
Vol.:(0123456789)

International Journal of Artificial Intelligence in Education
https://doi.org/10.1007/s40593-023-00328-3

1 3

ARTICLE

A Step‑Based Tutoring System to Teach Underachieving
Students How to Construct Algebraic Models

Kurt VanLehn1  · Fabio Milner1 · Chandrani Banerjee1 · Jon Wetzel1

Accepted: 12 January 2023
© International Artificial Intelligence in Education Society 2023

Abstract
An algebraic model uses a set of algebraic equations to describe a situation. Con-
structing such models is a fundamental skill, but many students still lack the skill,
even after taking several algebra courses in high school and college. For such stu-
dents, we developed instruction that taught students to decompose the to-be-mod-
elled situation into schema applications, where a schema represents a simple rela-
tionship such as distance-rate-time or part-whole. However, when a model consists
of multiple schema applications, it needs some connection among them, usually rep-
resented by letting the same variable appear in the slots of two or more schemas.
Students in our studies seemed to have more trouble identifying connections among
schema applications than identifying the schema applications themselves. We devel-
oped several tutoring systems and evaluated them in university classes. One of them,
a step-based tutoring system called OMRaaT (One Mathematical Relationship at a
Time), was both reliably superior (p = 0.02, d = 0.67) to baseline and markedly supe-
rior (p < 0.001, d = 0.84) to an answer-based tutoring system using only commer-
cially available software (MATLAB Grader).

Keywords  Intelligent tutoring system · Algebraic model construction · Algebra
story problem solving · Algebra word problem solving

 *	 Kurt VanLehn
	 kurt.vanlehn@asu.edu

	 Fabio Milner
	 milner@asu.edu

	 Chandrani Banerjee
	 cbanerj1@asu.edu

	 Jon Wetzel
	 jon.wetzel@asu.edu

1	 Arizona State University, Tempe, AZ, USA

http://orcid.org/0000-0001-5635-2003
http://crossmark.crossref.org/dialog/?doi=10.1007/s40593-023-00328-3&domain=pdf

	 International Journal of Artificial Intelligence in Education

1 3

The Research Problem and Prior Work on it

The Research Problem: Teaching Students to Construct Algebraic Models

Constructing models is a fundamental and important skill. According to the Next
Generation Science Standards (NGSS, 2013), “developing and using models” is one
of 8 key scientific practices. According the Common Core State Standards for Math-
ematics (CCSSM) (Common Core State Standards for Mathematics, 2011), “mod-
eling with mathematics” is one of its 8 key mathematical practices.

Students are introduced to model construction with arithmetic story problems in
primary school, and then algebraic story problems in secondary school. Both are
notoriously difficult. However, not all students who take these courses learn how
to construct models. For instance, across several years of teaching a junior-level
university engineering course on model construction, the first author found that
about half the entering class could not construct algebraic models of stories like the
one shown in Fig. 1. Thus, the research problem addressed here is teaching alge-
braic model construction to university students who somehow failed to acquire this
important skill in earlier classes.

A Theory of Algebraic Model Construction and Instruction Based on it

Several researchers have applied Kintch’s theory of text comprehension to model
construction (Cummins et al., 1988; Fuchs et al., 2010, 2019; Jitendra et al.,
2015; Kintsch & Greeno, 1985; Marshall, 1995; Nathan et al., 1992; Riley &
Greeno, 1988; Xin et al., 2005). The theory posits that students construct equa-
tions by matching schemas against their understanding of the story. Each match
of a schema fills slots of the schema and produces an equation. The part of the
story that matches the schema is called a mathematical relationship. Nathan
et al., (1992) observed that some relationships were obvious to students and some
were not. Schemas, which are a central construct of many cognitive theories of

Shortly a�er an F-35 fighter jet passes over
some militants, they fire an FIM-92 S�nger
missile at the plane. The plane flies at full
speed, 537 m/s. The missile flies at its full
speed, 750 m/s. How long (in seconds)
must the missile travel in order to catch up
with the plane? Assume the militants fire
the missile 6 seconds a�er the jet passes
over them. Ignore the fact that a S�nger
missile runs out of fuel a�er 10 seconds.

Fig. 1   A story problem

1 3

International Journal of Artificial Intelligence in Education	

understanding, have a set of conditions that both recognize when the schema
applies and fill its slots. Schemas also have a set of inferences to be made when
a schema applies. For example, the Overtake schema can be rendered informally
as:

•	 Slots: Object1, Object2, Path
•	 Conditions: Object1 and Object2 both travel along Path. They start at the same

point. Object1 starts after Object2. Object1 eventually overtakes Object2.
•	 Inferences: Object1’s average speed > Object2’s average speed. At the moment

when Object1 overtakes Object2, they are at the same point along Path. The
distance travelled by Object1 = the distance travelled by Object2. The duration
of Object1’s trip < the duration of Object2’s trip.

Experts often have large schemas that match whole stories. For example, an
expert might recognize the problem of Fig. 1 as a delayed start overtake problem,
and write.

•	 537 * Tplane = 740 * (Tplane + 6); distances are equal, but durations are offset

Although such composite schemas are handy, several studies showed that
atomic (i.e., not composite) schemas like Comparison and Motion (i.e., distance-
rate-time) were both less error-prone and easier to learn (Blessing & Ross, 1996;
Gerjets et al., 2004, 2006). Thus, researchers have focused on teaching only
atomic schemas.

The equations below illustrate a model of the story in Fig. 1 using only atomic
schemas.

•	 Dplane = 537 * Tplane; obvious application of the Motion schema
•	 Dmissile = 740 * Tmissile; obvious application of the Motion schema
•	 Dplane = Dmissile; nonobvious application of the Overtake schema
•	 Tplane = Tmissile + 6; nonobvious application of the Comparison schema

Many methods for teaching model construction have been tried. Table 1 lists
some major ones detailed in VanLehn (2013). Perhaps the most well-developed
and successful method is Schema-Based Instruction (SBI) (Fuchs et al., 2003,
2004a, b, 2009, 2010, 2019; Hutchinson, 1993; Jitendra et al., 2007, 2009, 2011,
2013, 2015; Xin et al., 2001, 2005). It is founded on the first two methods listed
in Table 1. It teaches arithmetic (not algebraic) model construction. Moreover,
most SBI studies used problems that contained only one mathematical relation-
ship, whereas most algebraic story problems have several mathematical relation-
ships. Thus, adapting SBI to algebra requires developing instruction to teach stu-
dents (a) how to decompose a story into multiple atomic relationships, (b) how to
recognize nonobvious relationships and (c) how to link relationships together by
recognizing when two relationships referred to the same quantity and thus their
equations should share a variable.

	 International Journal of Artificial Intelligence in Education

1 3

Our Prior Work on Tutoring Algebraic Model Construction

Our first three years of work are reported in an earlier publication (Vanlehn et al.,
2020), so this summary will be brief.

Table 1   Methods for teaching model construction

Teaching atomic schemas explicitly (Fuchs et al., 2003, 2004a, b, 2009, 2010, 2019; Hutchinson, 1993;
Jitendra et al., 2007, 2009, 2011, 2013, 2015; Xin et al., 2001, 2005)

Network representation of equations (Bridewell et al., 2006; Chang et al., 2006; Derry & Hawkes, 1993;
Fuchs et al., 2003, 2004a, b, 2009, 2010, 2019; Hutchinson, 1993; Jitendra et al., 2007, 2009, 2011,
2013, 2015; Joolingen et al., 2005; Löhner et al., 2003, 2005; Marshall, 1995; McArthur et al., 1989;
Metcalf et al., 2000; Pauli & Reusser, 1997; Reusser et al., 1993; Willis & Fuson, 1988; Xin et al.,
2001, 2005)

Decomposition of a system into subsystems (Ramachandran, 2003; Heffernan et al., 2008; Heffernan &
Koedinger, 1997)

Displaying the meaning of variables (Avouris et al., 2003; Forbus et al., 2005; Metcalf et al., 2000)
Feedback/hints on the student’s steps during problem solving (Arnau et al., 2013; Chi & VanLehn, 2008,

2010; Leelawong & Biswas, 2008; Zhang et al., 2014)
Adaptive task selection (Arroyo, 2000; Beal et al., 2010; Beck et al., 2000; Koedinger et al., 2008)
Concrete articulation strategy (Heffernan, 2003; Heffernan & Croteau, 2004; Heffernan & Koedinger,

1997; Heffernan et al., 2008; Koedinger & Anderson, 1998; McArthur et al., 1989)
Using bars to represent quantities and their relationships (Looi & Tan, 1996, 1998; Munez et al., 2013)
Using animations as the predictions of the model (Gould & Finzer, 1982; Nathan et al., 1992)
Student or system restates problem in mathematical English (Heffernan & Koedinger, 1997; Heffernan

et al., 2008)
Self-explanation of worked examples (Cooper & Sweller, 1987; Corbett et al., 2003, 2006; Heffernan

et al., 2008; Renkl et al., 1998)
Training students to recognize irrelevant quantities (Cook, 2006; Fuchs et al., 2010; Heffernan & Koed-

inger, 1997)
Systematically varying the surface features of the systems (Fuchs et al., 2003, 2004a, b, 2009, 2010;

Renkl et al., 1998)
Asking students to find values for all unknowns instead of just one (Sweller et al., 1983)
Feedback/hints on the model (Biswas et al., 2005; Bravo et al., 2009; Zhang et al., 2014)
Reflective debriefings (Connelly & Katz, 2009; Katz et al., 2003, 2007)
Answering student questions (Anthony et al., 2004; Beek et al., 2011; Corbett et al., 2005; Leelawong &

Biswas, 2008; Segedy et al., 2012)
Students explaining their model (Heffernan et al., 2008; Metcalf, 1999; Metcalf et al., 2000)
Qualitative-first model construction (Kurtz dos Santos & Ogborn, 1994; Bredeweg et al., 2010; Mulder

et al., 2010, 2011)
Model progressions (Jong et al., 1999; Quinn & Alessi, 1994; Swaak et al., 1998; White, 1984, 1993;

White & Frederiksen, 1990)
Teachable agents and reciprocal teaching (Biswas et al., 2005; Chan & Chou, 1997; Chase et al., 2009;

Pareto et al., 2011; Reif & Scott, 1999)
Mental execution of models (Kurtz dos Santos & Ogborn, 1994; Löhner, 2005)
Generic models (Bredeweg & Forbus, 2003; Bridewell et al., 2006; Marshall et al., 1989)
Gamification (Schwartz et al., 2009)

1 3

International Journal of Artificial Intelligence in Education	

Assessment  Story problems, like the one in Fig. 1, end by asking for the value of
a quantity. Some students have developed numerical methods for calculating such
numbers without writing equations (Koedinger & Nathan, 2004; Koedinger et al.,
2008). This may explain how they could pass algebra courses without learning how
to construct models. Thus, to assess their skill at model construction, we developed
a simple assessment system called the Solver (Fig. 2). Students type equations into a
textbox, one per line. When they click a button, the Solver either posts an error mes-
sage or solves the equations and reports values for all the variables. If the students
think these values solve the problem, then they copy the equations and submit them
as their solution to the problem. Unlike similar systems available as software or on
calculators like the TI-89, the Solver only allows students to include a number in
their equations if that number is mentioned in the story. This prevents them from
using numerical strategies for solving story problems.

Population  We began working with students who had failed College Algebra
and were taking a remedial course at an open-admission university. Initially, the
researchers (which included two of the course instructors, Banerjee and Milner)
tutored students in small groups or individually for about 20 h per student. We called
these “boot camps” for algebraic modeling. The boot camps started with paper and
pencil then gradually started using the tutoring system we were developing. Attri-
tion was high. Only the most committed students were willing to spend 20 or even
10 h attending our boot camp, even when the pay was high, and sessions could be
done remotely. Thus, we switched to teaching students in the first author’s class on

Fig. 2   A problem solved correctly in the Solver. The bold text in the box was entered by the student, who
then pressed the Solve button

	 International Journal of Artificial Intelligence in Education

1 3

computational modelling, which is taken by 3rd- and 4th- year engineering majors.
The boot camp instruction was converted to a 2-week module in the course. Just
before the module began, we tested all students using the Solver. As with the reme-
dial College Algebra students, some students answered very few problems correctly.

Evolution of the Design  As mentioned earlier, SBI is a successful method for teach-
ing construction of models consisting of a single arithmetic equation. SBI is based
on the first two methods of Table 1. In order to extend it to models consisting of
multiple algebraic equations, we added several methods with good empirical sup-
port. Our design was based on the first 5 methods in Table 1.

Over a series of 5 studies (formative evaluations), we experimented with vari-
ations of: the model notation, feedback policies, the schemas to be taught, and
the instructional sequence. We often made changes in the middle of the instruc-
tion. Changes were often based on student suggestions. This iterative development
method is sometimes called design-based research (Reimann et al., 2011).

We ended up with a node-link intermediate representation that was somewhat
similar to the one used in SBI instruction. Figure 3 shows an example. The oval
nodes represent quantities and the rectangular nodes represent atomic schema appli-
cations. We named the tutoring system TopoMath because it used the topology of
the graph to represent algebraic models.

TopoMath was an editor with three commands: (1) To enter a schema applica-
tion, students selected a schema name (e.g., Compare, Motion) then selected an
entity that differentiated this schema application from others (e.g., plane vs. missile).
This caused TopoMath to create a rectangular equation node and several gray oval
variable nodes. (2) The variable nodes remained gray until the student edited them
to fill in units and possibly values. Students could also cause two variable nodes to
merge by editing the name of one to be the name of the other. (3) Students could
drag nodes.

Students were taught that when they could not identify mathematical relation-
ships, they should drag similar unknown variable nodes to be close to each other, as
shown in Fig. 3. The proximity of the nodes was intended to cue recognition of non-
obvious relationships. Thus, Fig. 3 should help them recognize that DPlane = DMis-
sile and TPlane = TMissile + 6.

Fig. 3   A partial TopoMath model for the story in Fig. 1

1 3

International Journal of Artificial Intelligence in Education	

Throughout this problem-solving process, the tutoring system gave immediate,
minimal feedback (green for correct; red for incorrect). In order to discourage guess-
ing, on a third incorrect response, the system made the correct entry and colored it
yellow. The yellow persisted when a node was closed and thus could be easily seen
by the instructor or grader.

Summative Evaluation  To evaluate the TopoMath instruction, we used a regres-
sion discontinuity design. Students first took a pretest using the Solver. They were
then split into a treatment group and a no-treatment group based on whether their
pretest score was below a cutoff score (treatment group) or above it (no-treatment
group). The treatment group was required to use the TopoMath instruction for about
2 weeks. To be fair to the non-treatment students, TopoMath was available to them
too, albeit not required. Both groups then took a posttest on the Solver. The posttest
was isomorphic to the pretest; only the cover stories were changed. Students’ scores
on the posttest were part of their grade for the course.

Figure 4 shows the results as a regression of posttest scores against pretest scores.
The pretest cutoff score was 0.61, and as expected, we see a discontinuity at that

Fig. 4   Results of the evaluation of TopoMath

	 International Journal of Artificial Intelligence in Education

1 3

point. However, this two-line model was not significantly different from a single-line
model (p = 0.74). Thus, although the treatment may have a benefit, it was too small
relative to the large scatter in scores.

Unfortunately, our decision to make TopoMath optional for the no-treatment
group motivated most of them to use TopoMath. Only 5 students never used it, so
only they are included in the analyses of Fig. 4. (Two students had identical pretest
and posttest scores, so they are shown as one point.) Thus, our decision to be fair to
the no-treatment group dramatically reduced the power of the study.

OMRaaT and the OMRaaT module

Intent on increasing the benefits of our instruction, we again tutored students using
first pencil and paper and then a mock-up in Excel of a tutoring system. These ses-
sions led us to design a new tutoring system and instruction from scratch. They dif-
fered from TopoMath and its instruction in two major ways.

(1)	 The network representation could only show a small amount of text inside each
node, so many of the details used for establishing the meaning of the node could
only be seen by clicking on it. We changed the notation so that no information
is hidden.

(2)	 The TopoMath instruction taught students that variables denoted quantities,
which is the classic semantics of variables. For example, the variable “Dplane”
denotes the distance the plane flew and “DMissile” denotes the distance the
missile flew. This made merging nodes confusing, because students didn’t know
which node to edit. For example, in Fig. 3, the result of merging the two vari-
able nodes on the left was labelled either DPlane or DMissile, depending on
which node was edited. The instruction was changed to remove the concept of
a variable denoting a quantity and instead treat variables as names for slots. To
replace merging of nodes, a new schema was added: Equality. It indicated that
two slots have the same value. The Equality schema included a description slot
for justifying why the two slots have equal values. For example, when equating
the distances travelled by the plane and the missile, the justification was “trav-
elled approximately the same path.”

In terms of the methods listed in Table 1, the new tutoring system retained 4 of
the 5 methods and eliminated one: Network representation of equations. It added a
new method: Explicitly represent slot sharing. The new tutoring system was named
OMRaaT: an acronym for One Mathematical Relationship at a Time.

Figure 5 shows a solved problem in OMRaaT. Each row is a schema applica-
tion. The boxes are slots. When students select the name of a schema, a new
row is added to the table with empty slots labelled by the text above them. The
first few slots describe the schema application. The Motion schema (first two

1 3

International Journal of Artificial Intelligence in Education	

rows of Fig. 5) has 4 description slots; the Equality schema (third row) has 2;
the Addition schema (last row) has 2. Students fill a description slot by selecting
from a menu including all possible description slot fillers.

When the student finishes filling the description slots of a schema application,
the slots turn red (incorrect) or green (correct). The student then tries to correct
the red slots. On the third incorrect attempt, the slot turns yellow and shows the
correct entry. The yellow coloring and the delayed feedback are intended to dis-
courage guessing. Also, the percentage of slots filled correctly on the first attempt
is displayed at the top of the window (e.g., “Percent Aced: 92%”).

After all the description slots of a schema application have been filled cor-
rectly, the student can fill the remaining slots, which are called quantity slots.
For the Motion schema, there are 3 quantity slots, for distance, rate and time.
To fill a quantity slot, students select from a menu that has numbers mentioned
in the story (e.g., 537, 750, 6 and 10) and “Unknown.” If they select Unknown,
OMRaaT invents a variable name that is unique to the slot. Thus, the variables
denote slots. When all the quantity slots have been filled, the student gets red/
green feedback.

We reduced the set of problems slightly so that only four schemas were needed:
Motion, Mixture, Addition and Equality. The Mixture schema represents relation-
ships such as “rum is 40% alcohol” and has slots for a mixture, an ingredient and a
proportion. We hypothesize that it would be easy for students to learn more schemas
after they acquire the skill of decomposing the problem into atomic relationships
and determining when schemas share slots.

We originally intended that all connections among schemas would be represented
with the Equality schema. However, this entailed entering too many Equality sche-
mas. For the problem of Fig. 5, three more Equality schema applications would be
needed. Thus, to simplify the models and reduce problem solving time, we allowed
the Addition schema to refer to existing slots, as shown in Fig. 5. To make this
work smoothly, we implemented a suggestion of Nathan (Nathan et al., 1992) and

Fig. 5   A solved problem in OMRaaT

	 International Journal of Artificial Intelligence in Education

1 3

required student to first enter obvious schemas (Motion and Mixture) before enter-
ing any nonobvious schemas (Equality and Addition).

When students finish correctly entering all the schema applications required, they
click the “Solve for:” button to select one of the variables, and then click the Solve
button, which pops up a window showing the numerical value of the solved-for
variable.

The overall instruction was implemented as a module in the university’s LMS, Canvas.
The OMRaaT module comprised 15 passive pages, which had only videos or text, and
47 active pages, each with a problem to solve. Problems were solved on either OMRaaT
or the Solver. After finishing a problem on OMRaaT or the Solver, students pasted their
model into Canvas. Neither Canvas nor the instructor graded the submissions. The course
instructor was available via email and zoom; there was no course TA nor tutoring avail-
able. The students had 19 days to complete the OMRaaT module. On the 20th day, there
was a module exam, which also served as the post-test for this experiment.

The OMRaaT module was organized as a sequence of 5 sections, each teaching
a new schema or concept. Each section began with an explanation and a worked
example; each ended with a Solver problem; in between, the students did OMRaaT
problems of increasing complexity.

Solver problems were included because we wanted to make sure that students trans-
ferred the OMRaaT reasoning to the Solver, which provided no feedback on correctness
and little strategic guidance. The module’s Solver assignments emphasized three key
components of the OMRaaT strategy: (1) Only write atomic equations, that is, equations
with just one algebraic operator: + , -, * or /. (2) Use meaningful variable names instead
of x, y and z. (3) Only include numbers mentioned in the problem statement. The Solver
enforced the third constraint, but it let students violate the other two if they wished. The
Canvas Solver pages emphasized that they should always obey all three constraints.

The Canvas gradebook showed each problem-solving page as a separate column.
This “dashboard” allowed the instructor to track student progress and nag students
who were falling behind.

It is perhaps worth mentioning how we managed to get Canvas to act like a dash-
board-laden ITS “for free.” To avoid installation issues, OMRaaT was a web app.
In principle, we could have used LTI to integrate it with Canvas. However, to avoid
the university’s requirement for security scans of software integrated with Canvas,
OMRaaT communicated with Canvas via files. To solve a problem, students down-
loaded a file from the Canvas assignment page, uploaded it to OMRaaT, solved the
problem, downloaded the modified file, and then uploaded it to the Canvas page.
This hack saved us many months trying to pass a security scan.

An Evaluation of the OMRaaT Module

To evaluate the OMRaaT module, we again used a regression discontinuity design.
This time, students above the cutoff on the pretest (the no-treatment group) were
prevented from taking the OMRaaT modules. As in the TopoMath evaluation, stu-
dents below the cutoff (the treatment group) were required to take the module.

1 3

International Journal of Artificial Intelligence in Education	

To be fair to the students in both conditions, algebraic modeling was taught twice
bracketed by tests. The sequence was: (1) pretest, (2) OMRaaT module for the treat-
ment group only, (3) mid-test, (4) Solver-based instruction on algebraic model-
ling for all students, and (5) posttest. Students’ scores on the mid-test and posttest
counted towards their grade, whereas scores on the pretest were only used for place-
ment in the treatment or no-treatment condition.

All 3 tests were given on the Solver. Before taking the pretest, students were
introduced to it and solved several very simple problems using it.

The pretest and mid-test were isomorphic. Problems appeared in the same order.
For every problem on the pretest, the corresponding problem on the mid-test had the
same algebraic structure but different words. For example, one problem talked about
discounts at Whole Foods and the other talked about discounts at Kohls. There were
4 problems with one schema application, 4 problems with two schema applications,
1 problem with three schema applications, 2 problems with four schema applica-
tions and 1 problem with five schema applications.

Unfortunately, scores on the pretest were at ceiling on 3 of the problems. That is,
on 2 problems with a single schema and 1 problem with two schemas, 88% or more
of the students got the problem correct on the pretest, which was well above the
average on the other pretest problems (47%). Thus, those three problems were elimi-
nated from the data analysis. This left both tests with 10 problems each.

Points were assigned to test problems according to the number of schema appli-
cations required for their solution. For example, a problem with 3 schema applica-
tions was worth 3 points. Thus, the maximum score on each test was 24 points. The
maximum number of points in the overall course was 455, and a student’s course
grade was proportional to the number of points the student scored during the course.

The cutoff for dividing the students into treatment and no-treatment groups was
the median of the pretest scores of all the students in the class. However, only 50
students took both tests and consented to have their data used. Of these, 28 scored
below the cutoff on the pretest and thus were in the treatment group. The remaining
22 were in the no-treatment group.

The treatment group students could access the OMRaat module in Canvas. The
no-treatment group could not access it. The no-treatment group had no algebraic
modeling instruction or other activities during the 20-day treatment period. How-
ever, during this period, the whole class met as usual twice a week for lectures on an
unrelated topic (human problem solving) accompanied by a few pages of reading.

The treatment group scored a half point for each problem solution they submitted
to Canvas, regardless of whether it was correct or not. The no-treatment students
were awarded the maximum of these points.

Although 27 students in the treatment group did almost all the problems (average
number of completed problems: 46.0 out of 47), one student in the treatment group
did only 4. This student was excluded from the treatment group during data analysis.

We first analyzed the mid-tests to see whether students obeyed the key OMRaaT
strategy constraints, which were: (1) Only write atomic equations, that is, equa-
tions with just one algebraic operator. (2) Use meaningful variable names. Students
were coded as obeying the strategy when greater than 50% of their solutions obeyed
both constraints. We found that 4 treatment students did not use the strategy on the

	 International Journal of Artificial Intelligence in Education

1 3

mid-test, so they were excluded from further data analysis. Although they may have
mastered the OMRaaT skills, they apparently chose not to use them on the mid-test,
so we can’t assess their OMRaaT learning gains. This left 23 students in the treat-
ment group for further data analysis.

Figure 6 shows the regression plot for the two groups. The solid line is the diago-
nal, where mid-test scores equal pretest scores. All the treatment students gained:
their mid-test scores were larger than their pretest scores, often by large amounts.
Some (59%) of the no-treatment students also gained, which could be due to a
test–retest effect or gaining familiarity with the Solver. However, for a significant
proportion (36%) of the no-treatment students, the scores actually decreased from
pretest to mid-test.

However, the success of a regression discontinuity design hinges on whether the
regression lines of the two groups (shown in blue and red) fit the data better than
a regression line for the union of the two groups (shown in green). One cannot go
by the R2 values (shown in Fig. 6) because they are derived from 3 different data-
sets. Thus, we subtracted the cutoff value (11.5) from the pretest scores, then fit this
equation to all the data:

where Group is 1 for the treatment group and 0 for the no-treatment group. The
Group variable means that coefficients C and D affect only treatment data points,
establishing a second line that is above the line established by A and B. The best fit
found:

MidTest = A + B ∗ Pretest + C ∗ Group + D ∗ Group ∗ Pretest

Fig. 6   Results of the OMRaaT module evaluation

1 3

International Journal of Artificial Intelligence in Education	

•	 A = 14.8, p < 0.001
•	 B = 0.61, p = 0.008
•	 C = 5.36, p = 0.023
•	 D = 0.48, p = 0.129

Because C is reliably different from zero, the two-line model fits better than
the one-line model. The coefficients compare the regression line for the treatment
group alone to the regression line for both groups. Because D was almost zero, the
lines’ slopes were the same. Because C was reliably different from zero, the treat-
ment seems to have raised scores by a constant amount. Thus, we conclude that the
OMRaaT treatment worked in that it raised mid-test scores reliably above what they
would otherwise have been.

In order to estimate how much the treatment improved mid-test scores, we
used the main line of the model (MidTest = 14.8 + 0.601*Pretest) to predict mid-
test scores if the students had not taken the OMRaaT treatment. Comparing the
actual scores to the predicted scores yielded an effect size of d = 0.67. To interpret
this effect size as recommended by Lipsey et al. (2012): 61% of the actual scores
exceeded the mean of the predicted scores.

A Conventional Answer‑Based Tutoring System

This section presents a comparison of OMRaaT to an answer-based tutoring system.
There were two motivations for this study. One was to test the hypothesis that step-
based tutoring systems tend to be more effective than answer-based tutoring systems
(VanLehn, 2011). The second was that the Solver developed bugs which could not
be fixed because funding for the project was finished, so we had to switch to other
equation-solving software.

The new tutoring system used only commercially available software, namely
MATLAB Grader. MATLAB Grader tests student programs using inputs and out-
puts. For each problem, the instructor supplies a set of tests. A test consists of inputs
and outputs. The student’s program must have inputs and outputs. The test’s inputs
are fed to the student’s program, and the program’s outputs are compared to the
test’s outputs. MATLAB Grader is similar to Gradescope and many other autograd-
ers. Unlike Gradescope and others, MATLAB can solve sets of equations.

In order to use MATLAB Grader, the modeling problems had to be modified
slightly so that they specified inputs and outputs. For an example, consider the prob-
lem of Fig. 1:

Shortly after an F-35 fighter jet passes over some militants, they fire an FIM-
92 Stinger missile at the plane. The plane flies at full speed, 537 m/s. The mis-
sile flies at its full speed, 750 m/s. How long (in seconds) must the missile
travel in order to catch up with the plane? Assume the militants fire the missile
6 seconds after the jet passes over them. Ignore the fact that a Stinger missile
runs out of fuel after 10 seconds.

The new problem, with edits in italics, is:

	 International Journal of Artificial Intelligence in Education

1 3

Shortly after an F-35 fighter jet passes over some militants, they fire an FIM-
92 Stinger missile at the plane. The plane flies at full speed, 537 m/s. The mis-
sile flies at its full speed, 750 m/s. Create a model that outputs the time (in sec-
onds) that the missile must travel in order to catch up with the plane. Assume
the militants fire the missile a few seconds after the jet passes over them. Your
model should input the duration of this delay in seconds. Ignore the fact that a
Stinger missile runs out of fuel after 10 seconds.

Figure 7 shows a problem as presented to students in MATLAB Grader. The
problem text is at the top. Next is a link to a video of the instructor solving the
problem. A template for entering the solution appears in a box. Students are told to
replace the symbols that are in all capitals. They cannot edit the lines that are gray.
After the box comes some code for testing the function. When students click the
Run Function, those tests are run, and the outputs are printed. If the function has a
bug, a MATLAB error message appears instead. Not shown is a Submit button that
tests the function on new inputs, and reports whether the function is correct or not.

Figure 8 shows a solution to the problem. Although MATLAB Grader gives full
marks to any function whose input–output behavior passes the tests, students were
told to make their equations obey three rules:

Fig. 7   A model construction problem in Matlab Grader

1 3

International Journal of Artificial Intelligence in Education	

•	 The model should only mention numbers in the problem statement
•	 Every equation should have just one type of operator: + , -, *, / or ^. Repetitions

of + and * are OK, so Foo == Baz + Zorch + Mumble is OK.
•	 Variables should have meaningful names. In particular, students should not use

x, y or z.

Students were told that points would be taken off during exams and quizzes if
they violated these rules. During homework and practice quizzes, students could
submit problems as many times as they wanted in order to get input–output feed-
back. During quizzes and exams, there were no test cases. Instead, their solutions
were manually scored and the 3 rules above were enforced.

Students had already used Matlab for several weeks, so they were somewhat
familiar with the programing language. They were taught two new syntactic conven-
tions for entering equations: (1) Use “ == ” instead of “ = ” (2) Use “…” after all
equations except the last one.

The content mirrored the OMRaaT content exactly. The same lectures, examples
and problems were used. Most importantly, the instruction taught the same 4 sche-
mas in the same order, with the same focus on decomposing a problem into atomic
relationships and on sharing variables between schema applications.

In summary, the MATLAB Grader instruction differed in four ways from the
OMRaaT instruction: (1) The crucial difference was that MATLAB Grader students
got only answer-based feedback instead of step-based feedback. That is, they had to
enter a whole model in order to get feedback on its correctness. In contrast, OMRaaT
gave feedback on the steps required for constructing a model. (2) Because some
MATLAB Grader students needed more than answer-based feedback, every problem
had a video of the instructor solving the problem. On average, each video received
0.44 views per student. (3) As explained earlier, the models had to have inputs and
outputs, so the problems were reworded. (4) The OMRaaT students learned about
about human problem solving as they learned algebraic model construction, whereas
the MATLAB Grader students learned about algebraic modeling only.

Fig. 8   Solution to the problem of Fig. 7

	 International Journal of Artificial Intelligence in Education

1 3

The MATLAB Grader tutoring system is typical of many tutoring systems that
give answer-based feedback. The feedback is often just binary: correct vs. incor-
rect. They often provide help via an instructor video.

The Study

The regression discontinuity study of OMRAaaT, which was described in the pre-
ceding section, was conducted in fall 2019 in a junior-level class on modeling.
The MATLAB Grader tutoring system was used the following year in the same
class. The study described here compared learning gains of 2019 students using
OMRaaT to learning gains of 2020 students using the MATLAB Grader tutoring
system.

The same tests and scoring procedure were used in both years. The tests were
given on the Solver in 2019 and on MATLAB Grader in 2020, so the MATLAB
Grader problems had inputs and outputs but the Solver problems did not. As men-
tioned earlier, there were 3 problems on the 2019 pretest where the student scores
were at ceiling so these problems were excluded when scoring the 2019 pretest and
mid-test. These 3 problems were not included on the 2020 pretest and posttests.

In the regression discontinuity study, OMRaaT was used only by students whose
pretest score was below the pretest median, 11.5. In the following year, the MAT-
LAB Grader tutoring system was used by all students. In order to have a fair com-
parison, this study included only students who scored below 11.5 on the MATLAB
Grader pretest. Both the OMRaaT group and the MATLAB Grader group had only
consenting students who did both tests. The OMRaaT group had 23 students, and
the MATLAB Grader group had 42 students.

Results

Figure 9 shows the mean pretest, posttest and gains scores for both groups. In this
discussion, the 2019 mid-test is called “posttest”. The pretest means were not reli-
ably different (p = 0.988). The posttest means were reliably different (p = 0.003, two-
tailed T-test), as were the means of the gain scores (p < 0.001, two tailed T-test).
The effect size (d) was 0.84. The OMRaaT students’ gains were approximately dou-
ble the gains of the MatLab Grader students. The step-based tutoring of OMRaaT
appears to be more effective than the answer-based tutoring of the MATLAB Grader
tutoring system.

It could be that interpreting answer-based feedback requires more effort and skill
than interpreting step-based feedback. If so, then the results might show an apti-
tude-treatment interaction. That is, the larger the pretest score, the larger the gain
among students using the MATLAB Grader tutoring system. In order to check for
this effect, Fig. 10 shows a scatterplot of both groups. Regression lines are also plot-
ted. Because the slopes of the regression lines are both close to 1.0, there appears to
be no aptitude-treatment interaction in either group.

1 3

International Journal of Artificial Intelligence in Education	

Discussion

The bottom line is that there appears to be a reliable (p = 0.023) moderately large
(d = 0.67) positive effect when below-median OMRaaT students were compared to

Fig. 9   Means and standard errors of the mean

Fig. 10   Scatterplots of both treatments

	 International Journal of Artificial Intelligence in Education

1 3

above-median students who received no instruction. Also, when students below the
pretest median used either OMRaaT or an answer-based tutoring system, there was a
reliable (p < 0.001) large (d = 0.84) advantage in learning gains for using OMRaaT.

The fact that the OMRaaT instruction improves the scores of underachieving
students is remarkable and welcome. It is also welcome to see more data consist-
ent with the hypothesis that step-based tutoring (OMRaaT) is more effective than
answer-based tutoring (the MATLAB Grader tutoring system), as discussed by
VanLehn (2011).

However, it is too early to declare victory over the notorious educational barrier
of algebra word problems. From Fig. 10, we can see that there is a cluster of seven
OMRaaT students who scored less than 9 on the mid-test. These students benefited
from OMRaaT, but they did not benefit enough. These students appear to need more
help. That is a challenge for future work.

Concerning transfer of model-construction skill from school/university to real-
life settings, we point out that failure in school almost always results in failure to
real life. The OMRaaT project focusses on students who failed to learn how to con-
struct models during their high school and introductory undergraduate mathematics
classes. If we can get some of those failing students to learn how to solve school
problems, that at least allows some hope that their new skill will transfer to real-life
settings.

For technologists, several lessons can be learned from the OMRaaT project. The
overall instruction is classic two-loop tutoring system (VanLehn, 2006, 2011). The
outer loop executes once per problem. The inner loop executes once per step. The
inner loop gives students feedback on each step. OMRaaT itself only handles the
inner (step) loop of tutoring (VanLehn, 2006). Canvas implements the outer loop.
OMRaaT is an example-tracing tutoring system (Aleven et al., 2009) in that it does
not generate a solution to a problem but instead utlilizes a solution given to it by
the problem’s author. Due to this simple design and its mundane user interface, the
implementation of OMRaaT took only 4 months of full-time work by an experi-
enced JavaScript programmer using the React framework. The lesson to be learned
is that even if one doesn’t use an authoring tool like CTAT (Aleven et al., 2015), it
doesn’t always take long to implement the inner loop of a step-based tutoring system
if it is example-tracing and has a simple user interface.

The second technical lesson is that we were able to use a conventional LMS, Can-
vas, to implement the outer loop. An assignment in Canvas usually contains multiple
problems, examples, etc. We used each assignment to present just one problem or
example. Having 47 assignments cluttered the Canvas gradebook, but also allowed
the gradebook to be used as a dashboard by the instructor to detect students who had
fallen behind.

We are encouraged by the results so far, so we plan to try to make the OMRaaT
module even more effective. The first task will be to analyze data from treatment
students who did not gain much. One possibility is that the module was paced too
quickly for the non-gainers; they may need even more examples and problems than
they were given. SBI instruction (Fuchs et al., 2003, 2004a, b, 2009, 2010; Jitendra
et al., 2007, 2009, 2011, 2013, 2015; Xin et al., 2005) usually lasted for 16 weeks,
albeit with younger students. A second possibility is that the non-gainers figured out

1 3

International Journal of Artificial Intelligence in Education	

ways to game OMRaaT (Baker et al., 2004) so that they could make rapid progress
and yet still not learn much. There are many other possible explanations as well.
Regardless of what happened to cause a few students to gain little, we are pleased
to see that most students in the underachieving treatment group had large learning
gains.

Funding  This research was supported by NSF 1628782, NSF 1840051 and The Diane and Gary Tooker
Chair for Effective Education in Science, Technology, Engineering and Math.

Declarations 

Conflict Interests  The authors have no relevant financial or non-financial interests to disclose, nor conflict-
ing interests nor competing interests.

References

Aleven, V., McLaren, B., Sewall, J., & Koedinger, K. R. (2009). A new paradigm for intelligent tutoring
systems: Example-tracing tutors. International Journal of Artificial Intelligence in Education, 19,
105–154.

Aleven, V., Sewall, J., Popescu, O., van Velsen, M., Demi, S., & Leber, B. (2015). Reflecting on twelve
years of ITS authoring tools research with CTAT. In R. Sottilare, A. C. Graesser, X. Hu, & K.
Brawner (Eds.), Design Recommendations for Adaptive Intelligent Tutoring Systems (Vol. III,
Authoring Tools) (pp. 263–283). US Army Research Laboratory.

Anthony, L., Corbett, A. T., Wagner, A. Z., Stevens, S. M., & Koedinger, K. R. (2004). Student ques-
tion-asking patterns in an intelligent algebra tutor. In J. C. Lester, R. M. Vicari, & F. Praguacu
(Eds.), Intelligent Tutoring Systems: 7th International Conference, ITS 2004 (pp. 455–467).
Springer-Verlag.

Arnau, D., Arevalillo-Herraez, M., Puig, L., & Gonzalez-Calero, J. A. (2013). Fundamentals fo the
design and the operation of an intelligent tutoring system for the learning of the arithmetical and
algebraic way of solving word problems. Computer and Education, 63, 119–130.

Arroyo, I. (2000). AnimalWatch: An arithmetic ITS for elementary and middle school students. In Pre-
sented at the Workshop at ITS 2000.

Avouris, N., Margaritis, M., Komis, V., Saez, A., & Melendez, R. (2003). ModellingSpace: Interaction
design and architecture of a collaborative modelling environment. In Presented at the Sixth Inter-
national Conference on Computer Based Learning in Sciences (CBLIS).

Baker, R. S. J. s., Corbett, A., Koedinger, K. R., & Wagner, A. Z. (2004). Off-task behavior in the cogni-
tive tutor classroom: When students “Game the System”. In E. Dykstra-Erickson & M. Tscheligi
(Eds.), Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 383–
390) ACM.

Beal, C., Arroyo, I., Cohen, P. R., & Woolf, B. P. (2010). Evaluation of AnimalWatch: An intelligent
tutoring system for arithmetic and fractions. Journal of Interactive Online Learning, 9(1), 64–77.

Beck, J., Woolf, B. P., & Beal, C. (2000). ADVISOR: A machine learning architecture for intelligent tutor
construction (pp. 552–557). CA, AAAIPress.

Beek, W., Bredeweg, B., & Lautour, S. (2011). Context-dependent help for the DynaLearn modelling and
simulation workbench. In G. Biswas (Ed.), Artificial Intelligence in Education (pp. 4200–4422).
Springer-Verlag.

Biswas, G., Leelawong, K., Schwartz, D. L., & Vye, N. J. (2005). Learning by teaching: A new agent
paradigm for educational software. Applied Artificial Intelligence, 19, 263–392.

Blessing, S. B., & Ross, B. H. (1996). Content effects in problem categorization and problem solving.
Journal of Experimental Psychology: Learning, Memory and Cognition, 22(3), 792–810.

Bravo, C., van Joolingen, W. R., & de Jong, T. (2009). Using Co-Lab to build system dynamics models:
Students’ actions and on-line tutorial advice. Computer and Education, 53, 243–251.

Bredeweg, B., & Forbus, K. D. (2003). Qualitative modeling in education. AI Magazine, 24(4), 35–46.

	 International Journal of Artificial Intelligence in Education

1 3

Bredeweg, B., Liem, J., Beek, W., Salles, P., & Linnebank, F. (2010). Learning spaces as representational
scaffolds for learning conceptual knowledge of system behavior. In M. Wolpers (Ed.), EC-TEL (pp.
46–61). Springer-Verlag.

Bridewell, W., Sanchez, J. N., Langley, P., & Billman, D. (2006). An interactive environment for the
modeling and discovery of scientific knowledge. International Journal of Human-Computer Stud-
ies, 64, 1099–1114.

Chan, T.-W., & Chou, C.-Y. (1997). Exploring the design of computer supports for reciprocal tutoring.
International Journal of Artificial Intelligence in Education, 8, 1–29.

Chang, K.-E., Sung, Y.-T., & Lin, S.-F. (2006). Computer-assisted learning for mathematical problem
solving. Computers & Education, 46, 140–151.

Chase, C. C., Chin, D. B., Oppenzzo, M., & Schwartz, D. L. (2009). Teachable agents and the Protégé
effect: Increasing the effort towards learning. Journal of Science Education and Technology, 18(4),
334–352.

Chi, M., & VanLehn, K. (2008). Eliminating the gap between the high and low students through
meta-cognitive strategy instruction. In B. P. Woolf, E. Aimeur, R. Nkambou, & S. P. Lajoie
(Eds.), Intelligent Tutoring Systems: 9th International Conference: ITS2008 (pp. 603–613).
Springer.

Chi, M., & VanLehn, K. (2010). Meta-cognitive strategy instruction in intelligent tutoring systems: How,
when and why. Journal of Educational Technology and Society, 13(1), 25–39.

Connelly, J., & Katz, S. (2009). Toward more robust learning of physics via reflective dialogue exten-
sions. In G. Siemens & C. Fulford (Eds.), Proceedings of the World Conference on Educational
Multimedia, Hypermedia and Telecommunications 2009 (pp. 1946–1951). AACE.

Cook, J. L. (2006). College students and algebra story problems: Strategies for identifying relevant infor-
mation. Reading Psychology, 27, 95–125.

Cooper, G., & Sweller, J. (1987). Effects of schema acquisition and rule automation on mathematical
problem-solving transfer. Journal of Educational Psychology, 79(4), 347–362.

Corbett, A., Wagner, A. Z., & Raspat, J. (2003). The impact of analysing example solutions on problem
solving in a pre-algebra tutor. In U. Hoppe, F. Verdejo, & H. Kay (Eds.), Artificial Intelligence in
Education: Proceedings of AIED 2003: The 11th International conference on AI in Education (pp.
133–140). IOS Press.

Corbett, A., Wagner, A. Z., Chao, C.-Y., Lesgold, S., Stevens, S. M., & Ulrich, H. (2005). Student ques-
tions in a classroom evaluation of the ALPS learning environment. In C.-K. Looi & G. McCalla
(Eds.), Artificial Intelligence in Education (pp. 780–782). IOS Press.

Corbett, A., Wagner, A. Z., Lesgold, S., Ulrich, H., & Stevens, S. M. (2006). The impact of learning of
generating vs. selecting descriptions in analyzing algebra example solutions. In S. A. Barab, K.
E. Hay, & D. T. Hickey (Eds.), The 7th International Conference of the Learning Sciences (pp.
99–105). Erlbaum.

Cummins, D. D., Kintsch, W., Reusser, K., & Weimer, R. (1988). The role of understanding in solving
word problems. Cognitive Psychology, 20, 405–438.

de Jong, T., Martin, E., Zamarro, J.-M., Esquembre, F., Swaak, J., & van Joolingen, W. R. (1999). The
integration of computer simulation and learning support: An example from the physics domain of
collisions. Journal of Research in Science Teaching, 36(5), 597–615.

Derry, S. J., & Hawkes, L. W. (1993). Local cognitive modeling of problem-solving behavior: An appli-
cation of Fuzzy Theory. In S. P. Lajoie & S. J. Derry (Eds.), Computers as Cognitive Tools (pp.
107–140). Lawrence Erlbaum Associates.

Forbus, K. D., Carney, K., Sherin, B. L., & Ureel Il, L. C. (2005). VModel: A visual qualitative modeling
environment for middle-school students. AI Magazine, 26(3), 63–72.

Fuchs, L. S., et al. (2003). Explicitly teaching for transfer: Effects on third-grade students’ mathematical
problem solving. Journal of Educational Psychology, 95(2), 293–305.

Fuchs, L. S., Fuchs, D., Finelli, R., Courey, S. J., & Hamlett, C. L. (2004a). Expanding schema-based
transfer instruction to help third graders solve real-life mathematical problems. American Educa-
tion Research Journal, 41(2), 419–445.

Fuchs, L. S., Fuchs, D., Prentice, K., Hamlett, C. L., Finelli, R., & Courey, S. J. (2004b). Enhancing
mathematical problem solving among third-grade students with schema-based instruction. Journal
of Educational Psychology, 96(4), 635–647.

Fuchs, L. S., et al. (2009). Remediating number combinations and word problem deficits among students
with mathematics difficulties: A randomized control trial. Journal of Educational Psychology,
101(3), 561–576.

1 3

International Journal of Artificial Intelligence in Education	

Fuchs, L. S., et al. (2010). The effects of schema-broadening instruction on second grader’s word-prob-
lem performance and their ability to represent word problems with algebric equations: A rand-
omized control study. The Elementary School Journal, 110(4), 440–463.

Fuchs, L. S., Fuchs, D., Seethaler, P. M., & Barnes, M. A. (2019). Addressing the role of working mem-
ory in mathematical word-problem solving when designing intervention for struggling learners.
ZDM Mathematics Education, 52, 87–96.

Gerjets, P., Scheiter, K., & Catrambone, R. (2004). Desiging instructional examples to reduce intrinsic
cognitive load: Molar versus modular presentation of solution procedures. Instructional Science,
32, 33–58.

Gerjets, P., Scheiter, K., & Catrambone, R. (2006). Can learning from molar and modular worked exam-
ples be enhanced by providing instructional explanations and prompting self-explanations? Learn-
ing and Instruction, 16, 104–121.

Gould, L., & Finzer, W. (1982). A study of TRIP: A computer system for animating time-rate-distance
problems. International Journal of Man-Machine Studies, 17, 109–126.

Heffernan, N. T. (2003). Web-based evaluations showing both cognitive and motivational benefits of the
Ms. Lindquist tutor. Proceedings of the 11th International Conference on Artificial Intelligence in
Education. Berlin, Springer-Verlag.

Heffernan, N. T., & Croteau, E. A. (2004). Web-based evaluations showing differential learning for
tutorial strategies employed by Ms. Lindquist tutor. In J. C. Lester, R. M. Vicari, & F. Parguaca
(Eds.), Intelligent Tutoring Systems: 7th International Conference, ITS 2004 (pp. 491–500).
Springer-Verlag.

Heffernan, N. T., & Koedinger, K. R. (1997). The composition effect in symbolizing: The role of sym-
bol production vs. text comprehension. In M. G. Shafto & P. Langley (Eds.), Proceedings of the
Ninetheenth Annual Meeting of the Cognitive Science Society (pp. 307–312). Erlbaum.

Heffernan, N. T., Koedinger, K. R., & Razzaq, L. (2008). Expanding the model-tracing architecture: A
3rd generation intelligent tutor for algebra symbolization. International Journal of Artificial Intel-
ligence in Education, 18, 153–178.

Hutchinson, N. L. (1993). Effects of cognitive strategy instruction on algebra problem solving of adoles-
cents with learning disabilities. Learning Disability Quarterly, 16, 34–63.

Jitendra, A. K., Griffin, C. C., Haria, P., Leh, J., Adams, A., & Kaduvettoor, A. (2007). A comparison
of single and multiple strategy instruction on third-grade students’ mathematical problem solving.
Journal of Educational Psychology, 99(1), 115–127.

Jitendra, A. K., et al. (2009). Improving seventh grade students’ learning of ratio and proportion: The role
of schema-based instruction. Contemporary Educational Psychology, 34, 250–264.

Jitendra, A. K., Star, J. R., Rodriguez, M., Lindell, M., & Someki, F. (2011). Improving students’ propor-
tional thinking using schema-based instruction. Learning and Instruction, 21, 731–745.

Jitendra, A. K., Star, J. R., Dupuis, D. N., & Rodiguez, M. C. (2013). Effectiveness of schema-based
instruction for improving seventh-grades students’ proportional reasoning: A randomized experi-
ment. Journal of Research on Educational Effectiveness, 6(2), 114–136.

Jitendra, A. K., et al. (2015). Effects of a research-based intervention to improve seventh-grade students’
proportional problem solving: A cluster randomized trial. Journal of Educational Psychology,
107(4), 1019–1034.

Katz, S., Allbritton, D., & Connelly, J. (2003). Going beyond the problem given: How human tutors use
post-solution discussions to support transfer. International Journal of Artificial Intelligence in Edu-
cation, 13, 79–116.

Katz, S., Connelly, J., & Wilson, C. (2007). Out of the lab and into the classroom: An evaluation of
reflective dialogue in Andes. In R. Luckin & K. R. Koedinger (Eds.), Proceedings of AI in Educa-
tion, 2007 (pp. 425–432). IOS Press.

Kintsch, W., & Greeno, J. G. (1985). Understanding and solving word arithmetic problems. Psychologi-
cal Review, 92, 109–129.

Koedinger, K. R., & Anderson, J. R. (1998). Illustrating principled design: The early evolution of a cogni-
tive tutor for algebra symbolization. Interactive Learning Environments, 5, 161–180.

Koedinger, K. R., & Nathan, M. J. (2004). The real story behind story problems: Effects of representa-
tions on quantitative reasoning. Journal of the Learning Sciences, 13(2), 129–164.

Koedinger, K. R., Alibali, M. W., & Nathan, M. J. (2008). Trade-offs between grounded and abstract rep-
resentations: Evidence from algebra problem solving. Cognitive Science, 32, 366–397.

Kurtz dos Santos, A., & d. C., & Ogborn, J. (1994). Sixth form students’ ability to engage in computa-
tional modelling. Journal of Computer Assisted Learning, 10(3), 182–200.

	 International Journal of Artificial Intelligence in Education

1 3

Leelawong, K., & Biswas, G. (2008). Designing learning by teaching agents: The Betty’s Brain system.
International Journal of Artificial Intelligence in Education, 18(3), 181–208.

Lipsey, M. W., Puzio, K., Yun, C., Hebert, M. A., Steinka-Fry, K., Cole, M. W., Roberts, M., Anthrony,
K. S., & Busick, M. E. (2012). Translating The Statistical Representation of the Effects of Educa-
tion Interventions into More Readily Interpretable Forms. IES: National Center for Special Educa-
tion Research. US Department of Education.

Löhner, S. (2005). Computer based modeling tasks: The role of external representation. Ph. D. Faculty of
Social and Behavioural Sciences, University of Amsterdam.

Löhner, S., Van Joolingen, W. R., & Savelsbergh, E. R. (2003). The effect of external representation on
constructing computer models of complex phenomena. Instructional Science, 31, 395–418.

Löhner, S., Van Joolingen, W. R., Savelsbergh, E. R., & Van Hout-Wolters, B. (2005). Students’ rea-
soning during modeling in an inquiry learning environment. Computers in Human Behavior, 21,
441–461.

Looi, C.-K., & Tan, B. T. (1996). WORDMATH: A computer-based environment for learning word prob-
lem solving. In Presented at the Conmputer Aided Learning and Instruction in Science and Engi-
neering. Springer.

Looi, C.-K., & Tan, B. T. (1998). A cognitive apprenticeship-based environment for learning word prob-
lem solving. Journal of Computers in Mathematics and Science Teaching, 17(4), 339–354.

Marshall, S. P. (1995). Schemas in problem solving. Cambridge University Press.
Marshall, S. P., Barthuli, K. E., Brewer, M. A., & Rose, F. E. (1989). Story problem solver: A schema-

based system of instruction. San Diego State University.
McArthur, D., Lewis, M., Ormseth, T., Robyn, A., Stasz, C., & Voreck, D. (1989). Algebraic thinking

tools: Support for modeling situations and solving problems in Kids’ World. RAND Corporation.
Metcalf, S. J. (1999). The design of guided learning-adaptable scaffolding in interactive learning envi-

ronments. Ph. D., Computer Science and Engineering, University of Michigan. Ann Arbor, MI.
Metcalf, S. J., Krajcik, J., & Soloway, E. (2000). Model-it: A design retrospective. In M. J. Jacobson & R.

B. Kozma (Eds.), Innovations in science and mathematics education: Advanced designs for tech-
nologies of learning (pp. 77–115). Routledge.

Mulder, Y. G., Lazonder, A., & de Jong, T. (2010). Finding out how they find it out: An empirical anal-
ysis of inquiry learners’ need for support. International Journal of Science Learning, 32(15),
2033–2053.

Mulder, Y. G., Lazonder, A. W., de Jong, T., Anjewierden, A., & Bollen, L. (2011). Validating and opti-
mizing the effects of model progression in simulation-based inquiry learning. Journal of Science
Education and Technology, 21, 722–729.

Munez, D., Orrantia, J., & Rosales, J. (2013). The effect of external representations on compare word
problems: Supporting mental model construction. Journal of Experimental Education, 81(3),
337–355.

Nathan, M. J., Kintsch, W., & Young, E. (1992). A theory of algebra-word-problem comprehension and
its implications for the design of learning enviroments. Cognition and Instruction, 9(4), 329–389.

NGA & CCSSO. (2011). Common Core Sate Standards for Mathematics. Downloaded from https://​www.​
cores​tanda​rds.​org on October 31, 2011.

NGSS. (2013). Next generation science standards: For states, by states. The National Academies.
Pareto, L., Arvemo, T., Dahl, Y., Haake, M., & Gulz, A. (2011). A teachable-agent arithmetic game’s

effects on mathematics understanding, attitude and self-efficacy. In G. Biswas & S. Bull (Eds.),
Proceedings of Artificial Intelligence in Education (pp. 247–255). Springer.

Pauli, C., & Reusser, K. (1997). Supporting collaborative problem solving: Supporting collaboration and
supporting problem solving. In Presented at the Proceedings of Swiss Workshop on Collaborative
and Distributed Systems.

Quinn, J., & Alessi, S. M. (1994). The effects of simulation complexity and hypothesis-generation strat-
egy on learning. Journal of Research in Computing in Education, 27(1), 75–92.

Ramachandran, S. (2003). A meta-cognitive computer-based tutor for high-school algebra. In D. Lassner
& C. McNaught (Eds.), Proceedings of World Conference on Educational Multimedia, Hyperme-
dia and Telecommunications 2003 (pp. 911–914). AACE.

Reif, F., & Scott, L. A. (1999). Teaching scientific thinking skills: Students and computers coaching each
other. American Journal of Physics, 67(9), 819–831.

Reimann, P. (2011). Design-based research. In L. Markauskaite, P. Freebody, & J. Irwin (Eds.), Methodo-
logical choice and design: Scholarship, policy and practice in social and educational research (pp.
37–50). Springer.

https://www.corestandards.org
https://www.corestandards.org

1 3

International Journal of Artificial Intelligence in Education	

Renkl, A., Stark, R., Gruber, H., & Mandl, H. (1998). Learning from worked-out examples: The effects
of example variability and elicited self-explanations. Contemporary Educational Psychology, 23,
90–108.

Reusser, K. (1993). Tutoring systems and pedagogical theory: Representational tools for understanding,
planning and reflection in problem solving. In S. P. Lajoie & S. J. Derry (Eds.), Computers as Cog-
nitive Tools (pp. 143–178). Lawrence Erlbaum Associates.

Riley, M. S., & Greeno, J. G. (1988). Developmental analysis of understanding language about quantities
and of solving problems. Cognition and Instruction, 5(1), 49–101.

Schwartz, D. L., et al. (2009). Interactive metacognition: Monitoring and regulating a teachable agent. In
D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Handbook of Metacognition in Education (pp.
340–358). Taylor & Francis.

Segedy, J. R., Kinnebrew, J. S., & Biswas, G. (2012). Supporting student learning using converstational
agents in a teachable agent environment. In Presented at the Proceedings of the 10th International
Conference of the Learning Sciences. Australia.

Swaak, J., van Joolingen, W. R., & de Jong, T. (1998). Supporting simulation-based learning; The
effects of model progression and assignments on definition and intuitive knowledge. Learning and
Instruction, 8(3), 235–252.

Sweller, J., Mawer, R. F., & Ward, M. R. (1983). Development of expertise in mathematical problem
solving. Journal of Experimental Psychology: General, 112, 629–661.

van Joolingen, W. R., De Jong, T., Lazonder, A., Savelsbergh, E. R., & Manlove, S. (2005). Co-Lab:
Research and development of an online learning environment for collaborative scientific discovery
learning. Computers in Human Behavior, 21, 671–688.

VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in
Education, 16, 227–265.

VanLehn, K. (2008). The Interaction Plateau: Answer-based tutoring < step-based tutoring = natual
tutoring (abstract only). In B. P. Woolf, E. Aimeur, R. Nkambou, & S. P. Lajoie (Eds.), Intelligent
Tutoring systems 2008 (p. 7). Springer-Verlag.

VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems and other
tutoring systems. Educational Psychologist, 46(4), 197–221.

VanLehn, K. (2013). Model construction as a learning activity: A design space and review. Interactive
Learning Environments, 21(4), 371–413.

Vanlehn, K., Banerjee, C., Milner, F., & Wetzel, J. (2020). Teaching algebraic model construction: A
tutoring system, lessons learned and an evaluation. International Journal of Artificial Intelligence
in Education, 30(3), 459–480.

White, B. Y. (1984). Designing computer games to help physics students understand Newton’s Laws of
Motion. Cognition and Instruction, 1(1), 69–108.

White, B. Y. (1993). ThinkerTools: Causal models, conceptual change and science education. Cognition
and Instruction, 10(1), 1–100.

White, B. Y., & Frederiksen, J. R. (1990). Causal model progressions as a foundation for intelligent learn-
ing environments. Artificial Intelligence, 42, 99–157.

Willis, G. B., & Fuson, K. C. (1988). Teaching children to use schematic drawings to solve addition and
subtraction word problems. Journal of Educational Psychology, 80(2), 192–201.

Xin, Y. P., Zhang, D., Park, J. Y., Tom, K., Whipple, A., & Si, L. (2001). A comparison of two mathemat-
ics problem-solving strategies: Facilitate algebra-readiness. The Journal of Educational Research,
104(6), 381–395.

Xin, Y. P., Jitendra, A. K., & Deatline-Buchman, A. (2005). Effects of mathematical word problem-solv-
ing instruction on middle school students with learning problems. The Journal of Special Educa-
tion, 39(3), 181–192.

Zhang, L., et al. (2014). Evaluation of a meta-tutor for constructing models of dynamic systems. Comput-
ers & Education, 75, 196–217.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

	A Step-Based Tutoring System to Teach Underachieving Students How to Construct Algebraic Models
	Abstract
	The Research Problem and Prior Work on it
	The Research Problem: Teaching Students to Construct Algebraic Models
	A Theory of Algebraic Model Construction and Instruction Based on it

	Our Prior Work on Tutoring Algebraic Model Construction
	OMRaaT and the OMRaaT module
	An Evaluation of the OMRaaT Module
	A Conventional Answer-Based Tutoring System
	The Study
	Results

	Discussion
	References

