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We discuss the short-time perturbative expansion of the linear entropy for finite-dimensional quantum systems
whose dynamics can be effectively described by a non-Hermitian Hamiltonian. We derive a timescale for the
degree of mixedness for an input state undergoing non-Hermitian dynamics and specialize these results in the
case of a driven-dissipative two-level system. Next, we derive a timescale for the growth of mixedness for
bipartite quantum systems that depends on the effective non-Hermitian Hamiltonian. In the Hermitian limit,
this result recovers the perturbative expansion for coherence loss in Hermitian systems, while it provides an
entanglement timescale for initial pure and uncorrelated states. To illustrate these findings, we consider the
many-body transverse-field XY Hamiltonian coupled to an imaginary all-to-all Ising model. We find that the
non-Hermitian Hamiltonian enhances the short-time dynamics of the linear entropy for the considered input
states. Overall, each timescale depends on minimal ingredients such as the probe state and the non-Hermitian
Hamiltonian of the system, and its evaluation requires low computational cost. Our results find applications
to non-Hermitian quantum sensing, quantum thermodynamics of non-Hermitian systems, and PT -symmetric
quantum field theory.
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I. INTRODUCTION

The study of non-Hermitian systems [1,2] has paved the
way for recent developments across the subjects of quan-
tum sensing [3,4], PT symmetry and exceptional points
[5–12], linear response theory [13], quantum many-body
systems [14–24], skin effect [25–27], bulk-edge correspon-
dence [28,29], phase transitions [30,31], and the quantum
boomerang effect in localized systems [32–35], to cite a few.

Recent theoretical achievements discussed the effects of
postselection on the dynamics of open quantum systems, thus
reconciling the approaches of effective non-Hermitian Hamil-
tonians and Liouvillian superoperators [36,37]. In this setting,
several works have addressed the role of non-Hermitian
features on legitimate quantum mechanical signatures, e.g.,
quantum coherence and entanglement [38–42]. For example,
it has been shown that quantum coherence can be character-
ized under the framework of multiple quantum coherences
[43–45]. In turn, the dynamics of entanglement in non-
Hermitian systems has been widely probed with entropic
measures, but their evaluation generally involves the full spec-
tral decomposition of the state driven by the non-Hermitian
Hamiltonian [46–49]. This can be a challenging computa-
tional task, especially for interacting quantum many-body
systems.

To overcome this issue, the onset growth of mixedness
at earlier times of the dynamics can be addressed through
the so-called linear entropy, a useful information-theoretic

quantifier that is related to the second-order Rényi entropy and
quantum purity [50,51]. Remarkably, those quantities have
been experimentally probed in optical lattices [52–54], and
trapped ion setups [55,56]. In the Hermitian case, it is known
that the short-time perturbative expansion of the linear entropy
implies a universal timescale for the entanglement dynamics
of interacting bipartite systems with initial pure state [57–59].
It is worth mentioning that this timescale is inversely propor-
tional to the fluctuations of the coupling between subsystems
[60,61]. Importantly, this result also assigns a timescale for
the decoherence mechanism in subsystems of such compos-
ite quantum systems [62–64]. We also mention the study of
the growth of entanglement through a perturbative expansion
of the entanglement negativity [65,66] and also quantum fi-
delities [67,68]. To the best of our knowledge, despite these
remarkable achievements in the Hermitian setting, deriving an
analogous timescale for non-Hermitian systems remains a gap
to be filled.

Here we address timescales for the growth of the linear
entropy for finite-dimensional quantum systems described by
effective non-Hermitian Hamiltonians. The physical system
is initialized in a quantum state which can be chosen as either
a pure or mixed one, possibly an entangled state or even an
uncorrelated one. We investigate the short-time perturbative
expansion of the linear entropy for a given input state driven
by a general non-Hermitian Hamiltonian. In this setting, up
to the second order in time, the onset growth of mixedness
of the evolved state is governed by two competing timescales
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that are intrinsically related to the anti-Hermitian part of the
non-Hermitian Hamiltonian. In particular, we specialize these
results in the case of a driven non-Hermitian two-level system
and discuss the mixedness of a single-qubit state.

Next, focusing on the reduced dynamics of bipartite sys-
tems described by non-Hermitian Hamiltonians, we derive
the short-time perturbative expansion of the linear entropy
for a given evolved marginal state of the composite system.
In the Hermitian limit, these results recover the perturba-
tive expansion for coherence loss in Hermitian systems [62].
In particular, for initial pure and uncorrelated states, we
find the lowest order entanglement timescale for quantum
systems described by Hermitian Hamiltonians addressed in
Refs. [57,58]. To illustrate these findings, we consider a
paradigmatic many-body non-Hermitian Hamiltonian, and
present analytical calculations and numerical simulations to
support our theoretical predictions. We verify that, unlike the
Hermitian case, the non-Hermitian Hamiltonian is responsible
for an enhancement in the short-time dynamics of the linear
entropy for the multiparticle states that have been considered.

Overall, our results can be of relevance to both the com-
munities of photonics [5,69], and also atomic, molecular and
optical physics [9,70]. Our findings might be useful, for ex-
ample, to understand the interplay of quantum speed limits
and the dynamics generated by non-Hermitian Hamiltonians,
the latter providing an effective description for the dynam-
ics of open quantum systems whose dynamics satisfies a
Lindblad type master equation [71,72]. In this context, the
aforementioned timescales can find applications in the study
of quantum state transfer protocols in dissipative two-level
systems, particularly with regard to the search of non-
Hermitian Hamiltonians related to optimal speed limits [73].
In addition, non-Hermitian mixedness timescales can be of
interest in the study of topology and localization signatures in
many-body systems, for example, in the investigation of the
non-Hermitian skin effect by means of inverse participation
ratio [25–27]. Furthermore, it may also be useful in the study
of thermalization dynamics in non-Hermitian many-body sys-
tems [74,75].

The paper is organized as follows. In Sec. II we briefly re-
view useful properties regarding the linear entropy. In Sec. III
we investigate the short-time perturbative expansion of the
linear entropy for finite-dimensional quantum systems whose
dynamics are driven by a non-Hermitian Hamiltonian. In
Sec. III A we illustrate our findings by means of the two-
level system. In Sec. IV we derive a mixedness timescale
for bipartite quantum systems evolving under the action of
a given non-Hermitian Hamiltonian. In Sec. IV A we spe-
cialize these results to the case of two initially uncorrelated
subsystems. In addition, Sec. IV B addresses the case of
a many-body system with non-Hermitian Hamiltonian de-
scribing the transverse-field XY model perturbed by a fully
connected Ising Hamiltonian with imaginary exchange cou-
pling. Finally, in Sec. V we summarize our conclusions.

II. LINEAR ENTROPY

In this section we review the main properties of linear
entropy, i.e., a versatile information-theoretic measure that
quantifies the degree of mixedness of a given state [76]. Linear

entropy has been used to witness multipartite entanglement
[77–81]. We point out that Ref. [82] addresses a separability
criterion for multipartite entangled states of bosons that is
based on purity, thus being related to the linear entropy. In
addition, Refs. [83,84] discuss entanglement criteria for bi-
partite mixed states based on the so-called conditional Tsallis
entropy. In this regard, by setting the second-order Tsallis
entropy, one obtains an entanglement criterion for linear en-
tropy. In addition, similar criteria based on conditional Rényi
entropy have been addressed in Refs. [85–91]. Let us consider
a quantum system with finite-dimensional Hilbert space H,
with d = dim H. The space of quantum states S ⊂ H is a con-
vex set of Hermitian, positive semidefinite, trace-one, d × d
matrices, i.e., S = {ρ ∈ H | ρ† = ρ, ρ ! 0, Tr(ρ) = 1}. The
normalized linear entropy of the quantum state ρ is defined
as [92]

SL(ρ) := d
d − 1

[1 − f (ρ)], (1)

where f (ρ) = Tr(ρ2) stands for the quantum purity. The latter
quantity is bounded as 1/d " f (ρ) " 1, which implies that
the linear entropy ranges as 0 " SL(ρ) " 1 for all ρ ∈ S . In
addition, given the spectral decomposition ρ =

∑
j p j | j〉〈 j|

in terms of the basis of states {| j〉} j=1,...,d , with 0 " p j " 1
and

∑
j p j = 1, one readily concludes that SL(ρ) = [d/(d −

1)][1 −
∑

j p2
j]. Importantly, it has been shown that quantum

states with linear entropy satisfying the lower bound SL(ρ) !
d (d − 2)/(d − 1)2 are separable [93].

Linear entropy remains invariant under unitary transfor-
mations over the input state, i.e., SL(V ρV †) = SL(ρ), with
VV † = V †V = I and for all ρ ∈ S . It is related to the second-
order Rényi entropy S2(ρ) [94,95], also known as collision
entropy [96], and thus becomes SL(ρ) = [d/(d − 1)](1 −
e−S2(ρ) ). Furthermore, Eq. (1) is also written as SL(ρ) =
[d/(d − 1)]H2(ρ), with H2(ρ) being the second-order Tsallis
entropy [97]. Interestingly, the linear entropy is also con-
nected with the quantum Fisher information. To see this,
let " ∈ H be a given Hermitian operator which generates
the unitary evolution ρϕ := Uϕ (ρ) = e−iϕ"ρ eiϕ" imprinting
a phase shift ϕ on the initial quantum state ρ ∈ S of a finite-
dimensional quantum system. In this case, given the task
of estimating the parameter ϕ for such a unitary encoding
protocol, it can be proved that the linear entropy satis-
fies the lower bound SL(ρ) ! [2d/(d − 1)][〈"2〉ρ − 〈"〉2

ρ −
(1/4)F (ρ,")]/[λmax(") − λmin(")]2, with 〈•〉ρ = Tr(•ρ),
where F (ρ,") := F (ρϕ ) is the quantum Fisher informa-
tion (QFI) respective to evolved state ρϕ , while λmax(")
and λmin(") are the largest and smallest eigenvalues of
", respectively [98]. On the one hand, for a given initial
mixed state ρ =

∑
j p j | j〉〈 j|, the QFI is written as F (ρ,") =

2
∑

j,k [(p j − pk )2/(p j + pk )] |〈 j|"|k〉|2 [99,100]. On the
other hand, QFI reduces to the squared variance of the gen-
erator " for an input pure state, i.e., one gets F (ρ,") =
4(〈ψ |"2|ψ〉 − 〈ψ |"|ψ〉2) for ρ = |ψ〉〈ψ |. In turn, the latter
case implies that the aforementioned lower bound saturates
to SL(|ψ〉〈ψ |) = 0, which is expected for any pure state. To
the best of our knowledge, the latter bound holds for unitary
evolutions governed by Hermitian operators. Hence, it should
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no longer apply to the case of nonunitary evolutions generated
by effective non-Hermitian Hamiltonians.

Recently linear entropy has also been discussed for sys-
tems described by non-Hermitian Hamiltonians [46,47,101].
In this regard, at least two approaches can be highlighted.
The first one consists of equipping the Hilbert space with
a generalized inner product structure, called metric operator
[102–104]. In the second case, one introduces a renormalized
density operator whose dynamics is governed by modified
Heisenberg equations of motion [1,105–107]. Throughout this
paper, we will follow this last perspective, which in turn finds
applications in a broader context, ranging from dissipative
systems [2] to topological phases in non-Hermitian systems
[6,9,70], also including recent studies in localization [32] and
criticality in non-Hermitian many-body systems [17–24].

III. MIXEDNESS TIMESCALE FOR
NON-HERMITIAN SYSTEMS

We consider a quantum system with finite-dimensional
Hilbert space H, with d = dimH, which is initialized in
the state ρ0 ∈ S [see Sec. II]. This input state undergoes
a nonunitary evolution governed by the time-independent
non-Hermitian Hamiltonian H = H1 + iH2, where H1 =
(1/2)(H + H†), and H2 = (1/2i)(H − H†). In turn, the non-
commuting observables H1 and H2 stand for the Hermitian
and anti-Hermitian parts of the Hamiltonian H , respectively.
In the remainder of the paper, we set h̄ = 1. The dynamics of
the normalized time-dependent density matrix ρ̃t = ρt/Tr(ρt )
fulfills the equation of motion [105–107]

d ρ̃t

dt
= −i [H1, ρ̃t ] + {H2, ρ̃t } − 2 Tr(̃ρt H2 )̃ρt , (2)

which in turn represents a completely positive and trace-
preserving operation. Physically, the nonunitary evolution
described in Eq. (2) maps a given physical state to another
physical state. In this sense, given the input density matrix
ρ0, the time-dependent evolved state ρ̃ must also be a density
matrix, which is expected to be (i) Hermitian, ρ̃ †

t = ρ̃t for all
t ! 0; (ii) positive semidefinite, ρ̃t ! 0 for all t ! 0; and (iii)
normalized, Tr(̃ρt ) = 1 for all t ! 0, which in turn ensures the
probability conservation. In this regard, note that the last term
in the right-hand side of Eq. (2) is related to the conservation
of probability. In view of dissipative systems, for example,
the dynamics generated by non-Hermitian Hamiltonians is
related to the conditioning of postselection on measurement
outcomes, and discarding of quantum jumps [1,2,36,37]. We
point out that the dynamical map drives a nonunitary evolution
under which the state ρ̃t exhibits a time-dependent mixedness.
In the Hermitian setting, the mixedness stands as a conserved
quantity for any quantum state undergoing a unitary evolution
generated by a Hermitian Hamiltonian.

Here we choose the normalized linear entropy SL (̃ρt ) =
[d/(d − 1)][1 − f (̃ρt )] as a useful quantum information-
theoretic quantifier to probe the mixedness of state ρ̃t , with
f (̃ρt ) = Tr(̃ρ 2

t ). As discussed in Sec. II, for the case of uni-
tary evolutions generated by Hermitian Hamiltonians, both
the purity and the linear entropy remain invariant for all
t > 0. However, for the nonunitary dynamics dictated by
non-Hermitian Hamiltonians, the linear entropy becomes a

time-dependent quantity, and its evaluation requires the full
spectral decomposition of the evolved state. This task has a
high computational cost for many-body quantum systems.

In this section we are interested in the short-time pertur-
bative expansion of SL (̃ρt ) to understand the initial growth of
the mixedness of the evolved state ρ̃t [see Eq. (2)]. The Taylor
expansion of the linear entropy up to second order in t around
t = 0 yields

SL (̃ρt ) ≈ SL(ρ0) − d
d − 1

(
t
T1

+ t2

T 2
2

)
+ O(t3), (3)

where we define

T −1
1 := 4 covρ0 (ρ0, H2) (4)

and

T −2
2 := −4 f (ρ0) varρ0 (H2) − 8 〈H2〉ρ0 covρ0 (ρ0, H2)

+ 8 covρ0 (H2, ρ0H2) − 2i covρ0 (ρ0, [H2, H1]), (5)

with 〈•〉ρ0 = Tr(ρ0 •) being the expectation value at time t =
0, while covA(B,C) = (1/2)Tr(A{B,C}) − Tr(AB)Tr(AC) de-
fines the covariance functional. In particular, for B = C,
note that the covariance reduces to the variance varA(B) ≡
covA(B, B) = Tr(AB2) − Tr(AB)2. We point out that Eqs. (4)
and (5) are related to the first-order and second-order deriva-
tives of the quantum purity f (̃ρt ) at the vicinity of t = 0, re-
spectively, with [ f (1) (̃ρt )]t=0 = 1/T1 and (1/2)[ f (2) (̃ρt )]t=0 =
1/T 2

2 , where the nth-order derivative of the quantum purity
becomes

f (n) (̃ρt ) =
n∑

k=0

n!
(n − k)! k!

Tr
(

dk ρ̃t

dt k

dn−k ρ̃t

dtn−k

)
. (6)

Equation (3) is the first main result of the paper. We
point out that Eq. (4), which in turn is related to the
first-order derivative [ f (1) (̃ρt )]t=0 of the purity, has been pre-
viously investigated in the context of gain-loss systems [1],
the quantum-classical description of non-Hermitian systems
[101], and the dynamical instability of pure states [107]. In
turn, Eq. (5) is related to the second-order time derivative
of the purity around t = 0 and also stands as a main re-
sult. The coefficients |1/T1| and |1/T2| provide timescales
for the linear entropy at earlier times of the dynamics, thus
predicting the initial growth of the mixedness of the evolved
state of the quantum system. Importantly, they can be evalu-
ated once the input state ρ0 and the Hamiltonian H = H1 +
iH2 of the system have been specified. Note that 1/T1 and
1/T2 depend on the fluctuations of the observable H2 that are
captured by its covariance respective to the input state. In
particular, choosing H2 a zero-valued operator, Eqs. (4) and
(5) vanish, and one gets that SL (̃ρt ) ≈ SL(ρ0). In fact, this is
expected since the linear entropy remains invariant for any
quantum state undergoing a unitary evolution generated by a
Hermitian operator.

In addition, for any initial pure state with ρ2
0 = ρ0 =

|ψ0〉〈ψ0|, and f (ρ0) = Tr(ρ2
0 ) = 1, one can verify that

Eqs. (4) and (5) imply that 1/T1 = 0 and 1/T 2
2 = 0, regardless

of the operators H1 and H2. In this setting, it can be proved that
the mixedness timescales vanish for any perturbative order
within the short-time approximation of the linear entropy.
Indeed, for the initial pure state ρ0 = |ψ0〉〈ψ0| undergoing the
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nonunitary dynamics dictated by the non-Hermitian Hamilto-
nian H = H1 + iH2, we have shown in Appendix A that the
purity of the state ρ̃t is given by f (̃ρt ) = 1, i.e., such state
remains pure for all t ! 0. Hence, one gets that the linear
entropy identically vanishes, i.e., SL (̃ρt ) = [d/(d − 1)][1 −
f (̃ρt )] = 0, which implies that any mixedness timescales be-
come zero. Interestingly, we have shown that the same result
is obtained within the so-called “metric approach.” Finally,
we note that the last term on the right-hand side of Eq. (5)
vanishes for [H1, H2] = 0, i.e., for two commuting operators
H1 and H2.

A. Example: Dissipative two-level system

To illustrate our findings, we consider a driven two-
level system described by the Hamiltonian H = &|1〉〈1| +
('/2)(|0〉〈1| + |1〉〈0|), where the two vectors |0〉 and |1〉
stand for ground and excited states, respectively, with & the
energy detuning, and ' being their coupling. The system
interacts with a zero-temperature thermal reservoir, so that
it decays from the excited state |1〉 to the ground state |0〉
emitting a photon at a rate γ . The dynamics is governed by
the Markovian master equation

dρt

dt
= −i(Heffρt − ρt H

†
eff ) + γ Lρt L†, (7)

where Heff = H − i(γ /2)L†L is the effective non-Hermitian
Hamiltonian, while L = |0〉〈1| is the jump operator [108].
In the semiclassical regime, i.e., assuming that the effect of
quantum jumps is negligible in the time interval under consid-
eration, an effective description of the master equation can be
obtained in terms of the coherent nonunitary dissipation of the
system, the latter related to the non-Hermitian Hamiltonian
Heff [36]. In this case, by discarding the quantum jump term
γ Lρt L†, the dynamics of the system is dictated by the equa-
tion dρt/dt ≈ −i(Heffρt − ρt H

†
eff ), which no longer describes

a completely positive and trace-preserving evolution.
To overcome this issue, one introduces the normalized

time-dependent density matrix ρ̃t = ρt/Tr(ρt ), which in turn
fulfills Eq. (2), with H1 = H and H2 = −(γ /2)|1〉〈1|. The
system is initialized in a single-qubit state ρ0 = (1/2)(I + )r ·
)σ ), where )r = {r sin θ cos φ, r sin θ sin φ, r cos θ} is the Bloch
vector, with r ∈ [0, 1], θ ∈ [0,π ] and φ ∈ [0, 2π [, while )σ =
{σx, σy, σz} is the vector of Pauli matrices, and I is the 2 × 2
identity matrix. We will not show the analytical expressions
for the exact linear entropy SL (̃ρt ) of the evolved state as
they are cumbersome [see Eq. (1)]. However, it is straight-
forward to obtain the short-time series expansion of SL (̃ρt )
applying Eq. (3), with the linear entropy of the input state
as SL(ρ0) = 1 − r2. Using Eqs. (4) and (5), we obtain the
following dimensionless coefficients:

1
γ T1

= 1
2

(1 − r2) r cos θ (8)

and

1
γ 2T 2

2
= 1

8
(1 − r2)

(
1 − 3r2cos2θ + 2

'

γ
r sin θ sin φ

)
, (9)

respectively. We see that 1/γ T1 is a function of r and θ ,
while 1/γ 2T 2

2 depends on the parameters r, θ , φ, and '/γ .

We notice that SL(ρ0), 1/T1, and 1/T2 approach zero for
any initial single-qubit pure state with r = 1, thus imply-
ing that the linear entropy SL (̃ρt ) is a vanishing quantity in
this case.

In Fig. 1 we show the plots of the dimensionless quantities
1/γ T1 and 1/γ 2T 2

2 , as a function of the mixing parameter r
and the azimuthal angle θ . In Fig. 1(a) we see that 1/γ T1 > 0
for θ ∈ [0,π/2) and 0 < r < 1, while 1/γ T1 < 0 for θ ∈
(π/2,π ] and 0 < r < 1. In addition, it follows that 1/γ T1 =
0 for any chosen initial state with θ = π/2 [see Eq. (8)]. Next,
Figs. 1(b)–1(d) show the plots of 1/γ 2T 2

2 in Eq. (9), where we
consider the cases '/γ = 0.1 [see Fig. 1(b)], '/γ = 1 [see
Fig. 1(c)], and '/γ = 10 [see Fig. 1(d)], also fixing the polar
angle φ = π/4. On the one hand, for input states with either
θ = 0 or θ = π , that are all incoherent states respective to the
computational basis {|0〉, |1〉}, Eq. (9) reduces to 1/γ 2T 2

2 =
(1/8)(1 − r2)(1 − 3r2), which is positive for 0 " r " 1/

√
3

[see Figs. 1(b)–1(d)]. On the other hand, for initial states
lying in the equatorial xy plane with θ = π/2, one gets that
1/γ 2T 2

2 = (1/8)(1 − r2)[1 + 2r('/γ ) sin φ], which is posi-
tive for 0 " φ " π and 0 " r " 1. We emphasize that the
timescales related to the growth of mixedness can be obtained
from the absolute values |1/γ T1| and |1/γ T2|.

Figure 2 shows the plots of the linear entropy SL (̃ρt ), as
a function of the dimensionless parameter γ t , for the afore-
mentioned driven two-level system. The blue solid line refer
to the exact linear entropy SL (̃ρt ) [see Eq. (1)], while the red
dashed line depicts the short-time expansion of this quantity in
Eq. (3). We set input states with {r, θ ,φ} = {1/4,π/4,π/4}
[see Figs. 2(a)–2(c)], and {r, θ ,φ} = {1/4, 3π/4,π/4} [see
Figs. 2(d)–2(f)]. In addition, for a fixed ratio &/γ = 0.5,
we consider the cases '/γ = 0.1 [see Figs. 2(a) and 2(d)],
'/γ = 1 [see Figs. 2(b) and 2(e)], and '/γ = 10 [see
Figs. 2(c) and 2(f)]. In each panel the black dotted line in-
dicates the linear entropy SL(ρ0) = [d/(d − 1)][1 − Tr(ρ2

0 )]
respective to the initial state. We note that the linear entropy
remains invariant under unitary evolutions generated by the
Hermitian Hamiltonian H , i.e., SL(e−itHρ0e+itH ) = SL(ρ0).
The cyan dash-dotted line displays the linear entropy SL(ρt ) =
[d/(d − 1)][1 − Tr(ρ2

t )], with ρt satisfying the Markovian
master equation in Eq. (7). The blue solid line indicates the
linear entropy SL (̃ρt ) = [d/(d − 1)][1 − Tr(̃ρ2

t )], where the
normalized state ρ̃t = ρt/Tr(ρt ) fulfills Eq. (2), with H1 = H
and H2 = −(γ /2)|1〉〈1|. The red dashed line represents the
linear entropy SL (̃ρt ) ≈ SL(ρ0) − [d/(d − 1)](t/T1 + t2/T 2

2 )
within the short-time approximation, with the timescales
1/T1 and 1/T 2

2 given in Eqs. (8) and (9), respectively. In
Appendix B we compare the timescales 1/T1, 1/T 2

2 and the
first-order and second-order time derivatives of the linear en-
tropy for (i) the state ρt satisfying Eq. (7) and (ii) and the
normalized state ρ̃t fulfilling Eq. (2) related to the effective
non-Hermitian Hamiltonian.

Overall, Fig. 2 shows that the short-time approximation
of SL (̃ρt ) correctly reproduces its growth at earlier times of
the dynamics. We find that, for 0.01 ! γ t ! 0.1, the rela-
tive error between the exact linear entropy [see Eq. (1)] and
its perturbative expansion [see Eqs. (3), (8), and (9)] is of
order 10−7 ! ε ! 10−4 for '/γ = 0.1 and '/γ = 1, while
it ranges as 10−6 ! ε ! 10−3 for '/γ = 10. However, for
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FIG. 1. Density plot of the dimensionless quantities 1/γ T1 [see Eq. (8)] and 1/γ 2T 2
2 [see Eq. (9)], as a function of the mixing parameter

r ∈ [0, 1] and the azimuthal angle θ ∈ [0,π ], respective to the perturbative expansion of the linear entropy for the driven dissipative two-level
system around [see Eq. (3)]. In panels (b)–(d) we set the polar angle φ = π/4 and consider the ratio '/γ = 0.1 (b), '/γ = 1 (c), and
'/γ = 0.1 (d).

γ t " 0.1, we have that the latter result is loose and fails to
capture the changes in the eigenvalues of the state ρ̃t driven
by the non-Hermitian Hamiltonian. We emphasize that one
should look to higher orders in its Taylor expansion to accu-
rately predict the mixedness degree of the evolved state for
later times.

IV. MIXEDNESS TIMESCALE FOR NON-HERMITIAN
BIPARTITE SYSTEMS

In this section, we provide a mixedness timescale for bi-
partite quantum systems whose dynamics can be effectively
described by a non-Hermitian Hamiltonian. In detail, using
the linear entropy as a useful measure of mixedness, we in-
vestigate its short-time expansion up to the second order in
t for certain time-dependent marginal states of the composite
system.

We consider a bipartite quantum system with a finite-
dimensional Hilbert space HA ⊗ HB split into the subsystems
HA and HB, with dA,B = dim HA,B. This composite system
is initialized in the quantum state ρAB

0 , which in turn can be
chosen either a pure or mixed state, entangled or uncorrelated
one, from which the mixed marginal states ρA,B

0 = TrB,A(ρAB
0 )

can be obtained. The state ρAB
0 undergoes a nonunitary

evolution generated by the time-independent non-Hermitian
Hamiltonian H = H1 + iH2, with H1 = (1/2)(H + H†) and
H2 = −(i/2)(H − H†) being noncommuting observables act-
ing over HA ⊗ HB. It is noteworthy that the operators H1 and
H2 play the role of the Hermitian and anti-Hermitian parts
of H , respectively. In this setting, it can be proved that the
effective dynamics of subsystem HA,B is governed by the

equation of motion [105–107]

d
dt

ρ̃A,B
t = −i TrB,A

([
H1, ρ̃

AB
t

])
+ TrB,A

({
H2, ρ̃

AB
t

})

− 2 TrAB
(
ρ̃AB

t H2
)
ρ̃A,B

t , (10)

where ρ̃A,B
t := TrB,A (̃ρAB

t ) stands for the time-dependent re-
duced density matrices, while ρ̃AB

t := ρAB
t /TrAB(ρAB

t ) is the
normalized state of the whole system.

Without loss of generality, hereafter we will address the
dynamics of the marginal state ρ̃A

t , and investigate the short-
time behavior of its linear entropy

SL
(
ρ̃A

t

)
= dA

(dA − 1)

[
1 − f

(
ρ̃A

t

)]
, (11)

where f (̃ρA
t ) = TrA[(̃ρA

t )2] is the purity of the aforementioned
reduced density matrix. In this case, by performing a Taylor
expansion of SL (̃ρA

t ) up to second order in t , around t = 0, one
gets

SL (̃ρA
t ) ≈ SL(ρA

0 ) − dA

(dA − 1)

(
1

T1,h
+ 1

T1,nh

)
t

− dA

(dA − 1)

(
1

T 2
2,h

+ 1
T 2

2,nh

)

t2 + O(t3), (12)

with T1,h and T1,nh being coefficients related to the first-order
derivative of the linear entropy around t = 0, and defined as

T −1
1,h := 2i 〈TrB

([
ρAB

0 , H1
])

〉A (13)

and

T −1
1,nh := 2

〈
TrB

({
ρAB

0 , H2
})〉

A − 4 f
(
ρA

0

)
〈H2〉AB, (14)
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FIG. 2. Plot of the linear entropy SL (̃ρt ), as a function of the dimensionless parameter γ t , for the driven two-level system described by
the Hamiltonian H = &|1〉〈1| + ('/2)(|0〉〈1| + |1〉〈0|). Here we choose the ratio &/γ = 0.5 and set '/γ = 0.1 (a, d), '/γ = 1 (b, e), and
'/γ = 10 (c, f). The system is initialized in the single-qubit state ρ0 = (1/2)(I + )r · )σ ), with {r, θ ,φ} = {1/4, π/4, π/4} (a–c) and {r, θ ,φ} =
{1/4, 3π/4,π/4} (d–f). The black dotted line indicates the linear entropy SL (ρ0) = [d/(d − 1)][1 − Tr(ρ2

0 )] respective to the initial state. The
cyan dash-dotted line depicts the linear entropy SL (ρt ) = [d/(d − 1)][1 − Tr(ρ2

t )], where ρt satisfies the Markovian master equation in Eq. (7).
The blue solid line indicates the linear entropy SL (̃ρt ) = [d/(d − 1)][1 − Tr(̃ρ2

t )], where the normalized state ρ̃t = ρt/Tr(ρt ) fulfills Eq. (2),
with H1 = H and H2 = −(γ /2)|1〉〈1|. The red dashed line represents the linear entropy SL (̃ρt ) ≈ SL (ρ0) − [d/(d − 1)](t/T1 + t2/T 2

2 ) within
the short-time approximation [see Eqs. (8) and (9)].

while T2,h and T2,nh arise from the second-order derivative of
the linear entropy at the vicinity of t = 0 as follows:

T −2
2,h := −

〈
TrB

([[
ρAB

0 , H1
]
, H1

])〉
A

− TrA
({

TrB
([

ρAB
0 , H1

])}2)
(15)

and

T −2
2,nh:=

〈
TrB

({{
ρAB

0 , H2
}
, H2

})〉
A + TrA

([
TrB

({
ρAB

0 , H2
})]2)

+ i
〈
TrB

({[
ρAB

0 , H1
]
, H2

})〉
A + i

〈
TrB

([{
ρAB

0 , H2
}
, H1

])〉
A

− 8 〈H2〉AB
(〈

TrB
({

ρAB
0 , H2

})〉
A + i

〈
TrB

([
ρAB

0 , H1
])〉

A

)

+ 2 f
(
ρA

0

)
{i 〈[H2, H1]〉AB − 2

[〈
H2

2

〉
AB − 3 〈H2〉2

AB

]}

− 2i TrA
(
TrB

([
H1, ρ

AB
0

])
TrB

({
ρAB

0 , H2
}))

. (16)

Here 〈•〉µ := Trµ(• ρµ
0 ) defines the expectation value at

time t = 0, with µ = {A, B, AB}. We note that Eqs. (13),
(14), (15), and (16) were obtained from the first-order and
second-order derivatives of the quantum purity f (̃ρA

t ) at the
vicinity of t = 0, with [ f (1) (̃ρA

t )]t=0 = 1/T1,h + 1/T1,nh and
(1/2)[ f (2) (̃ρA

t )]t=0 = 1/T 2
2,h + 1/T 2

2,nh.
We point out that Eq. (12) [see also Eqs. (13)–(16)] is

the second main result of the paper. Overall, we see that the
coefficients |1/T1,h + 1/T1,nh| and |1/T 2

2,h + 1/T 2
2,nh| represent

first-order and second-order timescales in the initial growth
of the mixedness dynamics signaled by linear entropy. On
the one hand, both the coefficients T1,h and T2,h depend on
the initial state of the bipartite system and the Hermitian part
H1 of the non-Hermitian Hamiltonian. On the other hand, the
coefficients 1/T1,nh and 1/T2,nh depend on the anti-Hermitian
part H2 of the effective non-Hermitian Hamiltonian. In par-
ticular, note that the result in Eqs. (14) and (16) approach
zero in the Hermitian limit H† = H = H1, i.e., when one sets
H2 as a zero-valued observable, regardless of the observable
H1. This means that 1/T1,nh and 1/T2,nh assign first-order
and second-order nontrivial corrections to the mixedness
timescales that are induced by the effective non-Hermitian
Hamiltonian.

To gain insights into understanding the results in Eqs. (12)–
(16), in the following, we investigate two cases of interest in
view of the nonunitary dynamics of non-Hermitian Hamil-
tonians. The first case describes bipartite quantum systems
with initial uncorrelated states. The second one addresses
a multiparticle system whose non-Hermitian Hamiltonian
corresponds to the transverse-field XY model with next-
nearest neighbor couplings and a perturbing term given by
an all-to-all Ising Hamiltonian with an imaginary exchange
coupling.
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A. Separable initial pure states

Here we specialize the result in Eq. (12) to the particular
case of uncorrelated initial pure state ρAB

0 = ρA
0 ⊗ ρB

0 , with
ρA

0 and ρB
0 normalized pure marginal states, i.e., Trµ[(ρµ

0 )2] =
Trµ(ρµ

0 ) = 1 for all µ = {A, B, AB}. We consider the non-
Hermitian Hamiltonian H = H1 + iH2 with H1 =

∑
n An ⊗

Bn and H2 =
∑

n Cn ⊗ Dn, where An,Cn ∈ HA and Bn, Dn ∈
HB represent noncommuting local observables. In this set-
ting, one can prove that both the coefficients 1/T1,h = 0 [see
Eq. (13)] and 1/T1,nh = 0 [see Eq. (14)] identically vanish,
and the linear entropy in Eq. (12) becomes

SL (̃ρA
t ) ≈ − dA

(dA − 1)

(
1

T 2
2,h

+ 1
T 2

2,nh

)

t2 + O(t3), (17)

with the following nonzero coefficients:

T −2
2,h = −2

∑

k,l

(〈AkAl〉A − 〈Ak〉A〈Al〉A)

× (〈BkBl〉B − 〈Bk〉B〈Bl〉B) (18)

and

T −2
2,nh = −2

∑

k,l

(〈CkCl〉A − 〈Ck〉A〈Cl〉A)

× (〈DkDl〉B − 〈Dk〉B〈Dl〉B)

+ 4
∑

k,l

Im[(〈AkCl〉A − 〈Ak〉A〈Cl〉A)

× (〈BkDl〉B − 〈Bk〉B〈Dl〉B)]. (19)

Overall, Eq. (17) implies that the linear entropy varies
quadratically at earlier times of the dynamics. We see that
1/T2,h is proportional to the so-called correlated quantum
uncertainty of observables An ∈ HA and Bn ∈ HB, thus being
entirely determined by the expectation values of these op-
erators with respect to the initial marginal states ρA,B

0 . It is
noteworthy that |1/T2,h| assigns a universal timescale for two
initially pure subsystems to become entangled by means of
the coupling with a Hermitian Hamiltonian H1 [57,58,62].

In turn, the coefficient 1/T2,nh depends on the correlated
quantum uncertainty of observables Cn ∈ HA and Dn ∈ HB,
and the imaginary part of cross-correlations of the set of local
observables. In particular, one verifies that 1/T2,nh vanishes
in the Hermitian limit H = H† = H1, i.e., when choosing
zero valued observables Cn and Dn. In this case, one finds
that Eq. (18) recovers the so-called idempotency defect for
composite systems described by Hermitian Hamiltonians [62]
and constitutes a timescale for the entanglement dynamics
of subsystems [57,58]. In this setting, we see that 1/T2,nh
represents a true signature of the non-Hermitian features of
H in the mixedness dynamics. Note that, in addition to the
coefficient 1/T2,h, the effective non-Hermitian Hamiltonian
induces the factor 1/T2,nh on the entanglement timescale for
initially separable pure states.

B. 1D quantum many-body systems

We set the non-Hermitian Hamiltonian H = H1 + iH2,
where H1 describes the transverse-field XY model with open

boundary conditions as [109–113]

H1 = −J
N−1∑

j=1

(
γ+σ x

j σ
x
j+1 + γ−σ

y
j σ

y
j+1

)
− h

N∑

j=1

σ z
j , (20)

where J is the coupling constant, h represents the external
magnetic field along the z axis, and γ± = (1 ± γ )/2, with γ
being the anisotropy parameter. For γ = 0 this Hamiltonian
reduces to the isotropic XX model, while for γ = ±1 we
recover the Ising model. Furthermore, this model exhibits
phase transitions at the isotropic line γ = 0 (|h| " 1), and
at the critical magnetic field |h| = 1. In turn, H2 denotes the
many-body fully connected quantum Ising model given by

H2 = Jz

N

∑

j<l

σ z
j σ

z
l , (21)

where Jz is the coupling strength, N is the number of spins,
and {σ x,y,z

s }s=1,...,N are the Pauli matrices.
We consider a bipartition into first sequential k sites

(1, . . . , k) as the subsystem A, and its complement of sequen-
tial N − k sites (k + 1, . . . , N) as subsystem B. The system
A + B is initialized in the mixed state

ρAB
0 =

(
1 − p

d

)
I + p |GHZN 〉〈GHZN |, (22)

with d = 2N , 0 " p " 1, and |GHZN 〉 is the GHZ state of N
particles defined as

|GHZN 〉 = 1√
2

( |0〉⊗N + |1〉⊗N ), (23)

and its purity is written as f (ρAB
0 ) = (1/2N )[1 + (2N − 1) p2].

Furthermore, one can evaluate the averaged values 〈H2〉AB =
(Jz/2)(N − 1)p and 〈H2

2 〉AB = J2
z [(N − 1)/(4N )][2 + (N −

2)(N + 1)p] of the observable H2 respective to the probe
state of system A + B. The many-body state ρAB

0 undergoes a
nonunitary evolution generated by the non-Hermitian Hamil-
tonian H = H1 + iH2, and the subsystem A is described by the
reduced k-particle state ρ̃A

t = TrN−k (̃ρAB
t ) whose dynamics

is governed by Eq. (10). The linear entropy SL (̃ρA
t ) of this

marginal state is given in Eq. (11), which in turn reduces
to SL(ρA

0 ) = [dA/(dA − 1)]{1 − (1/2k )[1 + (2k−1 − 1) p2]} at
time t = 0. The short-time expansion of SL (̃ρA

t ) is given in
Eq. (12). In this setting, it is possible to verify that the co-
efficient 1/T1,h = 0 vanishes [see Eq. (13)], while Eq. (14)
implies the following nonzero contribution:

T −1
1,nh

= −Jz p(1 − p)
2k−1N

[k(k − 1) + N (N − 1)(2k−1 − 1)p].

(24)

It is noteworthy that Eq. (24) shows that 1/T1,nh exhibits a
polynomial dependence on the mixing parameter p, thus being
a negative quantity for all 0 < p < 1, and k ∈ {1, . . . , N}. In
particular, it follows that 1/T1,nh = 0 for the initial pure state
|GHZN 〉〈GHZN | (p = 1) and also for the maximally mixed
state I/d (p = 0). We find that 1/T1,nh is proportional to the
coupling strength Jz, and identically vanishes in the Hermitian
limit (Jz/J = 0).
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FIG. 3. Plot of the linear entropy SL (̃ρA
t ) for the k-particle reduced density matrix ρ̃A

t , as a function of the dimensionless parameter Jt .
The nonunitary evolution of subsystem A is governed by Eq. (10), with H1 being the transverse field XY Hamiltonian in Eq. (20), and H2

as the all-to-all Ising model in Eq. (21). The system A + B is initialized in the GHZ mixed state ρAB
0 = ((1 − p)/d )I + p |GHZN 〉〈GHZN |,

where |GHZN 〉 = (1/
√

2)( |0〉⊗N + |1〉⊗N ). Here we set N = 8, γ = 0.75, Jz/J = 0.5, and the mixing parameter p = 0.5. The blue solid line
corresponds to the exact expression of linear entropy in Eq. (11), and the red dashed line indicates its the short-time perturbative expansion in
Eq. (12) [see also Eqs. (24), (25), and (26)].

Next, by using Eq. (15), we obtain

T −2
2,h =

(
δdB,2 − 1

)
γ 2J2 p2, (25)

which depends on the coupling J , anisotropy parameter γ , and
vanishes whenever HB is a two-dimensional subspace, i.e.,
one gets 1/T2,h = 0 for the case dB = 2. Finally, by applying
Eq. (16) and performing lengthy calculations, one obtains the
result

T −2
2,nh = −

J2
z

2k−1 N2
(3N2(N − 1)2(1 − 2k−1) p4

+ N (N − 1){(2k−1−1)[5N (N − 1) − 2] − 4k(k − 1)} p3

+ {k[k2(k − 6) + k + 4] + 2Nk(k − 1)(3N − 1)

− 2N (2k−1 − 1)(N3 − 2N2 + 1)} p2 − 2k(k − 1)

− k(k − 1){k(k − 5) + 2[(N − 1)(N + 2) − 1]} p).
(26)

We find that 1/T 2
2,nh behaves polynomially with the mixing

parameter p. In particular, it follows that 1/T 2
2,nh = 0 for p =

1, while for p = 0 one obtains that 1/T 2
2,nh = 22−kJ2

z k(k −
1)/N2. Hence, for N , k, the latter case implies 1/T 2

2,nh ∼
J2

z /N2 for the initial maximally mixed state (p = 0), i.e., it
scales with the inverse square of the number of particles.

In the following, we will numerically address the short-
time dynamics of the linear entropy SL (̃ρA

t ) in Eq. (12). The
system A + B is initialized at the GHZ mixed state in Eq. (22),

with H1 being the transverse field XY Hamiltonian in Eq. (20),
and H2 standing for the all-to-all Ising model in Eq. (21). In
this case, bearing in mind that 1/T1,h = 0, we also apply the
results in Eqs. (24), (25), and (26). Unless otherwise stated, we
set the system size N = 8, the anisotropy parameter γ = 0.75,
and the ratio Jz/J = 0.5.

In Fig. 3 we plot of the linear entropy SL (̃ρA
t ), as a func-

tion of the dimensionless parameter Jt , and set the mixing
parameter p = 0.5. The solid blue line refers to the exact
linear entropy SL (̃ρA

t ) [see Eq. (11)], while the red dashed line
depicts the short-time expansion of this quantity in Eq. (12).
We consider the subsystem A with the number of sites k ∈
{2, . . . , 7}, and respective dimensions dA = {2k}k=2,...,7. Fig-
ures 3(a)–3(f) show that the short-time expansion of SL (̃ρA

t )
reproduces its growth at early times. In each panel, we
find that the relative error between the exact linear entropy
[see Eq. (11)] and its respective perturbative expansion [see
Eqs. (12), (24), (25), and (26)] is of order 10−6 ! ε ! 10−3

for 0.01 ! Jt ! 0.1. Nevertheless, for Jt " 0.1, we have that
the result in Eq. (12) becomes loose and it is bounded from
above by the exact linear entropy in Eq. (11), thus failing to
predict the dynamics of SL (̃ρA

t ) at later times.
Next, Fig. 4 shows the short-time dynamics of the linear

entropy SL (̃ρA
t ) in Eq. (12), for the initial state ρAB

0 with
p = 0.5 [see Eq. (22)]. The blue solid line corresponds to
the case Jz/J = 0.5 (non-Hermitian Hamiltonian), while the
red dashed line depicts the case Jz/J = 0 (Hermitian Hamil-
tonian). Overall, Figs. 4(a)–4(e) show that the linear entropy is
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FIG. 4. Plot of the linear entropy SL (̃ρA
t ) in the short-time approximation [see Eq. (12)] for the k-particle reduced density matrix ρ̃A

t , as a
function of the dimensionless parameter Jt . The nonunitary evolution of subsystem A is governed by Eq. (10), with H1 being the transverse
field XY Hamiltonian in Eq. (20) and H2 as the all-to-all Ising model in Eq. (21). The system A + B is initialized in the GHZ mixed state
ρAB

0 = ((1 − p)/d )I + p |GHZN 〉〈GHZN |, where |GHZN 〉 = (1/
√

2)( |0〉⊗N + |1〉⊗N ). Here we set N = 8, γ = 0.75, and the mixing parameter
p = 0.5. The blue solid line corresponds to the case Jz/J = 0.5, and the red dashed line depicts the case Jz/J = 0.

a concave function for Jz/J .= 0, while it is a convex function
for Jz/J = 0. In turn, Fig. 4(f) shows that SL (̃ρA

t ) stands as a
concave function for Jz/J .= 0, while for Jz/J = 0 it saturates
to a fixed value for all Jt > 0. To see this, we first note that
1/T1,nh = 0 and 1/T2,nh = 0 for J = 0 [see Eqs. (24) and (26),
respectively], while one readily obtains that 1/T2,h = 0 as the
subsystem B has dimension dB = 2 [see Eq. (25)]. Hence,
bearing in mind that 1/T1,h = 0, it follows that the linear en-
tropy SL (̃ρA

t ) ≈ SL(ρA
0 ) is time-independent in the short-time

approximation, for Jz/J = 0.
In Fig. 5 we display the short-time dynamics of the linear

entropy SL (̃ρA
t ) in Eq. (12), as a function of Jt , and consider

the subsystem A with k = 5 sites. We emphasize that each of
the blue solid line corresponds to the case Jz/J = 0.5 (non-
Hermitian Hamiltonian), and the red ones represent the case
Jz/J = 0 (Hermitian Hamiltonian). We set the mixing param-
eters p = 0.25 [see Fig. 5(a)], p = 0.5 [see Fig. 5(b)], p =
0.75 [see Fig. 5(c)], and p = 1 [see Fig. 5(d)]. In Figs. 5(a)
and 5(b) one finds that the linear entropy is concave when-
ever Jz/J .= 0, while it turns into a convex function in the
Hermitian limit with Jz/J = 0. In Fig. 5(c) the linear entropy
turn to be a convex function, which is due to the fact that
1/T2,h + 1/T2,nh < 0 for p = 0.75. Figure 5(d) shows that,
for p = 1, the two linear entropies coincide regardless of
the generator H . Indeed, we have seen from Eqs. (24) and
(26) that 1/T1,nh = 0 and 1/T2,nh = 0 for initial pure states,
respectively. In this case, given that 1/T1,h = 0 and dB = 8,

the onset growth of the linear entropy satisfies SL (̃ρA
t ) ≈

(16/31)(1 + 2γ 2J2t2) + O(t3) [see Eqs. (12) and (25)].
As a final remark, Figs. 4 and 5 show that the non-

Hermitian Hamiltonian (Jz/J .= 0) enhances the short-time
dynamics of SL (̃ρA

t ), which bounds from above the respective
linear entropy for the Hermitian Hamiltonian (Jz/J = 0). Last,
Figs. 4 and 5 show a crossover behavior between both the non-
Hermitian (Jz/J .= 0) and Hermitian (Jz/J = 0) cases, but it
should be noted that it occurs in a time window that extrap-
olates the validity of the short-time approximation. Indeed,
Fig. 3 shows that our results find good agreement with the
numerical simulation of SL (̃ρA

t ) in Eq. (11) for 0 " Jt ! 0.1.

V. DISCUSSION AND CONCLUSIONS

In this paper we discuss the timescales related to the on-
set growth of linear entropy for finite-dimensional quantum
systems described by effective non-Hermitian Hamiltonians.
We investigate the short-time perturbative expansion of the
linear entropy for a given input state driven by a general
non-Hermitian Hamiltonian. We emphasize that our approach
takes in account initial quantum states that can be either
pure or mixed, possibly entangled or even uncorrelated states.
Importantly, for bipartite quantum systems initialized in pure
and uncorrelated states, our findings recover the results in
Refs. [57,62] to the case of nonunitary reduced dynamics
driven by Hermitian Hamiltonians.
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FIG. 5. Plot of the linear entropy SL (̃ρA
t ) [see Eq. (11)] in the

short-time approximation [see Eq. (12)], for the k-particle reduced
density matrix ρ̃A

t , as a function of the dimensionless parame-
ter Jt . The nonunitary evolution of subsystem A is governed by
Eq. (10), with H1 being the transverse field XY Hamiltonian in
Eq. (20), and H2 as the all-to-all Ising model in Eq. (21). The system
A + B is initialized in the GHZ mixed state ρAB

0 = [(1 − p)/d]I +
p |GHZN 〉〈GHZN |, where |GHZN 〉 = (1/

√
2)( |0〉⊗N + |1〉⊗N ). Here

we consider the system size N = 8, with k = 5, and γ = 0.75. The
blue solid line corresponds to the case Jz/J = 0.5, and the red dashed
line depicts the case Jz/J = 0.

We address the degree of mixedness of a quantum state that
undergoes the nonunitary dynamics generated by an effective
non-Hermitian Hamiltonian H = H1 + iH2 [see Sec. III]. In
this setting, Eq. (3) stands for the short-time expansion of the
linear entropy up to second order in time t , around t = 0,
which in turn depends on the coefficients 1/T1 and 1/T2 in
Eqs. (4) and (5), respectively. Both quantities can be evalu-
ated once the input state and the Hamiltonian H have been
specified. We emphasize that Eqs. (4) and (5) provide two
competing timescales in the initial growth of the mixedness of
the evolved state at earlier times of the dynamics. In particular,
both coefficients vanish whenever the system is initialized
in a pure state, regardless of the non-Hermitian part of the
Hamiltonian. Moreover, in the Hermitian limit, we have that
1/T1 = 0 and 1/T2 = 0 independently of the initial state of
the system. We note that, since the linear entropy defines a
conserved quantity for Hermitian quantum systems, it can be
proved that any of the coefficients in its perturbative expansion
must vanish in this limiting case [see Eq. (3)].

We specialize these results to the case of a dissipative non-
Hermitian two-level system initialized in a mixed single-qubit
state (see Sec. III A). We find analytical expressions for the

coefficients 1/T1 [see Eq. (8)] and 1/T2 [see Eq. (9)] in terms
of the Bloch sphere parameters. In this case, we compare the
exact linear entropy SL(ρt ) with its aforementioned short-time
expansion around t = 0. We find good quantitative agreement
between these two quantities at earlier times of the dynamics.
Of course, for later times one should include higher orders in
the Taylor expansion to obtain tighter results for the mixed-
ness of the evolved state.

Next, we investigate the reduced dynamics of compos-
ite systems described by non-Hermitian Hamiltonians [see
Sec. IV]. We derived the short-time perturbative expansion of
the linear entropy SL (̃ρA

t ) for a given time-dependent marginal
state of a bipartite system [see Eq. (12)]. We found that, up to
the second order in time t , the growth of the linear entropy
is governed by the coefficients 1/T1,h and 1/T1,nh in Eqs. (13)
and (14), respectively, and also 1/T2,h and 1/T2,nh in Eqs. (15)
and (16), respectively. On the one hand, one gets that 1/T1,h

and 1/T2,h depend on H1 and the input state of the system.
On the other hand, we have that 1/T1,nh and 1/T2,nh depend
on H2, thus being intrinsically related to the non-Hermitian
features of the Hamiltonian. In the Hermitian limit, i.e., when
one sets H2 being a zero-valued operator, we find 1/T1,nh = 0
and 1/T2,nh = 0 for any bipartite system.

In particular, specifying an initial pure and uncorrelated
state, we find the vanishing coefficients 1/T1,h = 0 and
1/T1,nh = 0, and the lowest order of the short-time pertur-
bative expansion of the linear entropy SL (̃ρA

t ) depends on
1/T 2

2,h and 1/T 2
2,nh that are given in Eqs. (18) and (19), re-

spectively [see Sec. IV A]. In the Hermitian limit, 1/T 2
2,nh

identically vanishes, and 1/T 2
2,h recovers the perturbative ex-

pansion of the idempotency defect measuring the coherence
losses for composite systems described by Hermitian Hamil-
tonians [62]. In this setting, we see that |1/T2,h| signals the
entanglement timescale for quantum systems described by
Hermitian Hamiltonians [57]. It is noteworthy that this result
is also related to the timescale that governs the growth of
entanglement for Rényi entropies [58].

To illustrate these findings, we investigated the linear en-
tropy of the k-particle evolved marginal state for a quantum
many-body system described by the transverse-field XY model
coupled to the imaginary fully connected Ising Hamiltonian
[see Sec. IV B]. We found analytical expressions for 1/T1,nh

and 1/T 2
2,nh, which in turn scale linearly with the coupling

strength of the all-to-all Ising Hamiltonian [see Eqs. (24) and
(26), respectively]. In addition, it follows that 1/T1,h vanishes,
while 1/T 2

2,h depends on the anisotropy parameter of the XY
model [see Eq. (25)]. We compared the short-time expansion
of the linear entropy with its exact numerical simulation (see
Fig. 3) and discussed its dynamical behavior in both cases
of non-Hermitian and Hermitian Hamiltonians (see Figs. 4
and 5). We find that non-Hermiticity enhances the short-time
dynamics of the linear entropy, providing an upper bound for
the respective linear entropy for Hermitian Hamiltonian.

Our findings provide insightful qualitative and quantita-
tive information about the initial growth of linear entropy
at early times. Importantly, the results require low computa-
tional cost and their evaluation involves minimal ingredients
as the initial state and the non-Hermitian Hamiltonian that
governs the nonunitary dynamics. This might be of interest
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for higher dimensional systems, where evaluating the lin-
ear entropy would require the full spectral decomposition
of the evolved system. We point out that one could gener-
alize the present discussion in terms of α-Rényi entropies
[58]. Furthermore, one can investigate the interplay of the
aforementioned timescales and the quantum speed limit for
nonunitary evolutions generated by non-Hermitian Hamilto-
nians [114,115]. We hope to address these questions in further
investigations. The results in this paper could find applications
in the subjects of non-Hermitian quantum sensing [116,117],
quantum thermodynamics of non-Hermitian systems [118],
non-Hermitian long-range interacting quantum systems [119],
and PT -symmetric quantum field theory [120].
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APPENDIX A: MIXEDNESS FOR THE NONUNITARY
DYNAMICS OF INITIAL PURE STATES

In this Appendix we discuss the mixedness timescales
for a given initial pure state whose dynamics is governed
by an effective non-Hermitian Hamiltonian. Let us consider
a finite-dimensional quantum system initialized in the pure
state ρ0 = |ψ0〉〈ψ0|, with 〈ψ0|ψ0〉 = 1. In turn, the initial pure
state undergoes the nonunitary dynamics generated by a time-
independent non-Hermitian Hamiltonian H = H1 + iH2, with
H†

1 = H1 and H†
2 = H2 being Hermitian operators. In this case

the time-dependent normalized density matrix of the system
read as

ρ̃t = Utρ0U
†
t

Tr(Utρ0U
†
t )

= Ut |ψ0〉〈ψ0|U †
t

〈ψ0|U †
t Ut |ψ0〉

, (A1)

with Ut = e−itH being the nonunitary evolution operator. It
can be proved that the normalized state ρ̃t in Eq. (A1) fulfills
the differential equation d ρ̃t/dt = −i[H1, ρ̃t ] + {H2, ρ̃t } −
2Tr(̃ρt H2) ρ̃t , which in turn describes a completely positive
and trace-preserving evolution. In this case the purity f (̃ρt ) =
Tr(̃ρ2

t ) of the evolved state thus yields

f (̃ρt ) = Tr(Ut |ψ0〉〈ψ0|U †
t Ut |ψ0〉〈ψ0|U †

t )

〈ψ0|U †
t Ut |ψ0〉2

= 1, (A2)

where we have used the cyclic property of the trace. Equa-
tion (A2) shows that, for an initial pure state ρ0 = |ψ0〉〈ψ0|,
the purity of the evolved normalized state ρ̃t will remain
constant, i.e., such state remains pure for all t ! 0. The linear
entropy identically vanishes, i.e., SL (̃ρt ) = [d/(d − 1)][1 −
f (̃ρt )] = 0. Hence, for all nonzero positive integer k ∈ Z+,
the kth-order time derivative of both the purity and lin-
ear entropy will vanish, i.e., one gets dk f (̃ρt )/dtk = 0 and

dkSL (̃ρt )/dtk = 0. This result proves that, given an initial
pure state undergoing the nonunitary dynamics generated by a
non-Hermitian Hamiltonian, the mixedness timescales vanish
for any perturbative order within the short-time approximation
of the linear entropy. See also Refs. [1,46,101,106,107].

Next, we show that the same result can obtained when con-
sidering the so-called “metric approach” for non-Hermitian
systems, whose main idea relies on modifying the inner-
product structure of the Hilbert space [102,104]. Indeed, the
Hilbert space is endowed with an inner product related to
the time-dependent operator Gt called “metric” [121]. Let
H .= H† be the effective time-independent non-Hermitian
Hamiltonian governing the nonunitary dynamics of a finite-
dimensional quantum system. In this setting, given the initial
pure state ρ0 = |ψ0〉〈ψ0|, one gets that the evolved state
|ψt 〉 = Ut |ψ0〉 = e−itH |ψ0〉 is not properly normalized, i.e.,
its squared norm 〈ψt |ψt 〉 = 〈ψ0|UtU

†
t |ψ0〉 stands as a time-

dependent quantity (U †
t .= U −1

t ). To overcome this issue,
one introduces the modified dual vector (ψt | := 〈ψt |Gt that
is obtained replacing the conventional Hermitian conjugate,
where Gt is a time-dependent, Hermitian, and positive defi-
nite operator called metric [121]. In this approach, the inner
product (ψt |ψt 〉 is required to be time-independent, i.e.,
its time derivative is expected to vanish as d (ψt |ψt 〉/dt =
d〈ψt |Gt |ψt 〉/dt = 0, for all t ! 0. In turn, this constraint
implies that the metric operator Gt fulfills the differential
equation

dGt

dt
= i(Gt H − H†Gt ). (A3)

We point out that, even though |ψt 〉 exhibits a time-
independent squared norm, the vector |ψt 〉 is no longer
normalized to the unity. This motivates to recast the evolved
dual state as (ψt |ψt 〉−1(ψt |, and thus the time-dependent den-
sity matrix of the system yields

ρt = |ψt 〉(ψt |
(ψt |ψt 〉

= |ψt 〉〈ψt |Gt

〈ψt |Gt |ψt 〉
. (A4)

In this setting, it can be seen that the purity f (ρt ) = Tr(ρ2
t ) of

the evolved state will remain constant and equal to the unity
for all t ! 0,

f (ρt ) = Tr(|ψt 〉〈ψt |Gt |ψt 〉〈ψt |Gt )
〈ψt |Gt |ψt 〉2

= 1, (A5)

where we have applied the cyclic property of the trace. Equa-
tion (A5) implies that, for any initial pure state, the linear
entropy of the evolved state becomes zero, i.e., SL(ρt ) =
[d/(d − 1)][1 − f (ρt )] = 0, for all t ! 0. Therefore, given an
initial pure state, Eqs. (A2) and (A5) show that the purity of
its evolved state must be the same regardless of the theoretical
framework that was applied to address the nonunitary dynam-
ics generated by a non-Hermitian Hamiltonian.

APPENDIX B: TIMESCALES FOR THE
DISSIPATIVE TWO-LEVEL SYSTEM

In this Appendix we compare the timescales 1/(γ T1) [see
Eq. (8)] and 1/(γ 2T 2

2 ) [see Eq. (9)] with both the first-
order −[dSL(•)/dt]t=0 and second-order −[d2SL(•)/dt2]t=0
time derivatives around t = 0 of the linear entropy, for the
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FIG. 6. Plot of the first-order time derivative −[dSL (•)/dt]t=0

around t = 0 of the linear entropy, and the timescale 1/γ T1, as a
function of the Bloch sphere radius r, for the driven two-level sys-
tem described by the Hamiltonian H = &|1〉〈1| + ('/2)(|0〉〈1| +
|1〉〈0|). Here we choose the ratio &/γ = 0.5, and '/γ = 0.1.
The system is initialized in the single-qubit state ρ0 = (1/2)(I +
)r · )σ ), with {θ ,φ} = {3π/4,π/4}. The black dotted line indicates
−[dSL (ρ0)/dt]t=0, with SL (e−itHρ0e+itH ) = SL (ρ0). The cyan dash-
dotted line depicts the quantity −[dSL (ρt )/dt]t=0, with the state ρt

evolving under the Markovian master equation in Eq. (7). The blue
solid line indicates the first-order time derivative −[dSL (̃ρt )/dt]t=0,
with the normalized state ρ̃t = ρt/Tr(ρt ) satisfying Eq. (2), where
H1 = H and H2 = −(γ /2)|1〉〈1|. The red dashed line displays the
timescale 1/(γ T1) [see Eq. (8)].

dissipative two-level system discussed in Sec. III A. We re-
mind that the system is described by the Hamiltonian H =
&|1〉〈1| + ('/2)(|0〉〈1| + |1〉〈0|), and one sets the probe
single-qubit state ρ0 = (1/2)(I + )r · )σ ). Hereafter, we choose
&/γ = 0.5, and also set {θ ,φ} = {3π/4,π/4}. The over-
all dynamics of the dissipative systems is governed by the
Markovian master equation in Eq. (7). It is noteworthy that
by neglecting the effect of quantum jumps, the nonunitary
dynamics of the system is recast in terms of the effective
non-Hermitian Hamiltonian Heff = H1 + iH2, with H1 = H
and H2 = −(γ /2)|1〉〈1|.

In Fig. 6 we show plots of −[dSL(•)/dt]t=0 and 1/(γ T1),
as a function of the Bloch sphere radius r. We set '/γ = 0.1,
but we find that the plots are not sensitive to changes in the
ratio '/γ [see also Fig. 1(a)]. The black dotted line indi-
cates the first-order time derivative −[dSL(ρ0)/dt]t=0. Note
that this quantity is equal to zero, since the linear entropy
SL(e−itHρ0e+itH ) = SL(ρ0) is time-independent for a unitary
evolution generated by the Hermitian Hamiltonian H . The
cyan dash-dotted line displays the first-order time derivative
−[dSL(ρt )/dt]t=0, where ρt satisfies the Markovian master
equation in Eq. (7). The blue solid line depicts the quantity
−[dSL (̃ρt )/dt]t=0, where ρ̃t satisfies Eq. (2). The dashed red
line displays the timescale 1/(γ T1) in Eq. (8). The quantities
−[dSL (̃ρt )/dt]t=0 and 1/(γ T1) coincide each other.

In Fig. 7 we show plots of −(1/2)[d2SL(•)/dt2]t=0 and
1/(γ 2T 2

2 ), as a function of the Bloch sphere radius r. We
set '/γ = 0.1 [see Fig. 7(a)], '/γ = 1 [see Fig. 7(b)],
and '/γ = 10 [see Fig. 7(c)]. The black dotted line indi-
cates the quantity −[d2SL(ρ0)/dt2]t=0, which in turn vanishes
for the probe state undergoing the unitary evolution gener-
ated by H . The cyan dash-dotted line shows the quantity
−(1/2)[d2SL(ρt )/dt2]t=0, with ρt satisfying Eq. (7). The
blue solid line displays the second-order time derivative
−(1/2)[d2SL (̃ρt )/dt2]t=0, where ρ̃t fulfills Eq. (2). The
dashed red line represents the timescale 1/(γ 2T 2

2 ). Note that
the quantities −[d2SL (̃ρt )/dt2]t=0 and 1/(γ 2T 2

2 ) agree with
each other.

In the following, we comment on the differences in the
plots of Figs. 6 and 7. On the one hand, the quantities
−[dSL(ρt )/dt]t=0 and −(1/2)[d2SL(ρt )/dt2]t=0 are related to
the linear entropy of state ρt whose dynamics is governed
by Eq. (7). On the other hand, note that −[dSL (̃ρt )/dt]t=0
and −(1/2)[d2SL (̃ρt )/dt2]t=0 depend on the linear entropy of
the normalized state ρ̃t that undergoes the nonunitary effec-
tive dynamics generated by the non-Hermitian Hamiltonian
Heff = H1 + iH2, discarding quantum jumps [see Eq. (2)].
As expected, these last two time derivatives agree with the
timescales 1/(γ T1) and 1/(γ 2T 2

2 ), respectively.

FIG. 7. Plot of the second-order time derivative −(1/2)[d2SL (•)/dt2]t=0 around t = 0 of the linear entropy, and the timescale 1/γ 2T 2
2 , as a

function of the radius r of the Bloch sphere, for the driven two-level system described by the Hamiltonian H = &|1〉〈1| + ('/2)(|0〉〈1| +
|1〉〈0|). The system is initialized in the single-qubit state ρ0 = (1/2)(I + )r · )σ ), with {θ ,φ} = {3π/4,π/4}. We set '/γ = 0.1 (a),
'/γ = 1 (b), and '/γ = 10 (c). The black dotted line shows the second-order time derivative −(1/2)[d2SL (ρ0)/dt2]t=0. The cyan dash-
dotted line depicts the quantity −(1/2)[d2SL (ρt )/dt2]t=0, where the state ρt fulfills Eq. (7). The blue solid line indicates the quantity
−(1/2)[d2SL (̃ρt )/dt2]t=0, with the normalized state ρ̃t = ρt/Tr(ρt ) satisfying Eq. (2), where H1 = H and H2 = −(γ /2)|1〉〈1|. The red dashed
line displays the timescale 1/(γ 2T 2

2 ) [see Eq. (9)].
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