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Abstract

Biomolecular binding kinetics including the association (k..) and dissociation (ko) rates are critical
parameters for therapeutic design of small-molecule drugs, peptides and antibodies. Notably, drug
molecule residence time or dissociation rate has been shown to correlate with their efficacies better
than binding affinities. A wide range of modeling approaches including quantitative structure-
kinetic relationship models, Molecular Dynamics simulations, enhanced sampling and Machine
Learning have been developed to explore biomolecular binding and dissociation mechanisms and
predict binding kinetic rates. Here, we review recent advances in computational modeling of

biomolecular binding kinetics, with an outlook for future improvements.



1. Introduction

Life processes are critically dependent on the formation of biomolecular complexes, particularly
including the protein-small molecule, protein-peptide and protein-protein/antibody structures.
Biomolecular binding plays a key role in many fundamental biological processes'. Accurate
characterization of biomolecular binding thermodynamics and kinetics is key for therapeutic
design®. Recently, drug residence time or dissociation rate appears to correlate with drug efficacy
better than the binding free energy’. With remarkable theoretical and technical developments,
increasing numbers of experimental and computational methods are available for calculating the
biomolecular binding kinetic rates®® 33" 4 However, it remains challenging for both experimental
and computational approaches to accurately predict biomolecular binding kinetic rates with high

throughput.

In this review, we will first briefly describe available experimental techniques for determining
biomolecular binding kinetic rates. We will then discuss computational approaches to predict the
biomolecular binding kinetics, with focus on the Molecular Dynamics (MD) and enhanced
sampling methods, which have emerged as rapidly evolving techniques for studying biomolecular

binding kinetics.
2. Available experimental techniques to measure binding kinetics

Most experimental techniques® for determining biomolecular binding kinetic rates are mainly
relying on monitoring a specific signal over time during the binding and dissociation processes.
According to signal source, experimental methods could be generally divided into two classes:
assays with and without a label for detection*®. Radio and spectroscopic labeling are the main

choices for labeling assays. A radiolabel essentially comes from the presence of radioactive



isotopes in the molecule, which could emit special radiation when they decay to more stable states.
In radiometric binding assays, ligands are tagged to follow the time course of their binding to
targets, thus allowing for the spontaneous measurement of binding kinetic rates®. In the
spectroscopy-based assays, ligands are labeled with fluorophore groups. After absorbing a certain
wavelength’s light, fluorophore groups could emit characteristic light, allowing for detecting the
binding and dissociation processes’. The fluorescent resonance energy transfer (FRET) is one
popular spectroscopy based approach’. For the label free approaches, surface plasmon resonance
(SPR) is one of the most widely used methods, especially in characterizing the biomolecular
binding kinetics of pharmaceutical interest®.

With developments of experimental techniques, recent years have seen significantly increasing
numbers of biomolecular binding kinetic data, including the protein-small molecule, protein-
peptide and protein-protein binding kinetic rate constants. Many experimental binding kinetic rates
have been collected in different publicly accessible databases. A number of databases as listed in
Table 1 are useful for exploring biomolecular binding kinetics, including the kinetic data of bio-
molecular interactions (KDBI)}, BindingDB®, kinetics of featured interactions (KOFFI)!,
PDBbind'!, structural database of kinetics and energetics of mutant protein interactions
(SKEMPI)!2, kinetic and thermodynamic database of mutant protein interactions (dlbMPIKT)!* and
s0 on3d 14,

KDBTI® is developed to provide experimentally verified binding kinetic rates for interactions
involving proteins and nucleic acids (RNA and DNA). It includes 19,263 entries of 10,532
distinguishing biomolecular pathways. The binding kinetic data includes protein-

protein/DNA/RNA/ligand and ligand-DNA/RNA interactions. BindingDB® is one widely used

database for exploring protein-small molecule interactions, containing ~1.1 million compounds



and 8.9 thousand targets with clearly defined quantitative measurement for binding affinities and
kinetic =~ rates. BindingDB  provides a  special kinetic  database via link

https://bindingdb.org/rwd/bind/ByKI.jsp?specified=Kn. The data of BindingDB are extracted from

published literatures and other databases such as PubChem, CheEMBL, PDSP Ki, and CSAR.
Additionally, BindingDB provides an option for experimentalists to directly deposit their data.
KOFFI' is developed to provide binding kinetic rates along with experimental protocol. It
includes 1705 individual entries. Notably, it contains a rating system to assess quality of
experimental data. A user can perform a direct search within the Anabel's KOFFI database and
evaluate the quality of their binding data. PDBbind!! was initially developed for collecting binding
affinity data and complex structures for developing docking score. In 2022, it released a sub-
database (kofr set) containing 169 entries of protein-small molecule dissociation rates. One
advantage of PDBbind is the availability of the protein-small molecule complex structures, which
could be convenient for molecular modeling. SKEMPI'? and dbMPIKT!3 mainly focus on protein-
protein interaction (PPI). SKEMPI'? contains 713 protein—protein binding kinetic rates upon
mutation. dbMPIKT!® contains 5291 entries of protein-protein binding kinetic rates involving
mutation. In summary, developments of experimental techniques and increasing biomolecular
binding kinetic data collected in the databases will greatly facilitate modeling of biomolecular

binding kinetics and therapeutic design.

3. Quantitative structure-kinetic relationships

Optimal kinetic parameters for biomolecular binding could significantly improve drug efficacy.
For that reason, several molecular modeling techniques have been developed to predict

biomolecular binding kinetic rates and derive quantitative structure-kinetic relationships



(QSKRs)'>. While these methods are often based on experimental structures, many of them
consider each biomolecular complex with only one single structure!>. Nunes-Alves et al.!”
modified the COMparative BINding Energy (COMBINE) analysis, which uses holo structure to
predict binding parameters, to include extra options of using multiple protein-small molecule
complex structures. They did so by docking small molecules to a protein conformational ensemble
obtained from MD simulations. Specifically, full data set for COMBINE analysis consisted of 33
inhibitors of p38 MAP kinase, which were chosen given availability of experimental Kosr values
and experimental structures of the inhibitor bound to p38 MAP kinase or to other kinases in the
DFG-out conformation state. 22 and 11 inhibitors were used for training and testing in the
COMBINE analysis, respectively. The first step in the COMBINE analysis involved modelling of
the two sets of structures and derivation of COMBINE analysis models. After energy minimization
of the complex structures, interaction energy components were obtained with the AMBER {f14SB
force field to describe bonded and non-bonded interactions. Weights to scale the protein-small
molecule interaction energies were obtained using partial least square regression. To account for
multiple structures, the COMBINE was modified to retrieve an average response using N
structures for each protein-small molecule complex, in which each structure was treated
independently during regression to obtain weights for interaction energies. Here, exponential or

arithmetic averages could be used:
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where (logl)gy,” and (logl); 5" were the predictions for the response variable using

exponential and arithmetic averages, j was the index of the structure used, log I’ was the
prediction made using the j structure, and N was the number of structures to describe one protein-
small molecule complex. In one of the two structure sets used for the COMBINE analysis, each
complex was represented using one experimental crystal structure. In another set, each complex
was represented using 10 structures from ensemble docking!®. Although COMBINE model
obtained with multiple structures from ensemble docking took protein-ligand flexibility into
consideration, the predictive power was lower than the model from a single, energy-minimized
crystal structures for each protein-ligand complex. Nevertheless, the incorporation of protein-
ligand flexibility highlighted additional important protein-ligand interactions that led to longer

residence time.

In another study, Schuetz et al.!® performed matched molecular pair (MMP) analysis on
datasets assembled from the Kinetic for Drug Discovery database, which included 3812 small
molecules annotated to 78 different targets from five diverse protein classes, including G-protein-
coupled receptors (GPCRs), kinases and other enzymes, heat shock proteins (HSPs), and ion
channels. The kinetic dataset (KIND) contains complex structures along with their respective
binding kinetic data (kon, kotr, Kp). To elucidate the impact of small structural changes on the
binding kinetic behavior, a total of 395 MMPs extracted from KIND were performed. The pairs
were made of two molecules possessing identical scaffolds and showing minor chemical
modifications. This dataset included various chemical modifications, with the top 20 representing
less than 65% of the entire dataset. The most common modification, which was replacement of a
hydrogen atom by a methyl group, comprised around 15%. To demonstrate that changes in a

molecule’s polarity are the major factor for the alteration of binding association rate kon, the authors



focused on analyzing top 20 MMPs with highest differences in kon values. For 16 out of 20 MMPs,
a substitution that increases polarity was observed. The largest differences in ko, were found with
the introduction of charged moiety, leading to decrease of 0.5- 2.0 orders of magnitude. The
decrease in kon might come from electrostatic repulsion and/or desolvation penalties. Conversely,
an improvement in binding affinity was observed if modifications established additional
interactions in the final bound complexes. The dissociation rate kofr was also analyzed following
the same protocol for kon. In contrast to kon, the change of molecular polarity in the MMPs did not

produce a consistent shift in kofr.

In 2018, Ganotra and Wade applied COMBINE analysis to derive QSKRs for the
dissociation rates (kofr) of inhibitors of HSP90 and HIV-1 protease!’. Protein-specific scoring
functions were derived by correlating kot with a subset of weighted interaction energy components
determined from energy minimized biomolecular complex structures. A set of 3D structures of
protein-ligand complexes were modeled and energy minimized. Protein-ligand interaction
energies were first calculated, then partitioned and subjected to partial least-squares projection to
latent structures (PLS) regression. A statistical model was derived to correlate the activity of
interest to weighted selected components of the protein-ligand interaction energy decomposed on

a per residue basis, based on the following equation:

- 3)
log(k) = Z w;Au; + C
i=1

where k was the rate constant of interest, and Au; were per residue terms of the ligand-receptor
interaction energy, calculated for n residues. The coefficients w; and constant C could be
determined from PLS regression. The dataset used for the COMBINE analysis of HSP90 and HIV-

1 protease inhibitors consisted of 70 and 36 compounds, respectively. Experimental kot values



ranged from 0.0001 to 0.83 s! for the HSP90 inhibitors and 0.00022 to 83.3 s'! for the HIV-1
protease inhibitors. For the COMBINE analysis, 207 coulombic and 207 Lennard-Jones (LJ)
interaction energy terms were calculated for the HSP90 inhibitors, and 198 coulombic and 198 LJ
energies were calculated for HIV-1 protease inhibitors. The resulting COMBINE models for kosr
rates had very good predictive power (Q*coo = 0.69 for HSP90, and Qoo = 0.70 for HIV-1

protease), which could also identify contributing protein-ligand interactions for binding kinetics.

In order to explore molecular details of biomolecular binding processes on a large scale,
Chiu et al. '® recently integrated coarse-grained normal mode analysis (NMA) with multi-target
machine learning (MTML) to address the above challenge and tested their method using the HIV-
1 protease as a model system. The workflow included four phases. In phase 1, the 3D complex
structure of the ligand-bound HIV-1 protease was built. Ligands without experimental structure
were docked into the HIV-1 protease using the eHiTS software. In phase 2, residues in the ligand-
binding site were identified. Coarse-grained NMA was performed for both apo and holo structures.
The authors defined RMLR as the dot product of ligand displacement vector after normalization
and the residue displacement vector, and RMRR as the dot product of the displacement vectors of
a residue for the apo and holo structures. Therefore, RMLR and RMRR could be derived from the
NMA and describe the conformational dynamics impact of ligand binding on the residues in the
binding site. In phase 3, five principal data sets were constructed. Pairwise decomposition of the
residue interaction energy was computed by minimizing 39 ligand-bound HIV-1 complexes with
NAMD simulations using the generalized Born implicit solvent (GBIS) method. The final
simulation conformations were used to compute the residue-decomposed pairwise interaction
energy (PIE), the van der Waals energy (VDWE) and the electrostatic energy (EE) between the

ligand and protein residues. The energetic features (PIE, VDWE, and EE) and conformational



dynamics features (RMRR and RMLR), along with experimentally determined kon and kosr data
were used to train MTML models in phase 4 of the workflow. The model was evaluated regarding
the accuracies in the predictions of binding kinetic rate constants kon and kofr using the following

formula:

Zn: A; 4)
accuracy = ) —
i=1 N

where A; was the prediction accuracy for each case and N was the total number of cases. 4; =
100% when both kon and kot were accurately predicted, and A; = 0% when neither was correctly
predicted. The model was further evaluated in high-throughput screening of molecules with in vivo
drug activity on the basis of kon and kosr using the receiver operating characteristic (ROC) curve
and the area under the ROC curve (AUC). The computational models were not only found to
recapitulate the results from MD simulations but also accurately predict protein-ligand binding
kinetic rates, with an accuracy of 74.35% when combined with energy features. In addition, the
integrated models showed that the coherent coupling of conformational dynamics and
thermodynamic interactions between the receptor and ligand played a critical role in determining

protein-ligand binding kinetic rates.

Engel et al. designed novel and irreversible epidermal growth factor receptor (EGFR)
inhibitors using a structure-based approach rationalized by subsequent computational analysis of
conformational ligand ensembles in solution'®. The approach was based on a screening hit that was
identified in a phenotype screen of ~1,500 compounds in 80 non-small cell lung cancer (NSCLC)
cell lines. With X-ray crystallography, the binding mode in engineered cSrc (T338M/S345C), a
validated model system for EGFR-T790M, was deciphered. Chemical synthesis revealed further

compound collections that increased biochemical potency and selectivity toward mutated (L858R
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and L858R/T790M) vs. wildtype EGFR. Kinetic studies were performed to investigate the rate
and efficiency of covalent bond formation for the most effective inhibitors, Sb and 6a. The
corresponding time-dependent affinity (Ki) and reactivity (kinact) parameters with respect to the
mutants L858R and T790M/L858R of EGFR were determined by an activity-based assay. The
respective ICso values of Sb and 6a were monitored after treatment of the respective proteins in a
time-dependent manner. These values were correlated to the respective incubation times, from
which Ki and kinaet parameters could be determined?. Inhibitors Sb and 6a were found to exhibit
extraordinarily high affinity toward EGFR L858R/T790M, with respective K; values of 0.64 and
0.32 nM, and specific, moderate reactivity, with kinact values of 0.116 and 0.137 min™!. On the
contrary, both the binding affinity and specific reactivity of 5b and 6a toward EGFR L858R were
significantly impaired (Ki = 70.2 and 833 nM, and kinact = 0.017 and 0.055 min'!). In summary,
with increasing numbers of available experimental binding kinetic data and advances in the
modeling approaches, the built QSKR will become more accurate and allow for high-throughput

screening, which is very helpful at early stage of drug design.

4. Molecular Dynamics and enhanced sampling methods for predicting binding kinetics

MD is a powerful technique for simulations of biomolecular structural dynamics?’. The accessible
timescale of conventional MD (cMD) has reached hundreds of microseconds thanks to remarkable
advances in computing hardware (e.g., the Anton supercomputer and GPUs) and software
developments?!. Notably, the latest Anton3?!f has enabled hundreds-of-microseconds c¢cMD
simulations per day. The cMD simulations have been widely applied to investigate biomolecular
binding processes??. However, it is still challenging for cMD to simulate repetitive biomolecular

dissociation and rebinding processes?!® 23, In this regards, enhanced sampling methods?* have been
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developed to simulate biomolecular binding and dissociation processes, and predict the associated
binding kinetic rates, including the widely used Weighted Ensemble?, mile-stoning method?®,
Gaussian accelerated MD (GaMD)?’, Metadynamics®®, Markov State Modeling (MSM)?°, Random
Acceleration Molecular Dynamics (RAMD) %, scaled MD 3! and so on. Recent years have seen a
significant increasing numbers of studies on predicting biomolecular binding kinetic rates using
MD simulations (Fig. 1A). To evaluate the accuracy of simulation predicted kinetic rates, we
define the prediction errors of binding and dissociation kinetic rates as:

Alogk,y, = log k§i™ — logkgy”,

Alogk,ps = logksF} —logksr?, (5)

where simulation predicted binding (k$i™) and dissociation (kg}if}l) rates are compared with

experimentally determined binding (k;,”) and dissociation (k;7) rates. Most values of the Alogk

are in the range of -1 to 1 (Fig.1B), suggesting good prediction accuracy obtained from MD
simulations. In the next sections, we will discuss recent applications of the above-mentioned
methods in exploring biomolecular binding kinetics for distinct protein-small molecule, protein-

peptide and protein-protein binding systems.

Protein-small molecule binding kinetics

Compared with slower ligand dissociation process, ligand binding is much quicker, which allows
cMD to capture ligand binding process and predict the binding association rate (kon). For example,
spontaneous binding of the Dasatinib drug to its target Src kinase was observed in a total of ~35.0
us cMD simulations performed by Shan et al.???. The estimated binding association rate (kon) was
0.19x10” M-!s’!, being highly consistent with the experimental value of 0.5x10” M-!s"!. The same

system was used to test a novel approach-unaggregated unbiased MD (UUMD) developed by
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Sohraby et al.*2. In contrast to the repulsion added to special atom in the ligand by Shan et al.?%,
the repulsion in the UUMD was added to a virtual interaction site in the ligand to avoid aggregation.
Notably, the UUMD could capture multiple independent Dasatinib binding events within
nanosecond simulations. The predicted binding association rate (kon) was 0.75x10” M"!'s!, being
highly consistent with the experimental data (Table 2). It is worth noting that no dissociation
event was observed in the cMD simulations, prohibiting calculation of ligand dissociation rate
(ko).

Coarse-grained models were developed for MD simulations to reduce the demands for
computational resources and extend the simulation timescale®*. Based on Martini coarse-grained

model, Dandekar et al.?*

captured spontaneous binding of benzamidine to the trypsin binding
pocket from bulk solvent. Based on 426 us MD simulation data, they predicted the binding kinetic
rates of (Kon, ko) at (36.8x10’M!s”!, 6.9 x10°s!). The corresponding experimental values were
(2.9x10’M"s”!, 600s!). Therefore, the predicted kon value was ~13 folds higher than the
experimental data. However, large derivation was observed between the predicted and
experimentally determined Kor.

Multiscale computational approaches have been developed to improve the efficiency and
accuracy of ligand binding thermodynamics and kinetics calculations®. For example, simulation
enabled estimation of kinetic rates (SEEKR) 3% 3¢ is a multiscale simulation approach combining
MD, Brownian dynamics, and mile-stoning for predicting protein—ligand binding association and
dissociation rates. SEEKR has been shown to estimate accurate binding kinetic rates with

simulation time reduced by a factor of 103°°. Using the trypsin-benzamidine model system as

example, the SEEKR and its latest version SEEKR2 predicted the binding kinetic rates of (Kon, Kofr)
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at (12+0.5x10’M"!s!, 17449s") and (2.4+0.2x10’M"!s!, 990+130s™"), respectively, being highly
consistent with the corresponding experimental data of (2.9x10’M-!s!, 600s™).

Mile-stoning method?¢ has been applied to predict the dissociation rate of the Imatinib drug
to Abl kinase. Based on the total of 1.043 ps simulations, the value of kofr was predicted as 18 s!,
being highly consistent with the experimental value of 25+6s"!. Weighted Ensemble®” and MSM %%
have been developed to improve prediction of ligand binding kinetic rates based on a large number
of short cMD trajectories. In the trypsin-benzamidine system, the dissociation rate (Kofr) of 2,660
st was predicted with one weighted ensemble®’ of a total amount of 8.75 ps ¢cMD simulations,
being ~4.43 times faster than the experimental value. Another weighted ensemble®® of a total of
0.48 ps cMD was able to predict the T4 lysozome (T4L)-benzene binding kinetic rates of (Kon, Kofr)
at (0.53+0.08x10’Ms'l,  791+197s!), being highly consistent with the corresponding
experimental value of (0.08-0.1x10’M-!s"!, 950+200s!). MSM was able to simultaneously predict
the ligand association and dissociation rates through longer aggregated cMD simulations. For
example, one MSM built with 59 pus ¢cMD simulation data was able to accurately predict T4L-
benzene binding kinetic rates. The predicted binding kinetic rate values of (kon, koff) were
(0.214+0.09x10’M"!s"!, 310+130s!), being highly consistent with the experimental data of (0.08-
0.1 x10’M1s1, 950+200 s°'). MSM built with 50 us cMD simulation data was used to predict the
binding kinetic rates of the trypsin-benzamidine system??®. The predicted values of (Kon, Kotr) were
(15.0£2.0x10’M"!s1, 9.5+3.310%"), being in line with the experimental values of (2.9x10’M"!s™!,
600s"). However, these calculations required very expensive computational resources.

Metadynamics®® has been widely applied to investigate the ligand binding kinetics.
Multiple Infrequent Metadynamics (InMetaD) simulations with a total of 5 s trajectories were

performed to predict the pathways of benzamidine binding to the trypsin and the binding kinetic
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rates. The predicted values of (kon, ko) were (1.18+1.0 x10’M-!s”!, 9.1 &+ 2.5 s7!), being smaller
than the experimental values of (2.9x10’M!s!, 600s!). Similar smaller predicted values of (kon,
kofr) at (0.0035+0.002 x10” M!s!, 742 s°!) were observed in another 12 ps InMetaD simulations
of benzene binding to T4L??, For the Src-Dasatinib system, one study with 7 ps InMetaD
simulations*® was able to predict the ko value of 0.048+0.024 s™!, being highly consistent with the
experimental value of 0.06 s”!. For the p38a-compound I system, 6.8 us InMetaD simulations?"
predicted the kot value of 0.020 = 0.011 s7!, being in line with the experimental value of 0.14 s™!.
Besides, accuracy of force field also plays a critical role in predicting biomolecular binding kinetic
rates. For example, Capelli et al.*! applied two approaches to obtain the RESP charges for drug
Iperoxo to predict its dissociation rate in the M2 receptor. The two approaches included the one
with Amber standard methodology based on HF/6-31G* (RESP-HF) calculations and another one
based on DFT/B3LYP (RESP-B3LYP) calculations. The simulations based on RESP-HF charges
failed to predict the ko rate due to the unreasonable obtained transition state free energy. While
simulations with RESP-B3LYP charges could predict the kosr value of 3.7 £ 0.7 x10™* s7!, being
in line with the experimental data of 1.0 + 0.2x1072 s 1. For the Src-Imatinib system, Haldar et
al.*? showed that accounting for changes in charge distribution with QM/MM calculations
improved the Imatinib dissociation rate from 0.0114s! to 0.026s™!, being more consistent to the
experimental value of 0.11+0.08 s*!. Although Metadynamics simulations have shown remarkable
improvements in capturing ligand binding and dissociation processes that occur over exceedingly
long timescales, users often face a challenge for defining collective variables (CVs), which
requires expert knowledge of the studied systems*}. The simulations may suffer from a “hidden
energy barrier” problem if important CVs were missed during the simulation setup**. To facilitate

the choice of CVs, machine learning (ML) has been incorporated into Metadynamics simulations.
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Wang et al. developed a predictive information bottleneck (PIB) approach to identify CVs and
predict biomolecular dissociation rates 4°. The PIB was tested on the system of benzene binding to
TA4L and the predicted kofr value was 3.3 £ 0.8s7!, being consistent with other InMetaD simulations

2% In another study, Filizola et al.*¢ developed a novel

but needing much shorter simulations
approach, which combined InMetaD and ML methods including automatic mutual information
noise omission and reweighted autoencoded variational Bayes to predict the dissociation kinetic
rates of two drugs (morphine and bruprenorphine) in the p-opioid receptor. Based on ~6 ps
InMetaD simulations, the predicted ko for the morphine and bruprenorphine were 0.057+0.005 s
"and 0.02140.003 s’!, respectively, being within one order of magnitude difference from
experimental values of 0.0023+0.001 s and 0.0018+0.03 s!. Very recently, Narjes et al.*’

combined ML and a novel Metadynamics approach, On-the-fly Probability Enhanced Sampling

(OPES) flooding, to investigate the binding of benzamidine to trypsin. Based on a total of ~2.74

s OPES simulations, they captured 55 benzamidine unbinding events and predicted the kofr value
of 1560 s°!, being highly consistent with the experimental data.

Scaled MD*® has been mainly used for the prediction of Kor as a scale factor ranging from
0 to 1 is introduced in the simulations to reduce energy barrier to facilitate ligand dissociation. For
example, Schuetz et al.3'® performed scaled MD simulations to accurately predict the residence
time and drug dissociation pathways of different inhibitors in Hsp90. In a recent study*’, Bianciotto
et al. applied scaled MD simulations to predict the residence time and ligand unbinding pathways
for a set of 27 ligands of Hsp90, being highly consistent with experimental data. In the RAMD
simulations, an additional random force is applied on the ligand to promote its movement. Similar
to scaled MD, RAMD is mainly used in the ligand dissociation simulations to qualitatively predict

dissociation rates. In one recent study, Nunes-Alves et al.** performed RAMD simulations to
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predict ligand dissociation rates of T4L. The predicted kinetic rates correlated well with
experimental values for various systems with different ligands, temperatures, and protein
mutations.

GaMD?" is developed to apply a harmonic boost potential to enhance sampling with
reduced energetic noise. The boost potential normally exhibits a near Gaussian distribution, which
enables proper reweighting of the free energy profiles through cumulant expansion to the second
order’”. GaMD has been successfully applied to simulate important biomolecular processes,
including protein/RNA  folding?’®> 3° ligand/protein/RNA binding®* 3!, and protein

conformational changes’!® 2

. However, it remained challenging to accurately predict ligand
binding kinetic rates through normal GaMD 2733, Recently, a “selective GaMD” algorithm, called
Ligand GaMD (LiGaMD) >4, has been developed to allow for more efficiently sampling of ligand
binding and dissociation processes, which thus allows to accurately predict the ligand binding
kinetic rates. For the protein ligand binding system, the system contains ligand L, protein P and

the biological environment E. The system potential energy could be decomposed into the following

terms:

V() =Vep(p) + V(1) + Ve 78) + Vep (1) + Vipnp (1) + Ve ap () +

Vornb(TpL) + Vepap (Tpe) + Vg (i), (6)

where Vp 5, V,, , and Vg ;, are the bonded potential energies in protein P, ligand L and environment
E, respectively. Vpp np, Vi np and Veg ,p, are the self non-bonded potential energies in protein P,
ligand L and environment E, respectively. Vpynp, Vpgnp and Vig,, are the non-bonded
interaction energies between P-L, P-E and L-E, respectively. Ligand binding mainly involves the
non-bonded interaction energies of the ligand. Therefore, LiGaMD selectively boosts on the ligand

essential energy term of Viigana (") = Vipnp (1) + Vepnp(rpr) + Vignp(rig) . In order to
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facilitate ligand rebinding, another boost was added to the remaining potential interaction of the
system. Repetitive binding and dissociation of small-molecule ligands were captured in the
LiGaMD simulations of host-guest and protein-ligand binding model systems®*. Repetitive guest
binding and dissociation in the B-cyclodextrin host were observed in hundreds-of-nanoseconds
LiGaMD simulations. Accelerations of ligand kinetic rates in LiGaMD simulations were properly
estimated using Kramers’ rate theory. Furthermore, microsecond LiGaMD simulations observed
repetitive benzamidine binding and dissociation in trypsin. The benzamidine binding and
dissociation rates were predicted to be 1.15£0.79 x 107 M!-s't and 3.53+1.41 s!, respectively.
These data were comparable to the experimental values® of 2.9 x 107 M!-s and 600 s!. Very
recently, five replicas of 5 ps LiGaMD simulations successfully captured repetitive Nirmatrelvir
drug binding and dissociation in the 3CLpro binding domain®®. The Nirmatrelvir binding and
dissociation rates were predicted to be 3.20+0.21x10° M!-s't and 2.92+0.37x103s™!, respectively.
As no available experimentally determined binding kinetic rates, the authors predicted the
dissociation constant (kp) from the predicted binding kinetic rates by equation kp = Kof/Kon.
Notably, the predicted kp was 9.10+0.29 nM, being highly consistent with the available
experimental value of 7+3 nM?>’, demonstrating high accuracy of the predicted binding kinetic

rates from LiGaMD simulations.

Protein-peptide binding kinetics

In comparison with the extensively studied protein-small molecule binding, protein-peptide
binding studies are much less although increasing number of peptide-based drugs are being
licensed to market in recent years>®. Large conformational changes of peptides often occur during

binding to target proteins, bringing huge challenges for modeling?*®® *. For example, coupled
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folding-upon binding mechanism has been observed in serval systems of peptide binding to

proteins??® 3

. Only few number of computational approaches have been implemented to predict
peptide binding kinetic rates, including the InMetaD>’, Weighted Ensemble®®, MSM®!, and Peptide

GaMD (Pep-GaMD)%? (Table 3).

InMetaD simulations with three CVs have successfully predicted the peptide binding and
dissociation rates for the system of p53-MDM2%. Based on 27 us InMetaD simulations®, the
predicted values of (kon, koff) were (0.43+£0.22x10’M's, 0.7+0.4s!), being comparable to the
corresponding experimental values of (0.92x10’M-!s!, 2.06s!). Weighted Ensemble of a total
amount of ~120 ps cMD simulations in implicit solvent was performed on the same p53-MDM?2
system®’. The predicted p53 binding kinetic rate (ko,) was 7s™!, being highly consistent with the
experiential data of 2.06 s’'. Built on a total of 831 us ¢cMD simulations of p53 binding to the
MDM2, the MSM®! predicted accurate values of kon and kogr at 0.019x107 M-s™! and 2.5 s,
respectively. However, the simulations needed for building MSM are much longer than the
Weighted Ensemble and InMetaD simulations. Another MSM built on hundreds-of-microsecond
cMD and Hamiltonian replica exchange simulations has been implemented to characterize binding
and dissociation of the PMI peptide to the MDM2%%. The PMI dissociation process is rather slow
with the residence time at the timescale of second. Therefore, ~50 us Hamiltonian replica exchange
simulations were performed to predict the dissociate rate. The predicted values of (kon, kofr) were
(300x10’M"!s!, 0.125-1.13s!), being comparable to the corresponding experimental values of

(52.7x10'M"'s1, 0.037s7).

Based on GaMD, we recently developed an algorithm called peptide GaMD or “Pep-GaMD”
that enhances sampling of protein-peptide interactions®?. As above mentioned, large

conformational change involved in the process of peptide binding to target proteins??®> 3. Therefore,

19



peptide binding involves in both the bonded and non-bonded interaction energies of the peptide.
Thus, the essential peptide potential energy is defined as Vyeptige (1) = Vi p (1) + Vipnp (1) +
Vornb(Tpr) + Vignp (e). A selective boost was thus added to the essential peptide potential to
facilitate the dissociation of peptides in the Pep-GaMD. In addition to selectively boosting the
peptide, another boost potential is applied on the protein and solvent to enhance conformational

sampling of the protein and facilitate peptide rebinding.

Pep-GaMD®? has been developed to capture repetitive peptide binding and dissociation
processes, which allows us to calculate the peptide binding free energies and kinetic rates. It has
been demonstrated on binding of three model peptides to the SH3 domains®, including
“PPPVPPRR” (PDB: 1CKB), “PPPALPPKK” (PDB: 1CKA) and “PAMPAR” (PDB: 1SSH).
Repetitive peptide binding and unbinding events were captured in independent 1 ps Pep-GaMD
simulations, allowing us to calculate peptide binding thermodynamics and kinetics. The predicted
values of both binding free energies and kinetic rates from Pep-GaMD simulations were in good
agreement with available experimental data. Particularly, the predicted peptide binding kinetic
rates of 1CKB was (4060+2260 x 107 M!-s!, 1450 + 1170 s!), being within 1 order of the

experimental data of (150 x 107 M-!-s”!, 8900 s!).

Protein-protein binding kinetics

Protein-protein interactions (PPIs) play key roles in many fundamental biological processes,
including cellular signal transduction, immune responses and so on!. Moreover, PPIs are
implicated in the development of numerous human diseases and served as important drug targets.%

PPIs exhibit unique features, being distinct from the protein-small molecule and protein-peptide
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interactions. The protein-protein binding affinity is often stronger than that of protein-small
molecule and protein-peptide interactions. Protein-protein binding and unbinding processes often
occurred in significantly longer timescale. Particularly, protein-protein dissociation process could
take place in a much longer time scale, from seconds to even days. Tens of microseconds cMD
simulations were able to capture barnase binding to barstar?’d, Based on 28 successfully binding
events captured in a total of ~213 us Anton ¢cMD simulations with TIP4P2005 water model*%?, the
predicted barnase binding rate (ko,) was 6x10’M-!s"!, being in line with the experimental value of
60x10’M s’ Less barnase binding events (24) with slower predicted binding rate (2.3x10’M-!s™)
were observed with the TIP3P water model. Additionally, Pan et al.?¢ successfully predicted the
binding kinetic association rates of another two systems of insulin dimerization and Ras binding
to Ras-binding domain of c-RAF-1 (Ras-Raf-RBD). Based on 6 successful binding events among
the total of 294.8 ps cMD simulations, the predicted association rate (kon) of the insulin
dimerization was 0.41x107 M!-s’!, being comparable to the experimental value of 11.4x10” M!-s-
!. For the Ras-Raf-RBD system, 117 us ¢cMD simulations successfully captured 7 binding events
and predicted kon value of 2.6 x10” M!-s°!, being highly consistent with the experimental data of
4.5x10” M!-s!. However, it remains challenging to simulate the protein dissociation with cMD?%,

Weighted Ensemble?* of a total of ~18 us ¢cMD simulations were able to capture 203
barnase binding events and accurately predict the barnase-barstar binding rate constant (kox) of
23£10 x107 M!-s7L. Plattner et al.%® performed high throughput MD simulations of the barnase
binding to barstar to build MSM. A total of 1700 us cMD simulations with 1,892 independent
replicas starting from unbound state captured 74 barnase binding events. Another set of 300 ps
adaptive MD simulations captured 16 and 10 times of barnase binding and dissociation events,

respectively. Based on the total of 2,000 ps simulation data, the obtained MSM was able to predict
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intermediate structures, binding energies and kinetic rates that were consistent with experimental
datas.

Recently, we developed a selective PPI-GaMD method®’ to simulate repetitive protein binding
and dissociation in order to calculate protein binding free energies and kinetics. The PPI simulation
system consists of a ligand protein L, a target protein P and a biological environment E. In PPI-
GaMD, a selective boost potential is added to the non-bonded protein-protein interaction energy
Vprnp. Another boost potential is applied on the remaining potential energy of the system to
enhance conformational sampling of the proteins and facilitate protein diffusion and rebinding®’.
PPI-GaMD® has been demonstrated on the model system of barnase binding to the barstar. Six
independent 2 ps PPI-GaMD simulations have successfully captured repetitive barstar dissociation
and rebinding events. Three to six binding and dissociation events were observed in each
individual PPI-GaMD simulations. The barnase binding free energy predicted from PPI-GaMD
was -17.79 kcal/mol with a standard deviation of 1.11 kcal/mol, being highly consistent with the
experimental value of -18.90 kcal/mol®¢, Additionally, the PPI-GaMD simulations allowed us to
calculate the protein binding kinetics. The average ko, and kop were predicted as 21.7+13.8x108 M-
Lsl and 7.32+4.95x10¢ s°!, being consistent with the corresponding experimental values of

6.0x108M-s'! and 8.0x10°s!, respectively.

5. Conclusions and outlook

Both experimental and computational techniques have achieved remarkable advances in
characterizing biomolecular binding kinetics, including SPR, QSKR, MD and enhanced sampling

simulations. It is still very expensive and resource-consuming for experimental techniques to

22



obtain biomolecular binding kinetic rates. Nevertheless, recent years have seen increasing numbers
of experimental binding kinetic data, leading to a number of databases to collect such information.

Based on the experimental binding kinetic data, QSKRs have been developed to predict
binding kinetic rate constants with high throughtput!®>. For MD simulations, accuracy of binding
free energy calculations could be within 1.0 kcal/mol with the modern techniques®®. Compared
with extensively studied biomolecular binding thermodynamics, the accuracy and efficacy of
modeling techniques for predicting biomolecular binding kinetics are still not very high. The
predicted binding kinetic rate constants from MD simulations and related enhanced sampling
methods could derivate orders of magnitude from the experimental data (Tables 2-4 & Fig 1B).
Nevertheless, MD simulations have enabled characterization of biomolecular binding pathways
and kinetics, attracting increasing attentions in recent years. With advances in computer hardware
and accuracy of force fields, long timescale cMD simulations with all-atom and/or coarse-grained
models have successfully captured biomolecular binding process and predicted accurate binding

associate rates2%d

, although slower dissociation processes are still difficult to simulate.

Enhanced sampling methods have greatly reduced the computational cost for calculations
of biomolecular kinetics. Among various enhanced sampling methods, the MSM, InMetady and
GaMD appear to be the most used techniques that allow for simultaneous predictions of
biomolecular binding association and dissociation rates (Fig. 2). Another trend is the incorporation
of ML into enhanced sampling methods to further improve sampling efficiency and prediction
accuracy of biomolecular binding kinetic rates*® .

Overall, current computational methods have been tested mostly on model systems with

published experimental kinetic data in the literature. The simulation protocols could be potentially

calibrated to predict the kinetic rate constants against the experimental values. This would suggest
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a need for community blind challenges on biomolecular binding kinetics predictions, in which
participants predict the kinetic rates without knowing the experimental values and the predictions
will be evaluated independently by the challenge organizers. Such challenges are expected to
greatly facilitate improvements of the various techniques developed for predicting biomolecular
binding kinetics in the field. In addition to protein-ligand binding, protein-peptide binding and
protein-protein interactions, interactions of nucleic acids (RNA and DNA) with small molecules
and proteins remain largely underexplored and warrant more kinetics studies.

In summary, accurate calculations of biomolecular binding kinetics of large biomolecular
complexes present grand challenges for computational modelling and enhanced sampling
simulations. Further innovations in both computing hardware and method developments may help

us to address these challenges in the future.
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Table 1 Databases of biomolecular binding kinetics.

Database Description Website
KDBI It includes 19,263 entries, which provides experimentally | http://xin.cz3.nus.edu.sg/gr
verified kinetic rates for protein-protein/DNA/RNA/ligand | oup/kdbi/kdbi.asp
and ligand-DNA/RNA interactions.
BindingDB | It focuses on protein-ligand interaction, including ~1.1 | https://www.bindingdb.org/
million compounds and 8.9 thousand targets. rwd/bind/index.jsp
The webpage of binding
kinetic rates:
https://bindingdb.org/rwd/b
ind/ByKI.jsp?specified=Kn
KOFFI It includes 1705 entries and a rating system to measure the | http://koffidb.org/
quality of experimental data.
PDBbind | The ko dataset includes 680 entries with protein-small | http://www.pdbbind.org.cn/
molecule complex structure.
SKEMPI | It focuses on protein-protein interaction, which records 713 | http://life.bsc.es/pid/mutati
binding association and dissociation rates upon mutation. | on database/
dbMPIKT | It focuses on protein-protein interaction, which contains | http://deeplearner.ahu.edu.c

5291 protein binding association and dissociation rates
upon mutation.

n/web/dbMPIKT/
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Table 2 Summary of computer simulation predicted protein-ligand binding (k$i"

) and dissociation

(kg}’}l) rates compared with experimentally determined binding (k;,") and dissociation (k(‘j"?) rates.
ex; i Sim.
kExP exp ;.1 ksim sim -1 . Ref
System Method (107M s korr () (10Ms) k3R (s t(lmc)a Alogk,, | Alogkers | Force field | Year
us
Trvosin. AMBER
"ypsin- M-WEM 2.9 600 0.53+0.08 791197 0.48 0.74 0.12 ff14SBand | 20223
Benzamidine
GAFF
Trypsin- SEEKR2 2.9 600 2.440.2 990130 5 -0.082 0.22 - 20227
Benzamidine
AMBER
Trypsin- InMetaD+ML 2.9 600 - 1560 2.75 - 0.41 ff148B force | )47
Benzamidine field and
GAFF
Abl kinase- . . CHARMM 36 9y
i Mile-stoning | 0.15+0.01 2546 - 18 1.043 - -0.14 o CGenFE | 2021
Trvosin AMBER
psin: LiGaMD 2.9 600 1155079 | 3.53+1.41 5 -0.40 -2.23 ffl4SBand | 2020%
Benzamidine
GAFF
Trypsin- SEEKR 2.9 600 1240.5 174+9 4.4 0.62 -0.54 - 20207!
Benzamidine
Frequency-
M2-Iperoxo adaptive . 0.01£0.002 - 3.7£0.7x10% | 8 - 143 | AMBERI4SB [ ,00m
and GAFF
MetaD
Trypsin- CGMD 2.9 600 36.8 6.9x10° 428 1.10 3.06 MARTINI | 2020
Benzamidine
. CHARMM 36 16
HOR-morphine | InMetaD+ML | 0.29+0.001 | 0.023+0.001 - 0.057+0.005 6 - 0.39 o CGenFE | 2020
HOR- | [ MetaD+ML | 1.33£0.01 | 0.0018£0.003 - 0.021+0.003 19 - 107 | CHARMMS36 1,0, 06
bruprenorphine and CGenFF
Src-Dasatinib cMD 0.5 0.06 0.76 - 6.6 0.18 - OPLS 20202
Src-Dasatinib CGMD 0.5 0.06 4 - 300 0.90 - MARTINI | 20203
Trypsin- ~ CHARMM 36 7
Bemmidine InMetaD 2.9 600 - 41764324 1.00 - 0.84 i CGenpF | 2019
Trypsin- CHARMM 37
Bemm WE 2.9 600 - 2660 8.75 - 0.65 and CGonFF | 2019
T4L-BEN ML 0.08-0.1 950+200 - 3.340.8 - - 246 | CHARMM22* | 2019%
3
T4L-BEN IMetaD | 0.08-0.1 | 9504200 | 0.0035:0.002 742 12| w36 | 213 | CHARMM2® o5 0o
and CGenFF
T4L-BEN MSM 0.08-0.1 950200 0.2120.09 310+130 59 0.42 049 | CHARMM36 | 2018
T4L-BEN WE 0.08-0.1 950+200 - 1000 29 0.022 | CHARMM36 | 2018%%®
AMBER
Src-Imatinib MetaD - 0.11+0.08 - 0.026 - - 0.63 | FF99SB-ILDN | 2018%
and GAFF
Src-Dasatinib InMetaD 0.5 0.06 - 0.0480.024 7 - -0.096 OPLS 2017%
P38a AMBER
combound I InMetaD 0.0118 0.14 - 0.020.01 6.8 - -0.84 | FF99SB-ILDN | 20172
P and GAFF
Trvosi AMBER
rypsin- InMetaD 2.9 600 1.18+1.0 9.142.5 - -0.39 -1.82 | ff99SB-ILDN | 20157
Benzamidine
and GAFF
Trvosin. AMBER
Fypsin- MSM 2.9 600 1542 9.5+3.3x10* 50 0.71 2.20 ff99SB and | 20112
Benzamidine
GAFF
AMBER
Src-Dasatinib cMD 0.5 0.06 0.19 - 35 -0.42 - ff99SB and | 201122
GAFF
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Table 3 Summary of computer simulation predicted peptide binding (k5i™) and dissociation (k377)
rates compared with experimentally determined binding (k,”) and dissociation (k;7?) rates.
kP exp | ksim im Sim. time .
System Method (1 e = kopp(s) (1071‘\’2_15_1) k3FH(s™) ws) Alogke, | Alogkeyy Force field YearRef
SH3-1CKB G}; ?\E’[’D 150 8900 | 4060+2260 | 1450+1170 3 1.43 0.79 | AMBER ffl4SB | 2020
MDM2/P53 | InMetaD |  0.92 206 | 043022 | 0.7£04 27 088 | 047 | AMBIRIDISE | 5p50
MDM2/PMI | MSM 52.7 0.037 330 0.125-1.13 500 0.80 0.53 AMB?SD?%B' 201763
MDM2/P53 | MSM 0.92 2.06 0.019 25 831 0.88 0.08 | AMBERIISB- 5 26
ILDN-nmr

MDM2/P53 | WE 0.92 2.06 7 ; 120 0.88 S| AMBERIDOSE- 9060
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Table 4. Summary of computer simulation predicted protein-protein binding ( k$i™ ) and

on

dissociation (k377) rates compared with experimentally determined binding (k;,”) and dissociation
(k7F) rates.

off
exp sim . 1 1
System Method R 01761(\)/?'15'1) ki?? (sh R 017{1‘\’/}{15_1) koff (s SIIT(LSme Alogk,, | Alogkyss Force field YearRe!f
Barnase- PPI- 60 8x10°6 217+138 | 7.32+4.95x106 12 0.56 -0.038 | AMBER ff14SB | 202267
Barstar GaMD
Barnase- WE 60 8x10°6 2304100 - 18 0.58 - AMBER ff03* | 201924
Barstar
Barnase- 6 AMBER 20d
Bante ¢cMD 60 8x10 23 : 440 142 - F90SBLILDN 2019
Insulin AMBER 20d
Dimor ¢cMD 11.4 14800 0.41 : 294.8 -1.44 - (99SBLDN 2019
Ras—Raf- AMBER 20d
RED ¢cMD 45 7.4 2.6 - 117 2024 - F99SBILDN 2019
B;;f;ii' MSM 60 8x10 26.3-26.5 3x10° 1700 036 042 | AMBER ff99SB | 201766
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Figure 1. The number (A) and accuracy (B) of predictions of biomolecular binding kinetic rates
obtained from MD simulations plotted over the years.
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Figure 2. The number (A) and accuracy (B) of predicted biomolecular binding kinetic rates using
different MD techniques, including Metadynamics (MetaD), Markov State Models (MSM),
Gaussian accelerated MD (GaMD), conventional MD (cMD), Weighted Ensemble (WE),
simulation enabled estimation of kinetic rates (SEEKR), coarse-grained MD (CGMD) and
combination of Metadynamics and Machine Learning (MetaD+ML).
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