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Abstract:  

Biomolecular recognition including binding of small molecules, peptides and proteins to their 

target receptors plays a key role in cellular function and has been targeted for therapeutic drug 

design. However, the high flexibility of biomolecules and slow binding and dissociation processes 

have presented challenges for computational modeling. Here, we review the challenges and 

computational approaches developed to characterize biomolecular binding, including molecular 

docking, Molecular Dynamics (MD) simulations (especially enhanced sampling) and Machine 

Learning. Further improvements are still needed in order to accurately and efficiently characterize 

binding structures, mechanisms, thermodynamics and kinetics of biomolecules in the future. 
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1. Introduction 

Biomolecular recognition plays key roles in many fundamental biological processes, including 

immune responses, cellular signal transduction, and so on (Nooren & Thornton, 2003). Moreover, 

these processes are implicated in the development of numerous human diseases and serve as 

important drug targets (Ferreira et al., 2016; Scott et al., 2016). Experimental techniques (Miura, 

2018) including X-ray crystallography, nuclear magnetic resonance (NMR) and cryo-electron 

microscopy (cryo-EM) have been applied to determine the bound structures of protein-small 

molecule, protein-peptide and protein-protein complexes. The number of experimental complex 

structures are significantly increased in recent years (Sussman et al., 1998). However, it is still 

rather time consuming and resource demanding to obtain high-resolution experimental structures. 

Moreover, the experimental structures often capture static pictures of protein complexes. 

Intermediate conformational states that could be relevant for drug design are usually difficult to 

probe using current experimental techniques.  

Computational methods have been developed to model biomolecular recognition and 

predict the binding free energies and/or kinetics rates, including the widely used molecular docking 

(Ciemny et al., 2018; Morris et al., 2009; Porter et al., 2017; Vakser, 2020; Wang & Zhu, 2016), 

Brownian Dynamics (Ermak & McCammon, 1978; Gabdoulline & Wade, 2001; Spaar et al., 2006; 

Votapka & Amaro, 2015; Wieczorek & Zielenkiewicz, 2008) and Molecular Dynamics (MD) 

simulations (Basdevant et al., 2013; He et al., 2021; Karplus & McCammon, 2002; Lamprakis et 

al., 2021; Pan et al., 2019). Molecular docking has been widely used for predicting the holo 

structures of protein-ligand (Wang & Zhu, 2016), protein-peptide (Ciemny et al., 2018) and 

protein-protein complexes (Vakser, 2020). Although significant improvements have been 

achieved in developments of the molecular docking algorithms, the accuracy of docking could be 
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still limited, due to high system flexibility especially in docking of the peptides and proteins. 

Recently, Deep Learning techniques have been introduced into molecular docking to increase 

accuracy. One successful example is the AlphaFold-Multimer (Evans et al., 2022), which has 

significantly increased the accuracy of predicting protein-protein complex structures. However, 

one is still not able to predict biomolecular binding kinetics from molecular docking.  

Molecular Dynamics (MD) is a powerful technique for simulations of biomolecular 

structural dynamics (Karplus & McCammon, 2002). Remarkable advances in computing hardware 

(e.g., the Anton supercomputer and GPUs) and software developments have significantly 

increased the accessible time scale of conventional MD (cMD) from hundreds of nanoseconds to 

hundreds of microseconds (Harvey et al., 2009; Hollingsworth & Dror, 2018; Johnston & Filizola, 

2011; Lane et al., 2013; Shaw et al., 2021; Shaw et al., 2010). Notably, the latest Anton3 (Shaw et 

al., 2021) has achieved the speed of hundreds of microseconds per day for ATPase and Satellite 

Tobacco Mosaic Virus (STMV) with total number of atoms ranging from 328 K to 1,067 K, which 

will significantly facilitate simulations of biomolecular recognition process. The cMD simulations 

have been widely applied to investigate biomolecular dynamics, including conformational change 

(Jensen et al., 2012), protein folding (Lindorff-Larsen et al., 2011) and substrate binding (Dror et 

al., 2013; Robustelli et al., 2020; Shan et al., 2011).  

For small-molecule ligand binding, Shan et al. (Shan et al., 2011) observed spontaneous 

binding of the Dasatinib drug to its target Src kinase during tens of microseconds cMD simulations. 

However, no dissociation event was observed in the cMD simulations. Pan et al. (Pan et al., 2017) 

performed tens of microseconds cMD simulations to successfully characterize repetitive binding 

and dissociation of six small-molecule fragments to the protein FKBP. Based on the large number 

of binding and dissociation events in the simulations, they were able to accurately calculate the 
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binding free energies and kinetic rates. Remarkably, the binding free energies calculated from the 

cMD simulations agreed very well with those predicted from free energy perturbations (FEP) 

calculations. It is worthy noting that the tested fragments were weak binders with affinities ranging 

from 200 μM to 20 mM. It is still challenging to simulate both binding and dissociation of typical 

small-molecule ligands of proteins (usually with higher binding affinities and slow dissociation 

rates) using cMD, although the ligand residence time (or dissociation rate) has recently been 

recognized to correlate better with drug efficacy (Schuetz et al., 2017). For protein-protein 

interactions, tens of microseconds cMD simulations were able to capture barnase binding to barstar 

(Pan et al., 2019). Accurate barnase binding rate (kon) was predicted based on multiple binding 

events captured in a total of ~440 μs Anton cMD simulations (Pan et al., 2019). However, it 

remains challenging to simulate dissociation of the barnase−barstar model system using cMD (Pan 

et al., 2019).   

Weighted Ensemble (Saglam & Chong, 2019) and Markov state model (MSM) (Plattner et 

al., 2017) have been developed to improve prediction of biomolecular binding thermodynamics 

and kinetics based on a large number of short cMD trajectories. The kinetic binding rate (kon) of 

the p53 peptide to the MDM2 protein was accurately predicted with Weighted Ensemble of a total 

amount of ~120 μs cMD simulations in implicit solvent (Zwier et al., 2016). Another Weighted 

Ensemble of a total of ~18 μs cMD simulations were able to accurately predict the barnase-barstar 

binding rate constant (kon) (Saglam & Chong, 2019). However, it is still challenging to model the 

slow protein/peptide dissociation processes with Weighted Ensemble simulations (Saglam & 

Chong, 2019; Zwier et al., 2016). MSM (Paul et al., 2017; Plattner et al., 2017; Plattner & Noe, 

2015) was able to simultaneously predict the binding and dissociation kinetics through longer 

aggregated cMD simulations. MSM built with 150 μs MD simulation data was used to accurately 
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predict benzamidine-trypsin binding kinetics (Plattner & Noe, 2015). Based on a total of two 

millisecond cMD simulations of barnase binding to barstar, MSM was generated to predict 

intermediate structures, binding energies and kinetic rates that were consistent with experimental 

data (Plattner et al., 2017). However, these calculations required very expensive computational 

resources. 

Coarse-grained MD models have been developed to reduce the demand of computational 

resources and extend simulation time scales (Souza et al., 2021; Souza et al., 2020). Souza et al. 

performed millisecond cMD simulations to capture the binding of diverse protein-ligand systems 

(Souza et al., 2020). Accurate binding free energies were predicted through the cMD simulations 

without a priori information (Souza et al., 2020). Millisecond MD simulations with a useful 

coarse-grained model (PACE) were performed to characterize the binding mechanism of the 

intrinsically disordered Aβ peptides (Aβ17-42) to form Aβ fibril (Han & Schulten, 2014). In addition, 

coarse-grained models could be incorporated into multiscale computational approaches to improve 

the efficiency and accuracy of ligand binding thermodynamics and kinetics calculations (Elber, 

2020; Huang, 2021; Jagger et al., 2020). For example, simulation enabled estimation of kinetic 

rates (SEEKR) (Jagger et al., 2020; Votapka & Amaro, 2015) is a multiscale simulation approach 

combining MD, Brownian dynamics, and milestoning for calculating receptor−ligand binding and 

dissociation rates. SEEKR has been shown to estimate binding kinetic rates with up to a factor of 

10 less simulation time (Jagger et al., 2020).  

Enhanced sampling methods have been developed to efficiently simulate biomolecular 

recognition. They could be generally divided into two categories depending on the usage of 

collective variables (CVs). The CV-based methods include the widely used Steered MD (Kingsley 

et al., 2016), Umbrella Sampling (Gumbart et al., 2013b; Joshi & Lin, 2019b; Kingsley et al., 2016), 
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Metadynamics (Antoszewski et al., 2020; Banerjee & Bagchi, 2020), adaptive biasing force (ABF) 

(Darve & Pohorille, 2001; Darve et al., 2008), and so on. These methods often use predefined CVs 

to effectively guide simulations. Thus, a priori knowledge of the system is required in CV-based 

enhanced sampling. Alternatively, when it is difficult to predefine CVs, CV-free enhanced 

sampling methods could be useful(Kamenik et al., 2022). These methods include Replica 

Exchange MD (Siebenmorgen & Zacharias, 2020; Sugita et al., 2019; Sugita & Okamoto, 1999), 

Random Acceleration Molecular Dynamics (RAMD) (Nunes-Alves et al., 2021), Tempered 

Binding (Pan et al., 2019),  Integrated Tempering Sampling (ITS) (Shao & Zhu, 2019; Yang et al., 

2015), scaled MD (Deb & Frank, 2019), accelerated MD (aMD) (Hamelberg et al., 2004), 

Gaussian accelerated MD (GaMD) (Miao et al., 2015b; Wang et al., 2021), and so on. The above-

mentioned methodological advances have enabled simulations of millisecond or even longer time 

scale processes. Here, we will briefly review recent efforts in modeling biomolecular recognition, 

especially characterization of binding thermodynamics and kinetics.  

 

2. Collective Variable-Based Enhanced Sampling 

During CV-based enhanced sampling simulations, a potential or force bias is applied along 

certain CVs to facilitate energy barrier crossing events among different conformational states. 

Typical CVs include distances, angle, dihedral, path, eigenvectors generated from the principal 

component analysis, root-mean square deviation (RMSD) relative to a reference conformation 

(Bouvier & Grubmuller, 2007), and so on. The bias potential applied to the system is usually 

around several kcal/mol. Thus one is able to accurately recover the original free energy profiles.  

Umbrella Sampling has been applied to predict the ligand/peptide/protein binding and/or 

dissociation pathways and map the associated free energy landscapes (Gumbart et al., 2013a; Joshi 
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& Lin, 2019a; Sieker et al., 2008; You et al., 2019). Metadynamics has been applied to investigate 

ligand/peptide/protein binding in terms of the binding kinetic rates (Casasnovas et al., 2017; Sun 

et al., 2017) and free energies (Banerjee et al., 2018; Raniolo & Limongelli, 2020; Saleh et al., 

2017; Wang et al., 2022a). Metadynamics simulations (Limongelli et al., 2013; Tiwary & 

Parrinello, 2013) have also been applied to investigate the thermodynamics and kinetics of 

benzamidine inhibitor binding to trypsin. Multiple Metadynamics trajectories with a total of 5 μs 

simulations were obtained to predict the ligand unbinding pathways and dissociation rate constant 

(koff). The predicted koff (9.1 ± 2.5 s-1) was smaller than the experimental value (600 ± 300 s-1). 

Separate funnel Metadynamics simulations predicted accurate of ligand binding free energies (-

8.5 ± 0.7 kcal/mol) for the same system (Limongelli et al., 2013). Infrequent Metadynamics 

simulations with 3 carefully chosen CVs have successfully predicted the peptide binding and 

dissociation rates for the system of P53-MDM2 (Zou et al., 2020). Although these methods have 

shown remarkable improvements in capturing rare events that happen over exceedingly long 

timescales, users often face a challenge for defining CVs, which requires expert knowledge of the 

studied systems (Abrams & Bussi, 2014; Zuckerman, 2011). Additionally, the pre-defined CVs 

could constrain the sampling space, leading to slow convergence of the simulations and suffering 

from “hidden energy barrier” once important CVs were missed during the simulation setup (Bešker 

& Gervasio, 2012). To accelerate the convergence of simulations, replica exchange or parallel 

tempering methods have been incorporated into Metadynamics. For example, bias-exchange 

Metadynamics simulations with 8 CVs have been performed to predict accurate binding free 

energy of the p53 peptide to the MDM2 protein. Parallel tempering Metadynamics simulations 

with well-tempered ensemble (PTMetaD-WTE) successfully captured the binding and dissociation 

processes of insulin dimer (Antoszewski et al., 2020). In summary, by carefully defining reaction 
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coordinates, the CV-based enhanced sampling methods could efficiently and accurately predict 

binding free energies and kinetic rates.  

 

3. Enhanced Sampling without Predefined Collective Variables 

In CV-free enhanced sampling methods, bias is often applied on generalized properties of 

the system (such as the potential energy and atomic forces) in the simulations. Repetitive 

benzamidine binding and unbinding in trypsin were captured using the selective ITS method (Shao 

& Zhu, 2019; Yang et al., 2015; Yang & Qin Gao, 2009). Pan et al.(Pan et al., 2019) developed 

the Tempered Binding method, which significantly accelerates the slow protein dissociation 

process by dynamically adjusting electrostatic and van der Waals interactions between different 

groups of protein atoms by a factor λ. The tempered binding simulations have successfully 

captured repetitive binding and dissociation events for five diverse protein–protein systems (Pan 

et al., 2019). In the scaled MD simulations (Sinko et al., 2013), a scale factor ranging from 0 to 1 

is introduced to smoothen the potential energy surface. Schuetz et al. performed scaled MD 

simulations to accurately predict the residence time and drug dissociation pathways of different 

inhibitors of heat shock protein 90 (Hsp90) (Schuetz et al., 2018). In a recent study (Bianciotto et 

al., 2021), Bianciotto et al. used scaled MD simulations to predict the residence time and ligand 

unbinding pathways for a set of 27 ligands of Hsp90 protein, being highly consistent with 

experimental data. Deb et al. developed a selective scaled MD simulation method (Deb & Frank, 

2019), where specific energy terms are scaled to promote dissociation of bound ligands from the 

protein. Particularly, ligand-water interactions are scaled to help the ligands dissociate from its 

bound state. Selective scaled MD predict accurate residence times and associated free energy 

change of three inhibitor drugs bound to cyclin-dependent kinase protein complexes. Hence, 
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selective scaled MD proves to be an important enhanced sampling method for modeling 

biomolecular dissociation process.  

In RAMD, an additional random force is applied on the ligand to promote especially the 

dissociation. In one recent study, Nunes-Alves et al. performed RAMD simulations to predict 

ligand dissociation rates of T4 lysozyme (Nunes-Alves et al., 2021). The predicted kinetic rates 

agreed well with experimental values for various systems with different ligands, temperatures, and 

protein mutations. Moreover, a ligand with complex dissociation pathways was often associated 

with longer residence time. In another study, the same group (Kokh & Wade, 2021) performed 

RAMD simulations to explore ligand dissociation pathways and kinetics of two GPCRs, i.e., the 

β2 adrenergic receptor (β2AR) and M2 muscarinic acetylcholine receptor (M2R). The ligand 

dissociation pathways observed in the RAMD simulations were similar to those in long cMD and 

Metadynamics simulations. Additionally, RAMD revealed an allosteric modulation mechanism of 

the LY2119620 PAM in the M2R. Dissociation of the iperoxo agonist was blocked from one of 

the possible pathways and hence had increased residence time, being consistent with the 

experimental data.  

The aMD enhanced sampling technique works by adding a non-negative boost potential to 

smoothen the system potential energy surface (Hamelberg et al., 2004; Voter, 1997). The boost 

potential (ΔV) decreases the energy barrier to facilitate the system cross different conformational 

states (Hamelberg et al., 2007; Hamelberg et al., 2004). In one study (Kappel et al., 2015), Kappel 

et al. performed aMD simulations to study ligand binding to M3 muscarinic receptor (M3R). Three 

ligands of the receptor: full agonist Ach, partial agonist arecoline (Arc) and antagonist tiotropium 

(TTP) were used to perform the aMD simulations. Starting from the bulk solvent, aMD captured 

the binding of Ach to the M3R orthosteric site in significantly less time as compared to the cMD 
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simulations. The Arc was also observed binding to the orthosteric site whereas the TTP molecule 

bound to the extracellular vestibule of the receptor. Moreover, all ligands could bind to the 

extracellular vestibule of the receptor, suggesting the vestibule as metastable binding site for 

orthosteric ligands. However, aMD suffers from large energetic noise during reweighting as the 

boost potential is typically on the order of tens to hundreds of kcal/mol (Shen & Hamelberg, 2008).  

GaMD is developed to apply a harmonic boost potential to enhance sampling with 

significantly reduced energetic noise. The boost potential normally exhibits a near Gaussian 

distribution, which enables proper reweighting of the free energy profiles through cumulant 

expansion to the second order (Miao et al., 2015b; Wang et al., 2021). GaMD has been successfully 

applied to simulate important biomolecular processes, including ligand/protein/RNA binding  

(Chuang et al., 2018; Liao & Wang, 2019; Miao et al., 2015a; Miao et al., 2018b; Miao & 

McCammon, 2016; Pang et al., 2017; Wang et al., 2022b; Wang & Chan, 2017), protein folding 

(Miao et al., 2015a; Pang et al., 2017), and protein conformational changes (Miao & McCammon, 

2016; Salawu, 2018; Zhang et al., 2018). However, it remained challenging to simulate repetitive 

substrate binding and dissociation through normal GaMD (Miao & McCammon, 2018; Wang et 

al., 2021).  

Recently, “selective GaMD” algorithms have been developed to allow for more efficient 

enhanced sampling of biomolecular binding and dissociation processes, including the Ligand 

GaMD (LiGaMD) (Miao et al., 2020), Peptide GaMD (Pep-GaMD) (Wang & Miao, 2020) and 

Protein-Protein Interaction - GaMD (PPI-GaMD) (Wang & Miao, 2022). For simulations of 

biomolecular binding, the system contains substrate L (e.g. small molecule ligands, peptides or 

ligand protein), protein P and the biological environment E. Therefore, the potential energy of 

system could be decomposed into the following terms:	𝑉(𝑟) = 𝑉!,#(𝑟!) + 𝑉$,#(𝑟$) + 𝑉%,#(𝑟%) +
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	𝑉!!,&#(𝑟!) + 𝑉$$,&#(𝑟$) + 𝑉%%,&#(𝑟%) +	 	𝑉!$,&#(𝑟!$) + 𝑉!%,&#(𝑟!%) + 𝑉$%,&#(𝑟$%) , where 𝑉!,# , 

𝑉$,#  and 𝑉%,#  are the bonded potential energies in protein P, substrate L and environment E, 

respectively. 𝑉!!,&# , 𝑉$$,&#  and 𝑉%%,&#  are the self non-bonded potential energies in protein P, 

substrate L and environment E, respectively. 	𝑉!$,&# , 𝑉!%,&#  and 𝑉$%,&#  are the non-bonded 

interaction energies between P-L, P-E and L-E, respectively.  In order to facilitate the 

ligand/peptide/protein binding (Fig 1), a boost potential is selectively added on the essential energy 

terms (𝑉'()(*+(𝑟)) in the LiGaMD, Pep-GaMD and PPI-GaMD, respectively. Presumably, ligand 

binding mainly involves the non-bonded interaction energies of the ligand. LiGaMD thus 

selectively boosts on the energy terms of 𝑉'()(*+(𝑟) = 𝑉$$,&#(𝑟$) + 	𝑉!$,&#(𝑟!$) + 𝑉$%,&#(𝑟$%). In 

comparison, peptide binding involves in both the bonded and non-bonded interaction energies of 

the peptide since peptides often undergo large conformational changes during binding to the target 

proteins. Thus, the essential energy term in Pep-GaMD is 𝑉'()(*+(𝑟) = 𝑉$$,#(𝑟$) + 𝑉$$,&#(𝑟$) +

	𝑉!$,&#(𝑟!$) + 𝑉$%,&#(𝑟$%). While protein-protein binding and unbinding processes mainly involve 

the non-bonded interaction energies between protein partners, one can apply a selective boost to 

the essential energy term 𝑉'()(*+(𝑟) = 𝑉!$,&# in PPI-GaMD. In addition to selectively boost the 

essential energy term 𝑉'()(*+(𝑟), another boost potential could be applied on the remaining energy 

of the system to facilitate substrate rebinding in a dual-boost scheme. These new algorithms have 

been implemented in the GPU version of AMBER22 (D.A. Case).  

Repetitive binding and dissociation of small-molecule ligands were captured in the 

LiGaMD simulations of host-guest and protein-ligand binding model systems (Miao et al., 2020), 

which enabled us to calculate ligand binding thermodynamics and kinetics calculations. Repetitive 

guest binding and dissociation in the β-cyclodextrin host were observed in hundreds-of-

nanoseconds LiGaMD simulations. The binding free energies of guest molecules predicted from 
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LiGaMD simulations agreed excellently with experimental data (< 1.0 kcal/mol error). In 

comparison with previous microsecond-timescale cMD simulations, accelerations of ligand kinetic 

rate constants in LiGaMD simulations were properly estimated using Kramers’ rate theory. 

Furthermore, microsecond LiGaMD simulations observed repetitive benzamidine binding and 

dissociation in trypsin. Trypsin-benzamidine ligand binding free energy was calculated from the 

3D PMF profile to be -6.13 ± 0.35 kcal/mol, being highly consistent with the experimental value 

of -6.2 kcal/mol (Guillain & Thusius, 1970). Similarly, the ligand binding and dissociation time 

periods were recorded to calculate the reweighted kon and koff values to be 1.15 ± 0.79 × 107 M-1·s-

1 and 3.53 ± 1.41 s-1, respectively. These data were comparable to the values calculated from 

experiments (Guillain & Thusius, 1970).  

Pep-GaMD (Wang & Miao, 2020) has been demonstrated on binding of three model 

peptides to the SH3 domains (Ahmad & Helms, 2009; Ball et al., 2005), including “PAMPAR” 

(PDB: 1SSH), “PPPALPPKK” (PDB: 1CKA) and “PPPVPPRR” (PDB: 1CKB). Repetitive 

dissociation and binding of the three peptides were successfully captured in each of the 1 

microsecond Pep-GaMD simulations. The peptide binding free energies calculated from Pep-

GaMD simulations were in excellent agreements with those from the experiments. For the 1CKA 

system, the calculated peptide binding free energy value was -7.72±0.54 kcal/mol, being highly 

consistent with the experimental value of -7.84 kcal/mol (Wu et al., 1995).  For the 1CKB system, 

the predicting binding free energy was -6.84±0.14 kcal/mol, being closely similar to the 

experimental value of -7.24 kcal/mol (Wu et al., 1995). In addition, the Pep-GaMD predicted the 

kon and koff of 1CKA as 4.06 ± 2.26×1010 M-1×s-1 and 1.45 ± 1.07×103 s-1, respectively. They were 

comparable to the experimental data (Xue et al., 2014) of 𝑘,&
(-. = 1.5 ´ 109 M-1×s-1 and 𝑘,//

(-. = 8.9 

´ 103 s-1.  
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More recently, Pep-GaMD simulations were combined with complementary biochemical 

experiments to elucidate mechanism of tripeptide trimming of amyloid β-peptide (Aβ peptide) by 

γ-secretase(Bhattarai et al., 2022). The active model of γ-secretase for e cleavage was extracted 

from previous study (Bhattarai et al., 2020) and used as the starting structure for Pep-GaMD 

simulations. 600 ns Pep-GaMD simulations were able to capture the z cleavage activation starting 

from the e cleavage activated model, which was suggested to carry out in timescale of minutes 

(Kamp et al., 2015). During activation, coordinated hydrogen bonds were formed between 

carbonyl oxygen of Aβ49 Val46 and enzyme catalytic Asp257. The two catalytic aspartates, 

Asp257 and Asp385 in the active site of the enzyme both formed hydrogen bonds with the water 

molecule aligned in between them. This activated enzyme conformation was well oriented for the 

z cleavage of amide between Val46 and Ile47 of the Aβ49. Three low energy states including 

“Final”, “Intermediate”, and “Initial” were identified from the Pep-GaMD simulations (Fig. 2A). 

The Final state denoted the activated enzyme conformation for z cleavage where the Asp257 - 

Asp385 distance was ~7 – 8 Å and the Asp257 – Aβ49 Val46 distance was ~ 3 Å (hydrogen bond). 

The Initial and Intermediate low energy states denoted the starting and transitional conformation 

during the activation process. Furthermore, Pep-GaMD simulations were performed for three 

additional FAD mutant Aβ49 bound enzyme systems. Similar to the wildtype system, Pep-GaMD 

simulations of I45F, A42T and V46F mutant Aβ49 bound enzyme systems were able to capture 

the z cleavage activation starting from the e cleavage activated model. Free energy profiles of the 

FAD mutant systems were similar to the wildtype system (Fig. 2B-2D). In the I45F mutant system, 

two low energy states were identified including “Initial” and “Final” (Fig. 2B). The A42T mutant 

was the most dynamic enzyme system with four distinct low energy states identified in a larger 

area covered free energy profile including “Initial”, “Final”, “Inhibited-1”, and “Inactive” (Fig. 
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2C). The catalytic aspartates of the “Inhibited-1” conformational state were too close for activation 

and hence was inhibited. In contrast, the aspartates were too far for their catalytic activity in the 

“Inactive” low energy state of the enzyme. In the V46F mutant γ-secretase system, two low energy 

states were identified in the free energy profile including “Final” and “Inhibited-2” (Fig. 2D). The 

structures were compared between the “Initial” and “Final” low energy conformational states of 

the enzyme as identified from the free energy profiles (Figs. 2E-2G). The enzyme moved from 

Initial to Final conformational state, the Aβ49 substrate tilted by ~ 50° (Fig. 2F). Unwinding of 

helix was observed in the C-terminus of Aβ49 where residues Val44 and Ile45 were observed 

changing their conformation from helix to a loop (Fig. 2F). Similarly, in the active site of the 

enzyme, the protonated Asp257 in the Final state was observed moving forward towards the 

substrate scissile amide bond by 3 Å in comparison to the Initial state (Fig. 2G). In contrast, the 

deprotonated Asp385 in the Final state and the Initial state were observed in a similar conformation 

(Fig. 2G). The simulation findings were highly consistent with biochemical experimental data. 

Taken together, complementary biochemical experiments and Pep-GaMD simulations have 

enabled elucidation of the mechanism of tripeptide trimming of Aβ49 by γ-secretase.  

PPI-GaMD (Wang & Miao, 2020) has been demonstrated on a model system of the 

ribonuclease barnase binding to barstar. Six independent 2 μs PPI-GaMD simulations have 

successfully captured repetitive barstar dissociation and rebinding events (Fig. 3A). Five binding 

and six dissociation events were observed in both Sim1 and Sim3. In Sim2, three binding and four 

dissociation events were captured. For the remaining simulations (Sim4 - Sim6), three binding and 

three dissociation events were observed (Fig. 3A). The barstar binding free energy predicted from 

PPI-GaMD was -17.79 kcal/mol with a standard deviation of 1.11 kcal/mol, being highly 

consistent with the experimental value of -18.90 kcal/mol (Schreiber & Fersht, 1993). In addition, 
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the PPI-GaMD simulations allowed us to calculate the protein binding kinetics. The average 

reweighted kon and koff were predicted as 21.7±13.8×108 M-1×s-1 and 7.32±4.95×10-6 s-1, being 

highly consistent with the corresponding experimental values of 6.0×108 M-1×s-1 and 8.0×10-6 s-1, 

respectively. Furthermore, PPI-GaMD simulations have provided mechanistic insights into barstar 

binding to barnase, which involve long-range electrostatic interactions and multiple binding 

pathways (Fig. 3C-3F), being consistent with previous experimental and computational findings 

of this model system.  It is worth noting that at least 3 independent replicas of selective GaMD 

simulations with longer simulation lengths (e.g., microsecond) are required to obtain sufficient 

statistics for ligand binding, peptide binding and protein-protein interactions. In order to calculate 

accurate binding free energy and kinetic rates, the length of each simulation should be long enough 

to capture ≥3 binding and dissociation events as suggested by LiGaMD(Miao et al., 2020), Pep-

GaMD(Wang & Miao, 2020) and PPI GaMD(Wang & Miao, 2022) studies. 

 

4. Machine Learning 

Machine learning (ML) has been applied to improve computational docking, especially in the 

scoring functions (Khamis et al., 2015). A scoring function in molecular docking refers to a 

mathematical predictive model that outputs a representative score of the binding free energy of a 

bound conformation.  Scoring of a docked complex is the final step of the three essential 

components in molecular docking, with the first two being chemical molecule representation and 

pose generation (Khamis et al., 2015). A reliable scoring function should have a good scoring 

power (the ability to produce scores for different binding poses), ranking power (the ability to 

correctly rank a given set of ligands with known binding poses when bound to a common protein), 

and docking power (the ability to identify the best binding pose of a given ligand from a set of 
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computationally generated poses when bound to a specific protein) (Ashtaway & Mahapatra, 2012). 

Kinnings et al. (Kinnings et al., 2011) used a support vector machine (SVM) to derive a unique set 

of weights for each individual protein family – the wi’s in the following equation: 

∆𝐺#0&10&2 =	𝑤3 +	𝑤4∆𝐺516 +𝑤7∆𝐺89#,&1 +𝑤:∆𝐺;,+,; +𝑤<∆𝐺8=1;,.8,#0* (1) 

This was shown to improve the binding affinity prediction of the electronic high throughput 

screening (eHiTS) molecular docking software(Zsoldos et al., 2007) compared with empirical 

knowledge-based scoring functions(Khamis et al., 2015). Similarly, a force field scoring function 

can be trained to derive a unique set of parameters for each individual protein family - the Aij’s 

and Bij’s in the following equation: 
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    ML could also be used to predict the binding affinity based on a number of features of the 

protein-ligand complex, including geometric features, physical force field energy terms, 

pharmacophore features, etc. Specifically, ML could learn the relationship between these features 

and corresponding known binding affinity to predict the binding affinity of new 

complexes(Khamis et al., 2015). Recently, Ballester et al. (Ballester & Mitchell, 2010) applied 

non-parametric ML techniques to generate the functional form of scoring functions given 

molecular databases. The authors used random forest (RF) (Breiman, 2001) to learn the 

relationship between the atomic-level description of the complex and the experimental binding 

affinity. Here, the Kd and Ki measurements were merged into a single binding constant K to 

represent the experimental binding affinity. The atomic-level description used was of geometric 

nature and was the occurrence count of 9 common elemental atoms (C, N, O, F, P, S, Cl, Br, I) 

type pair. Even though they completely neglected the energy terms induced by protein-ligand 
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interactions, Ballester et al. were able to achieve Pearson correlation coefficient of 0.774 on the 

PDBbind v2007 core set (195 complexes) (Ballester & Mitchell, 2010). 

 Very recently, deep learning (DL) methods, including RoseTTAFold(Baek et al., 2021) 

and AlphaFold (Jumper et al., 2021), were developed to achieve structure prediction accuracies 

far beyond those from classical force-field-based methods (Baek & Baker, 2022). These methods 

have millions of parameters, much more than the hundreds of parameters in classical approaches, 

thus better sample the large conformational space of proteins. Furthermore, they make no 

assumptions about the functional form of the interactions between atoms. In fact, the two DL-

based methods learn millions of parameters directly to generate correct 3D structures from input 

amino acid sequences (Baek & Baker, 2022; Baek et al., 2021; Jumper et al., 2021). AlphaFold 

and RoseTTAFold are trained to predict structures from alignments of homologous amino acid 

sequences. In particular, the two DL-based approaches learn to extract rich structural information 

through a three-track network where information at the 1D sequence level, 2D distance map, and 

3D coordinate level is successively transformed and integrated (Baek et al., 2021; Jumper et al., 

2021). They were also shown to predict protein structures very accurately from single amino acid 

sequences (Baek & Baker, 2022; Baek et al., 2021; Jumper et al., 2021). 

MD simulations could generate very large data in terms of conformation frames and 

number of simulated atoms. For example, Weighted Ensemble of the COVID19 spike protein’s 

closed-to-open state generated over 100 terabytes of data (Casalino et al., 2021). This brings a 

challenge to identify proper CVs to differentiate conformational states from the raw simulation 

data and to identify corresponding biologically transitions between such states (e.g., open/closed 

states of spike). In this regard, the machine learning/deep learning has been applied to identify 

appropriate CV to analysis MD simulation trajectories (Glielmo et al., 2021; Noé, 2020; Sun et al., 
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2022; Wang et al., 2020). These linear, non-linear, and hybrid Machine Learning approaches 

cluster the simulation data along a small number of latent dimensions to identify conformational 

transitions between states (Bernetti et al., 2020; Ramanathan et al., 2012). Another benefit of MD-

coupled machine learning approaches is that the information learned from machine learning can 

be used to iteratively guide the MD sampling(Wang et al., 2019). Based on the predictive 

information bottleneck, Wang et al. developed an approach  to identify system reaction coordinates 

and computer the free energy and kinetic rates in biomolecules (Wang et al., 2019). The algorithm 

was demonstrated on conformational transitions in the alanine dipeptide model system and ligand 

dissociation from the L99A T4lysome. Thermodynamic and kinetic quantities calculated from 

short enhanced MD simulations for slow biomolecular processes were in good agreement with the 

experiments and long unbiased MD simulations. 

Recently, we have integrated the GaMD, Deep Learning and free energy prOfiling 

Workflow (GLOW) to predict important reaction coordinates and map free energy profiles of 

biomolecules (Do et al., 2022). First, GaMD simulations are performed on the target biomolecules 

(Fig. 4A). The residue contact map is then calculated for each GaMD simulation frame and 

transformed into images (Fig. 4B). The specialized type of neural network for image classification, 

two-dimensional (2D) convolutional neural network (CNN), is employed to classify the residue 

contact maps of target biomolecules, from which important residue contacts are identified by 

classic gradient-based pixel attribution (Fig. 4C). Finally, the free energy profiles of these reaction 

coordinates are calculated through reweighting of GaMD simulations to characterize the 

biomolecular systems of interest (Fig. 4D)(Do et al., 2022). GLOW was successfully demonstrated 

on characterization of activation and allosteric modulation of a GPCR, using the adenosine A1 

receptor (A1AR) as a model system. Characterization of the A1AR activation was achieved by 
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classification of the A1AR bound by “Antagonist”, “Agonist”, and “Agonist-Gi”. GLOW achieved 

an overall accuracy of 99.34% and loss of 1.85%, respectively, on the validation data set after 15 

epochs. Meanwhile, characterization of A1AR allosteric modulation was achieved by classification 

of the A1AR bound by “Agonist-Gi” and “Agonist-Gi-PAM”. GLOW achieved an overall 

accuracy of 99.27% and loss of 1.78%, respectively, on the validation data set after 15 epochs. 

GLOW identified characteristic residue contacts that were highly consistent with previous studies 

to the residue levels for both A1AR activation and allosteric modulation. In particular, the ligand-

binding extracellular domains (ECL1-ECL3) and intracellular G-protein binding domains (TM3, 

TM5, TM6, and TM7) were found to be loosely coupled in the GPCR activation. Furthermore, it 

showed that ECL2 played a critical role in the allosteric modulation of A1AR, being consistent 

with previous mutagenesis, structure, and molecule modeling studies (Avlani et al., 2007; Draper-

Joyce et al., 2021; Miao et al., 2018a; Nguyen et al., 2016; Peeters et al., 2012). GLOW revealed 

that binding of a PAM (MIPS521) to the agonist-Gi-A1AR complex biased the receptor 

conformational ensemble, especially in the ECL1 and ECL2 regions. PAM binding stabilized 

agonist binding within the orthosteric pocket of A1AR, which confined the extracellular mouth of 

the receptor Furthermore, PAM binding disrupted the N148ECL2-V152ECL2 a-helical hydrogen 

bond and distorted this portion of the ECL2 helix(Do et al., 2022).  

In addition, DL has been widely applied to optimize force field (Chatterjee et al., 2022; 

Poltavsky & Tkatchenko, 2021; Unke et al., 2021), binding free energy calculations (Chen et al., 

2021; Jiang et al., 2021; Jones et al., 2021) and binding pathway identification (Motta et al., 2022).  

 

5. CONCLUSIONS AND OUTLOOK 
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With remarkable advances in both computer hardware and software, computational 

approaches have achieved significant improvement to characterize biomolecular recognition, 

including molecular docking, MD simulations and Machine Learning. Machine learning has been 

incorporated into both molecular docking and MD simulations to improve the docking accuracy, 

simulation efficiency and trajectory analysis, e.g., AlphaFold-Multimer and GLOW. MD 

simulations have enabled characterization of biomolecular binding thermodynamics and kinetics, 

attracting increasing attention in recent years. Long time scale cMD simulations have successfully 

captured biomolecular binding processes, although slow dissociation of biomolecules are still 

often difficult to simulate using cMD.  

Enhanced sampling methods have greatly reduced the computational cost for calculations 

of biomolecular binding thermodynamics and kinetics. Higher sampling efficiency could be 

generally obtained using the CV-based methods than using the CV-free methods. However, CV-

based enhanced sampling methods require predefined CVs, which is often challenging for 

simulations of complex biological systems. Nevertheless, machine learning techniques have 

proven useful to identify proper CVs or reaction coordinates. Alternatively, CV-free methods are 

usually easy to use without requirement of a priori knowledge of the studied systems. Additionally, 

the CV-based and CV-free methods could be combined to be more powerful. The CV-free methods 

can enhance the sampling to potentially overcome the hidden energy barriers in orthogonal degrees 

of freedom relative to the CVs predefined in the CV-based methods, which could enable faster 

convergence of the MD simulations. Newly developed algorithms in this direction include 

integration of  replica exchange umbrella sampling with GaMD (GaREUS) (Oshima et al., 2019b), 

replica exchange of solute tempering with  umbrella sampling (gREST/REUS) (Kamiya & Sugita, 

2018; Re et al., 2019), replica exchange of solute tempering with well-tempered Metadynamics 
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(ST-MetaD)(Mlýnský et al., 2022) and temperature accelerated molecular dynamics (TAMD) with 

integrated tempering sampling (ITS/TAMD) (Xie et al., 2017). 

Recent years have seen an increasing number of techniques that introduce “selective” boost 

in the CV-free enhanced sampling methods, including the selective ITS, selective scaled MD, 

selective aMD and selective LiGaMD, Pep-GaMD and PPI-GaMD. In these methods, only 

essential energy terms are selectively boosted to further increase the sampling efficiency. 

Additionally, compatible enhanced sampling methods could be combined to be more powerful. 

For example, GaMD has been combined with Umbrella Sampling to achieve significantly 

improved efficiency (Oshima et al., 2019a; Wang et al., 2021). Besides enhanced sampling, the 

accuracy of force fields and water models play a critical role in predicting the biomolecular binding 

affinities and kinetics. For example, the TIP4P2015 water model was shown to be more accurate 

than the TIP3P water model in calculating the kinetics of barnase-barstar binding in cMD 

simulations(Pan et al., 2019). Nevertheless, biomolecular recognition in systems of increasing 

sizes (such as viruses and cells) and accurate calculations of binding thermodynamics and kinetics 

of large biomolecular complexes present grand challenges for computational modelling and 

enhanced sampling simulations. Further innovations in both computing hardware and method 

developments may help us to address these challenges in the future.  
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Figure 1. Schematic illustration of biomolecular recognition: (A) Small-molecule ligand binding, 
(B) peptide binding and (C) protein-protein interactions (PPIs).  
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Figure 2: Mechanism of Tripeptide Trimming of Amyloid β-Peptide 49 by γ-Secretase. 2D 
free energy profiles calculated regarding Asp257 - Asp 385 distance and Asp257 – Aβ49 Val46 
distance calculated from Pep-GaMD simulations of (A) wildtype Aβ49 bound γ-secretase, (B) 
I45F mutant Aβ49 bound γ-secretase, (C) A42T mutant Aβ49 bound γ-secretase, and (D) V46F 
mutant Aβ49 bound γ-secretase systems. (E) Structures of catalytic subunit PS1 bound to APP and 
Aβ49 substrates representing the “Initial” and “Final” conformational states, respectively. (F) 
Conformational changes in (F) Aβ49 and (G) active site of the enzyme during transition from 
Initial to Final activated state for z cleavage. Adapted with permission from Bhattari A, Devkota 
S., Do H.N., Wang J., Bhattarai S., Wolfe M.S. and Miao Y. Journal of the American Chemical 
Society. 10.1021/jacs.1c10533.Copyright 2022 American Chemical Society. 
  



 37 

 

Figure 3. PPI-GaMD simulations of barnase binding/dissociation to barstar. (A) Time courses 
of protein-protein interface distance calculated from six independent 2 μs PPI-GaMD simulations. 
(B) Original (reweighted) and modified (no reweighting) PMF profiles of the protein interface 
distance averaged over six PPI-GaMD simulations. Error bars are standard deviations of the free 
energy values calculated from six PPI-GaMD simulations. (C) 2D PMF profiles regarding the 
interface RMSD and the distance between the CZ atom of barnase Arg59 and CG atom of barstar 
Asp39. (D) 2D PMF profiles regarding the interface RMSD and the distance between the center 
of masses (COMs) of barnase residues Ala37-Ser38 and barstar residues Gly43-Trp44. (E–F) 
Low-energy conformations as identified from the 2D PMF profiles of the (E) intermediate “I1”, 
(F) intermediate “I2”. Strong electrostatic interactions are shown in red dash lines with their 
corresponding distance values labeled in the intermediate “I1” (E) and “I2” (F).  Adapted with 
permission from Wang J., Miao Y. Journal of Chemical Theory and Computation. 
10.1021/acs.jctc.1c00974. Copyright 2022 American Chemical Society. 
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Figure 4. Overview of the Gaussian accelerated molecular dynamics (GaMD), Deep Learning 
(DL) and Free Energy PrOfiling Workflow (GLOW). (A) With structures of our interest, 
GaMD simulations are applied for enhanced sampling of the system dynamics. (B) DL models are 
then built with GaMD trajectories of residue contact maps transformed into image representations. 
(C) The DL analysis allows us to identify important residue contacts and system reaction 
coordinates (RCs). (D) Free energy profiles of the RCs are finally calculated through reweighting 
of GaMD simulations to characterize the system dynamics. Adapted with permission from Do H.N. 
Wang J. Bhattari A. and Miao Y. Journal of Chemical Theory and Computation. 
10.1021/acs.jctc.1c01055. Copyright 2022 American Chemical Society. 
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