PHYSICAL REVIEW A 106, 053717 (2022)

Superradiance and subradiance in inverted atomic arrays

Oriol Rubies-Bigorda

1,2,%

and Susanne F. Yelin?

' Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
’Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

® (Received 26 August 2022; accepted 31 October 2022; published 28 November 2022)

Superradiance and subradiance are collective effects that emerge from coherent interactions between quantum
emitters. Due to their many-body nature, theoretical studies of extended samples with length larger than the
atomic transition wavelength are usually restricted to their early-time behavior or to the few-excitation limit.

We use herein a mean-field approach to reduce the complex many-body system to an effective two-atom master
equation that includes all correlations up to second order and that can be numerically propagated in time. We
find that three-dimensional and two-dimensional inverted atomic arrays sustain superradiance below a critical
lattice spacing and quantify the scaling of the superradiant peak for both dimensionalities. Finally, we study

the late-time dynamics of the system and demonstrate that a subradiant phase appears before the system finally

relaxes.
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I. INTRODUCTION

The decay and interaction of dilute ensembles of two-level
atoms with the radiation field is commonly described by the
semiclassical Maxwell-Bloch equations, which assume the
atoms to emit independently and result in an exponential
decay of the atomic excitation. While this approximation is
accurate when emitters are separated by large distances, it
breaks down for dense media. As first noted by Dicke, the
photon emitted by one atom can coherently interact with
close-by atoms and therefore stimulate emission of additional
photons [1-3]. As a result, the atomic dipoles lock in phase,
build up coherences, and collectively emit at a higher rate,
giving rise to the superradiant burst in Fig. 1. This phe-
nomenon has been experimentally observed in a wide variety
of systems, ranging from thermal gases [4—6] to Bose-Einstein
condensates [7,8] and Rydberg atoms [9—-11].

In the simplest model, one assumes all atoms to lie in the
same spatial position such that they cannot be distinguished.
Then the N-atom system can only be in one of the N + 1 sym-
metric states and the maximum intensity of the emitted light
pulse for an initially inverted sample scales with N2 [1,3],
as opposed to the linear scaling characteristic of independent
emitters. In extended samples larger than one atomic transi-
tion wavelength, dipole-dipole interactions between different
atoms become relevant and the aforementioned symmetry is
broken. As a result, the whole Hilbert space with dimension
2V needs to be considered and most theoretical studies of
superradiance and subradiance are consequently restricted to
the emission of few photons [12-17] or to systems with a
small number of atoms [18-20] such that numerical Monte
Carlo-type methods can be applied.
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The recent experimental advances in optical lat-
tices [21-23] and atomic tweezers [24-26], which allow
one to produce atomic lattices (as well as more complex
configurations) with interparticle spacing of the order of an
atomic transition wavelength, have revived the interest in
superradiant and subradiant physics. While these systems
have been extensively studied in the case where only one
excitation is present in the lattice [27-34], the behavior of
inverted lattices is poorly understood. Recent theoretical
studies have shown that the appearance of the superradiant
burst in inverted samples is determined by the statistics
of the first two photons [35,36] or alternatively by the
Taylor series expansion of the photon emission rate at time
t = 0 [37]. While these methods allow one to determine the
superradiant phase diagram and the initial slope of the emitted
radiation, they provide no information about the scaling of
the superradiant peak or the nature of the subsequent time
evolution.

In this work we use an alternative method developed in
Refs. [38—40] based on a mean-field approach that includes
all correlations up to second order. By tracing out the de-
grees of freedom of N —2 atoms and the radiation field,
one can reduce the description of the full many-body system
to an effective nonlinear two-atom master equation, which
can be numerically propagated in time. We herein confirm
the appearance of a superradiant burst in two-dimensional
and three-dimensional atomic arrays with small enough in-
terparticle spacing and extend the results in Refs. [35-37]
by characterizing the scaling of the superradiant peak for
both dimensionalities, as well as by studying the long-time
dynamics of the system, which exhibits a subradiant behavior.

II. FORMALISM

We first summarize the formalism derived in full detail in
Ref. [40] that reduces the description of the atomic array to
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FIG. 1. Superradiance in atomic arrays. Collective emission of
light from a three-dimensional array of closely spaced dipole-
coupled atomic emitters. The radiated intensity grows at early times,
giving rise to the superradiant burst.

a two-atom master equation.! We consider an ensemble of N
two-level atoms that interact with the vacuum electromagnetic
field. The Hamiltonian of the system can be written as the sum
of three terms: the free Hamiltonian of the atoms Hjoms, the
free Hamiltonian of the field Hjeq, and the interaction term
in the dipole approximation Hiy = — ), [)’,E (%), where the
index i labels the lattice atoms, p is the dipole operator, and
E () represents the quantized field at the atomic positions.
Then two probe atoms labeled as i € {1, 2} are selected (as
illustrated by the two red particles in Fig. 2) and the Hamilto-
nian is split into two parts H = Hy + V such that V contains
the interaction of the two atoms with the field and Hy includes
the rest of the terms

HO = Hatoms + Hﬁeld - Z ﬁiﬁ(?[)s
i#1,2

- BEF). (1)

i=1,2

Moving to the interaction picture and tracing over the
environment degrees of freedom, that is, the radiation field
and the N — 2 nonselected atoms, one can obtain the ef-
fective time-evolution operator of the reduced system on
the Schwinger-Keldysh contour [41]. Using the Markov and
the rotating-wave approximations and performing a cumulant
expansion that keeps all correlations up to second order fi-
nally results in a master equation for the two probe atoms.
We additionally consider randomly polarized two-level atoms
and neglect retardation effects of the electromagnetic field
such that all changes in the atomic variables propagate in-
stantaneously. In that case, the coordinate dependence of
the reduced density matrix for the two-probe atom can be
dropped [39,40]. The dynamics of the reduced system are then
described by the quantities

45 (1) 45 (2)
o, +0
a= ee ee
2
—_ [A()A(2)
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pee,gg + pgg,ee

> = Pee,ee + ) s
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Peg.ge = (69)64(3))’ )

= Pee,ec — Pee,gg —

'We refer the reader to Ref. [40] for a thorough derivation of the
full formalism described herein.
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FIG. 2. Reduced two-atom system. Two probe atoms, repre-
sented in red, are chosen from an N-atom array with interparticle
spacing d. Tracing out the degrees of freedom from the radiation
field and the N — 2 nonselected atoms and performing a cumulant
expansion results in a master equation for the reduced two-atom
system. The evolution of the system depends on three decay rates
that arise from the dipole-dipole interactions between all array atoms
mediated by the electromagnetic field: the spontaneous decay rate
y and the cooperative single-particle and two-particle decay rates I'
and T, respectively.

(i) Trace out:

where we have defined the density-matrix elements pyg,,5 =
(a1721p|B182) as well as the operators 6 = [e®) (e,

A(l) = |e®) (gD, 69 = = 1g?) (¢®|, and U(l) = |e®) (¢D] —
| g(’)) (g®]. These three variables have a clear physical mean-
ing. The a represents the average upper-level population in
the system such that —a directly gives the emitted intensity
per particle. The n is the average value of the spin-spin corre-
lation 6/16%, which takes a maximum value (n = 1) when
both atoms are either excited or deexcited and a minimum
value (n = —1) when only one of the atoms is in the excited
state. Together with a, it fully determines the populations of
both probe atoms and we therefore refer to it as the effective
two-atom inversion of the system. Finally, p,, o corresponds
to the two-atom flip-flop term (69)653)) and quantifies the
coherence built between the probe atoms, that is, between the
single-excitation states |e'!), g®) and |g("), e®).

The resulting equations of motion can be written as

—2QT + Y —2yQ2a—1) + 8T pog e
pegge = —(Q2T + ¥ )pegge + T 3)

n

and depend on three decay rates, as depicted in Fig. 2. The
first is the spontaneous decay rate of a single atom in the
presence of the vacuum field y. The second and the third
are the cooperative decay rates I' and T', which arise from
the interaction with the remaining N — 2 atoms mediated by
the electromagnetic field. Here I' can be understood as a
self-energy or self-decay rate that comes into the reduced
master equation through terms involving raising and lower-
ing operators of one probe atom only (e.g., & 6Ws (1)) As for
the two-atom decay rate I', it describes the effectlve inter-
action between both probe atoms (see the sketch in Fig. 2)
and appears through cross terms such as 69)&(3). Note that,
additionally, the interaction between the atoms generates a
cooperative energy shift. Because such shifts are generally
small in two-level atoms [42], here we set it to zero.
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As shown in Ref. [40], a closed form can be found for the collective decay rates

4 4
R Areti= = %
r®)=-—— DF — ) + =
() h4)//2—|—F%| ( )] 7
K)4 261 yret /= =\ Fykret
[(F1, ) = /2+F E D™ (7 — X)D™" (7>

where g is the dipole matrix element. These collective decay
rates involve summations over all lattice atoms, located at
positions X, and consequently depend on the size or num-
ber of particles of the system. Here I" and T' additionally
depend on the state of the atomic system, characterized by
the variables a, n, and peg 4., and therefore vary over time
during the decay process. If all atoms are in the ground state
(@ = Pegge =0 and n = 1), both collective decay rates are
zero and the equations of motion given in Eq. (3) reduce to
a4 =N = Peg g = 0. That is, the ground state of the system is
simultaneously its steady state, as expected in the absence of
an external driving field. Importantly, T'" and T' also depend
on the specific positions of the probe atoms, 7, and 7. This
dependence, however, is much weaker than that of the retarded
Green’s function in the medium D™, as it is washed out by
the summation over all lattice atoms located at positions X.
To account for it and to obtain the behavior representative
of the whole atomic ensemble, we consider and compare two
different ways of computing the two-atom cooperative decay
rate. The first, labeled as ™Y, assumes that the two probe
atoms are nearest neighbors, while the second, labeled as
@) considers an average over different positions of the atom
pairs (refer to Appendix B for a more detailed discussion).

Finally, the collective decay rates, and therefore the evolu-
tion of the system, depend on the retarded Green’s function
in the medium D™'. This quantity describes the propagation
of the electromagnetic field in the presence of the ensemble
of atoms and therefore depends on the dimension of the sys-
tem. It can be obtained from the free-space Green’s function
and the polarization of the medium by means of the Dyson
equation formalism [43], as described in Appendix A. For a
three-dimensional ensemble of randomly polarized atoms, it
can be written as

lFlké e~ hor g&r

67‘[60 r

2a—1 =
S SN TE
where d is the lattice spacing, kg = 2 /A is the wave num-
ber associated with the atomic transition wavelength X, and

r = +/x*+y? 4+ z2. In a two-dimensional medium such that
all atoms are at z = 0, it takes the form

ret( )

3

S
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y/2+T kZd>’

DXi(p) =

X=v (6)
where p = \/m is the distance on the plane defined by
the two-dimensional array and the small positive constant €
ensures the convergence of the integral.
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Both Green’s functions are complex valued, oscillate with
distance, and their absolute values are increasing functions
of the upper-level population a. While the two-dimensional
Green’s function in the medium Dret 5(p) decreases with dis-
tance p for all values of a, its three d1rnens10nal counterpart
Di(r) increases with distance r for a > 1. In that case,
the three-dimensional atomic array turns into an amplifying
medium. Equations (3) and (4), together with the expressions
of the retarded Green’s functions in the medium, form a self-
consistent set of equations that can be numerically propagated
in time to obtain the dynamics of the system.

III. THREE-DIMENSIONAL ATOMIC ARRAYS

Figure 3(a) shows the resulting dynamics for a spherical
three-dimensional atomic array with Nyq = 25 particles in
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FIG. 3. Time evolution of three-dimensional atomic arrays.
(a) Average upper-level population a (solid lines) and two-atom
coherence p, ¢ (dashed lines) as a function of time for a spherical
three-dimensional atomic array with N,,q = 25 particles in the radial
direction (and 7153 atoms in total) and for different interparticle
spacings d. The black curve represents the decay in the absence of
interactions between particles, that is, it recovers the limitd /A — oo.
The dash-dotted traces represent the dynamics for a homogeneous
spherical gas of atoms with the same radius and atomic density. The
two-atom coherence is nearly identical in both cases. (b) Intensity
per particle —a as a function of time for atomic arrays with different
spacings. The color code is the same as in (a). These results are
obtained using the averaged collective decay rate '@,
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the radial direction and obtained with the averaged decay
rate @), As shown in Appendix C, the major features for
three-dimensional lattices are independent of the specific form
considered for the two-atom cooperative decay rate. For a
small interparticle spacing of d = 0.1A, the average upper-
level population a (purple solid, leftmost curve) initially
decays at a much faster rate than would occur for nonin-
teracting particles (black dotted curve). The decay rate or
emitted intensity per particle —a, given by the purple (upper)
trace in Fig. 3(b), increases at early times and a superradiant
burst appears. This substantial increase of emission results
from the buildup of coherences in the system, as illustrated
by the two-particle coherence p, ¢ [purple dashed curve in
Fig. 3(a)]. After the initial superradiant decay, a subradiant
phase appears. The emitted intensity is heavily suppressed and
the average upper-level population remains roughly constant,
while the coherences built up during the superradiant burst
slowly decay. As soon as no coherence remain in the system,
the atoms decay and finally reach the ground state.

If the distance d between the nearest neighbors in the lat-
tice is increased, these effects get weaker. More concretely, the
superradiant burst decreases and disappears above a certain
critical spacing d;;, the maximum two-particle coherence is
reduced, and the subradiant phase vanishes. For interparticle
distances much larger than the atomic transition wavelength,
as is the case of the peach (light) curve with d = 24, the
noninteracting case is recovered. That is, the atomic dipoles
do not build up coherences and simply decay exponentially at
the fixed rate y.

The time evolution of the two probe atoms can be fur-
ther used to characterize the superradiant peak. The inset in
Fig. 4(a) shows the intensity per particle during the burst
for three-dimensional arrays of spacing d = 0.1A and differ-
ent numbers of particles along the radial direction Np,q. The
magnitude of the peak —an,x increases with lattice size and
the point at which the emission is maximum fn,x shifts to
earlier times. The exact scaling of both features depends on
two quantities: the characteristic length or size of the array,
given by N,qd /X, and the number of particles within a cubic
atomic transition wavelength A3 /d>, which corresponds to the
density of the sample and coincides with the relevant length
scale that appears in the three-dimensional retarded Green’s
function through the parameter £ given in Eq. (5). For a three-
dimensional ensemble, its product results in the optical depth
of the medium @ = NyqA?/d?. Asillustrated in Fig. 4, we find
that the maximum emission rate per particle scales linearly
with the optical depth —an,.x o< O, whereas the time at which
the maximum emission occurs is inversely proportional to it
fmax ¢ O~V [3]. For a spherical sample, the number of parti-
cles along its characteristic direction, that is, its radius, scales
as Nyq o< N3, where N is the total amount of atoms in the
array. Thus, the total peak intensity emitted by the array scales
as N x O o« N*3, well below the typical N? scaling found in
the Dicke limit, where all atoms are contained in a volume
much smaller than A3. Note that the optical depth of a sample
with a fixed number of atoms depends on the specific shape
of the system. Samples with a preferential axis, such as cigar-
shaped clouds, have a smaller amount of transverse photon
modes [44] and can therefore attain a quadratic dependence
of the pulse intensity with atom number [45]. Additionally,
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FIG. 4. Superradiant peak for a three-dimensional array.
(a) Maximum emission rate per particle —a,,, multiplied by the
dimensionless parameter d>/A> versus radius or characteristic length
of the sample Nqd/A for different lattice spacings d. The inset
shows the emitted intensity per particle as a function of time for
atomic arrays with fixed d = 0.1A and different Nq4. (b) Time at
which the maximum emission occurs versus sample radius and for
different spacings. As shown by the black linear fittings, —dax
scales with NygA?/d? and tye with d?/NyaA?. We use T'@ for both
panels.

such samples do not scatter photons in all directions, as is
the case for spherical arrays or clouds [46], but emit light
predominantly along the preferential directions with highest
optical depth [7,45].

Defining a superradiant burst to occur if the emitted in-
tensity per particle initially increases (d’a/dt*> <0), one can
obtain the superradiant phase diagram for three-dimensional
atomic arrays in Fig. 5(a). A burst appears below a criti-
cal inter-particle spacing d.g, that is, for a dense enough
medium. The spacing d. depends on the size of the array
such that larger samples can sustain superradiance at larger
lattice constants. Note that these values are much lower than
those reported in other references [35-37] and have to be
understood as a very conservative estimate. This is due to
the self-consistent procedure used to compute the cooperative
rate I', which considers interactions and cooperativity to be
present from the beginning. As a result, the initial decay rate
—a(t = 0) is overestimated and masks the appearance of a
burst at finite time if the superradiant peak is not promi-
nent enough. Alternatively, one can obtain a more realistic
estimate of the critical spacing by using the scaling of the
superradiant peak —maxd? /Az ~ f(Niag), wWhere f is a liner
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FIG. 5. Phase diagram for a three-dimensional array. (a) Maxi-
mum spacing d.; at which superradiance is sustained as a function
of system size Nyqg. A burst is considered to occur if the emit-
ted intensity per particle initially grows, that is, if —d?a/dt*> > 0.
(b) Phase diagram estimated from the scaling of the superradiant
peak —dnad?/A?* & f(Nya). Using the traces in Fig. 4(a), the critical
spacing for a given Ny, is obtained as dj = d/—dmax. The black
dashed curves are fittings of the form dei; = a + by/Naq.

function of the number of atoms in the radial direction. For
a certain Nyg, dorit corresponds to the spacing that results in
—dﬁg‘x = 1, that is, dcriy = d+/—amax- Figure 5(b) shows the
resulting phase diagram extracted from the traces in Fig. 4(a),
which qualitatively matches those reported in Refs. [35-37].
For both phase diagrams, we obtain a critical spacing that
scales as dqi /A X +/Npg [37] (as shown by the black dashed
fitted curves), which coincides with recent theoretical predic-
tions [36,37] and benchmarks the validity of our formalism.

Interestingly, the early dynamics (superradiant and subra-
diant phases) of the atomic array are very similar to those of a
three-dimensional homogeneous gas of atoms with the same
size and density of particles [39,40], as shown in Fig. 3(a).
More specifically, an identical scaling of the superradiant
peak and a phase diagram similar to the one shown in Fig. 5
are found for a homogeneous gas. However, the late dynam-
ics differs considerably. While the partially excited, ordered
atomic array rapidly decays once the coherences between
atoms vanish, the excitation remains in the system much
longer in the case of a homogeneous gas of atoms, giving
rise to a radiation trapping regime [47—49]. When more than
half of the excitation has been emitted, that is, a < % the
three-dimensional Green’s function in the medium D5 be-
comes absorbing and its value decays with distance. Thus, the
interaction predominantly occurs between nearest neighbors.
Even if the average spacing between the atoms in the gas is
of the order of a wavelength, there is a non-negligible chance
that some atoms are found to be much closer than that. This
gives rise to an enhanced interaction in the gas and therefore
a larger collective decay rate I', which ultimately suppresses
emission according to Eq. (3).

IV. TWO-DIMENSIONAL ATOMIC ARRAYS

For two-dimensional atomic arrays, that is, ensembles of
atoms lying on a plane, the time evolution of the average
upper-level population a and the two-level coherence peg g
presents the same three regimes as the three-dimensional case
in Fig. 3(a). However, the two-dimensional superradiant burst
is weaker, the subradiant phase is less prominent, and both
collective effects emerge only at lower interparticle spacings.
This is consistent with the fact that three-dimensional lat-

d=0.05A
d=0.06A
d=0.07A
d=0.08A
d=0.09A
d=0.1A
d=0.2A
d=2A

101 10!
G‘? 000, Rand)
= 05 Raley o

.
S S
@ oo “."";W"
jud LT L)
3 04 S =
g A e d=0.05A *  d=0.08
T =, + d=0.06A d=0.09A @)
03 = d=0.07A d=0.1A
(d)
n ———
2025 __—Nj
g - L&
n —’ .
@ 02 — ‘m’
t>< /m‘
P |7
. ¢ _
l’FO.lS . r(NN)
g
0 2 8 10

4
Nragd/A

FIG. 6. Superradiant peak for a two-dimensional array. (a) Inten-
sity per particle —a emitted by a two-dimensional atomic array as a
function of time for different lattice constants d. A circular sample
with N,q = 21 particles in the radial direction (317 atoms in total)
is considered. (b) Maximum intensity per particle —dan, for samples
with different V4 and d. The same color scale is used in all panels. In
(a) and (b) the dashed lines correspond to the two-atom cooperative
decay rate T™), whereas the solid lines represent the result for '@
(see Appendix B). (c) Scaling of the superradiant peak resulting
from '@, The black dashed curve corresponds to a power-law fit
of the form —dpmay (d/A)"5? o¢ (Nwad /A)*3. An equally good fitting
can be obtained with the logarithmic function —dyay(d/A)'3? o
log,o(Nraad /). (d) Scaling of the superradiant peak resulting from
'™V The black dashed curve corresponds to a fit of the form
_amax(d/)‘)llg5 S8 (Nradd/}‘)OA‘

tices are better packed geometries that contain many more
particles within a cubic transition wavelength and therefore
exhibit stronger cooperative effects. Unlike in the three-
dimensional case, the properties of the superradiant burst of
two-dimensional arrays depend on the specific way the two-
atom cooperative decay rate is computed or, equivalently, on
the position of the two probe atoms. Figure 6(a) depicts the
emission rate per atom —a for small samples (N, = 21) of
various spacings and demonstrates the appearance of a su-
perradiant burst at low enough d, while Fig. 6(b) shows the
maximum emission rate —dmax as a function of system size
Niagd /1. In both cases, the solid lines represent the results ob-
tained with the averaged collective decay rate I'®), whereas
the dashed lines correspond to the dynamics in the case
where the probe atoms are nearest neighbors, computed with
[™N)_ We find that the peak intensities obtained with T'™NN)
are generally larger than those corresponding to T'®"). This
occurs because the two-atom collective decay rate NG
decreases with the distance between probe atoms |r; — 7|
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(see Appendix D), which ultimately reduces the coherence
Peg ge DUIlt in the system and consequently the strength of
the cooperative effects. As shown in Appendix D, gradually
increasing |7, — 71| when computing [(7(, ;) results in a
transition from D™V to T@),

Additionally, Fig. 6(b) shows that —anx does not increase
monotonically with sample size, but oscillates with period 2.
That is, a maximum (or minimum) is reached every time the
radius of the atomic array increases by one atomic transition
wavelength. This behavior arises from the oscillating nature of
the retarded Green’s function in the medium, which results in
constructive and destructive interference between the different
“shells” of the array when computing the cooperative decay
rates I' and T'. Note that these oscillations also appear in
three-dimensional arrays [see Fig. 4(a)], although the effect
is much weaker due to the strongly amplifying nature of the
three-dimensional medium.

The functional form of —an,x can be obtained by appro-
priately scaling the emission axis. Figure 6(c) shows that the
maximum emission rate per particle obtained with '@ scales
as —max ¢ N33 (1/d)"*°. As shown in Appendix D, a sim-
ilar scaling is obtained from the minima of —dap,x computed
with T™N_ As for the maxima, the traces in Fig. 6(d) result
in a power-law scaling of the form —dmax o N%:f(1/d)!.
Noting that the peak intensity for pairs of probe atoms sep-
arated by more than one lattice site ranges between the values
obtained with T™N) and '@ (see Appendix D) and using
the fact that Nyq oc N/ in two-dimensional lattices, we can
conclude that the total peak intensity radiated by the array
scales as a power law N with exponent o € {1.115, 1.2}. As
expected, we obtain a smaller exponent than that of three-
dimensional arrays (where cooperative effects are stronger)
and nonextended systems (where the Dicke limit holds).

We finally note that the initial slope of the total radiation
[—Na(r = 0)] was recently found to scale in two-dimensional
arrays with the logarithm of N4 [37]. Motivated by this re-
sult, we find that the minima of —dy.x computed with TN,
as well as the traces in Fig. 6(c) obtained with ['@), are
also compatible with a logarithmic scaling. That is, both the
logarithmic function and the power law overlap for systems
of length up to ten times the natural transition wavelength.
This corresponds to arrays of 100 x 100 atoms in the case of
d = 0.1, well beyond the size that has been experimentally
realized in lattices of cold atoms with subwavelength spac-
ing [21].

V. CONCLUSION AND OUTLOOK

We have analyzed the many-body dynamics of closely
spaced and dipole-coupled atomic arrays by means of a re-
duced two-atom master equation that captures correlations
with the rest of the ensemble. As opposed to the formalism
used in Refs. [35-37], which perfectly captures the photon
emission at zero time, our method overestimates the initial
cooperative effects in the array and consequently does not pro-
vide accurate estimates of the superradiant phase diagrams.
However, it satisfactorily captures the mid- and long-term
behaviors of the atomic system. This allowed us not only
to demonstrate the appearance of superradiance and subra-
diance below a critical spacing, but also to characterize the

scaling of the superradiant peak for three-dimensional and
two-dimensional atomic arrays. In particular, we showed that
the total intensity in extended samples scales with a lower
exponent than in the ideal Dicke case, where all atoms are
contained within a cubic transition wavelength, and found that
three-dimensional arrays present a larger exponent than their
two-dimensional counterparts, consistent with the notion that
three-dimensional lattices are better packed geometries that
exhibit stronger cooperative effects. We additionally showed
that the figures of merit for the superradiant burst of or-
dered arrays and homogeneous gases of atoms are similar and
identified significant differences in the late-time dynamics of
both systems. As opposed to arrays, homogeneous gases can
sustain radiation trapping once the atomic coherences vanish
due to a nonzero probability of finding two atoms at distances
much lower than the average interparticle spacing.

The collective phenomena studied in this paper may be
experimentally realized in a wide variety of platforms, rang-
ing from ultracold atoms trapped in optical lattices [21,50]
and tweezers [25,26] to condensed-matter systems such as
quantum emitters in two-dimensional materials [51,52] or
color centers in bulk crystals [53-55]. Further, this work
could be extended by adding a classical driving field, which
may elucidate the behavior of arrays in other regimes of
the multiexcitation sector for which theoretical and numeri-
cal understanding is still very limited [37,56,57]. Also, the
effective two-atom description of the many-body problem
can be potentially leveraged to study other systems or reser-
voirs by appropriately modifying the Green’s function of the
medium [58].
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APPENDIX A: RETARDED GREEN’S FUNCTION
IN THE MEDIUM

The retarded Green’s function in the medium is ob-
tained from the free-space Green’s function D' and the
polarization source function P™ using the Dyson equation for-
malism [38,43], which is graphically represented in Fig. 7. It

Dret D(r)‘et D(i)’et Drer

FIG. 7. Graphical representation of the Dyson equation. The re-
tarded Green’s function inside the medium D' is generated by the

free-space Green’s function Dfj* and the polarization source function
Prcl.
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can be formally written as
o (o]
Dy (P, 11372, 1) =D5?5(71,f1;72,lz)—[wdt{ Kmdté

35 > =
X/d 710G, (P, 11374, 1)
\%4
X PSR s t], D5 (F YL 12, 1), (Al)

where « and B represent the components of the Green’s tensor.
The polarization function P™ is given by the correlation
function of dipole operators of noninteracting atoms, which
can be computed using the quantum regression theorem [39].
Using a continuum approximation, P™ can be expressed as

& 1 2a(F 1) —1

Pret *71‘ -
=P T

) (A2)

where d is the lattice constant, a is the average upper-level
population of the two probe atoms, I" is the cooperative decay
rate, and D represents the dimensionality of the array, that
is, D = 3 for three-dimensional lattices and D = 2 for two-
dimensional ones.

Equation (A1) can be solved in Fourier space if a series
of approximations are done [38]. First, we extend the spatial
integral to infinity. Second, the spatial dependence of the
source function is replaced by 7. Finally, we make use of the
Markov approximation to only keep the slow time dependence
of the source function and assume that it depends on the time
difference #; — t;. We can then Fourier transform with respect
to space X = 7| — r, and time T = f; — £, to obtain

D(G, w:1) = [1+ D5 (G 0)P(@:0)] ' DF(G. ). (A3)

where D™ and P™ are 3 x 3 matrices and 1 is the identity
matrix.
The free-space retarded Green’s function in real space is

- in 32 e ikor
Dret —>’ k - _ kZ(Sa ,
0 (X: Ko) 4me < 0% + Bxaax,g) r

(A4)

where r = |[X|. If the medium is randomly polarized, one
can apply the polarization average {gQ.%) = %80[,3. This is
equivalent to performing the orientation average x,xg/r* —
(xaxp /) = %(Saﬁ. The Green’s function then becomes a
spherical tensor with components

ihkg e~thor

brey r

D§'(, ko) = — , (AS)

with ky = 2w /1. The spherical nature of the problem now

simplifies Eq. (A3) to the scalar equation

1
[5Bet(q’ k)]_l + Pret'

DG, ko) = (A6)

The 5{{”((}', ko) is obtained by Fourier transforming Eq. (A5)
and it therefore depends on the dimensionality of the sample.

1. Three-dimensional sample
For a three-dimensional sample, the free-space Green’s
function in momentum space is
2ilik} 1
3¢p g% — kg + 2ikpe’

Dg'(G, ko) = — (A7)
where the small positive constant € moves the pole at g = ko
to the lower half of the complex plane. Plugging this result
in Eq. (A6), performing the inverse Fourier transform with
respect to g, and inserting the explicit form of the source
function given by Eq. (A2), we finally obtain Eq. (5) of the
main text [38], where we have defined the spontaneous decay
rate y = 5ozk3/37reofz.

Thus, the Green’s function in a three-dimensional medium
oscillates with period A. For a predominantly excited medium
such that the average upper-level population a > 0.5, £ is
positive and Dg% exponentially increases with distance. In this
regime, the medium is amplifying. For a < 0.5, the medium
becomes absorbing and D5 decreases with distance.

2. Two-dimensional sample

We assume that the atomic sample is located in the xy
plane such that z = O for all atoms. Then the Fourier transform
is carried out only over x and y and the retarded free-space
Green’s function in momentum space is

BE' .2 = 0.kp) = — 120 1 ,

360 Jq2 /K — 1+ 2ie ko

(A8)

where the momentum is now defined in two dimensions § =

(ky, ky) and ¢ = /g2 + g7. Again, a small positive constant €
is introduced.
From Egs. (A6) and (A2) it follows that

ihiko 1

DENG, ko) = — . (A9)
3eo \/qz/kg 1 4 2ie/ko — i
where we have defined the parameter
x=—2—T @a-1), (A10)

Ty 24Tk

which depends on the state of the two probe atoms and the
lattice constant of the array. Performing the inverse Fourier
transform, we obtain

~ 1 & &0 = -
D;%()O, Z:O) = (27)2 / qu/ dquret(q, ko)e_””
—0o0 —0o0

1 2 0 ~ )
— do d Drel ->’ ko )e 4P cos 6
o) /0 /O qdqD™(q, ko)

ifiko / *© d qJo(qp)
_ g ,
6méo Jo \/qz/k§—1+2ie/k0—ix
(A11)

where Jj is the zeroth-order Bessel function of the first kind
and p = /x% + y? is the distance between two points on the
xy plane.
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FIG. 8. Two-dimensional retarded Green’s function. The re-
tarded Green’s function in a two-dimensional medium Dite,/k3h
is plotted as a function of distance for (a) a > 0.5 and x = 0.8
and (b) a < 0.5 and x = —0.8. The orange solid and blue dash-
dotted traces correspond to the real and imaginary parts, respectively,
whereas the black dashed line represents the absolute value. A spac-
ing of d = 0.1 is considered.
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where the summation is carried out over all the atoms of
the system, located at positions X. The specific form of the
retarded Green’s function depends on the dimensionality of
the lattice and the collective decay rates depend on the po-
sitions of the two probe atoms 7, and #,. Here T" and T
can be understood as the one-atom and two-atom cooperative
decay rates, respectively. That is, I' appears in the reduced
master equation through terms involving raising and lowering
operators of one probe atom only (e.g., 010, ), while [ corre-
sponds to terms that involve both probe atoms (e.g., 0162)
Note also that the decay rates for a homogeneous gas can
be obtained by the replacement » . — N fv d3%, where N
denotes the density of the medium [39,40]. For clarity, we
define ' =T, + T, and I' =T} + ', where the subindices
indicate the first and second terms of both collective decay
rates.

We here assume that the spatial dependence of the atomic
variables is much weaker than that of the field correlations,
which rapidly oscillate according to D™. We thus describe
the atomic system with the averaged variables a, n, and
Peg.qe- Physically, this assumption amounts to neglecting re-
tardation effects of the electromagnetic field (as well as the
edge effects that might arise from the boundaries of finite-
size systems). Additionally, we consider that the one-atom
cooperative decay rate can be approximated as I' = I'(7 =
0), consistent with the fact that the majority of the atoms

D+ 122

F(r], }’2) h4 Z J//2 n FDfet(r x)D*ret(r X) + = h4 Z Z

The integral is performed numerically for the discrete set of
distances p that appear in an atomic array. That is, given a

lattice with spacing d, one needs to consider p = d, /n2 + nﬁ,

where n, and n, are integers. Note also that Eq. (A11) has a
pole at g = +ko+/1 — x2. The small constant ¢ therefore en-
sures the convergence of the integral when the pole is located
in the real axis.

As shown in Fig. 8, D;%( p) oscillates and its absolute value
decays with distance for all values of y. That is, the medium
is absorbing for all average upper-level populations a.

APPENDIX B: COOPERATIVE DECAY RATES

After tracing out the degrees of freedom of the electro-
magnetic field and the N — 2 nonselected atoms, the resulting
master equation for the reduced system, and therefore the
equations of motion given by Eq. (3), depends on the cooper-
ative decay rates I" and I". These quantities can be expressed
in terms of the two-time cumulants of the field operators and
are therefore related to the Green’s function in the atomic
medium. As shown in Refs. [39,40], one can find the closed-
form expressions

20c0.ce -

SR = SDTG - %),
e e 305G — %), (BI)
y/2+T

(

are deep inside the array for large enough samples. Simi-
larly, ', is approximated as Z;] D — X)) Z)-Q D, —
%) A~ Y . |D™(%)|* and is therefore equal to I',. However, [y
strongly depends on the choice of 7, and 75, as the addends in
3. DU — ¥)D*°(7, — %) interfere differently depending
on the exact value of both quantities. In order to account for
this dependence and obtain the behavior representative of the
whole ensemble, we consider and compare different ways of
computing T.

Case (i): F(palr) ['y(7; =0, 7). This is the decay rate for
a specific pair of atoms located at positions 7, = 0 and 7,. We
label the 1gl]S)emﬁc case of nearest neighbors, where |7, — 7|| =
d, as F

Case (ii): T\ = Ly L5 T1(F =0,7). This is the
average or arlthmetlc mean over all possible atom pairs, con-
sidering that one of the atoms is at the center of the array.

Case (iii): F(“V) li,[; y/2+r | >, D™ ()| This is the al-

ternative average introduced in Ref. [39], which results from
adding an extra summation zlv sz and thus separating the ¥
l;iaV)

dependence into two different variables X; and X,. While
provides similar values to I'{"™*" (see Appendixes C and D),
it is faster to compute and therefore allows us to study larger
lattices.

The results presented in the main text are obtained usin,
[ in the case of the three-dimensional arrays and I"{*"
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FIG. 9. Plot of I'; in a three-dimensional array: T';/ya (blue
solid line) and T';/ya as a function of the number of atoms in the
radial direction N, for an array with d = 0.2A and I" = 10y. The
different colors correspond to the different ways of computing [';:
f'ﬂNN) /ya as an orange dashed line, f‘gav) /ya as a green dash-dotted
line, and T'{"™*”/ya and —T{™*™ /ya as red circles and purple dia-
monds, respectively.

and f’fNN) in the case of two-dimensional lattices. Also, the
differences between the various ways of computing I'; for
both dimensionalities are discussed in Appendixes C and D,
respectively.

APPENDIX C: THREE-DIMENSIONAL ARRAY

Figure 9 shows the different values of [, obtained for a
three-dimensional square lattice with spherical shape. For an
individual pair of atoms at positions 7| and 7,, it is simply
proportional to Y . D"™(7; — ¥)D*™ (¥, — X). Given that the
retarded Green’s function oscillates with distance, both factors
overlap in different ways depending on the relative positions
of 7, and 7,. If both atoms are at positions such that D)
and D*"'(7,) have the same sign, the retarded Green’s func-
tions overlap in phase and the addends add up constructively.
Also, the farther away both atoms are, the smaller the resulting
sum is. However, if the signs of D™'(7,) and D*°'(7,) differ,
the Green’s function at the atomic positions have opposite
phases and the resulting T' can become negative. This rep-
resents a nonphysical scenario in which I" can in turn also
become negative during the time evolution, probably due to
an overestimation of the phase coherence over distance.

For l:iNN), there is an almost perfect constructive overlap
and the resulting decay rate (orange dashed trace) is always
positive and close to I’} = f‘ipalr)(ﬁ = 7,) (blue solid trace).

Both ['{"™* and I"*") represent averages over different atom
pairs and their absolute values are therefore smaller than those
of Ty or T'™V_ The arithmetic mean ['{"™**" additionally re-
sults in regions with positive (red circles) and negative (purple
diamonds) decay rates, which alternate every time the sample
size increases by A. Interestingly, f‘iav) is always positive and

is close to the absolute value of f‘?meam. Note also that I'j,
™ and T™ only involve a summation over the N ~
N3, lattice sites of the array, whereas f‘fmea") contains two
nested summations, which increases the number of operations
quadratically and largely reduces the maximum array size that
can be numerically simulated.
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FIG. 10. Result comparison for three-dimensional arrays. (a) and
(b) Average upper-level population a (solid lines) and two-atom
coherence p,, o (dashed lines) as a function of time for a spherical
three-dimensional atomic array with N,g = 25 particles in the radial
direction and for different lattice constants d. In (a) the cooperative
decay rate T'\" is used, whereas (b) is obtained with T'"*”. (c)-
(e) Maximum emission rate multiplied by (d/A)° versus radius or
characteristic length of the sample N,,4d /XA for different values of
d. The dashed lines are obtained with I'\*"), whereas the markers
correspond to (¢) T{™*, (d) T™V, and (e) [P*”[, = (|72, 0, 0)].
In (e) an array of spacing d = 0.2 is considered.

The results shown in the main text are obtained using f‘ga\').
In Fig. 10 we present the dynamics and values of the super-
radiant peak obtained with the other forms of the cooperative
decay rate. In particular, we demonstrate the time evolution of
the decaying ensemble for T'\*” in Fig. 10(a) and for I"{"™**" in
Fig. 10(b). One can see that the resulting dynamics, that is, the
superradiant burst, the subradiant phase, and the subsequent
decay to the ground state of the system, are identical in both
cases. Additionally, we obtain an identical value of the emis-
sion peak per particle —day for all forms of T'y. In Figs. 10(c)
and 10(d) we plot —amax as a function of lattice size and
for three different lattice spacings. The overlap between the
dashed lines (which show the results obtained with ['*" and
presented in the main text) and the markers [which correspond
to the values computed with (™" in Fig. 10(c) and with
f‘}NN) Fig. 10(d)] demonstrates that both methods result in the
same scaling of the peak with the optical depth of the system.
Similarly, Fig. 10(e) depicts —anmax for a lattice of spacing
d = 0.2 and for the collective decay rate T'""” computed for
different distances |7,| between probe atoms. Again, almost
identical values are obtained independently of |7,|. These re-
sults confirm both the linear scaling of the superradiant peak
with the optical depth of the array O = Nj,q/d? and the slight
oscillations arising from the interference between different
shells of the lattice.

APPENDIX D: TWO-DIMENSIONAL ARRAY

Figure 11(a) shows f‘ip 07 = 0, 7,) for circular two-
dimensional arrays with different sizes Nyq as a function of

053717-9



ORIOL RUBIES-BIGORDA AND SUSANNE F. YELIN

PHYSICAL REVIEW A 106, 053717 (2022)

— Npg=21
Nrag =51
—+= Nrag =81
- N —y
30 40

S — - ey
I _ _
NS oy Feny
N
0 N
N — e,
20 40 60 80
Nrad

FIG. 11. Plot of T'; in a two-dimensional array. (a) Plot of
[P = 0,7,)/y for a two-dimensional circular array of atoms
with spacing d = 0.1 and for different positions of the probe atom
7, = (|72|, 0). The different colors represent arrays of different sizes.
(b) Plot of T'; /y (blue solid trace) and I'; /y as a function of the num-
ber of atoms in the radial direction N, for an array with d = 0.1A.
The different colors and line styles correspond to the different ways
of computing T';: ™ as an orange dashed line, [{™" as a green
dash-dotted line, and T'\" as a red dotted line. In both panels we
consider an initially inverted array a = 1 and the corresponding I"
given by Eq. (B1).

72 = (|r2], 0). Again, in-phase and out-of-phase overlaps in
the term ) _. D™ (¥)D*™°' (7, — X) result in maxima and minima
of T'; and a subsequent oscillating behavior of I'; with the dis-
tance between probe atoms. Due to the absorbing nature of the
two-dimensional Green’s function, i.e., D’z%(,o) decays with
distance p, the oscillations are damped and the contribution
of T’y to the two-atom cooperative decay rate becomes very
small for probe atoms that lie far apart.

In Fig. 11(b) we compare the different ways of comput-
ing T'; for arrays of various sizes. As can be inferred from
Fig. 11(a), f‘iN )(|72| = d) is a growing function of the sam-
ple size and is close to I'| = l;gNN)(|?2| =0). The f‘imea“)
is obtained by averaging over all positions 7, present in the
array and decays and oscillates with Ny, due to the additional
periods that emerge in fipm)(? = 0, #,) when the sample size
is increased. Again, it follows a trend similar to f‘;av).

As opposed to the three-dimensional case, the value of
the two-dimensional superradiant peak depends on the spe-
cific choice of T';. In the main text we presented the results
obtained using both T™" and T'{*". Note that the fact that
I_‘iNN) > f‘iav) results in larger values of the two-atom coher-
ence and consequently of the superradiant peak for nearest
neighbors, as shown in Fig. 6(b). Also, the oscillations in I', =
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FIG. 12. Two-dimensional superradiant burst. (a) Maximum
emission rate per particle —dpqy resulting from I'®*" for differ-
ent probe atom pairs, represented by different colors. The black
and gray dashed lines correspond to —dp,, computed with TN
and T'®), respectively. A lattice with spacing d = 0.06) is consid-
ered. (b) Scaling of the minima of the superradiant peak resulting
from '™ The black curve corresponds to a fit of the form
—Gmax (d /A)"0 ¢ (Npgad /1)*?? and the gray trace to the functional
form —dmax (d/2)"% o< log,o(Newad /1).

= f’faV)N Peg.ce/a lead to an oscillatory behavior of the
maximum emission rate —dmy,x, which can be understood as
an interference effect between different shells of the array. In
Fig. 12(a) we complement the results reported in the main text
with the maximum emission rate for probe atoms separated by
different distances, obtained with f‘ip %0 One can see that the
resulting —anmax is contained within the values retrieved from
™ and T for all distances |7,| between the probe atoms.
This suggests that the scaling of the superradiant peak is also
contained within the values predicted using ['" and ['{*".

Finally, Fig. 12(b) shows the maximum decay rate —dmax
obtained with f’fNN) for arrays with different sizes and spac-
ings. The minima of —ap,x can be fitted both by the power
1aw —dmax (d /A)1% ¢ (Naad /2)%%2 (black dashed trace) and
by the logarithmic function —amax(d/ 10 log o (Nraad /1)
(grey dash-dotted trace), which matches the scaling obtained
in Fig. 6(c) with ["{*").
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