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Abstract
We endow a non-semisimple category of modules of unrolled quantum sl(2) with a
Hermitian structure.Wealsoprove that theCGPTQFTconstructed in arXiv:1202.3553
using this category is Hermitian. This gives rise to projective representations of the
mapping class group in the group of indefinite unitary matrices.
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1 Introduction

Unitary topological quantum field theories are closely related to various physical
systems. In particular, they are connected to topological phases of matter [11, 13, 15,
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16]. There is hope that these mathematical theories could be realized physically and
perhaps be used for fault tolerant quantum computing [7, 14, 20]. Many fundamental
examples of these unitary TQFTs come from the representation theory of quantum
groups at roots of unity. The standard procedure is to perform some semisimplification
on a category of representations and then use the resulting category to construct 3-
manifold invariants and their extensions to (2 + 1)-TQFTs.

If one instead works with the full representation category of a quantum group at
a root of unity, without passing to the semisimplification, it was not obvious how to
construct TQFTs, as the standard quantum trace on projective modules for quantum
groups at roots of unity vanish. The first and third authors, in collaboration with
Kujawa, introduced in [8] a modified trace. This modified trace has the remarkable
property that it does not vanish on projective objects and retains most of the important
properties of the standardquantum trace.This construction led to new link invariants, 3-
manifold invariants [4], and (2+1)-TQFTs [2].We refer to these invariants collectively
as non-semisimple invariants.

Unlike the usual semisimple theory where quantum dimensions of simple objects
are strictly positive, the modified dimensions of many objects in the non-semisimple
theory are real, but not positive. This means that there is no hope that the TQFT
constructed in [2] is unitary. However, in this note, we show that the TQFT arising
from a non-semisimple category DHerm of representations of the unrolled quantum
group for sl2 is Hermitian. This means that the TQFT will produce nondegenerate
bilinear forms with an indefinite signature.

The notion of a Hermitian ribbon category was introduced by Turaev [24]. One of
our main results is the following.

Theorem DHerm is a Hermitian ribbon category in the sense of Definition 3.1.

We stress that analogous fundamental results for the semisimplified categories com-
ing from quantum groups were achieved by Kirillov [12] and Wenzl [25]. In order to
accommodate projective objects in DHerm, we needed to modify some arguments of
[12, 25].

Finally, in the last section, we apply the Hermicity ofDHerm to show that the TQFT
constructed with it as in [2] is Hermitian in the sense of Turaev [24].

Theorem The TQFT (V, Z) introduced in Sect. 5.3 is Hermitian.

A more precise relation of this TQFT with the TQFT ˜V of [2] is as follows. There

is a full forgetful functor from DHerm to the category of U
H
q sl(2) weight module

which forgets the Hermitian structure. It is surjective on projective modules with real
weights. This induces a functor from the cobordism category which is the source of
V onto a subcategory (of cobordisms equipped with real valued cohomology classes)
of the source category of ˜V. As a Vect-valued functor, V factors through ˜V but vector
spaces in the image of V are now equipped with Hermitian forms.

In Proposition 5.8, we show that this implies that the mapping class group action
induced by the non-semisimple TQFT produces a projective representation in the
group of indefinite unitary matrices.

Even with an indefinite normed inner product, the Hermitian TQFTs defined here
may have physical relevance. Indeed, quantum mechanics with indefinite norms have
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been studied going back to Dirac [6] and Pauli [22]. Even with the indefinite norms,
they observed a formalism consistent with deterministic quantum mechanics, includ-
ing positive energy eigenvalues, normalizable wave functions, and time evolution
by an exponential of the Hamiltonian that is self-adjoint in the indefinite norm. More
recently, the study of pseudo-Hermitian quantummechanics has been intensively stud-
ied [17, 18], motivated by connections toPT -symmetric quantum theory [1]. In all of
these studies, indefinite normed Hilbert spaces admit Hamiltonians that are Hermitian
with respect to the indefinite inner product, yet still have real spectrum, and unitary
evolution. In [10], the authors show that the TQFTs studied here give rise large classes
of exactly solvable pseudo-Hermitian Hamiltonians generalizing Levin-Wen models
into this framework.

2 A quantization of sl(2) and its associated ribbon category

In this section, we recall the algebra U
H
q sl(2) and a category of modules over this

algebra. Fix a positive integer r . Let r ′ = r if r is odd and r ′ = r
2 otherwise. Let C be

the complex numbers and C̈ = (C \ Z) ∪ rZ. Let q = e
π

√−1
r be a 2r th-root of unity.

We use the notation qx = e
π

√−1x
r . For n ∈ N, we also set

{x} = qx − q−x , [x] = {x}
{1} , {n}! = {n}{n − 1} · · · {1} and [n]! = [n][n − 1] · · · [1].

2.1 The Drinfel’d–Jimbo quantum group

Let Uqsl(2) be the C-algebra given by generators E, F, K , K−1 and relations:

KK−1 = K−1K = 1, K EK−1 = q2E, K FK−1 = q−2 F,

[E, F] = K − K−1

q − q−1 . (1)

The algebra Uqsl(2) is a Hopf algebra where the coproduct, counit and antipode are
defined by

�(E) = 1 ⊗ E + E ⊗ K , ε(E) = 0, S(E) = −EK−1, (2)

�(F) = K−1 ⊗ F + F ⊗ 1, ε(F) = 0, S(F) = −K F, (3)

�(K ) = K ⊗ K ε(K ) = 1, S(K ) = K−1. (4)

Let Uqsl(2) be the algebra Uqsl(2) modulo the relations Er = Fr = 0.

2.2 Amodified version of Uqsl(2)

Let UH
q sl(2) be the C-algebra given by generators E, F, K , K−1, H and relations in

(1) along with the relations:

HK = K H , [H , E] = 2E, [H , F] = −2F .
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The algebra UH
q sl(2) is a Hopf algebra where the coproduct, counit and antipode are

defined in (2)–(4) and by

�(H) = H ⊗ 1 + 1 ⊗ H , ε(H) = 0, S(H) = −H .

Define U
H
q sl(2) to be the Hopf algebra UH

q sl(2) modulo the relations Er = Fr = 0.

LetV be afinite dimensionalU
H
q sl(2)-module.An eigenvalueλ ∈ C of the operator

H : V → V is called a weight of V and the associated eigenspace is called a weight
space. A vector v in theλ-eigenspace of H is aweight vector ofweight λ, i.e. Hv = λv.
We call V a weight module if V splits as a direct sum of weight spaces and qH = K
as operators on V , i.e. Kv = qλv for any vector v of weight λ. Let C be the category

of finite dimensional weight U
H
q sl(2)-modules.

Since U
H
q sl(2) is a Hopf algebra, C is a tensor category where the unit I is the 1-

dimensional trivial module C. Moreover, C is C-linear: hom-sets are C-modules, the
composition and tensor product of morphisms are C-bilinear, and EndC (I) = C IdI.
When it is clear, we denote the unit I by C. We say a module V is simple if it has
no proper submodules. For a module V and a morphism f ∈ EndC (V ), we write
〈 f 〉V = λ ∈ C if f − λ IdV is nilpotent. If V is simple, then Schur’s lemma implies
that EndC (V ) = C IdV . Thus for f ∈ EndC (V ), we have f = 〈 f 〉V IdV .

We will now recall the fact that the categoryC is a ribbon category. Let V andW be
objects of C . Let {vi } be a basis of V and {v∗

i } be a dual basis of V ∗ = HomC(V ,C).
Then

−→
coevV : C → V ⊗ V ∗, given by 1 �→

∑

vi ⊗ v∗
i ,

−→
ev V : V ∗ ⊗ V → C, given by f ⊗ w �→ f (w)

are duality morphisms of C . In [21], Ohtsuki truncates the usual formula of the h-adic
quantum sl(2) R-matrix to define an operator on V ⊗ W by

R = qH⊗H/2
r−1
∑

n=0

{1}2n
{n}! q

n(n−1)/2En ⊗ Fn . (5)

where qH⊗H/2 is the operator given by

qH⊗H/2(v ⊗ v′) = qλλ′/2v ⊗ v′

for weight vectors v and v′ of weights of λ and λ′. The R-matrix is not an element in

U
H
q sl(2) ⊗ U

H
q sl(2). However the action of R on the tensor product of two objects

of C is a well defined linear map. Moreover, R gives rise to a braiding cV ,W : V ⊗
W → W ⊗ V on C defined by v ⊗ w �→ τ(R(v ⊗ w)) where τ is the permutation
x ⊗ y �→ y ⊗ x . This braiding follows from the invertibility of the R-matrix. An
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explicit inverse (see [3, Section 2.1.2] and [21]) is given by

R−1 =
(

r−1
∑

n=0

(−1)n
{1}2n
{n}! q

−n(n−1)/2En ⊗ Fn

)

q−H⊗H/2. (6)

Let θ be the operator given by

θ = Kr−1
r−1
∑

n=0

{1}2n
{n}! q

n(n−1)/2S(Fn)q−H2/2En (7)

where q−H2/2 is an operator defined on a weight vector vλ by q−H2/2.vλ = q−λ2/2vλ.

Ohtsuki shows that the family of maps θV : V → V in C defined by v �→ θ−1v is a
twist (see [19, 21]).

Now the ribbon structure on C yields right duality morphisms

←−
ev V=−→

ev V cV ,V ∗(θV ⊗ IdV ∗) and
←−
coevV= (IdV ∗ ⊗θV )cV ,V ∗

−→
coevV (8)

which are compatible with the left duality morphisms { −→
coevV }V and {−→

ev V }V . These
duality morphisms are given explicitly by

←−
coevV : C → V ∗ ⊗ V , where 1 �→

∑

v∗
i ⊗ Kr−1vi ,

←−
ev V : V ⊗ V ∗ → C, where v ⊗ f �→ f (K 1−rv).

The quantum dimension qdim(V ) of an object V in C is defined by

qdim(V ) =
〈←−
ev V ◦ −→

coevV
〉

I

=
∑

v∗
i (K

1−rvi ) .

For g ∈ C/2Z, define Cg as the full subcategory of weight modules whose weights
are all in the class g (mod 2Z). Then, C = {Cg}g∈C/2Z is a C/2Z-graded category
(where C/2Z is an additive group). Let V ∈ Cg and V ′ ∈ Cg′ . Then, the weights
of V ⊗ V ′ are congruent to g + g′ mod 2Z, and so the tensor product is in Cg+g′ .
Also, if g �= g′, then HomC (V , V ′) = 0 since morphisms in C preserve weights.
Finally, if f ∈ V ∗ = HomC(V ,C), then by definition the action of H on f is given
by (H f )(v) = f (S(H)v) = − f (Hv) and so V ∗ ∈ C−g .

We now consider the following class of finite dimensional highest weight modules.

For each α ∈ C, we let Vα be the r -dimensional highest weight U
H
q sl(2)-module of

highest weight α + r − 1. The module Vα has a basis {v0, . . . , vr−1} whose action is
given by

H .vi = (α + r − 1 − 2i)vi , E .vi = {i}{i − α}
{1}2 vi−1, F .vi = vi+1. (9)
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For all α ∈ C, the quantum dimension of Vα is zero:

qdim(Vα) =
r−1
∑

i=0

v∗
i (K

1−rvi ) =
r−1
∑

i=0

q(r−1)(α+r−1−2i) = q(r−1)(α+r−1) 1 − q2r

1 − q2
= 0.

For a ∈ Z, let CH
ar be the one dimensional module in C0̄ where both E and F

act by zero and H acts by ar . For each n ∈ {0, . . . , r − 2}, let Sn be the usual

(n + 1)-dimensional simple highest weight U
H
q sl(2)-module with highest weight n.

The module Sn has highest weight vector s0 such that Es0 = 0 and Hs0 = ns0.
Then, {s0, s1, . . . , sn} is a basis of Sn where Fsi = si+1, H .si = (n − 2i)si , E .s0 =
0 = Fn+1.s0 and E .si = {i}{n+1−i}

{1}2 si−1. Every simple module of C is isomorphic to

exactly one of the modules in the list:

• Sn ⊗ C
H
ar , for n = 0, · · · , r − 2 and a ∈ Z,

• Vα for α ∈ (C \ Z) ∪ rZ.

For i ∈ {0, ..., r − 2}, let Pi be the projective and indecomposable module with
highest weight 2r−2−i , defined in Proposition 6.2 of [5].Moreover, any indecompos-
able projective weight module has a highest weight, and such a module P ∈ C0 ∪ C1
with highest weight (k + 2)r − i − 2 is isomorphic to Pi ⊗ C

H
kr .

3 Categorical preliminaries

3.1 Hermitian ribbon category

Here, we follow [24, Section 5.1]. Let C be a strict monoidal category. A dagger, or
conjugation, on C , assigns to each morphism f : V → W a morphism f † : W → V
such that

( f †)† = f , ( f ⊗ g)† = f † ⊗ g†, ( f ◦ g)† = g† ◦ f †. (10)

These relations imply Id†V = IdV . In other words, † is an object preserving contravari-
ant involution on C .

Definition 3.1 AHermitian ribbon category is a ribbonmonoidal categoryC equipped
with a conjugation satisfying the following conditions:

(i) for any objects V , W of C , we have
For any objects

c†V⊗W = (cV ,W )−1, (11)

(ii) for any object V of C , we have 1

θ
†
V = (θV )−1,

−→
coev

†
V=−→

ev V cV ,V ∗(θV ⊗ IdV ∗),
−→
ev

†
V= (IdV ∗ ⊗θV )cV ,V ∗

−→
coevV .

(12)

1 We use an equivalent definition to the one Turaev uses for
−→
ev

†
V .
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3.2 Modified traces on the projective modules

Let Proj be the full subcategory of C consisting of projective U
H
q sl(2)-modules. The

subcategory Proj is an ideal (see also [8]). That is, it is closed under retracts (i.e. if
W ∈ Proj and α : X → W and β : W → X satisfy β ◦ α = IdX , then X ∈ Proj) and
if X is in C , and Y is in Proj, then X ⊗ Y is in Proj.

For any objects V ,W of C and any endomorphism f of V ⊗ W , set

ptrL( f ) = (
−→
ev V ⊗ IdW ) ◦ (IdV ∗ ⊗ f ) ◦ (

←−
coevV ⊗ IdW ) ∈ EndC (W ), (13)

and

ptrR( f ) = (IdV ⊗ ←−
ev W ) ◦ ( f ⊗ IdW ∗) ◦ (IdV ⊗ −→

coevW ) ∈ EndC (V ). (14)

Definition 3.2 A trace on Proj is a family of linear functions

{tV : EndC (V ) → K }

where V runs over all objects of Proj, such that the following two conditions hold.

(1) If U ∈ Proj, and W ∈ Ob(C ), then for any f ∈ EndC (U ⊗ W ), we have

tU⊗W ( f ) = tU
(

ptrR( f )
)

. (15)

(2) If U , V ∈ Proj, then for any morphisms f : V → U , and g : U → V in C , we
have

tV (g ◦ f ) = tU ( f ◦ g). (16)

There exists up to a scalar a unique trace on Proj. It is non-degenerate (cf Theorem
5.5 of [9]), in the following way. Let V ,W ∈ C with V projective. Then, the pairing
〈·, ·〉V ,W : HomC (W , V ) ⊗ HomC (V ,W ) → C given by

〈 f , g〉V ,W = tV ( f g)

is non-degenerate. It is symmetric in the following sense. If W is also projective, then

〈g, f 〉W ,V = 〈 f , g〉V ,W . (17)

If W is not projective, then we take Equation (17) as a definition.
The modified dimension d(M), of an object M , is the modified trace of the identity

morphism of M . The modified trace on C in this paper is normalized by

d(Vα) = d0{α}
{rα}

for a fixed real number d0.
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4 Hermitian ribbon structure on quantum sl2-modules

4.1 Hermitian U
H
qsl(2)-modules

A map f : V → W between two complex vector spaces is called antilinear if
f (av + bv′) = ā f (v) + b̄ f (v′) where ā and b̄ are the complex conjugates of the
complex numbers a and b, respectively. Consider the operation 
 : x �→ 
(x) := x


defined on generators of U
H
q sl(2) by

E
 = F, F
 = E, K 
 = K−1, H
 = H .

Lemma 4.1 The operator 
 : U
H
q sl(2) → U

H
q sl(2) induces an antilinear, antial-

gebra involution which is also a coalgebra antimorphism. That is, for any a ∈
Q(q) and x, y ∈ U

H
q sl(2),

(ax)
 = āx
 (xy)
 = y
x
 (x
)
 = x �(x
) = (
 ⊗ 
)(τ (�x)).

Furthermore, S(†x) = (S(x))
, (
 ⊗ 
)(R) = τ(R−1), and †θ = θ−1.

Proof This is similar to Lemma 1.3 of [25]. ��
A Hermitian form on a C-vector space V is a function f : V × V → C such that

(1) f (v, av′ + bv′′) = a f (v, v′) + b f (v, v′′),
(2) f (v, v′) = f (v′, v),

for all v, v′, v′′ ∈ V and a, b ∈ C. It follows that f is antilinear in the first coordinate.
The kernel of f is {v ∈ V : V ∗ � f (v, ·) = 0}, and we say f is non-degenerate if its
kernel is {0}.

Let f : V ⊗ V → C be a non-degenerate Hermitian form on a finite dimensional

weight U
H
q sl(2)-module V . Then, we say f is compatible with the antilinear antial-

gebra automorphism 
 if f (†xv, v′) = f (v, xv′) for all x ∈ U
H
q sl(2) and v, v′ ∈ V .

Equivalently, this means ρV (x)
 = ρV (†x) where ρV (x)
 denotes the Hermitian

adjoint on Hermitian vector spaces. In this case, we say V is a Hermitian U
H
q sl(2)-

module with Hermitian structure f .

Lemma 4.2 Let fV and fW be Hermitian structures on U
H
q sl(2)-modules V and W,

respectively. Then, there is a well-defined adjoint map †, which is an antilinear homo-
morphism

† : HomC (V ,W ) → HomC (W , V )

g �→ g†,

uniquely defined by fW (·, g(·)) = fV (g†(·), ·).
Moreover, if U is a third Hermitian module, and h ∈ HomC (W ,U ), then (hg)† =

g†h†.
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Proof First, since fV and fW are non-degenerate Hermitian forms, g† is a well-defined

linear map. To see that this map is a U
H
q sl(2)-module morphism, let x ∈ U

H
q sl(2),

v ∈ V and w ∈ W . Then

fV (g†(xw), v) = fW (xw, g(v)) = fW (w, g(x
v)) = fV (g†(w), x
v) = fV (xg†(w), v).

Since v is any element of V and fV is non-degenerate, it then follows that g†(xw) =
xg†(w). Similar calculations show that the map † is antilinear and satisfies the last
property of the lemma. ��

If V is a U
H
q sl(2) weight module, let V̄ 
 = {v̄ : v ∈ V } be the same real vector

space with antilinear scalar multiplication, and the action of U
H
q sl(2) on v̄ ∈ V̄ 
 be

given by x .v̄ = S(x)
.v.

A sesquilinear form f on a U
H
q sl(2)-module V is said to be compatible with

U
H
q sl(2) if it is non-degenerate and for any x ∈ U

H
q sl(2) and v1, v2 ∈ V , we have

f (v1, ρV (x)(v2)) = f (ρV (x
)(v1), v2).

Lemma 4.3 Let V be a U
H
q sl(2) weight module. Then, there exists a compatible

sesquilinear form f on V if and only if V̄ 
 � V ∗. Furthermore, if V is simple,
then f can be chosen to be Hermitian and is unique up to a constant in R

∗.

Proof For the first part, we follow [12, 25]. The sesquilinear form associated to an
isomorphism ϕ : V̄ 
 ∼→ V ∗ is given by

f : V × V
Īd⊗Id−→ V̄ 
 ⊗ V

ϕ⊗Id−→ V ∗ ⊗ V
−→
ev−→ C.

The compatibility follows from the following string of equalities:

f (v1, x .v2) = −→
ev (ϕ(v̄1) ⊗ x .v2) =−→

ev (S−1(x).ϕ(v̄1), v2) =−→
ev (ϕ(S−1(x).v̄1), v2)

= −→
ev (ϕ(†x .v1), v2) = f (†x .v1, v2).

Next, for a fixed basis (e) of V , let A denote the matrix of f : Ai, j = f (ei , e j ).
Let Mat(e)(x) = M and denote by M∗ the conjugate transpose of M . Then,
Mat(e)(†x) = (A−1)∗M∗A∗ and M = Mat(e)((†x)
) = (A−1)∗AMA−1A∗. Hence,
A−1A∗ commutes with the image of U

H
q sl(2) in EndC(V ). Suppose now that V is

also simple.

Then, A−1A∗ is a scalar because it is the matrix of a U
H
q sl(2)-module morphism

and EndC (V ) = C IdV . Let us write A−1A∗ = λ2 then (A∗)∗ = A implies λλ = 1.
Then, the matrix of λ f is Hermitian as (λA)∗ = λA∗ = λλ2A = |λ|2(λA) = λA.
Finally, any two compatible sesquilinear forms f , f ′ differ by an automorphism

g ∈ AutC (V ) such that f ′ = f (·, g(·)). So the last statement followswithAutC (V ) =
C

∗ Id and for f Hermitian, λ f is Hermitian if and only if λ ∈ R. ��
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Fig. 1 The weight spaces structure of the module Pi (here j = r − 2 − i)

If A is a set of objects in C , then we define the category generated by A as the
full subcategory of C which has as objects, all direct sums of retracts of all tensor
products of the form:

X1 ⊗ X2 ⊗ · · · ⊗ X p where Xi ∈ A ∪ A∗.

Each simple module Si , for i = 0, . . . , r − 2 has an indecomposable projective
cover Pi . The dimension of each Pi is 2r . A detailed description of this module could
be found in [5, Proposition 6.1]. A summary could be found in Figure 1. A vector wY

k ,
for Y ∈ {R, H , S, L} has weight k (under the action of H ).

Consider the subcategory D of C generated by the following set:

A =
{

Vα, Sn, Pi ,C
H
ar

∣

∣

∣ α ∈ (R \ Z) ∪ rZ, n, i ∈ {0, · · · , r − 2}, a ∈ Z

}

. (18)

Proposition 4.4 All projectives objects are in the Karoubi envelope (or idempotent
completion) of the additive monoidal category generated by the simple objects.

Proof By [5, Proposition 8.4], one could generate all Pk ⊗ C
H
mr where k is even by

decomposing (Sr−1 ⊗C
H
mr )⊗ Sr−1. Similarly, one could generate all Pk ⊗C

H
mr where

k is odd by decomposing (Sr−2 ⊗ C
H
mr ) ⊗ Sr−1.

All other indecomposable projective objects are already simple. ��
We will now show that each object of D has a Hermitian structure and prove that

D is a Hermitian ribbon category.

Proposition 4.5 Any simple module V in A has a Hermitian structure. Moreover, the
form (·, ·) on V is uniquely determined by (v0, v0) = 1 where v0 is a highest weight
vector of V .

Proof Let V be a simple module in A. Since †H = H , we have V̄ 
 is a simple module
with character that is the conjugate of that of V ∗. Since the weights of modules in A
are real, V̄ 
 and V ∗ have the same character so they are isomorphic. Then, Lemma
4.3 applies. ��
Proposition 4.6 If i ∈ {0, ..., r − 2} then the projective indecomposable Pi has a

Hermitian form (·, ·)α,β making it a Hermitian U
H
q sl(2)-module where α and β are

two real nonzero parameters.

Proof Recall from [5, Proposition 6.1] that the action of U
H
q sl(2) on the basis {wY

k }
of Pi involves the quantities γn,k = [k][n − k + 1] .
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Now define

(wL− j−r , w
L− j−r )α,β = α (wH−i , w

H−i )α,β = β . (19)

If the form is Hermitian and (xv,w)α,β = (v, x
w)α,β , then

(wL
j−2k−r , w

L
j−2k−r )α,β =

⎛

⎜

⎝

E j−kwL− j−r
∏ j

m=k+1
−γ j,m

,
E j−kwL− j−r

∏ j

m=k+1
−γ j,m

⎞

⎟

⎠

α,β

= 1
∏ j

m=k+1
γ j,mγ j,m

(E j−kwL− j−r , E
j−kwL− j−r )α,β

= 1
∏ j

m=k+1
γ j,mγ j,m

(wL− j−r , F
j−k E j−kwL− j−r )α,β

= 1
∏ j

m=k+1
−γ j,m

(wL− j−r , w
L− j−r )α,β = α

∏ j

m=k+1
−γ j,m

.

Next note that

(wS−i , w
S−i )α,β = (EwL

j−r , EwL
j−r )α,β = (wL

j−r , FEwL
j−r )α,β = (wL

j−r , FwS−i )α,β = 0 .

Similarly,

(wS
i−2k, w

S
i−2k)α,β =

⎛

⎜

⎝

Ei−kwS
−i

∏i

m=k+1
γ j,m

,
Ei−kwS

−i
∏i

m=k+1
γ j,m

⎞

⎟

⎠

α,β

= 1
∏i

m=k+1
γi,mγi,m

(Ei−kwS
−i , E

i−kwS
−i )α,β

= 1
∏i

m=k+1
γi,mγi,m

(wS
−i , F

i−k Ei−kwS
−i )α,β

= 1
∏i

m=k+1
γi,m

(wS
−i , w

S
−i )α,β = 0.

Next note that
(FwH−i , FwH−i )α,β = (wL

j−r , w
L
j−r )α,β (20)

and

(FwH−i , FwH−i )α,β = (wH−i , EFwH−i )α,β = (wH−i , EwL
j−r )α,β = (wH−i , w

S
−i )α,β .

(21)
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Thus
(wH−i , w

S
−i )α,β = (wL

j−r , w
L
j−r )α,β = α

∏k

m=1
−γ j,m

. (22)

Next note that

(wR− j+r , w
R− j+r )α,β =

⎛

⎜

⎝

Ei+1wH−i
∏i

m=1
γi,m

,
Ei+1wH−i

∏i

m=1
γi,m

⎞

⎟

⎠
= 1

∏i

m=1
γi,m

(wH−i , F
i+1wR− j+r )α,β

= 1
∏i

m=1
γi,m

(wH−i , w
S
−i )α,β = α

∏i

m=1
γi,m

∏ j

m=1
−γ j,m

.

From this we compute

(wR
r− j+2k, w

R
r− j+2k)α,β = (EkwR

r− j , E
kwR

r− j )α,β = (wR
r− j , F

kwR
r− j+2k)α,β

= (wR
r− j ,

∏k

m= j
−γ j,mwR

r− j )α,β =
∏k

m= j −γ j,m
∏i

m=1 γi,m
∏ j

m=1 −γ j,m

α.

Next note that

(wH
i−2k , w

S
i−2k)α,β =

⎛

⎜

⎝

Ei−kwH−i
∏k

m=1
γi,m

+ �,
Ei−kwS

−i
∏i

m=1
γi,m

⎞

⎟

⎠

α,β

= 1
∏k

m=1
γi,m

(wH−i , F
i−kwS

i−2k)α,β

= 1
∏k

m=1
γi,m

(wH−i , w
S
−i )α,β = α

∏k

m=1
γi,m

∏ j

m=1
−γ j,m

where in the first equality, � contains wS terms which were already show to kill terms
on the right.

Next we compute

(wH
i−2k , E

i−kwH−i )α,β = (Fi−kwH
i−2k , w

H−i )α,β = (wH−i , w
H−i )α,β = β . (23)

But

(wH
i−2k , w

H
i−2k )α,β = (wH

i−2k , ei−k (γi,i , . . . , γi,k+1)w
H
i−2k + ei−k−1(γi,i , . . . , γi,k+1)w

S
i−2k )α,β

(24)
where the ei−k and ei−k−1 are elementary symmetric functions. This could be verified
with a straightforward induction argument. Thus

(wH
i−2k, E

i−kwH−i )α,β = ei−k(w
H
i−2k, w

H
i−2k)α,β + ei−k−1(w

H
i−2k, w

S
i−2k)α,β . (25)
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Thus

(wH
i−2k, w

H
i−2k)α,β =

⎛

⎝β − ei−k−1(γi,i ,...γi,k+1)α
∏k

m=1
γi,m

∏ j

m=1
−γ j,m

⎞

⎠

ei−k(γi,i , . . . , γi,k+1)
. (26)

��
Remark 4.7 Consider the submodule � j+r of Pi defined as follows:

� j+r = {wR
j+r , . . . , w

R
j−r , w

S
i , . . . , wS

−i } . (27)

It inherits the form (·, ·)α,β from Pi . Note that this form is degenerate on � j+r . The
submodule of� j+r spanned by the vectors {wS

i , . . . , wS
−i } is isomorphic to the simple

module Si but is actually a totally isotropic subspace of Pi . So we should not expect
an abelian structure on a Hermitian category.

Proposition 4.8 The simple module Si is a quotient of Pi by the radical of a special-
ization of the Hermitian form (·, ·)α,β :

Si ∼= Pi/rad(·, ·)0,β .

Proof The preceding analysis shows that all vectors wL , wS, wR are in the radical,
while the vectors wH are not. The quotient of Pi by this radical yields a module of
dimension i + 1 with highest weight i which is isomorphic to Si . ��

4.2 The Hermitian ribbon categoryDHerm

Let C Herm be the category whose objects are Hermitian weightU
H
q sl(2)-modules and

morphisms from (V , (·, ·)V ) to (W , (·, ·)W ) are given by

HomC Herm ((V , (·, ·)V ), (W , (·, ·)W )) = HomC (V ,W ).

Let DHerm be the full subcategory of C Herm whose objects have their underlying
module in D . In particular any module in DHerm is equipped with a Hermitian form.
We will need the following lemmas to define a tensor product in DHerm.

Lemma 4.9 Any module in D has a Hermitian structure.

Proof Using orthogonal direct sums, it is sufficient to show that any indecomposable
module inD has a Hermitian structure. The categoryD has indecomposable modules
isomorphic to V ′ = V ⊗ C

H
kr for some (V , k) ∈ A × Z (see [5] where the tensor

decomposition rules are described). Proposition 4.5 and Proposition 4.6 ensure that
any V ∈ A has a Hermitian structure. Choose such a Hermitian form. As a complex
vector space, V ∼= V ⊗ C

H
kr = V ′, but they are different as representations. For

example, ρV ′(E) = qkrρV (E). We can consider the Hermitian form on V ′ given by
(x, y)V ′ = a

(

x, qkrH/2y
)

V where a = a−1 is a square root of
〈

K−kr
〉

V . Note that
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the expression
〈

K−kr
〉

V makes sense since the central element K−kr acts as a scalar
operator on V . The form is Hermitian since

(y, x)V ′ = a
(

y, qkrH/2x
)

V
= a

(

a−2q−kr H/2y, x
)

V
= a

(

qkrH/2y, x
)

V
= (x, y)V ′ .

The second equality comes from
(

qkrH/2
)
 = q−kr H/2 and a = a a−2. The third

equality follows from:

ρV (a−2q−kr H/2) = ρV (Kkrq−kr H/2) = ρV (qkrH/2).

Next we check the compatibility of this form with U
H
q sl(2).

(y, ρV ′(E)x)V ′ = a
(

y, qkrρV (E)qkrH/2x
)

V
= a

(

y, qkrH/2ρV (E)x
)

V

= a
(

ρV (E
)y, qkrH/2x
)

V

= a
(

ρV (F)y, qkrH/2x
)

V
= (ρV ′(F)y, x)V ′ = (

ρV ′(E
)y, x
)

V ′ .

Thus ρV ′(E)
 = ρV ′(E
). Similar computations for F , K and H show that the form

is compatible with U
H
q sl(2). ��

Lemma 4.10 Any Hermitian module V in DHerm splits as an orthogonal direct sum
of Hermitian indecomposable modules.

Proof We prove that V has an indecomposable Hermitian submodule P , then the
proof follows by induction since the non degeneracy of (·, ·) on P implies that P⊥ is
a complementary submodule of P in V .

Consider a direct sum decomposition V = ⊕

i Wi with Wi indecomposable and

let W ′
i = (

⊕

j �=i W j )
⊥. Then, the proof of Lemma 4.3 implies that ¯(W ′

i )

 � W ∗

i .

But as for any indecomposable module of DHerm we have ¯(Wi )

 � W ∗

i so W ′
i � Wi .

If we choose such an isomorphism f : Wi → W ′
i , then ( f (·), ·) is a compatible

sesquilinear form on Wi . Lemma 4.9 ensures that Wi has a compatible Hermitian
form (·, ·)Wi . Thus, there exists g ∈ AutC (Wi ) such that ( f (·), ·) = (g(·), ·)Wi : Then,
h = f g−1 : Wi → W ′

i is an isomorphism such that (h(·), ·) = (·, ·)Wi is Hermitian.
For α ∈ R, letW ′′

i = (h+eiα Id)(Wi ). Fix a basis (e) ofWi , (e′) = h((e)) and (e′′) =
(h + eiα Id)((e)). Let B = Mat(e)((·, ·)Wi ), A = Mat(e)((·, ·)), A′ = Mat(e′)((·, ·))
and A′′ = Mat(e′′)((·, ·)). Then, A′′

i j = (e′′
i , e

′′
j ) = (e′

i + eiαei , e′
j + eiαe j ) = A′

i j +
Ai j +e−iαBj,i +eiαBi, j = A′

i j +Ai j +2 cosαBi, j so that A′′ = A+A′+2 cosαB =
B(B−1(A+A′)+2 cosα)which is non-degeneratewhen−2 cosα is not an eigenvalue
of B−1(A + A′). Then, W ′′

i is an indecomposable Hermitian submodule of V . ��
Note that the above statement is false in C Herm. For example, one can check that

V1+i ⊕ V1−i has a Hermitian structure but V1±i does not.
We will now introduce the notion of a half twist and give a construction of it in our

category. For related ideas, see [23].
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Definition 4.11 A half twist
√

θ for C is a natural isomorphism of the identity functor

whose square is the twist. That is for any f : V → W ,
√

θW f = f
√

θV ,
√

θ
2
V =

θV ∈ EndC (V ) and
√

θV ∗ =
(√

θV

)∗
. We also assume that

√
θ I = IdI.

Proposition 4.12 Any K-linear ribbon category over an algebraically closed field of
characteristic 0 has a half twist.

Proof Consider a maximal block decomposition C = ⊕

i Ci where for any (V ,W ) ∈
Ci × C j , HomC (V ,W ) �= 0 �⇒ i = j . Then, the twist has a unique generalized
eigenvalue θi ∈ K on Ci . That is for any V ∈ Ci , 〈θV 〉V = θi . One can choose a
square root

√
θ i of θi such that

√
θ i∗ = √

θ i where Ci∗ is the block with the dual
objects of Ci . Then, a half twist is given by the formula:

∀V ∈ Ci ,
√

θV = √
θ i sqr(θV θ−1

i )

where sqr is the square root function defined on an unipotent x by

sqr(x) = 1 −
∑

k≥0

(2k)!(1 − x)k+1

22k+1k!(k + 1)! .

Note that θV θ−1
i is unipotent since θV θ−1

i − IdV = θ−1
i (θV − 〈θV 〉 IdV ) is nilpotent.

The naturality follows from the uniform choice of
√

θ i for all modules of Ci and the
self duality comes from θV ∗ = (θV )∗. ��

We now fix a half twist by its values on simples in (28). Note that for any k ∈ Z,
i = 0, . . . , r−2 and j = r−2−i , Si ⊗C

H
kr and S j ⊗C

H
(k+1)r belong to the same block

since they are both simple composition factors in a Jordan-Holder series of Pi ⊗C
H
kr .

V Vα Si Si ⊗ C
H
kr , k ∈ 2Z Si ⊗ C

H
kr , k ∈ 2Z + 1

〈θV 〉 q
α2−(r−1)2

2 q
i(i+2−2r)

2 q
i(i+2−2r)

2 q
j( j+2−2r)

2
〈√

θV

〉

q
α2−(r−1)2

4 q
i(i+2−2r)

4 q
i(i+2−2r)

4 q
j( j+2−2r)

4

α ∈ C̈,

i = 0, . . . , r − 2
j = r − 2 − i

(28)
Using this half twist, we can define an involutive isomorphism (see also [25])

X : (C ,⊗) → (C ,⊗op) in C by

XV ,W =
(√

θW⊗V

)−1
cV ,W (

√
θV ⊗ √

θW ). (29)

Note that X is not a braiding, but we have the following lemma.

Lemma 4.13 For any V , V ′, V ′′ ∈ C and any morphisms f , g, we have the following
equalities

XV ′,V XV ,V ′ = Id, X( f ⊗ g) = (g ⊗ f )X,

123



   74 Page 16 of 27 N. Geer et al.

XV ′⊗V ,V ′′(XV ,V ′ ⊗ IdV ′′ ) = XV ,V ′′⊗V ′(IdV ⊗XV ′,V ′′ ) : V ⊗ V ′ ⊗ V ′′ → V ′′ ⊗ V ′ ⊗ V ,

XV ,V ∗ −→
coevV= ←−

coevV and
−→
ev V XV ,V ∗ =←−

ev V .

Proof In order to prove the first identity, we first recall the following fact

θV⊗V ′ = (θV ⊗ θV ′)cV ′,V cV ,V ′ . (30)

We have

XV ′,VXV ,V ′ =
(√

θV⊗V ′
)−1

cV ′,V (
√

θV ′ ⊗ √
θV )

(√
θV ′⊗V

)−1
cV ,V ′(

√
θV ⊗ √

θV ′)

=
(√

θV⊗V ′
)−1(√

θV⊗V ′
)−1

cV ′,V (
√

θV ′ ⊗ √
θV )cV ,V ′(

√
θV ⊗ √

θV ′)

= (

θV⊗V ′
)−1

(
√

θV ⊗ √
θV ′)2cV ′,V cV ,V ′

= (

θV⊗V ′
)−1

(θV ⊗ θV ′)cV ′,V cV ,V ′

= (

θV⊗V ′
)−1(

θV⊗V ′
)

= IdV⊗V ′ .

The second equality follows from the naturality of
√

θ . The third equality follows
from the naturality of the braiding. The fifth equality follows from (30).

The second identity of the lemma is also an easy consequence of these naturalities.
For the third identity, we have that both sides are equal to

(√
θV ′′⊗V ′⊗V

)−1
(cV ′,V ′′ ⊗ Id)(Id⊗cV ,V ′′)(cV ,V ′ ⊗ Id)(

√
θV ⊗ √

θV ′ ⊗ √
θV ′′) .

For the fourth identity, we have the following equalities.

XV ,V ∗
−→
coevV =

(√
θV ∗⊗V

)−1
cV ,V ∗(

√
θV ⊗ √

θ
∗
V )

−→
coevV

= cV ,V ∗(
√

θV ⊗ √
θ

∗
V )

−→
coevV

(√
θ I

)−1

= cV ,V ∗(
√

θ
2
V ⊗ Id)

−→
coevV

(√
θ I

)−1

= cV ,V ∗(θV ⊗ Id)
−→
coevV

= ←−
coevV .

The second equality follows from the naturality of
(√

θV ∗⊗V

)−1
. The third equality

comes from moving
√

θ
∗
V in the second tensor factor to

√
θV in the first factor (which

is allowed in a ribbon category). The final equality is also a standard identity in a
ribbon category. The last identity is proved in a similar way. ��
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Let W1,W2 ∈ C Herm and let (·, ·)Wi be the Hermitian structures on Wi . Define
(·, ·)p on W1 ⊗ W2 by

(x ⊗ y, x ′ ⊗ y′)p = (x, x ′)W1(y, y
′)W2 (31)

for x, x ′ ∈ W1 and y, y′ ∈ W2. The sesquilinear form (·, ·)p is Hermitian, non-
degenerate but not compatible with 
. We modify the pairing to obtain a Hermitian
form compatible with 
 in the next result.

Theorem 4.14 Let W1,W2 ∈ DHerm. Then, W1 ⊗ W2 is a Hermitian module with
Hermitian structure given by

(v, v′) = (v, τ (XW1⊗W2v
′))p.

This gives DHerm the structure of a strict C-linear tensor category.

Proof Let u ∈ U
H
q sl(2), write �(u) = u1 ⊗ u2 and consider v = v1 ⊗ v2 ∈ W1 ⊗W2

and v′′ = XW1⊗W2(v
′) = v′′

2⊗v′′
1 ∈ W2⊗W1. Note thatwe have omitted all summation

symbols and will continue to do so throughout the course of the proof. Then, we have

(v, u.v′) = (v, τ (XW1⊗W2u.v′))p = (v, τ (u.v′′))p = (v1, u2v
′′
1 )W1(v2, u1v

′′
2 )W2

= (†u2v1, v
′′
1 )W1(†u1v2, v

′′
2 )W2 = (†u.v, τ (v′′))p = (†u.v, v′),

where we used that �(†u) = †u2 ⊗ †u1. Hence, we have defined a compatible
sesquilinear form on W1 ⊗ W2.

To prove that this form is Hermitian, first note that by Lemma 4.10, we can
assume that W1 and W2 are indecomposable. Then, consider a direct sum decom-
position W1 ⊗ W2 = ⊕

i Vi with Vi indecomposable and the dual decomposition

V ′
i =

{

v′ ∈ W1 ⊗ W2|(v′,
⊕

j �=i V j ) = {0}
}

.

Fix a factor Vi . Then, (·, ·) is non-degenerate on V ′
i × Vi . Hence, V ′

i
∗ � V̄i


 � V ∗
i

so in particular, the half twist has the same value
〈√

θVi

〉

=
〈√

θV ′
i

〉

, which we denote

by
√

θ0 ∈ C. Let us call
√

θ1 =
〈√

θW1

〉

and
√

θ2 =
〈√

θW2

〉

and θi = √
θ
2
i . Then,

let (v, v′) ∈ Vi × V ′
i and write R = ∑

a ⊗ b. Then,

(v′, v) = (v′, τX(v))p

= (v′, τ
√

θ
−1
W2⊗W1

τ R(
√

θW1 ⊗ √
θW2 )(v))

= √
θ
−1
0

√
θ1

√
θ2

(

v′, sqr(θ0�op(θ))R(sqr(θ−1
1 θ−1) ⊗ sqr(θ−1

2 θ−1))
)

p

= √
θ
−1
0

√
θ1

√
θ2

((

sqr(θ
−1
1

(

θ−1
)


) ⊗ sqr(θ
−1
2

(

θ−1
)


)
)

R−1
21 sqr(θ0�(†θ)))v′, v

)

p

=
(√

θ0
√

θ
−1
1

√
θ
−1
2 (sqr(θ1θ) ⊗ sqr(θ2θ))R−1

21 sqr(θ−1
0 �(θ−1)))v′, v

)

p

=
(

τ(
√

θ
−1
W2

⊗ √
θ
−1
W1

)R−1τ
√

θW1⊗W2 )v
′, v

)

p
=

(

τX−1(v′), v
)

p
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= (

τX(v′), v
)

p = (

v, τX(v′)
)

p = (

v, v′).

In the above equalities, the elements θ, θ−1, etc., are all acting on modules. Note that
the fifth equality above follows from the fact that θ0, θ1, θ2 all have norm one, and
Lemma 4.2. ��
Proposition 4.15 The Hermitian structure from Theorem 4.14 defines an associative
tensor product turning DHerm into a tensor category. Furthermore, for any two mor-
phisms f , g ∈ DHerm, one has

( f ⊗ g)† = f † ⊗ g†.

Proof To show the associativity of the tensor product of Hermitian modules, consider
the product Hermitian form on V ⊗ V ′ ⊗ V ′′ given by

(

v1 ⊗ v′
1 ⊗ v′′

1 , v2 ⊗ v′
2 ⊗ v′′

2

)

t = (v1, v2)
(

v′
1, v

′
2

)(

v′′
1 , v

′′
2

)

Then, the compatible Hermitian forms obtained by iterating Theorem 4.14 are related
to this pairing by

(w1, w2)(V⊗V ′)⊗V ′′ = (

w1, τ13XV ,V ′,V ′′(w2)
)

t = (w1, w2)V⊗(V ′⊗V ′′),

where XV ,V ′,V ′′ = XV ′⊗V ,V ′′(XV ,V ′ ⊗ IdV ′′) = XV ,V ′′⊗V ′(IdV ⊗XV ′,V ′′) and τ13 is
the permutation x ⊗ y ⊗ z �→ z ⊗ y ⊗ x . This gives the associativity of the tensor
product of DHerm. The category also has a strict unit I = C with (1, 1)I = 1 because
XI,V = XV ,I = IdV .

The last statement is a consequence of the second property of Lemma 4.13. ��
Proposition 4.16 If V ∈ C Herm, V ∗ has a unique Hermitian structure determined by
(ϕ, ψ) = ∑

i ϕ(ei )ψ(e′
i )where (ei ) and (e′

i ) are any dual bases of V for theHermitian
form of V . Furthermore, if V ∈ DHerm then one has

←−
coev

†
V=−→

ev V and
←−
ev

†
V= −→

coevV .

Proof Fix a basis e = (ei )i of V and let e∗ = (e∗
i )i be the dual basis of V ∗. Let

Bi j = (

ei , e j
)

and let B ′ = B−1. Then, e′
i = ∑

j B
′
i j e j since

(

∑

j B
′
i j e j , ek

)

=
∑

j B
′
i j

(

e j , ek
) = δki . Then, the matrix Ci j =

(

e∗
i , e

∗
j

)

is given by

Ci j =
(

e∗
i , e

∗
j

)

=
∑

k

e∗
i (ek)e

∗
j (e

′
k) = e∗

j (e
′
i ) = B ′

i j .

So C = B
−1

is Hermitian. In particular, a change of basis would change B to P∗BP

and C to
(

t P−1
)∗
C t P−1 = P

−1
B

−1
P∗−1 = P∗BP

−1
so it would define the same

Hermitian form on V ∗.
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Now for any vector x , one has x = ∑

i (e
′
i , x)ei = ((·, x) ⊗ Id)(

∑

i e
′
i ⊗ ei ), so

((·, x) ⊗ Id)

(

∑

i

e′
i ⊗ u.ei

)

= u.x =
∑

i

(e′
i , u.x)ei =

∑

i

(u
.e′
i , x)ei

= ((·, x) ⊗ Id)

(

∑

i

u
.e′
i ⊗ ei

)

.

Then,
∑

i

e′
i ⊗ u.ei =

∑

i

u
.e′
i ⊗ ei (32)

because (·, ·) is non-degenerate. Finally,

(u.ϕ, ψ) = (ϕ(S(u)·), ψ) =
∑

i

ϕ(S(u).ei )ψ(e′
i ) =

∑

i

ϕ(ei )ψ(S(u)
.e′
i )

= (

ϕ,ψ(S(u
)·)) = (

ϕ, u
.ψ
)

,

where in the third equality we used (32). We now compute the Hermitian adjoint of
←−
coevV . Let (v, ϕ) ∈ V × V ∗. Then,

(

ϕ ⊗ v,
←−
coevV

)

V ∗⊗V

=
(

ϕ ⊗ v, τX
←−
coevV

)

p
=

(

ϕ ⊗ v, τ
−→
coevV

)

p
=

∑

i

(

e∗
i , ϕ

)

(v, ei )

=
∑

i

ϕ(e′
i )(v, ei ) = ϕ(v) =

(−→
ev V (ϕ ⊗ v), 1

)

I

.

Hence,
←−
coev

†
V=−→

ev V . Note that the second equality above follows from Lemma 4.13.

Taking the Hermitian adjoint of the zigzag (
←−
ev ⊗ Id)(Id⊗ ←−

coev) = IdV , we get
that

IdV = (IdV ⊗ ←−
coev

†
V )(

←−
ev

†
V ⊗ IdV ) = (IdV ⊗ −→

ev V )(
←−
ev

†
V ⊗ IdV ).

Thus
←−
ev

†
V= −→

coevV . ��
Proposition 4.17 Let V ,W ∈ C Herm, then

cV ,W
† = (cV ,W )−1 and θV

† = (θV )−1.

Proof Taking the Hermitian adjoint of the R-matrix in (5), and applying a permutation
to the tensor factors, one recovers R−1 from (6). The first statement now follows
immediately. The second statement is contained in Lemma 4.2. ��
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We define the contravariant monoidal antilinear functor † : DHerm → DHerm as the
identity on each object and as the Hermitian adjoint on each morphism. This functor
is contravariant, monoidal, and antilinear. We now have the following result.

Theorem 4.18 DHerm is a Hermitian ribbon category in the sense of Definition 3.1.

We conclude this sectionwith some observations about how theHermitian structure
on DHerm interacts with the modified trace.

Lemma 4.19 Let (W , (·, ·)) ∈ DHerm with W ∈ Proj. Then for any f ∈ EndC (W ),

tW ( f †) = tW ( f ).

Proof By Proposition 4.16 the dagger functor commutes with the partial trace of

morphisms. It follows that the family of linear maps
(

t†V

)

V∈Proj given by:

t†V : EndC (V ) → C

f �→ t†V ( f ) := tV ( f †)

is a modified trace on Proj. By unicity of the modified trace, t† = λt for some λ ∈ C.
Now for any α ∈ (C \ Z) ∪ rZ, t(IdVα ) = t†(IdVα ) = d(Vα) ∈ R since we choose
d0 ∈ R. ��
Lemma 4.20 For any objects V ,W of DHerm with V or W projective, the pairing

〈 f , g〉 �→ tV ( f †g) = tW (g f †) : HomD (V ,W ) × HomD (V ,W ) → C

(when both make sense) is a non-degenerate Hermitian pairing.

Proof Since the mapping HomD (V ,W ) → HomD (W , V ) given by f �→ f † is
an involution, the pairing of the lemma is non-degenerate. The Hermitian symmetry
follows from

〈g, f 〉 = tV (g† f ) = tV (( f †g)†) = tV ( f †g) = 〈 f , g〉

where the second to last equality follows from Lemma 4.19. ��
Example 4.21 Let α ∈ R then

〈−→
ev Vα ,

−→
ev Vα

〉

= tVα (IdVα ) = d0
sin(απ/r)

sin(απ)

which is not positive for all simples labelled by (α + 1− r , α + 3− r , ..., α + r − 1).
These simples all lie in the same graded piece of the category.
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4.3 Non-uniqueness of the half twist

In this subsection, we show that up to isomorphism, DHerm does not depend on the
choice of the half twist.

The tensor product onDHerm relies on the isomorphism X, which itself depends on

the choice of the half twist
√

θ that we fixed in (28). Suppose that
√

θ
(1)

and
√

θ
(2)

are two different half twists leading to two different tensor structures on DHerm that
we denote by D (1) and D (2). Let I be the class of indecomposable objects of D and

define ε : I → {±1} by ε(V )
√

θ
(1)
V = √

θ
(2)
V . Note that ε(I) = 1 and ε(V ) = ε(V ∗)

only depend on the block of the category in which V belongs. Then, there exist
inverse functors, both called E , defined on indecomposable objects (and extended by
additivity) by

E : D (i) → D ( j)

(V , (·, ·)) �→ (V , ε(V )(·, ·))

where {i, j} = {1, 2} and E is the identity on morphisms.

Proposition 4.22 E is a tensor functor.

Proof Let (W1, (·, ·)W1
), (W2, (·, ·)W2

) be indecomposable objects of D (1) and using
Lemma 4.10, let us split in D (1) the module W1 ⊗ W2 into a direct sum of orthog-
onal Hermitian modules W1 ⊗ W2 = ⊕

i Vi . Then for v, v′ ∈ Vi , we have
X(2)(v′) = ε(W1)ε(W2)ε(Vi )X(1)(v′) andwe can compute inD (1) that (v, v′)W1⊗W2 =
(v,X(1)(v′))p, where (·, ·)p is the product of (·, ·)W1

and (·, ·)W2
. The corresponding

computation in D (2) is

(v, v′)E(W1)⊗E(W2) = ε(W1)ε(W2)(v,X(2)(v′))p = ε(Vi )(v,X(1)(v′))p = ε(Vi )(v, v′)W1⊗W2 ,

and this last scalar is the evaluation of E((·, ·)W1⊗W2) on (v, v′). Hence, E((W1,

(·, ·)W1
) ⊗ (W2, (·, ·)W2

)) = E((W1, (·, ·)W1
)) ⊗ E((W2, (·, ·)W2

). ��

Proposition 4.23 E is an isomorphism of Hermitian ribbon categories and the dagger
map on morphisms in DHerm is independent of the choice of the half twist.

Proof We need to show that the dagger map on morphisms inD (1) andD (2) coincide.
Once again, we can restrict our attention to the case of a morphism f : V → W where
V and W are indecomposable modules. But then if f is not zero, the two modules
belong to the same block of D and thus ε(V ) = ε(W ). Then,

( f (·), ·)W = (·, f †(·))V �⇒ ε(W )( f (·), ·)W = ε(V )(·, f †(·))V ,

so E( f †) = E( f )†. ��
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5 Implications for non-semisimple TQFT

In this section, we assume r /∈ 4Z (see [2]) so thatC is a relativeC∗-modular category.
We will show that the TQFT constructed in [2] has a Hermitian structure.

5.1 Hermitian structure on decorated cobordisms

We follow Turaev [24, I.II.5.1] and define the dagger of aDHerm-colored ribbon graph
T as the following transformation: invert the orientation in the surface of T , reverse
directions of bands and annuli of T , exchange bottom and top bases of coupons and
replace the color f of a coupons with f †. The colors of edges do not change.

The boundary of a DHerm-colored ribbon graph is a set of DHerm-colored framed
points where a framed point p = (V , ε) is a point equipped with a sign ε, a nonzero
vector (its framing) tangent to the surface T and to the direction of the band, and a
color which is an object V ∈ DHerm. Let F(p) = V if ε = + and F(p) = V ∗ if
ε = −. The conjugate p of a DHerm-colored framed point p is obtained by changing
the sign and framing to their opposites. One easily check that ∂(T †) = ∂T .

Recall the category of decorated cobordism introduced in [2]. Here, we replace the
ribbon category with DHerm where we restrict to R/2Z valued cohomology classes
(instead ofC/2Z) and we only admit as objects admissible decorated surfaces defined
as follows:

Definition 5.1 (Objects of Cob) A decorated surface is a 4-tuple˜� = (�, {pi }, ω,L )

where

• � is a closed, oriented surface which is an ordered disjoint union of connected
surfaces each having a distinguished base point ∗;

• {pi } is a finite (possibly empty) set of DHerm-colored framed points with framing
tangent to the surface �;

• ω ∈ H1(� \ {p1, . . . , pk}, ∗;R/2Z) is a cohomology class;
• compatibility condition: letting ω(mi ) = ai ∈ R/2Z where mi is a positively
oriented circle around pi , then we require F(pi ) ∈ DHerm

ai ;
• L is a Lagrangian subspace of H1(�;R).

In what follows we will restrict our attention to admissible surfaces that have the
additional property that each component of ˜� has either a DHerm-colored framed
point p with F(p) ∈ Proj or it contains a closed curve γ such that ω(γ ) /∈ Z/2Z.

Remark 5.2 Note that this restriction is not just a cosmetic simplification. The non
admissible surfaces considered in [2] would not lead to a Hilbert space valued TQFT.

Definition 5.3 (Morphisms of Cob) Let ˜�± = (�±, {p±
i }, ω±,L±) be admissi-

ble, decorated surfaces. A decorated cobordism from ˜�− to ˜�+ is a 5-tuple ˜M =
(M, T , f , ω, n) where

• M is an oriented 3-manifold with boundary ∂M ;
• f : �− � �+ → ∂M is a diffeomorphism preserving the orientation, and the
image under f of the base points of �− � �+ is denoted by ∗;
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• T is a DHerm-colored ribbon graph in M such that ∂T = { f (p−
i )} ∪ { f (p+

i )};
• ω ∈ H1(M \ T , ∗;R/2Z) is a cohomology class relative to the base points on

∂M , such that the restriction of ω to (∂M \ ∂T ) ∩ �± is ( f −1)∗(ω±);
• the coloring of T is compatible with ω, i.e. each oriented edge e of T is colored
by an object in DHerm

ω(me)
where me is the oriented meridian of e;

• n is an arbitrary integer called the signature-defect of ˜M .

We can summarize the first four items by saying that ∂ ˜M = ˜�∗− � ˜�+ where the dual
of a decorated surface ˜� = (�, {pi }, ω,L ) is defined to be ˜�∗ = (�, {pi }, ω,L ).

For cobordisms, we only consider admissible, decorated cobordisms that have the
additional property that each component of M contains either a component of T with
a Proj-colored edge or it contains a closed curve γ such that ω(γ ) /∈ Z/2Z. This
condition is automatically satisfied by components of ˜M with non-empty boundary.
This restriction is also in [2]. Hence, morphisms of Cob are orientation preserving
diffeomorphism classes of admissible decorated cobordisms.

Proposition 5.4 Let ˜M = (M, T , f , ω, n) : ˜�− → ˜�+ be a cobordism in Cob. Then,
the following defines a cobordism ˜M† : ˜�+ → ˜�− in Cob:

˜M† = (M, T †, f , ω,−n),

where M is M with opposite orientation, and f = �+ � �− → ∂M is the same
set-theoretic map as f . Furthermore, with the above assignment, Cob is a Hermitian
ribbon category.

Proof The first statement follows from the fact that ∂ ˜M = ˜�∗− �˜�+ implies ∂
(

˜M†
) =

˜�∗+ � ˜�−. The category Cob has the ordered disjoint union as tensor product and it is

obvious that ( ˜M1 ◦ ˜M2)
† = ˜M†

2 ◦ ˜M†
1 , and ( ˜M1 � ˜M2)

† = ˜M†
1 � ˜M†

2 . The braiding
in Cob is symmetric. The pivotal structure is given by the cylinder ˜� × [0, 1] that
gives four morphisms ∅ → ˜� ⊗ ˜�∗, ∅ → ˜�∗ ⊗ ˜�, ˜�∗ ⊗ ˜� → ∅ or ˜� ⊗ ˜�∗ → ∅
which satisfy the zig-zag relations. Finally, (12) follows because the twist is trivial
in Cob and the cylinder ˜� × [0, 1] is positively diffeomorphic to itself with opposite
orientation by the diffeomorphism Id� ×(t �→ 1 − t). ��

Note that the last diffeomorphism of cylinders in the proof generalizes to the non-
compact case of a DHerm-colored ribbon graph T in R

2 × [0, 1]. In this case, the
dagger of this 3-manifold is identified via the reflection through the plane R2 × { 1

2

}

with the graph T † embedded upside-down in R
2 × [0, 1] with standard orientation.

This transformation is compatible with the Reshetikhin-Turaev functor F in the sense
that F(T †) = F(T )†.

5.2 The 3-manifold invariant

If ˜M = (M, T , f , ω, n) is a closed decorated manifold (i.e ˜M ∈ EndCob(∅)) which is
connected, a surgery presentation of ˜M is a C -colored ribbon graph T ∪ L ⊂ S3 such
that M is obtained from S3 by surgery on L and each component of L is colored by
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a Kirby color �α = ∑r−1
k=0 d(α + 1− r + 2k)Vα+1−r+2k of degree equal to the value

of the cohomology class on its meridian. Then, the invariant of ˜M is given by

Z( ˜M) = ηλm+nδ−σ F ′(L ∪ T ) (33)

where m ∈ N is the number of components of L , σ ∈ Z is the signature of the linking
matrix lk(L) and

δ = q− 3
2 e−i(s+1)π/4 where s is in {1, 2, 3} with s ≡ r mod 4, (34)

λ =
√
r ′

r2
, η = 1

r
√
r ′ . (35)

The invariant is extended multiplicatively for disjoint unions.

Lemma 5.5 Let ˜M be a closed decorated manifold then

Z( ˜M†) = Z( ˜M)

Proof If a framed link L gives rise via surgery to the manifold M , then the manifold
M may be constructed from L where L is the mirror image of L . It follows from the
conjugation on the underlying Hermitian category that F ′(L ∪ T †) = F ′(L ∪ T ).

If the linking matrix of L has signature σ , then the signature of the linking matrix
of L is −σ . Since λ and η are real and the modulus of δ is 1, the lemma follows. ��
Corollary 5.6 The pairing Cob(∅, ˜�) × Cob(∅, ˜�) → C, given by

( ˜M1, ˜M2) �→ Z( ˜M†
1 ◦ ˜M2) ∈ C

has Hermitian symmetry.

Proof This follows directly from Lemma 5.5. ��

5.3 The (2+ 1)-TQFT

Recall V0 is the simple projective module with highest weight r − 1 and C
H
kr (for

k ∈ Z) are the one-dimensional modules described in Sect. 2. Let̂Sk be the decorated
sphere defined in [2] colored with points U , where

U =
{

((V0, 1), (CH
kr , 1), (V0,−1)) if k �= 0,

((V0, 1), (V0,−1)) if k = 0.
(36)

Here, all modules are enhanced with their preferred Hermitian structure (see Sect. 4).
Now we define the state space associated to a decorated surface in the following

way:

V(˜�) = SpanC
{

HomCob(∅, ˜�)
}

/K
˜�

123



A Hermitian TQFT from a non-semisimple category of quantum… Page 25 of 27    74 

where K
˜� is the right kernel of the bilinear pairing given on generators

SpanC
{

Cob(˜�,∅)
} ⊗ SpanC

{

Cob(∅, ˜�)
} → C

[ ˜M1] ⊗ [ ˜M2] �→ Z( ˜M1 ◦ ˜M2)

V(˜�) =
⊕

k∈Z
Vk(˜�) where Vk(˜�) = V(˜� � ̂Sk).

These state spaces are part of a (2 + 1)-TQFT constructed in [2]. Since † :
Cob(∅, ˜�) → Cob(˜�,∅) is bijective, the pairing described in Corollary 5.6 descends
to a non-degenerate Hermitian pairing on the state spaces V(˜�) of the TQFT. For
details, see [2, Proposition 4.28, Definition 5.3].

Theorem 5.7 The TQFT (V, Z) is Hermitian. More specifically, for any decorated
surface ˜�, there is a non-degenerate Hermitian pairing

〈·, ·〉
V(˜�)

and for any y ∈ V(˜�−) and for any x ∈ V(˜�+), and for any decorated cobordism
˜M : ˜�− → ˜�+ between decorated surfaces, there is an equality

〈

x,V( ˜M)(y)
〉

V(˜�+)
=

〈

V( ˜M†)(x), y
〉

V(˜�−)
. (37)

Proof The fact that the pairing is non-degenerate and Hermitian follows from the
discussion above.

The equality (37) follows from the functoriality of the TQFT and Lemma 5.5. The
details follow as in [24, Theorem III.5.3]. ��

The mapping class group action in Cob is given through mapping cylinders: if f :
˜�1 → ˜�2 is a diffeomorphism, the mapping cylinder of f is the decorated cobordism
from�1 to�2 givenbyM f = (�2×[0, 1], {p2i }×[0, 1], f ×{0}�Id×{1}, π∗(ω2), 0).
The mapping cylinder construction is functorial: M f ◦ Mg = M fg .

Proposition 5.8 If f , M f are as above, M†
f = M f −1 . In particular, the TQFT V

induces projective representations of themapping class group in the group of indefinite
unitary matrices.

Proof The map f × (t �→ 1− t) : M f −1 → M†
f is an isomorphism, and thus, the two

cobordisms are equal in Cob. ��
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