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Abstract

We endow a non-semisimple category of modules of unrolled quantum s[(2) with a
Hermitian structure. We also prove that the CGP TQFT constructed in arXiv:1202.3553
using this category is Hermitian. This gives rise to projective representations of the
mapping class group in the group of indefinite unitary matrices.
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1 Introduction

Unitary topological quantum field theories are closely related to various physical
systems. In particular, they are connected to topological phases of matter [11, 13, 15,
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16]. There is hope that these mathematical theories could be realized physically and
perhaps be used for fault tolerant quantum computing [7, 14, 20]. Many fundamental
examples of these unitary TQFTs come from the representation theory of quantum
groups at roots of unity. The standard procedure is to perform some semisimplification
on a category of representations and then use the resulting category to construct 3-
manifold invariants and their extensions to (2 + 1)-TQFTs.

If one instead works with the full representation category of a quantum group at
a root of unity, without passing to the semisimplification, it was not obvious how to
construct TQFTs, as the standard quantum trace on projective modules for quantum
groups at roots of unity vanish. The first and third authors, in collaboration with
Kujawa, introduced in [8] a modified trace. This modified trace has the remarkable
property that it does not vanish on projective objects and retains most of the important
properties of the standard quantum trace. This construction led to new link invariants, 3-
manifold invariants [4], and (24 1)-TQFTs [2]. We refer to these invariants collectively
as non-semisimple invariants.

Unlike the usual semisimple theory where quantum dimensions of simple objects
are strictly positive, the modified dimensions of many objects in the non-semisimple
theory are real, but not positive. This means that there is no hope that the TQFT
constructed in [2] is unitary. However, in this note, we show that the TQFT arising
from a non-semisimple category ZHe™ of representations of the unrolled quantum
group for slp is Hermitian. This means that the TQFT will produce nondegenerate
bilinear forms with an indefinite signature.

The notion of a Hermitian ribbon category was introduced by Turaev [24]. One of
our main results is the following.

Theorem ZHe™ js g Hermitian ribbon category in the sense of Definition 3.1.

We stress that analogous fundamental results for the semisimplified categories com-
ing from quantum groups were achieved by Kirillov [12] and Wenzl [25]. In order to
accommodate projective objects in 2He™ we needed to modify some arguments of
[12, 25].

Finally, in the last section, we apply the Hermicity of 2H¢™ to show that the TQFT
constructed with it as in [2] is Hermitian in the sense of Turaev [24].

Theorem The TQFT (V, Z) introduced in Sect. 5.3 is Hermitian.

A more precise relation of this TQFT with the TQFT V of [2] is as follows. There

is a full forgetful functor from ZHe™ to the category of vfs[(Z) weight module
which forgets the Hermitian structure. It is surjective on projective modules with real
weights. This induces a functor from the cobordism category which is the source of
V onto a subcategory (of cobordisms equipped with real valued cohomology classes)
of the source category of V. As a Vect-valued functor, V factors through V but vector
spaces in the image of V are now equipped with Hermitian forms.

In Proposition 5.8, we show that this implies that the mapping class group action
induced by the non-semisimple TQFT produces a projective representation in the
group of indefinite unitary matrices.

Even with an indefinite normed inner product, the Hermitian TQFTs defined here
may have physical relevance. Indeed, quantum mechanics with indefinite norms have
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been studied going back to Dirac [6] and Pauli [22]. Even with the indefinite norms,
they observed a formalism consistent with deterministic quantum mechanics, includ-
ing positive energy eigenvalues, normalizable wave functions, and time evolution
by an exponential of the Hamiltonian that is self-adjoint in the indefinite norm. More
recently, the study of pseudo-Hermitian quantum mechanics has been intensively stud-
ied [17, 18], motivated by connections to P7 -symmetric quantum theory [1]. In all of
these studies, indefinite normed Hilbert spaces admit Hamiltonians that are Hermitian
with respect to the indefinite inner product, yet still have real spectrum, and unitary
evolution. In [10], the authors show that the TQFTs studied here give rise large classes
of exactly solvable pseudo-Hermitian Hamiltonians generalizing Levin-Wen models
into this framework.

2 A quantization of s((2) and its associated ribbon category

In this section, we recall the algebra Ufs[(Z) and a category of modules over this
algebra. Fix a positive integer 7. Let ' = r if r is odd and r’ = 7 otherwise. Let C be
. /=1 .
the complex numbers and C = (C\ Z) UrZ.Letg = ¢ - " be a 2r'"root of unity.
i 7/ —x
We use the notation ¢g* = e~ r . Forn € N, we also set

}=q"—q¢™" [x1= % {n)'={nl{n—1}---{1} and [n]!=[n][n—1]---[1].

2.1 The Drinfel’d-Jimbo quantum group

Let U;s[(2) be the C-algebra given by generators E, F, K, K —! and relations:

KK'=K7'k =1, KEK'=¢*E, KFK'=¢7% F,
K—K!
[E, F]l= ———. 0

The algebra U, sl(2) is a Hopf algebra where the coproduct, counit and antipode are
defined by

A(E)=1®E+EQK, e(E) =0, S(E)y=—-EK~', (2
AF) =K '®F+F®]1, g(F) =0, S(F) = —KF, 3)
AK)=K®K e(K) =1, S(K) =K. 4)

Let qu[(Z) be the algebra U, s[(2) modulo the relations E” = F" = 0.

2.2 A modified version of Ugs1(2)

LetU qH 5[(2) be the C-algebra given by generators E, F, K, K —1 H and relations in
(1) along with the relations:

HK = KH, [H,E]=2E, [H, F]= —2F.
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The algebra U ;I s[(2) is a Hopf algebra where the coproduct, counit and antipode are
defined in (2)—(4) and by

AH) =H®1+1®H, e(H) =0, S(H) = —H.

Define ﬁ55[(2) to be the Hopf algebra U, (fl 5[(2) modulo the relations E" = F" = 0.

Let V be a finite dimensional ﬁfs[(Z)-module. Aneigenvalue . € C of the operator
H : V — V is called a weight of V and the associated eigenspace is called a weight
space. A vector v in the A-eigenspace of H is aweight vector of weight \,i.e. Hv = \v.
We call V a weight module if V splits as a direct sum of weight spaces and g/ = K
as operators on V, i.e. Kv = g’ v for any vector v of weight A. Let €’ be the category

of finite dimensional weight 555[(2)-m0dules.

Since 555[(2) is a Hopf algebra, € is a tensor category where the unit I is the 1-
dimensional trivial module C. Moreover, € is C-linear: hom-sets are C-modules, the
composition and tensor product of morphisms are C-bilinear, and Ende (I) = CIdj.
When it is clear, we denote the unit I by C. We say a module V is simple if it has
no proper submodules. For a module V and a morphism f € Endg(V), we write
(f)y = A € Cif f — xldy is nilpotent. If V is simple, then Schur’s lemma implies
that End¢ (V) = Cldy. Thus for f € End¢(V), we have f = (f)y Idy.

We will now recall the fact that the category % is a ribbon category. Let V and W be
objects of ¢. Let {v;} be a basis of V and {v’} be a dual basis of V* = Homc¢(V, C).
Then

caa)vV:(C—> VeV givenby1|—>Zvi®vl~*,

evy: V*®V — C, givenby f @ w > f(w)

are duality morphisms of €. In [21], Ohtsuki truncates the usual formula of the 4-adic
quantum s[(2) R-matrix to define an operator on V @ W by

H®H/2 - {1}2n (n—1)/2

— v nn— n n

R=gq Eo{n}!q E"QF". 5)
n

H®H /2

where g is the operator given by

MMy @ v') = q“'/zv v

for weight vectors v and v of weights of A and A’. The R-matrix is not an element in
U;LIE[(Z) ® Ufﬁ[(Z). However the action of R on the tensor product of two objects
of ¢ is a well defined linear map. Moreover, R gives rise to a braiding cy.w : V ®
W — W ® V on % defined by v ® w — 7(R(v ® w)) where t is the permutation
x ® y — y ® x. This braiding follows from the invertibility of the R-matrix. An
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explicit inverse (see [3, Section 2.1.2] and [21]) is given by

r—1 n
R — <Z(_ y {{1}} —n(n— 1)/2En®Fn> ~HQH/2. ©)
n=0

Let 6 be the operator given by

= K| Z {1} n(nfl)/ZS(Fn)quz/ZEn 7)
{n}!
n=0
where g~ H?/2 is an operator defined on a weight vector vy by g~ Hz/z.vk = q_}‘2/2vk

Ohtsuki shows that the family of maps 6y : V — V in % defined by v > 6 1vis a
twist (see [19, 21]).
Now the ribbon structure on € yields right duality morphisms

«— — <« —
evy=evy cy,y=(0y ®lIdy«) and coevy= (Idy+ ®8y)cy, v+ coevy )

which are compatible with the left duality morphisms {co_e)vv}v and {E)V}V. These
duality morphisms are given explicitly by

c((gvv: C—- V*®V, where | — Zvl* ® K",

Wy VeV > C, wherev® f > f(K' ).

The quantum dimension qdim(V') of an object V in % is defined by
qdim(V) = (&vy o c&’vv>]I =Y k)

For g € C/27Z, define €, as the full subcategory of weight modules whose weights
are all in the class g (mod 2Z). Then, €’ = {€,}4ec/27 is a C/2Z-graded category
(where C/27 is an additive group). Let V € %, and V' € %,. Then, the weights
of V. ® V' are congruent to g + g’ mod 2Z, and so the tensor product is in Gyy,r.
Also, if g # g/, then Homg(V, V') = 0 since morphisms in % preserve weights.
Finally, if f € V* = Homc(V, C), then by definition the action of H on f is given
by (Hf)(v) = f(S(H)v) = — f(Hv) andso V* € ¢_,

We now consider the following class of finite dimensional highest weight modules.
For each o € C, we let V,, be the r-dimensional highest weight Ufs[@)-module of
highest weight & + r — 1. The module V,, has a basis {vg, ..., v,—1} whose action is
given by

Hvi=(@+r—1-2i)v;, E.v; = vi—1, F.vi =viq1. )

@ Springer



74  Page6of 27 N. Geer et al.

For all « € C, the quantum dimension of Vj, is zero:

r—1 r—1 2r
. _ * 1—r_ .\ _ r—D(a+r—1-2i) _ _(r—D(a+r—1) _
qdim(Ve) = D _vf (K" = ) =q e =0
=0 i=0
For a € Z, let CHL be the one dimensional module in ¢ where both E and F
act by zero and H acts by ar. For each n € {0,...,r — 2}, let S, be the usual

(n + 1)-dimensional simple highest weight Ufs[(E)-module with highest weight n.
The module S, has highest weight vector sg such that Esg = 0 and Hsy = nso.
Then, {sg, s, ..., s,} is a basis of S, where F's; = s;j41, H.s; = (n — 2i)s;, E.so =
0= F"lspand E.s; = {’-}{’z;zl_i}s,‘_l. Every simple module of % is isomorphic to
exactly one of the modules in the list:

e S, ®CH forn=0,---,r—2anda € Z,

ar?
e V,fora € (C\Z)UrZ.

Fori € {0, ...,r — 2}, let P; be the projective and indecomposable module with
highest weight 2r —2 —i, defined in Proposition 6.2 of [5]. Moreover, any indecompos-
able projective weight module has a highest weight, and such a module P € 45U 67
with highest weight (k + 2)r — i — 2 is isomorphic to P; ® (Cfr.

3 Categorical preliminaries
3.1 Hermitian ribbon category

Here, we follow [24, Section 5.1]. Let € be a strict monoidal category. A dagger, or
conjugation, on %, assigns to each morphism f: V — W a morphism f™: W — V
such that . '

H'=rf e =ros, (fon) =g"of" (10)

These relations imply 1d], = Idy . In other words, T is an object preserving contravari-
ant involution on %'.

Definition 3.1 A Hermitian ribbon category is aribbon monoidal category ¢ equipped
with a conjugation satisfying the following conditions:

(i) for any objects V, W of &, we have
For any objects

hew = (cvan) (11)
(ii) for any object V of &, we have !

- — 7 — —T —
9"/ = (Ov)_l, Coevy=¢evy CV,V*(QV ®Idv*), eV y= (Idv* ®9V)CV,V* Coevy .
(12)

. . —t
I We use an equivalent definition to the one Turaev uses for ev .
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3.2 Modified traces on the projective modules

Let Proj be the full subcategory of 6" consisting of projective Ufs[(2)-modules. The
subcategory Proj is an ideal (see also [8]). That is, it is closed under retracts (i.e. if
W eProjanda : X — Wand B : W — X satisfy 8 o @ = Idy, then X € Proj) and
if X isin &, and Y is in Proj, then X ® Y is in Proj.

For any objects V, W of ¢ and any endomorphism f of V ® W, set

ptr,(f) = (evy ®Idw) o (Idy= ®f) o (coevy ®Idw) € Endg (W),  (13)
and
«— —
ptrr(f) = Ady ® evw) o (f ® Idw+) o (Idy @ coevwy) € Endg (V). (14)
Definition 3.2 A trace on Proj is a family of linear functions
{ty : End¢(V) — K}

where V runs over all objects of Proj, such that the following two conditions hold.

(1) If U € Proj, and W € Ob(%), then for any f € Endy (U ® W), we have

tvew (f) = tu (prg(f)). 15)

(2) If U, V € Proj, then for any morphisms f : V — U,and g : U — V in €, we
have

ty(go f) =ty(fog). (16)

There exists up to a scalar a unique trace on Proj. It is non-degenerate (cf Theorem
5.5 of [9]), in the following way. Let V, W € € with V projective. Then, the pairing
(,)y.w : Homg(W, V) ® Homg (V, W) — C given by

(f.8vw=tv(fg)

is non-degenerate. It is symmetric in the following sense. If W is also projective, then

& Nwyv=A(f8vw- (17)

If W is not projective, then we take Equation (17) as a definition.
The modified dimension d(M), of an object M, is the modified trace of the identity
morphism of M. The modified trace on % in this paper is normalized by

do{a}
{ro}

d(voz) =

for a fixed real number dg.
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4 Hermitian ribbon structure on quantum sl;-modules

4.1 Hermitianl_lgs[(Z)-modules

Amap f : V — W between two complex vector spaces is called antilinear if
f(av + bv") = af(v) + bf(v') where a and b are the complex conjugates of the
complex numbers a and b, respectively. Consider the operation g : x — o(x) = x?

defined on generators of ﬁfs[(Z) by
EC=F, F=E, K°=K"!, H°=H.

Lemma 4.1 The operator o ﬁglsl(Z) — Ufs[@) induces an antilinear, antial-
gebra involution which is also a coalgebra antimorphism. That is, foranya €

Q(g)and x,y € Ufs[(Z),
(ax)? =ax® (xy)? =y°x? (x°)?=x A(x?) = (0®0)(r(Ax)).

Furthermore, S(ix) = (S(x))?, (0 ® 0)(R) = t(R™"), and 16 = 6.
Proof This is similar to Lemma 1.3 of [25]. O

A Hermitian form on a C-vector space V is a function f: V x V — C such that

(1) f(v,av' +bv") =af(,v)+bf(v,v"),

(2) f, V) = f,v),

forallv,v',v” € V anda, b € C. It follows that f is antilinear in the first coordinate.
The kernel of fis{fv e V : V* > f(v,-) =0}, and we say f is non-degenerate if its
kernel is {0}.

Let f: V® V — C be a non-degenerate Hermitian form on a finite dimensional
weight Ufs[(Z)—module V. Then, we say f is compatible with the antilinear antial-
gebra automorphism g if f(fxv, v') = f(v, xv’) for all x € U;Is[(Z) andv,v € V.
Equivalently, this means py (x)¢ = py(fx) where py(x)?¢ denotes the Hermitian

.. . . . .. w=H
adjoint on Hermitian vector spaces. In this case, we say V' is a Hermitian U sl(2)-
module with Hermitian structure f.

Lemma4.2 Let fy and fw be Hermitian structures on Ufs[(Z)-modules Vand W,
respectively. Then, there is a well-defined adjoint map t, which is an antilinear homo-
morphism

T :Homg(V, W) - Homg (W, V)
g g,
uniquely defined by fw (-, g()) = fr(g' (), ).

Moreover, if U is a third Hermitian module, and h € Homyg (W, U), then (hg)T =
Al
g'h'.
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Proof First, since fy and fy are non-degenerate Hermitian forms, g' is a well-defined

linear map. To see that this map is a ﬁgls[@)-module morphism, let x € ﬁfs[(Z),
veVand w € W. Then

frefaw),v) = fwrw, g) = fiw (w, gxv) = fy (g' (), x%) = fy (xg' (w), v).

Since v is any element of V and fy is non-degenerate, it then follows that g (xw) =
xg"(w). Similar calculations show that the map + is antilinear and satisfies the last
property of the lemma. O

IfVisa U:s[(2) weight module, let V¢ = {# : v € V} be the same real vector

space with antilinear scalar multiplication, and the action of ﬁ;{s[(Z) onv € VO be
given by x.0 = S(x)?.v.
A sesquilinear form f on a ﬁfs[(Z)—module V is said to be compatible with

ﬁfs[(E) if it is non-degenerate and for any x € Ufs[(Z) and vy, v € V, we have

fr, py(x)(v2) = fov(x9)(v1), v2).

Lemma4.3 Let V be a ﬁfs[@) weight module. Then, there exists a compatible
sesquilinear form f on V if and only if V@ ~ V*. Furthermore, if V is simple,
then f can be chosen to be Hermitian and is unique up to a constant in R*.

Proof For the first part, we follow [12, 25]. The sesquilinear form associated to an
isomorphism ¢ : V¢ = V* is given by

¢ _ Id v
Vv vegy yrgy &

The compatibility follows from the following string of equalities:

1, xv) = ev (p(i) @x.v2) =ev (S~ (x).p@1), v2) =ev (p(S~ (x).51), v2)
ev (p(Tx.vn), v2) = f(Tx.v1, v2).

Next, for a fixed basis (e) of V, let A denote the matrix of f: A; ; = f(e;, ¢;).
Let Mat()(x) = M and denote by M* the conjugate transpose of M. Then,
Mat ) (tx) = (A~1)*M*A* and M = Mat)((1x)?) = (A~")*AM A~ A*. Hence,
A~ A* commutes with the image of ﬁfs[(Z) in Endc (V). Suppose now that V is
also simple.

Then, A~ A* is a scalar because it is the matrix of a ﬁfs[(Z)—module morphism
and Endy (V) = CIdy. Let us write A~'A* = A2 then (A*)* = A implies A1 = 1.

Then, the matrix of A f is Hermitian as (AA)* = AA* = A12A = |A|2(LA) = 1 A.

Finally, any two compatible sesquilinear forms f, f’ differ by an automorphism
g € Auty (V) suchthat f/ = f(-, g(-)). So the last statement follows with Auty (V) =
C*1d and for f Hermitian, A f is Hermitian if and only if A € R. O
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E
)/w{{i wzH\( —
wk o wk wk. e wk
—j—r Jj—r —Jj+r J+r

NS wSY

F
el

Fig. 1 The weight spaces structure of the module P; (here j =r —2 — i)

If A is a set of objects in %, then we define the category generated by A as the
full subcategory of % which has as objects, all direct sums of retracts of all tensor
products of the form:

X1®X>,®---®X, whereX; € AUA™

Each simple module S;, fori = 0,...,r — 2 has an indecomposable projective
cover P;. The dimension of each P; is 2r. A detailed description of this module could
be found in [5, Proposition 6.1]. A summary could be found in Figure 1. A vector w ,f ,
forY € {R, H, S, L} has weight k (under the action of H).

Consider the subcategory & of 4 generated by the following set:

A:{Va,sn,P,-,cg’, «e®\Z)UrZn,ie{0,-- ,r—2},aez}. (18)

Proposition 4.4 All projectives objects are in the Karoubi envelope (or idempotent
completion) of the additive monoidal category generated by the simple objects.

Proof By [5, Proposition 8.4], one could generate all P, ® (C,’Zr where k is even by
decomposing (S,—1 ® C,,If,) ® S;—1. Similarly, one could generate all Py ® (C,ffr where
k is odd by decomposing (S,—» ® C ) ® S,_;.

All other indecomposable projective objects are already simple. O

We will now show that each object of 2 has a Hermitian structure and prove that
2 is a Hermitian ribbon category.

Proposition 4.5 Any simple module V in A has a Hermitian structure. Moreover, the
form (-, -) on V is uniquely determined by (vo, vo) = 1 where vy is a highest weight
vector of V.

Proof Let V be a simple module in A. Since TH = H, we have Veisa simple module
with character that is the conjugate of that of V*. Since the weights of modules in A
are real, V2 and V* have the same character so they are isomorphic. Then, Lemma
4.3 applies. O

Proposition 4.6 If i € {0, ...,r — 2} then the projective indecomposable P; has a

... . . .. =—H
Hermitian form (-, -)o,p making it a Hermitian Uq 5l(2)-module where a and B are
two real nonzero parameters.

Proof Recall from [5, Proposition 6.1] that the action of ﬁfs[@) on the basis {w,f }
of P; involves the quantities y, x = [k][n — k + 1] .
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Now define

(wfj,r, U)Ejfr)a,ﬂ = (wfli, wifi)cc,ﬁ =8. (19)

If the form is Hermitian and (xv, w)q,g = (v, xw)q, g, then

j—ko L j—ky L
L L _ E7wz; . Elwz;
(W _op_ps Wiop—pap = 7 J—
Hm:k+1 Vim Hm:k—H Vim o.B
1 ) 4
_ j—k, L j—k, L
= ; (E wZ;_,, E w_j_,)a,,g
[T 7mviom
1

_ L ek ik L
= ; (wfjfr’ F/I™"E wijir)a,/g
[ L 7omvim

1 o
_ L L _
= 5 (wijfr, wfjfr)ot,ﬁ = 7 .
nm:k+1 —Vim Hm:k+1 —Vim
Next note that
WS, w3 e p = (Ewh_ Ewl g p= @k  FEw} )op =, Fus)ep=0.
Similarly,
s s Ei_kwii Ei_kwii
(W;_ o> Wi_pp)ap = 7 —
l_[m=k+1 Yim 1_[m=k+1 Yim B
1

= i (Ei_kwi,', Ei_kwfl')ot,ﬂ
Hm:k—H Yi,mVi,m
1 o
= — w3, FTFE= WS ), g
Hm:k—H Yi,mVi,m

1
=——— w5, wS)ap = 0.

i —
Hm:k-H Yi,m

Next note that
(Fwl, Full)o g = i, wi_ap (20)
and

(FUJZ, le_i,')a,ﬁ = (wfi, Ewaj)Ol,ﬂ = (wl_-l,', Ew;_r)a,ﬁ = (wil,', wi’)a,ﬁ .
(21)
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Thus o
W wd)ap = @k wh Dap = ——. (22)
1_[m=1 —Vim
Next note that

i+1, H i+1, H
R Wk = A A 1 W Fi+R
—jtr W—jtrlap = i {J—; p— —i —j+r/ap
| | Yi,m | | Yi,m | | Yim
m=1 m=1 m=1
1 o
H S _
[ (wﬂ'v W_i)a.ﬁ = 7
| | Yim
m=1

l_[m:I Yim l_[}Jn:l _m

From this we compute

R R _ k. R k. R _ R k. R
(wr_jq_zk, wr—j+2k)0t,/3 =(E Wy_j» E wr_j)a,ﬂ = (wr_jv F wr_.,'+2k)a,ﬁ

k
_ R k . R ) _ Hm:j _V],m
Wr—je L Ly —VimtWr—jlap =

- - o
" Hin=1 Yi.m H}/nzl —Vim

Next note that
Eik !, Ei~FuwS, 1 .
Wil o wlo)ap = T —+T, — : = ——— @ Pl )00
l_[m=1 Yi,m l_[

mel Yi.m ap l_[

m=1

yi,m
1 H
k (

N
Zowlap = —x
1_[m:l Vi.m l_[m:I

o
I, e
Yi,m =1 Vjm

where in the first equality, I" contains w’ terms which were already show to kill terms
on the right.
Next we compute

H ik H i~k H H H H
W;Zgp E" wZa g = (F' ™ wilop w2ep = W2 whap = B

(23)
But

H H H H s
Wi o, Wilopa,p = Wi lops €ickViis - -5 Vik+DW;_op + €i—k—1Wiis -+ Vi k+ D W _op e, B

(24)
where the e; _; and e; _;_1 are elementary symmetric functions. This could be verified
with a straightforward induction argument. Thus

Wl o, 7wy g = e wiop, w5 g+ eimim1wi o, w? 5)ap . (25)
@Springer



A Hermitian TQFT from a non-semisimple category of quantum... Page 13 of 27 74

Thus
_ €ik—1 (Vi Vi DA
W w s = ﬂ 1.7 [, 7 (26)
i=2ke TiakJep eik(Visis - Yik+1)
O
Remark 4.7 Consider the submodule A, of P; defined as follows:
Aj+r={u)f_H,...,wf_r,wis,...,wfi}. 27

It inherits the form (-, -)¢,p from P;. Note that this form is degenerate on A ;. The
submodule of A, spanned by the vectors {wiS s wS ;}is isomorphic to the simple
module S; but is actually a totally isotropic subspace of P;. So we should not expect
an abelian structure on a Hermitian category.

Proposition 4.8 The simple module S; is a quotient of P; by the radical of a special-
ization of the Hermitian form (-, -)g -

Sl' = P,'/Vad(', -)(),ﬁ .
Proof The preceding analysis shows that all vectors w’, w®, w® are in the radical,
while the vectors w’! are not. The quotient of P; by this radical yields a module of
dimension i 4 1 with highest weight i which is isomorphic to S;. O

4.2 The Hermitian ribbon category ZHerm

Let ¢Me™ be the category whose objects are Hermitian weight ﬁfs[(Z) -modules and
morphisms from (V, (-, -)y) to (W, (-, -)y) are given by

HOm%/Herm ((Va ('7 ')V)5 (Wa ('7 )W)) = HOm%)(V, W)

Let 2He™ be the full subcategory of €He™ whose objects have their underlying
module in 2. In particular any module in ZH™ is equipped with a Hermitian form.
We will need the following lemmas to define a tensor product in ZHe™,

Lemma 4.9 Any module in 9 has a Hermitian structure.

Proof Using orthogonal direct sums, it is sufficient to show that any indecomposable
module in Z has a Hermitian structure. The category & has indecomposable modules
isomorphic to V! = V ® (C,fﬁ for some (V,k) € A x Z (see [S] where the tensor
decomposition rules are described). Proposition 4.5 and Proposition 4.6 ensure that
any V € A has a Hermitian structure. Choose such a Hermitian form. As a complex
vector space, V = V ® (C,g = V’, but they are different as representations. For
example, py/(E) = ¢* py (E). We can consider the Hermitian form on V' given by
(x. )y = a(x,q*"/2y),, where a = @' is a square root of (K ") . Note that
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the expression (K ’k’)v makes sense since the central element K =% acts as a scalar

operator on V. The form is Hermitian since
O, X)yr = a<y, qk'H/2X)V = 5(61_261_"””2% X>V - E(qer/zy, x)v =(x, )y

The second equality comes from (¢ #/2)% = =%/ and ¢ = aa~>. The third
equality follows from:

pv(a2q 12 = py (K g~ %) = py (¢ 112

Next we check the compatibility of this form with ﬁfs[(Z).

O, py (E)x)yr = a(y, qk’pv(E)qk’H/zx)V = a(y, qk’H/zpv(E)x)V
= a(pv(E%)y.q""%x)

= a(ﬂv(F)y, qk’H/2x>V = (pv/(F)y, x)yr = (py (E®)y, x) .

Thus py/(E)? = py/(E®). Similar computations for F, K and H show that the form
. . .. —H
is compatible with U q s0(2). ]

Lemma 4.10 Any Hermitian module V in 2%™ splits as an orthogonal direct sum
of Hermitian indecomposable modules.

Proof We prove that V has an indecomposable Hermitian submodule P, then the
proof follows by induction since the non degeneracy of (-, -) on P implies that P is
a complementary submodule of P in V.

Consider a direct sum decomposition V = @; W; with W; indecomposable and
let W/ = (P i Wj)L. Then, the proof of Lemma 4.3 im}_)lies that (Wl.’)g ~ W
But as for any indecomposable module of 2™ we have (Wi)° ~ W so W/ ~ W;.
If we choose such an isomorphism [ : W; — Wl.’, then (f(-), ) is a compatible
sesquilinear form on W;. Lemma 4.9 ensures that W; has a compatible Hermitian
form (-, -)w,. Thus, there exists g € Auty(W;) such that (f(-), -) = (g(-), -)w,: Then,
h=fg ' W — Wl./ is an isomorphism such that (4(-), -) = (-, -)w, is Hermitian.
Fora € R, let W' = (h +e/ 1d)(W;). Fix a basis (¢) of W;, (¢/) = h((e)) and (¢) =
(h + e *1d)((e)). Let B = Mat()((-, Jw,), A = Mat()((, ), A" = Mat)((-, -)
and A” = Mat()((, -)). Then, A;’j = (¢}, e}’) = (ej +e'%;, e} +e'%;) = A;j +
Ajj +e_"“m+ei°‘3,~,j = A;j +A;j+2cosaB; jsothat A” = A+A'+2cosaB =
B(B~'(A+A")+2 cos o) which is non-degenerate when —2 cos « is not an eigenvalue
of B~1(A + A’). Then, W is an indecomposable Hermitian submodule of V. O

Note that the above statement is false in ‘€He™ . For example, one can check that
Vi+i @ Vi—; has a Hermitian structure but Vi4; does not.

We will now introduce the notion of a half twist and give a construction of it in our
category. For related ideas, see [23].
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Definition 4.11 A half twist /0 for € is a natural isomorphism of the identity functor

whose square is the twist. That is for any f : V — W, ﬁwf = f«/@v, ﬁ%, =
*

Oy € Endg (V) and J@V* = (ﬁv) . We also assume that \/511 = Idy.

Proposition 4.12 Any K-linear ribbon category over an algebraically closed field of
characteristic 0 has a half twist.

Proof Consider a maximal block decomposition ¢ = €P; 6; where for any (V, W) €
¢; x €j, Homy(V, W) # 0 = i = j. Then, the twist has a unique generalized
eigenvalue 6; € K on %;. That is for any V € %;, (dy)y = 6;. One can choose a
square root V/0; of 6; such that /8, = +/6; where €+ is the block with the dual
objects of %;. Then, a half twist is given by the formula:

YV € 6. Voy = V0 sqr(0y6; ")

where sqr is the square root function defined on an unipotent x by

2611 — x)k+!
S0 = 1= g T
k>0

Note that 6y 6,"! is unipotent since 8y, ' — Idy = 6.9y — (8y) Idy) is nilpotent.
The naturality follows from the uniform choice of +/6; for all modules of ; and the
self duality comes from Oy« = (Oy)*. O

We now fix a half twist by its values on simples in (28). Note that for any k € Z,
i=0,...,r=2and j=r—2-14,5; ®(C,flr and S ®C(Hk+l)r belong to the same block
since they are both simple composition factors in a Jordan-Holder series of P; ® Cg.

v Va S [S®@CH, ke2Z|S,@CH, ke2Z+1 i}
=12 | iG+2-2r) i(i+2-2r) JjG+2-2r) o eC,
(Ov) |[g 2 2 q qg 2 i=0,... r—2
2—=D2 | iG+2-2r) i(i4+2-2r) j(j+2-2r) j=r—2—i
<x/5v> g+ g * qg 3 qg &

(28)
Using this half twist, we can define an involutive isomorphism (see also [25])
X:(¢,Q) > (¢,R°) in € by

—1
Xvaw = (Vowev) evw(Voy ® Vo). 29)

Note that X is not a braiding, but we have the following lemma.

Lemma4.13 Forany V, V', V" € € and any morphisms f, g, we have the following
equalities

Xy yXyyr=1d,  X(f®g) =(g® X,
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Xygv v Xy v @ 1dyrn) =Xy yrgyddy @Xyr yn) VeV eV - vieVv eV,

— <« — <«
vav* COEVy =COEeVy and evy XV,V* =evy .
Proof In order to prove the first identity, we first recall the following fact
Ovey = (By Q@ Oy)cyr vey, y . (30)

We have

Xy v Xy, v

-1 -1
\/évgw’) cviy(Voy @ \/gv)(\@w@v) cv.v(WOy @ Vo)
-1 -1
\/évg)v’) (\/5V®V/) cviy(VOy @ Vov)ey v (Voy @ Vo)
= 9V®V’)_l(\/§V @ Voy) ey vey

(
(9\/®V’)_1 (Bv ® Oy/)cyr yey v
(

= 9V®V’)_1(9V®V’)

= IdV®V/ .

-
-

The second equality follows from the naturality of +/6. The third equality follows
from the naturality of the braiding. The fifth equality follows from (30).
The second identity of the lemma is also an easy consequence of these naturalities.
For the third identity, we have that both sides are equal to

-1
(Voviever) (evvr @11 d@cy v(ev.y @ 1)(NOy ® Vv @ Vo).

For the fourth identity, we have the following equalities.

— -1 —
XV,V* COEVy = (\/§V*®V> Cy, v* (\/gv ® «/5):/) COEVy
N —1
Cy v+ (\/5\/ [ \/53) coevy (\/5]1)
2 — -1
=cCy,v* (‘/EV ® Id) coevy <\/§]1>

=cCy, v* By ®1d) C&)VV

-
=coevy .

—1
The second equality follows from the naturality of (\/5 v*®v) . The third equality

comes from moving N/ T, in the second tensor factor to /0 v in the first factor (which
is allowed in a ribbon category). The final equality is also a standard identity in a
ribbon category. The last identity is proved in a similar way. O
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Let Wi, Wy € @He™m and let (-, )w; be the Hermitian structures on W;. Define
(-, )pon Wi ® W by

xRy, x' ®y)p =, xw, (v, Y)w, (31)

for x,x’ € Wi and y,y" € W,. The sesquilinear form (-, -),, is Hermitian, non-
degenerate but not compatible with o. We modify the pairing to obtain a Hermitian
form compatible with o in the next result.

Theorem 4.14 Let Wy, Wo € ZH™ Then, Wy ® W» is a Hermitian module with

Hermitian structure given by

W, V) = (v, TXwew,v))p-
This gives 1™ the structure of a strict C-linear tensor category.

Proof Letu € ﬁfs[(Z), write A(u) = u; @ up and considerv = v @ v, € Wi @ W
andv” = Xw,ew, (V') = v, ®v| € Wo® W. Note that we have omitted all summation
symbols and will continue to do so throughout the course of the proof. Then, we have

(W, uv) = (v, TXwew,u.0))p = (U, TW.V"))p = (v1, U2V w, (V2, U1V w,
= (fuavi, v))w, (furvz, v w, = (fu.v, T(0")p = (fu.v,v'),

where we used that A(fu) = fup ® fu;. Hence, we have defined a compatible
sesquilinear form on W @ W5.

To prove that this form is Hermitian, first note that by Lemma 4.10, we can
assume that Wi and W, are indecomposable. Then, consider a direct sum decom-
position Wi ® W> = €p; V; with V; indecomposable and the dual decomposition

v/ = {v’ €W @ Wal(v, D V) = {0}}.
Fix a factor V;. Then, (-, -) is non-degenerate on Vi’ x V;. Hence, Vi’* ~ \7,<Q ~ Vl*
so in particular, the half twist has the same value <«/§ Vi> = <\/§ V/>, which we denote

by Vo € C. Let us call VG, = («/5w1> and VB, = <¢§W2> and 6; = /.. Then,
let (v, v") € V; x V/ and write R = ) a ® b. Then,

W, v) =@, ™X(v))p
=/, T\/gv_vig)WlfR(\/an ® \/ng)(v))
= VB, 'Vo10, (v/, sqr(BoAP (0)) R(sqr(6; 0™ ® sqr(eg‘e”)))p

_ Jégl«/élﬁz((sqr(éfl(e*‘)g) ® sqr(@; ' (9*1)9))1%;1‘ sqr@o ATV, v)p
- («/éoﬁflﬁ{l(sqr(ele) ® sqr(620) Ry, sqr(@; ' A@~ ), v)
P

= (r(«/éﬁi & Vo R VB ow,)V, U)p - (Tx_l(”/)’ ”)p
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= (‘L’X(U/), v)p = (v, rX(v/))p = (v, v’).

In the above equalities, the elements 6, 0L etc., are all acting on modules. Note that
the fifth equality above follows from the fact that 6y, 61, 6, all have norm one, and
Lemma 4.2. ]

Proposition 4.15 The Hermitian structure from Theorem 4.14 defines an associative
tensor product turning 2™ into a tensor category. Furthermore, for any two mor-
phisms f, g € 2™ one has

e =reg.

Proof To show the associativity of the tensor product of Hermitian modules, consider
the product Hermitian formon V ® V' ® V" given by

(v1 ® V] ® Y, v2a ® vy ®vY), = (v1, v2)(v]. v5) (v, v5)

Then, the compatible Hermitian forms obtained by iterating Theorem 4.14 are related
to this pairing by

(w1, w)veviev: = (Wi, 13Xy v/ vr(w2)), = (Wi, W) yg ey

where Xy v/ vy = Xyigy yr(Xy vy @ Idyr) = Xy yrgy (Idy ®@Xyr y») and 713 is
the permutation x ® y ® z > z ® y ® x. This gives the associativity of the tensor
product of ZHe™ The category also has a strict unit I = C with (1, 1)1 = 1 because
XLy =Xy =1dy.

The last statement is a consequence of the second property of Lemma 4.13. O

Proposition 4.16 If V € €M™ V* has a unique Hermitian structure determined by
(o, ¥y)=3; <p(e,~)1ﬂ(el/.) where (e;) and (el’.) are any dual bases of V for the Hermitian
form of V. Furthermore, if V. ZH™ then one has

— T — —F —
coevy=evy and evy=Coevy .

Proof Fix a basis e = (¢;); of V and let e* = (e}); be the dual basis of V*. Let
Bij = (ei,ej) and let B = B~!. Then, e, = ij./jej since (ZjB_;jej,ek> =
Zj Bi’j (ej, ek) = 8;‘. Then, the matrix C;; = (el’.*, ej) is given by

Cij = (el’-“, e}f) = Ze;“(ek)e;‘»(e,’() =ej(e)) = B_l//
k

SoC =B is Hermitian. In particular, a change of basis would change B to P*B P
and C to (’P’l)*C’P’l =P "B P+ = P*BP ' s0it would define the same
Hermitian form on V*.
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Now for any vector x, one has x = ). (e}, x)e; = ((,x) @ ID)(D_; €/ ® €;), s0

((,x) ®Id) (Zelf ® u.ei) =ux = Z(el/-, u.x)e; = Z(ug_el{’x)ei
= ((-,x) ®1d) (Z ul.e; ® ei> :

Then,

Zel/- Qu.ej = ZuQ.e; Q e; (32)

i i

because (-, -) is non-degenerate. Finally,
(g, ) = (p(S@W)-), ¥) = ZE(&M)-&W(%) = Z@(@W(S(M)Q-el’-)

= (0. ¥ (SW®)") = (¢, u®.¥),

where in the third equality we used (32). We now compute the Hermitian adjoint of
c((gvv. Let (v, ¢) € V x V* Then,

(go ® v, CEEVV)

V*QV
= ((p ® v, X c(@v\/) = (so ®v, 1 co_e)v\/> = (ef.¢)w.e)
P P

i

=Y vlep.en =9 = (evv o). 1)

Hence, CEV;/ZE) v . Note that the second equality above follows from Lemma 4.13.

Taking the Hermitian adjoint of the zigzag (g ®Id)Id® c((gv) = Idy, we get
that

T T 7
Idy = (Idy ® coevy)(evy ®Idy) = (Idy ® R/)V)(ev;, ®Idy).
T —
Thus ev y,=coevy. O
Proposition 4.17 Let V, W € €H™ then
cvw' = (ev,w)™' and 6yT = @y)7"

Proof Taking the Hermitian adjoint of the R-matrix in (5), and applying a permutation
to the tensor factors, one recovers R~! from (6). The first statement now follows
immediately. The second statement is contained in Lemma 4.2. O
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We define the contravariant monoidal antilinear functor T : @Herm . gHerm 5q ¢he
identity on each object and as the Hermitian adjoint on each morphism. This functor
is contravariant, monoidal, and antilinear. We now have the following result.

Theorem 4.18 ZH°™ is q Hermitian ribbon category in the sense of Definition 3.1.

‘We conclude this section with some observations about how the Hermitian structure
on ZHe™ jnteracts with the modified trace.

Lemma4.19 Let (W, (-,-)) € ZH™ with W € Proj. Then for any f € Endg (W),

tw(f1) = tw ().
Proof By Proposition 4.16 the dagger functor commutes with the partial trace of

morphisms. It follows that the family of linear maps (t:,) Y eproi given by:
€Proj

t/, : Endg (V) — C
[ th () =ty (fT)

is a modified trace on Proj. By unicity of the modified trace, t = At for some A € C.
Now for any ¢ € (C\Z)UrZ, t(Idy,) = tf (Idy,) = d(Vy) € R since we choose
dp € R. O

Lemma 4.20 For any objects V., W of 1™ with V or W projective, the pairing
(f.8) P tv(fTg) = tw(gf") : Homg (V. W) x Homg (V, W) — C

(when both make sense) is a non-degenerate Hermitian pairing.
Proof Since the mapping Homg(V, W) — Homg (W, V) given by f — fT is

an involution, the pairing of the lemma is non-degenerate. The Hermitian symmetry
follows from

(g N=tv@ N=tv(STOH =tv(fTe) = (f.g)
where the second to last equality follows from Lemma 4.19. O
Example 4.21 Let o € R then

R sin(am/r)
<eV Vs ev Va> = tVa(IdVa) = doﬁ

which is not positive for all simples labelled by (¢ +1—r, 0 +3 —r, ..., +r—1).
These simples all lie in the same graded piece of the category.
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4.3 Non-uniqueness of the half twist

In this subsection, we show that up to isomorphism, Z1™ does not depend on the
choice of the half twist.
The tensor product on ZHe™ relies on the isomorphism X, which itself depends on

the choice of the half twist v/& that we fixed in (28). Suppose that «/5(1) and «/5(2)
are two different half twists leading to two different tensor structures on 2H™ that
we denote by 21 and 2. Let 7 be the class of indecomposable objects of 2 and
define ¢ : 7 — {%1} by E(V)\/g(l) = \/53) Note that e(T) = 1 and e(V) = &(V™)
only depend on the block of the category in which V belongs. Then, there exist
inverse functors, both called £, defined on indecomposable objects (and extended by
additivity) by

£:90 - g\
(V5 (" )) = (V5 8(V)(7 ))

where {i, j} = {1, 2} and & is the identity on morphisms.
Proposition 4.22 & is a tensor functor.

Proof Let (W1, (-, )w,), (W2, (-, -)w,) be indecomposable objects of 21 and using
Lemma 4.10, let us split in 2D the module W; ® W, into a direct sum of orthog-
onal Hermitian modules Wi ® Wo = B, V;. Then for v,v" € V;, we have
XP ') = e(W)e(Wa)e(Vi)XD (1) and we can compute in 2V that (v, Vw,ew, =
(v, X(l)(v/))p, where (-, -) , is the product of (-, -)y, and (-, -),. The corresponding
computation in 2@ is

W, Vewpeems = eWDe(W2) (v, XP ), = e(Vi) (v, XD (), = e(V)) (v, V) wiows

and this last scalar is the evaluation of £((, )w,ew,) on (v, v'). Hence, E((Wy,
Gy Iw) & (W, (5 )wy)) = EW1, (5 )wy)) @ E((Wa, (5 )wy)- mi

Proposition 4.23 & is an isomorphism of Hermitian ribbon categories and the dagger
map on morphisms in 2™ is independent of the choice of the half twist.

Proof We need to show that the dagger map on morphisms in 2" and 2® coincide.
Once again, we can restrict our attention to the case of a morphism f : V. — W where
V and W are indecomposable modules. But then if f is not zero, the two modules
belong to the same block of 2 and thus £(V) = ¢(W). Then,

O w =GO = eSO, Iw =G O,
so E(fH = EHT. o
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5 Implications for non-semisimple TQFT

In this section, we assume r ¢ 47 (see [2]) so that € is a relative C*-modular category.
We will show that the TQFT constructed in [2] has a Hermitian structure.

5.1 Hermitian structure on decorated cobordisms

We follow Turaev [24, LI1.5.1] and define the dagger of a 2H¢™_colored ribbon graph
T as the following transformation: invert the orientation in the surface of 7', reverse
directions of bands and annuli of 7', exchange bottom and top bases of coupons and
replace the color f of a coupons with f7. The colors of edges do not change.

The boundary of a 2™ _colored ribbon graph is a set of ZHe™_colored framed
points where a framed point p = (V, ¢) is a point equipped with a sign ¢, a nonzero
vector (its framing) tangent to the surface T and to the direction of the band, and a
color which is an object V € 2H™ et F(p) = Vife = + and F(p) = V* if
& = —. The conjugate p of a ZH™_colored framed point p is obtained by changing
the sign and framing to their opposites. One easily check that 3(T") = 97

Recall the category of decorated cobordism introduced in [2]. Here, we replace the
ribbon category with 2He™ where we restrict to R/27Z valued cohomology classes
(instead of C/2Z) and we only admit as objects admissible decorated surfaces defined
as follows:

Definition 5.1 (Objects of Cob) A decorated surface is a 4-tuple T =(z, {pi}, w, L)
where

e X is a closed, oriented surface which is an ordered disjoint union of connected
surfaces each having a distinguished base point x;

e {p;}is a finite (possibly empty) set of 2H™_colored framed points with framing
tangent to the surface X;

e wc HI(Z \{p1,--., pr}, *; R/27Z) is a cohomology class;

e compatibility condition: letting w(m;) = a; € R/2Z where m; is a positively
oriented circle around p;, then we require F(p;) € @Sem‘;

e ¢ is a Lagrangian subspace of H;(Z; R).

In what follows we will restrict our attention to admissible surfaces that have the
additional property that each component of ¥ has either a 21™_colored framed
point p with F(p) € Proj or it contains a closed curve y such that w(y) ¢ Z/27.

Remark 5.2 Note that this restriction is not just a cosmetic simplification. The non
admissible surfaces considered in [2] would not lead to a Hilbert space valued TQFT.

Definition 5.3 (Morphisms of Cob) Let £+ = (24, {pi*), i, Z+) be admissi-
ble, decorated surfaces. A decorated cobordism from X_ to X, is a 5-tuple M =
(M, T, f,w,n) where

o M is an. oriented 3-manifold with boundary a M
e [ X_UXy — M is a diffeomorphism preserving the orientation, and the
image under f of the base points of ¥_ LI ¥ is denoted by x;
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T is a 2M™ _colored ribbon graph in M such that 87 = {f(p)H}Iu {f(pj')};

w e H' (M \ T, *; R/27Z) is a cohomology class relative to the base points on
dM, such that the restriction of w to (AM \ dT) N T+ is (f 1) *(w+);

the coloring of T is compatible with w, i.e. each oriented edge e of T is colored

by an object in @Hf;m) where m, is the oriented meridian of ¢;

e 1 is an arbitrary integer called the signature-defect of M.

We can summarize the first four items by saying that aM =S* 1 fbr where the dual
of a decorated surface 3 = (X, {pi}, w, L) is defined to be S = =, m, w, ).

For cobordisms, we only consider admissible, decorated cobordisms that have the
additional property that each component of M contains either a component of 7" with
a Proj-colored edge or it contains a closed curve y such that w(y) ¢ Z/2Z. This
condition is automatically satisfied by components of M with non-empty boundary.
This restriction is also in [2]. Hence, morphisms of Cob are orientation preserving
diffeomorphism classes of admissible decorated cobordisms.

Proposition 5.4 Let M= (M, T, f,0.n): I E+ be a cobordism in Cob. Then,
the following defines a cobordism Mt E+ — S_inCob:

MT = (Mv T+a ?a w, _n)a

where M is M with opposite orientation, and f = X, UX_ — dM is the same
set-theoretic map as f. Furthermore, with the above assignment, Cob is a Hermitian
ribbon category.

Proof The first statement follows from the fact that 9 M = £* L §+ implies 0 (1\71 T) =
fi US_. The category Cob has the ordered disjoint union as tensor product and it is
obvious that (M; o My)" = MT o 1\7;, and (M, U My)t = 1\7IJr u ]\7?1 The braiding
in Cob is symmetric. The plvotal structure is given by the cyhnder X x [0, 1] that
gives four morphisms f > S @ %, > S*Q E, 5 @ % > for L @ 3* >
which satisfy the zig-zag relations. Finally, (12) follows because the twist is trivial
in Cob and the cylinder > x [0, 1] is positively diffeomorphic to itself with opposite
orientation by the diffeomorphism Idy x(# = 1 —1). O

Note that the last diffeomorphism of cylinders in the proof generalizes to the non-
compact case of a ZH™_colored ribbon graph T in R? x [0, 1]. In this case, the
dagger of this 3-manifold is identified via the reflection through the plane R? x {%}
with the graph 77 embedded upside-down in R? x [0, 1] with standard orientation.
This transformation is compatible with the Reshetikhin-Turaev functor F in the sense
that F(TT) = F(T)".

5.2 The 3-manifold invariant
It M = (M, T, f,w,n)isaclosed decorated manifold (i.e M e End¢,;,(¥)) which is

connected, a surgery presentation of M is a €-colored ribbon graph TU L C §3 such
that M is obtained from S by surgery on L and each component of L is colored by
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a Kirby color 2, = 2;(1) da+1—r+2k)Vyyi1—rior of degrge equal to the value
of the cohomology class on its meridian. Then, the invariant of M is given by

Z(M) = g8 F'(L U T) (33)

where m € N is the number of components of L, o € Z is the signature of the linking
matrix 1k (L) and

§ = g 2e i 0+DT/4 where s is in {1, 2, 3} with s = r mod 4, (34)
Jr 1

r="_, g= . (35)
r ra/r’

The invariant is extended multiplicatively for disjoint unions.

Lemma 5.5 Let M be a closed decorated manifold then
Z(MYy = Z(M)

Proof If a framed link L gives rise via surgery to the manifold M, then the manifold
M may be constructed from L where L is the mirror image of L. It follows from the
conjugation on the underlying Hermitian category that F'(L UT") = F/(LUT).

If the linking matrix of L has signature o, then the signature of the linking matrix
of L is —o. Since A and n are real and the modulus of § is 1, the lemma follows. O

Corollary 5.6 The pairing Cob(9, $) x Cob®, £) — C, given by
(My, My) v Z(M] o M)) € C

has Hermitian symmetry.

Proof This follows directly from Lemma 5.5. O

5.3 The (2 + 1)-TQFT

Recall Vj is the simple projective module with highest weight r — 1 and (C,g (for
k € 7) are the one-dimensional modules described in Sect. 2. Let Si be the decorated
sphere defined in [2] colored with points U, where

= . (36)
((Vo, 1), Vo, =D)) ifk =0.

Here, all modules are enhanced with their preferred Hermitian structure (see Sect. 4).
Now we define the state space associated to a decorated surface in the following
way:

V(E) = Span¢ {Home, (4, £)} /K5

@ Springer



A Hermitian TQFT from a non-semisimple category of quantum... Page 25 of 27 74

where K is the right kernel of the bilinear pairing given on generators

Spang {Cob(Z (/J)} ® Spang {Cob(®, Z)} —- C
[Mi] ® [M:] > Z(M, o M)

V() = @Vk(i) where V() = V(E U §p).
keZ

These state spaces are part of a (2 + 1)-TQFT constructed in [2]. Since | :
Cob(¥, f)) — Cob(f), () is bijective, the pairing described in Corollary 5.6 descends
to a non-degenerate Hermitian pairing on the state spaces V() of the TQFT. For
details, see [2, Proposition 4.28, Definition 5.3].

Theorem 5.7 The TQFT (V. 2) is Hermitian. More specifically, for any decorated
surface X, there is a non-degenerate Hermitian pairing

(v

and for any y € V(ED) and for any x € V(§+), and for any decorated cobordism
M : ¥_ — X, between decorated surfaces, there is an equality

(VAN W)z, = (VD). 3), < (37

Proof The fact that the pairing is non-degenerate and Hermitian follows from the
discussion above.

The equality (37) follows from the functoriality of the TQFT and Lemma 5.5. The
details follow as in [24, Theorem II1.5.3]. O

The mapping class group action in Cob is given through mapping cylinders: if f :
T > Srisa diffeomorphism, the mapping cyhnder of f is the decorated cobordism
from X to ¥ givenby My = (X2 %[0, 1], {pl }x[0, 1], fx{0}uld x {1}, 7*(wn), 0).
The mapping cylinder construction is functorial: My o Mg = M.

Proposition 5.8 If f, My are as above, M} = M-1. In particular, the TQFT V
induces projective representations of the mapping class group in the group of indefinite
unitary matrices.

Proof Themap f x (t —> 1 —1): Mf—l — M} is an isomorphism, and thus, the two
cobordisms are equal in Cob. O
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