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Abstract. We develop a new meshfree geometric multilevel (MGM) method for solving linear systems that arise
from discretizing elliptic PDEs on surfaces represented by point clouds. The method uses a Poisson disk sampling-type
technique for coarsening the point clouds and new meshfree restriction/interpolation operators based on polyharmonic
splines for transferring information between the coarsened point clouds. These are then combined with standard
smoothing and operator coarsening methods in a V-cycle iteration. MGM is applicable to discretizations of elliptic
PDEs based on various localized meshfree methods, including RBF finite di↵erences (RBF-FD) and generalized finite
di↵erences (GFD). We test MGM both as a standalone solver and preconditioner for Krylov subspace methods on
several test problems using RBF-FD and GFD, and numerically analyze convergence rates, e�ciency, and scaling
with increasing point cloud sizes. We also perform a side-by-side comparison to algebraic multigrid (AMG) methods
for solving the same systems. Finally, we further demonstrate the e↵ectiveness of MGM by applying it to three
challenging applications on complicated surfaces: pattern formation, surface harmonics, and geodesic distance.
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1. Introduction. Partial di↵erential equations (PDEs) defined on surfaces (or manifolds) arise
in many areas of science and engineering, where they are used to model, for example, atmospheric
flows [55], chemical signaling on cell membranes [31], morphogenesis [47], and textures for computer
graphics [51]. Solutions of these models can rarely be achieved by analytical means and must instead
be approximated using numerical techniques. While numerical methods for PDEs on the sphere have
been developed since the 1960s [55], development of methods for PDEs on more general surfaces
only began in the late 1980s [15], with interest growing considerably in the early 2000s [16]. These
techniques include surface finite element (SFE) [16], embedded finite element (EFE) [8, 36], and
closest point (CP) [32] methods. More recently, various meshfree (or meshless) methods have also
been developed for PDEs on general surfaces that use a local stencil approach, including radial basis
function-finite di↵erences (RBF-FD) [2, 29, 40, 44, 45, 53], generalized finite di↵erences (GFD) [48],
and generalized moving least squares (GMLS) [22,30,49]. These methods can be applied for surfaces
represented only by point clouds and do not require a surface triangulation like SFE methods or
a level-set representation of the surface like EFE methods. Additionally, these meshfree methods
approximate the solutions directly on the point cloud and do not extend the PDEs into the embedding
space like the EFE and CP methods.

In this paper, we concentrate on local meshfree methods for elliptic PDEs on surfaces, which
are challenging to solve with iterative methods because of the poor conditioning of the systems.
We specifically focus on the surface Poisson and shifted (or screened) surface Poisson problems,
which arise, for example, in surface hydrodynamics [22], computer graphics [41], and time-implicit
discretizations of surface reaction di↵usion equations [45]. We focus on two methods for these PDEs:
polyharmonic spline-based RBF-FD with polynomials and GFD. These meshfree discretizations
result in large, sparse, non-symmetric, linear systems of equations that need to be solved. Direct
solvers for these systems have most commonly been used, but these do not scale well to large point
clouds and high-orders of accuracy, motivating the need for e�cient and robust iterative methods.

Multigrid methods are known to be e↵ective solvers and preconditioners for linear systems
that arise from discretizing elliptic PDEs (e.g., [50]). These methods can be classified into two
types: geometric and algebraic. While algebraic multigrid (AMG) methods are general purpose
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solvers/preconditioners, geometric methods, when they can be developed, generally converge faster
and work as better preconditioners for Krylov subspace methods. Geometric multigrid methods
have been developed for SFE and CP discretizations (e.g., [26] and [10]) and it is the aim of this
paper to also develop these methods for meshfree discretizations.

The basic components of geometric multigrid methods that need to be developed are (1) tech-
niques for coarsening the grid or mesh, (2) constructing interpolation/restriction operators for trans-
ferring the information between levels, (3) discretizing the di↵erential operator on the coarser levels,
(4) smoothing the approximate solution, and (5) solving the system on the coarsest level. The first
component presents a challenge for meshfree surface PDEs as there is only a point cloud available
and no grid or mesh to create a hierarchy of coarser levels. To overcome this challenge we use the
weighted sample elimination (WSE) method from [57], which is a general purpose method for select-
ing quasi-uniformly spaced subsets of points from a point cloud and falls into the general category of
Poisson disk sampling methods [9]. The lack of a grid or mesh also presents a challenge for compo-
nent (2) as standard transfer operators cannot be used. To overcome this challenge, we use RBFs to
construct the interpolation operators for transferring the defect from coarser to finer levels. For the
restriction operators, we simply use the transpose of the interpolation operators, which is a standard
choice [50]. With these transfer operators, we generate component (3) using a Galerkin projection,
often referred to as the Galerkin coarse grid operator. Finally, for component (4) we use standard
Gauss-Seidel smoothing and for (5) we use a direct solver. We combine all of these components in a
V-cycle iteration and apply it both as a solver and preconditioner. The resulting method is entirely
meshfree and we refer to it as the meshfree geometric multilevel1 (MGM) method.

The new MGM method has some similarities to the meshfree multicloud methods [24, 59], but
also some key di↵erences. The first major di↵erence is that multicloud methods have been developed
for PDEs posed in planar domains, whereas MGM is for surface PDEs. Another di↵erence is with the
choice of transfer operators. The method of [59] uses one-point, piecewise constant operators, while
the method of [24] uses two-point, inverse-distance weighted interpolation and restriction operators.
It is not clear how these latter transfer operators should be generalized to surfaces. MGM instead
uses transfer operators based on RBFs, which are well suited for interpolation on surfaces [19].
A second di↵erence is the strategy for geometric coarsening of the given point cloud. Multicloud
methods use a graph coloring-type scheme for finding maximally-independent subsets of vertices
to determine the coarser levels. This does not allow the size of the point clouds on the coarser
levels to be controlled precisely, and it limits the coarsening factors to approximately four (for 2D
problems). MGM instead uses WSE [57], which allows for arbitrary coarsening factors and for the
sizes of the points in the coarser levels to be controlled exactly. A third di↵erence is that MGM can
handle degenerate PDEs (e.g., the surface Poisson equation), while the multicloud methods have
been tailored to non-degenerate PDEs (e.g., planar Poisson equation with mixed Dirichlet-Neumann
boundary conditions). Finally, multicloud methods have only been tested on second order accurate
discretizations of PDEs; these discretizations typically only use small stencils. We demonstrate that
MGM works for discretizations at least up to sixth order accurate with large stencil sizes.

We note also that there are other methods in the RBF literature for numerically solving PDEs
that use the term multilevel (e.g., [17,18,27]), but that are very di↵erent from MGM. These methods
approximate the solution of a PDE starting on a coarse point cloud and then successively update the
solution by solving the PDE for the residual on a nested sequence of finer point clouds. However, they
do not cycle back through the coarser levels. On each level the solution is computed using collocation
with compactly supported RBFs to keep the computational cost under control. These methods are
not iterative and are not designed to solve a linear system that arises from a discretization of a
PDE like MGM. They do, however, have a convergence theory for certain classes of PDEs posed on
certain domains [17, 27], but this theory does not include surfaces beyond the sphere.

1We use the term multilevel rather than multigrid, since this method does not depend on a grid.
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The remainder of the paper is organized as follows. In Section 2, an overview is given of the
two meshfree methods for surface PDEs that the MGM algorithm is used to solve. The next section
presents the RBF-based transfer operators. Section 4 describes the remaining components of the
MGM algorithm, including a discussion of the changes necessary to solve the degenerate surface
Poisson problem. Section 5 presents an extensive array of numerical results for the MGM method,
including a comparison with algebraic multigrid (AMG) methods. Section 6 then uses the method in
three challenging applications to further demonstrate its e↵ectiveness. Finally, the paper concludes
with some final remarks on the method and some future directions in Section 7.

1.1. Assumptions and notation. Throughout the manuscript we let M be a smooth embed-
ded manifold of co-dimension one in R3 with no boundary and let �M denote the Laplace-Beltrami
operator (LBO) (or surface Laplacian) on M. When referencing points on M, we assume they are
represented as coordinates in R3, e.g., for x 2M, and we write x = (x, y, z). For a point x 2M, we
let TxM denote the tangent plane to M at x. We denote normal vectors to M as n and assume that
they are available either analytically or using some approximation technique (see for example [25]).

We use sub/superscripts h and H on variables to indicate whether they are associated with the
fine or coarse level point clouds, respectively. For example, Xh and XH denote the set of points in
the fine level and coarse level point clouds, respectively. This is meant to mimic the notation that is
used in traditional grid based geometric multigrid methods [50], but these parameters do not relate
to anything specific about the spacing of the points and do not need to be computed.

The focus of this study is on the elliptic equation

Lu = f,(1.1)

where u : M! R is unknown and f : M! R is known. Here L = �M or L = I � µ�M, where I

is the identity operator and µ > 0, which correspond to the surface Poisson and shifted (or screened)
surface Poisson equation (1.1), respectively. For the surface Poisson problem, we assume f satisfies
the compatibility condition

R
M f dA = 0, which is a necessary and su�cient condition for (1.1) to

have a solution. In this case, any solution is unique up to the addition of a constant since constants
satisfy the homogeneous equation.

2. Localized meshfree discretizations. Several localized meshfree methods have been de-
veloped for approximating the solution of (1.1), e.g., [2,29,30,40,44,45,49]. For the sake of brevity,
we limit the focus of this study to two localized meshfree methods: polyharmonic spline (PHS)-
based RBF-FD with polynomials and GFD. Both of these methods use the so-called tangent plane
approach, but di↵er in the approximation spaces used. They should be su�cient to demonstrate the
general applicability of the MGM method.

The RBF-FD and GFD methods are based on approximating the strong form of the equation,
and amount to discretizing the LBO �M over a local stencil of points on the surface. This stencil
based approach can generally be described as follows. Let Xh = {xi}

Nh

i=1 denote the global point
cloud (node set) discretizing M. For each xi 2 Xh, i = 1, . . . , Nh, let �

i

h
denote the set of indices

of the ni > 1 nearest neighbor nodes in Xh to xj . Here we use the Euclidean distance in R3 to
define the nearest neighbor distances. The points Xi

h
= {xj}j2�

i

h

are the stencil for xi, and xi is
the stencil center. The stencil based approximation to �Mu at xj then takes the form

�Mu
��
xi

⇡

X

j2�
i

h

ciju(xj),(2.1)

where cij are some set of weights determined by the RBF-FD or GFD methods discussed below.
These weights can then be assembled into a global Nh-by-Nh (sparse) di↵erentiation matrix Dh and
an approximate solution to (1.1) is given as a solution to the linear system

Lhu
h = f

h
,(2.2)
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where u
h
, f

h
2 RNh contain the unknown solution and known right hand side of (1.1), respectively,

sampled at Xh. The matrix Lh is given by Lh = Dh or Lh = Ih � µDh, where Ih is the Nh-
by-Nh identity matrix. Note that the latter Lh arises from time-implicit discretizations of surface
di↵usion-type problems. The MGM method will be used for solving the system (2.2).

In the remainder of this section, we give specific details on determining the stencil weights in
(2.1) for the LBO using RBF-FD and GFD methods. Since both of these methods use the tangent
plane technique, we review it first.

2.1. Tangent plane method. The tangent plane idea was introduced by Demanet [13] and
recently further refined by Suchde & Kuhnert [48], Shaw [46], and, in the case of the unit two-sphere,
by Gunderman et. al. [23]. The central idea of the method is to approximate the LBO at the center
of each stencil Xi

h
using an approximation to the standard Laplacian on the plane tangent to the

surface at the stencil center, Txi
M. The approximation is constructed from a projection of the

stencil points to Txi
M. In this work, we use the projection advocated in [48], which is known as an

orthographic projection when M is the unit sphere.

(a) (b)

Fig. 1. Illustration of the tangent plane method for a 1D surface (curve). The solid black lines indicates the
surface, the solid red circles mark the n = 11 stencil nodes, the open blue circles mark the projected nodes, and
the ⇥’s marks the stencil center. (a) Direct projection of the stencil points according to (2.3). (b) Rotation and
projection of the stencil points according to (2.5).

With out loss of generality, we describe the method for the first stencil X1
h
with index set �1

h
. To

simplify notation, we set the number of stencil points to n1 = n and assume �1
h
= {1, . . . , n}, so that

the stencil points are simply X1
h
= {x1, . . . ,xn}. The tangent plane method from [48] projects these

points onto Tx1M along the normal vector n1 (the normal to the surface at x1). This projection is
illustrated in Figure 1 (a) for a one dimensional surface (curve) in R2. The projected points can be
computed explicitly by

⇠j = (I � n1n
T

1 )(xj � x1), j = 1, . . . , n,(2.3)

where we have shifted the projected points so that ⇠1 is at the origin. For a two dimensional surface,
the projected points can be expressed in terms of orthonormal vectors t1 and t2 that span Tx1M as
follows

⇠j =
⇥
t1 t2

⇤
| {z }

R


x̂j

ŷj

�

|{z}
x̂j

, j = 1, . . . , n.(2.4)
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The 2D coordinates x̂j in the tangent plane for the projected points are what will be used for con-
structing the approximations to the Laplacian. These can be computed directly from the relationship
(2.3) and (2.4) as

x̂j = R
T (xj � x1), j = 1, . . . , n,(2.5)

where we have used R
T (I�n1nT

1 ) = R
T . We denote the the projected stencil as X̂1

h
= {x̂1, . . . , x̂n}.

The above procedure is repeated for every stencil Xi

h
, to obtain the projected stencils X̂i

h
, i =

1, . . . , Nh.
We note that, geometrically speaking, (2.5) amounts to first shifting the stencil points so the

center is at the origin, rotating them so the normal n1 is orthogonal to the xy-plane, and then
dropping the third component. This is illustrated in Figure 1 (b) for the case of a 1D curve.

2.2. PHS-based RBF-FD with polynomials. The RBF-FD method for determining the
weights in (2.1) can be derived by constructing an RBF interpolant over each of the projected
stencil points to the tanget plane, applying the standard 2D Laplacian to the interpolants, and then
evaluating them at the stencil center. In this study we focus on interpolants constructed from PHS
kernels and polynomials [5,14,46]. Without loss of generality, we again describe the method for the
first stencil, with X1

h
= {x1, . . . ,xn}, to simplify notation.

For the stencil X1
h
, the PHS interpolant to the projected stencil X̂1

h
takes the form

s(x̂) =
nX

i=1

aikx̂� x̂ik
2k+1 +

LX

j=1

bjpj(x̂),(2.6)

where x̂ =
⇥
x̂ ŷ

⇤T
2 Tx1M, k ·k denotes the Euclidean norm, k is the order of the PHS kernel, and

{p1, . . . , pL} is a basis for bivariate polynomials in Tx1M of degree ` (so that L = (`+ 1)(`+ 2)/2).
The order k controls the smoothness of the PHS and is chosen such that 0  k  `. We note that
the polynomials can be chosen to be the standard bivariate monomials in the components of x̂.
For samples {u1, . . . , un} of an arbitrary function at the stencil points X1

h
, the coe�cients for the

interpolant in the tangent plane are determined by the conditions

s(x̂i) = ui, i = 1, . . . , n and
nX

i=1

aipj(x̂i) = 0, j = 1, . . . , L.(2.7)

These extra L moment conditions are needed to make the solution well-posed, since the PHS kernels
are (strictly) positive definite on the subspace of Rn consisting of vectors that satisfy these condi-
tions [52]. The interpolation coe�cients can be determined from the solution of the following linear
system


A P

P
T 0

� 
a

b

�
=


u

0

�
,(2.8)

where Aij = kx̂i� x̂jk
2k+1 (i, j = 1, . . . , n), Pij = pj(x̂i) (i = 1, . . . , n, j = 1, . . . , L), and underlined

terms denote vectors containing the corresponding terms in (2.7). If the stencil nodes X̂1
h
are such

that the only bivariate polynomial of degree ` that vanishes at X̂1
h
is the trivial polynomial (i.e.,

rank(P ) = L), then (2.8) has a unique solution, so that (2.6) is well-posed [52]. This is a mild
condition on the stencil nodes, especially for “scattered” nodes on the tangent plane.
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The stencil weights c1j in (2.1) are determined from the approximation

�Mu
��
x1
⇡ �̂s

��
x̂1

=
nX

i=1

ai�̂(kx̂� x̂ik
2k+1)

��
x̂1

+
LX

j=1

bj�̂(pj(x̂))
��
x̂1

=
h
�̂s �̂p

iT 
a

b

�
,

where �̂ = @x̂x̂+@ŷŷ, �̂s and �̂p are vectors containing the entries �̂(kx̂� x̂ik
2k+1)

��
x̂1
, i = 1, . . . , n,

and �̂(pj(x̂))
��
x̂1
, j = 1, . . . , L, respectively. Using (2.8) in the above expression, the stencil weights

are given as the solution to the following linear system


A P

P
T 0

� 
c

�

�
=


�̂s

�̂p

�
,(2.9)

where c contains c1j and � are unused.
We note that one can interpret (2.9) as the solution to an equality constrained optimization

problem where the weights are determined by enforcing they are exact for �̂(kx̂ � x̂ik
2k+1)

��
x̂1
,

j = 1, . . . , n, subject to the constraint that they are also exact for �̂(pj(x̂))
��
x̂1
, j = 1, . . . , L. Under

this interpretation, � is the vector of Lagrange multipliers [5].
In this work, we choose the order of the PHS as k = ` and fix the stencil size nj = n, j = 1, . . . , N

as n = 2L, which is a common choice for RBF-FD methods [5]. The degree ` of the appended
polynomial can then be used to control the approximation order of the method, with larger ` leading
to higher orders [12].

2.3. GFD. This method is similar to the RBF-FD method, but instead of using an interpolant,
the method is based on a (weighted) polynomial least squares approximant. Using the same nota-
tion and assumptions as the previous section and again focusing only on the first stencil X1

h
, the

approximant for the projected stencil X̂1
h
takes the form

q(x̂) =
LX

j=1

bjpj(x̂).(2.10)

The coe�cients of the approximant are determined from the samples {u1, . . . , un} according to the
the following weighted least squares problem:

b
⇤ = argmin

b2RL

nX

i=1

w(x̂i)(q(x̂i)� ui)
2 = argmin

b2RL

kW
1/2(Pb� u)k22,(2.11)

where W = diag(w(x̂i)). Here we again assume the stencil nodes X̂1
h
have the property that P is full

rank so that (2.11) has a unique solution. There are many di↵erent options for selecting the weight
function w in the literature. In this work, we follow [48] and use the following Gaussian function:

w(x̂i) = exp

✓
�↵
kx̂1 � x̂ik

2

⇢
2
1 + ⇢

2
i

◆
,

where ⇢k is the support of the kth projected stencil X̂i

h
, i.e. the radius of the minimum ball centered

at x̂i that encloses all the points in X̂i

h
. The parameter ↵ > 0 is used for controlling the shape of

the weight function and is typically chosen in an ad hoc manner [48].
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The stencil weights in (2.1) are determined from the approximation

�Mu
��
x1
⇡ �̂q

��
x̂1

= (�̂p)T b⇤.

Using the normal equation solution of (2.11) in the above expression, the vector of stencil weights c
is given as

c = WP (PT
WP )�1(�̂p).(2.12)

In practice, a QR factorization of WP is used instead of the normal equations to improve the
numerical conditioning of (2.12).

In this work, we choose the number of points in the stencils Xi

h
for this method in the same

manner as the RBF-FD technique. Note that, similar to RBF-FD, increasing the polynomials degree
` also increases the order of accuracy of the GFD method.

3. Multilevel transfer operators using RBFs. Operators for transferring information be-
tween coarse and fine levels are one of the key components of multilevel methods. The interpolation
transfer operators are used to transfer information from coarse level to a finer level, while the re-
striction operators are used for the reverse. Let Xh = {xi}

Nh

i=1 ⇢ M denote the fine set of nodes
and XH = {yj}

NH

j=1 ⇢M the coarse set, where NH < Nh. We denote the interpolation operator by

I
h

H
and the restriction operator by I

H

h
. These can be represented as (sparse) matrices, so that for a

vector uH of data on the coarse nodes XH , the vector containing the interpolation of uH to Xh is
given as uh = I

h

H
uH . In this section, we discuss a novel meshfree method for constructing I

h

H
based

on RBF interpolation. For the restriction operator, we use I
H

h
= (Ih

H
)T , which is a standard choice,

especially in AMG methods [50, Appendix A].
Similar to the discrete LBO, we compute the interpolation operator using a stencil based ap-

proach. Letting �
i

H
be the indicies of the mi nearest neighbors in XH to xi, the interpolation of

{u
H

j
}j2�

i

H

to u
h

i
, the entry in uh corresponding to xi, is given as

u
h

i
=

X

j2�
i

H

diju
H

j
.(3.1)

We again use the Euclidean distance in R3 to define the index set �i

H
. The weights for each stencil

can be assembled to form the (sparse) interpolation matrix I
h

H
.

We use local RBF interpolants about each stencil Xi

H
= {yj}j2�

i

H

to determine the weights in

(3.1) and form these interpolants in the embedding space R3. This is considerably simpler than using
intrinsic coordinates to M and the resulting interpolants have good approximation properties [19].
One could alternatively use interpolants in the tangent plane about each stencil center similar to
Section 2.2, but these are only accurate when the surface is well discretized by the underlying point
cloud. This will not necessarily be the case for the nodes XH as we coarsen the finer levels. We
again use a PHS kernel to form the interpolants and describe the method for the first stencil X1

H
,

which, to simplify the notation, we assume to consist of the nodes {y1, . . . ,ym}.
For the stencil X1

H
, the PHS interpolant takes the same form as (2.6), but with x̂ replaced by

x and {x̂i} is replaced by {yi}. Additionally, we only consider the PHS kernel with k = 0 and a
constant term appended to the interpolant (i.e. ` = 0). The weights d1j in (3.1) are determined
by evaluating this interpolant at x1 and can be computed in a similar procedure to that used in
deriving the system (2.9). The linear system for the interpolation weights takes the form


A 1
1T 0

� 
d

�

�
=


s

1

�
,(3.2)
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Algorithm 4.1 Two-Level Cycle

1: Pre-smooth initial guess: u
h
 presmooth(Lh, u

h
, f

h
, ⌫1)

2: Compute residual: r
h = f

h
� Lhu

h

3: Restrict the residual to XH : rH = I
H

h
r
h

4: Solve for the defect: LHe
H = r

H

5: Interpolate the defect to Xh: eh = I
h

H
e
H

6: Correct the approximation: uh
 u

h + e
h

7: Post-smooth the approximation: uh
 postsmooth(Lh, u

h
, f

h
, ⌫2)

where Aij = kyi � yjk (i, j = 1, . . . ,m), 1 is the vector of length n with all ones, and s has entries
kx1 � yik, i = 1, . . . ,m. Again, � is unused.

While higher order PHS kernels (k > 0) and higher degree polynomials (` > 0) could be used
in constructing the interpolation weights, we found that the simple formulation above gave good
results, while also being e�cient, for the range of problems we considered. This formulation also has
the added benefit that the system (3.2) has a unique solution, provided the points are distinct [52].
When using larger k and ` this may not be the case as the points must be unisolvent with respect to
the space of trivariate polynomials of degree `, i.e., rank(P ) = L. Since the interpolation is done in
the embedding space, this can be an issue for certain algebraic surfaces (e.g., the sphere with ` � 2).

4. Meshfree geometric multilevel (MGM) method. In this section we present the MGM
method for solving the discrete problem (2.2). We first present the MGM method in terms of a two-
level cycle, which is summarized in Algorithm 4.1, describing its primary components: coarsening
the point cloud Xh ! XH , forming the coarse level operator LH , smoothing the approximation, and
solving for the defect on the coarse level. The interpolation/restriction operators are described in
the previous section. We then focus on some modifications to the algorithm that are necessary when
(2.2) corresponds to the surface Poisson problem. This is followed by a description of the multilevel
extension of the method. Finally, we comment on using the method as a preconditioner for Krylov
subspace methods.

4.1. Node coarsening. The technique we propose for generating the coarser point clouds on
general surfaces is based on the (WSE) method from [57]. This algorithm falls into the category
of Poisson disk sampling methods, which produce quasiuniformly spaced point sets [9]. The WSE
method approximates the solution to the following optimization problem: Given a point cloud Xh

with Nh samples, determine a subset XH of Xh with NH samples that has maximal Poisson disk
radius. The Poisson disk radius is defined as one half the minimum distance between neighboring
points in the set (which is called the separation radius in the meshfree methods literature [52]). This
optimization problem isNP complete, but the WSE algorithm approximates the solution inNh�NH

steps with a theoretical complexity of O(Nh logNh) operations [57]. The method works for point
clouds defined on many di↵erent sampling domains, including arbitrary manifolds, where it uses
the Euclidean norm in R3 to define nearest neighbor distances. We use the implementation by the
author of the WSE method, called cySampleElimination, that is provided in the cyCodeBase [58].

In this work, we coarsen the point cloud Xh by a fixed factor of 4, so that XH has NH = bNh/4c
points. This mimics the standard coarsening of geometric multigrid for two-dimensional domains.
We tested other coarsening factors, but found that coarsening by 4 generally gave the best results in
terms of iteration count and wall clock time for the multilevel method. Figure 2 illustrates the coarse
point clouds XH with this coarsening factor computed from the WSE algorithm for two example
surfaces.

4.2. Coarse level operator. There are two main approaches to constructing the coarse level
operator in multilevel methods. The first is direct discretization, where the di↵erential operator is
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(a) Xh ! XH (b) Xh ! XH

Fig. 2. Illustration of the WSE algorithm for generating a coarse level set XH of NH = bNh/4c points from a
fine level set Xh of Nh points. Here Nh = 14561 & NH = 3640 for the cyclide (a) and Nh = 14634 & NH = 3658
for the Stanford Bunny (b) .

discretized directly on the coarse level points XH . The second is based on a Galerkin projection
involving the interpolation I

h

H
and restriction I

H

h
operators, and is defined as follows:

LH = I
H

h
LhI

h

H
.(4.1)

This latter operator, referred to as the Galerkin coarse grid operator, provides a simple means of
coarsening Lh and has been shown to be robust for a large class of problems, especially those where
a direct discretization on the coarse grid does not adequately represent the approximation on the
fine grid [50, §7.7.4]. It also gives rise to a variational principle that is exploited in the analysis
of algebraic multigrid (AMG) [50, §A.2.4] methods. While this latter result relies on the matrix
being symmetric positive define, modifications to this theory have also been developed for non-
symmetric problems, which involve choosing the restriction operator di↵erently than the transpose
of the interpolation operator [34]. We use the Galerkin approach for forming LH , as we have found
that it approximates the fine grid operator on the coarser levels better than the direct discretization
technique and it makes for a more robust solver/preconditioner. While Lh is not symmetric for our
discretizations, we have nonetheless found that simply choosing I

H

h
= (Ih

H
)T works well over a large

array of test problems.
One disadvantage of the Galerkin approach is that LH has to be formed explicitly through

sparse matrix-matrix multiplication, which is more computationally expensive in terms of time and
memory than the direct discretization approach. Several researchers have developed methods to
reduce this cost on parallel architectures (e.g., [4, 6]), but we have not used these methods in our
implementation. We simply construct LH as part of a set-up phase using a sparse matrix library.
However, we do some minor alterations to improve the computational performance. These include
reordering the rows and columns of Lh to decrease its bandwidth using the reverse Cuthill-McKee
(RCM) algorithm prior to forming LH . This essentially leads to a reordering of the nodes Xh, which
in turn leads to a reordering of the interpolation operator I

h

H
. We also use RCM to reorder the

rows and columns of LH after it is formed, which leads to a re-ordering of the nodes Xh and of the
columns of Ih

H
. We have found that these matrix reorderings not only reduce the wall-clock time of

MGM, but also the number of iterations to reach convergence (usually by 2-3 iterations).

4.3. Smoother and coarse level solver. For the smoothing operator we use classical Gauss-
Seidel (GS) method. One application of the smoother can be written as

u
h
 u

h +B
�1
h

(fh
� Lhu

h),(4.2)

where Bh is the lower triangular part (called forward GS) or upper triangular part (called backward
GS) of Lh. In some cases we vary the version of the smoother for the pre- and post- smoothing
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operations (e.g., forward GS for pre-smooth and backward GS for the post-smooth). We denote
the number of applications of the smoother for the pre- and post-phases of the cycle as ⌫1 and ⌫2,
respectively.

To solve for the defect on the coarse level, we use a direct solver based on a sparse LU factor-
ization of LH (e.g., SuiteSparse or SuperLU).

4.4. Modifications to the two-level cycle for the surface Poisson problem. When (2.2)
corresponds to the discretization of a surface Poisson problem (Lh = Dh), the system is singular
and some modifications to the two level cycle in Algorithm 4.1 are necessary. To understand the
nature of the singularity, we can look at the continuous problem (1.1). As discussed in Section 1.1,
this problem has a solution if and only if the right hand side satisfies the compatibility condition.
Furthermore, the solution is only unique up to the addition of a constant. The degeneracy in
the continuous problem manifests in the discrete problem as a one dimensional null space of Lh

corresponding to constant vectors. The discrete analog of the consistency condition is that (2.2)
has a solution if and only if fh is orthogonal to the left null vector of Lh (i.e., fh is in the range of
Lh). Also, similar to the continuous case, any solution of (2.2) is only unique up to the addition of
a constant vector.

The primary issue that arises with using multilevel methods (and other iterative methods) for
these types of singular systems stems from the fact that, in practice, fh is rarely in the range of
Lh. This can cause the iterations to fail to converge to a suitable approximation. Three standard
approaches to bypass this issue include the following. First, one can project f

h into the range of
Lh. However, this requires computing the left null vector, which can be computationally expensive2.
It also requires modifying the coarse level solver to use the pseudoinverse (or some approximate
inverse). A second approach is to impose that the solution is zero at one point. This fixes the non-
uniqueness issue and transforms the problem into solving a non-singular system of one dimension
smaller. However, this can lead to a deterioration of the convergence of the multilevel method since
the pointwise condition is not well approximated on coarser levels [54]. Additionally, the solution
to this approach can be less accurate and less smooth than the projection approach [56]. The
third approach is to enforce a global constraint on the solution, such as the discrete mean of uh is
zero [50, §5.6.4]. This constraint can be enforced using a Lagrange multiplier, which transforms the
linear system into the constrained system


Lh b

T

h

bh 0

�

| {z }
L̃h


u
h

�
h

�

| {z }
ũ
h

=


f
h

0

�

| {z }
f̃
h

,(4.3)

where bh is a row vector of length N with all of its components set to 1/Nh (i.e., the discrete mean
operator), and �

h is the Lagrange multiplier. Provided bh is not orthogonal to the left null space of
Lh (which is likely to be true because of the compatibility condition for the continuous problem),
this constrained system will have a unique solution [50, Lemma 5.6.1]. Furthermore, if this condition
holds, the solution will be the same (up to a constant) as the projection approach, since f

h
� �

h
b
T

h

is then necessarily in the range of Lh. We use the third approach in the MGM method.
Some modifications to the two-level cycle are required to handle the constrained system (4.3).

First, the transfer operators have to also transfer the Lagrange multipler through the fine and coarse
levels and the Galerkin coarse grid operator has to include the transferred constraint. We follow the

2Note that Lh is not symmetric, so the constant vector is not necessarily the left null vector
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Algorithm 4.2 MGM preprocessing phase

1: Input: Fine level nodes X1 and operator L1; minimum number of coarse level points Nmin

2: Re-order rows and columns of L1 using RCM
3: Re-order X1 according to the RCM ordering
4: Compute number of levels: p = blog(N1/Nmin)/ log(4)c+ 1
5: for j = 1 . . . p� 1 do
6: Generate coarse point cloud Xj+1 with Nj+1 = bN1/4jc points

7: Generate interpolation operator Ij
j+1 from Xj+1 to Xj

8: Set the restriction operator to I
j+1
j

= (Ij
j+1)

T

9: Generate Galerkin coarse level operator Lj+1 = I
j

j+1LjI
j+1
j

10: Re-order rows and columns of Lj+1 using RCM

11: Re-order rows of Ij
j+1 and columns of Ij+1

j
according to the RCM ordering

12: end for
13: Compute sparse LU decomposition of Lp

approach from [1] and modify these operators according to the following definitions:

L̃H =


I
H

h
0

0 1

�

| {z }
Ĩ
H

h


Lh b

T

h

bh 0

�

| {z }
L̃h


I
h

H
0

0 1

�

| {z }
Ĩ
h

H

=


I
H

h
LhI

h

H
I
H

h
b
T

h

bhI
h

H
0

�
,(4.4)

where Ĩh
H

and Ĩ
H

h
are the modified interpolation and restriction operators, respectively, and L̃H is the

modified Galerkin operator. These modified transfer operators simply pass the Lagrange multiplier
between levels without alteration.

For the smoother of the constrained system (4.3), we use the approach discussed in [50, §5.6.5],
where only the solution uh is smoothed and the constraint is left alone. We again use GS for
smoothing uh and one application of the modified smoother takes the form

u
h
 u

h +B
�1
h

(fh
� Lhu

h
� bh�

h),

where Bh is the same as (4.2). This smoother is equivalent to one iteration of the undamped inexact
Uzawa method with the Schur complement set equal to zero [7].

Finally, we use a direct solve to compute the defect eh and Lagrange multiplier �H on the coarse

level. This system takes the form L̃H ẽ
H = r̃

H , where ẽ
H =

⇥
e
H

�
H
⇤T

and r̃
H is the restricted

residual for the modified system: r̃
H = Ĩ

H

h
(f̃h
� L̃hũ

h). When solving a Poisson problem, we use
the modifications described above in Algorithm 4.1.

4.5. Multilevel extension. The multilevel extension of the two-level cycle can be obtained
by applying it recursively until a su�ciently coarse level is reached to make a direct solver practical.
To simplify the notation in describing the multilevel cycle, we replace the h/H superscript/subscript
notation with a number corresponding to the level, with j = 1 being the finest level. For example,
for the jth level, Xj denotes the point cloud, Nj denotes its size, Lj denotes the operator, rj denotes

the residual, and I
j+1
j

is the restriction to level j + 1.
Before the multilevel cycle begins, we compute all the coarse point clouds, transfer operators,

and Galerkin coarse level operators in a preprocessing step, which is outlined in Algorithm 4.2. The
number of levels, p, depends on the number of fine level nodes and minimum number of nodes on
the coarsest level, Nmin, and is determined on line 4 of this algorithm. This guarantees that the
number of nodes on the coarsest level satisfies Nmin  Np < 4Nmin. We note that when using WSE
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to generate the coarse point cloud Xj on line 6 of the preprocessing algorithm, we use the finer point
cloud Xj+1, rather than the finest node X1. This reduces the cost in performing this step.

The multilevel cycle is outlined in Algorithm 4.3 in non-recursive form. This algorithm is what
we call the MGM method and corresponds to a traditional V-cycle in multigrid methods, which is
typically denoted V(⌫1, ⌫2) corresponding to the number of pre-/post smoothing operations. Other
cycling methods can also be used (e.g., F- or W-cycle [50, §2.4]), but we limit our focus to the
V-cycle. While this algorithm is described for a shifted Poisson problem, it can be easily modified
for solving a Poisson problem following the modifications discussed in Section 4.4.

Algorithm 4.3 MGM V(⌫1, ⌫2)-cycle

1: Input: Right hand side f
1; Initial guess u1; Number levels p; {Lj}

p�1
j=1 ; {I

j

j+1}
p�1
j=1 ; {I

j+1
j

}
p�1
j=1 ;

2: RCM re-orderings; Sparse LU factorization of Lp;
3: Re-order f1 and u

1 according to RCM re-ordering of L1

4: Presmooth initial guess: u1
 presmooth(L1, u

1
, f

1
, ⌫1)

5: Compute/restrict residual: r1 = I
2
1 (f

1
� L1u

h)
6: for j = 2 . . . p� 1 do
7: Presmooth defect: ej = presmooth(Lj , 0, rj , ⌫1)

8: Compute/restrict residual: rj+1 = I
j+1
j

(rj � Lje
j)

9: end for
10: Compute defect: Solve Lpe

p = r
p using sparse LU decomposition of Lp

11: for j = p� 1, . . . , 2 do
12: Interpolate/correct defect: ej  e

j + I
j

j+1e
j+1

13: Post smooth defect: ej  postsmooth(Lj , e
j
, r

j
, ⌫2)

14: end for
15: Interpolate defect/correct approximation: u1

 u
1 + I

1
2e

2

16: Post smooth approximation: u1
 postsmooth(L1, u

1
, f

1
, ⌫2)

17: Undo re-ordering of u1 from RCM of re-ordering of L1

4.6. Preconditioner for Krylov subspace methods. The MGM method has the benefit of
being relatively straightforward to implement. However, as shown in the numerical experiments in
the next section, it may converge slowly when using it as a standalone solver, especially for higher
order discretizations of the LBO on more irregular point clouds. A common approach to bypassing
these issues for standard geometric and algebraic multigrid methods is to combine them with a
Krylov subspace method (e.g., [50, §7.8] or [20, 39]). In this case, multigrid is viewed as precondi-
tioner for the Krylov method. We also take this approach with MGM, using it a preconditioner for
two Krylov methods: generalized minimum residual (GMRES) and bi-conjugate gradient stabilized
(BiCGSTAB) [42]. This combination appears to result in an e�cient and robust method for solving
the discretized surface Poisson and shifted Poisson equations on quite complicated surface.

5. Numerical results. In this section, we analyze the MGM method as a solver and precondi-
tioner for the Poisson and shifted Poisson problem on two surfaces: the unit sphere and the cyclide.
The latter is shown in Figure 2 and the implicit equation describing the surface is given in [29].
We test the method on both RBF-FD and GFD discretizations using the parameters given in the
first part of Table 1. In all the tests, we are interested in how the method scales to higher order
discretizations, and thus give results for polynomial degrees ` = 3, 5, and 7, which correspond to
approximately second, fourth, and sixth order accuracy, respectively [46, 48]3. For the sphere tests,

3In some cases, it is possible to achieve these same orders with polynomials of one degree less when the point
cloud has a regular spacing [30].
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we generate the point clouds from the vertices of icosahedral node sets, which are used extensively
in numerical weather prediction [33]. For the cyclide, we use point clouds produced from Poisson
disk sampling of the surface. This latter approach results in much more unstructured point clouds
than the sphere case (see Figure 2 for an illustration).

Variable Description Value(s)

Parameters for the discretization the LBO
` Poly. degree for discretizing the LBO with RBF-FD or GFD 3, 5, or 7
k Order of the PHS kernel for discretizing the LBO with RBF-FD `

↵ Weighting parameter for the Gaussian kernel in GFD 4 or 5
n Stencil size for discretizing the LBO with RBF-FD or GFD (`+ 1)(`+ 2)

Parameters for MGM
Nmin Minimum number of nodes on the coarsest level 250
Bh Pre- and post-smoother (see (4.2)) Forward GS

⌫1, ⌫2 Number of applications of the pre- and post-smoother 1
m Stencil size of the interpolation/restriction operators 3

Table 1
Description of parameters and their values used in the numerical results.

Unless otherwise specified, the parameters of the MGM method are set according to those
given in the second part of Table 1. We tested the method with di↵erent combinations of these
parameters and found that the ones listed in the table generally gave the best results in terms of
iteration count and wall-clock time. Additionally, when using MGM with Krylov methods, we use
it as a right preconditioner, which is generally recommended [20]. Finally, all the MGM results
presented were obtained from a MATLAB implementation of the method, with a MEX interface to
the WSE method, which is implemented in C++.

In the first several experiments, we compare MGM to AMG, as implemented in the Python
package PyAMG [37]. In addition to being very popular blackbox solvers and preconditioners for
a wide range of problems, AMG methods have been used previously for solving linear systems
associated with meshfree discretizations of elliptic PDEs in the plane [43] and on surfaces [22]. We
use the smoothed aggregation version of AMG, as we found it performed better than classical AMG.
Additionally, we use one application of symmetric GS as the pre- and post-smoother, a V-cycle for the
multilevel cycle, and sparse LU for the coarse level solver. We experimented with other combinations
of parameters and again found these generally gave the best results in terms of iteration count and
wall-clock time. Additionally, when using PyAMG with GMRES, we use it as a right preconditioner
(with the fgmres option), while for BiCGSTAB we use it as a left preconditioner (as this is the
only option). Finally, in the comparisons with AMG, we focus on the shifted Poisson problem (with
µ = 1) as PyAMG does not o↵er a specialized way to deal with the constrained system (4.3). These
comparisons include all the results in Sections 5.1–5.3.

5.1. Standalone solver vs. preconditioner. In the first set of tests, we compare MGM
and PyAMG both as standalone solvers and preconditioners. For the latter approaches we refer to
these solvers as MGM GMRES, MGM BiCGSTAB, PyAMG GMRES, and PyAMG BiCGSTAB, to
indicate the type of Krylov method employed. We use these solvers on the shifted Poisson problem
on the unit sphere and cyclide with Nh=2,621,422 and Nh=2,097,152 nodes, respectively. For the
BiCGSTAB results, we count the number of applications of the preconditioner as the iterations since
each step of this method applies the preconditioner twice, whereas GMRES applies it once.

Figure 3 displays the results in terms of relative residual vs. iteration count for RBF-FD, while
Figure 4 displays the results for GFD. For the RBF-FD results, we see that the methods using MGM
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Sphere Cyclide
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Fig. 3. Convergence results for MGM and PyAMG based solvers for RBF-FD discretizations of a shifted Poisson
problem with random right hand side. The sphere results are for Nh = 2621442, while for the cyclide Nh = 2097152.

converge more rapidly than the methods based on PyAMG for both surfaces. For the sphere, MGM
works very well as a standalone solver and preconditioner even as ` increases, but for the cyclide the
convergence rates of MGM as a standalone solver decrease considerably. This may be due to the
more irregular nature of the cyclide point cloud. We note, however, that the preconditioned versions
of MGM only have a very mild decrease in convergence rates for the cyclide. The figures also show
that the methods using PyAMG do not converge as rapidly as the corresponding MGM methods,
with the fastest converging PyAMG method taking more than double the number of iterations as
the fastest MGM method when ` = 3 and triple when ` = 5 and 7. We see similar patterns in
the GFD results, but the methods based on both MGM and PyAMG generally converge faster in
this case and the gap between the fastest converging MGM and PyAMG methods is not as wide.
Finally, we note that MGM BiCGSTAB seems to converge at a very similar rate to MGM GMRES,
whereas this does not hold for PyAMG. This is a promising result for large systems since the storage
requirements of BiCGSTAB are fixed, whereas they grow with the size of the Krylov subspace for
GMRES [20].

These experiments also indicate that, while MGM can be an e↵ective standalone solver for small
` (lower order discretizations), it is more robust for larger ` (higher order discretizations) and when
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Fig. 4. Same as Figure 3, but for GFD discretizations of the shifted surface Poisson problem.

used as a preconditioner. This also seems to be the case when applying it to di↵erent surfaces and
point clouds based on regular nodes (like the sphere) and irregular nodes (like the cyclide). From
the PyAMG results, it is clear that it should be used as a preconditioner to get the most robust
results, which is generally the case for AMG methods applied to nonsymmetric systems [20].

5.2. Scaling with problem size. In the next set of tests, we examine how both the MGM and
PyAMG methods scale as the size of the point clouds Nh increases. We focus on the preconditioned
versions of these methods and test them again on the sphere and cyclide. Figure 5 displays the results
for the RBF-FD and GFD methods in terms of number of iterations required to reach a relative
residual of 10�12. We see from these plots that the preconditioned MGM methods appear to scale
much better than the PyAMG methods, both in terms of Nh and `. For RBF-FD discretizations,
the increase in the iteration count for MGM is more mild with increasing ` than for GFD. However,
the iteration count is lower for the GFD discretizations; we examine this further in Section 5.4.

In Figure 6 we display the wall-clock times for the results in Figure 5 for GMRES PyAMG
and MGM. These results were run on a Linux Workstation with Intel i9-9900X 3.5 GHz processor
(with no explicit parallelization) and do not include the preprocessing times. While it is not a good
idea to compare execution times between methods implemented in two di↵erent scripting languages,
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Fig. 5. Comparison of the number of PyAMG and MGM preconditioned GMRES/BiCGSTAB iterations required
to reach a relative residual tolerance of 10�12 for solving the shifted Poisson problem (µ = 1) as a function of the
point cloud size Nh (marked as N in the plots). Filled markers and solid lines mark the results for RBF-FD and
open markers and dashed lines mark the results for GFD.

we have included this plot to show how the timing of each method scales with Nh. The dotted
line in these plots marks perfect linear scaling and we see that both methods have a very similar
slope to this line. We also note that the timing results for BiCGSTAB follow a similar trend to
GMRES, so we omitted displaying the results. For reference, the preprocessing times (in seconds)
for MGM for ` = 3 on the cyclide were 0.30, 0.62, 1.6, 6.1, and 31 for Nh = 213 , 215, 217, 219,
and 221, respectively; comparable times were noted for other ` and for the sphere with roughly the
same values of Nh. We note that the preprocessing step is dominated by the construction of the
restriction and interpolation operators and that this is a pleasingly parallel process that we did not
fully exploit.
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Fig. 6. Wall-clock time (in seconds) for PyAMG GMRES and MGM GMRES to converge to a relative residual
of 10�12 as the problem size Nh (marked as N in the plots) increases for solving the shifted Poisson problem (µ = 1).
The black dotted line marks linear scaling, O(Nh), for reference.

5.3. Spectrum analysis. The previous two sections showed the preconditioned MGM meth-
ods outperforming the PyAMG methods. To better understand these results, we investigate the
spectrum (eigenvalues) of the preconditioned matrices from both methods. Letting Mh denote the
matrix representation for applying one V-cycle of either MGM or PyAMG, we can write the (right)
preconditioned system as LhMhz

h = f
h, where z

h = (Mh)�1
u
h. The convergence behavior of

Krylov methods can be understood by analyzing the spectrum LhMh. As discussed in, for exam-
ple [38], the more clustered this spectrum is to one, the faster the Krylov methods will converge.
In Figure 7 we display the complete spectrum of the preconditioned matrix LhMh of both MGM
and PyAMG for the RBF-FD discretizations on the sphere and cyclide. Due to the cost of this
eigenvalue computation, we were only able to compute the results for with Nh = 10242 and 8192,
respectively. We see from the figure that spectra for MGM are more clustered around one than
PyAMG for both surfaces and increasing `, which explains the better iteration counts in Table ??.
We omit the results for GFD, but note that the spectra were similar to RBF-FD, but were even
more clustered near one.

5.4. Iteration vs. accuracy. In the final set of tests we focus on solving the (discretized)
Poisson problem with MGM GMRES and examine how the accuracy of the RBF-FD and GFD
discretizations depend on the iteration count for increasing Nh and `. We restrict our attention to
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Fig. 7. The spectra of the preconditioned matrix for shifted Poisson problem (µ = 1) discretized with RBF-FD.

the sphere, for which it is easy to construct test problems with exact solutions based on spherical
harmonics. For the test problem in the experiments, we use the Y

4
5 spherical harmonic, which can

be written in Cartesian coordinates as Y
4
5 (x, y, z) = z(x4

� 6x2
y
2 + y

4). We fix the number of
iterations of MGM GMRES for solving the discretized systems to 1, 5, 10, 15, 20, 25, 30, and compute
both the relative residual and relative errors (in the 2-norm) in the approximate solutions. Figure
8 displays the results from these experiments. We see from the figure that in almost all cases the
minimum error for either the RBF-FD and GFD is reached before the minimal residual is reached.
Additionally, the results indicate that while the residuals for GFD converge faster than RBF-FD,
the errors for a given Nh and ` are smaller for RBF-FD. So the cost per error for both methods is
much more comparable than the previous experiments indicated and favor RBF-FD.

6. Applications. In this section we demonstrate the performance of MGM on three di↵erent
applications involving complicated surfaces represented by relatively large point clouds; see Figure
9. All these applications involve solving discrete (shifted) surface Poisson problems, for which we
use the RBF-FD method to approximate the LBO and MGM GMRES to solve the resulting linear
systems.

6.1. Surface harmonics. We first consider approximating the first several eigenvalues and
eigenfunctions of the LBO on the Chinese Guardian Lion model. The eigenfunctions of the LBO
or the “surface harmonics” have been used in various applications in data analysis. For example,
Reuter et. al. [41] used the low frequency surface harmonics for shape segmentation and registration.

The LBO eigenvalue problem is given as �Mu = �u. To approximate the solutions of this
problem we use the RBF-FD method with ` = 5 to approximate the LBO and ARPACK [28]
(accessed through the eigs function in MATLAB) to solve the discrete system for the first several
eigenpairs that are smallest in magnitude. ARPACK uses the Arnoldi method on the shifted inverse
of a matrix to find the eigenpairs closest to the shift �, which, for the surface problem, requires
a routine for repeatedly solving systems of the form (Lh � �Ih)vh = f

h, for di↵erent f
h. We use
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Fig. 8. Relative residuals (left) and relative 2-norm errors (right) for solving a Poisson problem on the sphere
with MGM GMRES. Solid lines correspond to RBF-FD discretizations, while dashed lines correspond to GFD.

Fig. 9. Point clouds for the surfaces considered in the applications: Chinese Guardian Lion (Nh = 436605),
Stanford Bunny (Nh = 291804), and Armadillo (Nh = 872773).

MGM GMRES to solve these linear systems with � = �1 and set the tolerance to 10�10. Figure 10
displays the first 10 non-zero harmonics computed with this technique. The ARPACK routine used
49 linear system solves to determine the eigenpairs; the median number of MGM GMRES iterations
required to solve these systems was only 15 and the max was 16.
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Fig. 10. Left: pseudocolor map of the first 10 non-zero surface harmonics of the Chinese Guardian Lion model.

6.2. Pattern formation. We next consider solving two coupled reaction-di↵usion (RD) equa-
tions on the Stanford Bunny model. These types of equations arise, for example, in phenomenological
models of color patterns in animal coats [35]. We consider the Gierer-Meinhardt two-species RD
system [21] given as follows:

@u

@t
=Du�M u+A�Bu+

u
2

v(1 + Cu2)
,(6.1a)

@v

@t
=Dv�M v + u

2
� v.(6.1b)

By altering the parameters A, B, C, Du, and Dv appropriately, this system can produce solutions
that converge to spot or labyrinth patterns at “steady-state” [35]. For the bunny model, we set
A = 0.08, B = 1.5, C = 0.45, Du = 5⇥ 10�5, and Dv = 10�3 to produce the labyrinth pattern. We
use a random initial condition, where at each point in Xh the values of u and v are selected from a
uniformly random distribution in the interval [0, 1].

To approximate the solution of (6.1) we use the RBF-FD method with ` = 3 to approximate the
LBO and apply the second-order accurate semi-implicit backward di↵erence scheme (SBDF2) [3] as
the time-stepping method that treats the di↵usion implicitly and reactions explicitly. We set the
time-step to �t = 0.05. The temporal discretization results in two decoupled (discrete) screened
Poisson problems that need to be solved at each time-step for which we use GMRES preconditioned
with MGM. For the GMRES method we set the tolerance on the relative residual to 10�8 and use
the previous time-step as the initial guess. We set the final integration to 300 time units, which
resulted in a near steady-state pattern. Figure 11 displays the results of the simulations. Included in
the figure are the iterations required by the preconditioned GMRES method as a function of time.
We see from the figure that the maximum iteration count is 6 for the u variable and 11 for the v

variable, and decreases to 3 and 4, respectively as the solutions approach steady-state. The larger
iteration count for the v variable is expected since the di↵usion coe�cient is larger in (6.1b).

6.3. Geodesic distance. Lastly, we consider the classic problem of approximating the geodesic
distance from a given point on a surface to all other points. We use the heat method introduced by
Crane et. al. [11] to solve this problem. This method transforms the non-linear geodesic distance
problem, typically formulated in terms of the eikonal equation, into solving a pair of linear parabolic
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Fig. 11. Left: pseudocolor map of the u variable in the numerical solution of (6.1) on the Stanford Bunny
model; the colors transition from white to yellow to red to black, with white corresponding to u = 0 and black to
u = 1. Right: iteration count of MGM GMRES for solving the linear systems associated with u and v variables at
each time-step in the semi-implicit scheme for (6.1).

and elliptic problems. The heat method is comprised of the three steps:
1. Solve ut = �Mu, with u0 = �(x⇤), to some time tfinal > 0
2. Compute the vector field ⌘ = �rMu/|rMu|

3. Solve the Poisson problem �M' = rM · ⌘
Here x⇤ denotes the target point on the surface M to compute the distance from, rM denotes the
surface gradient, rM· is the surface divergence, and � denotes the Dirac delta function. As discussed
in [11], the function ' approximates the geodesic distance and converges to the exact distance as
tfinal ! 0.
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Fig. 12. Left: pseudocolor map of the approximate geodesic distance from the solid circle on the chest of the
Armadillo model (viewed from the front and backside) computed with the heat method. Solid black lines mark the
contours of the distance field and the colors transition from white to yellow to red with increasing distance from the
solid circle. Right: iteration count of GMRES preconditioned with MGM for solving the linear systems associated
with the heat method.

We apply the heat method on the Armadillo model. We again use the RBF-FD method with
` = 3 to approximate the LBO in steps 1 and 3 above. To approximate the surface gradient and
divergence, we also use the RBF-FD method formulated in the tangent plane similar to the method
described in [48] for GFD. For these approximations, we use ` = 2, which result in a second-order
approximation. We discretize the heat equation in the first step with backward Euler in time
with a time-step of �t = 10�3 and set tfinal = 3�t. To solve the linear systems associated with
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this implicit discretization and the system from the discretized Poisson equation in step 3, we use
GMRES preconditioned with MGM, setting the tolerance to 10�8. The results for a point x⇤ on the
chest of the Armadillo are displayed in the first to images of Figure 12. The last image in this figure
displays the iterations of the preconditioned GMRES method for solving the systems from the heat
equation discretization for three time-steps and the Poisson system to determine '. We see that the
iteration count remains low for all these systems.

7. Concluding remarks. We have presented a new geometric multilevel method, MGM, for
solving linear systems associated with discretizations of elliptic PDEs on point clouds. The method
is entirely meshfree and uses the WSE algorithm for coarsening the point clouds, interpolation/re-
strictions operators based on polyharmonic spline RBFs, Galerkin coarsening of the operator, and
standard smoothers. All of these choices make MGM particularly straightforward to implement.
We numerically analyzed the method as a standalone solver and preconditioner on test problems for
the sphere and cyclide discretized using RBF-FD and GFD methods, and found that it compares
favorably to AMG methods in terms of convergence rates and wall-clock time. When using MGM
as a preconditioner, we also found that it scaled well as both the problem size and accuracy of the
discretizations increased. Finally, we demonstrated that the method can be used in three challenging
applications involving large systems of equations. A full open source implementation of the method
is planned with code to reproduce the MGM results.

There are several extensions of MGM that we plan to pursue in the future. One is to test
the method on other discretizations. MGM is agnostic to the underlying discretization and could
be used even for (nodal) mesh-based discretizations. Here the nodal points of the mesh could be
treated as a point cloud and WSE could be applied, or if there is a natural way to coarsen the mesh,
then this could be used instead. A second idea we plan to pursue is extending MGM to domains
with boundaries, which in principle should be straightforward. Finally, we plan to look into parallel
implementations of the method to further improve the performance.
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