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Abstract
An algebraic model uses a set of algebraic equations to describe a situation. Con-
structing such models is a fundamental skill, but many students still lack the skill, 
even after taking several algebra courses in high school and college. For such stu-
dents, we developed instruction that taught students to decompose the to-be-mod-
elled situation into schema applications, where a schema represents a simple rela-
tionship such as distance-rate-time or part-whole. However, when a model consists 
of multiple schema applications, it needs some connection among them, usually rep-
resented by letting the same variable appear in the slots of two or more schemas. 
Students in our studies seemed to have more trouble identifying connections among 
schema applications than identifying the schema applications themselves. We devel-
oped several tutoring systems and evaluated them in university classes. One of them, 
a step-based tutoring system called OMRaaT (One Mathematical Relationship at a 
Time), was both reliably superior (p = 0.02, d = 0.67) to baseline and markedly supe-
rior (p < 0.001, d = 0.84) to an answer-based tutoring system using only commer-
cially available software (MATLAB Grader).
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The Research Problem and Prior Work on it

The Research Problem: Teaching Students to Construct Algebraic Models

Constructing models is a fundamental and important skill. According to the Next 
Generation Science Standards (NGSS, 2013), “developing and using models” is one 
of 8 key scientific practices. According the Common Core State Standards for Math-
ematics (CCSSM) (Common Core State Standards for Mathematics, 2011), “mod-
eling with mathematics” is one of its 8 key mathematical practices.

Students are introduced to model construction with arithmetic story problems in 
primary school, and then algebraic story problems in secondary school. Both are 
notoriously difficult. However, not all students who take these courses learn how 
to construct models. For instance, across several years of teaching a junior-level 
university engineering course on model construction, the first author found that 
about half the entering class could not construct algebraic models of stories like the 
one shown in Fig. 1. Thus, the research problem addressed here is teaching alge-
braic model construction to university students who somehow failed to acquire this 
important skill in earlier classes.

A Theory of Algebraic Model Construction and Instruction Based on it

Several researchers have applied Kintch’s theory of text comprehension to model 
construction (Cummins et  al., 1988; Fuchs et  al., 2010, 2019; Jitendra et  al., 
2015; Kintsch & Greeno, 1985; Marshall, 1995; Nathan et  al., 1992; Riley & 
Greeno, 1988; Xin et al., 2005). The theory posits that students construct equa-
tions by matching schemas against their understanding of the story. Each match 
of a schema fills slots of the schema and produces an equation. The part of the 
story that matches the schema is called a mathematical relationship. Nathan 
et al., (1992) observed that some relationships were obvious to students and some 
were not. Schemas, which are a central construct of many cognitive theories of 

Shortly a�er an F-35 fighter jet passes over 
some militants, they fire an FIM-92 S�nger 
missile at the plane. The plane flies at full 
speed, 537 m/s.  The missile flies at its full 
speed, 750 m/s.  How long (in seconds)
must the missile travel in order to catch up 
with the plane?  Assume the militants fire 
the missile 6 seconds a�er the jet passes 
over them.  Ignore the fact that a S�nger 
missile runs out of fuel a�er 10 seconds.

Fig. 1   A story problem
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understanding, have a set of conditions that both recognize when the schema 
applies and fill its slots. Schemas also have a set of inferences to be made when 
a schema applies. For example, the Overtake schema can be rendered informally 
as:

•	 Slots: Object1, Object2, Path
•	 Conditions: Object1 and Object2 both travel along Path. They start at the same 

point. Object1 starts after Object2. Object1 eventually overtakes Object2.
•	 Inferences: Object1’s average speed > Object2’s average speed. At the moment 

when Object1 overtakes Object2, they are at the same point along Path. The 
distance travelled by Object1 = the distance travelled by Object2. The duration 
of Object1’s trip < the duration of Object2’s trip.

Experts often have large schemas that match whole stories. For example, an 
expert might recognize the problem of Fig. 1 as a delayed start overtake problem, 
and write.

•	 537 * Tplane = 740 * (Tplane + 6); distances are equal, but durations are offset

Although such composite schemas are handy, several studies showed that 
atomic (i.e., not composite) schemas like Comparison and Motion (i.e., distance-
rate-time) were both less error-prone and easier to learn (Blessing & Ross, 1996; 
Gerjets et  al., 2004, 2006). Thus, researchers have focused on teaching only 
atomic schemas.

The equations below illustrate a model of the story in Fig. 1 using only atomic 
schemas.

•	 Dplane = 537 * Tplane; obvious application of the Motion schema
•	 Dmissile = 740 * Tmissile; obvious application of the Motion schema
•	 Dplane = Dmissile; nonobvious application of the Overtake schema
•	 Tplane = Tmissile + 6; nonobvious application of the Comparison schema

Many methods for teaching model construction have been tried. Table 1 lists 
some major ones detailed in VanLehn (2013). Perhaps the most well-developed 
and successful method is Schema-Based Instruction (SBI) (Fuchs et  al., 2003, 
2004a, b, 2009, 2010, 2019; Hutchinson, 1993; Jitendra et al., 2007, 2009, 2011, 
2013, 2015; Xin et al., 2001, 2005). It is founded on the first two methods listed 
in Table  1. It teaches arithmetic (not algebraic) model construction. Moreover, 
most SBI studies used problems that contained only one mathematical relation-
ship, whereas most algebraic story problems have several mathematical relation-
ships. Thus, adapting SBI to algebra requires developing instruction to teach stu-
dents (a) how to decompose a story into multiple atomic relationships, (b) how to 
recognize nonobvious relationships and (c) how to link relationships together by 
recognizing when two relationships referred to the same quantity and thus their 
equations should share a variable.
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Our Prior Work on Tutoring Algebraic Model Construction

Our first three years of work are reported in an earlier publication (Vanlehn et al., 
2020), so this summary will be brief.

Table 1   Methods for teaching model construction

Teaching atomic schemas explicitly (Fuchs et al., 2003, 2004a, b, 2009, 2010, 2019; Hutchinson, 1993; 
Jitendra et al., 2007, 2009, 2011, 2013, 2015; Xin et al., 2001, 2005)

Network representation of equations (Bridewell et al., 2006; Chang et al., 2006; Derry & Hawkes, 1993; 
Fuchs et al., 2003, 2004a, b, 2009, 2010, 2019; Hutchinson, 1993; Jitendra et al., 2007, 2009, 2011, 
2013, 2015; Joolingen et al., 2005; Löhner et al., 2003, 2005; Marshall, 1995; McArthur et al., 1989; 
Metcalf et al., 2000; Pauli & Reusser, 1997; Reusser et al., 1993; Willis & Fuson, 1988; Xin et al., 
2001, 2005)

Decomposition of a system into subsystems (Ramachandran, 2003; Heffernan et al., 2008; Heffernan & 
Koedinger, 1997)

Displaying the meaning of variables (Avouris et al., 2003; Forbus et al., 2005; Metcalf et al., 2000)
Feedback/hints on the student’s steps during problem solving (Arnau et al., 2013; Chi & VanLehn, 2008, 

2010; Leelawong & Biswas, 2008; Zhang et al., 2014)
Adaptive task selection (Arroyo, 2000; Beal et al., 2010; Beck et al., 2000; Koedinger et al., 2008)
Concrete articulation strategy (Heffernan, 2003; Heffernan & Croteau, 2004; Heffernan & Koedinger, 

1997; Heffernan et al., 2008; Koedinger & Anderson, 1998; McArthur et al., 1989)
Using bars to represent quantities and their relationships (Looi & Tan, 1996, 1998; Munez et al., 2013)
Using animations as the predictions of the model (Gould & Finzer, 1982; Nathan et al., 1992)
Student or system restates problem in mathematical English (Heffernan & Koedinger, 1997; Heffernan 

et al., 2008)
Self-explanation of worked examples (Cooper & Sweller, 1987; Corbett et al., 2003, 2006; Heffernan 

et al., 2008; Renkl et al., 1998)
Training students to recognize irrelevant quantities (Cook, 2006; Fuchs et al., 2010; Heffernan & Koed-

inger, 1997)
Systematically varying the surface features of the systems (Fuchs et al., 2003, 2004a, b, 2009, 2010; 

Renkl et al., 1998)
Asking students to find values for all unknowns instead of just one (Sweller et al., 1983)
Feedback/hints on the model (Biswas et al., 2005; Bravo et al., 2009; Zhang et al., 2014)
Reflective debriefings (Connelly & Katz, 2009; Katz et al., 2003, 2007)
Answering student questions (Anthony et al., 2004; Beek et al., 2011; Corbett et al., 2005; Leelawong & 

Biswas, 2008; Segedy et al., 2012)
Students explaining their model (Heffernan et al., 2008; Metcalf, 1999; Metcalf et al., 2000)
Qualitative-first model construction (Kurtz dos Santos & Ogborn, 1994; Bredeweg et al., 2010; Mulder 

et al., 2010, 2011)
Model progressions (Jong et al., 1999; Quinn & Alessi, 1994; Swaak et al., 1998; White, 1984, 1993; 

White & Frederiksen, 1990)
Teachable agents and reciprocal teaching (Biswas et al., 2005; Chan & Chou, 1997; Chase et al., 2009; 

Pareto et al., 2011; Reif & Scott, 1999)
Mental execution of models (Kurtz dos Santos & Ogborn, 1994; Löhner, 2005)
Generic models (Bredeweg & Forbus, 2003; Bridewell et al., 2006; Marshall et al., 1989)
Gamification (Schwartz et al., 2009)
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Assessment  Story problems, like the one in Fig. 1, end by asking for the value of 
a quantity. Some students have developed numerical methods for calculating such 
numbers without writing equations (Koedinger & Nathan, 2004; Koedinger et  al., 
2008). This may explain how they could pass algebra courses without learning how 
to construct models. Thus, to assess their skill at model construction, we developed 
a simple assessment system called the Solver (Fig. 2). Students type equations into a 
textbox, one per line. When they click a button, the Solver either posts an error mes-
sage or solves the equations and reports values for all the variables. If the students 
think these values solve the problem, then they copy the equations and submit them 
as their solution to the problem. Unlike similar systems available as software or on 
calculators like the TI-89, the Solver only allows students to include a number in 
their equations if that number is mentioned in the story. This prevents them from 
using numerical strategies for solving story problems.

Population  We began working with students who had failed College Algebra 
and were taking a remedial course at an open-admission university. Initially, the 
researchers (which included two of the course instructors, Banerjee and Milner) 
tutored students in small groups or individually for about 20 h per student. We called 
these “boot camps” for algebraic modeling. The boot camps started with paper and 
pencil then gradually started using the tutoring system we were developing. Attri-
tion was high. Only the most committed students were willing to spend 20 or even 
10 h attending our boot camp, even when the pay was high, and sessions could be 
done remotely. Thus, we switched to teaching students in the first author’s class on 

Fig. 2   A problem solved correctly in the Solver. The bold text in the box was entered by the student, who 
then pressed the Solve button
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computational modelling, which is taken by 3rd- and 4th- year engineering majors. 
The boot camp instruction was converted to a 2-week module in the course. Just 
before the module began, we tested all students using the Solver. As with the reme-
dial College Algebra students, some students answered very few problems correctly.

Evolution of the Design  As mentioned earlier, SBI is a successful method for teach-
ing construction of models consisting of a single arithmetic equation. SBI is based 
on the first two methods of Table 1. In order to extend it to models consisting of 
multiple algebraic equations, we added several methods with good empirical sup-
port. Our design was based on the first 5 methods in Table 1.

Over a series of 5 studies (formative evaluations), we experimented with vari-
ations of: the model notation, feedback policies, the schemas to be taught, and 
the instructional sequence. We often made changes in the middle of the instruc-
tion. Changes were often based on student suggestions. This iterative development 
method is sometimes called design-based research (Reimann et al., 2011).

We ended up with a node-link intermediate representation that was somewhat 
similar to the one used in SBI instruction. Figure  3 shows an example. The oval 
nodes represent quantities and the rectangular nodes represent atomic schema appli-
cations. We named the tutoring system TopoMath because it used the topology of 
the graph to represent algebraic models.

TopoMath was an editor with three commands: (1) To enter a schema applica-
tion, students selected a schema name (e.g., Compare, Motion) then selected an 
entity that differentiated this schema application from others (e.g., plane vs. missile). 
This caused TopoMath to create a rectangular equation node and several gray oval 
variable nodes. (2) The variable nodes remained gray until the student edited them 
to fill in units and possibly values. Students could also cause two variable nodes to 
merge by editing the name of one to be the name of the other. (3) Students could 
drag nodes.

Students were taught that when they could not identify mathematical relation-
ships, they should drag similar unknown variable nodes to be close to each other, as 
shown in Fig. 3. The proximity of the nodes was intended to cue recognition of non-
obvious relationships. Thus, Fig. 3 should help them recognize that DPlane = DMis-
sile and TPlane = TMissile + 6.

Fig. 3   A partial TopoMath model for the story in Fig. 1



1 3

International Journal of Artificial Intelligence in Education	

Throughout this problem-solving process, the tutoring system gave immediate, 
minimal feedback (green for correct; red for incorrect). In order to discourage guess-
ing, on a third incorrect response, the system made the correct entry and colored it 
yellow. The yellow persisted when a node was closed and thus could be easily seen 
by the instructor or grader.

Summative Evaluation  To evaluate the TopoMath instruction, we used a regres-
sion discontinuity design. Students first took a pretest using the Solver. They were 
then split into a treatment group and a no-treatment group based on whether their 
pretest score was below a cutoff score (treatment group) or above it (no-treatment 
group). The treatment group was required to use the TopoMath instruction for about 
2 weeks. To be fair to the non-treatment students, TopoMath was available to them 
too, albeit not required. Both groups then took a posttest on the Solver. The posttest 
was isomorphic to the pretest; only the cover stories were changed. Students’ scores 
on the posttest were part of their grade for the course.

Figure 4 shows the results as a regression of posttest scores against pretest scores. 
The pretest cutoff score was 0.61, and as expected, we see a discontinuity at that 

Fig. 4   Results of the evaluation of TopoMath



	 International Journal of Artificial Intelligence in Education

1 3

point. However, this two-line model was not significantly different from a single-line 
model (p = 0.74). Thus, although the treatment may have a benefit, it was too small 
relative to the large scatter in scores.

Unfortunately, our decision to make TopoMath optional for the no-treatment 
group motivated most of them to use TopoMath. Only 5 students never used it, so 
only they are included in the analyses of Fig. 4. (Two students had identical pretest 
and posttest scores, so they are shown as one point.) Thus, our decision to be fair to 
the no-treatment group dramatically reduced the power of the study.

OMRaaT and the OMRaaT module

Intent on increasing the benefits of our instruction, we again tutored students using 
first pencil and paper and then a mock-up in Excel of a tutoring system. These ses-
sions led us to design a new tutoring system and instruction from scratch. They dif-
fered from TopoMath and its instruction in two major ways.

(1)	 The network representation could only show a small amount of text inside each 
node, so many of the details used for establishing the meaning of the node could 
only be seen by clicking on it. We changed the notation so that no information 
is hidden.

(2)	 The TopoMath instruction taught students that variables denoted quantities, 
which is the classic semantics of variables. For example, the variable “Dplane” 
denotes the distance the plane flew and “DMissile” denotes the distance the 
missile flew. This made merging nodes confusing, because students didn’t know 
which node to edit. For example, in Fig. 3, the result of merging the two vari-
able nodes on the left was labelled either DPlane or DMissile, depending on 
which node was edited. The instruction was changed to remove the concept of 
a variable denoting a quantity and instead treat variables as names for slots. To 
replace merging of nodes, a new schema was added: Equality. It indicated that 
two slots have the same value. The Equality schema included a description slot 
for justifying why the two slots have equal values. For example, when equating 
the distances travelled by the plane and the missile, the justification was “trav-
elled approximately the same path.”

In terms of the methods listed in Table 1, the new tutoring system retained 4 of 
the 5 methods and eliminated one: Network representation of equations. It added a 
new method: Explicitly represent slot sharing. The new tutoring system was named 
OMRaaT: an acronym for One Mathematical Relationship at a Time.

Figure 5 shows a solved problem in OMRaaT. Each row is a schema applica-
tion. The boxes are slots. When students select the name of a schema, a new 
row is added to the table with empty slots labelled by the text above them. The 
first few slots describe the schema application. The Motion schema (first two 
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rows of Fig.  5) has 4 description slots; the Equality schema (third row) has 2; 
the Addition schema (last row) has 2. Students fill a description slot by selecting 
from a menu including all possible description slot fillers.

When the student finishes filling the description slots of a schema application, 
the slots turn red (incorrect) or green (correct). The student then tries to correct 
the red slots. On the third incorrect attempt, the slot turns yellow and shows the 
correct entry. The yellow coloring and the delayed feedback are intended to dis-
courage guessing. Also, the percentage of slots filled correctly on the first attempt 
is displayed at the top of the window (e.g., “Percent Aced: 92%”).

After all the description slots of a schema application have been filled cor-
rectly, the student can fill the remaining slots, which are called quantity slots. 
For the Motion schema, there are 3 quantity slots, for distance, rate and time. 
To fill a quantity slot, students select from a menu that has numbers mentioned 
in the story (e.g., 537, 750, 6 and 10) and “Unknown.” If they select Unknown, 
OMRaaT invents a variable name that is unique to the slot. Thus, the variables 
denote slots. When all the quantity slots have been filled, the student gets red/
green feedback.

We reduced the set of problems slightly so that only four schemas were needed: 
Motion, Mixture, Addition and Equality. The Mixture schema represents relation-
ships such as “rum is 40% alcohol” and has slots for a mixture, an ingredient and a 
proportion. We hypothesize that it would be easy for students to learn more schemas 
after they acquire the skill of decomposing the problem into atomic relationships 
and determining when schemas share slots.

We originally intended that all connections among schemas would be represented 
with the Equality schema. However, this entailed entering too many Equality sche-
mas. For the problem of Fig. 5, three more Equality schema applications would be 
needed. Thus, to simplify the models and reduce problem solving time, we allowed 
the Addition schema to refer to existing slots, as shown in Fig.  5. To make this 
work smoothly, we implemented a suggestion of Nathan (Nathan et al., 1992) and 

Fig. 5   A solved problem in OMRaaT
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required student to first enter obvious schemas (Motion and Mixture) before enter-
ing any nonobvious schemas (Equality and Addition).

When students finish correctly entering all the schema applications required, they 
click the “Solve for:” button to select one of the variables, and then click the Solve 
button, which pops up a window showing the numerical value of the solved-for 
variable.

The overall instruction was implemented as a module in the university’s LMS, Canvas. 
The OMRaaT module comprised 15 passive pages, which had only videos or text, and 
47 active pages, each with a problem to solve. Problems were solved on either OMRaaT 
or the Solver. After finishing a problem on OMRaaT or the Solver, students pasted their 
model into Canvas. Neither Canvas nor the instructor graded the submissions. The course 
instructor was available via email and zoom; there was no course TA nor tutoring avail-
able. The students had 19 days to complete the OMRaaT module. On the 20th day, there 
was a module exam, which also served as the post-test for this experiment.

The OMRaaT module was organized as a sequence of 5 sections, each teaching 
a new schema or concept. Each section began with an explanation and a worked 
example; each ended with a Solver problem; in between, the students did OMRaaT 
problems of increasing complexity.

Solver problems were included because we wanted to make sure that students trans-
ferred the OMRaaT reasoning to the Solver, which provided no feedback on correctness 
and little strategic guidance. The module’s Solver assignments emphasized three key 
components of the OMRaaT strategy: (1) Only write atomic equations, that is, equations 
with just one algebraic operator: + , -, * or /. (2) Use meaningful variable names instead 
of x, y and z. (3) Only include numbers mentioned in the problem statement. The Solver 
enforced the third constraint, but it let students violate the other two if they wished. The 
Canvas Solver pages emphasized that they should always obey all three constraints.

The Canvas gradebook showed each problem-solving page as a separate column. 
This “dashboard” allowed the instructor to track student progress and nag students 
who were falling behind.

It is perhaps worth mentioning how we managed to get Canvas to act like a dash-
board-laden ITS “for free.” To avoid installation issues, OMRaaT was a web app. 
In principle, we could have used LTI to integrate it with Canvas. However, to avoid 
the university’s requirement for security scans of software integrated with Canvas, 
OMRaaT communicated with Canvas via files. To solve a problem, students down-
loaded a file from the Canvas assignment page, uploaded it to OMRaaT, solved the 
problem, downloaded the modified file, and then uploaded it to the Canvas page. 
This hack saved us many months trying to pass a security scan.

An Evaluation of the OMRaaT Module

To evaluate the OMRaaT module, we again used a regression discontinuity design. 
This time, students above the cutoff on the pretest (the no-treatment group) were 
prevented from taking the OMRaaT modules. As in the TopoMath evaluation, stu-
dents below the cutoff (the treatment group) were required to take the module.
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To be fair to the students in both conditions, algebraic modeling was taught twice 
bracketed by tests. The sequence was: (1) pretest, (2) OMRaaT module for the treat-
ment group only, (3) mid-test, (4) Solver-based instruction on algebraic model-
ling for all students, and (5) posttest. Students’ scores on the mid-test and posttest 
counted towards their grade, whereas scores on the pretest were only used for place-
ment in the treatment or no-treatment condition.

All 3 tests were given on the Solver. Before taking the pretest, students were 
introduced to it and solved several very simple problems using it.

The pretest and mid-test were isomorphic. Problems appeared in the same order. 
For every problem on the pretest, the corresponding problem on the mid-test had the 
same algebraic structure but different words. For example, one problem talked about 
discounts at Whole Foods and the other talked about discounts at Kohls. There were 
4 problems with one schema application, 4 problems with two schema applications, 
1 problem with three schema applications, 2 problems with four schema applica-
tions and 1 problem with five schema applications.

Unfortunately, scores on the pretest were at ceiling on 3 of the problems. That is, 
on 2 problems with a single schema and 1 problem with two schemas, 88% or more 
of the students got the problem correct on the pretest, which was well above the 
average on the other pretest problems (47%). Thus, those three problems were elimi-
nated from the data analysis. This left both tests with 10 problems each.

Points were assigned to test problems according to the number of schema appli-
cations required for their solution. For example, a problem with 3 schema applica-
tions was worth 3 points. Thus, the maximum score on each test was 24 points. The 
maximum number of points in the overall course was 455, and a student’s course 
grade was proportional to the number of points the student scored during the course.

The cutoff for dividing the students into treatment and no-treatment groups was 
the median of the pretest scores of all the students in the class. However, only 50 
students took both tests and consented to have their data used. Of these, 28 scored 
below the cutoff on the pretest and thus were in the treatment group. The remaining 
22 were in the no-treatment group.

The treatment group students could access the OMRaat module in Canvas. The 
no-treatment group could not access it. The no-treatment group had no algebraic 
modeling instruction or other activities during the 20-day treatment period. How-
ever, during this period, the whole class met as usual twice a week for lectures on an 
unrelated topic (human problem solving) accompanied by a few pages of reading.

The treatment group scored a half point for each problem solution they submitted 
to Canvas, regardless of whether it was correct or not. The no-treatment students 
were awarded the maximum of these points.

Although 27 students in the treatment group did almost all the problems (average 
number of completed problems: 46.0 out of 47), one student in the treatment group 
did only 4. This student was excluded from the treatment group during data analysis.

We first analyzed the mid-tests to see whether students obeyed the key OMRaaT 
strategy constraints, which were: (1) Only write atomic equations, that is, equa-
tions with just one algebraic operator. (2) Use meaningful variable names. Students 
were coded as obeying the strategy when greater than 50% of their solutions obeyed 
both constraints. We found that 4 treatment students did not use the strategy on the 
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mid-test, so they were excluded from further data analysis. Although they may have 
mastered the OMRaaT skills, they apparently chose not to use them on the mid-test, 
so we can’t assess their OMRaaT learning gains. This left 23 students in the treat-
ment group for further data analysis.

Figure 6 shows the regression plot for the two groups. The solid line is the diago-
nal, where mid-test scores equal pretest scores. All the treatment students gained: 
their mid-test scores were larger than their pretest scores, often by large amounts. 
Some (59%) of the no-treatment students also gained, which could be due to a 
test–retest effect or gaining familiarity with the Solver. However, for a significant 
proportion (36%) of the no-treatment students, the scores actually decreased from 
pretest to mid-test.

However, the success of a regression discontinuity design hinges on whether the 
regression lines of the two groups (shown in blue and red) fit the data better than 
a regression line for the union of the two groups (shown in green). One cannot go 
by the R2 values (shown in Fig. 6) because they are derived from 3 different data-
sets. Thus, we subtracted the cutoff value (11.5) from the pretest scores, then fit this 
equation to all the data:

where Group is 1 for the treatment group and 0 for the no-treatment group. The 
Group variable means that coefficients C and D affect only treatment data points, 
establishing a second line that is above the line established by A and B. The best fit 
found:

MidTest = A + B ∗ Pretest + C ∗ Group + D ∗ Group ∗ Pretest

Fig. 6   Results of the OMRaaT module evaluation
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•	 A = 14.8, p < 0.001
•	 B = 0.61, p = 0.008
•	 C = 5.36, p = 0.023
•	 D = 0.48, p = 0.129

Because C is reliably different from zero, the two-line model fits better than 
the one-line model. The coefficients compare the regression line for the treatment 
group alone to the regression line for both groups. Because D was almost zero, the 
lines’ slopes were the same. Because C was reliably different from zero, the treat-
ment seems to have raised scores by a constant amount. Thus, we conclude that the 
OMRaaT treatment worked in that it raised mid-test scores reliably above what they 
would otherwise have been.

In order to estimate how much the treatment improved mid-test scores, we 
used the main line of the model (MidTest = 14.8 + 0.601*Pretest) to predict mid-
test scores if the students had not taken the OMRaaT treatment. Comparing the 
actual scores to the predicted scores yielded an effect size of d = 0.67. To interpret 
this effect size as recommended by Lipsey et al. (2012): 61% of the actual scores 
exceeded the mean of the predicted scores.

A Conventional Answer‑Based Tutoring System

This section presents a comparison of OMRaaT to an answer-based tutoring system. 
There were two motivations for this study. One was to test the hypothesis that step-
based tutoring systems tend to be more effective than answer-based tutoring systems 
(VanLehn, 2011). The second was that the Solver developed bugs which could not 
be fixed because funding for the project was finished, so we had to switch to other 
equation-solving software.

The new tutoring system used only commercially available software, namely 
MATLAB Grader. MATLAB Grader tests student programs using inputs and out-
puts. For each problem, the instructor supplies a set of tests. A test consists of inputs 
and outputs. The student’s program must have inputs and outputs. The test’s inputs 
are fed to the student’s program, and the program’s outputs are compared to the 
test’s outputs. MATLAB Grader is similar to Gradescope and many other autograd-
ers. Unlike Gradescope and others, MATLAB can solve sets of equations.

In order to use MATLAB Grader, the modeling problems had to be modified 
slightly so that they specified inputs and outputs. For an example, consider the prob-
lem of Fig. 1:

Shortly after an F-35 fighter jet passes over some militants, they fire an FIM-
92 Stinger missile at the plane. The plane flies at full speed, 537 m/s. The mis-
sile flies at its full speed, 750 m/s. How long (in seconds) must the missile 
travel in order to catch up with the plane? Assume the militants fire the missile 
6 seconds after the jet passes over them. Ignore the fact that a Stinger missile 
runs out of fuel after 10 seconds.

The new problem, with edits in italics, is:
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Shortly after an F-35 fighter jet passes over some militants, they fire an FIM-
92 Stinger missile at the plane. The plane flies at full speed, 537 m/s. The mis-
sile flies at its full speed, 750 m/s. Create a model that outputs the time (in sec-
onds) that the missile must travel in order to catch up with the plane. Assume 
the militants fire the missile a few seconds after the jet passes over them. Your 
model should input the duration of this delay in seconds. Ignore the fact that a 
Stinger missile runs out of fuel after 10 seconds.

Figure  7 shows a problem as presented to students in MATLAB Grader. The 
problem text is at the top. Next is a link to a video of the instructor solving the 
problem. A template for entering the solution appears in a box. Students are told to 
replace the symbols that are in all capitals. They cannot edit the lines that are gray. 
After the box comes some code for testing the function. When students click the 
Run Function, those tests are run, and the outputs are printed. If the function has a 
bug, a MATLAB error message appears instead. Not shown is a Submit button that 
tests the function on new inputs, and reports whether the function is correct or not.

Figure 8 shows a solution to the problem. Although MATLAB Grader gives full 
marks to any function whose input–output behavior passes the tests, students were 
told to make their equations obey three rules:

Fig. 7   A model construction problem in Matlab Grader
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•	 The model should only mention numbers in the problem statement
•	 Every equation should have just one type of operator: + , -, *, / or ^. Repetitions 

of + and * are OK, so Foo == Baz + Zorch + Mumble is OK.
•	 Variables should have meaningful names. In particular, students should not use 

x, y or z.

Students were told that points would be taken off during exams and quizzes if 
they violated these rules. During homework and practice quizzes, students could 
submit problems as many times as they wanted in order to get input–output feed-
back. During quizzes and exams, there were no test cases. Instead, their solutions 
were manually scored and the 3 rules above were enforced.

Students had already used Matlab for several weeks, so they were somewhat 
familiar with the programing language. They were taught two new syntactic conven-
tions for entering equations: (1) Use “ == ” instead of “ = ” (2) Use “…” after all 
equations except the last one.

The content mirrored the OMRaaT content exactly. The same lectures, examples 
and problems were used. Most importantly, the instruction taught the same 4 sche-
mas in the same order, with the same focus on decomposing a problem into atomic 
relationships and on sharing variables between schema applications.

In summary, the MATLAB Grader instruction differed in four ways from the 
OMRaaT instruction: (1) The crucial difference was that MATLAB Grader students 
got only answer-based feedback instead of step-based feedback. That is, they had to 
enter a whole model in order to get feedback on its correctness. In contrast, OMRaaT 
gave feedback on the steps required for constructing a model. (2) Because some 
MATLAB Grader students needed more than answer-based feedback, every problem 
had a video of the instructor solving the problem. On average, each video received 
0.44 views per student. (3) As explained earlier, the models had to have inputs and 
outputs, so the problems were reworded. (4) The OMRaaT students learned about 
about human problem solving as they learned algebraic model construction, whereas 
the MATLAB Grader students learned about algebraic modeling only.

Fig. 8   Solution to the problem of Fig. 7
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The MATLAB Grader tutoring system is typical of many tutoring systems that 
give answer-based feedback. The feedback is often just binary: correct vs. incor-
rect. They often provide help via an instructor video.

The Study

The regression discontinuity study of OMRAaaT, which was described in the pre-
ceding section, was conducted in fall 2019 in a junior-level class on modeling. 
The MATLAB Grader tutoring system was used the following year in the same 
class. The study described here compared learning gains of 2019 students using 
OMRaaT to learning gains of 2020 students using the MATLAB Grader tutoring 
system.

The same tests and scoring procedure were used in both years. The tests were 
given on the Solver in 2019 and on MATLAB Grader in 2020, so the MATLAB 
Grader problems had inputs and outputs but the Solver problems did not. As men-
tioned earlier, there were 3 problems on the 2019 pretest where the student scores 
were at ceiling so these problems were excluded when scoring the 2019 pretest and 
mid-test. These 3 problems were not included on the 2020 pretest and posttests.

In the regression discontinuity study, OMRaaT was used only by students whose 
pretest score was below the pretest median, 11.5. In the following year, the MAT-
LAB Grader tutoring system was used by all students. In order to have a fair com-
parison, this study included only students who scored below 11.5 on the MATLAB 
Grader pretest. Both the OMRaaT group and the MATLAB Grader group had only 
consenting students who did both tests. The OMRaaT group had 23 students, and 
the MATLAB Grader group had 42 students.

Results

Figure 9 shows the mean pretest, posttest and gains scores for both groups. In this 
discussion, the 2019 mid-test is called “posttest”. The pretest means were not reli-
ably different (p = 0.988). The posttest means were reliably different (p = 0.003, two-
tailed T-test), as were the means of the gain scores (p < 0.001, two tailed T-test). 
The effect size (d) was 0.84. The OMRaaT students’ gains were approximately dou-
ble the gains of the MatLab Grader students. The step-based tutoring of OMRaaT 
appears to be more effective than the answer-based tutoring of the MATLAB Grader 
tutoring system.

It could be that interpreting answer-based feedback requires more effort and skill 
than interpreting step-based feedback. If so, then the results might show an apti-
tude-treatment interaction. That is, the larger the pretest score, the larger the gain 
among students using the MATLAB Grader tutoring system. In order to check for 
this effect, Fig. 10 shows a scatterplot of both groups. Regression lines are also plot-
ted. Because the slopes of the regression lines are both close to 1.0, there appears to 
be no aptitude-treatment interaction in either group.
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Discussion

The bottom line is that there appears to be a reliable (p = 0.023) moderately large 
(d = 0.67) positive effect when below-median OMRaaT students were compared to 

Fig. 9   Means and standard errors of the mean

Fig. 10   Scatterplots of both treatments
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above-median students who received no instruction. Also, when students below the 
pretest median used either OMRaaT or an answer-based tutoring system, there was a 
reliable (p < 0.001) large (d = 0.84) advantage in learning gains for using OMRaaT.

The fact that the OMRaaT instruction improves the scores of underachieving 
students is remarkable and welcome. It is also welcome to see more data consist-
ent with the hypothesis that step-based tutoring (OMRaaT) is more effective than 
answer-based tutoring (the MATLAB Grader tutoring system), as discussed by 
VanLehn (2011).

However, it is too early to declare victory over the notorious educational barrier 
of algebra word problems. From Fig. 10, we can see that there is a cluster of seven 
OMRaaT students who scored less than 9 on the mid-test. These students benefited 
from OMRaaT, but they did not benefit enough. These students appear to need more 
help. That is a challenge for future work.

Concerning transfer of model-construction skill from school/university to real-
life settings, we point out that failure in school almost always results in failure to 
real life. The OMRaaT project focusses on students who failed to learn how to con-
struct models during their high school and introductory undergraduate mathematics 
classes. If we can get some of those failing students to learn how to solve school 
problems, that at least allows some hope that their new skill will transfer to real-life 
settings.

For technologists, several lessons can be learned from the OMRaaT project. The 
overall instruction is classic two-loop tutoring system (VanLehn, 2006, 2011). The 
outer loop executes once per problem. The inner loop executes once per step. The 
inner loop gives students feedback on each step. OMRaaT itself only handles the 
inner (step) loop of tutoring (VanLehn, 2006). Canvas implements the outer loop. 
OMRaaT is an example-tracing tutoring system (Aleven et al., 2009) in that it does 
not generate a solution to a problem but instead utlilizes a solution given to it by 
the problem’s author. Due to this simple design and its mundane user interface, the 
implementation of OMRaaT took only 4  months of full-time work by an experi-
enced JavaScript programmer using the React framework. The lesson to be learned 
is that even if one doesn’t use an authoring tool like CTAT (Aleven et al., 2015), it 
doesn’t always take long to implement the inner loop of a step-based tutoring system 
if it is example-tracing and has a simple user interface.

The second technical lesson is that we were able to use a conventional LMS, Can-
vas, to implement the outer loop. An assignment in Canvas usually contains multiple 
problems, examples, etc. We used each assignment to present just one problem or 
example. Having 47 assignments cluttered the Canvas gradebook, but also allowed 
the gradebook to be used as a dashboard by the instructor to detect students who had 
fallen behind.

We are encouraged by the results so far, so we plan to try to make the OMRaaT 
module even more effective. The first task will be to analyze data from treatment 
students who did not gain much. One possibility is that the module was paced too 
quickly for the non-gainers; they may need even more examples and problems than 
they were given. SBI instruction (Fuchs et al., 2003, 2004a, b, 2009, 2010; Jitendra 
et al., 2007, 2009, 2011, 2013, 2015; Xin et al., 2005) usually lasted for 16 weeks, 
albeit with younger students. A second possibility is that the non-gainers figured out 
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ways to game OMRaaT (Baker et al., 2004) so that they could make rapid progress 
and yet still not learn much. There are many other possible explanations as well. 
Regardless of what happened to cause a few students to gain little, we are pleased 
to see that most students in the underachieving treatment group had large learning 
gains.
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