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Abstract 

Gaussian accelerated molecular dynamics (GaMD) is a computational technique that 

provides both unconstrained enhanced sampling and free energy calculations of 

biomolecules. Here, we present the implementation of GaMD in the OpenMM simulation 

package and validate it on model systems of alanine dipeptide and RNA folding. For 

alanine dipeptide, 30ns GaMD production simulations reproduced free energy profiles of 

1000ns conventional molecular dynamics (cMD) simulations. In addition, GaMD 

simulations captured folding pathways of three hyperstable RNA tetraloops (UUCG, 

GCAA, and CUUG) and binding of the rbt203 ligand to the HIV-1 Tar RNA, both of which 

involved critical electrostatic interactions such as hydrogen bonding and base stacking. 

Together with previous implementations, GaMD in OpenMM will allow for wider 

applications in simulations of proteins, RNA, and other biomolecules. 

 

Keywords: Gaussian accelerated molecular dynamics (GaMD), OpenMM, enhanced 

sampling, electrostatics, biomolecules.  
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Introduction 

Molecular dynamics (MD) is a powerful computational technique for simulating 

biomolecular dynamics at an atomistic level1. Due to advancements in computing hardware 

and software, timescales accessible to MD simulations have increased, while costs have 

decreased2-3. However, conventional MD (cMD), which makes no use of any enhanced 

sampling schemes, is often limited to tens  to hundreds of microseconds3-10 for simulations 

of biomolecular systems, and cannot attain the timescales required to observe many 

biological processes of interest, which typically occur over milliseconds or longer, due to 

high energy barriers (e.g., 8-12 kcal/mol)3-10. 

Many enhanced sampling techniques have been developed during the last several 

decades to overcome the challenges mentioned above11-15. One class of enhanced sampling 

techniques use predefined collective variables (CVs) or reaction coordinates (RCs), 

including umbrella sampling16-17, metadynamics18-19, adaptive biasing force20-21 and 

steered MD22. However, it can be challenging to define proper CVs prior to simulation3, 

and predefined CVs might significantly limit the sampling of conformational space during 

simulations3. Another class of enhanced sampling techniques, including replica exchange 

MD (REMD)23-24 or parallel tempering25, self-guided Langevin MD26-28 and accelerated 

MD (aMD)29-30, do not require predefined CVs. The latter class of unconstrained enhanced 

sampling techniques remain attractive to improve the sampling of biomolecular dynamics 

and obtain sufficient accuracy in free energy calculations.  

Gaussian accelerated molecular dynamics (GaMD) is an unconstrained enhanced 

sampling technique that works by applying a harmonic boost potential to smooth 

biomolecular potential energy surface31. Since this boost potential usually exhibits a near 
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Gaussian distribution, cumulant expansion to the second order (“Gaussian approximation”) 

can be applied to achieve proper energy reweighting32. GaMD allows for simultaneous 

unconstrained enhanced sampling and free energy calculations of large biomolecules31. 

GaMD has been successfully demonstrated on enhanced sampling of ligand binding31, 33-

36, protein folding31, 35, protein conformational changes34, 37-40, protein-membrane41, 

protein-protein42-44, and protein-nucleic acid45-46 interactions. Furthermore, GaMD has 

been combined with REMD47-48 to further improve conformational sampling and free 

energy calculations3. In addition, “selective GaMD” algorithms, including Ligand GaMD 

(LiGaMD)49, Peptide GaMD (Pep-GaMD)50, and Protein-Protein Interaction-GaMD (PPI-

GaMD)44 have been developed to enable repetitive binding and dissociation of small-

molecule ligands, highly flexible peptides, and proteins within microsecond simulations, 

which allow for highly efficient and accurate calculations of ligand/peptide/protein binding 

free energy and kinetic rate constants3. Recently, GaMD has been combined with Deep 

Learning and free energy profiling in a workflow (GLOW) to predict molecular 

determinants and map free energy landscapes of biomolecules37. GaMD has been 

implemented in widely used simulation packages including AMBER31, NAMD35, 

GENESIS48, and TINKER-HP51. 

In this work, we have implemented GaMD in the OpenMM simulation package52. 

OpenMM is an open-source scientific software package for performing MD simulations 

on a range of high-performance computing architectures52. OpenMM was designed to be 

simple and easy to use, hardware independent, and extensible so that new hardware 

architectures can be accommodated and new functionality can be easily added52. In fact, 

accelerated MD (aMD) has been previously implemented in OpenMM53. We validated the 



 5 

implementation on the model simulations of alanine dipeptide, three hyperstable RNA 

tetraloops of UUCG, GCAA, and CUUG, and rbt203 ligand binding to the HIV-1 Tar 

RNA. 

 

Methods  

Gaussian accelerated molecular dynamics (GaMD) 

 GaMD works by adding a harmonic boost potential to smooth the potential energy 

surface when the system potential drops below a reference energy E31: 

∆𝑉(𝑟) = '
1
2 𝑘
+𝐸 − 𝑉(𝑟̅)/

!
, 𝑉(𝑟̅) < 𝐸

0, 𝑉(𝑟̅) ≥ 𝐸,
 

(1) 

where k is the harmonic force constant. The two adjustable parameters E and k can be 

determined based on three enhanced sampling principles. First, for any two arbitrary 

potential values 𝑉"(𝑟) and 𝑉!(𝑟) found on the original energy surface, if 𝑉"(𝑟) < 	𝑉!(𝑟), 

∆𝑉 should be a monotonic function that does not change the relative order of the biased 

potential values; i.e., 𝑉"∗(𝑟) < 	𝑉!∗(𝑟). Second, if 𝑉"(𝑟) < 	𝑉!(𝑟⃑), the potential difference 

observed on the smoothed energy surface should be smaller than that of the original, i.e., 

𝑉!∗(𝑟) −	𝑉"∗(𝑟) < 	𝑉!(𝑟) −	𝑉"(𝑟). The reference energy needs to be set in the following 

range: 

𝑉$%& 	≤ 𝐸	 ≤ 	𝑉$'( +	
1
𝑘	, 

(2) 

where Vmax and Vmin are the system minimum and maximum potential energies. To ensure 

that equation (2) is valid, k must satisfy: 𝑘	 ≤ 	 "
)!"#	+	)!$%

. Let us define 𝑘	 ≡

	𝑘,
"

)!"#	+	)!$%
, then 0	 ≤ 	𝑘, 	≤ 1. Third, the standard deviation of ∆𝑉 needs to be small 
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enough (i.e., narrow distribution) to ensure proper energetic reweighting32: 𝜎∆) =

𝑘+𝐸 −	𝑉%.//𝜎) 	≤ 	𝜎,, where Vavg and 𝜎) are the average and standard deviation of the 

system potential energies, 𝜎∆) is the standard deviation of ∆𝑉 with 𝜎, as a user-specified 

upper limit (e.g., 10kBT) for proper reweighting. When E is set to the lower bound E = Vmax, 

k0 can be calculated as: 

𝑘, = min(1.0, 	𝑘,0 ) = min>1.0,
𝜎,
𝜎)
	
𝑉$%& −	𝑉$'(
𝑉$%& −	𝑉%./

?, 
(3) 

Alternatively, when the threshold energy E is set to its upper bound 𝐸	 ≤ 	𝑉$'( +	
"
1
, k0 is 

set to: 

𝑘, =	𝑘,00 ≡ @1.0 −
𝜎,
𝜎)
	A
𝑉$%& −	𝑉$'(
𝑉%./ −	𝑉$'(

, (4) 

if 𝑘,00 is found to be between 0 and 1. Otherwise, k0 is calculated using equation (3). 

For energetic reweighting of GaMD simulations, the probability distribution along 

a selected reaction coordinate can be calculated from simulations as 𝑝∗(𝐴) . Given the 

boost potential ∆𝑉(𝑟) of each frame in GaMD simulations, 𝑝∗(𝐴) can be reweighted to 

recover the canonical ensemble distribution, 𝑝(𝐴), as: 

𝑝+𝐴2/ = 𝑝∗+𝐴2/
〈𝑒3∆)(5̅)〉2

∑ 〈𝑝∗(𝐴')𝑒3∆)(5̅)〉'8
'9"

, 𝑗 = 1,… ,𝑀 
(5) 

where M is the number of bins, 𝛽 = 𝑘:𝑇  and 〈𝑒3∆)(5̅)〉2  is the ensemble-averaged 

Boltzmann factor of ∆𝑉(𝑟̅) for simulation frames found in the jth bin. The ensemble-

averaged reweighting factor can be approximated using cumulant expansion31-32: 

〈𝑒3∆)(5̅)〉 = 𝑒𝑥𝑝 N∑ 3&

1!
𝐶1<

19" P, (6) 

where the first two cumulants are given by: 
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𝐶" = 〈∆𝑉〉,
𝐶! = 〈∆𝑉!〉 − 〈∆𝑉〉! = 𝜎.!.

 (7) 

The boost potential obtained from GaMD simulations usually shows near-Gaussian 

distribution54. Cumulant expansion to the second order thus provides a good approximation 

for computing the reweighting factor31-32. The reweighted free energy 𝐹(𝐴) =

−𝑘:𝑇 ln 𝑝(𝐴) is calculated as: 

𝐹(𝐴) = 𝐹∗(𝐴) − ∑ 3&

1!
𝐶1!

19" + 𝐹=,    (8) 

where 𝐹∗(𝐴) = −𝑘:𝑇 ln 𝑝∗(𝐴)  is the modified free energy obtained from GaMD 

simulation and 𝐹= is a constant. 

 

Implementation of GaMD in OpenMM 

 In recent years, the OpenMM simulation engine52 has been developed to enable fast 

and extensible MD simulations. OpenMM features a convenient API layer, which allows 

users to access OpenMM’s functions from external programs, including code written in 

Python. OpenMM also possesses lower layers to make the most efficient use of CPU and 

GPU hardware capabilities. 

 Part of OpenMM’s extensibility includes the built-in CustomIntegrator object, 

which allows developers to design integration algorithms from within the high-level API 

layer, not requiring them to delve into the complexities of the lower OpenMM code layers. 

The CustomIntegrator accepts a set of variables and instructions in the form of character 

strings. OpenMM passes these strings to a just-in-time compiler55 to be converted to CPU 

or GPU platform code at runtime - enabling both highly efficient and highly customizable 

code. We used the CustomIntegrator to implement several variations of the GaMD 

algorithm within Python. 
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 For GaMD in OpenMM, multiple modes are available for applying boost potential 

to biomolecules: (1) boosting the dihedral energetic term only, (2) boosting the total 

potential energy only, (3) boosting the non-bonded terms in the potential energy, and (4) 

boosting a combination of two of the aforementioned terms, called “dual-boost” (i.e., “total 

energy – dihedral energy dual boost”). The GaMD boost potential is computed based on 

statistics of the system as detailed in the previous section. In addition, both the “lower-

bound” and “upper-bound” integration schemes are implemented in GaMD OpenMM. 

GaMD simulations generally include three stages: (i) short cMD, (ii) GaMD 

equilibration and (iii) GaMD production. The program first collects potential statistics from 

a short cMD run. Subsequently, a boost potential is added to the system in the GaMD 

equilibration stage while updates of the potential statistics continue. After the equilibration 

stage, the statistics collected is assumed to be sufficient to represent the potential energy 

landscape of interest. Hence, the reference energy and harmonic force constant are fixed to 

calculate the boost potential for running the production simulation. Note that in both the 

cMD and equilibration stages, there are a small number of steps at the beginning of each 

stage during which we do not collect statistics. These steps, named preparation steps, are 

performed to allow the system to adapt to the simulation environment. The program starts 

collecting statistics of the potential energies after the preparation steps. 

MD simulations frequently experience interruptions; therefore, it is helpful for 

simulation utilities to be able to easily restart incomplete simulations. This is accomplished 

in GaMD OpenMM by leveraging OpenMM’s checkpoint utility - the exact state of the 

simulation, including all variables related to the GaMD portion of the simulation, is saved 

with a frequent interval in time. Therefore, if an interruption occurs to the simulation, the 
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GaMD OpenMM program can automatically recover the most recent checkpoint and 

continue the simulation from where it left off, regardless of which stage of the GaMD 

process it was in when the interruption occurred. 

Our GaMD OpenMM package is open-source and available for download, along 

with documentation for installation and usage, as well as tutorials, at 

https://github.com/MiaoLab20/gamd-openmm.git. 

 

Simulation Protocols and Benchmarks 

For alanine dipeptide, the AMBER ff99SB force field parameters were used. The LEaP 

module in the AmberTools package56-59 was used to build the simulation system for alanine 

dipeptide. The alanine dipeptide was solvated in a TIP3P60 water box that extends ~8–10 

Å from the solute surface. The final system contained 1912 atoms, with a total of 630 water 

molecules. 

For GaMD simulations of RNA molecules, the AMBER RNA OL361 and GAFF262 

force field parameters were used for the RNA and ligand molecules, respectively. The 

simulation systems of the UUCG, GCAA, and UUCG tetraloops were prepared starting 

from the 1F7Y63, 1ZIH64, and 1RNG65 PDB structures, respectively. The PDB structures 

were solvated in octahedral TIP3P60 water boxes that extended 12 Å from the RNA 

surfaces, with approximately 1M KCl added to the solutions by the LEaP module in the 

AmberTools package57-59, 66. The final systems of UUCG, GCAA, and CUUG tetraloops 

contained 7,805, 6,218, and 7,538 atoms, respectively. Starting from the 1UUD67 PDB 

structure, the bound rbt203 ligand was removed from the HIV-1 Tar RNA and placed at a 

~15 Å distance away from the RNA surface to prepare the simulation system for ligand 

binding to the HIV-1 Tar RNA. The RNA-ligand complex was then solvated in a cubical 
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TIP3P60 water box that extended 15 Å from the solute surface by the CHARMM-GUI 

webserver68-70. The system charge was neutralized with 0.15 M NaCl and 0.01 M Mg2+, 

which resulted in a final system size of 40,829 atoms. All RNA systems were simulated at 

a temperature of 300 K.  

Periodic boundary conditions were applied for the simulation systems. Bonds 

containing hydrogen atoms were restrained with the SHAKE71 algorithm and a 2fs timestep 

was used. Weak coupling to an external temperature and pressure bath was used to control 

both temperature and pressure72. The electrostatic interactions were calculated using the 

particle mesh Ewald (PME) summation73 with a cutoff of 8.0 Å for long-range interactions. 

After the initial energy minimization and thermalization, dual-boost GaMD was applied to 

simulate the systems. The system threshold energy for applying the boost potential was set 

Vmax. The default parameter values were used for the GaMD simulations except stated 

otherwise. For alanine dipeptide, three independent simulations were performed with 

randomized initial atomic velocities, each of which consisted of 2ns short cMD, followed 

by 4ns GaMD equilibration and then 30 ns GaMD production simulation. After collecting 

the statistics, the threshold energy E and harmonic force constant k were computed 

according to equation (3).  

For the simulations of RNA tetraloops, three independent dual-boost GaMD 

simulations were performed for each system, each of which consisted of 2 ns cMD, 8 ns 

GaMD equilibration after adding the boost potential and 3,000-5,000 ns GaMD production. 

The s0V values were lowered to 1.5 kcal/mol from the default 6.0 kcal/mol to observe semi-

stable refolding of the RNA tetraloops. For the simulations of the rbt203 ligand binding to 

the HIV-1 Tar RNA, five independent dual-boost GaMD simulations were performed, each 
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of which included 1.6 ns cMD, 6.4 ns GaMD equilibration after adding the boost potential 

and 400-500 ns GaMD production. GaMD simulation frames were saved every 0.1 ps. The 

VMD74 and CPPTRAJ75 tools were used for simulation trajectory analysis. Finally, the 

PyReweighting toolkit32 was applied to compute the potential of mean force (PMF) profiles 

of the backbone dihedrals Φ and Ψ in the alanine dipeptide. The heavy-atom RMSD of 

RNA tetraloops relative to respective PDB structures (1F7Y for UUCG, 1ZIH for GCAA, 

and 1RNG for CUUG) and the U3-G6, G3-A6, and C3-G6 center-of-mass (COM) 

distances were used as RCs to calculate the PMF profiles in the RNA tetraloop simulations. 

The COM distance between the rbt203 ligand and nucleotide A6 and the COM distance 

between RNA nucleotides A6 and U7 side chains were selected to compute the PMF 

profiles in the simulations of ligand binding to the HIV-1 Tar RNA. 

 

Results 

Free Energy Profiles of Alanine Dipeptide 

For alanine dipeptide, outputs from the dual-boost GaMD simulations were used to 

compute free energy profiles of the Φ and Ψ dihedrals (Figure 1A). The boost potential 

from three independent 30 ns GaMD production simulations was 9.4 ± 2.7 kcal/mol. The 

2nd order cumulant expansion was applied to energetically reweight the GaMD simulations.  

 The 1D free energy profiles obtained from three 30 ns GaMD simulations agreed 

quantitatively with the PMF profiles from the 1000 ns cMD simulations (Figures 1B-E 

and S1). For Φ, moderate fluctuations were observed near the energy barrier at 0°, and the 

free energy value increased slightly at ~50° (Figures 1B and S1A-B). The 2D free energy 

profiles of backbone dihedrals (Φ, Ψ) in 3 ´ 30ns GaMD simulations and 3 ´ 1000ns cMD 
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simulations are shown in Figure 1D and 1E. Overall, GaMD in OpenMM was able to 

identify five low-energy conformational states, which centered around (-148°, 0°) and (-

69°, -17°) for the right-handed α helix (αR), (48°, -12°) for the left-handed α helix (αL), (-

150°, 159°) for the β-sheet and (-72°, 162°) for the polyproline II (PII) conformation. The 

corresponding minimum free energies were approximately 0, 0.74, 3.15, 1.68, and 2.65 

kcal/mol. The 2D free energy profile obtained from the GaMD and cMD simulations 

showed a high degree of similarity (Figure 1E).  

  

Folding of the RNA tetraloop structures: UUCG, GCAA, and CUUG 

Multiple independent dual-boost GaMD simulations were performed on three RNA 

tetraloops structures of UUCG (PDB: 1F7Y) 63, GCAA (PDB: 1ZIH) 64, and CUUG (PDB: 

1RNG)65. Similar averages and standard deviations of the added boost potentials were 

recorded for the systems, i.e., 9.3 ± 2.5 kcal/mol for UUCG, 10.1 ± 3.1 kcal/mol for GCAA, 

and 9.0 ± 2.9 kcal/mol for CUUG. Starting from the folded structures, GaMD simulations 

captured multiple unfolding and semi-stable folding events. A folding event was defined 

as attaining < 4Å heavy-atom RMSD relative to respective PDB structures76 of the three 

RNA tetraloops for more than ~10 ns (Figures S2-S4). The 2D PMF free energy profiles 

were calculated from the respective heavy-atom RMSD to the PDB structures and COM 

distances between first and last residues of the RNA tetraloops to characterize their folding 

processes.  

 The 2D PMF free energy profile of the UUCG folding was calculated from the 

heavy-atom RMSD of the RNA tetraloop relative to the 1F7Y PDB structure and the 

distance between nucleotides U3 and G6 (Figures 2A and S2). Four low-energy 
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conformational states, including “Folded” (Figure 2B), “I1” (Figure 2C), “I2” (Figure 

2D), and “Unfolded” (Figure 2E), were uncovered from the GaMD simulations of the 

UUCG tetraloop. All the low-energy conformational states were compared to the nuclear 

magnetic resonance (NMR) structure of folded UUCG (PDB: 1F7Y)63 (Figure 2). In the 

“Folded” low-energy conformation, nucleotides U3 and G6 flipped in and formed 

hydrogen bonds with one another, and nucleotide U3 base stacked with nucleotide C5. The 

heavy-atom RMSD of UUCG relative to the 1F7Y PDB was ~1.1 Å, and the COM distance 

between nucleotides U3 and G6 was ~9.8 Å (Figure 2B). The COM distance between 

nucleotides U3 and G6 increased to ~14.2 Å, and the heavy-atom RMSD increased to ~4.1 

Å in the “I1” low-energy conformational state. Nucleotide G6 flipped out, whereas 

nucleotide C5 flipped in to interact with nucleotide U3 (Figure 2C). The heavy-atom 

RMSD in the “I2” low-energy conformational state was similar to the “I1” low-energy 

conformational state, although the RNA backbone distorted heavily, which decreased the 

distance between nucleotides U3 and G6 to ~7.3 Å (Figure 2D). In the “Unfolded” low-

energy conformational state, the heavy-atom RMSD relative to the 1F7Y PDB structure 

was ~5.8 Å, and the U3-G6 distance was ~8.0 Å (Figure 2E).  

 For the GCAA RNA tetraloop, four low-energy conformational states were 

identified from 2D PMF calculated from the GaMD simulations (Figures 3A and S3), 

including “Folded” (Figure 3B), “I1” (Figure 3C), “I2” (Figure 3D), and “Unfolded” 

(Figure 3E). They were compared to the MMR structure of folded GCAA (PDB: 1ZIH) 64 

in Figure 3. In the “Folded” state, the side chains of nucleotides C4-A6 were base stacked 

and located on the opposite side of nucleotide G3. The heavy-atom RMSD relative to the 

1ZIH PDB structure was ~1.0 Å, and the COM distance between nucleotides G3 and A6 
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was ~9.3 Å (Figure 3A). In the “I1” state, the side chain of nucleotide G3 flipped to the 

same side of nucleotides U4-A6, and the base stacking only existed between nucleotides 

A5 and A6. The heavy-atom RMSD was ~2.6 Å, and the distance between nucleotides G3 

and A6 was ~8.8 Å (Figure 3B). In the “I2” state, the base stacking between nucleotides 

A5 and A6 remained stable. The heavy-atom RMSD relative to the 1ZIH PDB structure 

was ~3.9 Å, and the G3-A6 distance was ~10.5 Å (Figure 3C). In the “Unfolded” state, 

nucleotide C4 flipped out, while nucleotide G3 formed base stacking with nucleotides A5 

and A6. The heavy-atom RMSD was ~4.6 Å, and the G3-A6 distance was ~7.6 Å (Figure 

3D). 

 For the CUUG RNA tetraloop, three distinct low-energy conformational states 

were identified from the 2D PMF (Figures 4A and S4), namely “Folded” (Figure 4B), 

“I1” (Figure 4C), and “Unfolded” (Figure 4D). They were also compared to the MMR 

structure of folded CUUG (PDB: 1RNG) 65 (Figure 4). In the “Folded” state, nucleotides 

C3 and G6 flipped in and formed a hydrogen bond with one another. The heavy-atom 

RMSD relative to the 1RNG PDB structure was ~1.1 Å, and the COM distance between 

nucleotides C3 and G6 was ~10.8 Å (Figure 4B). The RNA backbone distorted in the “I1” 

state. The heavy-atom RMSD was ~3.9 Å, and the C3-G6 distance was ~6.9 Å (Figure 

4C). In the “Unfolded” state, the heavy-atom RMSD relative to the 1RNG PDB structure 

was ~4.3 Å, and the C3-G6 distance was ~13.2 Å (Figure 4D).  

 

Binding of the rbt203 ligand to the HIV-1 Tar RNA 

 Starting from the 1UUD67 PDB structure, the bound rbt203 ligand was removed 

and placed at a ~15 Å distance from the HIV-1 Tar RNA. Five independent 400-500 ns 
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GaMD simulations captured multiple stable binding events of the rbt203 ligand to the HIV-

1 Tar RNA (Figure S5). The average added boost potentials were recorded to be 9.1 ± 3.0 

kcal/mol. The 2D PMF free energy profiles was calculated from the COM distance between 

the rbt203 ligand and nucleotide A6 side chain and the COM distance between nucleotides 

A6 and U7 side chains to characterize ligand binding to the HIV-1 Tar RNA (Figures 5 

and S6).  

Six low-energy conformational states were uncovered from the GaMD simulations 

of ligand binding to HIV-1 Tar RNA, including “B1”, “B2”, “I1”, “I2”, “I3”, and “U”. The 

“B1” and “B2” low-energy conformational states represented the bound conformation of 

rbt203 in the HIV-1 Tar RNA, while the “U” low-energy conformation state represented 

the unbound conformation. In the “B1” low-energy conformational state, the distance 

between rbt203 ligand and nucleotide A6 was ~7.1 Å, and the distance between nucleotides 

A6 and U7 was ~3.8 Å (Figure 5A). Nucleotide U7 flipped in and pointed towards the 

core of the HIV-1 Tar RNA. The rbt203 ligand interacted with nucleotides A6, U7, C8, 

U9, G10, C23, and U24 in this low-energy conformational state (Figure 5A). In the “B2” 

low-energy conformational state, the distance between rbt203 ligand and nucleotide A6 

was ~9.1 Å, and the distance between nucleotides A6 and U7 was ~8.1 Å (Figure 5B). 

Similar to the “B1” low-energy conformational state, nucleotide U7 also pointed towards 

the ligand. The rbt203 ligand interacted with nucleotides G5, A6, U7, G10, A11, G12, C13, 

A19, G20, C21, U22, C23, and U24 (Figure 5C). In the “I1” low-energy conformational 

state, the A6-rbt203 ligand distance was ~20.1 Å, and the A6-U7 distance was ~4.1 Å 

(Figure 5D). The rbt203 ligand was located at the terminal nucleotides of HIV-1 Tar RNA. 

The interacting nucleotides with rbt203 ligand were G1, G2, C3, C23, U24, G27, C28, and 
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C29 (Figure 5D). In the “I2” low-energy conformational state, the A6-rbt203 ligand 

distance was ~20.0 Å, and the A6-U7 distance was ~12.4 Å (Figure 5E). The rbt203 ligand 

was at a similar location as in the “I1” low-energy conformational state. The interacting 

nucleotides in the “I2” low-energy conformational state were G1, G2, C3, A4, U26, G27, 

C28, and C29 (Figure 5E). In the “I3” low-energy conformational state, the A6-rbt203 

ligand distance was ~34.1 Å, and the A6-U7 distance was ~12.2 Å (Figure 5F). The rbt203 

ligand was located at the U15-G18 RNA tetraloop. The rbt203 ligand interacted with 

nucleotides U15, G16, and G17 of the HIV-1 Tar RNA (Figure 5F). In the “U” low-energy 

conformational state, the rbt203 ligand was found in the bulk solvent, and nucleotide U7 

flipped outwards. The distance between nucleotide A6 and rbt203 ligand was ~41.8 Å, and 

the distance between nucleotides A6 and U7 was ~12.7 Å in this low-energy 

conformational state (Figure 5G). 

 

Discussion 

By adding a harmonic boost potential to smoothen the potential energy surface, 

GaMD provides both unconstrained enhanced sampling and free energy calculation of 

biomolecules. Important statistical properties of the system potential, such as the average, 

maximum, minimum and standard deviation values, are used to calculate the simulation 

acceleration parameters, particularly the threshold energy and force constant for applying 

the boost potential. In this study, we have implemented GaMD in the OpenMM package. 

“Selective GaMD” algorithms, including Ligand GaMD, Peptide GaMD and Protein-
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Protein Interaction GaMD, have not been implemented in OpenMM, although they are 

planned to be implemented in the future. 

Three independent 30 ns GaMD simulations were able to capture five different low-

energy conformational states of the backbone dihedrals (Φ, Ψ) in alanine dipeptide, which 

were in good agreement with the cMD simulations (Figure 1D,E). In addition, the 1D free 

energy profiles of GaMD and cMD mostly overlapped, except the elevated free energy 

value at ~50° for Φ and minor fluctuations in the energy barriers at 0° for Φ and −120° for 

Ψ (Figures 1 and S1). Notably, both the 1D and 2D free energy profiles of GaMD in 

OpenMM were highly similar to those from previous implementations of GaMD in 

AMBER31 and NAMD35 in terms of the low-energy states and free energy profiles. The 

alanine dipeptide system provides a sort of benchmark or validation of the correctness of 

the GaMD approach and any of its implementations. Our present results show that GaMD 

in OpenMM can reproduce the correct free energy profiles for alanine dipeptide, as we 

have shown for previous implementations of GaMD31, 35, 48, 51, providing evidence that we 

have completed a correct implementation of GaMD in OpenMM, providing users 

confidence in applying GaMD OpenMM for their own systems of interest. 

GaMD in OpenMM successfully captured the unfolding and semi-stable refolding 

of three hyperstable RNA tetraloops of UUCG, GCAA, and CUUG76. The low-energy 

conformational states obtained illustrated the unfolding pathways of the three hyperstable 

tetraloops, which were mostly the reverses of the folding pathways uncovered by Chen et. 

al76. For UUCG, starting from the “Folded” low-energy conformational state where the two 

nucleotides U3 and G6 pointed inwards and interacted with each other (Figure 2B), the 

backbone of the UUCG tetraloop skewed to the right as the nucleotide C5 flipped in, 
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pushed G6 outwards, and formed interactions with U3 in the “I1” low-energy conformation 

(Figure 2C). As UUCG transited from the “I1” to “I2” conformation, the U3-C5 

interaction was broken, and both nucleotides flipped outwards. The RNA core was solely 

occupied by nucleotide G6, heavily distorting the tetraloop (Figure 2D). Finally, the RNA 

stretched out and became unfolded in the “Unfolded” low-energy conformational state 

(Figure 2E). For GCAA, the unfolding pathway started with the “Folded” low-energy 

conformation where base stacking was observed between the three nucleotides C4-A6, and 

only G3 pointed inwards (Figure 3B). As GCAA transited from the “Folded” to “I1” 

conformation, the stacking between nucleotides C4 and A5 was broken, while the tetraloop 

shrunk in size (Figure 3C). The base stacking between nucleotides A5 and A6 remained 

stable in the “I2” low-energy conformational state, as the RNA began stretching out and 

nucleotide C4 flipped to the opposite side (Figure 3D). Finally, GCAA stretched out and 

coiled into the “Unfolded” low-energy conformation, where nucleotide G3 flipped 

outwards and formed base stacking with nucleotide A5, which in turn remained base-

stacked with nucleotide A6 (Figure 3E). For CUUG, nucleotides C3 and G6 pointed 

inwards and formed hydrogen bonds with each other in the “Folded” low-energy 

conformational state (Figure 4B). As CUUG transited from the “Folded” to “I1” low-

energy conformation, all four nucleotides in the tetraloop pointed outwards as the RNA 

skewed left and shrunk in its size significantly (Figure 4C). To completely unfold, CUUG 

straightened out its terminal nucleotides and became stretched out in the “Unfolded” low-

energy conformation (Figure 4D). Overall, the low-energy conformational states and 

unfolding pathways uncovered from GaMD simulations in OpenMM agreed well with a 

previous study carried out by Chen et al.76, particularly the “Folded” conformations, “I1” 
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of UUCG, “I2” of GCAA, and “I1” of CUUG. Nevertheless, it is also worth noting that 

GaMD in OpenMM was only able to capture semi-stable refolding events of all three RNA 

tetraloops, where the heavy-atom RMSD relative to respective PDB structures were in the 

range of ~1.8-2.5 Å (Figures S2-S4). This was primarily because the RNA force field 

parameters were biased to favor rigid, highly stacked conformations, as described in the 

previous study76. The independent GaMD simulations of each RNA tetraloop have not 

achieved proper convergences within the 4-5µs simulation time windows as indicated by 

the different free energy profiles across the simulations of each tetraloop (Figures S2-S4). 

Longer GaMD simulations combined with more accurate RNA force field parameter sets 

are required to achieve consistent simulations of RNA. 

In the 1UUD67 PDB structure of HIV-1 Tar RNA, the distance between nucleotide 

A6 and rbt203 ligand is ~8.9 Å, and the distance between nucleotides A6 and U7 is ~7.4 

Å. Nucleotide U7 points towards the core of the HIV-1 Tar RNA, and the rbt203 ligand 

interacts with nucleotides A6, U7, U9, G10, A11, G12, C13, A19, G20, C21, U22, C23, 

and U24. The distance between nucleotide A6 and rbt203 ligand in the 1UUD PDB 

structure is comparable to those in the “B1” and “B2” low-energy conformational states, 

while the distance between nucleotides A6 and U7 is the middle between those in the “B1” 

and “B2” low-energy conformational states (Figure 5B,C). The interacting nucleotides of 

the rbt203 ligand are highly similar between the GaMD-bound conformations and the 

1UUD PDB structure, demonstrating the agreements between GaMD simulation results 

and experimental data67.  

 One recent study by Tang et al.36 demonstrated that base stacking between ligands 

and nucleotides is the key interaction that drives ligand binding in single-stranded nucleic 
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acids. Furthermore, Chen et al.76 found that preformed G1-A4 and C1-G4 base pairs played 

a significant role in the accurate folding of the GCAA and CUUG RNA tetraloops. 

In addition, we observed that nucleotide U7 flips inwards and points towards the 

core of the HIV-1 Tar RNA in both the bound “B1” and “B2” low-energy conformations 

(Figure 5B,C) and the 1UUD67 PDB structure, while flips outwards in the unbound “U” 

low-energy conformation (Figure 5G). The observation of nucleotide U7 “base-flipping”77 

phenomenon during ligand binding illustrated the importance of this nucleotide in the 

ligand binding to the HIV-1 Tar RNA. Furthermore, two slightly different binding 

pathways the rbt203 ligand to the HIV-1 Tar RNA could be observed from the free energy 

profile in Figure 5. While both pathways started from the “U”, “I3”, and “I2” low-energy 

conformational states, the second pathway arrived abruptly at the bound “B2” low-energy 

conformational state, whereas the dominant pathway involved a stabilization of the 

intermediate state as indicated by the transition from “I2” to “I1”, before ending at the 

bound “B1” low-energy conformation (Figures 5 and S5). The dominant pathway is 

described in detail as follow. Starting from the bulk solvent (Figure 5G), the rbt203 ligand 

approached the HIV-1 Tar RNA first through interactions with the U15-G18 tetraloop 

(Figure 5F). The rbt203 ligand then dissociated back to the bulk solvent and relocated to 

the terminal nucleotides of the HIV-1 Tar RNA (Figure 5E). At this stage, nucleotide U7 

flipped inwards and became ready to interact with the rbt203 ligand (Figure 5D). Finally, 

the rbt203 ligand moved from the terminal of HIV-1 Tar RNA to its binding pocket, located 

at the core nucleotides of the RNA (Figures 5B and 5C). The ligand drew closer to 

nucleotide A6 in the “B2” low-energy conformational state (Figure 5C) and nucleotide U7 

in the “B1” low-energy conformational state (Figure 5B). Given the fact that the RNA 
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conformational changes took place after ligand bound, the binding of rbt203 ligand to the 

HIV-1 Tar RNA is an induced-fit process. On the other hand, it is also worth noting that 

similar to the RNA folding simulations, GaMD simulations of RNA-ligand binding has not 

converged within the 500ns simulation time windows as shown by the different free energy 

profiles calculated from the individual simulations (Figure S6). Furthermore, as mentioned 

above, more accurate RNA force field parameter sets are required to achieve consistent 

simulations of RNA molecules. 

In summary, we have implemented GaMD in OpenMM. It is complementary to 

previous implementations of GaMD in AMBER31, NAMD35, GENESIS48, and TINKER-

HP51. As demonstrated on model systems, results of the current work will facilitate the 

applications of GaMD in enhanced sampling and free energy calculations of a wide range 

of large biomolecules, especially RNA structures that involve critical electrostatic 

interactions.  
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Figure Captions 

Figure 1. (A) Schematic representation of backbone dihedrals Φ and Ψ in alanine 

dipeptide. (B-C) Potential of mean force (PMF) profiles of the (B) Φ and (C) Ψ dihedrals 

calculated from three 30 ns GaMD simulations combined using cumulant expansion to the 

2nd order. (D) The 2D PMF profile of backbone dihedrals (Φ, Ψ) from combined three 30ns 

GaMD simulations trajectories. The low energy wells are labeled corresponding to the 

right-handed α helix (αR), left-handed α helix (αL), β-sheet (β) and polyproline II (PII) 

conformations. (E) The 2D PMF profile of backbone dihedrals (Φ, Ψ) from combined three 

1000 ns cMD simulations trajectories. The low energy wells are labeled corresponding to 

the right-handed α helix (αR), left-handed α helix (αL), β-sheet (β) and polyproline II (PII) 

conformations.  

Figure 2. Folding of the UUCG RNA tetraloop captured by GaMD in OpenMM. (A) 

2D free energy profile of the heavy-atom RMSD of UUCG relative to the 1F7Y PDB 

structure and the center of mass (COM) distance between nucleotides U3 and G6. The low-

energy RNA conformational states are labeled “Folded”, “I1”, “I2”, and “Unfolded”. (B) 

The “Folded” low-energy conformational state compared to the 1F7Y PDB structure, for 

which the RMSD is ~1.1 Å and the U3-G6 distance is ~9.8 Å. (C) The “I1” low-energy 

conformational state compared to the 1F7Y PDB structure, for which the RMSD is ~4.1 Å 

and the U3-G6 distance is ~14.2 Å. (D) The “I2” low-energy conformational state 

compared to the 1F7Y PDB structure, for which the RMSD is ~4.2 Å and the U3-G6 

distance is ~7.3 Å. (E) The “Unfolded” low-energy conformational state compared to the 

1F7Y PDB structure, for which the RMSD is ~5.8 Å and the U3-G6 distance is ~8.0 Å. 
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The low-energy RNA conformations are colored orange, cyan, magenta, and yellow, and 

the 1F7Y PDB structure is colored gray.  

Figure 3. Folding of the GCAA RNA tetraloop captured by GaMD in OpenMM. (A) 

2D free energy profile of the heavy-atom RMSD of GCAA relative to the 1ZIH PDB 

structure and the COM distance between nucleotides G3 and A6. The low-energy RNA 

conformational states are labeled “Folded”, “I1”, “I2”, and “Unfolded”. (B) The “Folded” 

low-energy conformational state compared to the 1ZIH PDB structure, for which the 

RMSD is ~1.0 Å and the G3-A6 distance is ~9.0 Å. (C) The “I1” low-energy 

conformational state compared to the 1ZIH PDB structure, for which the RMSD is ~2.6 Å 

and the G3-A6 distance is ~8.8 Å. (D) The “I2” low-energy conformational state compared 

to the 1ZIH PDB structure, for which the RMSD is ~3.9 Å and the G3-A6 distance is ~11.0 

Å. (E) The “Unfolded” low-energy conformational state compared to the 1ZIH PDB 

structure, for which the RMSD is ~4.5 Å and the G3-A6 distance is ~8.0 Å. The low-energy 

RNA conformations are colored orange, cyan, magenta, and yellow, and the 1ZIH PDB 

structure is colored gray.  

Figure 4. Folding of the CUUG RNA tetraloop captured by GaMD in OpenMM. (A) 

2D free energy profile of the heavy-atom RMSD of CUUG relative to the 1RNG PDB 

structure and the COM distance between nucleotides C3 and G6. The low-energy RNA 

conformational states are labeled “Folded”, “I1”, and “Unfolded”. (B) The “Folded” low-

energy conformational state compared to the 1RNG PDB structure, for which the RMSD 

is ~1.1 Å and the C3-G6 distance is ~10.9 Å. (C) The “I1” low-energy conformational state 

compared to the 1RNG PDB structure, for which the RMSD is ~3.9 Å and the C3-G6 

distance is ~6.9 Å. (D) The “Unfolded” low-energy conformational state compared to the 
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1RNG PDB structure, for which the RMSD is ~4.1 Å and the C3-G6 distance is ~13.1 Å. 

The low-energy RNA conformations are colored orange, cyan, magenta, and yellow, and 

the 1RNG PDB structure is colored gray.  

Figure 5. Binding of the rbt203 ligand to the HIV-1 Tar RNA captured by GaMD in 

OpenMM. (A) 2D free energy profile of the COM distance between the rbt203 ligand 

(Lig) and RNA nucleotide A6 and the COM distance between RNA nucleotides A6 and 

U7 side chains. The low-energy conformational states are labeled “B1”, “B2”, “I1”, “I2”, 

“I3”, and “U”. (B) The “B1” low-energy conformational state, for which the A6-P14 ligand 

distance is ~8.0 Å and the A6-U7 distance is ~3.5 Å. (C) The “B2” low-energy 

conformational state, for which the A6-P14 ligand distance is ~10.1 Å and the A6-U7 

distance is ~10.0 Å. (D) The “I1” low-energy conformational state, for which the A6-P14 

ligand distance is ~20.1 Å and the A6-U7 distance is ~4.1 Å. (E) The “I2” low-energy 

conformational state, for which the A6-P14 ligand distance is ~20.0 Å and the A6-U7 

distance is ~13.5 Å. (F) The “I3” low-energy conformational state, for which the A6-P14 

ligand distance is ~41.8 Å and the A6-U7 distance is ~12.7 Å. (G) The “U” low-energy 

conformational state, for which the A6-P14 ligand distance is ~34.1 Å and the A6-U7 

distance is ~12.2 Å. The low-energy RNA-ligand conformational states are colored orange, 

green, cyan, magenta, yellow, pink, and marine, and the 1UUD PDB is colored gray.   

 

  



 31 

Figure 1 

 
 

  



 32 

Figure 2 
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Figure 5 

 

 

 



Supporting Information 
for “Gaussian Accelerated Molecular Dynamics in OpenMM”  

 
Implementation algorithm of Gaussian accelerated Molecular Dynamics (GaMD) in 
OpenMM 

GaMD { 
    For i = 1, …, conventional_md // Stage 1: run short initial conventional molecular dynamics 
        if (i >= conventional_md_prep): 
            n =  i - conventional_md_prep 
            Update(V, Vmax, Vmin) 
        if (i >= conventional_md_prep) and (i % averaging_window_interval): 
            Update(i, V, Vavg, sigmaV) 
    End 
 
    if (i == conventional_md): 
        calculate_threshold_energy_with_effective_harmonic_constant(sigma0, sigmaV, Vmax, 
Vmin, k, E) 
 
    For i = 1, …, gamd_equilibration: // Equilibrate the system after adding boost potential 
        If (E > V): 
            deltaV = 0.5*k*(E-V)**2 
            V = V + deltaV 
        EndIf 
        Update Vmax, Vmin, Vavg, sigmaV 
        If (i >= gamd_equilibration_prep): 
            calculate_threshold_energy_with_effective_harmonic_constant(sigma0, sigmaV, Vmax, 
Vmin, k, E) 
        EndIf 
     End 
  
     For i = 1, …, total_simulation_length // run production simulation 
            If (E > V): 
                deltaV = 0.5*k*(E-V)**2 
                V = V + deltaV 
            EndIf 
    End 
} 
  
Subroutine UpdateMaxMin(V,Vmax,Vmin): 
    if (V > Vmax) Vmax = V 
    if (V < Vmin) Vmin = V 
} 
Subroutine UpdateAvgSigma(n, V, Vmax, Vmin, Vavg, sigmaV ): 
    Vdiff  = V – Vavg 
    Vavg = Vavg + Vdiff / n 



    M2 = M2 + Vdiff * (V – Vavg) 
    sigmaV = sqrt(M2 / n) 
} 
 
// Lower Bound Integrator 
Subroutine calculate_threshold_energy_with_effective_harmonic_constant(sigma0,Vmax,Vmin, 
k, E): 
    E = Vmax 
    k0’ = (sigma0/sigmaV) * (Vmax-Vmin)/(Vmax-Vavg) 
    k0 = min(1.0, k0’) 
    k = k0/(Vmax-Vmin) 
} 
// Upper Bound Integrator 
Subroutine calculate_threshold_energy_with_effective_harmonic_constant(sigma0,Vmax,Vmin, 
k, E): 
    k0” = (1-sigma0/sigmaV) * (Vmax-Vmin)/(Vavg-Vmin) 
    If 0 < k0” <= 1: 
        k0 = k0” 
        E = Vmin + (Vmax-Vmin)/k0 
    Else: 
        E = Vmax 
        k0’ = (sigma0/sigmaV) * (Vmax-Vmin)/(Vmax-Vavg) 
        k0 = min(1.0, k0’) 
    end 
    k = k0/(Vmax-Vmin) 
} 
 

Example Input XML file for GaMD-OpenMM simulation 
 
<?xml version="1.0" ?> 
<gamd> 
    <temperature>298.15</temperature> <!-- unit.kelvin --> 
 
    <system> 
        <nonbonded-method>PME</nonbonded-method> 
        <nonbonded-cutoff>1.0</nonbonded-cutoff> <!-- unit.nanometers --> 
        <constraints>HBonds</constraints> 
    </system> 
 
    <barostat> 
        <pressure>1.0</pressure> <!-- unit.bar --> 
        <frequency>25</frequency> 
    </barostat> 
     
    <run-minimization>True</run-minimization> 
 



    <integrator> 
        <algorithm>langevin</algorithm> 
        <boost-type>lower-dual</boost-type> 
        <sigma0> 
            <primary>6.0</primary> <!-- unit.kilocalories_per_mole --> 
            <secondary>6.0</secondary> <!-- unit.kilocalories_per_mole --> 
        </sigma0> 
        <random-seed>0</random-seed> 
        <dt>0.002</dt> <!-- unit.picoseconds --> 
        <friction-coefficient>1.0</friction-coefficient> <!-- unit.picoseconds**-1 --> 
        <number-of-steps> 
            <conventional-md-prep>200000</conventional-md-prep> 
            <conventional-md>1000000</conventional-md> 
            <gamd-equilibration-prep>200000</gamd-equilibration-prep> 
            <gamd-equilibration>2000000</gamd-equilibration> 
            <gamd-production>3000000</gamd-production> 
            <averaging-window-interval>50000</averaging-window-interval> 
        </number-of-steps> 
    </integrator> 
 
    <input-files> 
        <amber> 
            <topology>data/dip.top</topology> 
            <coordinates type="rst7">data/md-4ns.rst7</coordinates> 
        </amber> 
    </input-files> 
 
    <outputs> 
        <directory>output/</directory> 
        <overwrite-output>True</overwrite-output> 
        <reporting> 
            <energy> 
                <interval>500</interval> 
            </energy> 
            <coordinates> 
                <file-type>DCD</file-type> 
            </coordinates> 
            <statistics> 
                <interval>500</interval> 
            </statistics> 
        </reporting> 
    </outputs> 
</gamd>  



Figure S1. Potential of mean force (PMF) profiles of the (A-B) Φ and (C-D) Ψ dihedrals 

calculated from three 1000ns cMD simulations (A,C) and three 30ns GaMD simulations (B,D). 

  



Figure S2. (A-C) 2D free energy profiles of the heavy-atom RMSD of UUCG relative to the 1F7Y 

PDB structure and the COM distance between nucleotides U3 and G6 calculated from three 

independent 5,000 ns GaMD simulations of the UUCG RNA tetraloop. The low-energy RNA 

conformational states are labeled “Folded”, “I1”, “I2”, and “Unfolded”. (D) Time courses of the 

heavy-atom RMSD of UUCG relative to the 1F7Y PDB structure calculated from three 

independent 5,000 ns GaMD simulations of the UUCG RNA tetraloop. (E) Time courses of the 

COM distance between nucleotides U3 and G6 calculated from three independent 5,000 ns GaMD 

simulations of the UUCG RNA tetraloop. 

 
  



Figure S3. (A-C) 2D free energy profiles of the heavy-atom RMSD of GCAA relative to the 1ZIH 

PDB structure and the COM distance between nucleotides G3 and A6 calculated from three 

independent 4,000 ns GaMD simulations of the GCAA RNA tetraloop. The low-energy RNA 

conformational states are labeled “Folded”, “I1”, “I2”, and “Unfolded”. (D) Time courses of the 

heavy-atom RMSD of GCAA relative to the 1ZIH PDB structure calculated from three 

independent 4,000 ns GaMD simulations of the GCAA RNA tetraloop. (E) Time courses of the 

COM distance between nucleotides G3 and A6 calculated from three independent 4,000 ns GaMD 

simulations of the GCAA RNA tetraloop. 

 
  



Figure S4. (A-C) 2D free energy profiles of the heavy-atom RMSD of CUUG relative to the 

1RNG PDB structure and the COM distance between nucleotides C3 and G6 calculated from three 

independent 3,000-5,000 ns GaMD simulations of the CUUG RNA tetraloop. The low-energy 

RNA conformational states are labeled “Folded”, “I1”, and “Unfolded”. (D) Time courses of the 

heavy-atom RMSD of CUUG relative to the 1RNG PDB structure calculated from three 

independent 3,000-5,000 ns GaMD simulations of the CUUG RNA tetraloop. (E) Time courses of 

the COM distance between nucleotides C3 and G6 calculated from three independent 3,000-5,000 

ns GaMD simulations of the CUUG RNA tetraloop. 

 



Figure S5. (A) Time courses of the COM distance between the rbt203 ligand and RNA nucleotide 

A6 calculated from five independent 500 ns GaMD simulations of the rbt203 binding to the HIV-

1 Tar RNA. (B) Time courses of the COM distance between RNA nucleotides A6 and U7 side 

chains calculated from five independent 500 ns GaMD simulations of the rbt203 binding to the 

HIV-1 Tar RNA. 

 

  



Figure S6. 2D free energy profiles of the COM distance between the rbt203 ligand (Lig) and RNA 

nucleotide A6 and the COM distance between RNA nucleotides A6 and U7 side chains calculated 

from five independent 500 ns GaMD simulations of the rbt203 binding to the HIV-1 Tar RNA. 

The low-energy conformational states are labeled “B1”, “B2”, “I1”, “I2”, “I3”, and “U”. 

 
 
 
 

 

 

 

 

 

 

 

 



Figure S7. Graphical representation of the GaMD algorithm as implemented in OpenMM. The 
algorithm is divided into the “conventional MD” and “Gaussian accelerated MD” portions, both 
of which are further divided into a total of five stages. 

Stage 1: Conventional MD preparatory stage: no statistics are collected to allow the system to 
equilibrate. 

Stage 2: Conventional MD stage: boost parameters Vmax, Vmin, Vavg, and σv are collected. 

Stage 3: GaMD pre-equilibration stage: boost potential is applied, but boost parameters are not 
updated. 

Stage 4: GaMD equilibration stage: boost potential is applied, and boost parameters are updated. 

Stage 5: GaMD production stage: boost potential is applied, boost parameters are held fixed. 
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