from electrostatic repulsion and/or desolvation penalties. Conversely, 

an improvement in binding affinity was observed if modifications established additional 

interactions in the final bound complexes. The dissociation rate koff was also analyzed following 

the same protocol for kon. In contrast to kon, the change of molecular polarity in the MMPs did not 

produce a consistent shift in koff.  

 In 2018, Ganotra and Wade applied COMBINE analysis to derive QSKRs for the 

dissociation rates (koff) of inhibitors of HSP90 and HIV-1 protease17. Protein-specific scoring 

functions were derived by correlating koff with a subset of weighted interaction energy components 

determined from energy minimized biomolecular complex structures. A set of 3D structures of 

protein-ligand complexes were modeled and energy minimized. Protein-ligand interaction 

energies were first calculated, then partitioned and subjected to partial least-squares projection to 

latent structures (PLS) regression. A statistical model was derived to correlate the activity of 

interest to weighted selected components of the protein-ligand interaction energy decomposed on 

a per residue basis, based on the following equation: 

log(𝑘) =.𝑤1∆𝑢1 + 𝐶
3

1-.

 
(3) 

where k was the rate constant of interest, and ∆𝑢1 were per residue terms of the ligand-receptor 

interaction energy, calculated for n residues. The coefficients 𝑤1  and constant C could be 

determined from PLS regression. The dataset used for the COMBINE analysis of HSP90 and HIV-

1 protease inhibitors consisted of 70 and 36 compounds, respectively. Experimental koff values 
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ranged from 0.0001 to 0.83 s-1 for the HSP90 inhibitors and 0.00022 to 83.3 s-1 for the HIV-1 

protease inhibitors. For the COMBINE analysis, 207 coulombic and 207 Lennard-Jones (LJ) 

interaction energy terms were calculated for the HSP90 inhibitors, and 198 coulombic and 198 LJ 

energies were calculated for HIV-1 protease inhibitors. The resulting COMBINE models for koff 

rates had very good predictive power (Q2LOO = 0.69 for HSP90, and Q2LOO = 0.70 for HIV-1 

protease), which could also identify contributing protein-ligand interactions for binding kinetics.  

 In order to explore molecular details of biomolecular binding processes on a large scale, 

Chiu et al. 18 recently integrated coarse-grained normal mode analysis (NMA) with multi-target 

machine learning (MTML) to address the above challenge and tested their method using the HIV-

1 protease as a model system. The workflow included four phases. In phase 1, the 3D complex 

structure of the ligand-bound HIV-1 protease was built. Ligands without experimental structure 

were docked into the HIV-1 protease using the eHiTS software. In phase 2, residues in the ligand-

binding site were identified. Coarse-grained NMA was performed for both apo and holo structures. 

The authors defined RMLR as the dot product of ligand displacement vector after normalization 

and the residue displacement vector, and RMRR as the dot product of the displacement vectors of 

a residue for the apo and holo structures. Therefore, RMLR and RMRR could be derived from the 

NMA and describe the conformational dynamics impact of ligand binding on the residues in the 

binding site. In phase 3, five principal data sets were constructed. Pairwise decomposition of the 

residue interaction energy was computed by minimizing 39 ligand-bound HIV-1 complexes with 

NAMD simulations using the generalized Born implicit solvent (GBIS) method. The final 

simulation conformations were used to compute the residue-decomposed pairwise interaction 

energy (PIE), the van der Waals energy (VDWE) and the electrostatic energy (EE) between the 

ligand and protein residues. The energetic features (PIE, VDWE, and EE) and conformational 
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dynamics features (RMRR and RMLR), along with experimentally determined kon and koff data 

were used to train MTML models in phase 4 of the workflow. The model was evaluated regarding 

the accuracies in the predictions of binding kinetic rate constants kon and koff using the following 

formula: 

accuracy =.
𝐴1
𝑁

3
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(4) 

where 𝐴1 was the prediction accuracy for each case and 𝑁 was the total number of cases. 𝐴1 =

100% when both kon and koff were accurately predicted, and 𝐴1 = 0% when neither was correctly 

predicted. The model was further evaluated in high-throughput screening of molecules with in vivo 

drug activity on the basis of kon and koff using the receiver operating characteristic (ROC) curve 

and the area under the ROC curve (AUC). The computational models were not only found to 

recapitulate the results from MD simulations but also accurately predict protein-ligand binding 

kinetic rates, with an accuracy of 74.35% when combined with energy features. In addition, the 

integrated models showed that the coherent coupling of conformational dynamics and 

thermodynamic interactions between the receptor and ligand played a critical role in determining 

protein-ligand binding kinetic rates. 

 Engel et al. designed novel and irreversible epidermal growth factor receptor (EGFR) 

inhibitors using a structure-based approach rationalized by subsequent computational analysis of 

conformational ligand ensembles in solution19. The approach was based on a screening hit that was 

identified in a phenotype screen of ~1,500 compounds in 80 non-small cell lung cancer (NSCLC) 

cell lines. With X-ray crystallography, the binding mode in engineered cSrc (T338M/S345C), a 

validated model system for EGFR-T790M, was deciphered. Chemical synthesis revealed further 

compound collections that increased biochemical potency and selectivity toward mutated (L858R 
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and L858R/T790M) vs. wildtype EGFR. Kinetic studies were performed to investigate the rate 

and efficiency of covalent bond formation for the most effective inhibitors, 5b and 6a. The 

corresponding time-dependent affinity (Ki) and reactivity (kinact) parameters with respect to the 

mutants L858R and T790M/L858R of EGFR were determined by an activity-based assay. The 

respective IC50 values of 5b and 6a were monitored after treatment of the respective proteins in a 

time-dependent manner. These values were correlated to the respective incubation times, from 

which Ki and kinact parameters could be determined8. Inhibitors 5b and 6a were found to exhibit 

extraordinarily high affinity toward EGFR L858R/T790M, with respective Ki values of 0.64 and 

0.32 nM, and specific, moderate reactivity, with kinact values of 0.116 and 0.137 min-1.  On the 

contrary, both the binding affinity and specific reactivity of 5b and 6a toward EGFR L858R were 

significantly impaired (Ki = 70.2 and 833 nM, and kinact = 0.017 and 0.055 min-1). In summary, 

with increasing numbers of available experimental binding kinetic data and advances in the 

modeling approaches, the built QSKR will become more accurate and allow for high-throughput 

screening, which is very helpful at early stage of drug design.  

 

4. Molecular Dynamics and enhanced sampling methods for predicting binding kinetics  

MD is a powerful technique for simulations of biomolecular structural dynamics20. The accessible 

timescale of conventional MD (cMD) has reached hundreds of microseconds thanks to remarkable 

advances in computing hardware (e.g., the Anton supercomputer and GPUs) and software 

developments21. Notably, the latest Anton321f has enabled hundreds-of-microseconds cMD 

simulations per day. The cMD simulations have been widely applied to investigate biomolecular 

binding processes22. However, it is still challenging for cMD to simulate repetitive biomolecular 

dissociation and rebinding processes21a, 23. In this regards, enhanced sampling methods24 have been 
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developed to simulate biomolecular binding and dissociation processes, and predict the associated 

binding kinetic rates, including the widely used Weighted Ensemble25, mile-stoning method26, 

Gaussian accelerated MD (GaMD)27, Metadynamics28, Markov State Modeling (MSM)29, Random 

Acceleration Molecular Dynamics (RAMD) 30, scaled MD 31 and so on. Recent years have seen a 

significant increasing numbers of studies on predicting biomolecular binding kinetic rates using 

MD simulations (Fig. 1A). To evaluate the accuracy of simulation predicted kinetic rates, we 

define the prediction errors of binding and dissociation kinetic rates as: 

Δ log 𝑘%3 = log 𝑘%341& − log 𝑘%3
!"#, 

Δ log 𝑘%55 = log 𝑘%5541& − log 𝑘%55
!"#,         (5) 

where simulation predicted binding (𝑘%341& ) and dissociation (𝑘%5541& ) rates are compared with 

experimentally determined binding (𝑘%3
!"#) and dissociation (𝑘%55

!"#) rates. Most values of the ∆logk 

are in the range of -1 to 1 (Fig.1B), suggesting good prediction accuracy obtained from MD 

simulations. In the next sections, we will discuss recent applications of the above-mentioned 

methods in exploring biomolecular binding kinetics for distinct protein-small molecule, protein-

peptide and protein-protein binding systems. 

 

Protein-small molecule binding kinetics 

Compared with slower ligand dissociation process, ligand binding is much quicker, which allows 

cMD to capture ligand binding process and predict the binding association rate (kon). For example, 

spontaneous binding of the Dasatinib drug to its target Src kinase was observed in a total of ~35.0 

μs cMD simulations performed by Shan et al.22a. The estimated binding association rate (kon) was 

0.19x107 M-1s-1, being highly consistent with the experimental value of 0.5x107 M-1s-1. The same 

system was used to test a novel approach-unaggregated unbiased MD (UUMD) developed by 
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Sohraby et al.32. In contrast to the repulsion added to special atom in the ligand by Shan et al.22a, 

the repulsion in the UUMD was added to a virtual interaction site in the ligand to avoid aggregation. 

Notably, the UUMD could capture multiple independent Dasatinib binding events within 

nanosecond simulations. The predicted binding association rate (kon) was 0.75x107 M-1s-1, being 

highly consistent with the experimental data (Table 2).  It is worth noting that no dissociation 

event was observed in the cMD simulations, prohibiting calculation of ligand dissociation rate 

(koff). 

Coarse-grained models were developed for MD simulations to reduce the demands for 

computational resources and extend the simulation timescale33. Based on Martini coarse-grained 

model, Dandekar et al.34 captured spontaneous binding of benzamidine to the trypsin binding 

pocket from bulk solvent. Based on 426 μs MD simulation data, they predicted the binding kinetic 

rates of (kon, koff) at (36.8x107M-1s-1, 6.9 x105s-1). The corresponding experimental values were 

(2.9x107M-1s-1, 600s-1). Therefore, the predicted kon value was ~13 folds higher than the 

experimental data. However, large derivation was observed between the predicted and 

experimentally determined koff.  

Multiscale computational approaches have been developed to improve the efficiency and 

accuracy of ligand binding thermodynamics and kinetics calculations35. For example, simulation 

enabled estimation of kinetic rates (SEEKR) 35b, 36 is a multiscale simulation approach combining 

MD, Brownian dynamics, and mile-stoning for predicting protein−ligand binding association and 

dissociation rates. SEEKR has been shown to estimate accurate binding kinetic rates with 

simulation time reduced by a factor of 1035b. Using the trypsin-benzamidine model system as 

example, the SEEKR and its latest version SEEKR2 predicted the binding kinetic rates of (kon, koff) 
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at (12±0.5x107M-1s-1, 174±9s-1) and (2.4±0.2x107M-1s-1, 990±130s-1), respectively, being highly 

consistent with the corresponding experimental data of (2.9x107M-1s-1, 600s-1).  

Mile-stoning method26 has been applied to predict the dissociation rate of the Imatinib drug 

to Abl kinase. Based on the total of 1.043 μs simulations, the value of koff was predicted as 18 s-1, 

being highly consistent with the experimental value of 25±6s-1.Weighted Ensemble37 and MSM29a 

have been developed to improve prediction of ligand binding kinetic rates based on a large number 

of short cMD trajectories. In the trypsin-benzamidine system, the dissociation rate (koff) of 2,660 

s-1 was predicted with one weighted ensemble37 of a total amount of 8.75 μs cMD simulations, 

being ~4.43 times faster than the experimental value. Another weighted ensemble38 of a total of 

0.48 μs cMD was able to predict the T4 lysozome (T4L)-benzene binding kinetic rates of (kon, koff) 

at (0.53±0.08x107M-1s-1, 791±197s-1), being highly consistent with the corresponding 

experimental value of (0.08-0.1x107M-1s-1, 950±200s-1). MSM was able to simultaneously predict 

the ligand association and dissociation rates through longer aggregated cMD simulations. For 

example, one MSM built with 59 μs cMD simulation data was able to accurately predict T4L-

benzene binding kinetic rates. The predicted binding kinetic rate values of (kon, koff) were 

(0.21±0.09x107M-1s-1, 310±130s-1), being highly consistent with the experimental data of (0.08-

0.1 x107M-1s-1, 950±200 s-1). MSM built with 50 μs cMD simulation data was used to predict the 

binding kinetic rates of the trypsin-benzamidine system29b. The predicted values of (kon, koff) were 

(15.0±2.0x107M-1s-1, 9.5±3.3104s-1), being in line with the experimental values of (2.9x107M-1s-1, 

600s-1). However, these calculations required very expensive computational resources. 

Metadynamics39 has been widely applied to investigate the ligand binding kinetics. 

Multiple Infrequent Metadynamics (InMetaD) simulations with a total of 5 μs trajectories were 

performed to predict the pathways of benzamidine binding to the trypsin and the binding kinetic 
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rates. The predicted values of (kon, koff) were (1.18±1.0 x107M-1s-1, 9.1 ± 2.5 s-1), being smaller 

than the experimental values of (2.9x107M-1s-1, 600s-1). Similar smaller predicted values of (kon, 

koff) at (0.0035±0.002 x107 M-1s-1, 7±2 s-1) were observed in another 12 μs InMetaD simulations 

of benzene binding to T4L28a. For the Src-Dasatinib system, one study with 7 μs InMetaD 

simulations40 was able to predict the koff value of 0.048±0.024 s-1, being highly consistent with the 

experimental value of 0.06 s-1. For the p38α-compound I system, 6.8 μs InMetaD simulations28f 

predicted the koff value of 0.020 ± 0.011 s−1, being in line with the experimental value of 0.14 s−1. 

Besides, accuracy of force field also plays a critical role in predicting biomolecular binding kinetic 

rates. For example, Capelli et al.41 applied two approaches to obtain the RESP charges for drug 

Iperoxo to predict its dissociation rate in the M2 receptor. The two approaches included the one 

with Amber standard methodology based on HF/6-31G* (RESP-HF) calculations and another one 

based on DFT/B3LYP (RESP-B3LYP) calculations. The simulations based on RESP-HF charges 

failed to predict the koff rate due to the unreasonable obtained transition state free energy. While 

simulations with RESP-B3LYP charges could predict the koff value of 3.7 ± 0.7 ×10−4 s−1, being 

in line with the experimental data of 1.0 ± 0.2×10−2 s−1. For the Src-Imatinib system, Haldar et 

al.42 showed that accounting for changes in charge distribution with QM/MM calculations 

improved the Imatinib dissociation rate from 0.0114s-1 to 0.026s-1, being more consistent to the 

experimental value of 0.11±0.08 s-1. Although Metadynamics simulations have shown remarkable 

improvements in capturing ligand binding and dissociation processes that occur over exceedingly 

long timescales, users often face a challenge for defining collective variables (CVs), which 

requires expert knowledge of the studied systems43. The simulations may suffer from a “hidden 

energy barrier” problem if important CVs were missed during the simulation setup44. To facilitate 

the choice of CVs, machine learning (ML) has been incorporated into Metadynamics simulations. 
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Wang et al. developed a predictive information bottleneck (PIB) approach to identify CVs and 

predict biomolecular dissociation rates 45. The PIB was tested on the system of benzene binding to 

T4L and the predicted koff value was 3.3 ± 0.8s-1, being consistent with other InMetaD simulations 

but needing much shorter simulations29c. In another study, Filizola et al.46 developed a novel 

approach, which combined InMetaD and ML methods including automatic mutual information 

noise omission and reweighted autoencoded variational Bayes to predict the dissociation kinetic 

rates of two drugs (morphine and bruprenorphine) in the μ-opioid receptor. Based on ~6 μs 

InMetaD simulations, the predicted koff for the morphine and bruprenorphine were 0.057±0.005 s-

1 and 0.021±0.003 s-1, respectively, being within one order of magnitude difference from 

experimental values of 0.0023±0.001 s-1 and 0.0018±0.03 s-1. Very recently, Narjes et al.47  

combined ML and a novel Metadynamics approach, On-the-fly Probability Enhanced Sampling 

(OPES) flooding, to investigate the binding of benzamidine to trypsin. Based on a total of ~2.74 μ

s OPES simulations, they captured 55 benzamidine unbinding events and predicted the koff value 

of 1560 s-1, being highly consistent with the experimental data.  

Scaled MD48 has been mainly used for the prediction of koff as a scale factor ranging from 

0 to 1 is introduced in the simulations to reduce energy barrier to facilitate ligand dissociation. For 

example, Schuetz et al.31b performed scaled MD simulations to accurately predict the residence 

time and drug dissociation pathways of different inhibitors in Hsp90. In a recent study49, Bianciotto 

et al. applied scaled MD simulations to predict the residence time and ligand unbinding pathways 

for a set of 27 ligands of Hsp90, being highly consistent with experimental data. In the RAMD 

simulations, an additional random force is applied on the ligand to promote its movement. Similar 

to scaled MD, RAMD is mainly used in the ligand dissociation simulations to qualitatively predict 

dissociation rates. In one recent study, Nunes-Alves et al.30a performed RAMD simulations to 
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predict ligand dissociation rates of T4L. The predicted kinetic rates correlated well with 

experimental values for various systems with different ligands, temperatures, and protein 

mutations.  

GaMD27 is developed to apply a harmonic boost potential to enhance sampling with 

reduced energetic noise. The boost potential normally exhibits a near Gaussian distribution, which 

enables proper reweighting of the free energy profiles through cumulant expansion to the second 

order27. GaMD has been successfully applied to simulate important biomolecular processes, 

including protein/RNA folding27b, 50, ligand/protein/RNA binding50a, 51, and protein 

conformational changes51f, 52. However, it remained challenging to accurately predict ligand 

binding kinetic rates through normal GaMD 27a, 53. Recently, a “selective GaMD” algorithm, called 

Ligand GaMD (LiGaMD) 54, has been developed to allow for more efficiently sampling of ligand 

binding and dissociation processes, which thus allows to accurately predict the ligand binding 

kinetic rates. For the protein ligand binding system, the system contains ligand L, protein P and 

the biological environment E. The system potential energy could be decomposed into the following 

terms:	 

𝑉(𝑟) = 𝑉6,8(𝑟6) + 𝑉9,8(𝑟9) + 𝑉:,8(𝑟:) +	𝑉66,38(𝑟6) + 𝑉99,38(𝑟9) + 𝑉::,38(𝑟:) +

		𝑉69,38(𝑟69) + 𝑉6:,38(𝑟6:) + 𝑉9:,38(𝑟9:),     (6) 

where	𝑉6,8, 𝑉9,8 and 𝑉:,8 are the bonded potential energies in protein P, ligand L and environment 

E, respectively. 𝑉66,38, 𝑉99,38 and 𝑉::,38 are the self non-bonded potential energies in protein P, 

ligand L and environment E, respectively. 	𝑉69,38 , 𝑉6:,38  and 𝑉9:,38  are the non-bonded 

interaction energies between P-L, P-E and L-E, respectively.  Ligand binding mainly involves the 

non-bonded interaction energies of the ligand. Therefore, LiGaMD selectively boosts on the ligand 

essential energy term of 𝑉(1)/3;(𝑟) = 𝑉99,38(𝑟9) + 	𝑉69,38(𝑟69) + 𝑉9:,38(𝑟9:) . In order to 
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facilitate ligand rebinding, another boost was added to the remaining potential interaction of the 

system. Repetitive binding and dissociation of small-molecule ligands were captured in the 

LiGaMD simulations of host-guest and protein-ligand binding model systems54. Repetitive guest 

binding and dissociation in the β-cyclodextrin host were observed in hundreds-of-nanoseconds 

LiGaMD simulations. Accelerations of ligand kinetic rates in LiGaMD simulations were properly 

estimated using Kramers’ rate theory. Furthermore, microsecond LiGaMD simulations observed 

repetitive benzamidine binding and dissociation in trypsin. The benzamidine binding and 

dissociation rates were predicted to be 1.15±0.79 × 107 M-1·s-1 and 3.53±1.41 s-1, respectively. 

These data were comparable to the experimental values55 of 2.9 × 107 M-1·s-1 and 600 s-1. Very 

recently, five replicas of 5 μs LiGaMD simulations successfully captured repetitive Nirmatrelvir 

drug binding and dissociation in the 3CLpro binding domain56. The Nirmatrelvir binding and 

dissociation rates were predicted to be 3.20±0.21×105 M-1·s-1 and 2.92±0.37×103s-1, respectively. 

As no available experimentally determined binding kinetic rates, the authors predicted the 

dissociation constant (kD) from the predicted binding kinetic rates by equation kD = koff/kon. 

Notably, the predicted kD was 9.10±0.29 nM, being highly consistent with the available 

experimental value of 7±3 nM57, demonstrating high accuracy of the predicted binding kinetic 

rates from LiGaMD simulations. 

 

Protein-peptide binding kinetics  

In comparison with the extensively studied protein-small molecule binding, protein-peptide 

binding studies are much less although increasing number of peptide-based drugs are being 

licensed to market in recent years58. Large conformational changes of peptides often occur during 

binding to target proteins, bringing huge challenges for modeling22b, 59. For example, coupled 
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folding-upon binding mechanism has been observed in serval systems of peptide binding to 

proteins22b, 59. Only few number of computational approaches have been implemented to predict 

peptide binding kinetic rates, including the InMetaD59, Weighted Ensemble60, MSM61, and Peptide 

GaMD (Pep-GaMD)62 (Table 3). 

    InMetaD simulations with three CVs have successfully predicted the peptide binding and 

dissociation rates for the system of p53-MDM259. Based on 27 μs InMetaD simulations59, the 

predicted values of (kon, koff) were (0.43±0.22x107M-1s-1, 0.7±0.4s-1), being comparable to the 

corresponding experimental values of (0.92x107M-1s-1, 2.06s-1). Weighted Ensemble of a total 

amount of ~120 μs cMD simulations in implicit solvent was performed on the same p53-MDM2 

system60. The predicted p53 binding kinetic rate (kon) was 7s-1, being highly consistent with the 

experiential data of 2.06 s-1. Built on a total of 831 μs cMD simulations of p53 binding to the 

MDM2, the MSM61 predicted accurate values of kon and koff at 0.019x107 M-1s-1 and 2.5 s-1, 

respectively. However, the simulations needed for building MSM are much longer than the 

Weighted Ensemble and InMetaD simulations. Another MSM built on hundreds-of-microsecond 

cMD and Hamiltonian replica exchange simulations has been implemented to characterize binding 

and dissociation of the PMI peptide to the MDM263. The PMI dissociation process is rather slow 

with the residence time at the timescale of second. Therefore, ~50 μs Hamiltonian replica exchange 

simulations were performed to predict the dissociate rate. The predicted values of (kon, koff) were 

(300x107M-1s-1, 0.125-1.13s-1), being comparable to the corresponding experimental values of 

(52.7x107M-1s-1, 0.037s-1).   

    Based on GaMD,  we recently developed an algorithm called peptide GaMD or “Pep-GaMD” 

that enhances sampling of protein-peptide interactions62. As above mentioned, large 

conformational change involved in the process of peptide binding to target proteins22b, 59. Therefore, 



 20 

peptide binding involves in both the bonded and non-bonded interaction energies of the peptide. 

Thus, the essential peptide potential energy is defined as 𝑉#!#21;!(𝑟) = 𝑉99,8(𝑟9) + 𝑉99,38(𝑟9) +

	𝑉69,38(𝑟69) + 𝑉9:,38(𝑟9:). A selective boost was thus added to the essential peptide potential to 

facilitate the dissociation of peptides in the Pep-GaMD. In addition to selectively boosting the 

peptide, another boost potential is applied on the protein and solvent to enhance conformational 

sampling of the protein and facilitate peptide rebinding.  

Pep-GaMD62 has been developed to capture repetitive peptide binding and dissociation 

processes, which allows us to calculate the peptide binding free energies and kinetic rates. It has 

been demonstrated on binding of three model peptides to the SH3 domains64, including 

“PPPVPPRR” (PDB: 1CKB), “PPPALPPKK” (PDB: 1CKA) and “PAMPAR” (PDB: 1SSH). 

Repetitive peptide binding and unbinding events were captured in independent 1 μs Pep-GaMD 

simulations, allowing us to calculate peptide binding thermodynamics and kinetics. The predicted 

values of both binding free energies and kinetic rates from Pep-GaMD simulations were in good 

agreement with available experimental data.  Particularly, the predicted peptide binding kinetic 

rates of 1CKB was (4060±2260 × 107 M-1·s-1, 1450 ± 1170 s-1), being within 1 order of the 

experimental data of (150 × 107 M-1·s-1, 8900 s-1).  

 

Protein-protein binding kinetics  

Protein-protein interactions (PPIs) play key roles in many fundamental biological processes, 

including cellular signal transduction, immune responses and so on1. Moreover, PPIs are 

implicated in the development of numerous human diseases and served as important drug targets.65 

PPIs exhibit unique features, being distinct from the protein-small molecule and protein-peptide 
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interactions. The protein-protein binding affinity is often stronger than that of protein-small 

molecule and protein-peptide interactions. Protein-protein binding and unbinding processes often 

occurred in significantly longer timescale. Particularly, protein-protein dissociation process could 

take place in a much longer time scale, from seconds to even days. Tens of microseconds cMD 

simulations were able to capture barnase binding to barstar20d. Based on 28 successfully binding 

events captured in a total of ~213 μs Anton cMD simulations with TIP4P2005 water model20d,  the 

predicted barnase binding rate (kon) was 6x107M-1s-1, being in line with the experimental value of 

60x107M-1s-1. Less barnase binding events (24) with slower predicted binding rate (2.3x107M-1s-1) 

were observed with the TIP3P water model. Additionally, Pan et al.20d successfully predicted the 

binding kinetic association rates of another two systems of insulin dimerization and Ras binding 

to Ras-binding domain of c-RAF-1 (Ras-Raf-RBD). Based on 6 successful binding events among 

the total of 294.8 μs cMD simulations, the predicted association rate (kon) of the insulin 

dimerization was 0.41x107 M-1·s-1, being comparable to the experimental value of 11.4x107 M-1·s-

1. For the Ras-Raf-RBD system, 117 μs cMD simulations successfully captured 7 binding events 

and predicted kon value of 2.6 x107 M-1·s-1, being highly consistent with the experimental data of 

4.5 x107 M-1·s-1. However, it remains challenging to simulate the protein dissociation with cMD20d. 

Weighted Ensemble24d of a total of ~18 μs cMD simulations were able to capture 203 

barnase binding events and accurately predict the barnase-barstar binding rate constant (kon) of 

23±10 x107 M-1·s-1. Plattner et al.66 performed high throughput MD simulations of the barnase 

binding to barstar to build MSM. A total of 1700 μs cMD simulations with 1,892 independent 

replicas starting from unbound state captured 74 barnase binding events. Another set of 300 μs 

adaptive MD simulations captured 16 and 10 times of barnase binding and dissociation events, 

respectively. Based on the total of 2,000 μs simulation data, the obtained MSM was able to predict 
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intermediate structures, binding energies and kinetic rates that were consistent with experimental 

data66.  

     Recently, we developed a selective PPI-GaMD method67 to simulate repetitive protein binding 

and dissociation in order to calculate protein binding free energies and kinetics. The PPI simulation 

system consists of a ligand protein L, a target protein P and a biological environment E. In PPI-

GaMD, a selective boost potential is added to the non-bonded protein-protein interaction energy 

𝑉69,38 . Another boost potential is applied on the remaining potential energy of the system to 

enhance conformational sampling of the proteins and facilitate protein diffusion and rebinding67.  

PPI-GaMD62 has been demonstrated on the model system of barnase binding to the barstar. Six 

independent 2 μs PPI-GaMD simulations have successfully captured repetitive barstar dissociation 

and rebinding events. Three to six binding and dissociation events were observed in each 

individual PPI-GaMD simulations. The barnase binding free energy predicted from PPI-GaMD 

was -17.79 kcal/mol with a standard deviation of 1.11 kcal/mol, being highly consistent with the 

experimental value of -18.90 kcal/mol65c. Additionally, the PPI-GaMD simulations allowed us to 

calculate the protein binding kinetics. The average kon and koff were predicted as 21.7±13.8×108 M-

1×s-1 and 7.32±4.95×10-6 s-1, being consistent with the corresponding experimental values of 

6.0×108 M-1×s-1 and 8.0×10-6 s-1, respectively.  

 

5. Conclusions and outlook 

Both experimental and computational techniques have achieved remarkable advances in 

characterizing biomolecular binding kinetics, including SPR, QSKR, MD and enhanced sampling 

simulations. It is still very expensive and resource-consuming for experimental techniques to 
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obtain biomolecular binding kinetic rates. Nevertheless, recent years have seen increasing numbers 

of experimental binding kinetic data, leading to a number of databases to collect such information.  

Based on the experimental binding kinetic data, QSKRs have been developed to predict 

binding kinetic rate constants with high throughtput15. For MD simulations, accuracy of binding 

free energy calculations could be within 1.0 kcal/mol with the modern techniques68. Compared 

with extensively studied biomolecular binding thermodynamics, the accuracy and efficacy of 

modeling techniques for predicting biomolecular binding kinetics are still not very high. The 

predicted binding kinetic rate constants from MD simulations and related enhanced sampling 

methods could derivate orders of magnitude from the experimental data (Tables 2-4 & Fig 1B). 

Nevertheless, MD simulations have enabled characterization of biomolecular binding pathways 

and kinetics, attracting increasing attentions in recent years. With advances in computer hardware 

and accuracy of force fields, long timescale cMD simulations with all-atom and/or coarse-grained 

models have successfully captured biomolecular binding process and predicted accurate binding 

associate rates20d, although slower dissociation processes are still difficult to simulate.  

Enhanced sampling methods have greatly reduced the computational cost for calculations 

of biomolecular kinetics. Among various enhanced sampling methods, the MSM, InMetady and 

GaMD appear to be the most used techniques that allow for simultaneous predictions of 

biomolecular binding association and dissociation rates (Fig. 2). Another trend is the incorporation 

of ML into enhanced sampling methods to further improve sampling efficiency and prediction 

accuracy of biomolecular binding kinetic rates46, 69.  

Overall, current computational methods have been tested mostly on model systems with 

published experimental kinetic data in the literature. The simulation protocols could be potentially 

calibrated to predict the kinetic rate constants against the experimental values. This would suggest 
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a need for community blind challenges on biomolecular binding kinetics predictions, in which 

participants predict the kinetic rates without knowing the experimental values and the predictions 

will be evaluated independently by the challenge organizers. Such challenges are expected to 

greatly facilitate improvements of the various techniques developed for predicting biomolecular 

binding kinetics in the field. In addition to protein-ligand binding, protein-peptide binding and 

protein-protein interactions, interactions of nucleic acids (RNA and DNA) with small molecules 

and proteins remain largely underexplored and warrant more kinetics studies. 

In summary, accurate calculations of biomolecular binding kinetics of large biomolecular 

complexes present grand challenges for computational modelling and enhanced sampling 

simulations. Further innovations in both computing hardware and method developments may help 

us to address these challenges in the future.  

 

Acknowledgements 

This work used supercomputing resources with allocation awards TG-MCB180049 and 

BIO210039 through the Extreme Science and Engineering Discovery Environment (XSEDE), 

which is supported by National Science Foundation grant number ACI-1548562 and project 

M2874 through the National Energy Research Scientific Computing Center (NERSC), which is a 

U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-

AC02-05CH11231. It also used computational resources provided by the Research Computing 

Cluster at the University of Kansas. This work was supported in part by the National Institutes of 

Health (R01GM132572) and National Science Foundation (2121063). 

  



 25 

6. References 

1. Nooren, I. M.; Thornton, J. M., Diversity of protein–protein interactions. The EMBO 
journal 2003, 22 (14), 3486-3492. 
2. (a) Núñez, S.; Venhorst, J.; Kruse, C. G., Target–drug interactions: first principles and 
their application to drug discovery. Drug discovery today 2012, 17 (1-2), 10-22; (b) Hajduk, P. 
J.; Greer, J., A decade of fragment-based drug design: strategic advances and lessons learned. 
Nature reviews Drug discovery 2007, 6 (3), 211-219; (c) Klebe, G., Applying thermodynamic 
profiling in lead finding and optimization. Nature Reviews Drug Discovery 2015, 14 (2), 95-110. 
3. (a) Schuetz, D. A.; de Witte, W. E. A.; Wong, Y. C.; Knasmueller, B.; Richter, L.; Kokh, 
D. B.; Sadiq, S. K.; Bosma, R.; Nederpelt, I.; Heitman, L. H., Kinetics for Drug Discovery: an 
industry-driven effort to target drug residence time. Drug Discovery Today 2017, 22 (6), 896-
911; (b) Tonge, P. J., Drug–target kinetics in drug discovery. ACS chemical neuroscience 2018, 
9 (1), 29-39; (c) Ahmad, K.; Rizzi, A.; Capelli, R.; Mandelli, D.; Lyu, W.; Carloni, P., 
Enhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status 
and Perspective. Frontiers in Molecular Biosciences 2022, 9; (d) Ijzerman, A. P.; Guo, D., 
Drug–Target Association Kinetics in Drug Discovery. Trends in Biochemical Sciences 2019, 44 
(10), 861-871; (e) Ferruz, N.; De Fabritiis, G., Binding Kinetics in Drug Discovery. Molecular 
Informatics 2016, 35 (6-7), 216-226; (f) Zhou, Y.; Fu, Y.; Yin, W.; Li, J.; Wang, W.; Bai, F.; Xu, 
S.; Gong, Q.; Peng, T.; Hong, Y.; Zhang, D.; Zhang, D.; Liu, Q.; Xu, Y.; Xu, H. E.; Zhang, H.; 
Jiang, H.; Liu, H., Kinetics-Driven Drug Design Strategy for Next-Generation 
Acetylcholinesterase Inhibitors to Clinical Candidate. Journal of Medicinal Chemistry 2021, 64 
(4), 1844-1855; (g) Holdgate, G. A.; Gill, A. L., Kinetic efficiency: the missing metric for 
enhancing compound quality? Drug Discovery Today 2011, 16 (21), 910-913; (h) Copeland, R. 
A.; Pompliano, D. L.; Meek, T. D., Drug-target residence time and its implications for lead 
optimization. Nat Rev Drug Discov 2006, 5 (9), 730-739. 
4. (a) Sohraby, F.; Nunes-Alves, A. In Recent advances in computational methods for 
studying ligand binding kinetics, 2022; (b) Bernetti, M.; Masetti, M.; Rocchia, W.; Cavalli, A., 
Kinetics of Drug Binding and Residence Time. Annual Review of Physical Chemistry 2019, 70 
(1), 143-171; (c) Lu, H.; Tonge, P. J., Drug–target residence time: critical information for lead 
optimization. Current Opinion in Chemical Biology 2010, 14 (4), 467-474; (d) Bruce, N. J.; 
Ganotra, G. K.; Kokh, D. B.; Sadiq, S. K.; Wade, R. C., New approaches for computing ligand–
receptor binding kinetics. Current Opinion in Structural Biology 2018, 49, 1-10; (e) Dahl, G.; 
Akerud, T., Pharmacokinetics and the drug–target residence time concept. Drug Discovery 
Today 2013, 18 (15), 697-707; (f) Copeland, R. A., Drug–target interaction kinetics: 
underutilized in drug optimization? Future Medicinal Chemistry 2016, 8 (18), 2173-2175; (g) 
Copeland, R. A., The drug–target residence time model: a 10-year retrospective. Nature Reviews 
Drug Discovery 2016, 15 (2), 87-95. 
5. (a) Gleitsman, K. R.; Sengupta, R. N.; Herschlag, D., Slow molecular recognition by 
RNA. Rna 2017, 23 (12), 1745-1753; (b) Kumar, M.; Lowery, R. G., A High-Throughput 
Method for Measuring Drug Residence Time Using the Transcreener ADP Assay. SLAS 
DISCOVERY: Advancing Life Sciences R&D 2017, 22 (7), 915-922. 
6. (a) Hulme, E. C.; Trevethick, M. A., Ligand binding assays at equilibrium: validation and 
interpretation. British journal of pharmacology 2010, 161 (6), 1219-1237; (b) Guo, D.; Hillger, J. 
M.; IJzerman, A. P.; Heitman, L. H., Drug‐target residence time—a case for G protein‐coupled 
receptors. Medicinal research reviews 2014, 34 (4), 856-892. 



 26 

7. Calebiro, D.; Koszegi, Z.; Lanoiselee, Y.; Miljus, T.; O'Brien, S., G protein-coupled 
receptor-G protein interactions: a single-molecule perspective. Physiol Rev 2021, 101 (3), 857-
906. 
8. Ji, Z. L.; Chen, X.; Zhen, C. J.; Yao, L. X.; Han, L. Y.; Yeo, W. K.; Chung, P. C.; Puy, 
H. S.; Tay, Y. T.; Muhammad, A.; Chen, Y. Z., KDBI: Kinetic Data of Bio-molecular 
Interactions database. Nucleic Acids Research 2003, 31 (1), 255-257. 
9. Gilson, M. K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J., BindingDB in 
2015: A public database for medicinal chemistry, computational chemistry and systems 
pharmacology. Nucleic Acids Research 2015, 44 (D1), D1045-D1053. 
10. Norval, L. W.; Krämer, S. D.; Gao, M.; Herz, T.; Li, J.; Rath, C.; Wöhrle, J.; Günther, S.; 
Roth, G., KOFFI and Anabel 2.0—a new binding kinetics database and its integration in an 
open-source binding analysis software. Database 2019, 2019. 
11. Liu, H.; Su, M.; Lin, H.-X.; Wang, R.; Li, Y., Public Data Set of Protein–Ligand 
Dissociation Kinetic Constants for Quantitative Structure–Kinetics Relationship Studies. ACS 
Omega 2022, 7 (22), 18985-18996. 
12. Moal, I. H.; Fernández-Recio, J., SKEMPI: a Structural Kinetic and Energetic database of 
Mutant Protein Interactions and its use in empirical models. Bioinformatics 2012, 28 (20), 2600-
2607. 
13. Liu, Q.; Chen, P.; Wang, B.; Zhang, J.; Li, J., dbMPIKT: a database of kinetic and 
thermodynamic mutant protein interactions. BMC Bioinformatics 2018, 19 (1), 455. 
14. Schuetz, D. A.; de Witte, W. E. A.; Wong, Y. C.; Knasmueller, B.; Richter, L.; Kokh, D. 
B.; Sadiq, S. K.; Bosma, R.; Nederpelt, I.; Heitman, L. H.; Segala, E.; Amaral, M.; Guo, D.; 
Andres, D.; Georgi, V.; Stoddart, L. A.; Hill, S.; Cooke, R. M.; De Graaf, C.; Leurs, R.; Frech, 
M.; Wade, R. C.; de Lange, E. C. M.; Ijzerman, A. P.; Müller-Fahrnow, A.; Ecker, G. F., 
Kinetics for Drug Discovery: an industry-driven effort to target drug residence time. Drug 
Discovery Today 2017, 22 (6), 896-911. 
15. Nunes-Alves, A.; Ormersbach, F.; Wade, R. C., Prediction of the Drug–Target Binding 
Kinetics for Flexible Proteins by Comparative Binding Energy Analysis. Journal of Chemical 
Information and Modeling 2021, 61 (7), 3708-3721. 
16. Schuetz, D. A.; Richter, L.; Martini, R.; Ecker, G. F., A structure–kinetic relationship 
study using matched molecular pair analysis. RSC Medicinal Chemistry 2020, 11 (11), 1285-
1294. 
17. Ganotra, G. K.; Wade, R. C., Prediction of Drug–Target Binding Kinetics by 
Comparative Binding Energy Analysis. ACS Medicinal Chemistry Letters 2018, 9 (11), 1134-
1139. 
18. Chiu, S. H.; Xie, L., Toward High-Throughput Predictive Modeling of Protein 
Binding/Unbinding Kinetics. Journal of Chemical Information and Modeling 2016, 56 (6), 1164-
1174. 
19. Engel, J.; Richters, A.; Getlik, M.; Tomassi, S.; Keul, M.; Termathe, M.; Lategahn, J.; 
Becker, C.; Mayer-Wrangowski, S.; Grütter, C.; Uhlenbrock, N.; Krüll, J.; Schaumann, N.; 
Eppmann, S.; Kibies, P.; Hoffgaard, F.; Heil, J.; Menninger, S.; Ortiz-Cuaran, S.; Heuckmann, J. 
M.; Tinnefeld, V.; Zahedi, R. P.; Sos, M. L.; Schultz-Fademrecht, C.; Thomas, R. K.; Kast, S. 
M.; Rauh, D., Targeting Drug Resistance in EGFR with Covalent Inhibitors: A Structure-Based 
Design Approach. Journal of Medicinal Chemistry 2015, 58 (17), 6844-6863. 
20. (a) Lamprakis, C.; Andreadelis, I.; Manchester, J.; Velez-Vega, C.; Duca, J. S.; Cournia, 
Z., Evaluating the efficiency of the Martini force field to study protein dimerization in aqueous 



 27 

and membrane environments. Journal of Chemical Theory and Computation 2021, 17 (5), 3088-
3102; (b) He, Z.; Paul, F.; Roux, B., A critical perspective on Markov state model treatments of 
protein–protein association using coarse-grained simulations. The Journal of Chemical Physics 
2021, 154 (8), 084101; (c) Basdevant, N.; Borgis, D.; Ha-Duong, T., Modeling protein–protein 
recognition in solution using the coarse-grained force field SCORPION. Journal of Chemical 
Theory and Computation 2013, 9 (1), 803-813; (d) Pan, A. C.; Jacobson, D.; Yatsenko, K.; 
Sritharan, D.; Weinreich, T. M.; Shaw, D. E., Atomic-level characterization of protein–protein 
association. Proceedings of the National Academy of Sciences 2019, 201815431; (e) Karplus, 
M.; McCammon, J. A., Molecular dynamics simulations of biomolecules. Nature structural 
biology 2002, 9 (9), 646-652; (f) Tang, Z.; Roberts, C. C.; Chang, C.-e. A., Understanding 
ligand-receptor non-covalent binding kinetics using molecular modeling. FBL 2017, 22 (6), 960-
981. 
21. (a) Hollingsworth, S. A.; Dror, R. O., Molecular Dynamics Simulation for All. Neuron 
2018, 99 (6), 1129-1143; (b) Harvey, M. J.; Giupponi, G.; Fabritiis, G. D., ACEMD: accelerating 
biomolecular dynamics in the microsecond time scale. Journal of chemical theory and 
computation 2009, 5 (6), 1632-1639; (c) Johnston, J. M.; Filizola, M., Showcasing modern 
molecular dynamics simulations of membrane proteins through G protein-coupled receptors. 
Current opinion in structural biology 2011, 21 (4), 552-558; (d) Shaw, D. E.; Maragakis, P.; 
Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Eastwood, M. P.; Bank, J. A.; Jumper, J. M.; 
Salmon, J. K.; Shan, Y., Atomic-level characterization of the structural dynamics of proteins. 
Science 2010, 330 (6002), 341-346; (e) Lane, T. J.; Shukla, D.; Beauchamp, K. A.; Pande, V. S., 
To milliseconds and beyond: challenges in the simulation of protein folding. Current opinion in 
structural biology 2013, 23 (1), 58-65; (f) Shaw, D. E.; Adams, P. J.; Azaria, A.; Bank, J. A.; 
Batson, B.; Bell, A.; Bergdorf, M.; Bhatt, J.; Butts, J. A.; Correia, T. In Anton 3: twenty 
microseconds of molecular dynamics simulation before lunch, Proceedings of the International 
Conference for High Performance Computing, Networking, Storage and Analysis, 2021; pp 1-
11. 
22. (a) Shan, Y.; Kim, E. T.; Eastwood, M. P.; Dror, R. O.; Seeliger, M. A.; Shaw, D. E., 
How Does a Drug Molecule Find Its Target Binding Site? Journal of the American Chemical 
Society 2011, 133 (24), 9181-9183; (b) Robustelli, P.; Piana, S.; Shaw, D. E., Mechanism of 
Coupled Folding-upon-Binding of an Intrinsically Disordered Protein. Journal of the American 
Chemical Society 2020, 142 (25), 11092-11101; (c) Pan, A. C.; Borhani, D. W.; Dror, R. O.; 
Shaw, D. E., Molecular determinants of drug–receptor binding kinetics. Drug Discovery Today 
2013, 18 (13), 667-673. 
23. Wang, J.; Bhattarai, A.; Do, H. N.; Miao, Y., Challenges and frontiers of computational 
modelling of biomolecular recognition. QRB Discovery 2022, 3, e13. 
24. (a) Kamenik, A. S.; Linker, S. M.; Riniker, S., Enhanced sampling without borders: on 
global biasing functions and how to reweight them. Physical Chemistry Chemical Physics 2022, 
24 (3), 1225-1236; (b) Wong, C. F., Molecular simulation of drug-binding kinetics. Molecular 
Simulation 2014, 40 (10-11), 889-903; (c) Kappel, K.; Miao, Y. L.; McCammon, J. A., 
Accelerated molecular dynamics simulations of ligand binding to a muscarinic G-protein-
coupled receptor. Q. Rev. Biophys. 2015, 48 (4), 479-487; (d) Saglam, A. S.; Chong, L. T., 
Protein–protein binding pathways and calculations of rate constants using fully-continuous, 
explicit-solvent simulations. Chemical Science 2019, 10, 2360-2372. 
25. (a) Lotz, S. D.; Dickson, A., Wepy: a flexible software framework for simulating rare 
events with weighted ensemble resampling. ACS omega 2020, 5 (49), 31608-31623; (b) Nunes-



 28 

Alves, A.; Zuckerman, D. M.; Arantes, G. M., Escape of a Small Molecule from Inside 
T4 Lysozyme by Multiple Pathways. Biophysical Journal 2018, 114 (5), 1058-1066. 
26. Narayan, B.; Buchete, N.-V.; Elber, R., Computer Simulations of the Dissociation 
Mechanism of Gleevec from Abl Kinase with Milestoning. The Journal of Physical Chemistry B 
2021, 125 (22), 5706-5715. 
27. (a) Wang, J.; Arantes, P. R.; Bhattarai, A.; Hsu, R. V.; Pawnikar, S.; Huang, Y. M.; 
Palermo, G.; Miao, Y., Gaussian accelerated molecular dynamics (GaMD): principles and 
applications. Wiley Interdiscip Rev Comput Mol Sci 2021, 11 (5), e1521; (b) Miao, Y.; Feher, V. 
A.; McCammon, J. A., Gaussian Accelerated Molecular Dynamics: Unconstrained Enhanced 
Sampling and Free Energy Calculation. Journal of Chemical Theory and Computation 2015, 11 
(8), 3584-3595. 
28. (a) Wang, Y.; Valsson, O.; Tiwary, P.; Parrinello, M.; Lindorff-Larsen, K., Frequency 
adaptive metadynamics for the calculation of rare-event kinetics. The Journal of Chemical 
Physics 2018, 149 (7), 072309; (b) Wang, Y.; Martins, J. M.; Lindorff-Larsen, K., Biomolecular 
conformational changes and ligand binding: from kinetics to thermodynamics. Chemical Science 
2017, 8 (9), 6466-6473; (c) Banerjee, P.; Bagchi, B., Dynamical control by water at a molecular 
level in protein dimer association and dissociation. Proceedings of the National Academy of 
Sciences 2020, 117 (5), 2302-2308; (d) Antoszewski, A.; Feng, C.-J.; Vani, B. P.; Thiede, E. H.; 
Hong, L.; Weare, J.; Tokmakoff, A.; Dinner, A. R., Insulin dissociates by diverse mechanisms of 
coupled unfolding and unbinding. The Journal of Physical Chemistry B 2020, 124 (27), 5571-
5587; (e) Tiwary, P.; Limongelli, V.; Salvalaglio, M.; Parrinello, M., Kinetics of 
protein&#x2013;ligand unbinding: Predicting pathways, rates, and rate-limiting steps. 
Proceedings of the National Academy of Sciences 2015, 112 (5), E386-E391; (f) Casasnovas, R.; 
Limongelli, V.; Tiwary, P.; Carloni, P.; Parrinello, M., Unbinding kinetics of a p38 MAP kinase 
type II inhibitor from metadynamics simulations. Journal of the American Chemical Society 
2017. 
29. (a) Buch, I.; Giorgino, T.; De Fabritiis, G., Complete reconstruction of an enzyme-
inhibitor binding process by molecular dynamics simulations. Proceedings of the National 
Academy of Sciences 2011, 108 (25), 10184-10189; (b) Plattner, N.; Noé, F., Protein 
conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations 
and Markov models. Nature communications 2015, 6 (1), 1-10; (c) Mondal, J.; Ahalawat, N.; 
Pandit, S.; Kay, L. E.; Vallurupalli, P., Atomic resolution mechanism of ligand binding to a 
solvent inaccessible cavity in T4 lysozyme. PLOS Computational Biology 2018, 14 (5), 
e1006180. 
30. (a) Nunes-Alves, A.; Kokh, D. B.; Wade, R. C., Ligand unbinding mechanisms and 
kinetics for T4 lysozyme mutants from τRAMD simulations. Current Research in Structural 
Biology 2021, 3, 106-111; (b) Kokh, D. B.; Amaral, M.; Bomke, J.; Grädler, U.; Musil, D.; 
Buchstaller, H.-P.; Dreyer, M. K.; Frech, M.; Lowinski, M.; Vallee, F.; Bianciotto, M.; Rak, A.; 
Wade, R. C., Estimation of Drug-Target Residence Times by τ-Random Acceleration Molecular 
Dynamics Simulations. Journal of Chemical Theory and Computation 2018, 14 (7), 3859-3869; 
(c) Wang, T.; Duan, Y., Chromophore channeling in the G-protein coupled receptor rhodopsin. 
Journal of the American Chemical Society 2007, 129 (22), 6970-6971. 
31. (a) Deb, I.; Frank, A. T., Accelerating Rare Dissociative Processes in Biomolecules 
Using Selectively Scaled MD Simulations. Journal of Chemical Theory and Computation 2019, 
15 (11), 5817-5828; (b) Schuetz, D. A.; Bernetti, M.; Bertazzo, M.; Musil, D.; Eggenweiler, H. 



 29 

M.; Recanatini, M.; Masetti, M.; Ecker, G. F.; Cavalli, A., Predicting Residence Time And Drug 
Unbinding Pathway Through Scaled Molecular Dynamics. J Chem Inf Model 2018. 
32. Sohraby, F.; Javaheri Moghadam, M.; Aliyar, M.; Aryapour, H., A boosted unbiased 
molecular dynamics method for predicting ligands binding mechanisms: probing the binding 
pathway of dasatinib to Src-kinase. Bioinformatics 2020, 36 (18), 4714-4720. 
33. (a) Souza, P. C.; Alessandri, R.; Barnoud, J.; Thallmair, S.; Faustino, I.; Grünewald, F.; 
Patmanidis, I.; Abdizadeh, H.; Bruininks, B. M.; Wassenaar, T. A., Martini 3: a general purpose 
force field for coarse-grained molecular dynamics. Nature methods 2021, 18 (4), 382-388; (b) 
Souza, P. C. T.; Thallmair, S.; Conflitti, P.; Ramírez-Palacios, C.; Alessandri, R.; Raniolo, S.; 
Limongelli, V.; Marrink, S. J., Protein–ligand binding with the coarse-grained Martini model. 
Nature Communications 2020, 11 (1), 3714. 
34. Dandekar, B. R.; Mondal, J., Capturing Protein–Ligand Recognition Pathways in Coarse-
Grained Simulation. The Journal of Physical Chemistry Letters 2020, 11 (13), 5302-5311. 
35. (a) Huang, Y.-m. M., Multiscale computational study of ligand binding pathways: Case 
of p38 MAP kinase and its inhibitors. Biophysical Journal 2021, 120 (18), 3881-3892; (b) 
Jagger, B. R.; Ojha, A. A.; Amaro, R. E., Predicting Ligand Binding Kinetics Using a Markovian 
Milestoning with Voronoi Tessellations Multiscale Approach. Journal of Chemical Theory and 
Computation 2020, 16 (8), 5348-5357; (c) Elber, R., Milestoning: An efficient approach for 
atomically detailed simulations of kinetics in biophysics. Annual review of biophysics 2020, 49, 
69-85. 
36. Votapka, L. W.; Amaro, R. E., Multiscale estimation of binding kinetics using Brownian 
dynamics, molecular dynamics and milestoning. PLoS computational biology 2015, 11 (10), 
e1004381. 
37. Donyapour, N.; Roussey, N. M.; Dickson, A., REVO: Resampling of ensembles by 
variation optimization. The Journal of Chemical Physics 2019, 150 (24), 244112. 
38. Ray, D.; Stone, S. E.; Andricioaei, I., Markovian Weighted Ensemble Milestoning (M-
WEM): Long-Time Kinetics from Short Trajectories. Journal of Chemical Theory and 
Computation 2022, 18 (1), 79-95. 
39. (a) Limongelli, V.; Bonomi, M.; Parrinello, M., Funnel metadynamics as accurate 
binding free-energy method. Proceedings of the National Academy of Sciences 2013, 110 (16), 
6358-6363; (b) Tiwary, P.; Parrinello, M., From metadynamics to dynamics. Physical review 
letters 2013, 111 (23), 230602. 
40. Tiwary, P.; Mondal, J.; Berne, B. J., How and when does an anticancer drug leave its 
binding site? Science Advances 2017, 3 (5). 
41. Capelli, R.; Lyu, W.; Bolnykh, V.; Meloni, S.; Olsen, J. M. H.; Rothlisberger, U.; 
Parrinello, M.; Carloni, P., Accuracy of Molecular Simulation-Based Predictions of koff Values: 
A Metadynamics Study. J Phys Chem Lett 2020, 11 (15), 6373-6381. 
42. Haldar, S.; Comitani, F.; Saladino, G.; Woods, C.; van der Kamp, M. W.; Mulholland, A. 
J.; Gervasio, F. L., A Multiscale Simulation Approach to Modeling Drug-Protein Binding 
Kinetics. J Chem Theory Comput 2018, 14 (11), 6093-6101. 
43. (a) Abrams, C.; Bussi, G., Enhanced sampling in molecular dynamics using 
metadynamics, replica-exchange, and temperature-acceleration. Entropy 2013, 16 (1), 163-199; 
(b) Zuckerman, D. M., Equilibrium sampling in biomolecular simulation. Annual review of 
biophysics 2011, 40, 41. 



 30 

44. Bešker, N.; Gervasio, F. L., Using metadynamics and path collective variables to study 
ligand binding and induced conformational transitions. In Computational drug discovery and 
design, Springer: 2012; pp 501-513. 
45. Wang, Y.; Ribeiro, J. M. L.; Tiwary, P., Past–future information bottleneck for sampling 
molecular reaction coordinate simultaneously with thermodynamics and kinetics. Nature 
Communications 2019, 10 (1), 3573. 
46. Lamim Ribeiro, J. M.; Provasi, D.; Filizola, M., A combination of machine learning and 
infrequent metadynamics to efficiently predict kinetic rates, transition states, and molecular 
determinants of drug dissociation from G protein-coupled receptors. The Journal of Chemical 
Physics 2020, 153 (12), 124105. 
47. Ansari, N.; Rizzi, V.; Parrinello, M., Water regulates the residence time of Benzamidine 
in Trypsin. Nat Commun 2022, 13 (1), 5438. 
48. Sinko, W.; Miao, Y.; de Oliveira, C. s. A. F.; McCammon, J. A., Population based 
reweighting of scaled molecular dynamics. The Journal of Physical Chemistry B 2013, 117 (42), 
12759-12768. 
49. Bianciotto, M.; Gkeka, P.; Kokh, D. B.; Wade, R. C.; Minoux, H., Contact Map 
Fingerprints of Protein–Ligand Unbinding Trajectories Reveal Mechanisms Determining 
Residence Times Computed from Scaled Molecular Dynamics. Journal of Chemical Theory and 
Computation 2021, 17 (10), 6522-6535. 
50. (a) Pang, Y. T.; Miao, Y.; Wang, Y.; McCammon, J. A., Gaussian accelerated molecular 
dynamics in NAMD. Journal of chemical theory and computation 2017, 13 (1), 9-19; (b) 
Copeland, M. M.; Do, H. N.; Votapka, L.; Joshi, K.; Wang, J.; Amaro, R. E.; Miao, Y., Gaussian 
Accelerated Molecular Dynamics in OpenMM. The Journal of Physical Chemistry B 2022. 
51. (a) Chuang, C.-H.; Chiou, S.-j.; Cheng, T.-L.; Wang, Y.-T., A molecular dynamics 
simulation study decodes the Zika virus NS5 methyltransferase bound to SAH and RNA 
analogue. Scientific reports 2018, 8 (1), 1-9; (b) Miao, Y.; Huang, Y.-m. M.; Walker, R. C.; 
McCammon, J. A.; Chang, C.-e. A., Ligand binding pathways and conformational transitions of 
the HIV protease. Biochemistry 2018, 57 (9), 1533-1541; (c) Wang, J.; Lan, L.; Wu, X.; Xu, L.; 
Miao, Y., Mechanism of RNA recognition by a Musashi RNA-binding protein. Current 
Research in Structural Biology 2022, 4, 10-20; (d) Wang, Y.-T.; Chan, Y.-H., Understanding the 
molecular basis of agonist/antagonist mechanism of human mu opioid receptor through gaussian 
accelerated molecular dynamics method. Scientific reports 2017, 7 (1), 1-11; (e) Liao, J.-M.; 
Wang, Y.-T., In silico studies of conformational dynamics of Mu opioid receptor performed 
using gaussian accelerated molecular dynamics. Journal of Biomolecular Structure and 
Dynamics 2019, 37 (1), 166-177; (f) Miao, Y.; McCammon, J. A., Graded activation and free 
energy landscapes of a muscarinic G-protein–coupled receptor. Proceedings of the National 
Academy of Sciences 2016, 113 (43), 12162-12167; (g) Miao, Y.; Caliman, A. D.; McCammon, 
J. A., Allosteric effects of sodium ion binding on activation of the m3 muscarinic g-protein-
coupled receptor. Biophysical journal 2015, 108 (7), 1796-1806. 
52. (a) Salawu, E. O., The impairment of torsinA's binding to and interactions with its 
activator: an atomistic molecular dynamics study of primary dystonia. Frontiers in molecular 
biosciences 2018, 5, 64; (b) Zhang, J.; Wang, N.; Miao, Y.; Hauser, F.; McCammon, J. A.; 
Rappel, W.-J.; Schroeder, J. I., Identification of SLAC1 anion channel residues required for 
CO2/bicarbonate sensing and regulation of stomatal movements. Proceedings of the National 
Academy of Sciences 2018, 115 (44), 11129-11137. 



 31 

53. Miao, Y.; McCammon, J. A., Mechanism of the G-protein mimetic nanobody binding to 
a muscarinic G-protein-coupled receptor. Proceedings of the National Academy of Sciences 
2018, 115 (12), 3036-3041. 
54. Miao, Y.; Bhattarai, A.; Wang, J., Ligand Gaussian accelerated molecular dynamics 
(LiGaMD): Characterization of ligand binding thermodynamics and kinetics. Journal of 
Chemical Theory and Computation 2020, 16 (9), 5526-5547. 
55. Guillain, F.; Thusius, D., Use of proflavine as an indicator in temperature-jump studies of 
the binding of a competitive inhibitor to trypsin. Journal of the American Chemical Society 1970, 
92 (18), 5534-5536. 
56. Wang, Y.-T.; Liao, J.-M.; Lin, W.-W.; Li, C.-C.; Huang, B.-C.; Cheng, T.-L.; Chen, T.-
C., Structural insights into Nirmatrelvir (PF-07321332)-3C-like SARS-CoV-2 protease 
complexation: a ligand Gaussian accelerated molecular dynamics study. Physical Chemistry 
Chemical Physics 2022, 24 (37), 22898-22904. 
57. Kneller, D. W.; Li, H.; Phillips, G.; Weiss, K. L.; Zhang, Q.; Arnould, M. A.; Jonsson, C. 
B.; Surendranathan, S.; Parvathareddy, J.; Blakeley, M. P.; Coates, L.; Louis, J. M.; Bonnesen, P. 
V.; Kovalevsky, A., Covalent narlaprevir- and boceprevir-derived hybrid inhibitors of SARS-
CoV-2 main protease. Nature Communications 2022, 13 (1), 2268. 
58. (a) Fosgerau, K.; Hoffmann, T., Peptide therapeutics: current status and future directions. 
Drug Discovery Today 2015, 20 (1), 122-128; (b) Ahrens, V. M.; Bellmann-Sickert, K.; Beck-
Sickinger, A. G., Peptides and peptide conjugates: therapeutics on the upward path. Future 
Medicinal Chemistry 2012, 4 (12), 1567-1586; (c) Lee, A. C.-L.; Harris, J. L.; Khanna, K. K.; 
Hong, J.-H., A Comprehensive Review on Current Advances in Peptide Drug Development and 
Design. International Journal of Molecular Sciences 2019, 20 (10), 2383. 
59. Zou, R.; Zhou, Y.; Wang, Y.; Kuang, G.; Ågren, H.; Wu, J.; Tu, Y., Free Energy Profile 
and Kinetics of Coupled Folding and Binding of the Intrinsically Disordered Protein p53 with 
MDM2. Journal of Chemical Information and Modeling 2020, 60 (3), 1551-1558. 
60. Zwier, M. C.; Pratt, A. J.; Adelman, J. L.; Kaus, J. W.; Zuckerman, D. M.; Chong, L. T., 
Efficient Atomistic Simulation of Pathways and Calculation of Rate Constants for a Protein–
Peptide Binding Process: Application to the MDM2 Protein and an Intrinsically Disordered p53 
Peptide. The Journal of Physical Chemistry Letters 2016, 7 (17), 3440-3445. 
61. Zhou, G.; Pantelopulos, G. A.; Mukherjee, S.; Voelz, V. A., Bridging Microscopic and 
Macroscopic Mechanisms of p53-MDM2 Binding with Kinetic Network Models. Biophysical 
Journal 2017, 113 (4), 785-793. 
62. Wang, J.; Miao, Y., Peptide Gaussian accelerated molecular dynamics (Pep-GaMD): 
Enhanced sampling and free energy and kinetics calculations of peptide binding. J Chem Phys 
2020, 153 (15), 154109. 
63. Paul, F.; Wehmeyer, C.; Abualrous, E. T.; Wu, H.; Crabtree, M. D.; Schöneberg, J.; 
Clarke, J.; Freund, C.; Weikl, T. R.; Noé, F., Protein-peptide association kinetics beyond the 
seconds timescale from atomistic simulations. Nature Communications 2017, 8 (1), 1095. 
64. (a) Ahmad, M.; Helms, V., How do proteins associate? A lesson from SH3 domain. 
Chemistry Central Journal 2009, 3 (1), 1-1; (b) Ball, L. J.; Kühne, R.; Schneider‐Mergener, J.; 
Oschkinat, H., Recognition of proline‐rich motifs by protein–protein‐interaction domains. 
Angewandte Chemie International Edition 2005, 44 (19), 2852-2869. 
65. (a) Ferreira, L. G.; Oliva, G.; Andricopulo, A. D., Protein-protein interaction inhibitors: 
advances in anticancer drug design. Expert opinion on drug discovery 2016, 11 (10), 957-968; 
(b) Scott, D. E.; Bayly, A. R.; Abell, C.; Skidmore, J., Small molecules, big targets: drug 



 32 

discovery faces the protein–protein interaction challenge. Nature Reviews Drug Discovery 2016, 
15 (8), 533-550; (c) Schreiber, G.; Fersht, A. R., Interaction of barnase with its polypeptide 
inhibitor barstar studied by protein engineering. Biochemistry 1993, 32 (19), 5145-5150. 
66. Plattner, N.; Doerr, S.; De Fabritiis, G.; Noé, F., Complete protein–protein association 
kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling. 
Nat Chem 2017, advance online publication. 
67. Wang, J.; Miao, Y., Protein-Protein Interaction-Gaussian Accelerated Molecular 
Dynamics (PPI-GaMD): Characterization of Protein Binding Thermodynamics and Kinetics. J 
Chem Theory Comput 2022, 18 (3), 1275-1285. 
68. Wang, L.; Wu, Y.; Deng, Y.; Kim, B.; Pierce, L.; Krilov, G.; Lupyan, D.; Robinson, S.; 
Dahlgren, M. K.; Greenwood, J.; Romero, D. L.; Masse, C.; Knight, J. L.; Steinbrecher, T.; 
Beuming, T.; Damm, W.; Harder, E.; Sherman, W.; Brewer, M.; Wester, R.; Murcko, M.; Frye, 
L.; Farid, R.; Lin, T.; Mobley, D. L.; Jorgensen, W. L.; Berne, B. J.; Friesner, R. A.; Abel, R., 
Accurate and Reliable Prediction of Relative Ligand Binding Potency in Prospective Drug 
Discovery by Way of a Modern Free-Energy Calculation Protocol and Force Field. Journal of 
the American Chemical Society 2015, 137 (7), 2695-2703. 
69. (a) Kokh, D. B.; Kaufmann, T.; Kister, B.; Wade, R. C., Machine Learning Analysis of 
τRAMD Trajectories to Decipher Molecular Determinants of Drug-Target Residence Times. 
Frontiers in Molecular Biosciences 2019, 6; (b) Lamim Ribeiro, J. M.; Tiwary, P., Toward 
Achieving Efficient and Accurate Ligand-Protein Unbinding with Deep Learning and Molecular 
Dynamics through RAVE. Journal of Chemical Theory and Computation 2019, 15 (1), 708-719. 
70. Votapka, L. W.; Stokely, A. M.; Ojha, A. A.; Amaro, R. E., SEEKR2: Versatile 
Multiscale Milestoning Utilizing the OpenMM Molecular Dynamics Engine. Journal of 
Chemical Information and Modeling 2022, 62 (13), 3253-3262. 
71. Votapka, L. W.; Jagger, B. R.; Heyneman, A. L.; Amaro, R. E., SEEKR: Simulation 
Enabled Estimation of Kinetic Rates, A Computational Tool to Estimate Molecular Kinetics and 
Its Application to Trypsin–Benzamidine Binding. The Journal of Physical Chemistry B 2017, 
121 (15), 3597-3606. 
72. Brotzakis, Z. F.; Limongelli, V.; Parrinello, M., Accelerating the Calculation of Protein–
Ligand Binding Free Energy and Residence Times Using Dynamically Optimized Collective 
Variables. Journal of Chemical Theory and Computation 2019, 15 (1), 743-750. 
73. Tiwary, P.; Limongelli, V.; Salvalaglio, M.; Parrinello, M., Kinetics of protein-ligand 
unbinding: Predicting pathways, rates, and rate-limiting steps. Proceedings of the National 
Academy of Sciences 2015, 112 (5), E386-E391. 

 

  



 33 

Table 1 Databases of biomolecular binding kinetics. 
Database Description Website 
KDBI It includes 19,263 entries, which provides experimentally 

verified kinetic rates for protein-protein/DNA/RNA/ligand 
and ligand-DNA/RNA interactions. 

http://xin.cz3.nus.edu.sg/gr
oup/kdbi/kdbi.asp 

BindingDB It focuses on protein-ligand interaction, including ~1.1 
million compounds and 8.9 thousand targets. 

https://www.bindingdb.org/
rwd/bind/index.jsp 
The webpage of binding 
kinetic rates: 
https://bindingdb.org/rwd/b
ind/ByKI.jsp?specified=Kn 

KOFFI It includes 1705 entries and a rating system to measure the 
quality of experimental data. 

http://koffidb.org/ 

PDBbind The koff dataset includes 680 entries with protein-small 
molecule complex structure. 

http://www.pdbbind.org.cn/ 
 

SKEMPI It focuses on protein-protein interaction, which records 713 
binding association and dissociation rates upon mutation. 

http://life.bsc.es/pid/mutati
on_database/ 

dbMPIKT It focuses on protein-protein interaction, which contains 
5291 protein binding association and dissociation rates 
upon mutation. 

http://deeplearner.ahu.edu.c
n/web/dbMPIKT/ 
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Table 2 Summary of computer simulation predicted protein-ligand binding (𝑘"#$%&) and dissociation 
(𝑘"''$%&) rates compared with experimentally determined binding (𝑘"#

()*) and dissociation (𝑘"''()*) rates.  

System Method 𝑘!"
#$% 

(107M-1s-1) 
𝑘!&&
#$% (s-1) 𝑘!"'() 

(107M-1s-1) 𝑘!&&'() (s-1) 
Sim. 
time 
(μs) 

∆𝑙𝑜𝑔𝑘!" ∆𝑙𝑜𝑔𝑘!&& Force field YearRef 

Trypsin-
Benzamidine M-WEM 2.9 600 0.53±0.08 791±197 0.48 -0.74 0.12 

AMBER 
ff14SB and 
GAFF 

202238 

Trypsin-
Benzamidine SEEKR2 2.9 600 2.4±0.2 990±130 5 -0.082 0.22 - 202270 

Trypsin-
Benzamidine InMetaD+ML 2.9 600 - 1560 2.75 - 0.41 

AMBER 
ff14SB force 
field and 
GAFF 

202247 

Abl kinase-
imatinib Mile-stoning 0.15±0.01 25±6 -- 18 1.043 - -0.14 CHARMM 36 

and CGenFF 202126 

Trypsin-
Benzamidine LiGaMD 2.9 600 1.15±0.79 3.53±1.41 5 -0.40 -2.23 

AMBER 
ff14SB and 
GAFF 

202054 

Trypsin-
Benzamidine SEEKR 2.9 600 12±0.5 174±9 4.4 0.62 -0.54 - 202071 

M2-Iperoxo 
Frequency-
adaptive 
MetaD 

- 0.01±0.002 - 3.7±.0.7x10-4 8 - -1.43 AMBER14SB 
and GAFF 202041 

Trypsin-
Benzamidine CGMD 2.9 600 36.8 6.9x105 428 1.10 3.06 MARTINI 202034 

μOR-morphine InMetaD+ML 0.29±0.001 0.023±0.001 - 0.057±0.005 6 - 0.39 CHARMM 36 
and CGenFF 202046 

μOR-
bruprenorphine InMetaD+ML 1.33±0.01 0.0018±0.003 - 0.021±0.003 19 - 1.07 CHARMM 36 

and CGenFF 202046 

Src-Dasatinib cMD 0.5 0.06 0.76 - 6.6 0.18 - OPLS 202032 
Src-Dasatinib CGMD 0.5 0.06 4 - 300 0.90 - MARTINI 202033b 
Trypsin-

Benzamidine InMetaD 2.9 600 - 4176±324 ~1.00 - 0.84 CHARMM 36 
and CGenFF 201972 

Trypsin-
Benzamidine WE 2.9 600 - 2660 8.75 - 0.65 CHARMM 

and CGenFF 201937 

T4L-BEN ML 0.08-0.1  950±200 - 3.3±0.8 - - -2.46 CHARMM22*  201945 

T4L-BEN InMetaD 0.08-0.1  950±200 0.0035±0.002 7±2 12 -1.36 -2.13 CHARMM22* 
and CGenFF 201828a 

T4L-BEN MSM 0.08-0.1  950±200 0.21±0.09 310±130 59 0.42 -0.49 CHARMM36 201829c 
T4L-BEN WE 0.08-0.1  950±200 - 1000 29  0.022 CHARMM36 201825b 

Src-Imatinib MetaD - 0.11±0.08 - 0.026 - - -0.63 
AMBER 

FF99SB-ILDN 
and GAFF 

201842 

Src-Dasatinib InMetaD 0.5 0.06 - 0.048±0.024 7 - -0.096 OPLS 201740 

P38α-
compound I InMetaD 0.0118 0.14 - 0.02±0.01 6.8 - -0.84 

AMBER 
FF99SB-ILDN 
and GAFF 

201728f 

Trypsin-
Benzamidine InMetaD 2.9 600 1.18±1.0 9.1±2.5 - -0.39 -1.82 

AMBER 
ff99SB-ILDN 
and GAFF 

201573 

Trypsin-
Benzamidine  MSM 2.9 600 15±2 9.5±3.3x104 50 0.71 2.20 

AMBER 
ff99SB and 
GAFF 

201129a 

Src-Dasatinib cMD 0.5 0.06 0.19 - 35 -0.42 - 
AMBER 
ff99SB and 
GAFF 

201122a 

 
 



 35 

Table 3 Summary of computer simulation predicted peptide binding (𝑘"#$%&) and dissociation (𝑘"''$%&) 
rates compared with experimentally determined binding (𝑘"#

()*) and dissociation (𝑘"''()*) rates. 
System Method 𝑘!"

#$% 
(107M-1s-1) 

𝑘!&&
#$%(s-1) 𝑘!"'() 

(107M-1s-1) 𝑘!&&'()(s-1) Sim. time 
(μs) ∆𝑙𝑜𝑔𝑘!" ∆𝑙𝑜𝑔𝑘!## Force field YearRef 

SH3-1CKB Pep-
GaMD 150 8900 4060±2260 1450±1170 3 1.43 -0.79 AMBER ff14SB 202062 

MDM2/P53 InMetaD 0.92 2.06 0.43±0.22 0.7±0.4 27 0.88 -0.47 AMBER ff99SB-
ILDN 202059 

MDM2/PMI MSM 52.7 0.037 330 0.125-1.13 500 0.80 0.53 AMBER ff99SB-
ILDN 201763 

MDM2/P53 MSM 0.92 2.06 0.019 2.5 831 0.88 0.08 AMBER ff99SB-
ILDN-nmr 201761 

MDM2/P53 WE 0.92 2.06 7 - 120 0.88 - AMBER ff99SB-
ILDN 201660 
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Table 4. Summary of computer simulation predicted protein-protein binding ( 𝑘"#$%& ) and 
dissociation (𝑘"''$%&) rates compared with experimentally determined binding (𝑘"#

()*) and dissociation 
(𝑘"''()*) rates. 

System Method 𝑘!"
#$% 

(107M-1s-1) 
𝑘!&&
#$% (s-1) 𝑘!"'() 

(107M-1s-1) 𝑘!&&'() (s-1) Sim. time 
(μs) ∆𝑙𝑜𝑔𝑘!" ∆𝑙𝑜𝑔𝑘!&& Force field YearRef 

Barnase-
Barstar 

PPI-
GaMD 60 8x10-6 217±138 7.32±4.95x10-6 12 0.56 -0.038 AMBER ff14SB 202267 

Barnase-
Barstar WE 60 8x10-6 230±100 - 18 0.58 - AMBER ff03* 201924d 

Barnase-
Barstar cMD 60 8x10-6 2.3 - 440 -1.42 - AMBER 

ff99SB-ILDN 201920d 

Insulin 
Dimer cMD 11.4 14800 0.41 - 294.8 -1.44 - AMBER 

ff99SB-ILDN 201920d 

Ras–Raf-
RBD cMD 4.5 7.4 2.6 - 117 -0.24 - AMBER 

ff99SB-ILDN 201920d 

Barnase-
Barstar MSM 60 8x10-6 26.3-26.5 3x10-6 1700 -0.36 -0.42 AMBER ff99SB 201766 
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Figure 1. The number (A) and accuracy (B) of predictions of biomolecular binding kinetic rates 
obtained from MD simulations plotted over the years. 
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Figure 2. The number (A) and accuracy (B) of predicted biomolecular binding kinetic rates using 
different MD techniques, including Metadynamics (MetaD), Markov State Models (MSM), 
Gaussian accelerated MD (GaMD), conventional MD (cMD), Weighted Ensemble (WE), 
simulation enabled estimation of kinetic rates (SEEKR), coarse-grained MD (CGMD) and 
combination of Metadynamics and Machine Learning (MetaD+ML).   
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