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ABSTRACT

Intracellular selenium nanoparticles (SeNPs) production is a roadblock to the recovery of selenium
from biological water treatment processes because it is energy-intensive to break microbial cells
and then separate SeNPs. This study provided evidence of significantly more extracellular SeNPs
production on the biocathode (97-99%) compared to the conventional reactors (1-90%) using
transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy. The
cathodic microbial community analysis showed that relative abundance of Azospira oryzae,
Desulfovibrio, Stenotrophomonas, and Rhodocyclaceae were < 1% in the inoculum but enriched
to 10% - 21% for each group when the bioelectrochemical reactor reached a steady state. These
four groups of microorganisms simultaneously produce intracellular and extracellular SeNPs in
conventional biofilm reactors per literature review but prefer to produce extracellular SeNPs on
the cathode. This observation may be explained by the cellular energetics: By producing
extracellular SeNPs on the biocathode, microbes do not need to transfer selenate and the electrons
from the cathode into the cells, thereby saving energy. Extracellular SeNPs production on the
biocathode is feasible since we found high concentrations of C-type cytochrome, which is well
known for its ability to transfer electrons from electrodes to microbial cells and reduce selenate to

SeNPs on the cell membrane.

KEYWORDS: Biocathode, selenate, extracellular selenium nanoparticles, transmission electron

microscope

SYNOPSIS: This work presents a novel method for recovering selenium, a high-risk element

vulnerable to supply and other restrictions.
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1. INTRODUCTION

Selenium (Se) is a naturally occurring trace element in Earth’s crust. It is a micronutrient for
humans and wildlife but toxic at high concentrations. U.S. Environmental Protection Agency has
established a maximum contaminant level of 50 pg Se/L of total selenium in drinking.! Among
all the selenium species in contaminated surface water, selenate (SeO4>) is predominant in most
settings.> Various physical and chemical approaches such as reverse osmosis and ion exchange
are utilized to separate selenate from water.> Biological selenate removal has been widely studied
in the recent three decades due to its ability to convert selenate and its potentially low costs.*”
Microbes convert selenate to elemental selenium nanoparticles (SeNPs), which can be further

separated from water.

In recent years, many researchers attempted to recover SeNPs that were produced in biological
reactors.”!® Recovery of SeNPs not only prevents secondary contamination of the residues (e.g.,
via disposal of sludge that contains SeNPs in high concentrations), but also offsets the treatment
costs since selenium is widely used in various industrial applications such as semiconductors and

11

alloys.>!" Selenium is one of the 23 mineral commodities viewed as important to the national

economy and national security of the United States,'? one of the critical elements for low carbon

energy technologies,'®!*

and one of the high-risk elements vulnerable to supply and other
restrictions.!*!> One roadblock to SeNPs recovery is that conventional biological reactors reduce
selenate to mainly intracellular SeNPs.!® While extracellular SeNPs may be separated from

biomass for recovery via centrifugation!” or selective adsorption®, the intracellular SeNPs are much

more difficult to separate and recover since an additional cell lysis step is required. Although cell
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lysis can be achieved using lysozyme and French press, liquid nitrogen, and sonication,'®!® the

processes are energy-intensive and require chemical addition.

In our previous work, we used a biocathode-based bioelectrochemical reactor (BEC1) to remove
selenate and found that the reactor produced mainly extracellular spherical nanoparticles (likely
SeNPs), while the selenate reduction was negligible in two control reactors (i.e., sterile cathode
control and open circuit mode control).!® The BEC; reactor was inoculated with a combination of
activated sludge from a local municipal wastewater treatment plant and leachate from a local
landfill. Regardless of the inoculum, confirming the biocathode’s ability of producing mainly
extracellular spherical nanoparticles is of interest. Hence, the first objective of the current work is
comparison with conventional reactors for production of extracellular selenium nanoparticles.
This includes direct comparison through our experiments and indirect comparison through
literature review. The second objective is to demonstrate that different biomass seeds lead to
similar results. This is very important because one could argue that since we only used one
biomass seed in our previous publication, the extracellular selenium nanoparticles production
could be a coincidence if that biomass seed happened to contain little intracellular-selenium-
producing bacteria. In this report, we quantify bacteria that produce intracellular versus

extracellular selenium nanoparticles.

Through thin-section transmission electron microscopy (TEM) analysis in our previous work !¢,
we observed that almost all spherical and dense particles are extracellular, thereby seeing the
potential of biocathode for producing mainly extracellular SeNPs. The third objective of the

current work is to provide direct evidence of mainly extracellular SeNPs production on the
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biocathode through morphology analysis by TEM combined with elemental analysis by energy-
dispersive X-ray spectroscopy (EDX), and through comparing to a conventional reactor control.
The fourth objective is to gain insights into the mechanisms of extracellular SeNPs production on
the biocathode by analyzing the microbial community change and a key enzyme involved in SeNPs

production. The last objective is to further determine the mechanisms based on cellular energetics.
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2. MATERIALS AND METHODS

2.1 Reactors Operation

Two BEC reactors (BEC> and BEC3) shown in Figure S1 and one conventional reactor as a control
were operated in the current study. BEC2 was the same as the BEC; in our previous work '®, but
the inoculum for the anodic and cathodic chambers was changed to activated sludge from a local
municipal wastewater treatment facility. While reactor details can be found in Zhang et al.'®, BEC;
is briefly summarized as follows. Two plain carbon electrodes (i.e., the anode and biocathode, 2.5
cm x 6 cm, Fuel Cell Store, USA) were immersed in the activated sludge sample for 12 days and
then transferred into the two chambers of the BEC; reactor, respectively. The anode and
biocathode were externally connected to a resistor (100 Q). After introducing the electrodes, the
anodic chamber was continuously fed with a deoxygenated mineral medium'® amended with
sodium acetate (CH3COONa, 10 mg C/L) as the electron donor'®. The cathodic chamber was fed
with the same medium amended with sodium selenate (Na2SeOs, 5 mg Se/L) as the electron
acceptor. The two chambers were separated by a cation exchange membrane (CEM, model CMI-
7000, Membranes International Inc., USA). BEC; cathode was operated at a constant flow rate of
200 mL/day, corresponding to a hydraulic residence time of 1.45 days and a selenate surface
loading rate of 330 mg Se/m>-day. BEC; was the same as BEC», but the selenate surface loading
rate was reduced to 50 mg Se/m*-day by decreasing the flow rate to 75 mL/day and the influent
selenate concentration to 2 mg Se/L. The selenate surface loading rates (50 and 330 mg Se/m*-
day) were close to the higher end of the selenate surface loading rate ranges reported for
conventional biofilm reactors: 0.29 — 362 mg Se/m>-day.?*?>* The anodic chamber of BEC, was

operated at a constant flow rate of 200 mL/day, corresponding to an acetate loading rate of 660
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mg C/m?-day. The anodic chamber of BEC3; was the same as BEC», but the flow rate was reduced

to 75 mL/day, and the acetate loading rate was reduced to 250 mg C/m>-day (Table 1).

A column packed with plastic media (BioFLO 9, Smoky Mountain Bio Media) for biofilm
attachment was operated as a conventional reactor control. The operating conditions for this
control and BEC, were the same. For instance, the selenate surface loading rate was also 330 mg

Se/m?-day. Figure S2 shows the schematics of this control reactor.

2.2 Chemical Analysis

To determine selenate reduction and its products in the BEC, and BEC3 reactors, and the
conventional reactor control, the influent and effluent of these reactors were sampled every three
days and analyzed for selenate in the influent ([SeO4*]in) and various selenium species after the
biological reduction, including three dissolved selenium species (selenate in the effluent,
[SeOs* e, selenite in the effluent, [SeOs*]esr; and selenide in the effluent, [Se*]es), and solid
selenium estimated through mass balance ([Se]solid = [S€04* Jin - [S€04* Tett - [SeO3% Jett - [Se? Jefr).
The particulate selenium concentration was calculated as the difference between the total and
dissolved selenium concentrations.”> Based on the recovery tests in which known concentrations
of dissolved selenium, solid selenium nanoparticles, and biomass were added to deionized water,
groundwater and surface water, the recovery of the dissolved selenium after removing the

particulate selenium varied between 96-104%.

To further characterize the extracellular versus intracellular nanoparticles production, TEM

(Hitachi HT7800, USA) was used to analyze solid samples from the inoculum, the conventional
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reactor (samples from the biofilm coated plastic media), and the BEC, and BEC3 reactors (samples
from both biocathodes and effluent of the cathodic chambers) when the reactors reached steady
state. To confirm that the nanoparticles were SeNPs, annular dark-field Scanning Transmission
Electron Microscopy (ADF-STEM, JEM-ARM200cF, USA) with EDX was further used for
selected solid samples, including samples from the biocathode of BEC, and the conventional
reactor control. To provide additional lines of evidence for the extracellular SeNPs production,
the selected solid samples were also analyzed by Raman spectroscopy (Renishaw InVia Confocal
Raman Microscopy, Renishaw, USA) and Scanning Electron Microscopy (SEM, FEI Nova 400

Nano SEM, FEI, USA) coupled with EDX.

Acetate in the anodic chamber of both reactors (BEC, and BEC3) and the conventional reactor
was measured using ion chromatography (Dionex Aquion lon Chromatography System, USA,
quantification limit 50 pg C/L). Sulfate in both chambers of BEC, and BEC; reactors and the
control reactor (conventional reactor) was also measured using ion chromatography

(quantification limit: 20 ug S/L).

The detailed procedure for TEM, SEM, Raman spectroscopic analysis, and the sample
pretreatment are described in Supporting Information (SI). The detailed methods for the
measurement of other parameters discussed in this section are available in our previous

publication. '
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2.3 Electrochemical Analysis

We used four parameters to evaluate the electrochemical performance of the bioelectrochemical
reactors. Voltage across the external resistor (100 Q) was measured by a multimeter (MU 113,
Electronic Resources LTD, USA). Current was calculated by dividing the voltage by the external
resistance (100 Q). Current density (mA/m?) at steady state was calculated by dividing current by
the total surface area of an electrode (3x10 m?). Coulombic efficiency was calculated by dividing
the electrons transferred from the anode to the cathode by the electron donor (acetate in our case)
consumed in the anode chamber. The detailed methods for the above analysis were described in

Zhang et al.'®

2.4 Microbial Community Analysis

Because the chemical and electrochemical performance of the three BEC reactors were similar,
we chose the BEC, reactor, the first tested reactor, to analyze its microbial community. Five
biomass samples were taken: one sample at the beginning of the experiment from the inoculum
and four samples at the end of the experiment from the biocathode, the cathodic effluent, the anode,
and the anodic effluent, respectively. Method details for DNA extraction and 16S rRNA

sequencing were described in SI.
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3. RESULTS AND DISCUSSION

3.1 Chemical and Electrochemical Performance of Reactors

The changes of selenium speciation with time for BEC> and BEC; reactors were similar and
presented in detail in Figure 1. In both cathodic chambers of the BEC> and BEC3 reactors, selenate
(SeO4>) started to be reduced on the third day of operation and reached below the quantification
limit of 0.02 mg Se/L during steady state. Selenite (SeO3*) accumulated first, but almost
disappeared (close to the quantification limit of 0.02 mg Se/L) during the steady state. More than
90% of the selenate (SeO4>") was reduced to particulate selenium in both reactors. Despite the
different inoculum and selenate loading rates, the trends of selenium species change in BEC> and
BEC; were similar to the trends for BEC; in our previous research.'® The conventional reactor
control was also able to reduce 97% of the influent selenate (SeO4*) to particulate selenium. Other
selenium species produced in this control reactor were below detection limits during the steady
state.

Table 1 compares the steady state performance of the BEC| reactor!®, its sterile cathode control !¢,
its open circuit control !¢, the BEC; reactor (the same as BEC; except for the inoculum), the BEC3
reactor (the same as BEC; except for a lower selenate loading rate), and the conventional reactor.
The operation of BEC; and BEC; differed only in the inoculum: a mixture of activated sludge and
landfill leachate for BEC; and activated sludge for BEC,. The major difference in reactor
performance was that 30% more acetate was consumed in the anodic chamber of BEC», which
likely stimulated the growth of more sulfate-reducing bacteria in the anodic chamber of BEC;
(supported by the sulfate data in Table 1). This further led to a lower current density in BEC: (40

mA/m?) compared to BEC; (86 mA/m?). Nevertheless, the more growth of sulfate-reducing

11



196  bacteria and methanogens did not cause a significant difference in selenate reduction between

197  BEC; and BEC..

198

199  The operation of BEC; differed from BEC; in the selenate loading rate: 50 mg Se/m?-day for
200 BEC; and 330 mg Se/m>-day for BEC». This directly led to the lower current density in BEC3 (22
201  mA/m?) compared to BEC> (40 mA/m?), but did not significantly affect the selenate reduction: >90%
202  of selenate in the influent were converted to particulate selenium by the reactors. The current
203  density in these reactors (22 to 86 mA/m?) was comparable to anaerobic two-chamber biocathode
204  reactors reported in the literature for reduction of nitrate and chromium (IV): 3 to 123 mA/m?.26:?’
205

206  From the three control reactors tested, the cathodic chamber of both controls (sterile cathode and
207  open circuit mode) showed negligible (< 0.05 mg Se/L) reduction of selenate. This confirms that
208 the selenate reduction was dependent on the electron transfer from the anodic chamber to the
209  cathodic chamber across the external circuit and the electron transfer to bacteria on the biocathode.
210 The conventional reactor was used as a control to confirm that the BEC reactors produced
211 significantly more extracellular elemental selenium, which is further discussed in the next section.
212

213 3.2 Intracellular Versus Extracellular Production of SeNPs

214  Figure 2 compares representative thin-section TEM images of particulate mixtures from the
215  inoculum, BEC,, BEC3, and conventional biofilm reactor. Both intracellular and extracellular

216  nanoparticles that were dense and spherical were commonly found in the inoculum and the

217  conventional reactor control. However, almost all of the dense and spherical nanoparticles

12
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associated cathodic chamber of BEC, and BECs were extracellular. Selenate was added to the

inoculum samples here to analyze the location of produced nanoparticles.

To further quantify the percentage of cells with intracellular, dense and spherical nanoparticles in
the TEM images, Table 2 compares this number among various studies. The percentages of cells
with intracellular nanoparticles were ~2% for BEC; (this study), ~3% for BEC; (this study), and
~1% in BEC; of our previous study '®. These numbers were consistently lower than the ~25% for
the conventional reactor control in this study. The comparison is based on 50 TEM images like
those shown in Figure 2. They are also consistently lower than the numbers (10-99%) reported in

previous studies with conventional reactors.?83

In addition to the location differences of intracellular versus the extracellular dense and spherical
Se particles, the reactors also differed in the size of these particles produced. The diameters of the
particles were smaller in BEC3 compared to the other reactors. This can be explained by the fact
that the selenate loading rate in BEC3 was 15% of the loading rate in the other reactors (See Table
1). SeNPs formation started with Se nucleation seeds, followed by deposition of more Se’ onto

the seeds.** Therefore, a higher loading rate led to more deposition of Se and larger SeNPs.

The EDX map collected in the STEM mode with a probe size of 0.12 nm confirmed that the dense
spherical nanoparticles in the TEM images were elemental selenium nanoparticles. Figure 3 shows
the EDX mapping spectra for two representative particulate samples taken from the biocathode of
BEC: and the conventional reactor control, respectively. The predominant element in all dense

and spherical nanoparticles of such STEM images was selenium. The SEM images and their EDX

13
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analysis of particle samples taken from the cathodic chambers of BEC, and BEC3 (See Figure 4)
also consistently show that the dense and spherical nanoparticles were elemental selenium
nanoparticles. Raman spectra analysis of the samples taken from the biocathode of BEC; further
showed that the elemental selenium was trigonal (237 cm™!, Figure S5) and amorphous (255 cm™,
Figure S5). No spherical nanoparticles (elemental selenium) were produced in the anodic
chambers, which confirmed neither selenate reduction nor diffusion from the cathode side through

the cation exchange membrane (Figure S3).

3.3 Microbial Community in BEC:

The heatmap in Figure 5 shows the OTUs in five samples (the inoculum, biocathode, cathodic
effluent, anode, and anodic effluent) taken at steady state for BEC;. The OTUs are representative
based on the rarefaction curves (Figure S4 in SI).>> Compared to the microbial community in
inoculum, five major microbial groups were enriched on the biocathode, including Azospira oryzae
(21%), Methanobacterium curvum (19%), Desulfovibrio (16%), Stenotrophomonas (16%), and

Rhodocyclaceae (9.6%), all of which were less than 1% in the inoculum (Figure 5).

After literature review, we found that four out of the five groups (except for Methanobacterium
curvum) could use selenate as the electron acceptor. Azospira oryzae, Desulfovibrio, and
Stenotrophomonas are reported to produce both intracellular and extracellular SeNPs in
conventional reactors, where an electron donor and selenate are mixed in the liquid (Table S1).
Many species such as Azoarcus sp. and Zooglea ramigera, in the family of Rhodocyclaceae, are
reported to produce intracellular and extracellular SeNPs (Table S1). Interestingly, the four

microbial groups almost exclusively produced extracellular SeNPs (99%, see Table 2) by using
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electrons from the biocathode. The electrons for microbes to reduce selenate in the cathodic
chamber must be from the biocathode because there was no selenate reduction in the sterile cathode
control and the open circuit control (See Table 1). The sterile cathode control demonstrated that
the selenate was reduced by microbes in the biocathode chamber. The open circuit control further

demonstrated that the electrons for microbial selenate reduction was from the biocathode.

All the top four abundant groups of selenate-reducing microorganisms on the biocathode (See
Table S1) are rod-shaped.***® This morphology is consistent with all the SEM images (Figure S3
and Figure 4). While the TEM cell images in Figure 2 show both rod and round shapes, both could
represent rod-shaped microorganisms since the TEM images only show thin sections of the

microorganisms.>’

Among the top five abundant groups of microorganisms on the biocathode (See Table S1), three
groups could potentially accept electrons from the biocathode, considering that electron transfer
mechanisms on the biocathode are similar to mechanisms on the bioanode*’. Azospira oryzae was
found to be a dominant exoelectrogenic microorganism containing a c-type cytochrome in a
microbial fuel cell with acetate as the electron donor and Fe*" as the electron acceptor.’%*!
Stenotrophomonas produced a maximum current density of 273 mA/m? through an extracellular
electron transfer mechanism in a single-chamber microbial fuel cell.** It was also reported for its
potential to degrade diesel derived hydrocarbons in a microbial fuel cell. Desulfovibrio directly
transferred extracellular electrons to the anode through a multi-hemic cytochrome ¢ protein in a

mediator-free microbial fuel cell.**** In another study, Desulfovibrio was reported to produce

nanoscale, bacterial appendages for direct extracellular electron transfer.** Desulfovibrio was also

15
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able to indirectly transfer electrons to the electrode using an inorganic electron mediator in a

microbial fuel cell.>%3!

Methanobacterium curvum, a chemolithotrophic methanogen, was enriched probably due to
methanogenesis.'®>>> The cathodic potential at steady state was -56 mV,'® which was below the
redox potential needed for methanogenesis (i.e., +50 mV).>* The theoretical half-reaction
potentials at the experimental conditions were 880 mV for selenate and 903 mV for selenite,
respectively,'® suggesting that selenate and selenite reductions were thermodynamically preferred

compared to methanogenesis.

The microbial community in the cathodic effluent was similar to that of the biocathode, except for
the increase of Aminobacter sp. and Afipia sp.. The similarity might be a result of the detachment
of microbes from the biocathode to the surrounding liquid, while the difference could be explained
by their specific ways to obtain electrons and energy: directly and indirectly from the cathode.
Both Aminobacter and Afipia are in the order of Rhizobiales, a group of bacteria that are capable
of accumulating poly-3-hydroxybutyric acid (PHB) as the extra energy source to survive in the

cathodic liquid.!®-%%%

The microbial community on the anode was dominated by Geobacter soli (30%) and Pseudomonas
sp. X-a5 (20%) (Figure 5). Both are well-known anode-respiring bacteria and can transfer
electrons from bacteria to the anode either directly or indirectly by electron shuttles that they
produce (e.g., phenazine-based metabolites/redox mediators).>’>° Those electron shuttles could

also be used by other species on the electrode, such as Clostridium sensu stricto 1 (6.5%) and

16
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Anaerolineaceae (5.9%).9%°! The microbial community on the anode and in the anodic effluent
were very different, which might be explained by whether they transfer electrons from acetate to

the electrode.

3.4 Mechanisms of Extracellular SeNPs Production

Although the entire biological pathway from selenate to SeNPs is unclear, the c-type cytochromes
(Cyt c¢) are agreed to be essential for electron transfer and redox reactions.>®? As shown in Figure
S5, Cytc (1372 cm™) and elemental selenium (237 cm™ and 255 cm™!) were found on the surface
of the biocathode.'®®® The Cyt ¢ might transfer electrons from the biocathode to bacteria, and the
multi-heme in the c-type cytochromes might further shuttle electrons to selenate as an electron
acceptor.®* % The ability of Cyt ¢ to reduce selenate to extracellular SeNPs (Equation 1) was

reported in the literature.5” %

SeO7 +1.5(Fe" -Cytochrome ¢)+8H" =1.5(Fe" -Cytochrome ¢)* +Se’+4H,0  Equation 1

Compared to the intracellular production of SeNPs, extracellular production eliminated the need
of transferring the electrons and selenate into the microbial cells (i.e., cytoplasm), which saved
energy for the cell and was thereby preferred by the cells on the biocathode. As a result, bacteria
that were enriched on the biocathode preferred to produce extracellular SeNPs even if they have

the ability to produce both intracellular and extracellular SeNPs.

Producing extracellular Se’ nanoparticles is more energy efficient than producing intracellular Se’

nanoparticles for microorganisms on the biocathode. However, this is not necessarily true for
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conventional reactors. Table 3 shows that the cellular energy cost for transporting ¢ and selenate
to the reductase for extracellular Se® nanoparticles production are less than the corresponding
energy cost for intracellular Se® nanoparticles on biocathode.”® Table S2 compares the transfer of
e from the electron donor (i.e., acetate) in the cytoplasm of bacteria to terminal reductases enabling
intracellular and extracellular selenate reduction to Se® nanoparticles in the conventional reactor.
While the selenate-transfer pathway is shorter for the extracellular than intracellular Se’
nanoparticles production, the e-transfer pathway is longer for extracellular than for intracellular

Se’ nanoparticles production.®-’!

3.5 Environmental Implications

Similar to Se reduction in conventional bioreactors, particulate metals and metalloids such as Cu,
Pd, Au, Cr and Te were reported to form both intracellularly and extracellularly during
conventional biological reduction. For example, Kimber et al. found Cu(Il) could be reduced to
Cu nanoparticles by Shewanella oneidensis, but the produced Cu nanoparticles were
predominantly located inside the bacterial cells.”? Deplanche et al. reported the reduction of Pd(II)
to Pd nanoparticles by Escherichia coli, but the produced Pd nanoparticles were located both
intracellularly and extracellularly.”? Konishi et al. found the intracellular production of Au
nanoparticles by Shewanella algae from AuCls.™* Gong et al. found more intracellular than
extracellular particulate Cr(Ill) were produced through the reduction of dissolved Cr(VI) by
Geobacter sulfurreducens PCA.”> Ramos-Ruiz et al. report both intracellular and extracellular Te

6

nanoparticles using a methanogenic microbial consortium.”® The extracellular redox reaction

could be potentially applied to recover these metals and metalloids by minimizing the production
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of intracellular particulates. Future studies at the enzyme (e.g., cytochrome c) level and cellular

(pure species) level are needed to fully support the conclusion on the mechanisms.

This study reports the potential application of biocathode based synthesis of extracellular
elemental selenium and removal and recovery of selenium from contaminated wastewater. The
major five new aspects of this study’s contribution are as follows. First, we demonstrated that the
percentage of cells producing intracellular selenium nanoparticles was only 1-3% on the
biocathode, but 10-99% in the conventional reactors. This includes direct comparison through our
experiments and indirect comparison through literature review. The STEM-EDX results were
used to provide a direct evidence of more extracellular selenium nanoparticles production on the
biocathode than in the conventional reactor. Second, we demonstrated that different biomass seeds
used on biocathode led to similar results: producing much more extracellular selenium
nanoparticles than intracellular selenium nanoparticles. Third, the microbial community analysis
results show that the dominant microbial species on the biocathode were also present in
conventional bioreactors, but they changed their behavior on the biocathode by preferentially
producing more extracellular selenium nanoparticles. Finally, we further explained the
mechanisms: Bacteria prefer to produce extracellular selenium nanoparticles on the biocathode,
but intracellular selenium nanoparticles in conventional reactors because doing so saves their

cellular energy.

Supporting Information
Detailed description of sample preparation for SEM and TEM, extraction of DNA, and 16S

rRNA gene sequencing analysis with supporting tables and figures.
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Figure 1. Selenate reduction in the cathodic chamber of BEC; (a) and BEC3 (b).
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644 Figure 2. Representative thin-section TEM images of the particle mixtures in the inoculum,
645 BEC,, BEC;3, and the conventional reactor control.
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Figure 3. Representative STEM image with EDX spectra (first row, left) and EDX mapping
spectra (second row) for particulates on the biocathode of BEC; reactor (a) and the conventional
reactor control (b) at steady state. Notes: Se was the absolutely predominant element of the

nanoparticles; Cu represented the copper grid used for holding the samples.
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650  Figure 4. Representative SEM images and EDX spectra for the elemental selenium nanoparticles (SeNPs)
651 produced on the biocathode (30 images) and cathode effluent (30 images) of BEC, and BECs reactors.
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654 Figure 5. Heatmap showing relative abundance of dominating OTUs in the microbial

655 community from BEC;. Only the OTUs with a relative abundance of >5% in at least one of the
656 five samples are shown. Notes: c=class, o=order, f=family, g=genus, and s=species.
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658 Table 1. Comparison of BEC;, BEC,, BEC3, and three controls during steady state

BEC, (Zhang et BEC; (this BEC (this Sterile cathode  Open circuit Conventional
Parameters al., 2018)16 study) study) control (Zhang et control (Zhang et reactor control
» Y Y al, 2018)16 al., 2018)16 (this study)
Inoculum activated sludge activated activated activated sludge activated sludge activated sludee
+ landfill leachate sludge sludge + landfill leachate + landfill leachate &
Operating Flow rate (mL/day) 200 200 75 200 200 430
.. 2- .
conditions SeO42 surface loading rate (mg 330 330 50 330 330 330
Se/m*-day)
Acetzate surface loading rate (mg 660 660 250 660 660 660
C/m*-day)
SeO4* in influent (mg Se/L) ~5.0 ~5.0 ~2.0 ~5.0 ~5.0 ~5.0
SeO4* in effluent (mg Se/L) BQL! BQL BQL ~5.0 ~5.0 BQL
SeOs% in effluent (mg Se/L) ~0.05 BQL BQL BQL BQL BQL
Se* in effluent (mg Se/L) ~0.05 ~0.08 ~0.05 BQL BQL ~0.04
Particulate Se (mg Se/L) ~5.0 ~4.5 ~2.0 BQL BQL ~4.8
Acetate in influent (mg C/L) ~10 ~10 ~10 ~10 ~10 ~10
Acetate in effluent (mg C/L) ~4.0 ~0.9 ~4.0 ~10 ~10 ~3.0
Reactor
performance SO4* in influent (mg S/L) ~5.0 ~5.0 ~5.0 ~5.0 ~5.0 ~5.0
SO4* in anodic effluent (mg S/L) ~4.7 ~4.0 ~4.6 ~5.0 ~5.0 ~4.7
SO4* in cathodic effluent (mg S/L)  ~4.9 ~4.8 ~4.9 ~5.0 ~5.0 -
Voltage (mV) ~26 ~12 ~6.6 ~0.1 0.00 -
Current (mA) ~0.26 ~0.12 ~0.07 ~0.001 0.00 -
Power density (mW/m?) ~2.2 ~0.48 ~0.15 0.00 0.00 -
Current density (mA/m?) ~86 ~40 ~22 0.30 0.00 -

Notes: 'BQL = below quantification limit (< 0.02 mg/L); See Table 2 for the production percentage of intracellular versus extracellular selenium.
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Table 2. Percentages of microbial cells having intracellular dense and spherical nanoparticles

per TEM images in various reactors

Percentages of cells having
intracellular nanoparticles

References

BEC,

BEC,
BEC;

Conventional reactor control

Conventional reactor (Inverse
fluidized bed reactor)
Conventional reactor (Up flow
anaerobic sludge blanket reactor)
Conventional reactor (Packed bed
reactor)

Conventional reactor (Inverse
fluidized bed reactor)
Conventional reactor (Membrane
biofilm reactor)

Conventional reactor (Continuous
stirred tank reactor)

~1%

~2%
~3%
~25 %

~99 %

~38 %

~99 %

~10 %

~20 %

~10 %

Zhang et al. 2018 !¢
(Based on 50 images)

This study (Based on 50 images)
This study (Based on 50 images)
This study (Based on 50 images)

Negi et al. (2020) 28

Wadgaonkar et al. (2018) %
Viamajala et al. (2006) *°
Sinharoy et al. (2019) 3!
Ontiveros-Valencia et al. (2016)

Jain et al. (2016) *

Note: The percentage of cells having intracellular nanoparticles in conventional reactors in most of the
previous studies is calculated based on their limited number of TEM images.

Cells with intracellular Se nanoparticles (%) = (number of cells containing dense and spherical
Se® particles/ total number of cells) X 100
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666 Table 3. Mechanisms on extracellular versus intracellular Se® nanoparticles production on

667 biocathode
Extracellular Se’ nanoparticles Intracellular Se” nanoparticles
production production
SChematics Cathode [ LT S _l'_l F '.'__'....f_ IS Cathode | e e e e rokrue |
A L]
ﬁdJr -IIJ_‘?_,‘%.
& et .I na“'hﬂ
puet ot
. 0 s
pet® e ar® pet s’ e
1.,{'-"'5'1 \ast i\'ﬁ“ﬂ ALl
5 o
oyt ¢
e- Cellular energy cost for transporting ~ Cellular energy cost for transporting
electrons from biocathode to electrons from biocathode to reductase:
reductase: Less More
SeQ4* Cellular energy cost for transporting ~ Cellular energy cost for transporting
selenate to reductase: Less selenate to reductase: More
668
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