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Particle zoo in a doped spin chain: Correlated states of mesons and magnons
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It is a widely accepted view that the interplay of spin and charge degrees of freedom in doped antiferromagnets
(AFMs) gives rise to the rich physics of high-temperature superconductors. Nevertheless, it remains unclear how
effective low-energy degrees of freedom and the corresponding field theories emerge from microscopic models,
including t − J and Hubbard Hamiltonians. A promising view comprises that the charge carriers have a rich
internal parton structure on intermediate scales, but the interplay of the emergent partons with collective magnon
excitations of the surrounding AFM remains unexplored. Here we study a doped one-dimensional spin chain
in a staggered magnetic field and demonstrate that it supports a zoo of various long-lived excitations. These
include magnons, mesonic pairs of spinons and chargons along with their rovibrational excitations, and tetra-
parton bound states of mesons and magnons. We identify these types of quasiparticles in various spectra using
density-matrix renormalization group simulations. Moreover, we introduce a strong-coupling theory describing
the polaronic dressing and molecular binding of mesons to collective magnon excitations. The effective theory
can be solved by standard tools developed for polaronic problems and can be extended to study similar physics
in two-dimensional doped AFMs in the future. Experimentally, the doped spin-chain in a staggered field can be
directly realized in quantum gas microscopes.
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I. INTRODUCTION

Field theoretic approaches to quantum spin models in lat-
tices, such as the Heisenberg antiferromagnet (AFM), provide
very successful descriptions of these paradigmatic quantum
many-body systems [1] and have led to a thorough un-
derstanding of their various quantum phase transitions in
different dimensions [2]. Key to their success is the underlying
hypothesis that the coarse-grained fields on long length scales
feature similar behaviors as the microscopic local magnetic
moments underlying the spin model. More formally, a simple
renormalization-group (RG) procedure yielding the effective
low-energy field theory does not change the particle-content
of the analyzed fields. However, in dimensions larger than one
and with mobile dopants included, this approach has not been
able to explain the rich phase diagram of high-temperature
superconductors so far.

In this paper, we take a different perspective and ex-
plore emergent structures, at low to intermediate energies,
in a doped quantum spin chain. The zoo of constituents we
find defies a naive field-theoretic description: We identify
emergent parton structures of spinons and chargons, forming
mesonic bound states with a rich spectrum of rovibrational
internal excitations. Moreover, these mesons interact with
collective magnon excitations in the surrounding spin sys-
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tem, which leads to polaronic dressing on the one hand and,
more exotically, to long-lived meson-magnon bound states.
In a phenomenological field-theoretic model, each of these
constituents should be described by a separate quantum field,
with mutual interactions between all of them. Describing how
these fields emerge at intermediate length or energy scales in a
thorough RG procedure is a challenging task, even for the sim-
ple toy model we consider. Hence we focus on a microscopic
description of the individual emergent bound states and an-
alyze their characterizing properties, such as their dispersion
relations, zero-point energies, and mutual interactions. To this
end, we apply the powerful theoretical tools developed for the
description of Bose polarons [3–7].

Concretely, we consider doped one-dimensional spin
chains. When featuring SU(2) invariance, these systems dis-
play spin-charge separation [8–12]: the collective excitations
of the spin-chain are fractionalized spinons, which coexist
with free chargons. In this limit, nontrivial bound states of
the constituents are absent [10] and bosonization techniques
provide a powerful field-theoretic description of the doped
system in terms of Luttinger liquids [13]. As we demonstrate,
the situation changes drastically when a staggered magnetic
field is included [14], breaking the SU(2) symmetry, see
Fig. 1(a): Now spinons and chargons are confined [13,15,16],
the undoped ground state has gapped collective magnon ex-
citations, and spin-charge separation breaks down. Despite
this confinement, the situation is far from trivial: As we will
show, doped holes in this system host a zoo of excitations
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FIG. 1. Particle zoo in a doped spin chain: We consider a doped
mobile hole in a spin-chain subject to a staggered magnetic field.
(a) Ignoring transverse spin fluctuations, the staggered field leads
to a confining force between spinons and chargons connected by a
string of overturned spins (top row), which leads to meson forma-
tion. A similar situation is realized in a mixed-dimensional model,
where a strong gradient prevents hole motion along the direction of
the gradient (bottom row). (b) Transverse spin couplings give rise
to Holstein-Primakoff (HP) magnon fluctuations in the surrounding
spin background. The latter interact with the spinon, which is sur-
rounded by the strongly fluctuating but tightly bound chargon cloud.
All constituents making up the zoo of excitations are defined on top
of a perfect Néel state as summarized in (c), where we also indicate
the background Ising fields τ z

j , affected by the hole motion, around
which we expand in the generalized 1/S approximation employed
here.

reflecting their rich internal structure and their interaction
with gapped magnons can lead to even more complicated
multiparton bound states, see Fig. 2.

In several regards, our 1D model is motivated by the
physics of mobile holes in a SU(2)-invariant 2D Hubbard
model. In contrast to the 1D case with SU(2) symmetry, the
ground state of the two-dimensional (2D) Heisenberg model
has long-range magnetic order and gapless spin-1 magnon
excitations. This effect is mimicked by the external staggered
magnetic field we consider in our model, which introduces
magnetic order and leads to similar spin-1 magnon modes,
although with a non-vanishing gap. There is strong evidence
that a doped hole in the 2D AFM features a rich internal
meson structure [17], with discrete vibrational [18–20] and
rotational excitations [21,22]. In our 1D model, we reveal
similar structures and develop an effective strong-coupling
(SC) description.

Remarkably, the coupling of mesons to collective magnon
excitations remains poorly understood in 1D and 2D, in par-
ticular, around zero momentum, where we show that the
competition of mesons and magnons is most pronounced. In
the present paper, we fill this gap and apply a powerful the-
oretical framework, the so-called generalized 1/S expansion

FIG. 2. Polaronic bands in the presence of meson-magnon in-
teractions at low energies: The overall ground state at momentum
k = π/2 is realized by a weakly dressed meson (solid blue line).
Before the broad meson-magnon continuum is reached at higher
energies (wide red band), we predict a weakly dispersing meson-
magnon bound state (dark red line), corresponding to a tetra-parton
configuration. The black lines indicate the bare meson dispersion
(solid) and edges of the meson-magnon continuum (dashed) in the
absence of meson-magnon interactions, respectively. At higher en-
ergies (not shown) we find rovibrational internal meson excitations.
Calculations were performed using the strong-coupling generalized
1/S approximation introduced in the text; we chose parameters h =
0.6J and t = 5J .

[21], to describe the coupling of mesons to magnons in a
systematic manner. As a result, we obtain an effective polaron
Hamiltonian describing the dressing, or even binding, of a
spinon-chargon meson with additional magnon excitations.
Our paper paves the way for similar studies in doped 2D Mott
insulators and may lead to a better understanding of the charge
carriers and their interactions with magnons in underdoped
copper oxides. In particular, we expect that our formalism will
be useful for understanding transport measurements involving
magnetic polarons, such as the long-time spreading dynamics
of a hole reported in Refs. [23–26].

Experimentally, the model we consider can be realized
with ultracold atoms in optical lattices, which have recently
made significant advances in studying doped quantum mag-
nets [27]. On a mean-field level, our model, moreover, maps
to a doped mixed-dimensional t − J model [28], which can
be realized by subjecting a Fermi-Hubbard system to a strong
tilt along one of the lattice directions [29]. Ultracold atom
realizations allow us to measure spectra [30–33] like the ones
we calculate here to identify the emergent zoo of excita-
tions; moreover, they can directly visualize string patterns
[11,34,35] or the dressing cloud of magnetic polarons in con-
figuration space [36], making them ideal platforms to explore
the emergent structures we predict on intermediate length
scales.
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II. MODEL AND MAIN RESULTS

In this paper, we study a simple but rich one-dimensional
model of a doped AFM. Our starting point is an SU(2)-
invariant Heisenberg spin chain. An additional staggered
magnetic field of strength ±h on alternating sites along the
z direction breaks the SU(2) symmetry, introduces long-range
magnetic correlations, and leads to collective magnon excita-
tions with a tunable gap controlled by |h|. To describe mobile
holes doped into this model, we use a t − J Hamiltonian:

Ĥ = −t
∑
j,σ

P̂ (ĉ†j+1,σ ĉ j,σ + H.c.)P̂

+ J
∑
j

Ŝ j+1 · Ŝ j − h
∑
j

(−1) j Ŝzj . (1)

Since we will only consider a single doped hole in this paper,
we dropped the nearest-neighbor interaction −J/4 n̂ j+1n̂ j typ-
ically included in the t − J model [37]. A similar model has
recently been studied in Ref. [14] and including phonons in
Ref. [38].

A. Lattice gauge Hamiltonian

For later purposes, we find it convenient to write the Hamil-
tonian as a sum of two separate parts: (i) a t − Jz part which
conserves each individual spin in the so-called squeezed space
[10,11,39] obtained by removing holes from the chain:

Ĥt−Jz = −t
∑
j,σ

P̂ (ĉ†j+1,σ ĉ j,σ + H.c.)P̂

+ Jz
∑
j

Ŝzj+1Ŝ
z
j − h

∑
j

(−1) j Ŝzj . (2)

To keep our analytical formalism later on general, we intro-
duced the coupling Jz, which is simply Jz = J for the original
model in Eq. (1).

Remarkably, the Hamiltonian in Eq. (2) is exactly equiv-
alent to a Z2 lattice gauge theory (LGT), as shown in
Refs. [16,40]. In this mapping, chargons (i.e., spinless holes)
and spinons (i.e., Ising domain walls) carry Z2 gauge charges
and are connected by a Z2 electric string τ x

〈i, j〉. The staggered
field ±h leads to a term h

∑
〈i, j〉 τ̂ x

〈i, j〉 in the Z2 gauge invariant
Hamiltonian. The latter has been shown to cause spinon-
chargon confinement for any infinitesimal h �= 0 [15,16]. This
Z2 LGT formalism forms the basis for our mesonic descrip-
tion of a doped hole.

In addition, the full Hamiltonian in Eq. (1) includes (ii)
transverse spin fluctuations,

Ĥ = Ĥt−Jz + ĤJ⊥ , (3)

where we find it most convenient to write

ĤJ⊥ = J⊥
2

∑
j

(Ŝ+
j+1Ŝ

−
j + H.c.). (4)

Again, we introduced the more general coupling strength J⊥
in this term, although for our original model in Eq. (1) J⊥ = J .
Later on, we will include such transverse spin fluctuations on
top of a Néel ordered ground state distorted by the hole motion
by introducing Holstein-Primakoff (HP) bosons (magnons),
see Fig. 1(b).

Finally, we note that in the limit h/J⊥ → ∞, the transverse
fluctuations ĤJ⊥ can always be treated perturbatively, inde-
pendent of the ratios Jz/J⊥ or t/J⊥. To lowest order, only the
t − Jz part of the Hamiltonian, Eq. (2), remains and it follows
that the model has an emergent Z2 gauge structure for large
values of h.

B. Main results: Particle zoo in the spin chain

The separation of the Hamiltonian in two components
lends a natural understanding of our results. Our main goal
is to understand the ground and excited states of a mobile
dopant in the spin chain. As described in detail below, we find
that the Z2 gauge structure of the t − Jz part of the Hamil-
tonian or, equivalently (in our model), the string picture of
magnetic polarons [21,41,42], introduces parton constituents,
namely, spinons and chargons, which are confined by the
linear string tension generated by the staggered field h. The
resulting mesonic spinon-chargon bound state has a rich inter-
nal structure constituted by inversion-even and inversion-odd
vibrational modes of theZ2 electric string or, equivalently, the
string of overturned Ising spins, connecting the spinon and
the chargon. We probe these states directly in spectra calcu-
lated by time-dependent matrix product states (td-MPSs), see
Sec. III and compare to an effective SC description that we
develop here, see Sec. IV.

The transverse couplings introduced by ĤJ⊥ lead to vac-
uum fluctuations of magnons in the absence of a doped hole.
This effect can be captured by a simple linear spin-wave ex-
pansion around the classical Néel state, which we achieve by a
HP approximation. In the vicinity of the meson, the distortion
of the Néel background caused by the spinon-chargon pair
introduces additional couplings to magnons which give rise
to additional rich physics: On one hand, they lead to pola-
ronic dressing and weak mass renormalization of the meson
around the dispersion minimum at momentum k = π/2. This
is shown for the lowest-energy mesonic state (solid blue line)
in Fig. 2.

More dramatically, the interactions with magnons can give
rise to meson-magnon bound states. Since the magnon itself
can be viewed as a bound state of two confined spinons,
this state constitutes an emergent tetra-parton composite. As
demonstrated in Fig. 2, for sufficiently large values of h our
effective model of the meson-magnon coupling predicts a
low-lying meson-magnon bound state at relatively low en-
ergies below the meson-magnon scattering continuum. This
should be contrasted with the higher excitation energies of
ro-vibrational internal meson modes. We confirm our predic-
tion of meson-magnon bound states in td-MPS calculations
of one-hole spectra in a sector with total spin Sz = 3/2, see
Sec. III.

Finally, meson-magnon interactions can have a pronounced
effect on the quasiparticle dispersion of the dressed meson
around momentum k = 0. In this region of momentum space,
the bare meson dispersion approaches the meson-magnon
scattering continuum most closely, as indicated by the dashed
and solid black lines in Fig. 2. Without meson-magnon inter-
actions and for sufficiently weak fields h � t, J , we find that
they can even cross, leading to a decaying bare meson state
inside the meson-magnon scattering continuum. However, in
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Sec. VB we analyze our effective meson-magnon Hamilto-
nian and find indications that meson-magnon interactions in
the 1D chain are strong enough to avoid such quasiparticle
decay [43], namely, the meson and magnon bands repel and
an isolated quasiparticle band of the mesonic magnetic po-
laron survives even around k = 0. This prediction is further
supported by td-MPS simulations at small fields where the
effect is most pronounced.

Methodologically, we deviate from the standard approach
typically used to describe magnetic polaron formation in an
AFM [44–46]. As mentioned above, we first take into account
how the mobile hole distorts the Néel background with pure
Ising interactions. This allows us to make a direct connection
to the Z2 LGT and identify the parton content of the meson.
Moreover, we can relatively easily capture the competition be-
tween the tunneling term t and the linear string tension ∝ h to
all orders in t/h. This is achieved within a SC theory. Next we
introduce generalized HP bosons (loosely speaking, magnons)
by expanding around the already distorted Néel state (we
refer to this approach as the generalized 1/S approximation
[21]). This yields additional couplings of the meson to the
magnons; importantly, the strength of these couplings is only
of order J , and a fraction of t for some further corrections we
identify. Hence, perturbative or simple variational approaches
are sufficient to capture the additional meson-magnon inter-
actions. This should be contrasted with the traditional 1/S
approximation [44–46] where the hole hopping t itself leads
to magnon creation; as a result, the effective Hamiltonian is
strongly coupled when t > h and direct analytical insights are
harder to obtain.

C. Possible experimental realizations

Experimentally, the model in Eq. (1) we study can be
realized in different ultracold atom setups. We propose to use
ultracold fermionic lithium or potassium atoms which have
very successfully explored the SU(2)-invariant 2D Fermi-
Hubbard model [27]. The main obstacle in these systems is
to implement the staggered magnetic field, which requires
local addressability on the scale of an optical wavelength; see,
e.g., Ref. [47], and sizable magnetic moments to distinguish
different spin states, in a regime close to an atomic Feshbach
resonance to realize super-exchange couplings.

A first option is to use potassium atoms in a quantum
gas microscope [48] which have a sizable magnetic moment
[49], allowing for a local modulation of the magnetic field.
A second option is to work in a mixed-dimensional setting
where tunneling is strongly suppressed by strong gradients
along all but one lattice direction [28]. Moreover, we assume
that nearest-neighbor AFM Ising couplings between all spins
are present, which dominate over the weak superexchange
couplings along the gradient directions. This can be realized
in an optical lattice by adding Rydberg dressing [50]. When
doping only the central chain with one hole and keeping
all neighboring chains at half filling, the surrounding spin
chains can generate an effective staggered field term ±h if
they are sufficiently cold. Here we assumed, in a mean-field
spirit, that the wave functions of the different chains approx-
imately factorize. Similarly, in mixed-dimensional settings
with SU(2) invariant spin-exchange interactions [28,29], we

expect a ground state with broken SU(2) symmetry in quali-
tatively very similar physics.

We note that the 1D model in Eq. (1) can be equally
realized with bosons as long as one ensures to have AFM
Heisenberg couplings between the spins [51,52]. The statistics
of the dopants is irrelevant, as can be shown by a Jordan-
Wigner transformation. Hence the model in Eq. (1) can also be
simulated in qubit arrays or digital quantum computers [53],
without the need to incorporate fermionic statistics.

Moreover, it has recently been argued in Ref. [14] that the
model in Eq. (1) is also relevant to real materials. The latter
are only quasi-one-dimensional, embedded in a surrounding
crystal which induces a weak staggered magnetic field on the
order of h ∼ 0.1J [14].

The probes we discuss in this paper, such as angle-resolved
photoemission spectrum (ARPES) spectra, can also be mea-
sured in ultracold atom experiments, see, e.g., Refs. [30–33].
To this end, an atom is coherently transferred and subse-
quently detected in a weakly interacting probe state, which
can be realized using a second layer or internal atomic states.
Extending such schemes to two-photon protocols allows us to
measure the more complicated rotational or spin-flip ARPES
spectra discussed below, see, e.g., Ref. [22].

III. NUMERICAL DENSITY-MATRIX
RENORMALIZATION GROUP SPECTRA

In this section, we present our numerical results, largely
based on td-MPS simulations [54], which support our main
findings about the structure and interactions of doped holes in
the 1D spin chain with a staggered field. We already compare
our numerical results to predictions by the semianalytical SC
meson-magnon theory introduced in the subsequent sections.
This theory provides a unified understanding of all our key
numerical observations.

Detailed descriptions of the numerical td-MPS simulations
we performed can be found in Refs. [20,22]; our algorithm
builds upon earlier works [55–57]. To ensure proper con-
vergence of the MPS calculations, we performed the same
convergence checks, in time and bond dimension, as described
in Refs. [20,22].

A. Ground state: Dressed hole

In Fig. 3, we start by showing the standard one-hole
ARPES, defined by

S(k, ω) = − 1

π
Im

∫ ∞

0
dt

ei(ω−E0 )t

√
L

∑
j

eik jG j (t ), (5)

with the Green’s function

G j (t ) =
∑

σ

〈�0|ĉ†j,σ e−iĤt ĉ0,σ |�0〉, (6)

where |�0〉 is the ground state with energy E0 of Ĥ with zero
holes.

In the spectrum, we observe a pronounced quasiparticle
peak at low energy which corresponds to the magnetic po-
laron. The comparison with our semianalytical theory shows
that it is located around the expected energy and shows the
same dispersion relation with a minimum at k = π/2. At
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FIG. 3. The standard one-hole ARPES spectrum reveals a pro-
nounced quasiparticle peak at the lowest energy. The dispersion
minimum is located at k = π/2, as predicted by our semianalytical
theory (solid blue line). Here we consider h = 1.0J and t = 5J; the
color scale is in a.u.

higher energies, the spectrum is relatively featureless for the
considered value of h/J = 1.0 in Fig. 3. As we show next,
additional features becomes visible for larger values of h.

B. Rovibrational excitations: Mesonic states

Now we calculate a rotational variant of the ARPES spec-
trum, where spinon-chargon excitations with odd (ξ = −1)
and even (ξ = +1) inversion symmetry can be detected. It is
defined as in Eq. (5) but using the rotational Green’s function
[22]

Grot
j,ξ (t ) =

∑
σ

〈�0|ĉ†j,σ X̂ †
j,ξe

−iĤt X̂0,ξ ĉ0,σ |�0〉, (7)

where X̂ j,ξ = ∑
σ ĉ

†
j,σ (ĉ j+1,σ + ξ ĉ j−1,σ ) creates an additional

excitation of the spinon-chargon pair.
In Fig. 4, we show our results for h = 4J . In both parity

sectors ξ = ±1, we observe pronounced vibrational peaks,
which correspond to vibrational modes of the spinon-chargon
string. The absence of even (odd) peaks in the odd (even)
spectrum indicates that the parity ξ is a good emergent quan-
tum number at all momenta, not only at k = 0, π/2 where
the system is strictly inversion symmetric. This is a direct
indication for the existence of an internal meson structure
[22].

In Fig. 4, we also compare the peak positions observed
in td-MPSs with predictions by our SC theory. The observed
peaks in our full numerical spectra are in excellent agreement
with our semianalytical predictions. In the latter, for simplic-
ity, we neglected corrections frommagnon-dressing which are
weak at large values of h. Nevertheless, note that significant
charge fluctuations are present since we consider t > h in the
figure.

FIG. 4. The rotational one-hole ARPES spectrum reveals a series
of long-lived vibrational excitations with even (ξ = +1, top) and odd
(ξ = −1, bottom) parity. We compare the td-MPS spectra with bare
meson resonances calculated from our strong-coupling theory (gray
solid lines: ξ = +1 even; gray dashed lines: ξ = −1 odd). Here we
consider h = 4.0J and t = 5J; the color scale is in a.u.

C. Meson-magnon bound states

Next we show that even more complex excitations can arise
when the mesonic hole interacts with its spin environment.
Specifically, the meson can form a stable bound state with
a magnon excitation. To demonstrate the existence of such
bound states, we first consider an even more involved type
of spectral function. To obtain spectral weight in the sector
with one hole and one extra magnon, we create an excitation
with total spin Sz = 3/2 by flipping a spin next to the hole.
This corresponds to working with the meson-magnon Green’s
function

Gmes−mag
j (t ) =

∑
σ

〈�0|ĉ†j,σ �̂
†
j e

−iĤt �̂0 ĉ0,σ |�0〉, (8)
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FIG. 5. The spin-flip one-hole ARPES spectrum probes the sec-
tor with total spin Sz = 3/2. It reveals a long-lived weakly dispersing
meson-magnon bound state. We compare the td-MPS spectrum with
our semianalytical prediction for the meson-magnon bound state
(solid red line). Parameters are h = 1.0J and t = 5J; the color scale
is in a.u.

where �̂ j = ∑
δ=±1 ĉ

†
j+δ,σ ĉ j+δ,σ flips an additional spin and

↑ =↓ (↓ =↑).
The resulting spin-flip one-hole ARPES spectrum is shown

in Fig. 5. There we observe a low-lying pronounced quasipar-
ticle peak featuring a weakly dispersing band. Comparison to
our semianalytical prediction in the one-hole plus one magnon
sector yields good qualitative agreement up to a small overall
energy shift a fraction of J . Hence we interpret the observed
feature as a stable meson-magnon bound state.

To further analyze the robustness of the meson-magnon
bound state, we need to check whether it lies energetically be-
low the meson-magnon scattering continuum. This is the case
for the bound state predicted by our semianalytical theory:
Indeed, in Fig. 2 we observe an isolated one-magnon excited
state (lowest red band) between the mesonic ground state
(blue) and the meson-magnon continuum (filled red band).
To test this scenario in our fully numerical density-matrix
renormalization group simulations, we calculate the meson-
magnon binding energy, which is defined as follows:

Emm = (E1h,3/2 − E0h,0) − (E1h,1/2 + E0h,1 − 2E0h,0). (9)

Here Enh,s denotes the ground-state energy in the sector with
n holes and total spin Sz = s. If Emm < 0, the meson-magnon
state is located below the scattering continuum and forms a
stable bound state.

In Fig. 6, we plot the numerically obtained meson-magnon
binding energy for various field strengths h/J , at fixed t/J =
5. We find consistently that Emm < 0 beyond a critical field
strength hc = 0.3(1)J , confirming the existence of a stable
bound state as anticipated from the spin-flip ARPES spec-
trum. In the figure, we also compare our results to the
semianalytical theory (solid red) and an effective theory valid
at large h � J (see Appendix E). For small h, our semianalyt-

FIG. 6. The meson-magnon binding energy evaluated from
density-matrix renormalization group simulations of the ground state
with and without an additional hole and magnon. We used an addi-
tional magnetic field of strength hedge = 2J at the boundaries of the
chain to avoid boundary effects.

ical theory is in good agreement with the numerics. At larger
values of h we observe deviations, which can be attributed
to some simplifying approximations we made, see Sec. V
for a detailed discussion. The large-h theory provides good
qualitative agreement everywhere.

D. Avoided magnon decay in a weak field

Finally, to study the effect of meson-magnon interactions
around zero total system momentum k = 0, we return to
the standard ARPES spectrum, i.e., the Green’s function in
Eq. (6). However, now we consider a parameter regime where
t � J > h. Beyond a critical value t > tc(J, h), depending on
h and J , the bare spinon-chargon dispersion is predicted by
our SC theory to enter the magnon continuum in the absence
of meson-magnon interactions. Let us begin by specifying
what is meant by this.

We consider two states, both at the same total system mo-
mentum k. In the first—the bare meson state—all momentum
is carried by the spinon-chargon pair. From the SC theory, we
predict its energy to be

εsc(k) = J∗
⊥ cos(2k), (10)

with a renormalized tunneling J∗
⊥, see Fig. 7(a). In Sec. III B,

we already confirmed that the meson dispersion takes this
general shape. The second, competing state, we consider con-
tains an additional magnon excitation with momentum q and
energy ωq, see Fig. 7(b). To obtain the same total momentum
k, the meson carries momentum k − q and the total energy of
the state is

Ek,q = εsc(k − q) + ωq. (11)

This defines the meson-magnon continuum.
Since for h �= 0 the magnon spectrum ωq > 0 is gapped,

the lowest energy state at k = π/2 always corresponds to a
single spinon-chargon pair. However, at k = 0 the situation
is much more interesting. In particular, the meson state with
k = 0 and energy εm = εsc(k) = J∗

⊥ is very competitive with
the meson-magnon state at q = π/2 which has energy εmm =
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FIG. 7. Avoided quasiparticle decay. (a) The meson dispersion in
the limit t � h, J approaches its strong coupling shape J∗

⊥ cos(2k).
(b) The magnon dispersion in the limit h � J approaches the 1D
spinon continuum, with a lower edge at (Jπ/2)| sin(q)|. (c) Without
interactions, the bare meson state (m) would enter the meson-
magnon (mm) continuum when t � J � h. (d) In the presence of
sufficiently strong meson-magnon interactions, the mesonic quasi-
particle band remains stable for all momenta.

ωπ/2 − J∗
⊥ = Ek=0,q=π/2. Indeed, for very small values of h →

0 we can show analytically using our SC theory that J∗
⊥ →

J . Moreover, in this limit the magnon dispersion approaches
the well-known spinon continuum which has a lower-edge at
εs(q) = Jπ/2| sin(q)| [13]. Hence,

εmm − εm = π

2
J − 2J = −0.429...J < 0, (12)

and we conclude that, in the absence of meson-magnon in-
teractions, the meson-magnon state has lower energy; i.e., the
bare meson enters the meson-magnon continuum in this limit,
see Fig. 7(c).

Before we proceed, we note that the same result is obtained
when the meson plus two-magnon continuum is considered.
This case becomes relevant if the meson can only couple to
pairs of magnons. Making the same considerations as above
does not change the outcome, as one can see by placing the
second magnon in the q = 0 state whose energy ωq=0 → 0 as
h → 0.

At first glance, the scenario we find appears reminiscent
of supersonic polarons emitting Cherenkov phonons [58];
But we completely ignored interactions between mesons and
magnons so far, which can destroy the quasiparticle. How-
ever, recently it has been shown that sufficiently SCs of a
quasiparticle to an excitation continuum can, on the contrary,
stabilize the quasiparticle band and lead to a complete avoid-
ance of quasiparticle decay [43]. This scenario is sketched
in Fig. 7(d). As we show below in Sec. VB, our effective
theory indicates that meson-magnon couplings in the doped
spin chain Eq. (1) become strong enough at long wavelengths
to cause an avoided quasiparticle decay.

In Fig. 8, we confirm this prediction by td-MPS simula-
tions of the ARPES spectrum. In fact, all ARPES spectra we
considered showed a clearly defined quasiparticle band at low

FIG. 8. Avoided quasiparticle decay in the weak-field large-
tunneling limit, seen in ARPES spectra obtained by td-MPS
simulations. We observe a pronounced quasiparticle peak at the low-
est energies for all momenta k, even around k = 0 where the meson
comes closest in energy to the meson-magnon continuum. We show
td-MPS results for t = 5J and h = 0.01J; the color scale is in a.u.

energies, for all momenta; this is also in agreement with the
recent results of Ref. [14]. In Fig. 8, we consider the most
extreme regime where t � J � h and our argument above
predicts the meson quasiparticle band to enter the magnon
continuum in the absence of interactions. Specifically, we
assumed t = 5J and h = 0.01J .

IV. STRONG-COUPLING THEORY OF DOPED HOLES

In this section, we discuss the generalized 1/S expansion
for the 1D t − J model in a staggered field, Eq. (1). It com-
bines a parton theory for individual holes doped into the spin
system [21] with linear spin wave theory (LST) above the
magnetically ordered spin background. The main achievement
of this approach is to combine advantages of both methods:
We keep the clear physical picture afforded by the parton
theory while including a back-action of partons on their spin-
environment.

Concretely, the idea of the method is to include small
quantum fluctuations about a classical magnetic state of Ising
spins in the lattice. In a key distinction from earlier approaches
[44–46], we allow the Ising configuration around which we
expand to be displaced by the quantum motion of the doped
hole. This method can be formalized by using a generaliza-
tion of the 1/S expansion in the length S of the considered
spins [21]. As usual, we send S → 1/2 in the end to obtain
predictions for the spin-1/2 model in Eq. (1).

A. Generalized 1/S expansion

We begin the discussion by using a Schwinger boson rep-
resentation of the (fermionic) t − J model. We introduce a
spinless fermionic chargon ĥ†j and a Schwinger boson β̂

†
j,σ

and write the original fermion operators as ĉ†j,σ = ĥ j β̂
†
j,σ for

S = 1/2, see, e.g., Ref. [37]. For general values of spin S
of the underlying fermions, the physical Hilbert space we
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consider is realized by states satisfying∑
σ

β̂
†
j,σ β̂ j,σ = 2S(1 − ĥ†j ĥ j ). (13)

This constraint ensures that there is either one vacancy and
no spin, or one spin and no vacancy localized at the specified
site j. We emphasize that for S �= 1/2 this constraint—which
is at the heart of the generalized 1/S expansion—is different
from the condition

∑
σ β̂

†
j,σ β̂ j,σ + ĥ†j ĥ j = 2S more commonly

used in the conventional 1/S expansions [44]. Using the new
constraint in Eq. (13) has the advantage of treating spin and
charge as mutually exclusive degrees of freedom per lattice
site, but leads to a highly nonlinear chargon hopping term
correlated with the surrounding spins when the t − J model
is expressed in terms of ĥ j and β̂ j,σ .

Our strategy to deal with the complicated constraint in
Eq. (13) in the following is twofold. First, on the level of the
Ising part of the Hamiltonian Eq. (2), we can keep track of the
full constraint Eq. (13) due to the classical nature of the Ising
spins. Second, we make a HP approximation around the Ising
configuration to take into account transverse spin fluctuations
from Eq. (4).

1. Zero doping

At zero doping, the ground state of the model in Eq. (1)
has long-range AFM correlations along the z direction for any
nonzero h, which breaks the SU(2) symmetry of the bare t − J
model explicitly. The corresponding low-energy magnon exci-
tations can be described using linear spin-wave theory, which
is equivalent to a first-order expansion of the model in powers
of 1/S [37]. To lowest order in 1/S, one obtains a classical
configuration Ŝzj = τ z

j /2 where the Ising variables τ z
j = (−1) j

describe a Néel configuration.
Up to first order in 1/S, the linear spin-wave theory corre-

sponds to the HP approximation, where the spin operators are
represented as

Ŝzj = τ z
j (S − â†j â j ), (14)

Ŝτ z
j =

√
2Sâ j, Ŝ−τ z

j =
√
2Sâ†j . (15)

Note that, in principle, this expansion can be performed for
arbitrary configurations of the classical Ising field τ z

j . The
bosonic operators â j are related to the Schwinger bosons by
β̂ j,−τ z

j
= â j and β̂ j,τ z

j
= √

S, i.e., bosons β̂ j,σ with σ = τ z
j

condense and to leading order fluctuations of the condensate
fraction are ignored.

Magnon excitations in the undoped AFM are obtained by
setting τ z

j = (−1) j and inserting Eqs. (14) and (15) in the
Heisenberg Hamiltonian. This results in the well-known free
spin-wave Hamiltonian,

Ĥ(0)
mag =

∑
q

ωqb̂
†
qb̂q, (16)

where the sum is taken over lattice momenta q ∈ [−π, π ].
The spin-wave dispersion is given by

ωq = Jz
√
(1 + h/Jz ) − (J⊥/Jz ) cos q, (17)

where we allowed for anisotropic interactions Jz (J⊥) along
z (xy) direction in spin space; for our model in Eq. (1),

J⊥ = Jz = J . The Bogoliubov operators b̂q are related to the
HP bosons â j by a Fourier and Bogoliubov transformation.

2. Single hole doping—Hilbert space

To describe the properties of a single hole doped into a
Néel state, we apply the generalized 1/S expansion outlined
above and extrapolate our result to the case S = 1/2 in the
end. To include distortions of the Néel state by the chargon, we
work with the constraint Eq. (13) and promote the Ising field
τ z
j , around which we perform the linear spin-wave expansion

later on, to a dynamical field: i.e., τ z
j depends explicitly on the

instantaneous configuration of the spinon, string of displaced
spins, and chargon. We will make this precise in the following,
by constructing a complete set of low-energy basis states for
the partons.

Before we proceed, we mention that changes in the Ising
fields will lead to corresponding changes in the magnon terms
resulting from the HP approximation, see Eq. (14). The idea
is to include HP bosons on all bonds of the lattice, as done
in the zero doping case, and describe how each term in the
Hamiltonian leads to parton and/or magnon processes in the
effective model.

To leading order in 1/S, we can ignore magnons com-
pletely and only take into account changes in the Ising fields
τ z
j induced by the chargon motion. This is equivalent to solv-

ing only the t − Jz part, Eq. (2), in our model, which we now
do for one doped hole. To this end, we construct a set of low-
energy basis states with one hole: We start from a Néel state,
i.e., τ z

j = (−1) j , and remove a fermion from some lattice site
js. In accordance with the spin representation Eq. (14) and
the constraint Eq. (13), we enlarge the allowed values of τ z

and set τ z
js = 0. Next, we construct all relevant basis states

by applying the hopping part Ĥt in Eq. (1), still ignoring
magnons. In 1D, these states can be labeled by the position
js, where the hole has been initially created, and the position
jh is reached by the chargon:

{| jh, js〉}, jh = js + �, � ∈ Z. (18)

When the chargon moves, it displaces all spins along its
path � by one lattice site, which changes the Ising fields τ z

j
on the corresponding lattice sites. Thereby, it distorts the Néel
pattern. However, since Ŝzj = Sτ z

j in the absence of magnons,
each displacement can be associated with a potential energy
cost ∝ h. Thus, to leading order in 1/S, the problem is de-
scribed by a single hole moving in a classical spin background
τ z
j with AFM Ising interactions in the staggered field ±h.
The site js where the hole has been initially created car-

ries a surplus of spin and corresponds to a domain wall of
two nearest-neighbor aligned spins in the t − Jz model. The
domain wall can be interpreted as the charge-neutral spinon
which carries a spin σ opposite to the spin of the removed
fermion. In addition to the already introduced fermionic char-
gon operator ĥ j , we define a bosonic spinon operator ŝ j,σ ,
which will become useful when mapping the t − J Hamilto-
nian to the parton basis, Eq. (18). To this end, we make the
following identification for the parton basis:

| jh, js〉 ≡ ŝ†js,σ ĥ
†
jh |0〉. (19)
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As described above, every spinon-chargon configuration
given by Eq. (19) is uniquely related to a configuration of the
Ising fields τ z

j : At the position of the chargon, τ z
jh = 0, and

along the string � of displaced spins connecting the chargon
and spinon, the Ising fields have a reversed sign as compared
to the original Néel state, τ z

j = −(−1) j for j = js + δ�,
where δ� = 1, ..., �. The spinon corresponds to the domain
wall located at the beginning of the string, formed by two
aligned spins.

Since we are working in a subspace with only one spinon
and chargon, we can omit the spin index σ at the spinon
operator. Once the hole is created in the spin chain, the spin of
the spinon is specified by the sublattice index of the removed
fermion, and within our approximation this sublattice index of
the spinon cannot change.

Before we proceed to construct the effective parton Hamil-
tonian, we note that our construction above is equivalent to
assuming that � describes a Z2 electric string connecting a
pair of Z2-charged spinon and chargon in a Z2 LGT; see
Refs. [16,40] for a detailed discussion of this general map-
ping.

3. Parton Hamiltonian

Mapping our model Eq. (1) to the parton basis in Eq. (18)
and introducing HP magnons yields an effective Hamiltonian
of the form

Ĥ = −Lε0 + Ĥh + Ĥs + Ĥsh + Ĥmag, (20)

where ε0 = S2Jz + Sh denotes the classical Néel ground-state
energy per lattice site, the total number of sites in the system
is denoted by L.

The next two terms describe free chargon and spinon terms,
namely,

Ĥh = εh0

∑
j

ĥ†j ĥ j + t
∑
j

(ĥ†j+1ĥ j + H.c.) (21)

and

Ĥs = εs0

∑
j

ŝ†j ŝ j + J⊥
2

∑
j

(ŝ†j+2ŝ j + H.c.). (22)

Here, εh0 = 2S2Jz + Sh and εs0 = S2Jz are the rest energies
of the chargon and spinon in the t − Jz model with the
staggered field, respectively. We emphasize that we use
second-quantized operators for the spinon and the chargon for
notational convenience, keeping in mind that our derivation is
valid for a single spinon-chargon pair.

An important caveat is that the spinon tunneling term, the
second term in Eq. (22), is only valid for the case S = 1/2.
It appears to first order in 1/S and its derivation is given
in Appendix A. The spinon dynamics results similarly as in
the case of the 1D t − J model without an external magnetic
field where genuine spin-charge separation occurs [13]; in the
present case, the flip-flop terms ∝ J⊥Ŝ+

j+1Ŝ
−
j acting on bonds

adjacent to the domain wall let the spinon move by two lattice
sites. In our formalism, the action of these terms on other
bonds away from the spinon creates HP bosons, as will be
shown below. After this subsection, we will consider the limit
S = 1/2, as the spinon tunneling is only valid in this case.

Next, the term Ĥsh describes spinon-chargon interactions
and consists of two terms specified below: a density-density
interaction and a kinetic interaction:

Ĥsh = Ĥdd
sh + Ĥkin

sh . (23)

The first spinon-chargon interaction describes the linear con-
fining potential stemming from the string of displaced spins in
the t − Jz Hamiltonian Eq. (2),

Ĥdd
sh =

∑
i, j

ĥ†i ĥi ŝ
†
j ŝ j Vsh(|i − j|), (24)

with

Vsh(
) = |h|
 − S2Jzδ
,0, 
 � 0. (25)

The first term in Eq. (25) accounts for the spins residing on
the energetically unfavorable sublattice along the string �

connecting the spinon and chargon. This leads to a string ten-
sion ∝ |h| which grows linearly with the length of the string

 = |�|. The second term in Eq. (25) describes a pointlike
attraction between the spinon and chargon. To understand its
origin, note that the rest energies for the partons are different
when they occupy the same lattice site compared to being
on different lattice sites. The difference between these rest
energies is accounted for by the pointlike parton attraction.

The kinetic spinon-chargon term in Eq. (23) describes how
the spinon dynamics is constrained by the chargon. It only
appears for the case S = 1/2 as the spinon tunneling term:

Ĥkin
sh = −J⊥

2

∑
j

ĥ†j+1ĥ j+1(ŝ
†
j+2ŝ j + H.c.). (26)

This term describes how the presence of a chargon disables the
flip-flop term J⊥Ŝ+Ŝ− across it, which was originally assumed
to give rise to spinon dynamics in Eq. (22). The minus sign in
Eq. (26) subtracts this contribution.

The last term in the parton Hamiltonian Eq. (20) summa-
rizes all magnon contributions,

Ĥmag =
∑
q

ωq(b̂
†
qb̂q + 1/2) + Ĥint

mag, (27)

where the first term results from diagonalization of our model
Eq. (1) in the case of zero doping. Ĥint

mag describes magnon-
parton interactions—to be specified below—which involve
HP magnons to quadratic order and have to be included due
to the effects of the partons on the underlying Néel state. The
full expressions are derived in detail in Appendix B.

B. Strong coupling approximation

A full solution of the spinon-chargon problem in the pres-
ence of magnons is not possible. To simplify our analytical
formalism further, we now introduce a SC theory of the meson
formed by the spinon and the chargon. The meson, in turn,
interacts with the bath of low-energy magnon excitations. We
will demonstrate that magnons lead to polaronic dressing of
the meson or even to the formation of a meson-magnon bound
state. The SC approach is valid for t � J, h. It is based on
the separation of timescales between the chargon motion and
the spin degrees of freedom, i.e., the spinon dynamics and
the magnon creation and annihilation processes, namely, the
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chargon dynamics takes place on a much shorter timescale in
this limit.

1. Born-Oppenheimer approximation–meson operator

At SCs, t � J, h, the fast chargon can adiabatically follow
the slow spinon dynamics and magnon creation and annihila-
tion processes. Thus, the chargon motion can be treated first
while fixing the spinon position. Moreover, we assume that
the meson state is weakly affected by magnons and neglect
spin fluctuations at first. This allows us to solve the parton
part of the Hamiltonian Eq. (20), i.e., excluding the magnon
contribution Ĥmag, by making a Born-Oppenheimer ansatz for
the meson state:∣∣ψ (n,ξ )

sh (k)
〉 = 1√

L

∑
js

e−ik js ŝ†js |0〉 ⊗ ∣∣ψ (nξ )
h ( js)

〉
. (28)

This wave function corresponds to plane waves where k
denotes the total momentum of the meson, which is carried by
the heavy spinon. For a fixed spinon position js, the chargon
wave function is given by |ψ (nξ )

h ( js)〉. It only depends on the
distance from the chargon to the spinon, and can be charac-
terized by two quantum numbers n ∈ Z>0 and ξ = ±1. They
correspond to vibrational and rotational states of the chargon.
The derivation of the meson energies and states can be found
in Appendix C.

The ansatz in Eq. (28) leads to a meson dispersion of the
form

ε
(nξ )
k = E (nξ )

h + J (nξ )⊥ cos(2k), (29)

which describes a tight-binding dispersion for the meson with
a two-site tunneling term. Here, the meson hopping amplitude
J (nξ )⊥ is related to the spin exchange coupling J⊥ by a Franck-
Condon factor:

J (nξ )⊥ /J⊥ = 〈
ψ

(nξ )
h ( js + 2)

∣∣1 − ĥ†j+1ĥ j

∣∣ψ (nξ )
h ( js)

〉
. (30)

The energy offset E (nξ )
h corresponds to the chargon eigenen-

ergy characterized by the quantum numbers n and ξ . As shown
in Appendix C, for t � h it scales as

E (nξ )
h ≈ E0 − 2t + a(nξ )sh t1/3h2/3 + O(h), (31)

with numerical coefficients a(nξ )sh related to the Airy function
[41].

The center-of-mass momentum of the mesonic bound state
is carried by the heavy spinon and the binding of the spinon
to the fluctuating chargon leads to a renormalization of the
hopping amplitude, J (nξ ) � J , see Fig. 2. Because the Franck-
Condon factor J (nξ )/J is independent of k at SC, the shape of
the meson dispersion is identical to that of the spinon up to an
overall rescaling.

Formally, we can define meson operators f̂ †js,nξ to describe
the bound state:

f̂ †js,nξ |0〉 = ŝ†js |0〉s ⊗ ∣∣ψ (nξ )
h ( js)

〉
. (32)

This will help us to describe interactions between the meson
and the bath of magnons in the next step. Note that in this
description, the chargon quantum numbers (n, ξ ) take the role
of band indices of the meson.

2. Polaron Hamiltonian

Next we include magnon processes. As in the case of
spinon dynamics, the timescales associated with magnon
processes also correspond to longer times compared to the
chargon motion. It is thus legitimate to extend the SC ansatz
to the magnon contributions and treat magnon terms on a
mean-field level. We assume that the meson is formed even
in the presence of magnons, and neglect any back-action of
the latter on the underlying SC meson wave function, such as
a possible weak renormalization of the linear string tension.

Within the SC theory, the effective magnon Hamiltonian
is obtained by averaging the parton Hamiltonian over the SC
spinon-chargon wave function Eq. (28). Working in second
quantized notation with the meson operators f̂ †js,nξ , we obtain

Ĥpol =
∑
js,nξ
js′,n′ξ ′

〈
ψ

(n′ξ ′ )
sh ( js′)

∣∣Ĥ∣∣ψ (nξ )
sh ( js)

〉
f̂ †js′,n′ξ ′ f̂ js,nξ . (33)

The resulting effective polaron Hamiltonian can be decom-
posed into different contributions:

Ĥpol = Ĥ(0)
mes + Ĥ(0)

mag + Ĥint
pol. (34)

The free meson and magnon Hamiltonians are

Ĥ(0)
mes =

∑
k,nξ

ε
(nξ )
k,eff f̂

†
k,nξ f̂k,nξ , (35a)

Ĥ(0)
mag =

∑
q

ωqb̂
†
qb̂q. (35b)

Note that the free meson dispersion gets weakly renormal-
ized by zero-point contributions of the magnons resulting
from the Bogoliubov transformation. However, the analytic
form of Eq. (29) remains unchanged: ε (nξ )k → ε

(nξ )
k,eff = E (nξ )

h,eff +
J (nξ )⊥,eff cos(2k). We do not include full expressions for the small
corrections here but refer the reader to Appendix D for details.

The meson-magnon interactions in Eq. (34) take the com-
pact form

Ĥint
pol = − 1

2L

∑
nξ

∑
k,pq

[
V (nξ )
k,pq f̂ †k−p+q,nξ f̂k,nξ b̂

†
pb̂q

+ (
W (nξ )

k,pq f̂ †k−p−q,nξ f̂k,nξ b̂
†
pb̂

†
q + H.c.

)]
, (36)

where we ignore band-changing collisions, i.e., we only con-
sider terms diagonal in (n, ξ ). This is justified in the SC limit
by the large separation of energy scales. The Bogoliubov
operators b̂q are related to the HP bosons â j by a Fourier
and Bogoliubov transformation where the last transformation
diagonalizes the free magnon terms. This leads to explicit
expressions for the two couplings V (nξ )

k,pq and W (nξ )
k,pq describing

normal and anomalous magnon terms, as derived in Ap-
pendix D.

This effective SC Hamiltonian describes a polaron model
of the mesonic impurity coupled to the bath of quantum spin
fluctuations, represented by collective magnon excitations.

C. Overview of the approach

Above we described how the original t − J model with
a staggered field, Eq. (1), first leads to an effective parton
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TABLE I. Overview of the different levels of approximation used in our semianalytical theory, as described in the text.

Theory Free variables Alternative representation Ĥ

t − J model ĉ j,σ (spin-1/2 fermions) ĉ j,σ = β̂ j,σ ĥ
†
j (Schwinger boson, slave fermion) Eq. (1)

Parton theory τ̂ z
j (Ising variables), â j (HP magnon) ŝ j,σ (spinon), ĥ j (chargon), b̂q (Bogoliubov magnon) Eq. (20)

Polaron theory f̂k,nξ meson, b̂q (Bogoliubov magnon) Eq. (34)

model which subsequently maps to the simplified polaron
Hamiltonian in Eq. (34). In Table I, we provide a summary of
the involved fields and Hamiltonians appearing in the various
stages of approximations. Next we will solve the effective
polaron theory.

V. SOLUTIONS OF THE STRONG-COUPLING THEORY

In this section, we apply and compare different methods to
solve the effective polaron Hamiltonian from Eq. (34). These
are based on known analytical polaron techniques which have
been successfully used to study Bose polaron problems in the
past [3–7].

A. LLP + Gaussian approach: Meson-magnon binding

The above effective meson-magnon theory does not couple
states where the total momentum of the meson plus magnon
excitations is changed. Thus, the total momentum is a con-
served quantity which reflects the underlying translational
invariance of the system. Below we make this conservation
of the total momentum explicit by applying a Lee-Low-Pines
(LLP) transformation [59] to the Hamiltonian Eq. (34). To
solve the resulting Hamiltonian H̃ = Û †

LLPĤÛLLP in the LLP
frame, we simplify it further by expanding to quadratic order
in magnons. This allows us to solve it explicitly using multi-
mode Gaussian states of magnons.

1. LLP transformation

The LLP transformation shifts the entire magnon state into
the frame comoving with the center-of-mass of the impurity—
in our case the mesonic bound state. It is represented by the
unitary transformation,

ÛLLP = e−iX̂mesQ̂b, (37)

where we introduced the meson position operator X̂mes =∑
js,nξ js f̂ †js,nξ f̂ js,nξ and the total magnon momentum operator

Q̂b = ∑
q qb̂

†
qb̂q.

Now we apply the unitary LLP transformation to the ef-
fective polaron Hamiltonian Eq. (34). This is established by
determining how the meson and magnon operators transform,
namely,

Û †
LLP f̂

†
k,nξÛLLP = f̂ †

k+Q̂b,nξ
, (38)

Û †
LLPb̂

†
qÛLLP = eiqX̂mes b̂†q. (39)

Insertion of these relations into Û †
LLPĤÛLLP = H̃ yields a

Hamiltonian which is block-diagonal in the total system mo-

mentum K . Thus we get a Hamiltonian of the form

H̃ =
∑
K,nξ

f̂ †K,nξ f̂K,nξ ⊗ Ĥa(K ), (40)

where the term Ĥa(K ) depends only on magnon operators
b̂†j , i.e. we eliminated the impurity degree of freedom from
the problem. However, the transformed magnon Hamiltonian
Ĥa(K ) now includes nonlinearities in the magnon operators.

Specifically, the LLP transformation leads to a shift of the
meson momenta by the total magnon momentum operator. By
applying the LLP transformation, the following replacement
occurs in the free meson term Eq. (35a):

Û †
LLPĤ(0)

mesÛLLP =
∑
K,nξ

J (nξ )⊥,eff cos(2K − 2Q̂b) f̂
†
K,nξ f̂K,nξ , (41)

i.e., effectively cos(2k) → cos(2K − 2Q̂b). Expressing the
cosine in terms of exponentials, we observe strong magnon
nonlinearities corresponding to factors of the form e−i2Q̂b in
the Hamiltonian.

2. Linearization and Gaussian states

To deal with the nonlinearities encountered during the LLP
transformation, we use the approximation

e−i2Q̂b ≈ 1 +
∑
q

(e−i2q − 1)b̂†qb̂q. (42)

This equation holds exactly within a subspace of no more
than one magnon excitation. Hence it is similar in spirit to the
HP approximation we made earlier, which also restricted us
to consider low magnon densities only. Both approximations
rely on the assumption that meson-magnon interactions are
sufficiently weak to work at low excitation densities.

The resulting LLP Hamiltonian H̃ following this trunca-
tion yields a quadratic Hamiltonian in the bosonic magnon
operators b̂†q, making it exactly solvable via a multimode
Bogoliubov transformation [60]. Within the LLP frame, our
approach is Gaussian, in the sense that all non-Gaussian con-
tributions are ignored. Nevertheless, we emphasize that the
overall meson-magnon wave function includes non-Gaussian
correlations, since we applied the non-Gaussian LLP transfor-
mation first.

Our ansatz is similar in spirit to the more general class of
non-Gaussian variational states discussed in Ref. [61]. Indeed,
a more sophisticated approach would be to avoid the lineariza-
tion in Eq. (42) and fully solve the variational problem in the

LLP frame, 〈H̃(K )〉 != min, in the class of Gaussian states.
Here we chose the simpler linearization method because it
admits more direct analytical insights and immediately yields
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FIG. 9. Average densities of bare HP bosons 〈â†j â j〉 (red), Bogoliubov bosons 〈b̂†j b̂ j〉 (magnons, blue), and the chargon 〈ĥ†j ĥ j〉 (gray) for
total momenta k = 0, k = π/4, and k = π/2. The staggered magnetic field is chosen as h = 0.45J and the chargon tunneling as t = 5J . At
this particular magnetic-field value, our theoretical treatment shows that at a total momentum k = 0 (left panel) the tetra-parton bound state of
the meson with a magnon comes close in energy to the dressed meson state, while for k = π/2 (right panel) they are further apart from each
other, see Fig. 2. The formation of the bound state is also visible here in the quasiparticle densities: While in the right panel, the HP boson
density is strongly suppressed around the spinon, the left panel shows that local spin flips start to accumulate around the meson.

a full magnon excitation spectrum, but extensions beyond this
simple limit constitute an interesting future direction.

In the following, we solve the meson-magnon polaron
problem as described, and discuss the properties of our so-
lution in more detail.

3. Magnon distribution

To gain better understanding of how magnons lead to pola-
ronic dressing of the meson, we first plot the average number
of bare HP bosons na( j) = 〈â†j â j〉 and Bogoliubov bosons

nb( j) = 〈b̂†j b̂ j〉 in Fig. 9. Since we work in the LLP frame, j
corresponds to the distance to the spinon, which is located at
the core of the meson and thus at the origin of the LLP frame.
Additionally, we plot the local distribution of the chargon in
its rovibrational ground state, which indicates the extension
of the mesonic bound state and the chargon cloud around the
spinon. Far away from the meson, the number of HP bosons
approaches a constant value (vacuum fluctuations), which is
a consequence of the spin-flip terms Ŝ+

j+1Ŝ
−
j . The asymptotic

value of na(| j| � 1) can be calculated straightforwardly from
linear spin-wave theory.

In the ground state at k = π/2, Fig. 9 right, we observe
a suppression of the number of HP bosons, i.e., fewer lo-
cal spin flips, in the vicinity of the spinon. The suppression
of na( j) close to the spinon is a direct consequence of the
formation of the geometric string. In the region where the
chargon delocalizes, i.e.. the spinon-chargon string fluctuates,
the magnetization of the spin background is reduced, and
therefore we expect suppressed quantum fluctuations around
the spinon. Note that this suppression of magnon fluctuations
is dictated by the chargon distribution.

The substantial reduction of quantum fluctuations around
the spinon also provides an a posteriori justification for the
use of the lowest order HP approximation in Eqs. (14) and
(15). This is in contrast to the conventional 1/S-expansion

[44,45,62], where nonlinear terms in the magnons must be
included to prevent excessive densities of excitations at SCs.
Indeed, in the conventional 1/S expansion where magnons are
defined relative to the undoped Néel state, a local enhance-
ment of bare HP magnon fluctuations is obtained around the
mobile hole.

4. Ground-state energy

To acquire better knowledge of how magnon excitations
influence the dressed meson, we show in Fig. 10 the ground-
state energy of one hole for various values of the staggered
magnetic field h/t . We compare the ground-state energy com-
puted from our SC theory to direct numerical density-matrix
renormalization group calculations of the ground-state energy.
The results show good agreement between our SC theory
and the numerical data for all chosen magnetic field values.
Note that we also display the ground-state energy for the
bare meson—neglecting magnon excitations—which follows
from a pure parton theory for the doped hole. It shows good
agreement to the numerics, especially for large values of h
where magnon dressing only leads to a weak renormalization
of the meson dispersion, see Fig. 2. Thus the bare parton
theory for the hole already provides a good description of the
ground-state properties of the meson.

5. Polaron spectrum

As already elaborated, we have simplified the effective
meson-magnon Hamiltonian Eq. (34) to a quadratic Hamil-
tonian in the Bogoliubov operators b̂†q, b̂p,

Ĥa(K ) = E (nξ )
h,eff + J (nξ )⊥,eff cos(2K ) +

∑
q

�
(nξ )
K,q b̂

†
qb̂q

− 1

2L

∑
pq

[
V (nξ )
K,pqb̂

†
pb̂q + (

W (nξ )
K,pqb̂

†
pb̂

†
q + H.c.

)]
(43)
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FIG. 10. Ground-state energy in our Gaussian LLP approach
(solid red) compared to the numerical density-matrix renormalization
group data (symbols). We also provide the ground state (G.S., dashed
line) energy for the bare meson without including magnon couplings,
to show the influence of spin fluctuations on the energy. The theory
shows good agreement to the numerical data. We used parameters
J⊥ = Jz = J and t/J = 5, and assumed that the meson carries a total
momentum of k = π/2 in our calculations.

by transforming the system into the LLP frame and
linearization—corresponding to the frame comoving with the
meson—which eliminates the meson degree of freedom. The
total system momentum, K , is conserved in this frame and
thus labels different total momentum blocks of the Hamilto-
nian. The linearization Eq. (42) results in a renormalized free
magnon dispersion at fixed total momentum K :

�
(nξ )
K,q = ωq + J (nξ )⊥,eff( cos(2K − 2q) − cos(2K )). (44)

To solve the quadratic Hamiltonian in Eq. (43), we use a
multimode Bogoliubov transformation [60]. In the following,
we will sketch the idea and mention peculiarities arising from
this multimode technique. It starts by introducing transformed
Bogoliubov operators,

d̂l =
∑
q

[Ul,qb̂q −Vl,qb̂
†
q], (45)

d̂†
l =

∑
q

[Ul,qb̂
†
q −Vl,qb̂q], (46)

whereU,V are real L × L matrices; L is the number of lattice
sites which equals the number of momentum modes.

Next one searches for U and V such that the following
equation:

[Ĥa(K ), d̂†
l ] = wl (K )d̂†

l , (47)

is fulfilled. Up to a constant energy shift, this ensures
that the Hamiltonian takes the diagonal form Ĥd (K ) =∑

l wl (K )d̂†
l d̂l + const with dispersion wl (K ). Equation (47)

leads us to an eigenvalue equation of the form(
A B

−B −A

)(
Ul

Vl

)
= wl (K )

(
Ul

Vl

)
. (48)

Ul (Vl ) denotes the lth column of the matrix U (V ) and wl (k)
then corresponds to the eigenenergies of the resulting matrix
on the left-hand site of Eq. (48). Note that this matrix is not
Hermitian and thus may lead to complex eigenvalueswl (K ). If
this is the case, the Hamiltonian Eq. (43) is not diagonalizable
[60].

The matrices A and B have the components

Apq = �
(nξ )
K,q δpq − 1

2L
V (nξ )
K,pq,

Bpq = − 1

L
W (nξ )

K,pq.

The eigenvalue Eq. (48) is solved numerically by exact diag-
onalization. Finally, inserting the transformation Eq. (45) and
rearranging terms such that we can use the eigenvalue Eq. (48)
brings us to the diagonalized form of the Hamiltonian [60]
Eq. (43):

Ĥa(K ) = E (nξ )
h,eff + J (nξ )⊥,eff cos(2K ) +

∑
l

wl (K )d̂†
l d̂l

+ 1

2

(∑
l

wl (K ) − tr(A)

)
. (49)

The second term in the second line corresponds to the zero-
point energy of the d̂† bosons.

We can further simplify the Hamiltonian and bring it to the
form

Ĥa(K ) = E (nξ )
h + �(nξ ) + J (nξ )⊥ cos(2K )

+ �(nξ )(K ) +
∑
l

wl (K )d̂†
l d̂l . (50)

�(nξ ) is the sum of all contributions coming from the vacuum
fluctuations, not depending on the total momentum K . In addi-
tion, we introduced�(nξ )(K ), which sums up all the remaining
K-dependent terms. The first four terms of the polaron Hamil-
tonian Eq. (50) describe the polaron ground state band, i.e.,
the meson dressed by virtual magnon excitations, see the blue
curves in Figs. 2 and 11. Each higher band (red) in the men-
tioned figures corresponds to the creation of one multimode
boson d̂†

l with a specific l value. To get a better understand-
ing of the resulting polaron spectrum, we included curves
for the bare meson, E (nξ )

h + J (nξ )⊥ cos(2K ) (black solid curve)
and the lower and upper edges (black dashed curves) of the
noninteracting meson-magnon continuum, defined by Enξ

h +
J (nξ )⊥ cos(2P) + ωK−P with P = π/2 and P = 0, respectively.

From inspection of Fig. 11, we see that the bandwidth of
the meson-magnon continuum (red region) is reduced com-
pared the noninteracting case, due to the interaction with the
mesonic impurity, for the shown magnetic field values h. We
note that for large h � Jz the interacting continuum agrees
with the noninteracting one. We also notice that the meson
bandwidth gets smaller when lowering the magnetic field h,
while for large h � Jz it is equal to the one of the bare meson.
Thus, for growing magnetic fields h the renormalization of the
meson band and the meson-magnon continuum becomes less
pronounced. The reason is that the energy gap for creating
magnon excitations is growing with h. From the polaron spec-
trum in Fig. 11, it is clear that the multimode boson operators
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(a) (b)

(c) (d)

FIG. 11. Magnetic polaron bands plotted for various magnetic
field values with the meson in its rovibrational ground state, n =
1, ξ = +1. The chosen field values are (a) h = 0.2J , (b) h = 0.3J ,
(c) h = 0.4J , and (d) h = 0.5J . The black solid curve shows the bare
meson band without magnon influence and the black dashed lines
show the lower and upper edges of the noninteracting meson-magnon
scattering continuum; blue lines correspond to the ground-state mag-
netic polaron band; the dark red line corresponds to a meson-magnon
bound state. We used system sizes of L = 51 in our exact diagonal-
ization of the effective polaron Hamiltonian and assumed t/J = 5
throughout.

d̂†
l at some l resemble a magnon excitation b̂†K−q with the
meson carrying momentum K .

6. Meson magnon bound state

Our theory contains further structure beyond a mere dress-
ing of the meson. We predict a stable bound state of the meson
with one local spin flip excitation, i.e,. one HP boson. In
Fig. 11, we see that one magnon band emerges below the
meson-magnon scattering continuum but above the polaron
ground-state band for the chosen values of the staggered mag-
netic field h (dark red line in Fig. 11). We interpret this isolated
band as a meson-magnon bound state as it lies energetically
below the scattering continuum. Even for very large values
of h (not shown in Fig. 11), we predict the existence of this
stable bound state, which is further shown by an analytical
calculation in Appendix E.

Another hint supporting the claim that a HP magnon may
bind to the meson was already found in the density plot in
Fig. 9: In the region where the bound state band crosses the
polaron ground-state band, we see that local spin flips start to
accumulate around the meson. This can be treated more for-
mally by making a simplified variational Chevy-type ansatz,
as we show explicitly in Sec. VB 2 below.

On several occasions in this paper, we referred to the bound
state as a tetra-parton bound state. The reasoning is that the

spin-1 magnon excitation can be interpreted as a confined
state of two spinons, developing an internal structure itself
in the weak-field limit h → 0 [63]. Indeed, an interesting
future extension for the small-h limit would be to construct an
effective spinon-magnon model describing how the magnon
resonates in and out of the spinon continuum [64], and adding
couplings to the chargons as done in the present paper. We
expect this could improve results for the magnon dispersion,
which is poorly represented by our simple linear-spin wave
theory when h/J → 0: we checked numerically by calculating
the zero-doping dynamical spin structure factor that while
the magnon gap is captured well by linear spin-wave theory,
the overall shape of the magnon dispersion resembles more
closely the spinon dispersion.

B. Chevy approach

In this section, we will discuss an alternative solution of
the effective polaron theory, based on Chevy’s variational
polaron wave function [65]. We distinguish two scenarios,
depending on the number of magnon excitations we allow in
the expansion. For simplicity, we omit the band indices n, ξ
of the meson from now on.

1. Two-magnon state and avoided magnon decay

Inspired by the so-called Chevy ansatz, originally intro-
duced for an imbalanced Fermi gas [65], we expand the
ground state of the polaron Hamiltonian Eq. (34) up to two
magnon excitations above the bare meson. Taking into ac-
count the conservation of the total system momentum, we
make the following variational ansatz:

|ψk〉 = √
Zk f̂

†
k |0〉 +

∑
pq

αk,pq f̂
†
k−p−qb̂

†
pb̂

†
q|0〉, (51)

where
√
Zk and αk,pq are variational parameters satisfying the

normalization condition Zk + 2
∑

pq |αk,pq|2 = 1.

Minimizing the functional L := 〈ψ |Ĥpol − E |ψ〉 with re-
spect to the variational parameters

√
Zk and αk,pq, leads to the

following coupled equations:

(εk − E )
√
Zk = 1

L

∑
pq

W∗
k,pqαk,pq, (52)

∑
q′

(
G−1

kp,E

)
qq′αk,pq′ = −

√
Zk
2L

Wk,pq, (53)

where the L × L matrix G−1
kp,E

has the following components:(
G−1

kp,E

)
qq′ = (E − εk−p−q′,eff − ωp − ωq′ )δqq′

+ 1

L
Vk−p−q′,qq′ . (54)

The matrix G
kp,E

can be understood as the free retarted

Green’s function for two excited magnon excitations propa-
gating along with the meson.

Solving the two above relations for the variational param-
eters,

√
Zk and αk,pq, by using a matrix inversion in Eq. (53),

we get a variational energy of the form

Ek = εk,eff + �k (Ek ), (55)
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where we defined the self-energy:

�k (Ek ) = 1

2L2

∑
pqq′

W∗
k,pq

(
G

kp,Ek

)
qq′Wk,pq′ . (56)

It is important to note that (G
kp,Ek

)qq′ are the components

of the inverse of the matrix formed by the elements in
Eq. (54). Equation (55) has to be solved self-consistently to
get the variational energy Ek . The result is nonperturbative:
it corresponds to resummation over all diagrams describing
two-magnon excitations [5]. We will present our numerical
results below.

Now we use the Chevy approach to argue that the meson at
k = 0 is stable for small magnetic fields h and magnon decay
as described in Sec. III D is prevented by meson-magnon in-
teractions. We already elaborated in previous chapters that the
meson-magnon scattering continuum and the dressed meson
band are repelling each other in this parameter regime. Now
we will follow closely the arguments by Verresen et al. [43]:
they determined a threshold value where quasiparticle decay
of a particle coupled into a continuum of states is prevented
by strong interactions.

The condition for the existence of a stable state below the
continuum is given by [43]

εk,eff − ω−
k

|�k (ω−
k + 0−)| < 1. (57)

Here ω−
k denotes the lower edge of the meson plus two-

magnon scattering continuum which is defined by ω−
k =

minpq(εk−p−q,eff + ωp + ωq). When the condition Eq. (57) is
fulfilled, we expect an avoided band crossing between the
two-magnon continuum and the meson band.

There are two cases to distinguish in the analysis of the
condition Eq. (57):

(1) When εk,eff < ω−
k the condition Eq. (57) is trivially

fulfilled for any interaction strength. In this case, the bare me-
son dispersion εk,eff does not cross the two-magnon scattering
continuum.

(2) For εk,eff > ω−
k , the integrated meson-magnon interac-

tions must be strong enough, such that the self-energy in the
denominator, |�k (ω−

k + 0−)|, dominates. At a given interac-
tion strength, this can also be achieved by a sufficiently high
density of states at low energies. This case corresponds to a
nontrivial avoided quasiparticle decay.

In the following, we analyze the self-energy obtained from
the two-magnon Chevy ansatz introduced above. It turns out
that the condition Eq. (57) is trivially fulfilled for all val-
ues of the staggered magnetic field h > 0. The reason is
that the renormalization of the meson tunneling amplitude,
J (nξ )⊥ → J (nξ )⊥,eff by magnon zero-point contributions is strong
enough to prevent the meson band from reaching the meson-
magnon continuum. We emphasize that this effect results
from meson-magnon interactions, which lead to the described
renormalization, see Sec. IVB 2.

In Fig. 12, we compare the bare meson tunneling amplitude
J (nξ )⊥ , neglecting magnon fluctuations, with J (nξ )⊥,eff renormal-
ized by magnon zero-point contributions, assuming the meson
is in its rovibrational ground state n = 1, ξ = 1. For small val-
ues of the staggered magnetic field h � 0.1, the renormalized

FIG. 12. Effective meson tunneling amplitude J (nξ )⊥,eff for n =
1, ξ = 1, which includes a reduction of the spinon tunneling due to
magnon vacuum fluctuations compared to the meson tunneling am-
plitude J (nξ )⊥ for n = 1, ξ = 1. The magnon zero-point contributions
stabilize the meson band and prevent a decay into the two-magnon
scattering continuum.

tunneling amplitude drops drastically. This is explained by the
fact that the zero-point contributions of the magnons start to
diverge for h → 0 as we get a large magnon accumulation
on all lattice sites of the chain at such low magnetic field
values. In this regime, the linear spin-wave theory loses its
applicability.

Finally, it is interesting to ask whether the condition
Eq. (57) would be fulfilled even if the bare meson band man-
ages to leak into the meson-magnon scattering continuum.
To this end, we repeat our above analysis and ignore the
renormalization of the meson tunneling amplitude; i.e., we
work with εk instead of εk,eff in Eq. (57). Moreover, we rescale
the magnon dispersion obtained from linear spin-wave theory
by a numerical factor λ, ωq → λωq, such that the analytically
known spinon bandwidth Jπ/2 is correctly captured in the
limit h → 0.

As shown in Fig. 13, we find that the resulting meson is
nontrivially stable at k = 0 due to meson-magnon interac-
tions. There we plot the left-hand side of Eq. (57) under our
simplifying assumptions, for different values of the staggered
magnetic field h. For h � 0.02J , nontrivial stabilization is
found.

2. One-magnon state and meson-magnon bound state

Instead of the two-magnon ansatz Eq. (51), mixing even-
magnon number states, we can also make an odd-magnon
number Chevy ansatz. The lowest order, all one-magnon states
should be considered. Since the next order is rather involved,
including three magnons, we restrict our discussion to the
simplest one-magnon states in the following.

To get a variational energy for one-magnon states, we
project the full polaron Hamiltonian Eq. (34) onto the basis

|q〉k = f̂ †k−qb̂
†
q|0〉, (58)
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FIG. 13. Verification of the stability of the meson. We show the
left-hand side (l.h.s.) of Eq. (57), ignoring the renormalization of
magnon tunneling due to vacuum magnon fluctuations as described
in the text. For values smaller than zero, the condition is trivially
fulfilled and if the l.h.s. of the condition is between zero and one
it is nontrivially fulfilled. We assume the meson to be in its rovi-
brational ground state n = 1, ξ = 1 and the chosen parameters are
t = 5, J = 1.

which includes exactly one magnon excitation with variable
momentum q. The state is constructed such that the total
conserved momentum is k. We then diagonalize the projected
Hamiltonian, defined by its matrix elements

Ĥpq = k〈p|Ĥpol|q〉k
= (εk−q,eff + ωq)δpq − 1

2L
Vk−q,pq. (59)

Since our model Hamiltonian Eq. (34) only couples states
of equal magnon-number parity, the one- and two-magnon
Chevy wave functions must be considered independently and
cannot couple.

In Fig. 14(b), we show the variational one-magnon
eigenenergies (dark red curves) obtained by diagonalizing the
Hamiltonian matrix in Eq. (59). In the same figure, we include
the result for the variational ground-state energy of the two-
magnon Chevy ansatz, Eq. (51), obtained by solving Eq. (55)
self-consistently (black curve). The obtained spectrum com-
pares qualitatively well to those from the LLP + Gaussian
approach, see Fig. 14(a). In particular, the Chevy approach
correctly predicts the broad meson-magnon continuum at high
energies, as well as a stable tetra-parton bound state between
the meson and the meson-magnon continuum.

C. Comparison of methods

In Fig. 14, we compare the numerical ARPES spectra with
our two theoretical methods. We already discussed the polaron
spectrum obtained by a Gaussian LLP approach in Sec. VA5,
which is again shown here in Fig. 14(a). The variational ener-
gies obtained from the two-magnon and one-magnon Chevy
ansatz are shown in Fig. 14(b). We put these semianalytical
curves on top of the numerically obtained standard one-hole
ARPES spectrum [Fig. 14(c)] where the ground state can

FIG. 14. Comparison of the results of all of our methods at
low energies for h = 0.6J and t = 5J: The upper row shows the
semianalytical results, the polaron bands from our LLP treatment
with a Gaussian linearization (a) and the curves for two-magnon and
one-magnon Chevy ansatz (b). The middle panel (c) is the standard
one-hole ARPES spectrum, with our theoretical curves plotted on top
using the same color scheme as in (a) and (b). (d) shows the spin-flip
ARPES spectrum with total spin-3/2, see Sec. III C. In (c) and
(d), for the Gaussian LLP approach we only included the curves
corresponding to the polaron ground state and the meson-magnon
bound state. The shapes of the theoretical curves and the ARPES
dispersion are in good agreement while there is a small shift in total
energy. This has already been seen in the ground-state energy, see
Fig. 10.

be compared, and the spin-flip ARPES spectrum probing the
sector with Sztot = 3/2 [Fig. 14(d)] where the meson-magnon
bound state can be compared.

In our discussion of the ground-state energy, we observed
that there is a small deviation between the numerical and
theoretical result, see Fig. 10. This small deviation is also seen
here in the comparison in Fig. 14(c). The predicted shapes of
the meson dispersion agree very well with each other, and with
the full numerical result. We note that this agreement holds for
all magnetic field values h that we considered.

For the spin-3/2 spin-flip ARPES spectrum, the situation
is less clear. On the one hand, we find good qualitative
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agreement in that our numerical td-MPS simulations pre-
dict a pronounced quasiparticle peak at low energies, for all
considered values of h. For the value of h = 0.6J shown
in Fig. 14, we find remarkable quantitative agreement with
our one-magnon Chevy prediction, which is also relatively
close to the LLP prediction. However, for other values of
the staggered field h/J , we observed larger quantitative
differences.

VI. SUMMARY AND OUTLOOK

We have investigated the problem of a single hole doped
into a spin chain with an external staggered Zeeman field
and studied the interplay of the doped hole with quantum
fluctuations of the spin background. In this simplistic setting,
we found a remarkably rich zoo of quasiparticle excitations
arising from the interplay of charge fluctuations and quantum
magnetism. Our predictions can be tested in state-of-the-art
quantum gas microscopy experiments.

Based on a parton construction for the hole, capturing the
Ising-limit of our model, we developed a simple semianalyti-
cally solvable theory describing the hole as having an internal
structure composed of two constituents: a spinless chargon
and a charge-neutral spinon. The hole is a confined mesonic
bound state of these constituents, similar to mesons in high-
energy physics [66], and their binding potential is linear in
nature. Formally, this setting is directly related to a Z2 LGT
[15,16,40]. Similar to previous proposals for an analogous
problem in 2D [20,22] we find stable long-lived rovibrational
excitations of the doped hole. Their spectroscopic measure-
ment would constitute compelling evidence that mobile holes
have a rich internal structure and can be understood as spinon-
chargon bound states.

The main theoretical advancement of our paper was the
systematic inclusion of quantum fluctuations in the parton
description. We used a generalized 1/S expansion technique
[21] to treat quantum spin fluctuations—resulting from trans-
verse spin couplings ∝ J⊥ in the t − J model—around the
Néel state distorted by dominant charge fluctuations. This
allowed us to derive an effective polaronic model, describing
how a pre-formed meson interacts weakly with additional
magnon excitations. As a main result of this approach, we
were able to predict an additional stable meson-magnon
bound state, i.e., a tetra-parton state of a chargon bound to
three spinons. We confirmed this prediction by numerical
density-matrix renormalization group simulations and an ex-
act perturbative analysis in the strong-field limit, h � t, J .
Another significant insight obtained by our method concerns
the stability of the mesonic quasiparticle when its energy
approaches the meson-magnon continuum around zero mo-
mentum, namely, we found evidence that meson-magnon
interactions are sufficiently strong to stabilize the quasipar-
ticle peak at all momenta for arbitrarily weak confining
fields h, in agreement with predictions from other theoretical
descriptions [14].

Our theoretical formalism paves the way for many future
extensions. For example, the simplification of the problem
to a well-known and weakly coupled Bose-polaron model
allows us to study far-from equilibrium dynamics [67–70]
of a mobile hole [25], going to nonzero temperatures and

much longer times than accessible by the more accurate
tensor-network methods [23,24]. Moreover, our approach can
be generalized to higher dimensions, where exact numerical
methods become significantly more challenging. The dressing
of strongly paired states of holes [71] can also be investigated.
Another promising direction would be the study of magnon
excitations in mixed-dimensional systems [28,40] at finite
doping. Finally, the microscopic connection we establish to an
underlyingZ2 LGTmay be more general, suggesting a unique
route how emergent gauge structures can arise in strongly
correlated quantum matter.

The model Hamiltonian we considered in one dimension,
namely, a t − J model in a staggered Zeeman field, also
constitutes an interesting platform for future studies. Its close
connections to other interesting models on one hand, such as
the 1D t − Jz or t − J models or the 2D t − J model which
also has long-range magnetic correlations at zero doping, and
its direct experimental realizability in ultracold atoms on the
other hand make it an appealing system to study. In this
paper, we limited our discussion to a single doped hole, but
extensions to finite doping are straightforward. For example,
it will be interesting to search for pairing or charge order
at finite doping and investigate the role played by couplings
to magnon excitations in the spin background. Exploring the
connection to an underlying lattice gauge structure and a pos-
sible breakdown of the meson picture with doping will also be
worthwhile endeavors.
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APPENDIX A: SPINON DYNAMICS

To leading order in the 1/S expansion, the spinon has
no dynamics in 1D. Because we defined the spinon as a
domain-wall configuration of the Ising field τ z

j , the inclusion
of magnon corrections does not introduce spinon dynamics
either: Although the resulting Hamiltonian depends explicitly
on τ z

j , see Eqs. (14) and (15), it does not contain terms ∝ τ̂
x,y
j

which are necessary to change the values of the Ising Variables
τ z
j .
In the large-S limit, our result that the spinon cannot move

makes sense: A spinon corresponds to a domain wall of two
aligned spins of length |Sz| = S on neighboring sites, see
Fig. 1(a). When J⊥ = 0, this excitation cannot move. Even
when J⊥ �= 0, the spin-exchange interaction J⊥Ŝ+Ŝ− can only
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FIG. 15. Possible processes resulting from the exchange term
J⊥Ŝ+

j+1Ŝ
−
j . Left: Spinon (domain-wall) motion accounted for by the

free spinon Hamiltonian. Right: Magnon vacuum fluctuations ac-
counted for by the free magnon Hamiltonian.

reduce the length of the spin gradually from |Sz| = S to S − 1
to S − 2, etc. in the large S limit. Thus, when S � 1 and the
number of magnons is small, 〈â†j â j〉 � 2S, the direction of
the Néel order, represented by the Ising variable τ z

j , cannot
change.

From now on, we will consider the situation S = 1/2. In
this case, a single exchange process is sufficient to move the
domain wall consisting of two aligned spins, namely, by ap-
plying J⊥(Ŝ+

j+1Ŝ
−
j + H.c.) the Néel order parameter (−1) jSzj

can change on two adjacent lattice sites next to the spinon, see
Fig. 15 (left). Indeed, in the 1D Heisenberg model without an
external field, this process is well-known to lead to dynam-
ics of deconfined domain wall excitations corresponding to
spinons [13].

In the free magnon part of the Hamiltonian Eq. (27), we de-
scribe all exchange processes ∼J⊥(Ŝ+

j+1Ŝ
−
j + H.c.) using the

bare HP operators â†j introduced in Eq. (15). Such terms will
lead to the creation of HP bosons around the spinon, and from
Eq. (14) we see that the corresponding physical eigenstates of
Ŝzj will correctly reflect the motion of the domain wall, even

though the position of the spinon, defined by
∑

j jŝ
†
j ŝ j , does

not change. However, as we will show next, this is an artifact
of using the overcomplete parton basis.

For a fixed configuration τ z
j , all physical eigenstates in a

system of spin S = 1/2 particles are correctly represented by
Fock states |{naj}〉 of HP occupation numbers naj = 0, 1. By
allowing different spinon positions js associated with a differ-
ent Ising configuration τ z

j , we get an enlarged effective Hilbert
space {| js〉 ⊗ |nai 〉}. When constructing the effective parton
Hamiltonian each matrix element of the Hamiltonian Eq. (1)
between two physical states has to correspond to one overlap
in the overcomplete basis {| js〉 ⊗ |nai 〉}. To decide which ma-
trix elements to associate to which terms in the Hamiltonian,
we compare the energy costs for flipping bonds being part of
the spinon and those which are not. In particular, we will dis-
tinguish resonant from off-resonant processes, costing no or a
finite amount of energy in a pure Ising configuration. In the
end, we want to find a representation of spin-exchange terms
which treats resonant terms as an effective spinon hopping
process.

Consider first bonds which are not part of the spinon.
We introduced them into our formalism by writing the spin-
exchange terms as J⊥/2

∑
j (â

†
j+1â

†
j + H.c.). These lead to

creation and annihilation of HP bosons with an energy cost
of (J + h). Using our 1/S expansion, we can estimate the
number of HP bosons per lattice to scale as ∝ J2z /(Jz + h)2.
Thus, for nonvanishing magnetic fields h the number of bare
HP bosons should be small, which justifies to use them on
such bonds as it means that the local magnetization 〈Ŝzj〉 can-
not change significantly.

On the other hand, bonds adjacent to the spinon can be
used to let it tunnel by two lattice sites as illustrated in Fig. 15
(left). Such a process would increase the length of the string
by two units leading to a energy cost of ∝ 2h. But due to the
SC limit t � Jz, J⊥, h the chargon can instantly adjust to the
new configuration and restore the average string length. Thus
the spinon motion would not lead to any energy cost. If we
would use such bonds for the HP bosons, a huge number of
them could be created at essentially no energy cost. However,
this would violate the HP condition 〈â†j â j〉 � 1.

To avoid this issue, we describe these resonant bonds by
allowing for spinon tunneling. Thus, we choose to compute
the matrix elements of the spin-exchange term on such bonds
by letting only the spinon position change while excluding
changes of the magnon occupation number states |{nai }〉.

Using the overlap J⊥/2〈 js1|Ŝ+
j+1Ŝ

−
j | js2〉, we evaluate the de-

scribed matrix elements of ĤJ⊥ , which leads us to the spinon
tunneling term:

Ĥs
0 = J⊥

2

∑
j

(ŝ†j+2ŝ j + H.c.). (A1)

We emphasize that this process is only possible in the spin-1/2
case. Further, we note that we already used these bonds to
include magnon excitations in the free magnon Hamiltonian
in Eq. (27). To avoid double-counting we have to exclude
these bonds again from the magnon Hamiltonian, which leads
to spinon-magnon interactions as discussed in the next Ap-
pendix.

Finally, we also have to consider the situation when a
chargon sits on a site next to the spinon. In this case, the
spinon tunneling process would not be possible because the
chargon blocks a spin-exchange term. Again, to avoid double-
counting processes, we must introduce an additional kinetic
spinon-chargon interaction:

Ĥkin
sh = −J⊥

2

∑
j

ĥ†j+1ĥ j+1(ŝ
†
j+2ŝ j + H.c.). (A2)

APPENDIX B: MAGNON CONTRIBUTIONS

In this Appendix, we turn our attention to the magnon
contributions in the effective Hamiltonian. They are of higher
order in 1/S and here we derive the form of these parton-
magnon interactions up to quadratic order in the HP boson
operators â†j .

The parton-magnon interaction consists of two contribu-
tions:

Ĥint
mag = ĤJ

mag + Ĥkin
mag. (B1)

The first describes how spin-exchange terms are modified by
distortions of the Néel background due to the presence of
the partons. The other includes effects on the motion of the
partons due to the presence of magnons.

1. Interactions due to distortions of the spin environment

In the noninteracting Hamiltonian we already introduced,
magnons on all bonds of the lattice assuming τ z

j = (−1) j .
However, the Ising fields τ z

j are not static but can change due
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to displacements of the spins by the chargon motion. The con-
figuration of Ising fields is determined by the spinon-chargon
configuration; i.e., τ z

j explicitly depends on the quantum state
of the partons: τ̂ z

j ≡ τ z
j ( j

h, js).
Now we use the τ z

j -dependent HP representation of spin
operators, see Eq. (14), to express all couplings involving
spins in our t − XXZ model; the presence of the partons leads
to the following changes for the magnon terms in the effective
Hamiltonian:

(i) Bonds occupied by the chargon lead to no couplings to
spins, since τ z

jh = 0. Therefore, contributions from such bonds
have to be subtracted from the already included bonds in the
free magnon Hamiltonian

∑
q ωqb̂†qb̂q. This yields a term

1

2
(Jz + h)(â†j â j + â†j+1â j+1) + J⊥

2
(â†j+1â

†
j + â j â j+1) (B2)

on such bonds to subtract.
(ii) Additionally, for S = 1/2 we used flip-flop terms

J⊥Ŝ+
j+1Ŝ

−
j to describe spinon tunnelings on bonds involving

the spinon. To avoid double counting, we do not include
additional magnon couplings on these bonds. Again, magnon
couplings already included in the free magnon Hamiltonian
involving processes describing the spinon dynamics have to
be subtracted, similar to the procedure in (i).

(iii) Along the string, the displaced spins occupy the
wrong sub-lattice site relative to the Néel order. Thus, at those
sites, the Ising filed τ̂ z

j has a reversed sign and leads to a
potential energy cost ∝ h, which we included in the string
tension Eq. (25). But this also leads to a separate energy cost
for HP bosons along the string which we have not included so
far. To account for this effect, we add the term

−h
∑
j

∣∣(−1) j − τ̂ z
j

∣∣â†j â j (B3)

to the effective Hamiltonian.
As a result, we obtain the following coupling resulting due

to distortions of the spin environment,

ĤJ
mag = −1

2

∑
X̂s,X̂h∈〈 j, j+1〉

[(Jz + h)(â†j â j + â†j+1â j+1)

+ J⊥(â†j â
†
j+1 + â j â j+1)] − h

∑
j

∣∣(−1) j − τ̂ z
j

∣∣â†j â j .

(B4)

Here, we introduced the position operator X̂h = ∑
j jĥ

†
j ĥ j for

the chargon and analogously for the spinon.
If a bond involves both, spinon and chargon, it is only

counted once in the sum.

2. Magnon influence on the parton dynamics

When deriving the parton-magnon interaction ĤJ
mag ac-

counting for distortions of the Néel background, we assumed
that the parton configuration is static. Further, in the SC theory
introduced in Sec. IV of the main text we ignored magnon
contributions affecting parton dynamics. Here, we introduce
additional terms Ĥkin

mag describing how the parton dynamics
couples to magnon excitations.

FIG. 16. Illustration of kinetic chargon-magnon (left) and
spinon-magnon (right) couplings. The left figure illustrates the trans-
lation of a HP magnon by the motion of the chargon. In the right
sketch a configuration is shown where spinon tunneling is blocked
by the presence of a HP magnon.

We assume that the number of HP bosons per lattice site
is small, 〈â†j â j〉 � 1, which gives us the possibility to include

only processes involving not more than one HP boson â†j per
lattice site. Within this approximation, we obtain an effective
Hamiltonian quadratic in the HP bosons.

We start by discussing processes involving the chargon,
where it tunnels from some lattice site i to j. Due to our
chosen constraint, Eq. (13), the whole spin state from site j
will be translated to the neighboring site i. This is illustrated
in Fig. 16 (left).

From the τ z
j -dependent HP approximation, it is clear that

the chargon tunneling has not just an effect on τ z
j but also

on the HP bosons â†j . In our discussion about the parton
dynamics, we already accounted for changes in the Ising fields
by using the parton basis, see Eq. (19). Additionally, we have
to include terms to our parton Hamiltonian which ensure that
a HP boson â†j , residing on site j, is also translated to site i,
when the chargon tunnels, see Fig. 16 (left).

In our subspace of no more than one HP boson per lattice
site, the relevant kinetic chargon-magnon coupling is given by

Ĥkin,h
mag = t

∑
j

(ĥ†j+1ĥ j + H.c.)(â†j+1â j + â†j â j+1

−â†j â j − â†j+1â j+1). (B5)

The terms in the first term describe the correlated hopping
of the chargon and a HP magnon; they vanish when no HP
magnon is present, in which case the bare chargon tunneling
in the free chargon Hamiltonian correctly describes the hop-
ping process. The terms in the second line subtract the bare
chargon tunneling if a magnon is present. In summary, the
so-constructed effective Hamiltonian describes (free chargon
hopping) purely correlated magnon-chargon hopping in the
(absence) presence of a magnon next to the chargon.

A similar analysis has to be performed for the spinon tun-
neling. We consider a situation where the spinon moves from
site js to js ± 2. As explained in Appendix A, the spinon dy-
namics originates from spin-exchange interactions on bonds
involving the spinon. One of the involved lattice sites, say i,
is part of the domain wall of the Ising field τ z defining the
spinon, while the other, which we label r, is not. As in the
case of the chargon, we assume that the HP boson density
is low, 〈â†j â j〉 � 1, and derive the kinetic spinon-magnon

Hamiltonian by considering only states ŝ†js |0〉 and ŝ†js â
†
r |0〉,

i.e., higher-order effects in the HP boson operators â j are
neglected.

A HP boson excitation on site r leads to a ferromagnetic
configuration for the original spins Ŝzi Ŝ

z
r = 1 on the bond 〈i, r〉
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where spin-exchange interactions introduce spinon dynamics.
The action of the spin-exchange terms ∝ J⊥Ŝ+

i Ŝ
−
r on this state

vanishes. Therefore, the HP boson on site r suppresses spinon
dynamics. To cancel the dynamics already included in the free
spinon Hamiltonian, Eq. (22), we add a counter term

Ĥkin,s
mag = −J⊥

2

∑
js,μ=±

ŝ†js+2μŝ js â
†
rμ ârμ + H.c., (B6)

which corresponds to the kinetic spinon-magnon coupling.
Note that the position r± introduced above explicitly depends
on the parton configuration. When the spinon tunnels from js

to site js ± 2, it is given by

r± = js ± [3 ∓ sgn(�)]/2, (B7)

where sgn(�) denotes the direction of the string � from the
spinon to the chargon.

APPENDIX C: MESON SPECTRUM IN SCWITHOUT
MAGNONS

Here we look at the parton Hamiltonian Eq. (20), ne-
glecting the magnon contributions, and show that the ansatz
Eq. (28) is an appropriate eigenstate for the meson. We also
derive its eigenspectrum. Ignoring the constant energy shifts,
the Hamiltonian is given by

Ĥ(0)
mes = t

∑
j

(ĥ†j+1ĥ j + H.c.) +
∑
ji

Vsh(|i − j|)ŝ†j ŝ j ĥ†i ĥi

+ J⊥
2

∑
j

(1 − ĥ†j+1ĥ j+1)(ŝ
†
j+2ŝ j + H.c.), (C1)

with the confinement potential

Vsh(
) = h
 − Jz
4

δ
,0.

Due to the SC limit t � Jz, J⊥, h, we can solve this Hamilto-
nian via a Born-Oppenheimer approximation.

The chargon instantly follows the slow spinon motion.
Thus, we first fix the spinon motion at some site js and solve
the chargon problem independently,

Ĥeff
h = 〈0|ŝ jsĤ(0)

mesŝ
†
js |0〉 = −Lε0 + 3

4
Jz + h

2

+t
∑

〈�,�′〉
(ĥ†� ĥ�′ + H.c.) +

∑
�

Vsh(|�|)ĥ†� ĥ�, (C2)

where it is understood that ĥ†� creates a chargon at a distance
� ∈ Z from the spinon, and

∑
〈�,�′〉 denotes a sum over near-

est neighbors, �′ = � + 1. In the following, we will measure
all energies relative to the ground-state energy of the classical
Néel state, −Lε0.

In the SC approximation, the meson spectrum is obtained
by calculating the chargon eigenenergies E (n,ξ )

h defined by
Ĥeff

h |ψ (nξ )
h 〉 = E (n,ξ )

h |ψ (nξ )
h 〉. Here n = 1, 2, . . . denotes the

principal quantum number. The effective chargon Hamil-
tonian Eq. (C2) is inversion symmetric around the spinon
position, with

Î
∣∣ψ (nξ )

h

〉 = ξ
∣∣ψ (nξ )

h

〉
. (C3)

Here Î is the inversion operator which maps � → −�, and
the corresponding eigenvalue is ξ = ±1.

One can use the inversion symmetry to map the spinon-
chargon problem to a single-particle problem on a semi-
infinite 1D lattice. To this end, the chargon wave function
defined in the spinon frame is written as

ψ
(nξ )
h (�) = (−1)� ×

⎧⎪⎪⎨
⎪⎪⎩

φ
(n,ξ )
0 , � = 0
ξ√
2
φ
(nξ )
|�| , � < 0

1√
2
φ
(nξ )
|�| , � > 0.

(C4)

The normalization condition,
∑

� |ψ (nξ )
h (�)| = 1, now be-

comes
∑


�0 |φ(nξ )

 | = 1. The wave function φ

(nξ )
h can be

understood as the string wave function which depends only
on the length 
 = |�| � 0 of the string.

The inversion symmetry requires ψ
(nξ )
h (−�) = ξψ

(nξ )
h (�),

i.e., odd-parity string wave functions have a node in the center
at 
 = 0 with φ

(n,−1)
0 = 0. This node is equivalent to a strong

repulsive potential localized at 
 = 0. As a consequence, the
eigenstates with ξ = −1 and radial quantum number n gen-
erally have a higher energy than their partners at the same
n but with ξ = +1. The repulsion from the central site for
ξ = −1 states is a direct generalization of the centrifugal bar-
rier discussed for magnetic polarons in the 2D t − Jz model by
a similar description [21]. There it was argued that rotationally
excited states, the 2D analog of the odd states with ξ = −1,
are similar to mesonic resonances characterized by the finite
orbital angular momentum carried by a quark antiquark pair
observed in high-energy physics. In the same spirit, the ex-
cited states of the spinon-chargon mesons in our 1D setup with
ξ = −1 can be understood as a set of resonances explained
naturally by the parton theory.

Now we discuss the effective Hamiltonians Ĥφ,ξ which
determine the string wave functions φ

(nξ )

 . They are defined

in a Hilbert space {|
〉} with positive string lengths 
 =
0, 1, 2, . . . . For the states with even inversion symmetry, ξ =
+1, the hoppings in the effective model are t in the bulk and√
2t between |
 = 0〉 and |
 = 1〉. The factor of

√
2 arises

because in the original Hamiltonian Eq. (C2), state ĥ†0|0〉 is
coupled to two states, ĥ†±1|0〉. The even Hamiltonian Ĥφ,ξ=+1

thus reads

Ĥφ,+1 = −
[√

2t |0〉〈1| +
∑

>0

|
 + 1〉〈
|
]

+ H.c.

+
∑

�0

Vsh(
)|
〉〈
|. (C5)

For the states with odd inversion symmetry, ξ = −1, the hop-
ping amplitude between the central site and the first site in the
effective Hamiltonian is zero:

Ĥφ,−1 = −t
∑

>0

|
 + 1〉〈
| + H.c. +
∑

>0

Vsh(
)|
〉〈
|. (C6)

In the SC regime, a mapping to a continuum model shows
that the radially excited states have energies given by [41]

E (nξ )
h = E0 − 2t + a(nξ )sh t1/3h2/3 + O(Jz, h), (C7)
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FIG. 17. The chargon excitation energies above the ground state,
E (nξ )
h − E (1,1)

h are shown for various values of h/t , assuming Jz =
J⊥ = J . The eigenstates are labeled by their rotational and vibrational
quantum numbers (n, ξ ). For small h/t , we observe a scaling of all
excitation energies with the nontrivial power-law (h/t )2/3. In the gray
region, we did not plot any states.

with numerical coefficients a(nξ )sh related to the Airy function
[41]. The contributions of order O(Jz, h) can be easily cal-
culated numerically by solving the single-particle problems
Eqs. (C5) and (C6). The coefficients a(nξ )sh increase with n, and
a(n,+1)
sh < a(n,−1)

sh .
In Fig. 17, we calculate the SC meson excitation energies

relative to the ground-state energy E (1,+1)
0 at n = 1, ξ = +1

and assuming Jz = J⊥ = J . We find that all excitation energies
scale as J2/3t1/3, confirming Eq. (C7). Close inspection shows
that a(n,−1)

sh ≈ a(n+1,+1)
sh and this approximation becomes more

accurate for increasing values of the principle quantum num-
ber n and larger values of h/t .

For the calculation of the chargon wave function
|ψ (nξ )

h ( js)〉 in Eq. (C2) we fixed the position of the spinon at
js. Now, in a second step, we treat the spinon dynamics per-
turbatively and assume that the light chargon instantly follows
the heavy spinon. This allows us to work with the following
set of orthogonal low-energy basis states, {| js, n, ξ 〉}, where

| js, n, ξ 〉 = ŝ†js |0〉 ⊗ ∣∣ψ (nξ )
h ( js)

〉
. (C8)

The effective Hamiltonian Ĥeff
s of the spinon is obtained

by projecting the parton Hamiltonian Eq. (C1) to the new
low-energy basis. Note that the basis in Eq. (C8) formally
corresponds to the introduced meson operators Eq. (32) in the
main text.

The nontrivial matrix elements are associated with spinon
dynamics, see second line of Eq. (C1), and lead to

Ĥeff
s = J (nξ )⊥

2

∑
j

| js + 2, n, ξ 〉〈 js, n, ξ | + H.c. (C9)

As already mentioned in the main text, the quantum numbers
n and ξ describe the internal state of the meson and can be
treated as band indices.

FIG. 18. Franck-Condon factor renormalizing the spinon disper-
sion by dressing of the chargon in the strong coupling approach. We
performed calculations for different values of h/t and n, ξ .

The expression for the Franck-Condon overlap Eq. (30)
given in the main text results from the mapping of the spinon
part in Eq. (C1) to the basis Eq. (C8). It can be calculated
directly from the string wave function φ

(nξ )

 defined in the

semi-infinite 1D geometry, see Eq. (C4). We obtain

J (nξ )⊥
J⊥

=
[

1√
2

(
φ
(nξ )
2

)∗
φ
(nξ )
0 + 1

2

∞∑

=1

(
φ
(nξ )

+2

)∗
φ
(nξ )



]
+ c.c.,

(C10)

where 
 denotes the string length. In Fig. 18, we plot the
Franck-Condon factor as a function of h/t and for different
values of (n, ξ ). In the limit h → 0, we find no renormaliza-
tion of the meson dispersion. This is expected since the string
tension vanishes in this limit where free spinon and chargon
excitations exist.

The SC approximation allows us to calculate the excitation
spectrum of the meson for arbitrary values of the total mo-
mentum k. Our result for the meson spectrum is

ε
(nξ )
k = E (nξ )

h + J (nξ )⊥ cos(2k), (C11)

which we show in Fig. 19 for t = 5J and h = 0.5J well in the
SC regime. The curves correspond to approximate eigenener-
gies of the system, characterized by the quantum numbers n
and ξ of the chargon wave function. In Fig. 19, we observe a
series of resonances, alternating between even and odd parity
states.

APPENDIX D: MESON-MAGNON INTERACTION

Here, we derive the terms contributing to the polaron
Hamiltonian Eq. (33). This is achieved by computing the
overlap matrix elements 〈ψ (n′ξ ′ )

sh ( js′)|Ĥ|ψ (nξ )
sh ( js)〉 in Eq. (33).

In the previous section of Appendix C, we found approximate
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FIG. 19. Momentum resolved excitation spectrum of the
mesonic bound state at strong couplings. We assumed t = 5J and
h = 0.5J .

eigenstates and -energies of the mesonic bound state of the
heavy spinon and light chargon, neglecting magnon contribu-
tions; namely, the eigenstates and -energies are∣∣ψ (nξ )

sh (k)
〉 = 1√

L

∑
js

e−ik js ŝ†js |0〉 ⊗ ∣∣ψ (nξ )
h ( js)

〉

≡ 1√
L

∑
js

e−ik js
∣∣ψ (nξ )

sh ( js)
〉

(D1)

and

ε
(nξ )
k = E (nξ )

h + J (nξ )⊥ cos(2k). (D2)

Thus, the parton part of the Hamiltonian Eq. (20) with-
out magnon contributions is already diagonal in the basis

|ψ (nξ )
sh (k)〉 and yields the free meson Hamiltonian:

Ĥ(0)
mes =

∑
js,nξ

E (nξ )
h f̂ †js,nξ f̂ js,nξ

+
∑
js,nξ

J (nξ )⊥
2

( f̂ †js+2,nξ f̂ js,nξ + H.c.). (D3)

The free magnon Hamiltonian Ĥ(0)
mag = ∑

q ωqb̂†qb̂q
does not affect the SC wave function, |ψ (nξ )

sh (k)〉, and
thus the overlap is also trivial to compute in this case,
〈ψ (n′ξ ′ )

sh ( js′)|Ĥ(0)
mag|ψ (nξ )

sh ( js)〉 = Ĥ(0)
magδ js′, jsδn′,nδξ ′,ξ . Using

that we work in a subspace with only one meson,∑
js,nξ f̂ †js,nξ f̂ js,nξ = 1, the free magnon term is the same

in the new Hamiltonian.
The nontrivial part is to compute the overlap for the

spinon-magnon and chargon-magnon interactions derived in
Appendix B:

Ĥint
mag = ĤJ

mag + Ĥkin
mag. (D4)

These interactions are further decomposed in spinon, chargon,
and string contributions, respectively, which we will treat sep-
arately. Because the above interaction terms are functions of
the chargon operators ĥ†j , ĥi, the desired overlap matrix ele-
ments of the corresponding parton-magnon interactions will
involve new Franck-Condon factors similarly to the one that
we already found in our SC treatment of the mesonic bound
state, see Sec. IV. These will lead to renormalized couplings
between magnons and the meson in our effective polaron
Hamiltonian shown in the main text in Sec. IVB 2.

1. Static distortion of Néel background

We start our discussion with the Hamiltonian describing
the exclusion of bonds occupied by the chargon. It can be
written as

ĤJ,h
mag = −1

2

∑
j

ĥ†j ĥ j[(Jz + h)(â†j+1â j+1 + 2â†j â j + â†j−1â j−1) + J⊥(â†j â
†
j+1 + â†j â

†
j−1 + H.c.)], (D5)

and after applying a Fourier transformation to the HP boson operators, â†j = 1√
L

∑
p e

−ip j â†p, we get

ĤJ,h
mag = − 1

L

∑
pq

∑
j

ĥ†j ĥ j[(Jz + h)â†pâqe
−i(p−q) j (1 + cos(p− q)) + J⊥(â†pâ

†
qe

−i(p−q) j cos(q) + H.c.)].

Sandwiching this Hamiltonian in the SC wave function Eq. (28) leads to an overlap matrix element of the form∑
j

〈
ψ

(n′ξ ′ )
h ( js)

∣∣ĥ†j ĥ j

∣∣ψ (nξ )
h ( js)

〉
e−(p±q) j, (D6)

which describes the renormalization of the couplings in the above Hamiltonian. Its computation leads us the following effective
meson-magnon interaction:

ĤJ,h
pol = − 1

L

∑
js,nξ
n′ξ ′

∑
pq

f̂ †js,n′ξ ′ f̂ js,n,ξ
[
(Jz + h)S(n

′ξ ′,nξ )
J,p−q â†pâq(1 + cos(p− q))e−i(p−q) js + J⊥ cos(q)S(n

′ξ ′,nξ )
J,p+q

(
â†pâ

†
qe

−i(p+q) js + H.c.
)]

,

(D7)
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where we defined the following Franck-Condon overlap:

S(n
′ξ ′,nξ )

J,k = φ
(n′ξ ′ )
0 φ

(nξ )
0 +

∑
j>0

φ
(n′ξ ′ )
j φ

(nξ )
j cos(k j), (D8)

where φ
(nξ )
|
| are the string functions introduced in Appendix C.

We used here that the string wave functions are real valued,
φ
(nξ )
|
| ∈ R,∀
, n, ξ . The Franck-Condon factor S(n

′ξ ′,nξ )
J,k ex-

plicitly depends on the momentum transfer of the involved
magnon excitations and is thus site dependent in real space;
namely, it depends on the distribution of the smeared-out char-
gon cloud, see Fig. 1(b). This is expected since the chargon
distorts the spin background in a certain distance—depending
on the string tension—around the spinon, the meson center.

It turns out that in the Hamiltonian Eq. (D5), a zero-energy
magnon mode is included which destabilizes the resulting
polaron spectrum for small values of the staggered magnetic
field. Physically, the magnon zero-mode results because the
magnon has a zero energy cost to occupy the same lattice
site as the chargon. To lift the energy of the magnon zero
mode, we include the following phenomenological term into
our effective Hamiltonian:

+(Jz + h)
∑
j

ĥ†j ĥ j â
†
j â j . (D9)

This extra term changes the energy of the zero mode to ω0 →
Jz + h, treating the site occupied by the hole like other sites.
We emphasize that, by construction, magnon occupation on
the site of the chargon can only arise if multiple magnons
are present. Hence, the addition of the extra term should
not modify the physics, but rather stabilize our approximate
semianalytical approach.

Effectively, the Hamiltonian Eq. (D7) describes a polaronic
coupling of the (extended) mesonic impurity in the lattice to
the bath of low-energy magnon excitations which results due
to the suppression of the magnetization around the spinon by
the fluctuating string.

We proceed with the discussion of the term Eq. (B3), re-
sulting due to the presence of the geometric string in the chain
along which the spins are displaced by one lattice site. Along

the string, the energy cost to create local spin flips becomes
−2h, measured relative to the usual +h cost for spin flips
without spinons or chargons. The corresponding Hamiltonian
which adds this contribution to the free magnon Hamiltonian
can be written as

Ĥ�
mag = −2h

∑
js,
>1

∑
μ=±

ŝ†js ŝ js ĥ
†
js+μ
ĥ js+μ



−1∑
i=1

â†js+μiâ js+μi.

(D10)
As previously, we are interested in calculating
the effective meson magnon interaction resulting
from this string-magnon interaction term: Ĥ�

pol =∑
js,nξ
n′ξ ′

〈ψ (n′ξ ′ )
sh ( js′)|Ĥ�

mag|ψ (nξ )
sh ( js)〉 f̂ †js,n′ξ ′ f̂ js,nξ . A straight-

forward calculation yields

Ĥ�
pol = −2h

L

∑
js,nξ
n′ξ ′

∑
pq

S(n
′ξ ′,nξ )

�,p−q e−i(p−q) js f̂ †js,n′ξ ′ f̂ js,nξ â
†
pâq,

(D11)
where we defined the momentum-dependent coupling:

S(n
′ξ ′,nξ )

�,k =
∑

>1

φ
(n′ξ ′ )

 φ

(nξ )




−1∑
j=1

cos(k j). (D12)

The latter describes the average contribution of the fluctuating
string to the energy cost for creating spin flips along the
string �.

For large values of h/t � 1, the factor S�,k goes to zero.
This is expected because the chargon gets more and more
localized in this limit, thus reducing the probability to create
spin flips along �. In the opposite limit h/t � 1, we find
S�,k → (1/L)

∑L−1
j=1 cos(k j) → δk,0, which depends strongly

on the momentum transfer k. In this limit the string � be-
comes very long and many magnon excitations can be excited
along �.

The last term entering due to the distortion of the spin
background consists of terms which subtract bonds from the
free magnon Hamiltonian which have been used to describe
the spinon tunneling instead of creating HP boson pairs at
these bond. The corresponding Hamiltonian is given by

ĤJ,s
pol = − 1

L

∑
js,n′ξ ′
nξ

∑
pq

f̂ †js,n′,ξ ′ f̂ js,nξ
[
(Jz + h)X (n′ξ ′,nξ )

p−q e−i(p−q) js â†pâq + J⊥Y (n′ξ ′,nξ )
pq (e−i(p+q) js â†pâ

†
q + H.c.)

]
, (D13)

with

X (n′ξ ′,nξ )
p−q =

(
1 − φ

(n′ξ ′ )
0 φ

(nξ )
0 − φ

(n′ξ ′ )
1 φ

(nξ )
1

2

)
+ 1

2
cos(p− q)

(
3 − φ

(n′ξ ′ )
0 φ

(nξ )
0 − φ

(n′ξ ′ )
1 φ

(nξ )
1

)

+ 1

2
cos(2p− 2q)

(
1 + φ

(n′ξ ′ )
0 φ

(nξ )
0

)
, (D14)

Y (n′ξ ′,nξ )
pq = cos(q)

(
1 − φ

(n′ξ ′ )
0 φ

(nξ )
0 − φ

(n′ξ ′ )
1 φ

(nξ )
1

2

)
+ 1

2
cos(p+ 2q)

(
1 + φ

(n′ξ ′ )
0 φ

(nξ )
0

)
. (D15)

These two renormalization factors depend only on the string
wave function φ

(nξ )

 at string lengths 
 = 0, 1 where the close

distance to the chargon further suppresses spinon tunneling.

2. Couplings following from kinetic parton magnon interactions

In this subsection, we derive the meson-magnon couplings
following from the influence of local spin flips on the dynam-
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ics of the spinon and chargon, which have been discussed
in Appendix B 2. They consist of two terms, one where HP
bosons block possible tunneling processes of the spinon and
the other where the chargon and magnon perform correlated
tunneling.

First, we consider the kinetic chargon-magnon coupling. In
Fourier space, it is given by

Ĥkin,h
mag = − 1

2L

∑
pq

∑
j

(ĥ†j+1ĥ j + H.c.)T̃pqâ
†
pâqe

−i(p−q) j,

(D16)
where for shortness of the expression we defined T̃pq =
2t[1 + e−i(p−q) − e−ip − eiq]. As previously, we sandwich this
Hamiltonian in the SC wave function Eq. (28). The appearing
overlap matrix element to compute is∑

j

〈
ψ

(n′ξ ′ )
h ( js)

∣∣(ĥ†j+1ĥ j + H.c.)
∣∣ψ (nξ )

j ( js)
〉
e−(p±q) j,

which results in the following meson-magnon interaction
Hamiltonian:

Ĥkin,h
pol = − 1

L

∑
js,n′ξ ′
nξ

∑
pq

TpqS
(n′ξ ′,nξ )
t,p−q e−(p−q) js f̂ †js,n′,ξ ′ f̂ js,nξ â

†
pâq,

(D17)
with Tpq = 8t sin(p/2) sin(q/2). Here the Franck-Condon
factor results from the above overlap matrix element and is
defined as

S(n
′ξ ′,nξ )

t,k =
√
2φ(n′ξ ′ )

0 φ
(nξ )
1 cos(k/2)

+
∑
j>0

φ
(n′ξ ′ )
j+1 φ

(nξ )
j cos(k( j + 1/2)). (D18)

The resulting interaction term Eq. (D17) effectively describes
a chargon-induced tunneling for the magnon excitations in the
region of the chargon cloud, see Fig. 1.

The last term which has to be projected onto the SC wave
function Eq. (28) is the one which describes the suppression
of the spinon tunneling by local spin flips in the vicinity of the
spinon Eq. (B6). This is the only term which also suppresses
the motion of the meson in our effective description. We
just state here the final effective meson-magnon interaction
because its derivation is similar as the previous ones; it follows
by sandwiching the kinetic spinon-magnon interaction in the
SC wave function. This procedure yields the interaction

Ĥkin,s
pol = − 1

4L

∑
js,nξ

∑
pq

J (nξ )⊥ (1 + e−i(p−q) )2e−i(p−q) js â†pâq

× ( f̂ †js+2,nξ f̂ js,nξ + H.c.), (D19)

where J (nξ )⊥ is the Franck-Condon overlap already introduced
in Appendix C.

Having derived all contributions entering the effective
meson-magnon interaction there is one step left to arrive at
the stated interaction Eq. (36) of the main text. We diagonal-
ized the free magnon Hamiltonian by introducing Bogoliubov
operators

âp = upb̂p − vpb̂
†
−p (D20)

with Bogolibov coefficients:

v2
p = 1

2

(
Jz + h − ωp

ωp

)
, u2p = 1 + v2

p. (D21)

We introduce these Bogoliubov operators in the interaction
terms, derived in this section of the Appendix, and sum
them all together to finally arrive at Eq. (36). We note that
the Bogoliubov operators describe the elementary low-energy
spin-wave excitations of the undoped system which then
interact with the mesonic bound state—represented by the
operators f̂ †js,nξ .

Because it becomes of importance in Appendix VB1, we
state here the form of the effective meson tunneling,

J (nξ )⊥,eff = J (nξ )⊥

⎛
⎝1 − 2

L

∑
q

v2
q

⎞
⎠, (D22)

The meson tunneling gets further reduced by the influence of
magnon vacuum fluctuations.

APPENDIX E: MESON-MAGNON BINDING AT LARGE
STAGGERED FIELD

In this Appendix, we provide an asymptotic description of
the meson-magnon bound state in the large-h limit. Specif-
ically, we consider the regime h � Jz, J⊥. In this limit,
quantum spin fluctuations ∝ J⊥ are strongly suppressed and
we can restrict ourselves to studying the t − Jz Hamiltonian:

Ĥ → Ĥt−Jz, |h| � J⊥. (E1)

To obtain an expression for the bound-state energy, we
consider the four relevant sectors independently: no hole
nh = 0 and spin Sztot ≡ s = 0, 1, and one-hole states, nh = 1,
with spin Sztot ≡ s = 1/2, 3/2. In each sector, we calculate
the corresponding ground-state energy Enh,s semianalytically
using the parton picture. Note that the latter is exact within
our approximation Eq. (E1), since magnon fluctuations can be
entirely neglected in the t − Jz Hamiltonian we consider here.

The cases with nh = 0 are trivial to solve, since ĤJz is
diagonal in the Ŝz basis. For the cases with nh = 1, we will
now construct an effective string potential describing the long-
range force binding the chargon to one (for s = 1/2) or three
tightly bound (for s = 3/2) spinons. Note that spinons in the
t − Jz model correspond to localized domain walls of the sur-
rounding Néel AFM. In the Z2 LGT formulation equivalent
to the t − Jz Hamiltonian, the long-ranged string potential we
derive can be viewed as being mediated by the Z2 gauge field.

Once the string potential V (s)

 in the sector with spin Sztot ≡

s is known, the parton theory reduces to an effective hopping
problem of the form

Ĥ(s)
eff = t

∑
�

(|� + 1〉〈�| + H.c.) +
∑
�

|�〉〈�|V (s)
|�|, (E2)

with � ∈ Z. Using simple exact diagonalization (ED), the
ground state of Ĥ(s)

eff can be solved to obtain the energies
�E1h,3/2 = E1,3/2 − E0,0 and �E1h,1/2 = E1,1/2 − E0,0 mea-
sured relative to the undoped ground state nh = Sztot = 0, in
the limit

h � Jz, J⊥ (E3)
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FIG. 20. Overview of the classical spin-charge configurations and their corresponding zero-point energies, from which the relevant parton
states can be constructed by allowing hole hopping. All energies are measured relative to the perfect Néel state shown in (a). (b) Flipping one
spin creates an excitation with spin s = 1 which costs an amount of energy h + Jz. Doping a hole into the spin chain changes spin by s = 1/2
and costs an energy �E = (h + Jz )/2, see (c). In (d), we show the configuration where an additional spin-flip excitation is created two sites
right from the hole, which corresponds to having a spin of s = 3/2 relative to the Néel state. This state lacks inversion symmetry around the
hole, and we denote its string length as 
̃ = 
 − 1. In (e), we allow one hole-hopping process to construct a new reference state with the same
spin s = 3/2. This state is inversion symmetric around the hole, and its string length is 
 = 0 (corresponding to 
̃ = +1).

but independent of t , which we have not specified here, i.e.,
this result is valid both for t � h or t � h, as long as Eq. (E3)
is satisfied.

Finally, the binding energy of the meson-magnon pair is
obtained as

Ebind = �E1h,3/2 − �E1h,1/2 − �E0h,1, (E4)

with �E0h,1 = E0,1 − E0,0. For Ebind < 0, the meson-magnon
bound state exists below the meson-magnon scattering contin-
uum.

1. String potentials

Before we construct the string potentials, we define refer-
ence parton states |� = 0〉nh,s in each sector (nh, s) with zero
string length 
 = 0. These are shown in Figs. 20(a)–20(c) and
20(e) together with their zero-point energies relative to the
classical Néel state. Note that all reference states are inversion
symmetric around the hole.

Next, we define states |�〉nh=1,s for arbitrary � ∈ Z by
starting from � = 0 and applying hole-hopping terms to
the right (� > 0) or left (� < 0). The string potential is
then given by the energy of the respective states: V (s)

|�| =
1,s〈�|ĤJz |�〉1.s. Note that the inversion symmetry around the
original hole position in the � = 0 state guarantees that V (s)

depends on |�| only.
In the case where only the hole is present and no additional

spin flips, nh = 1, s = 1/2, the string potential is the same as
already discussed in the main text, see Eq. (25):

V (1/2)

 = |
|h + 1

2
(Jz + h) + Jz

4
− δ
,0

Jz
4

. (E5)

Next we turn to the case nh = 1 with total spin s = 3/2,
with the reference state shown in Fig. 20(e). To derive the
form of the string potential, we construct longer string con-
figurations and their energies, see Fig. 21. For 
 � 2, we find
that each additional step 
 → 
 + 1 leads to the same increase
in energy h. This leads to the following string potential:

V (3/2)

 = |
|h + h

2
+ 2Jz + δ
,02h − (δ
,0 + δ|
|,1)

Jz
2

. (E6)

2. Perturbative limit: h � t

To get further analytical insight, we now calculate the bind-
ing energy perturbatively in the limit h � t, Jz, when the hole
hopping is also weak compared to h. This strongly restricts
the relevant parton states to the smallest string lengths.

A simple second-order perturbation theory in t/h, for the
case nh = 1, s = 1/2 gives

�Enh=1,s=1/2 = 1

2
(Jz + h) − 2

t2

h + Jz/4
. (E7)

Here the unperturbed ground state is |� = 0〉1,1/2, and we
obtain perturbative admixtures of the excited states |� =
±1〉1,1/2.

In the spin s = 3/2 case, the ground state manifold is de-
generate and given by |� = ±1〉1,3/2, see Fig. 21. These states
couple perturbatively to |� = 0〉1,3/2 and |� = ±2〉1,3/2. The
effective Hamiltonian describing second-order processes in
the low-energy sector can be derived by a Schrieffer-Wolff

FIG. 21. Spin configurations with one doped hole and an addi-
tional spin-flip, nh = 1, s = 3/2, for different string lengths 
. Their
corresponding energies relative to the Néel state are also shown.
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transformation:

Ĥ3/2
eff = 3

2
(Jz + h) − t2

h
− t2

h + Jz/2

− t2

h
(| + 1〉〈−1| + H.c.). (E8)

Consequently, the ground-state energy in this case is

�Enh=1,s=3/2 = 3

2
(Jz + h) − 2

t2

h
− t2

h + Jz/2
. (E9)

Combining our results, we obtain the perturbative binding
energy from Eq. (E4):

Ebind = −2
t2

h

[
1 + 1

2 + Jz/h
− 1

1 + Jz/4h

]
. (E10)

Expanding the bracket in powers of x = Jz/h � 1 yields

Ebind ≈ − t2

h
< 0. (E11)

We conclude that in the limit, h � Jz, t the magnon binds to
the hole.
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