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Abstract

Gaussian accelerated molecular dynamics (GaMD) is a computational technique that
provides both unconstrained enhanced sampling and free energy calculations of
biomolecules. Here, we present the implementation of GaMD in the OpenMM simulation
package and validate it on model systems of alanine dipeptide and RNA folding. For
alanine dipeptide, 30ns GaMD production simulations reproduced free energy profiles of
1000ns conventional molecular dynamics (cMD) simulations. In addition, GaMD
simulations captured folding pathways of three hyperstable RNA tetraloops (UUCG,
GCAA, and CUUG) and binding of the rbt203 ligand to the HIV-1 Tar RNA, both of which
involved critical electrostatic interactions such as hydrogen bonding and base stacking.
Together with previous implementations, GaMD in OpenMM will allow for wider

applications in simulations of proteins, RNA, and other biomolecules.

Keywords: Gaussian accelerated molecular dynamics (GaMD), OpenMM, enhanced

sampling, electrostatics, biomolecules.



Introduction

Molecular dynamics (MD) is a powerful computational technique for simulating
biomolecular dynamics at an atomistic level'. Due to advancements in computing hardware
and software, timescales accessible to MD simulations have increased, while costs have
decreased®. However, conventional MD (cMD), which makes no use of any enhanced
sampling schemes, is often limited to tens to hundreds of microseconds*!° for simulations
of biomolecular systems, and cannot attain the timescales required to observe many
biological processes of interest, which typically occur over milliseconds or longer, due to
high energy barriers (e.g., 8-12 kcal/mol)*-1°.

Many enhanced sampling techniques have been developed during the last several
decades to overcome the challenges mentioned above!!"!>. One class of enhanced sampling

techniques use predefined collective variables (CVs) or reaction coordinates (RCs),
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including umbrella sampling'®'/, metadynamics'®"”, adaptive biasing force and
steered MD?2, However, it can be challenging to define proper CVs prior to simulation?,
and predefined CVs might significantly limit the sampling of conformational space during
simulations?. Another class of enhanced sampling techniques, including replica exchange
MD (REMD)?-?* or parallel tempering?, self-guided Langevin MD?%2® and accelerated
MD (aMD)?-%, do not require predefined CVs. The latter class of unconstrained enhanced
sampling techniques remain attractive to improve the sampling of biomolecular dynamics
and obtain sufficient accuracy in free energy calculations.

Gaussian accelerated molecular dynamics (GaMD) is an unconstrained enhanced

sampling technique that works by applying a harmonic boost potential to smooth

biomolecular potential energy surface®!. Since this boost potential usually exhibits a near



Gaussian distribution, cumulant expansion to the second order (“Gaussian approximation”)
can be applied to achieve proper energy reweighting®?>. GaMD allows for simultaneous
unconstrained enhanced sampling and free energy calculations of large biomolecules®!.
GaMD has been successfully demonstrated on enhanced sampling of ligand binding?!: 33

31, 35

36, protein folding , protein conformational changes®* 3740, protein-membrane*!,

42-44

protein-protein q4s-46

, and protein-nucleic aci interactions. Furthermore, GaMD has
been combined with REMD** to further improve conformational sampling and free
energy calculations®. In addition, “selective GaMD” algorithms, including Ligand GaMD
(LiGaMD)*, Peptide GaMD (Pep-GaMD)*°, and Protein-Protein Interaction-GaMD (PPI-
GaMD)* have been developed to enable repetitive binding and dissociation of small-
molecule ligands, highly flexible peptides, and proteins within microsecond simulations,
which allow for highly efficient and accurate calculations of ligand/peptide/protein binding
free energy and kinetic rate constants®. Recently, GaMD has been combined with Deep
Learning and free energy profiling in a workflow (GLOW) to predict molecular
determinants and map free energy landscapes of biomolecules’”. GaMD has been
implemented in widely used simulation packages including AMBER?!, NAMD?,
GENESIS*, and TINKER-HP>!.

In this work, we have implemented GaMD in the OpenMM simulation package??.
OpenMM is an open-source scientific software package for performing MD simulations
on a range of high-performance computing architectures®?. OpenMM was designed to be
simple and easy to use, hardware independent, and extensible so that new hardware

architectures can be accommodated and new functionality can be easily added®. In fact,

accelerated MD (aMD) has been previously implemented in OpenMM3>3. We validated the



implementation on the model simulations of alanine dipeptide, three hyperstable RNA
tetraloops of UUCG, GCAA, and CUUG, and rbt203 ligand binding to the HIV-1 Tar

RNA.

Methods

Gaussian accelerated molecular dynamics (GaMD)

GaMD works by adding a harmonic boost potential to smooth the potential energy

surface when the system potential drops below a reference energy E>!:

AV () = %k(E —v@®), V@ <E )
0, V() = E,

where k is the harmonic force constant. The two adjustable parameters £ and k can be
determined based on three enhanced sampling principles. First, for any two arbitrary
potential values V; (7') and V, () found on the original energy surface, if V, (1) < V,(7),
AV should be a monotonic function that does not change the relative order of the biased
potential values; i.e., V;' () < V5 (). Second, if V; () < V,(7), the potential difference
observed on the smoothed energy surface should be smaller than that of the original, i.e.,
V(1) — V(1) < Vo(r) — V,(7). The reference energy needs to be set in the following

range:
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where Vyax and Vi are the system minimum and maximum potential energies. To ensure

that equation (2) is valid, & must satisfy: k < — L Let us define k =

Vmax = Vmin

1

ko ,then 0 < k, < 1. Third, the standard deviation of AV needs to be small

Vmax = Vmin



enough (i.e., narrow distribution) to ensure proper energetic reweighting*?: a,, =
k(E — V;wg)av < 0y, where V., and o, are the average and standard deviation of the

system potential energies, g,y is the standard deviation of AV with g, as a user-specified
upper limit (e.g., 10kgT) for proper reweighting. When £ is set to the lower bound E = Vi,

ko can be calculated as:

00 Vinax — Vi 3
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Alternatively, when the threshold energy E is set to its upper bound £ < Vi, + %, kois

set to:

)
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Vavg = Vinin
if kg is found to be between 0 and 1. Otherwise, ko is calculated using equation (3).

For energetic reweighting of GaMD simulations, the probability distribution along
a selected reaction coordinate can be calculated from simulations as p*(A4) . Given the
boost potential AV (r) of each frame in GaMD simulations, p*(A4) can be reweighted to
recover the canonical ensemble distribution, p(4), as:

: (P ™), . ()
p(A]) = p (A]) M (p*(Ai)eﬁjAv(f)>i' ] = 1' ,M
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where M is the number of bins, f = kzT and (eP2V™); is the ensemble-averaged
Boltzmann factor of AV (7) for simulation frames found in the j" bin. The ensemble-

averaged reweighting factor can be approximated using cumulant expansion?!-32;

(VD) = exp (52, 20, ). ©)

where the first two cumulants are given by:



C, = (AV), (7)
C, = (AV?) — (AV)? = g2.

The boost potential obtained from GaMD simulations usually shows near-Gaussian
distribution>*. Cumulant expansion to the second order thus provides a good approximation
for computing the reweighting factor’!*2. The reweighted free energy F(A) =

—kgT Inp(A) is calculated as:
k
F(4) =F @A) -0 +E, ®)

where F*(A) = —kgTInp*(A) is the modified free energy obtained from GaMD

simulation and F, is a constant.

Implementation of GaMD in OpenMM

In recent years, the OpenMM simulation engine>? has been developed to enable fast
and extensible MD simulations. OpenMM features a convenient API layer, which allows
users to access OpenMM’s functions from external programs, including code written in
Python. OpenMM also possesses lower layers to make the most efficient use of CPU and
GPU hardware capabilities.

Part of OpenMM’s extensibility includes the built-in CustomlIntegrator object,
which allows developers to design integration algorithms from within the high-level API
layer, not requiring them to delve into the complexities of the lower OpenMM code layers.
The CustomIntegrator accepts a set of variables and instructions in the form of character
strings. OpenMM passes these strings to a just-in-time compiler> to be converted to CPU
or GPU platform code at runtime - enabling both highly efficient and highly customizable
code. We used the CustomlIntegrator to implement several variations of the GaMD

algorithm within Python.



For GaMD in OpenMM, multiple modes are available for applying boost potential
to biomolecules: (1) boosting the dihedral energetic term only, (2) boosting the total
potential energy only, (3) boosting the non-bonded terms in the potential energy, and (4)
boosting a combination of two of the aforementioned terms, called “dual-boost” (i.e., “total
energy — dihedral energy dual boost”). The GaMD boost potential is computed based on
statistics of the system as detailed in the previous section. In addition, both the “lower-
bound” and “upper-bound” integration schemes are implemented in GaMD OpenMM.

GaMD simulations generally include three stages: (i) short cMD, (ii) GaMD
equilibration and (iii) GaMD production. The program first collects potential statistics from
a short cMD run. Subsequently, a boost potential is added to the system in the GaMD
equilibration stage while updates of the potential statistics continue. After the equilibration
stage, the statistics collected is assumed to be sufficient to represent the potential energy
landscape of interest. Hence, the reference energy and harmonic force constant are fixed to
calculate the boost potential for running the production simulation. Note that in both the
cMD and equilibration stages, there are a small number of steps at the beginning of each
stage during which we do not collect statistics. These steps, named preparation steps, are
performed to allow the system to adapt to the simulation environment. The program starts
collecting statistics of the potential energies after the preparation steps.

MD simulations frequently experience interruptions; therefore, it is helpful for
simulation utilities to be able to easily restart incomplete simulations. This is accomplished
in GaMD OpenMM by leveraging OpenMM’s checkpoint utility - the exact state of the
simulation, including all variables related to the GaMD portion of the simulation, is saved

with a frequent interval in time. Therefore, if an interruption occurs to the simulation, the



GaMD OpenMM program can automatically recover the most recent checkpoint and
continue the simulation from where it left off, regardless of which stage of the GaMD
process it was in when the interruption occurred.

Our GaMD OpenMM package is open-source and available for download, along
with documentation for installation and wusage, as well as tutorials, at

https://github.com/MiaoLab20/gamd-openmm.git.

Simulation Protocols and Benchmarks
For alanine dipeptide, the AMBER ff99SB force field parameters were used. The LEaP

module in the AmberTools package>®->°

was used to build the simulation system for alanine
dipeptide. The alanine dipeptide was solvated in a TIP3P% water box that extends ~8—10
A from the solute surface. The final system contained 1912 atoms, with a total of 630 water
molecules.

For GaMD simulations of RNA molecules, the AMBER RNA OL3%! and GAFF26?
force field parameters were used for the RNA and ligand molecules, respectively. The
simulation systems of the UUCG, GCAA, and UUCG tetraloops were prepared starting
from the 1F7Y%, 1ZIH%, and 1RNG® PDB structures, respectively. The PDB structures
were solvated in octahedral TIP3P® water boxes that extended 12 A from the RNA
surfaces, with approximately 1M KCI added to the solutions by the LEaP module in the
AmberTools package®’> %, The final systems of UUCG, GCAA, and CUUG tetraloops
contained 7,805, 6,218, and 7,538 atoms, respectively. Starting from the 1UUD®’ PDB
structure, the bound rbt203 ligand was removed from the HIV-1 Tar RNA and placed at a

~15 A distance away from the RNA surface to prepare the simulation system for ligand

binding to the HIV-1 Tar RNA. The RNA-ligand complex was then solvated in a cubical



TIP3P® water box that extended 15 A from the solute surface by the CHARMM-GUI
webserverS®70, The system charge was neutralized with 0.15 M NaCl and 0.01 M Mg*",
which resulted in a final system size of 40,829 atoms. All RNA systems were simulated at
a temperature of 300 K.

Periodic boundary conditions were applied for the simulation systems. Bonds
containing hydrogen atoms were restrained with the SHAKE'! algorithm and a 2/s timestep
was used. Weak coupling to an external temperature and pressure bath was used to control
both temperature and pressure’?. The electrostatic interactions were calculated using the
particle mesh Ewald (PME) summation’® with a cutoff of 8.0 A for long-range interactions.
After the initial energy minimization and thermalization, dual-boost GaMD was applied to
simulate the systems. The system threshold energy for applying the boost potential was set
Vmax. The default parameter values were used for the GaMD simulations except stated
otherwise. For alanine dipeptide, three independent simulations were performed with
randomized initial atomic velocities, each of which consisted of 2ns short cMD, followed
by 4ns GaMD equilibration and then 30 ns GaMD production simulation. After collecting
the statistics, the threshold energy £ and harmonic force constant k& were computed
according to equation (3).

For the simulations of RNA tetraloops, three independent dual-boost GaMD
simulations were performed for each system, each of which consisted of 2 ns cMD, 8 ns
GaMD equilibration after adding the boost potential and 3,000-5,000 ns GaMD production.
The cov values were lowered to 1.5 kcal/mol from the default 6.0 kcal/mol to observe semi-
stable refolding of the RNA tetraloops. For the simulations of the rbt203 ligand binding to

the HIV-1 Tar RNA, five independent dual-boost GaMD simulations were performed, each

10



of which included 1.6 ns cMD, 6.4 ns GaMD equilibration after adding the boost potential
and 400-500 ns GaMD production. GaMD simulation frames were saved every 0.1 ps. The
VMD and CPPTRAJ” tools were used for simulation trajectory analysis. Finally, the
PyReweighting toolkit*? was applied to compute the potential of mean force (PMF) profiles
of the backbone dihedrals @ and ¥ in the alanine dipeptide. The heavy-atom RMSD of
RNA tetraloops relative to respective PDB structures (1F7Y for UUCG, 1ZIH for GCAA,
and 1RNG for CUUG) and the U3-G6, G3-A6, and C3-G6 center-of-mass (COM)
distances were used as RCs to calculate the PMF profiles in the RNA tetraloop simulations.
The COM distance between the rbt203 ligand and nucleotide A6 and the COM distance
between RNA nucleotides A6 and U7 side chains were selected to compute the PMF

profiles in the simulations of ligand binding to the HIV-1 Tar RNA.

Results

Free Energy Profiles of Alanine Dipeptide
For alanine dipeptide, outputs from the dual-boost GaMD simulations were used to
compute free energy profiles of the ® and ¥ dihedrals (Figure 1A). The boost potential
from three independent 30 ns GaMD production simulations was 9.4 + 2.7 kcal/mol. The
2™ order cumulant expansion was applied to energetically reweight the GaMD simulations.
The 1D free energy profiles obtained from three 30 ns GaMD simulations agreed
quantitatively with the PMF profiles from the 1000 ns cMD simulations (Figures 1B-E
and S1). For ®, moderate fluctuations were observed near the energy barrier at 0°, and the
free energy value increased slightly at ~50° (Figures 1B and S1A-B). The 2D free energy

profiles of backbone dihedrals (@, V) in 3 x 30ns GaMD simulations and 3 x 1000ns cMD
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simulations are shown in Figure 1D and 1E. Overall, GaMD in OpenMM was able to
identify five low-energy conformational states, which centered around (-148°, 0°) and (-
69°, -17°) for the right-handed a helix (ar), (48°, -12°) for the left-handed a helix (av), (-
150°, 159°) for the B-sheet and (-72°, 162°) for the polyproline II (Prr) conformation. The
corresponding minimum free energies were approximately 0, 0.74, 3.15, 1.68, and 2.65
kcal/mol. The 2D free energy profile obtained from the GaMD and cMD simulations

showed a high degree of similarity (Figure 1E).

Folding of the RNA tetraloop structures: UUCG, GCAA, and CUUG
Multiple independent dual-boost GaMD simulations were performed on three RNA
tetraloops structures of UUCG (PDB: 1F7Y) ¢, GCAA (PDB: 1ZIH) %, and CUUG (PDB:
IRNG)®. Similar averages and standard deviations of the added boost potentials were
recorded for the systems, i.e., 9.3 £ 2.5 kcal/mol for UUCG, 10.1 £ 3.1 kcal/mol for GCAA,
and 9.0 + 2.9 kcal/mol for CUUG. Starting from the folded structures, GaMD simulations
captured multiple unfolding and semi-stable folding events. A folding event was defined
as attaining < 4A heavy-atom RMSD relative to respective PDB structures’® of the three
RNA tetraloops for more than ~10 ns (Figures S2-S4). The 2D PMF free energy profiles
were calculated from the respective heavy-atom RMSD to the PDB structures and COM
distances between first and last residues of the RNA tetraloops to characterize their folding
processes.

The 2D PMF free energy profile of the UUCG folding was calculated from the
heavy-atom RMSD of the RNA tetraloop relative to the 1F7Y PDB structure and the

distance between nucleotides U3 and G6 (Figures 2A and S2). Four low-energy
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conformational states, including “Folded” (Figure 2B), “I1” (Figure 2C), “I12” (Figure
2D), and “Unfolded” (Figure 2E), were uncovered from the GaMD simulations of the
UUCG tetraloop. All the low-energy conformational states were compared to the nuclear
magnetic resonance (NMR) structure of folded UUCG (PDB: 1F7Y)% (Figure 2). In the
“Folded” low-energy conformation, nucleotides U3 and G6 flipped in and formed
hydrogen bonds with one another, and nucleotide U3 base stacked with nucleotide C5. The
heavy-atom RMSD of UUCG relative to the 1F7Y PDB was ~1.1 A, and the COM distance
between nucleotides U3 and G6 was ~9.8 A (Figure 2B). The COM distance between
nucleotides U3 and G6 increased to ~14.2 A, and the heavy-atom RMSD increased to ~4.1
A in the “I1” low-energy conformational state. Nucleotide G6 flipped out, whereas
nucleotide C5 flipped in to interact with nucleotide U3 (Figure 2C). The heavy-atom
RMSD in the “I2” low-energy conformational state was similar to the “I1” low-energy
conformational state, although the RNA backbone distorted heavily, which decreased the
distance between nucleotides U3 and G6 to ~7.3 A (Figure 2D). In the “Unfolded” low-
energy conformational state, the heavy-atom RMSD relative to the 1F7Y PDB structure
was ~5.8 A, and the U3-G6 distance was ~8.0 A (Figure 2E).

For the GCAA RNA tetraloop, four low-energy conformational states were
identified from 2D PMF calculated from the GaMD simulations (Figures 3A and S3),
including “Folded” (Figure 3B), “I1” (Figure 3C), “I2” (Figure 3D), and “Unfolded”
(Figure 3E). They were compared to the MMR structure of folded GCAA (PDB: 1ZIH) %
in Figure 3. In the “Folded” state, the side chains of nucleotides C4-A6 were base stacked
and located on the opposite side of nucleotide G3. The heavy-atom RMSD relative to the

1ZIH PDB structure was ~1.0 A, and the COM distance between nucleotides G3 and A6
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was ~9.3 A (Figure 3A). In the “I1” state, the side chain of nucleotide G3 flipped to the
same side of nucleotides U4-A6, and the base stacking only existed between nucleotides
A5 and A6. The heavy-atom RMSD was ~2.6 A, and the distance between nucleotides G3
and A6 was ~8.8 A (Figure 3B). In the “I2” state, the base stacking between nucleotides
A5 and A6 remained stable. The heavy-atom RMSD relative to the 1ZIH PDB structure
was ~3.9 A, and the G3-A6 distance was ~10.5 A (Figure 3C). In the “Unfolded” state,
nucleotide C4 flipped out, while nucleotide G3 formed base stacking with nucleotides A5
and A6. The heavy-atom RMSD was ~4.6 A, and the G3-A6 distance was ~7.6 A (Figure
3D).

For the CUUG RNA tetraloop, three distinct low-energy conformational states
were identified from the 2D PMF (Figures 4A and S4), namely “Folded” (Figure 4B),
“I1” (Figure 4C), and “Unfolded” (Figure 4D). They were also compared to the MMR
structure of folded CUUG (PDB: 1RNG)  (Figure 4). In the “Folded” state, nucleotides
C3 and G6 flipped in and formed a hydrogen bond with one another. The heavy-atom
RMSD relative to the IRNG PDB structure was ~1.1 A, and the COM distance between
nucleotides C3 and G6 was ~10.8 A (Figure 4B). The RNA backbone distorted in the “I1”
state. The heavy-atom RMSD was ~3.9 A, and the C3-G6 distance was ~6.9 A (Figure
4C). In the “Unfolded” state, the heavy-atom RMSD relative to the IRNG PDB structure

was ~4.3 A, and the C3-G6 distance was ~13.2 A (Figure 4D).

Binding of the rbt203 ligand to the HIV-1 Tar RNA

Starting from the 1UUDY” PDB structure, the bound rbt203 ligand was removed

and placed at a ~15 A distance from the HIV-1 Tar RNA. Five independent 400-500 ns
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GaMD simulations captured multiple stable binding events of the rbt203 ligand to the HIV-
1 Tar RNA (Figure S5). The average added boost potentials were recorded to be 9.1 + 3.0
kcal/mol. The 2D PMF free energy profiles was calculated from the COM distance between
the rbt203 ligand and nucleotide A6 side chain and the COM distance between nucleotides
A6 and U7 side chains to characterize ligand binding to the HIV-1 Tar RNA (Figures 5
and S6).

Six low-energy conformational states were uncovered from the GaMD simulations
of ligand binding to HIV-1 Tar RNA, including “B1”, “B2”, “I1”, “12”, “I13”, and “U”. The
“B1” and “B2” low-energy conformational states represented the bound conformation of
bt203 in the HIV-1 Tar RNA, while the “U” low-energy conformation state represented
the unbound conformation. In the “B1” low-energy conformational state, the distance
between rbt203 ligand and nucleotide A6 was ~7.1 A, and the distance between nucleotides
A6 and U7 was ~3.8 A (Figure 5A). Nucleotide U7 flipped in and pointed towards the
core of the HIV-1 Tar RNA. The rbt203 ligand interacted with nucleotides A6, U7, C8,
U9, G10, C23, and U24 in this low-energy conformational state (Figure 5A). In the “B2”
low-energy conformational state, the distance between rbt203 ligand and nucleotide A6
was ~9.1 A, and the distance between nucleotides A6 and U7 was ~8.1 A (Figure 5B).
Similar to the “B1” low-energy conformational state, nucleotide U7 also pointed towards
the ligand. The rbt203 ligand interacted with nucleotides G5, A6, U7, G10, A11, G12, C13,
A19, G20, C21, U22, C23, and U24 (Figure 5C). In the “I1” low-energy conformational
state, the A6-rbt203 ligand distance was ~20.1 A, and the A6-U7 distance was ~4.1 A
(Figure SD). The rbt203 ligand was located at the terminal nucleotides of HIV-1 Tar RNA.

The interacting nucleotides with rbt203 ligand were G1, G2, C3, C23, U24, G27, C28, and

15



C29 (Figure 5D). In the “I2” low-energy conformational state, the A6-rbt203 ligand
distance was ~20.0 A, and the A6-U7 distance was ~12.4 A (Figure SE). The rbt203 ligand
was at a similar location as in the “I1” low-energy conformational state. The interacting
nucleotides in the “I2” low-energy conformational state were G1, G2, C3, A4, U26, G27,
C28, and C29 (Figure 5E). In the “I3” low-energy conformational state, the A6-rbt203
ligand distance was ~34.1 A, and the A6-U7 distance was ~12.2 A (Figure 5F). The rbt203
ligand was located at the U15-G18 RNA tetraloop. The rbt203 ligand interacted with
nucleotides U15, G16, and G17 of the HIV-1 Tar RNA (Figure SF). In the “U” low-energy
conformational state, the rbt203 ligand was found in the bulk solvent, and nucleotide U7
flipped outwards. The distance between nucleotide A6 and rbt203 ligand was ~41.8 A, and
the distance between nucleotides A6 and U7 was ~12.7 A in this low-energy

conformational state (Figure 5G).

Discussion

By adding a harmonic boost potential to smoothen the potential energy surface,
GaMD provides both unconstrained enhanced sampling and free energy calculation of
biomolecules. Important statistical properties of the system potential, such as the average,
maximum, minimum and standard deviation values, are used to calculate the simulation
acceleration parameters, particularly the threshold energy and force constant for applying
the boost potential. In this study, we have implemented GaMD in the OpenMM package.

“Selective GaMD” algorithms, including Ligand GaMD, Peptide GaMD and Protein-
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Protein Interaction GaMD, have not been implemented in OpenMM, although they are

planned to be implemented in the future.

Three independent 30 ns GaMD simulations were able to capture five different low-
energy conformational states of the backbone dihedrals (®, V) in alanine dipeptide, which
were in good agreement with the cMD simulations (Figure 1D,E). In addition, the 1D free
energy profiles of GaMD and cMD mostly overlapped, except the elevated free energy
value at ~50° for @ and minor fluctuations in the energy barriers at 0° for ® and —120° for
¥ (Figures 1 and S1). Notably, both the 1D and 2D free energy profiles of GaMD in
OpenMM were highly similar to those from previous implementations of GaMD in
AMBER?!' and NAMD? in terms of the low-energy states and free energy profiles. The
alanine dipeptide system provides a sort of benchmark or validation of the correctness of
the GaMD approach and any of its implementations. Our present results show that GaMD
in OpenMM can reproduce the correct free energy profiles for alanine dipeptide, as we

have shown for previous implementations of GaMD?!- 3 4851

, providing evidence that we
have completed a correct implementation of GaMD in OpenMM, providing users

confidence in applying GaMD OpenMM for their own systems of interest.

GaMD in OpenMM successfully captured the unfolding and semi-stable refolding
of three hyperstable RNA tetraloops of UUCG, GCAA, and CUUG’®. The low-energy
conformational states obtained illustrated the unfolding pathways of the three hyperstable
tetraloops, which were mostly the reverses of the folding pathways uncovered by Chen et.
al’s. For UUCG, starting from the “Folded” low-energy conformational state where the two
nucleotides U3 and G6 pointed inwards and interacted with each other (Figure 2B), the

backbone of the UUCG tetraloop skewed to the right as the nucleotide C5 flipped in,
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pushed G6 outwards, and formed interactions with U3 in the “I1” low-energy conformation
(Figure 2C). As UUCG transited from the “I1” to “I2” conformation, the U3-C5
interaction was broken, and both nucleotides flipped outwards. The RNA core was solely
occupied by nucleotide G6, heavily distorting the tetraloop (Figure 2D). Finally, the RNA
stretched out and became unfolded in the “Unfolded” low-energy conformational state
(Figure 2E). For GCAA, the unfolding pathway started with the “Folded” low-energy
conformation where base stacking was observed between the three nucleotides C4-A6, and
only G3 pointed inwards (Figure 3B). As GCAA transited from the “Folded” to “I1”
conformation, the stacking between nucleotides C4 and A5 was broken, while the tetraloop
shrunk in size (Figure 3C). The base stacking between nucleotides A5 and A6 remained
stable in the “I2” low-energy conformational state, as the RNA began stretching out and
nucleotide C4 flipped to the opposite side (Figure 3D). Finally, GCAA stretched out and
coiled into the “Unfolded” low-energy conformation, where nucleotide G3 flipped
outwards and formed base stacking with nucleotide AS, which in turn remained base-
stacked with nucleotide A6 (Figure 3E). For CUUG, nucleotides C3 and G6 pointed
inwards and formed hydrogen bonds with each other in the “Folded” low-energy
conformational state (Figure 4B). As CUUG transited from the “Folded” to “I1” low-
energy conformation, all four nucleotides in the tetraloop pointed outwards as the RNA
skewed left and shrunk in its size significantly (Figure 4C). To completely unfold, CUUG
straightened out its terminal nucleotides and became stretched out in the “Unfolded” low-
energy conformation (Figure 4D). Overall, the low-energy conformational states and
unfolding pathways uncovered from GaMD simulations in OpenMM agreed well with a

previous study carried out by Chen et al.’®, particularly the “Folded” conformations, “I1”
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of UUCG, “I2” of GCAA, and “I1” of CUUG. Nevertheless, it is also worth noting that
GaMD in OpenMM was only able to capture semi-stable refolding events of all three RNA
tetraloops, where the heavy-atom RMSD relative to respective PDB structures were in the
range of ~1.8-2.5 A (Figures S2-S4). This was primarily because the RNA force field
parameters were biased to favor rigid, highly stacked conformations, as described in the
previous study’®. The independent GaMD simulations of each RNA tetraloop have not
achieved proper convergences within the 4-5us simulation time windows as indicated by
the different free energy profiles across the simulations of each tetraloop (Figures S2-S4).
Longer GaMD simulations combined with more accurate RNA force field parameter sets

are required to achieve consistent simulations of RNA.

In the 1UUD®” PDB structure of HIV-1 Tar RNA, the distance between nucleotide
A6 and rbt203 ligand is ~8.9 A, and the distance between nucleotides A6 and U7 is ~7.4
A. Nucleotide U7 points towards the core of the HIV-1 Tar RNA, and the rbt203 ligand
interacts with nucleotides A6, U7, U9, G10, Al11, G12, C13, A19, G20, C21, U22, C23,
and U24. The distance between nucleotide A6 and rbt203 ligand in the 1UUD PDB
structure is comparable to those in the “B1” and “B2” low-energy conformational states,
while the distance between nucleotides A6 and U7 is the middle between those in the “B1”
and “B2” low-energy conformational states (Figure 5B,C). The interacting nucleotides of
the rbt203 ligand are highly similar between the GaMD-bound conformations and the
1UUD PDB structure, demonstrating the agreements between GaMD simulation results

and experimental data®’.

One recent study by Tang et al.*® demonstrated that base stacking between ligands

and nucleotides is the key interaction that drives ligand binding in single-stranded nucleic
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acids. Furthermore, Chen et al.”® found that preformed G1-A4 and C1-G4 base pairs played
a significant role in the accurate folding of the GCAA and CUUG RNA tetraloops.

In addition, we observed that nucleotide U7 flips inwards and points towards the
core of the HIV-1 Tar RNA in both the bound “B1” and “B2” low-energy conformations
(Figure 5B,C) and the 1TUUD®’ PDB structure, while flips outwards in the unbound “U”
low-energy conformation (Figure 5G). The observation of nucleotide U7 “base-flipping™’’
phenomenon during ligand binding illustrated the importance of this nucleotide in the
ligand binding to the HIV-1 Tar RNA. Furthermore, two slightly different binding
pathways the rbt203 ligand to the HIV-1 Tar RNA could be observed from the free energy
profile in Figure 5. While both pathways started from the “U”, “I3”, and “I12” low-energy
conformational states, the second pathway arrived abruptly at the bound “B2” low-energy
conformational state, whereas the dominant pathway involved a stabilization of the
intermediate state as indicated by the transition from “I2” to “I1”, before ending at the
bound “B1” low-energy conformation (Figures 5 and S5). The dominant pathway is
described in detail as follow. Starting from the bulk solvent (Figure 5G), the rbt203 ligand
approached the HIV-1 Tar RNA first through interactions with the U15-G18 tetraloop
(Figure 5F). The rbt203 ligand then dissociated back to the bulk solvent and relocated to
the terminal nucleotides of the HIV-1 Tar RNA (Figure SE). At this stage, nucleotide U7
flipped inwards and became ready to interact with the rbt203 ligand (Figure 5D). Finally,
the rbt203 ligand moved from the terminal of HIV-1 Tar RNA to its binding pocket, located
at the core nucleotides of the RNA (Figures 5B and 5C). The ligand drew closer to
nucleotide A6 in the “B2” low-energy conformational state (Figure 5C) and nucleotide U7

in the “B1” low-energy conformational state (Figure SB). Given the fact that the RNA
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conformational changes took place after ligand bound, the binding of tbt203 ligand to the
HIV-1 Tar RNA is an induced-fit process. On the other hand, it is also worth noting that
similar to the RNA folding simulations, GaMD simulations of RNA-ligand binding has not
converged within the 500ns simulation time windows as shown by the different free energy
profiles calculated from the individual simulations (Figure S6). Furthermore, as mentioned
above, more accurate RNA force field parameter sets are required to achieve consistent

simulations of RNA molecules.

In summary, we have implemented GaMD in OpenMM. It is complementary to
previous implementations of GaMD in AMBER?!, NAMD?>, GENESIS*, and TINKER-
HP>!. As demonstrated on model systems, results of the current work will facilitate the
applications of GaMD in enhanced sampling and free energy calculations of a wide range
of large biomolecules, especially RNA structures that involve critical electrostatic

interactions.
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Figure Captions

Figure 1. (A) Schematic representation of backbone dihedrals ® and ¥ in alanine
dipeptide. (B-C) Potential of mean force (PMF) profiles of the (B) ® and (C) ¥ dihedrals
calculated from three 30 ns GaMD simulations combined using cumulant expansion to the
2" order. (D) The 2D PMF profile of backbone dihedrals (®, V) from combined three 30ns
GaMD simulations trajectories. The low energy wells are labeled corresponding to the
right-handed o helix (ar), left-handed o helix (ar), B-sheet (B) and polyproline II (Pm)
conformations. (E) The 2D PMF profile of backbone dihedrals (@, ¥) from combined three
1000 ns cMD simulations trajectories. The low energy wells are labeled corresponding to
the right-handed a helix (aR), left-handed a helix (aL), B-sheet (B) and polyproline II (PII)
conformations.

Figure 2. Folding of the UUCG RNA tetraloop captured by GaMD in OpenMM. (A)
2D free energy profile of the heavy-atom RMSD of UUCG relative to the 1F7Y PDB
structure and the center of mass (COM) distance between nucleotides U3 and G6. The low-
energy RNA conformational states are labeled “Folded”, “I1”, “I2”, and “Unfolded”. (B)
The “Folded” low-energy conformational state compared to the 1F7Y PDB structure, for
which the RMSD is ~1.1 A and the U3-G6 distance is ~9.8 A. (C) The “I1” low-energy
conformational state compared to the 1F7Y PDB structure, for which the RMSD is ~4.1 A
and the U3-G6 distance is ~14.2 A. (D) The “I2” low-energy conformational state
compared to the 1F7Y PDB structure, for which the RMSD is ~4.2 A and the U3-G6
distance is ~7.3 A. (E) The “Unfolded” low-energy conformational state compared to the

1F7Y PDB structure, for which the RMSD is ~5.8 A and the U3-G6 distance is ~8.0 A.
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The low-energy RNA conformations are colored orange, cyan, magenta, and yellow, and
the 1F7Y PDB structure is colored gray.

Figure 3. Folding of the GCAA RNA tetraloop captured by GaMD in OpenMM. (A)
2D free energy profile of the heavy-atom RMSD of GCAA relative to the 1ZIH PDB
structure and the COM distance between nucleotides G3 and A6. The low-energy RNA
conformational states are labeled “Folded”, “I1”, “I2”, and “Unfolded”. (B) The “Folded”
low-energy conformational state compared to the 1ZIH PDB structure, for which the
RMSD is ~1.0 A and the G3-A6 distance is ~9.0 A. (C) The “I1” low-energy
conformational state compared to the 1ZIH PDB structure, for which the RMSD is ~2.6 A
and the G3-A6 distance is ~8.8 A. (D) The “I2” low-energy conformational state compared
to the 1ZIH PDB structure, for which the RMSD is ~3.9 A and the G3-A6 distance is ~11.0
A. (E) The “Unfolded” low-energy conformational state compared to the 1ZIH PDB
structure, for which the RMSD is ~4.5 A and the G3-A6 distance is ~8.0 A. The low-energy
RNA conformations are colored orange, cyan, magenta, and yellow, and the 1ZIH PDB
structure is colored gray.

Figure 4. Folding of the CUUG RNA tetraloop captured by GaMD in OpenMM. (A)
2D free energy profile of the heavy-atom RMSD of CUUG relative to the IRNG PDB
structure and the COM distance between nucleotides C3 and G6. The low-energy RNA
conformational states are labeled “Folded”, “I1”, and “Unfolded”. (B) The “Folded” low-
energy conformational state compared to the 1IRNG PDB structure, for which the RMSD
is~1.1 A and the C3-G6 distance is ~10.9 A. (C) The “I1” low-energy conformational state
compared to the IRNG PDB structure, for which the RMSD is ~3.9 A and the C3-G6

distance is ~6.9 A. (D) The “Unfolded” low-energy conformational state compared to the
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IRNG PDB structure, for which the RMSD is ~4.1 A and the C3-G6 distance is ~13.1 A.
The low-energy RNA conformations are colored orange, cyan, magenta, and yellow, and
the 1IRNG PDB structure is colored gray.

Figure 5. Binding of the rbt203 ligand to the HIV-1 Tar RNA captured by GaMD in
OpenMM. (A) 2D free energy profile of the COM distance between the rbt203 ligand
(Lig) and RNA nucleotide A6 and the COM distance between RNA nucleotides A6 and
U7 side chains. The low-energy conformational states are labeled “B1”, “B2”, “I1”, “12”,
“I3”, and “U”. (B) The “B1” low-energy conformational state, for which the A6-P14 ligand
distance is ~8.0 A and the A6-U7 distance is ~3.5 A. (C) The “B2” low-energy
conformational state, for which the A6-P14 ligand distance is ~10.1 A and the A6-U7
distance is ~10.0 A. (D) The “I1” low-energy conformational state, for which the A6-P14
ligand distance is ~20.1 A and the A6-U7 distance is ~4.1 A. (E) The “I2” low-energy
conformational state, for which the A6-P14 ligand distance is ~20.0 A and the A6-U7
distance is ~13.5 A. (F) The “I3” low-energy conformational state, for which the A6-P14
ligand distance is ~41.8 A and the A6-U7 distance is ~12.7 A. (G) The “U” low-energy
conformational state, for which the A6-P14 ligand distance is ~34.1 A and the A6-U7
distance is ~12.2 A. The low-energy RNA-ligand conformational states are colored orange,

green, cyan, magenta, yellow, pink, and marine, and the IUUD PDB is colored gray.
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Supporting Information

for “Gaussian Accelerated Molecular Dynamics in OpenMM”

Implementation algorithm of Gaussian accelerated Molecular Dynamics (GaMD) in
OpenMM

GaMD {
Fori=1, ..., conventional md // Stage 1: run short initial conventional molecular dynamics
if (i >= conventional md_prep):
n= i-conventional md prep
Update(V, Vmax, Vmin)
if (i >= conventional md_prep) and (i % averaging window_interval):
Update(i, V, Vavg, sigmaV)
End

if (i == conventional md):
calculate threshold energy with effective _harmonic constant(sigma0, sigmaV, Vmax,
Vmin, k, E)

Fori=1, ..., gamd equilibration: // Equilibrate the system after adding boost potential
If (E>V):
deltaV = 0.5*k*(E-V)**2
V=V + deltaV
EndIf
Update Vmax, Vmin, Vavg, sigmaV
If (1 >= gamd_equilibration prep):
calculate threshold energy with effective _harmonic constant(sigma0, sigmaV, Vmax,
Vmin, k, E)
EndIf
End

Fori=1, ..., total simulation length // run production simulation
If (E>V):
deltaV = 0.5*k*(E-V)**2
V =V + deltaV
EndIf
End

}

Subroutine UpdateMaxMin(V,Vmax,Vmin):
if (V> Vmax) Vmax =V
if (V <Vmin) Vmin=V
}
Subroutine UpdateAvgSigma(n, V, Vmax, Vmin, Vavg, sigmaV ):
Vdiff =V - Vavg
Vavg = Vavg + Vdiff / n



M2 = M2 + Vdiff * (V — Vavg)
sigmaV = sqrt(M2 / n)
}

// Lower Bound Integrator
Subroutine calculate threshold energy with effective harmonic constant(sigma0,Vmax,Vmin,
k, E):
E = Vmax
k0’ = (sigma0/sigmaV) * (Vmax-Vmin)/(Vmax-Vavg)
kO = min(1.0, k0O’)
k = k0/(Vmax-Vmin)
j
// ' Upper Bound Integrator
Subroutine calculate threshold energy with effective harmonic_ constant(sigma0,Vmax,Vmin,
k, E):
k0” = (1-sigma0/sigmaV) * (Vmax-Vmin)/(Vavg-Vmin)
If0<k0” <=1:
k0 =k0”
E = Vmin + (Vmax-Vmin)/k0
Else:
E = Vmax
k0’ = (sigma0/sigmaV) * (Vmax-Vmin)/(Vmax-Vavg)
kO = min(1.0, k0’)
end
k = k0/(Vmax-Vmin)
h

Example Input XML file for GaMD-OpenMM simulation

<?xml version="1.0" 7>
<gamd>
<temperature>298.15</temperature> <!-- unit.kelvin -->

<system>
<nonbonded-method>PME</nonbonded-method>
<nonbonded-cutoff>1.0</nonbonded-cutoff> <!-- unit.nanometers -->
<constraints>HBonds</constraints>

</system>

<barostat>
<pressure>1.0</pressure> <!-- unit.bar -->
<frequency>25</frequency>

</barostat>

<run-minimization>True</run-minimization>



<integrator>
<algorithm>langevin</algorithm>
<boost-type>lower-dual</boost-type>
<sigma(>
<primary>6.0</primary> <!-- unit.kilocalories_per mole -->
<secondary>6.0</secondary> <!-- unit.kilocalories per mole -->
</sigma0>
<random-seed>0</random-seed>
<dt>0.002</dt> <!-- unit.picoseconds -->
<friction-coefficient>1.0</friction-coefficient> <!-- unit.picoseconds**-1 -->
<number-of-steps>
<conventional-md-prep>200000</conventional-md-prep>
<conventional-md>1000000</conventional-md>
<gamd-equilibration-prep>200000</gamd-equilibration-prep>
<gamd-equilibration>2000000</gamd-equilibration>
<gamd-production>3000000</gamd-production>
<averaging-window-interval>50000</averaging-window-interval>
</number-of-steps>
</integrator>

<input-files>
<amber>
<topology>data/dip.top</topology>
<coordinates type="rst7">data/md-4ns.rst7</coordinates>
</amber>
</input-files>

<outputs>
<directory>output/</directory>
<overwrite-output>True</overwrite-output>
<reporting>
<energy->
<interval>500</interval>
</energy>
<coordinates>
<file-type>DCD</file-type>
</coordinates>
<statistics>
<interval>500</interval>
</statistics>
</reporting>
</outputs>
</gamd>



Figure S1. Potential of mean force (PMF) profiles of the (A-B) ® and (C-D) ¥ dihedrals

calculated from three 1000ns cMD simulations (A,C) and three 30ns GaMD simulations (B,D).
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Figure S2. (A-C) 2D free energy profiles of the heavy-atom RMSD of UUCG relative to the 1F7Y
PDB structure and the COM distance between nucleotides U3 and G6 calculated from three
independent 5,000 ns GaMD simulations of the UUCG RNA tetraloop. The low-energy RNA
conformational states are labeled “Folded”, “I1”, “I2”, and “Unfolded”. (D) Time courses of the
heavy-atom RMSD of UUCG relative to the 1F7Y PDB structure calculated from three
independent 5,000 ns GaMD simulations of the UUCG RNA tetraloop. (E) Time courses of the
COM distance between nucleotides U3 and G6 calculated from three independent 5,000 ns GaMD

simulations of the UUCG RNA tetraloop.
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Figure S3. (A-C) 2D free energy profiles of the heavy-atom RMSD of GCAA relative to the 1ZIH
PDB structure and the COM distance between nucleotides G3 and A6 calculated from three
independent 4,000 ns GaMD simulations of the GCAA RNA tetraloop. The low-energy RNA
conformational states are labeled “Folded”, “I1”, “I2”, and “Unfolded”. (D) Time courses of the
heavy-atom RMSD of GCAA relative to the 1ZIH PDB structure calculated from three
independent 4,000 ns GaMD simulations of the GCAA RNA tetraloop. (E) Time courses of the
COM distance between nucleotides G3 and A6 calculated from three independent 4,000 ns GaMD

simulations of the GCAA RNA tetraloop.
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Figure S4. (A-C) 2D free energy profiles of the heavy-atom RMSD of CUUG relative to the
IRNG PDB structure and the COM distance between nucleotides C3 and G6 calculated from three
independent 3,000-5,000 ns GaMD simulations of the CUUG RNA tetraloop. The low-energy
RNA conformational states are labeled “Folded”, “I1”, and “Unfolded”. (D) Time courses of the
heavy-atom RMSD of CUUG relative to the IRNG PDB structure calculated from three
independent 3,000-5,000 ns GaMD simulations of the CUUG RNA tetraloop. (E) Time courses of
the COM distance between nucleotides C3 and G6 calculated from three independent 3,000-5,000

ns GaMD simulations of the CUUG RNA tetraloop.
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Figure S5. (A) Time courses of the COM distance between the rbt203 ligand and RNA nucleotide
A6 calculated from five independent 500 ns GaMD simulations of the rbt203 binding to the HIV-
1 Tar RNA. (B) Time courses of the COM distance between RNA nucleotides A6 and U7 side

chains calculated from five independent 500 ns GaMD simulations of the rbt203 binding to the

HIV-1 Tar RNA.
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Figure S6. 2D free energy profiles of the COM distance between the rbt203 ligand (Lig) and RNA
nucleotide A6 and the COM distance between RNA nucleotides A6 and U7 side chains calculated
from five independent 500 ns GaMD simulations of the rbt203 binding to the HIV-1 Tar RNA.

The low-energy conformational states are labeled “B1”, “B2”, “I1”, “12”, “I3”, and “U”.
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Figure S7. Graphical representation of the GaMD algorithm as implemented in OpenMM. The
algorithm is divided into the “conventional MD” and “Gaussian accelerated MD” portions, both
of which are further divided into a total of five stages.

Stage 1: Conventional MD preparatory stage: no statistics are collected to allow the system to
equilibrate.

Stage 2: Conventional MD stage: boost parameters Vmax, Vimin, Vave, and oy are collected.

Stage 3: GaMD pre-equilibration stage: boost potential is applied, but boost parameters are not
updated.

Stage 4: GaMD equilibration stage: boost potential is applied, and boost parameters are updated.
Stage 5: GaMD production stage: boost potential is applied, boost parameters are held fixed.
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