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We present an Ansatz for the ground states of the quantum Sherrington-Kirkpatrick model, a
paradigmatic model for quantum spin glasses. Our Ansatz, based on the concept of generalized coherent
states, very well captures the fundamental aspects of the model, including the ground state energy and the
position of the spin glass phase transition. It further enables us to study some previously unexplored
features, such as the nonvanishing longitudinal field regime and the entanglement structure of the ground
states. We find that the ground state entanglement can be captured by a simple ensemble of weighted graph
states with normally distributed phase gates, leading to a volume law entanglement, contrasting with
predictions based on entanglement monogamy.
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Introduction.—Spin glasses are an important paradigm
in statistical physics. Besides their relevance in describing
disordered classical magnets [1,2], it was shown that
optimization tasks, such as the traveling salesman problem,
can be mapped to solving for the ground states of spin glass
systems [1,3,4]. Classical spin glasses can be promoted to
quantum models by introducing a transverse field. The
resulting quantum spin glasses form by themselves an
important playground to study the interplay of disorder
and frustration with quantum effects [5]. Moreover, there
is evidence that the quantumness can be exploited to
shortcut optimization tasks, for instance, through quantum
annealing [6–10].
The textbook example of a quantum spin glass model is

the quantum Sherrington-Kirkpatrick (QSK) model, a
generalization of the classical Sherrington-Kirkpatrick
(SK) model [11,12]. The QSK model has been studied
extensively in the literature both analytically [12–18] and
numerically [19–30]. While the famous Parisi solution
[31,32] provides a full solution to the classical SK model,
many open questions remain for the quantum SK model.

Since the QSK model is an all-to-all coupled model one
might assume that a mean-field product state Ansatz well
describes the ground state. However, this Ansatz predicts a
quantum phase transition from a quantum spin glass phase
to a paramagnetic phase at a critical transverse field gC ≈ 2J
[26]. Field theory approaches [15,16,18] using the replica
method suggest instead a phase transition at gC ≈ 1.5J.
Numerical calculations at small system sizes [23,24,33] or
obtained at finite temperature [19,20,24,29,34] confirm the
latter [35]. So far no good Ansätze have been found which
can describe the zero temperature regime for large system
sizes, preventing the study of further properties of the
ground state, such as entanglement.
Here, we consider a variational family, motivated by the

concept of generalized group-theoretic coherent states [36],
which extends the product state Ansatz introducing a richer
entanglement structure. The special structure of these states
allows us to introduce nontrivial quantum correlations
while preserving the ability to efficiently compute varia-
tional ground states up to large system sizes of N ¼ 200
spins. We additionally develop a method to study the
entanglement structure of the ground states. Our results
show a volume law of entanglement, which indicates that
entanglement monogamy does not provide a scaling con-
straint despite the fact that the QSK model involves all-to-
all spin interactions. Furthermore, this entanglement struc-
ture is also identified within a set of states that have been
introduced in the quantum information context, namely
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weighted graph states [37] with normally distributed
random phase gates.
Model.—Concretely, the QSK model corresponds to a

mixed field Ising model with all-to-all couplings between
the N spins and quenched disorder in the couplings and
longitudinal field,

HQSK ¼ −
1

2

XN

n;m¼1

Jnmσznσzm − g
XN

n¼1

σxn −
XN

n¼1

hnσzn; ð1Þ

where σkn is the kth Pauli matrix acting on the nth spin. The
longitudinal field hn and the couplings Jnm are independ-
ently normally distributed numbers with zero mean and
variance h2n ¼ h2 and J2nm ¼ J=N, respectively. Here and in
the following we use the convention that an overbar
indicates disorder average, and we will mostly concentrate
on the case h ¼ 0.
Variational Ansatz.—Our variational Ansatz was first

introduced in Refs. [38,39]. It generalizes the Ansatz of
atomic coherent states (CS) [40],

jϕðxÞi ¼ UðxÞj↑;…;↑i; ð2Þ

where σzj↑i ¼ þj↑i and UðxÞ ¼ expð−i
P

n;k x
k
nσknÞ

rotates each of the N spins individually on the Bloch
sphere. The CS Ansatz is parametrized by xkn ∈ R and
corresponds to the set of normalized product states.
A generalization procedure [36] leads to generalized

atomic coherent states (GCS),

jΨðx; y;MÞi ¼ UðyÞVðMÞjϕðxÞi; ð3Þ

where xkn, ykn, and Mnm (n < m) are the variational
parameters. U and jϕi are defined as in Eq. (2) and the
entangling unitary VðMÞ is given by

VðMÞ ¼ exp
!
−
i
4

X

n<m

Mnmσznσzm

"
; ð4Þ

for any real symmetric matrix M.
The entangling unitaries VðMÞ contain two-spin

terms which give the states (3) a nontrivial correlation
structure. Nonetheless, when computing expectation
values of Pauli operators we have VðMÞ†σ%n VðMÞ ¼
σ%n expð%i=4

P
m MnmσzmÞ; that is, the two-spin terms

cancel and we are left with just products of single-spin
operators [36,41]. This crucial property allows us to find
analytical expressions for the energy and the gradient of the
energy with respect to the variational parameters [42].
Thanks to this, we can efficiently obtain the variational
ground states of individual Hamiltonian realizations for
large system sizes of up to N ¼ 200 spins through a natural
gradient descent algorithm [43].

To demonstrate the expressivity of the GCS Ansatz, we
first consider the approximate ground state energy. For
small system sizes we can compare the variational energies
with numerically exact results, obtained via a Lanczos
exact diagonalization (ED) method [44]; see Fig. 1. We find
good quantitative agreement of the variational energy with
the exact ground state energy over a broad range of
transverse and longitudinal field values. In particular, a
notable improvement of the GCS Ansatz upon the CS
Ansatz becomes visible. The method performs worst in a
region with 0.5J < g < 1.5J. For the assessed system
sizes, the point of maximal error moves with growing N
toward the expected critical point gC ≈ 1.5J, while the
maximal error value decreases [45]. This agreement is not
limited to the energy but can also be seen for other
observables of interest [46].
For larger systems it is no longer possible to compare to

an exact solution. However, we observe an extensive
improvement in energy upon the CS Ansatz, suggesting
that the GCS Ansatz gives a nonvanishing improvement
even in the thermodynamic limit; see inset of Fig. 1.
Quantum phase transition.—Our variational Ansatz also

allows us to study the quantum phase transition on the h ¼ 0
line of the model’s parameter space. For this we consider the
spin glass susceptibility χsg ¼ N−1P

n;m hσznσzmi2. Indeed,
the susceptibility per site χsg=N, which is independent of the
system size in the thermodynamic limit, vanishes in the
paramagnetic phase (large g) and is finite in the spin glass
phase (small g) [1,23,27,47,48]. For small system sizes we
find good quantitative agreement of the variational value of
the susceptibility with numerically exact (ED) results; see
left-hand panel of Fig. 2. More importantly, the variational
Ansatz enables us to study the system at much larger sizes;

FIG. 1. Average error in energy density ε ¼ ΔE=W as a
function of the transverse field for different methods (CS in
orange, GCS in blue, and ED in purple) and system sizes N ¼ 8,
12, 16, 22 (light to dark). ΔE is the difference between the
variational energy and the exact ground state energy, W is the
difference between the highest and lowest energies in the exact
spectrum. Inset: difference between CS and GCS energies per site
ðECS − EGCSÞ=N as a function of the system size N for different
values g=J ¼ 0.1, 1.0, 1.5, 2.0, 3.0 (light to dark). All data are for
h ¼ 0 and averaged over nsamples ¼ 1000 disorder realizations.
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see right-hand panels of Fig. 2. For N ≥ 100 finite size
effects are almost absent, allowing us to read off the critical
field value directly. Both variationalAnsätze clearly indicate
the existence of a phase transition. However, in agreement
with the literature [26], the CS underestimate the quantum
fluctuations showing a phase transition at roughly gC ≈ 2J.
In contrast, the GCS capture the true critical point at
gC ≈ 1.5J. Thus, the additional entanglement structure
introduced in the GCS not only leads to an improvement
in energy but also seems crucial in capturing the physics of
the QSKmodel in the thermodynamic limit. This agreement
with established results further indicates that the variational
states remain a good approximation of the ground states in
the large N limit.
Entanglement structure of the ground state.—The find-

ings above suggest that the GCS Ansatz describes the
ground state of the QSK model very well for all system
sizes up to the thermodynamic limit. Having such an
explicit expression for the ground state wave function
allows us to study in detail its entanglement properties.
Before looking into the numerical results, we will consider
some hypotheses about the expected entanglement
behavior.
First, let us try to understand the role of the additional

two-spin entangling gates contained in VðMÞ by taking a
closer look at the matrix elements Mnm. Considering the
probability distribution pðMnmÞ over many disorder real-
izations, we observe that it resembles a Gaussian distribu-
tion with zero mean and variance scaling as 1=N. In
addition, we find that the mean level spacing ratio averaged
over many realizations yields hri ≈ 0.53 roughly indepen-
dent of the transverse field value g > 0 and system size N,
which is in agreement with the result of the Gaussian
orthogonal ensemble (GOE) [49].
This implies that most two-spin entangling gates

approach the identity as N → ∞. This may seem compat-
ible with the naive hypothesis that, due to the mean-field

nature of the model, product states should well describe the
ground state, at least in the thermodynamic limit. This
assumption would predict the entanglement entropy
between any two subsystems going to zero as N → ∞.
Note, however, that the number of entangling gates

acting on each individual spin diverges in this limit,
suggesting that a nontrivial entanglement structure is still
possible. Indeed, let us consider a subsystem A composed
of the first L spins. We quantify the entanglement between
these L spins and the rest of the system by computing the
second Rényi entropy S2ðLÞ of the subsystem’s reduced
density matrix. Given the all-to-all connectivity of our
Ansatz, there exist LðN − LÞ two-spin entangling gates
acting between spins in A and in its complement Ac.
Each of these gates individually generates a two-spin state
with an average entanglement entropy proportional to
M2

nm ∼ 1=N. The cancellation of these two scalings could
suggest a second hypothesis, i.e., that the entanglement
entropy between A and Ac is proportional to L in the
thermodynamic limit N → ∞. This expectation can also be
made more rigorous with an argument based on the central
limit theorem [42].
As a third alternative, we may compare the model to a

related but analytically solvable model, namely a model
with all-to-all interactions and invariant under spin permu-
tations. Note that in our case, due to the disordered nature
of the QSK model, individual realizations of the couplings
Jnm and hn are not permutationally invariant. However,
invariance is present upon disorder averaging, so the
permutationally invariant case may still provide a useful
comparison. In such case the ground state jΨimust possess
a Schmidt decomposition,

jΨi ¼
X

k

λkjφkijηki; ð5Þ

where jφki and jηki are orthonormal states of A and Ac,
respectively. Because of the symmetry, the states jφki must
in particular belong to the subspace of permutationally
invariant states of A. Such subspace has dimension Lþ 1,
so there can be at most Lþ 1 terms in the sum (5). It
follows that the entanglement entropy of A is bounded
by S2ðLÞ ≤ logð1þ LÞ. This scaling of the entanglement
can be viewed as a consequence of entanglement
monogamy [50,51].
We would now like to compare our results with these

hypotheses. To this end, we have developed an efficient
method to numerically compute S2ðLÞ for the states (3),
reducing the problem to the one of estimating averages for a
classical sampling problem [42]. The results, see top panel
of Fig. 3, are well fitted by the empirical functional form:

S2ðL;NÞ ¼ AðNÞ log
#
1þ BðNÞ

π
sin

!
πL
N

"$
: ð6Þ

FIG. 2. Left: spin glass susceptibility χsg as a function of the
transverse field g for ED (purple circles) and GCS (blue squares).
Right: spin glass susceptibility per site χsg=N for GCS (top, blue)
and CS (bottom, orange) and system sizes N ¼ 20, 100, 200
(from light to dark). All data are for h ¼ 0 and averaged over
nsamples ¼ 1000 disorder realizations.
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Note that, in the large N limit, this functional form may
alternatively represent a S2ðLÞ ∼ L scaling, a S2ðLÞ → 0

scaling, or a S2ðLÞ ∼ logL scaling of the entropy, depend-
ing on the behavior of the fit parameters AðNÞ and BðNÞ.
In the range of system sizes that we were able to explore

(N ≤ 200), we observe that the parameter BðNÞ converges
to a finite constant as N → ∞. Similarly, the product
CðNÞ≡ AðNÞBðNÞ=N also converges to a constant C.
This suggests the asymptotic behavior S2ðL;NÞ ¼ CLþ
Oð1=NÞ in the thermodynamic limit. In other words, we
observe an entanglement scaling proportional to the volume
L of the considered subsystem, that is larger than the one
both of a product state description and of a permutationally
invariant model.
Finally, we point out that the entanglement structure of

the ground states appears to encode very clearly the phase
transition of the model. More specifically, if we compute
the fit coefficient CðNÞ defined above as a function of the
transverse field g at h ¼ 0, we will see that this function
develops, in the thermodynamic limit, a discontinuity in its
derivative at the critical value gC ≈ 1.5J, as shown in Fig. 4.
Comparison to random weighted graph states.—The

form of the matrix M, which appears to be distributed
according to a GOE, suggests that the entanglement
structure of the QSK ground states is encoded in a simple
way in VðMÞ. To see this better, consider the set of states
parametrized as

jΨðMÞi ¼ VðMÞjþ; & & & ;þi; ð7Þ

where jþi ¼ ð1=
ffiffiffi
2

p
Þðj↑iþ j↓iÞ. These are a subset of the

full variational class (3) and, in the context of quantum

information theory, are referred to as weighted graph states
[37]. Let us then consider a random ensemble of such states
constructed by drawing the matrix M from a GOE with
variance M2

nm ¼ 1=N.
We can compute the average subsystem entanglement

entropy S2ðLÞ for this ensemble of states, similarly to what
we did for the ground states. We find that this entropy is
fitted by the same functional form (6), see bottom panel of
Fig. 3, and that the fit parameters AðNÞ and BðNÞ obey the
same large N scalings as in the ground state case. It is also
possible to show analytically that the entanglement of these
states must scale according to a volume law, as confirmed
by these fits [42].
We conclude that the simple form (7), where M is

sampled from a GOE, exhibits the key entanglement
features of the QSK ground states. It can be taken as a
minimal example of this entanglement structure.
Let us stress, however, that the actual ground states still

contain more information than the states (7). The state
jϕðxÞi appearing in the variational Ansatz (3) is in general
not equal to jþ; & & & ;þi. Rather, we observe that jϕðxÞi
transitions from being z polarized in the spin glass phase
to being almost fully polarized in the xy plane in the
paramagnetic phase, encoding the information about the
model’s phase. Furthermore, the proportionality constant
betweenM2

nm and 1=N also shows a nontrivial dependence
on g and h.
Phase transition at finite longitudinal fields.—Another

nontrivial feature of the QSK model which can be studied
thanks to our method is the presence of a phase transition at
h > 0. It has been conjectured that the model’s spin glass
phase survives also for nonvanishing longitudinal fields h,
suggesting the existence of a line of quantum phase
transitions between the spin glass and paramagnetic phases
that extends from the g ¼ gC, h ¼ 0 critical point into the
h > 0 plane (often referred to as the quantum de Almeida–
Thouless line). This conjecture is however based on not yet
conclusive investigations of the stability of replica sym-
metry breaking (RSB) at zero temperature [29,52].
Our variational analysis can tackle this issue without

making assumptions about RSB. Indeed, we can extend our

FIG. 3. Average Rényi-2 entanglement entropy as a function of
the subsystem size L for the QSK ground state at g ¼ 1J, h ¼ 0
(top panel in blue) and for an ensemble of weighted graph states
(7) (bottom panel in green). Data are plotted for total system sizes
N ¼ 50, 100, 150, 200 (from light to dark markers). In all cases,
including ground state data for other values of the fields g and h,
the entropy is well fitted by the function (6) (orange dashed lines).

FIG. 4. Coefficient CðNÞ extrapolated from the Rényi entan-
glement entropy fit as a function of the transverse field g at h ¼ 0
for different system sizes (different shades of blue).
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analysis to variational ground states in the whole parameter
space of the model, including h > 0. We observe that all
indicators of a phase transition vanish as soon as h > 0.
More specifically, the spin glass susceptibility χsg

becomes a smooth function of g whenever h > 0, no
longer presenting the discontinuity in its derivative typical
of a phase transition, even at large N. Similarly, the
coefficient C characterizing the entropy behavior of the
ground states clearly shows a singular behavior at h ¼ 0 but
not for finite h. These results are illustrated in Fig. 5. In
conclusion, our analysis was not able to identify any sign of
the conjectured phase transition in the h > 0 region.
The discrepancy with previous results suggests this re-
gime should be investigated further, especially in relation
to RSB.
Conclusion.—We have shown that generalized atomic

coherent states capture relevant properties of the ground
states of the QSK model. The subset approximating the
ground states contains a nontrivial entanglement structure,
displaying a volume law, akin to the one of weighted graph
states with random phase gates.
It is remarkable that the GCS resemble the quantum

approximate optimization algorithm Ansatz [53,54] for the
QSK model, with one Ising interaction layer sandwiched
between two product operators. In our case, however, the
parameters of these layers do not necessarily correspond to
those of the Hamiltonian. Our results can thus inspire other
quantum computing variational eigensolvers for QSK-like
models, building on top of the states (3), something that
deserves more detailed research.
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