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ABSTRACT
This paper solves the problem of runtime veri�cation for signal tem-
poral logic in distributed cyber-physical systems (CPS). We assume
a partially synchronous setting, where a clock synchronization al-
gorithm guarantees a bound on clock drifts among all signals. We
introduce a formula progression and a signal retiming technique
that allow reasoning about the correctness of formulas among
continuous-time and continuous-valued signals that do not share
a global view of time. The resulting problem is encoded as a satis-
�ability modulo theory (SMT) solving problem, and we introduce
techniques to solve the SMT encoding e�ciently. We also conduct
two case studies on monitoring a network of aerial vehicles and a
water distribution system.

CCS CONCEPTS
• Theory of computation! Automated reasoning; • Com-
puter systems organization! Embedded and cyber-physical
systems; • Computing methodologies! Distributed comput-
ing methodologies.
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1 INTRODUCTION
Cyber-physical systems (CPS) are making their way in masses into
our environment. With the advent of the Internet of Things (IoT)
and edge applications, CPS are particularly becoming distributed
over networks of agents. Examples of such multi-agent CPS include
networks of sensors in infrastructures, health-monitoring wear-
ables, networks of medical devices, and autonomous vehicles. CPS
generally have a safety-critical nature, hence, gaining assurance
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about their correctness is crucial. One way to gain such assurance
is by monitoring distributed CPS with respect to their formal spec-
i�cation in a systematic way. While there have been proposals
for monitoring temporal logics for distributed discrete-event sys-
tems (e.g., [12, 20, 22]), we currently lack a universal theory that
allows for monitoring distributed CPS with respect to sophisticated
speci�cation languages such as signal temporal logic (STL).

The challenge of monitoring distributed CPS stems from two
key characteristics. First, in CPS, signals are analog and consist of
an in�nite set of events which makes existing reasoning techniques
from the discrete-event distributed settings inapplicable. Second,
agents in distributed CPS often have independent local clocks that
may drift from each other over time. In fact, it is unclear when
exactly an in�nity of events are sequential or concurrent. Thus, the
notion of global time in centralized CPS does not hold anymore.

The above characteristics constitute the notionwe call distributed
signals, where reasoning about them demands establishing some
concept of serialization. However, building such serializations for
an in�nite number of events from multiple signals under clock
drifts at run time is currently an uncharted territory. For instance,
consider the water distribution system shown in Figure 1, where
multiple water tanks (located at di�erent o�site water distribu-
tion centers) supply water to a critical system in the event of an
emergency. The out�ow rate and pressure of these water tanks are
measured locally using local clocks that are subject to clock drift.
Now, if the compounded pressure and �ow rate of these tanks are
to be monitored, then a monitor must observe the values reported
by these tanks that happen to be timestamped by their respective
drifting local clocks. As the monitor only has access to the con-
tinuous signals representing the pressure and �ow rate of these
tanks that are (at best) partially synchronized, accurately assessing
these values becomes a challenging task indeed. If the �ow rate and
pressure have to remain under a certain threshold at all times, then
due to clock drift amongst the local clocks, it is possible to miss
values for which the threshold is breached.

In [19], the authors propose a technique for monitoring Boolean
predicates over a set of distributed signals. Our work in this paper
builds on [19] by extending monitoring Boolean predicates over
distributed signals to the full signal temporal logic (STL) [10]. To
this end, we �rst assume a partially synchronous setting, where a
clock synchronization algorithm guarantees a maximum bound Y on
clock drifts among all signals. This can be ensured by o�-the-shelf
algorithms such as NTP [17]. We incorporate the notion of signal
retiming introduced in [19] that allows aligning continuous-time
signals that do not share a global view of time. Assuming the bound
Y, the decision problem is to search for a retiming function that
results in violation of an input STL formula. If such a function does
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Figure 1: Hybrid dynamic cooling system with water tanks.

not exist, it implies that the distributed signals have not yet violated
the formula (it may or may not in the future).

In order to cope with the computational complexity, given a
distributed signal, we split the original signal into smaller signals
that we refer to as segments. The challenge here is that the result
of monitoring one segment should carry over to the next segment.
For example, consider STL formula i = [0,5] ? (which means
proposition ? should hold at all times in time interval [0, 5]) and
the current segment of signals that end at time 3. This means if ?
holds in the interval [0, 3], then the formula has to be rewritten
to i 0 = [0,2] ? for the second segment. Of course, such rewriting
can become challenging when the formulas have multiple nested
temporal operators with relative time intervals. To this end, we
propose a formula progression technique that takes as inputs an STL
formula and a �nite-time distributed signal f and returns an STL
formula i 0 such that for any extension f0, we have ff0 |= i if and
only if f0 |= i 0. We encode the resulting problem as a satis�ability
modulo theory (SMT) problem that searches for a retiming function
given the constraints of the current segment and STL formula. We
introduce techniques to solve the SMT encoding e�ciently.

We have fully implemented our approach on two distributed
CPS applications: monitoring of a (1) network of aerial vehicles
with respect to a set of properties such as mutual separation and
formation, and (2) a water distribution system with respect to the
property in which the out�ow pressure reaches above the threshold
pressure. The results show that in some cases, it is even possible to
monitor a distributed CPS su�ciently fast for online deployment.

Organization. In Section 2, we present the background concepts
on STL and distributed signals. Section 3 formally states the moni-
toring problem. Our formula progression technique for STL and the
SMT formulation are introduced in Sections 4 and 5, respectively.
We evaluate our approach through case studies and experiments in
Section 6. Finally, we make concluding results and discuss future
work in Section 7. All proofs appear in the appendix.

1.1 Related Work
There is extensive literature on runtime monitoring of CPS where
perfect time synchrony is assumed. In [9] the authors propose tech-
niques for online monitoring of STL [10]. A predictive monitoring
approach is explored in [8] that requires knowledge on the full
system model. In [13] monitoring is done by assuming worst-case
bounds on signal values. The e�ects of timing inaccuracies on sat-
isfaction of temporal properties is studied in [1, 25]. A minimally
intrusive CPS monitoring approach is studied in [16].

In [5, 18] approaches for Lattice-theoretic centralized and de-
centralized online predicate detection in discreet-event distributed
systems are reported. This is extended to include temporal oper-
ators in [20, 22]. A method for monitoring safety properties in
distributed systems using the past-time LTL is proposed in [26].
Finally, runtime monitoring of LTL formulas for synchronous dis-
tributed systems has been studied in [2, 6, 7].

In the context of monitoring partially synchronous systems,
in [29] the feasibility of monitoring partially synchronous dis-
tributed systems in order to detect latent bugs was �rst investigated.
This technique was later generalized to full LTL in [12], where the
presence of latent bugs are detected using SMT solvers in a dis-
crete setting. A tool for identifying data races in distributed system
traces is introduced in [24] for handling non-deterministic discrete
event orderings. However, these approaches cannot fully capture
the continuous-time and continuous-valued behavior of CPS. Our
work is closer to [19] where the authors propose a technique to
monitor predicates on a partially synchronous distributed system
by retiming continuous signals. While this approach improves mon-
itoring e�ciency by levering knowledge about system dynamics,
it is limited to only being able to monitor predicates, and cannot
capture temporal behavior.

2 PRELIMINARIES
We denote the set of reals as R, the set of non-negative reals as
R+, and the set of positive reals as R⇤+. The set of natural numbers
{1, . . . ,# } is abbreviated as [# ]. Global (hypothetical) time values
are denoted by j , j 0, etc, while C , C 0, C1, C2, B, B0, B1, B2, etc, denote
local clock values speci�c to given signals/agents.

2.1 Signal Model
De�nition 2.1. An output signal (of some agent �) is a function

G : [0,1] ! R3 , which is right-continuous, left-limited, and is not
Zeno. Here, [0,1] is an interval in R+, and will be referred to as the
timeline of the signal.

Without loss of generality, we assume that G is one-dimensional,
i.e.,3 = 1. Right-continuitymeans at all C in its support, limB!C+ G (B) =
G (C) . Left-limitedness means the function has a �nite left-limit at
every C in its support: limB!C� G (B) < 1. Not being Zenomeans that
G has a �nite number of discontinuities in any bounded interval in
its support. A discontinuity in a signal G (·) can be due to a discrete
event internal to agent � (like a variable updated by software).

We consider a loosely coupled system consisting of # agents that
do not fail, denoted by {�1, . . . ,�# }, without any shared memory
or global clock. The output signal of agent �= is denoted by G= , for
= 2 [# ]. We refer to some global clock which acts as a ‘real’ time-
keeper. However, this global clock is a hypothetical object used in
de�nitions and theorems. We make the following assumption:

Partial synchrony. The local clock (or time) of an agent �= can
be represented as an increasing function 2= : R+ ! R+, where
2= (j) is the value of the local clock at global time j . Then, for
any two agents �= and �< , where <,= 2 [# ], we have 8j 2
R+ .|2= (j) � 2< (j) | < Y, where Y 2 R⇤+ is the maximum clock skew,
that is assumed �xed and known by the monitor. In the sequel,
we make it explicit when we refer to ‘local’ or ‘global’ time. This
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assumption is met by using a clock synchronization algorithm, such
as NTP [17], to ensure bounded clock skew among all agents.

In the discrete-time setting, an event is a value change in an
agent’s variables. We now update this de�nition for the continuous-
time setting. Speci�cally, in an agent�= , an event is a pair (C, G= (C)),
where C is the local time (i.e., returned by function 2= de�ned above).

A distributed signal is modeled as a set of signals, where events
in each signal are partially ordered by a variation of the happened-
before ( ) relation [14], extended by our assumption (A1) on bounded
clock skew among all agents. The following de�nes a continuous-
time/value distributed signal under partial synchrony.

De�nition 2.2. A distributed signal on # agents is a pair (⇢, ),
where ⇢ = (G1, . . . , G# ) is a vector of signals and is a relation
between events in signals such that for any bounded non-empty
interval �= :
(1) In any signal G= , all events are totally ordered, that is, for all = 2

[# ], for any C, C 0 2 �= , if C < C 0, then (C, G= (C))  (C 0, G= (C 0)).
(2) If the time between any two events is more than the maximum

clock skew Y, then the events are totally ordered, that is, for
all <,= 2 [# ], for any C 2 �= and C 0 2 �< , if C + Y < C 0, then
(C, G= (C))  (C 0, G< (C 0)).

𝐶′

𝐶

3

2.3

1

3.1

2.94

1.5

𝐴1 𝐴2

Figure 2: Two partially syn-
chronous concurrent time-
lines with Y = 0.1.

In De�nition, 2.2, the classic
case of complete asynchrony is
achieved by setting Y = 1. The
restrictions on �= (bounded and
non-empty) are necessary in the
continuous-time setting and will
be revisited in the next section.
As the agents are synchronized
within Y, it is not possible to eval-
uate all signals at the same mo-
ment in global time. The notion
of consistent cut, de�ned next,
captures possible global states.
We borrow the notion of con-
sistent cuts from [4], and modify it to �t continuous signals.
Figure 2 shows two partially synchronous concurrent timelines
generated by two agents. Every moment in each timeline cor-
responds to an event (C, G= (C)), = 2 [2]. Thus, the following
hold: (1, G1 (1))  (2.3, G1 (2.3)), (2.3, G1 (2.3))  (2.94, G2 (2.94)),
(1.5, G2 (1.5))  (2.94, G2 (2.94)), and (2.94, G2 (2.94)) 6 (3, G1 (3)).

De�nition 2.3. Let (⇢, ) be a distributed signal over # agents,
and ( = {(C, G= (C)) | G= 2 ⇢ ^ C 2 �= ^ �= ✓ R+} be the set
of all events. A set ⇠ ✓ ( is a consistent cut if and only if when
⇠ contains an event 4 , then it contains all events that happened
before 4 . Formally, 84, 5 2 ( . (4 2 ⇠) ^ (5  4) ) (5 2 ⇠).

From this de�nition andDe�nition 2.2, it follows that if (C 0, G= (C 0))
is in ⇠ , then ⇠ also contains every event (C, G< (C)) s.t. C + Y < C 0.
Due to time asynchrony, at any global time j 2 R+, there exists
in�nite number of consistent cuts denoted by C(j). This is due to
the existence of an in�nite number of time instances between any
two local time instances C1 and C2 on some signal G . Therefore, an
in�nite number of consistent cuts can be constructed. A consistent
cut ⇠ can be represented by its frontier:

front(⇠) = {(C1, G1 (C1)), . . . , (C# , G# (C# ))},

in which each (C=, G= (C=)), where 1  =  # , is the last event
of agent �= appearing in ⇠ . Formally, 8= 2 [# ] . (C=, G= (C=)) 2
⇠ and C= = max{C 2 �= | 9(C, G= (C)) 2 ⇠}. In Fig. 2 where Y = 0.1,
all events below the solid arc form a consistent cut ⇠ with frontier
front(⇠) = {(3, G1 (3)), (2.94, G2 (2.94))}. On the other hand, all
events below the dashed arc do not form a consistent cut since
(2.3, G1 (2.3))  (3.1, G2 (3.1)) and (3.1, G2 (3.1)) is in the set⇠0, but
(2.3, G1 (2.3)) is not in ⇠0.

2.2 Signal Temporal Logic (STL) [15]
Let AP be a set of atomic propositions. We assume signal temporal
logic (STL) formula to be in the negation normal form. The syntax
for STL is de�ned for in�nite signals using the following grammar:

i := ? | ¬? | i ^ i | i _ i | i U[0,1 ] i | i R[0,1 ] i

where ? 2 AP, and U (resp., R ) is the ‘Until’ (resp., ‘Release’)
temporal operator. We view other propositional and temporal op-
erators as abbreviations, that is, > = ? _ ¬? (true), ? = ? ^ ¬?
(false), [0,1 ] i = >U [0,1 ]i (eventually), [0,1 ] i = ?R [0,1 ]i
(always). We denote the set of all STL formulas by �STL.

Let a trace f = (G1, . . . , G# ) be a vector of # continuous-time
and continuous-valued signals. In the context of STL, we express
? as 5 (G1 [C], . . . , G= [C]) > 0, where (G1 [C], . . . , G= [C]) 2 R= is a
vector of signal values at time C , and 5 : R= ! R is a function that
evaluates a vector of signal values.

The in�nite-trace semantics of STL is de�ned as follows. Let |=
be the satisfaction relation, and the satisfaction of formula i by a
trace f at time C be:
(f, C) |= ? i� 5 (G1 [C], . . . , G= [C]) > 0
(f, C) |= ¬? i� 5 (G1 [C], . . . , G= [C])  0
(f, C) |= i ^k i� (f, C) |= i and (f, C) |= k
(f, C) |= i _k i� (f, C) |= i or (f, C) |= k
(f, C) |= iU [0,1 ]k i� 9C 0 2 [C + 0, C + 1] : (f, C 0) |= k and

8C 00 2 [C, C 0) : (f, C) |= i
(f, C) |= i R [0,1 ]k i� 9C 0 2 [C + 0, C + 1] : (f, C 0) |= i and

8C 00 2 [C, C 0) : (f, C 00) |= k

?

@

0 4.5 6
C

>
?
>
?

Figure 3: A trace f generated by a
system.

Also, f |= i holds if
and only if (f, 0) |= i
holds. For example, given
the trace f shown in
Fig. 3, the STL formula
i = ?U [4,6.5]@ holds at
time 0, that is, f |= i .
However,i does not hold
after time 2, as in that
case, @ must hold after
time 2 + 4 and before 2 + 6.5, which does not happen.

A subtlety is that a distributed signal ⇢ is de�ned to be of �nite
duration (�= are bounded), which suits the online monitoring setup,
while the STL semantics are over in�nite signals. This is handled
in the classical manner: given a (fully synchronous) �nite duration
signal G , we say it satis�es/violatesi i� every extension (G .~), where
~ is an in�nite signal, satis�es/violates i . Otherwise, the monitor
returns Unknown. Here, the dot ‘.’ denotes concatenation in time.

Communication between nodes necessarily involves sampling
the analog signal, transmitting the samples, and reconstructing
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the signal at the receiving node. Our objective is to monitor the
reconstructed analog signals. This is di�erent from monitoring a
discrete-time signal consisting of the samples – the applications
we target are concerned with the value of the signal between sam-
ples, and potential violations they reveal. Methods for signal trans-
mission, including sampling and reconstruction, are standard in
communication theory. Errors due to sampling and reconstruction
(say, because of bandwidth limitations) can be accounted for by
strictifying the STL formula using the methods of [11]. The choice
of reconstruction algorithm is application-dependent and follows
domain knowledge. In this paper, for simplicity and without loss of
generality, we assume that every output signal G= is reconstructed
as piece-wise linear between the samples. This ensures violations
can be detected from the piece-wise linear interpolations even if
no violations are detected on the samples.

3 PROBLEM STATEMENT
As distributed agents are partially synchronized within Y clock skew,
a monitoring algorithmmust explore all (in�nite) possible reachable
consistent cuts. We call the progress of consistent cuts over time
a consistent cut �ow. Our objective is to determine whether there
exists some �ow of moments that are within Y of each other for
which at least one reachable consistent cut results in violation of a
given STL formula. This intuition is formalized below, starting with
the notion of a consistent cut �ow.

De�nition 3.1 (Consistent cut �ow). Let (⇢, ) be a distributed
signal over # agents with time interval [0,1], and ( be the set of all
events over ⇢. A consistent cut �ow is a function ccf : [0,1] ! 2(
that maps each time j 2 [0,1] to the frontier of a consistent cut
at time j ; i.e., ccf (j) 2 {front(⇠) | ⇠ 2 C(j)}. For each time
j 0 2 [0,1], and for each = 2 [# ], if j < j 0, then for all events
(2= (j), G= (2= (j))) 2 ccf (j), and for all events (2= (j 0), G= (2= (j 0))) 2
ccf (j 0), (2= (j), G= (2= (j)))  (2= (j 0), G= (2= (j 0))) hold.

G1

G2

G3

2

1

3

ccf (0)

3

2

4

ccf (1.5)

3

3

4

ccf (3)

Figure 4: A valid ccf for the for-
mula⌧ [0,3] (G1 + G2 + G3  10) .

Notice that a consistent
cut �ow induces a vector of
# signals that are fully syn-
chronized, and thus, can be
veri�ed against an STL for-
mulai at time C as (ccf, C) |=
i using the standard seman-
tics described in Section 2.2.
That is, for a consistent cut
�ow ccf on (⇢, ), individ-
ual signals (G 01, . . . , G 0# ) can be constructed, such that, for all
1  8  # and for all j 2 [0,1], if (28 (j), G8 (28 (j))) 2 ccf (j),
then G 08 (j) = G8 (28 (j)). For example, let (⇢, ) be a distributed
signal consisting of signals G1, G2, and G3 as shown Fig. 4. For an
STL formula [0,3] (G1 + G2 + G3  10), ccf is a valid consistent
�ow on (⇢, ). Note that a distributed signal (⇢, ) encodes un-
countably in�nite consistent cut �ows. Let us denote the set of all
consistent cut �ows by CCF . Our decision problem consists of
determining whether there is a violation of a given STL formula by
some consistent cut �ow.

De�nition 3.2 (Distributed satisfaction). Let i be an STL formula,
(⇢, ) be a distributed signal over # agents and CCF be the set of

all induced consistent cut �ows. We say that ((⇢, ), 0), or simply
(⇢, ) satis�es i , i� for each f 2 CCF , we have f |= i .

Problem Statement

Given maximum clock skew Y > 0, a distributed sig-
nal (⇢, ) over # agents, and an STL formula i , decide
whether there exists a consistent cut �ow f 2 CCF where
f 6|= i .

4 MONITORING ALGORITHM SKETCH
In this paper, we assume the monitor receives output signals from
G= as piece-wise linear signals (this is by choice and other forms
of discretization will not change the core monitoring algorithm).
This transmission happens in segments of length) : at the : th trans-
mission, agent �= transmits G= | [ (:�1)) ,:) ] , the restriction of its
output signal to the interval [(: � 1)) ,:) ] as measured by its local
clock. In the rest of this paper, we refer exclusively to the signal
fragments received by the monitor in a given transmission.

We now revisit the restriction placed on �= in De�nition 2.2,
namely, that the monitor only deals with non-empty bounded sig-
nal fragments G= | [ (:�1)) ,:) ] , therefore, �= = [(: � 1)) ,:) ] for
every agent at the :C⌘ transmission, measured in local time. By the
bounded skew assumption, we have:

L���� 4.1 (B������ ���� �����). For any two agents �=,�<
with intervals �= = [min �=,max �=] and �< = [min �<,max �<],
|min �= �min �< |  Y and |max �= �max �< |  Y.

Since online monitoring happens in segments, at the end of each
segment the monitor either returns > (formula already satis�ed), ?
(already violated), or unknown, and the next segment is processed.
For simplicity, our solution employs a central monitor. Our moni-
toring algorithm involves three key ideas: (1) formula progression,
(2) signal retiming, and (3) SMT-based implementation, explained
in Sections 4.1 – 4.3, respectively.

4.1 Formula Progression
Let i be an STL formula and (⇢, ) be a distributed signal. Without
loss of generality, let this signal be split into two segments: pre�x
(⇢1, ) and su�x (⇢2, ), that is, (⇢, ) = (⇢1⇢2, ). Thus, the
monitor �rst evaluates i on (⇢1, ). If the verdict yields true or
false, then this verdict is returned and monitoring for (⇢, ) is al-
ready complete. Otherwise, the monitor computes a new progressed
formula i 0 which will be evaluated for segment (⇢2, ).

De�nition 4.2 (Formula progression). Let (⇢1, ) be a �nite dis-
tributed signal starting at time 0 whose duration is denoted by
| (⇢1, ) |, and (⇢2, ) be a �nite or in�nite extension of (⇢1, ).
We say STL formula i 0 is a progression of STL formula i for (⇢1, )
if and only if ((⇢1⇢2, ), 0) |= i , ((⇢2, ), 0) |= i 0.

It stands to reason that if ((⇢1, ), 0) |= i (resp., ((⇢1, ), 0) 6|=
i), then the progression of i is trivially i 0 = > (resp., i 0 = ?).

4.2 Signal Retiming
Recall that signals are measured using their local clocks. Since the
signals in our setting are partially synchronized within an Y, it is not
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possible to evaluate all signals at the same moment in global time.
Rather, the best a monitor can do is explore all valid alignments of
the concurrent local moments (i.e., those moments that are within
Y of each other) and determine whether at least one such alignment
violates the formula. This intuition is formalized below, starting
with the notion of a retiming function borrowed from [19] that
establishes the happened-before relation in the continuous-time
setting, and stretches or compresses signals to align them with each
other within the Y clock skew bound.

De�nition 4.3 (Retiming functions). A retiming function (or retim-
ing) is an increasing function d : R+ ! R+. An Y-retiming is a retim-
ing where8C 2 R+ : |C�d (C) | < Y . Given a distributed signal (⇢, )
over # agents and two agents �8 , � 9 , where 8, 9 2 [# ], a retiming
d from � 9 to �8 respects if we have ((C, G8 (C))  (C 0, G 9 (C 0))),
then (C < d (C 0)) for any two events (C, G8 (C)), (C 0, G 9 (C 0)) 2 ⇢. An
Y-retiming that respects is a valid retiming.

A valid retiming formalizes the notion of alignment of timelines:
given two Y-synchronous timelines C and B (on two agents), we treat
moments C and B = d (C) as being simultaneous. Thus, the signal
G (C) = [G1 (C), G2 (d (C))] is now a fully synchronous signal. An Y-
retiming d maps R+ to itself, but the restriction of d to a bounded
interval � is an increasing function from � to d (� ) that respects the
constraint |C � d (C) | < Y for all C 2 � . Thus, we restrict our attention
to Y-retimings on bounded intervals. Between 2 agents, we need
one retiming d : �2 ! �1, and between # agents, we need # � 1
retimings �= ! �1. In general there is an in�nity of valid retimings,
any of which might reveal a potential violation. The next theorem
establish the fundamental condition on Y-retimings among agents
and violation of an STL formula.

T������ 4.4. Given a distributed signal (⇢, ) over # agents,
and an STL formula i with time interval [0,1], there exists a violation
at time C 2 R+, if and only if there exists # � 1 Y-retimings d= : �= !
�1 that respect , where 2  =  # , such that:⇣ �

G1, G2 � d�12 , . . . , G# � d�1#
�
, C
⌘
6|= i (1)

Here, d�1< � d= : �= ! �< is an Y-retiming for all = < <, and ‘�’
denotes the function composition operator, where given two functions
5 and 6, ⌘ = 6 � 5 such that ⌘(G) = 6(5 (G)).

4.3 SMT Encoding
We solve the monitoring problem by transforming it into an in-
stance of the satis�ability modulo theory (SMT). Speci�cally, we ask
whether there exists # � 1 retimings, such that (1) holds; equiv-
alently, whether there exists a consistent cut �ow that witnesses
satisfaction of ¬i . That is, the distributed signal violates i i� the
following SMT problem is satis�able. This transformation to SMT
solving is the focus of the next section.

5 SMT-BASED MONITORING ALGORITHM
The SMT formulation part of our solution is constructed by en-
coding both formula progression and signal retiming into a single
SMT-solving problem, and then solving it using an SMT-solver.
First, we de�ne the SMT entities and constraints, then demonstrate
our monitoring approach with two complete examples. In both
examples, we consider a distributed signal (⇢, ) comprised of

two individual 10 time unit long signals G1 and G2, generated by
agents �1 and �2 respectively, with a clock skew bound Y = 1. Our
running examples involve monitoring formulas ¬i1 = [0,10] ?
and ¬i2 = [0,10] (? ^ [0,5] ¬@).

5.1 SMT Entities
In our encoding,# signals and time intervals are de�ned in the same
fashion as the mathematical representation in previous sections. We
also include d= retiming functions, where 2  =  # , a consistent
cut �ow function ccf as an uninterpreted function, and real numbers
C , B , and j . Identifying interpretations of these functions will be
the output SMT solving and, hence, the verdict of monitoring. The
sampled signal values are constants in the encoding that are known
to the monitor: {G= (C=) | C= 2 �=}.

5.2 SMT Constraints – Single Segment
Recall from Section 3 that (ccf, C) |= ? denotes a consistent cut �ow
at time C on signals (G 01, . . . , G 0# ) satis�es the atom ? . To express this
as an SMT problem, we encode (ccf, C) |= ? as 5 (G 01 [C], . . . , G 0= [C]) >
0, where (G1 [C], . . . , G= [C]) 2 R= is a vector of signal values at time
C , and 5 : R= ! R is a function that evaluates a vector of signal
values. The SMT constraints are primarily comprised of (1) a set
of constraints that ensures valid consistent cut �ow, (2) a set of
constraints that �nd violation, and (3) a set of constraints that
enforce valid retimings under a given clock skew.

Consistent cut �ow constraints. In order to ensure that ccf iden-
ti�es a valid consistent cut �ow on (⇢, ) over time interval [0,1],
�rst we de�ne the happened-before ( ) notation in SMT according
to De�nition 2.2, and ensure that the events in the consistent cuts
mapped by ccf respect the happened-before relation:

SMT flow1 =8j 2 [0,1] . 8(C=, G= (C=)), (C 0=, G= (C 0=)) 2 ⇢ .⇣ �
(C 0=, G= (C 0=))  (C=, G= (C=))

�
^

�
(C=, G= (C=)) 2 ccf (j)

� ⌘

)
⇣
(C 0=, G= (C 0=)) 2 ccf (j)

⌘
.

And that the consistent cuts mapped by ccf always increase and
never intersect:

SMT flow2 = 8j, j 0 2 [0,1] . 8= 2 [# ] .
⇣
j < j 0 ) 2= (j) < 2= (j 0)

⌘
.

Thus, the SMT constraint for consistent cut �ow is the following:

SMT flow = SMT flow1 ^ SMT flow2 .

Retiming constraints over ccf. We ensure d is a Y-retiming from
�2 to �1:

SMT retime1 =8j 2 [0,1] . 822 (j) 2 �2 . 921 (j) 2 �1 .⇣
d (22 (j)) = 21 (j)) ^ ( |21 (j) � 22 (j) | < Y

⌘
And that d is always increasing:

SMT retime2 =8j, j 0 2 [0,1] . 822 (j), 22 (j 0) 2 �2 .⇣
22 (j) < 22 (j 0) ) d (22 (j)) < d (22 (j 0))

⌘
When there are more than 2 agents , we must also encode the
constraint that for all = <<, d�1< � d= is an Y-retiming. Thus, for all
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U [0,1]

i k

98 2 [0,1]

89 2 [0, 8] (f, 8) |= k

(f, 9) |= i

(a) i U [0,1 ]k

R [0,1]

i k

98 2 [0,1]

(f, 8) |= i 89 2 [0, 8]

(f, 9) |= k

(b) i R [0,1 ]k

[0,1] 88 2 [0,1]

i (f, 8) |= i

(c) [0,1 ] i

[0,1] 98 2 [0,1]

i (f, 8) |= i

(d) [0,1 ] i

¬ ¬

? (f, 9) |= ?

(e) ¬?

Figure 5: Conversion of STL syntax trees to their corresponding
SMT syntax tree.
= <<, denoting 5< as the uninterpreted function that represents
the inverse of the uninterpreted 2< :

SMT retime3 = 8C 2 �= . 5< (d= (C)) = C

Thus, the SMT constraint for signal retiming if the following:

SMT retime = SMT retime1 ^ SMT retime2 ^ SMT retime3 .

Constraints for the STL formula. Let Wi be the syntax tree repre-
sentation of an STL formula i , where each internal node represents
an operator, and each leaf node represents an atomic proposition.
We convert Wi to its SMT syntax tree representation gi . An SMT
syntax tree gi is a tree obtained from an STL syntax tree Wi by
replacing each temporal operator in the non-leaf node of Wi with
its corresponding SMT encoding. In gi as well, each leaf represents
an atomic proposition. The purpose of converting an STL formula i
to its SMT syntax tree representation gi is to be able to easily ma-
nipulate the syntax tree and parse its corresponding SMT encoding.
Figure 5 shows the process of converting all �ve subtrees with STL
operators to their corresponding SMT syntax tree representations.
For nested formulas, this process is done for every formula in the
STL syntax tree, starting from the root of the tree.

For example, Figs. 6a and 6b show creating SMT syntax trees of
¬i1 and ¬i2 using the technique shown in Fig. 5. Let g¬i1 (resp.,

[0,10] 98 2 [0, 10]

? (f, 8) |= ?

(a) ¬i1 = [0,10] ?

[0,10]

^

? [0,5]

¬

@

98 2 [0, 10]

^

(f, 8) |= ? 89 2 [0 + 8, 5 + 8]

¬

(f, 9) |= @

(b) ¬i2 = [0,10] (? ^ [0,5] ¬@)

Figure 6: SMT syntax tree of STL formulas ¬i1 and ¬i2.

g¬i2 ) be the SMT syntax trees created from ¬i1 (resp., ¬i2). Let us
�rst consider the case where the monitor has the whole distributed
signal (⇢, ) (i.e., no segmentation). The case of a segmented signal
will be handled by formula progression explained in Section 5.3.
Thus, we keep the SMT syntax trees unchanged and we denote the
corresponding SMT constraint by SMTgi . From Fig. 6a, for ¬i1, the
distributed signal (⇢, ), and the SMT syntax tree g¬i1 , we have:

SMTg¬i1 = 98 2 [0, 10] .((ccf, 8) |= ?) .
Recall from the beginning of this section ‘(ccf, 8) |= ?’ is replaced
with the 5 (.) > 0 in the SMT constraint. For ¬i2, we have:
SMTg¬i2 = 98 2 [0, 10] .((ccf, 8) |= ? ^ 89 2 [0+8, 5+8] (¬((ccf, 9) |= @))) .

Putting everything together. The �nal SMT constraint is the
following:

FinalSMT = SMT flow ^ SMT retime ^ SMTg¬i .

Obviously, since there is logical equivalence between an STL
formula i and its corresponding SMT encoding SMTgi , for any
given a distributed signal (⇢, ) over # agents, we have (⇢, ) 6|=
i if and only if FinalSMT is satis�able (assuming all time intervals
of temporal operators are within [0, | (⇢, ) |]).

5.3 Formula Progression
We now consider the case where the monitor does not have the en-
tire distributed signal and receives it in segments, or, time intervals
of some temporal operators are not within [0, | (⇢, ) |]. Given a
segment (⇢, ) and formula i , our goal is to obtain a progressed
formula i 0 such that any (�nite or in�nite) extension (⇢0, ) will
be evaluated for i 0.

We de�ne function ⇤, that takes as input an SMT syntax tree
gi and a segment duration | (⇢, ) | and returns as output (see
Algorithm 1) an SMT syntax tree g 0i = ⇤(gi , | (⇢, ) |). We construct
an SMT syntax tree g 0i`

from g 0i such that the following properties
hold:
• The root of g 0i`

is the topmost (and leftmost if there are two)
node of g 0i which has a quanti�er label.

• For every subsequent nodes, in g 0i`
, if the node = has the label

^ or _ with children labelled with quanti�ers, remove the node
and only keep the left child by doing =.?0A4=C = =.;4 5 C2⌘8;3 .
As examples, let us partition the SMT syntax trees in g¬i1 (Fig. 6a)

and g¬i2 (Fig. 6b) at time C = 5 using Algorithm 1. For g¬i1 , since
the starting node =g , which is the root node in this case, is labelled
‘98 2 [0, 10]’, we create a node =0g and label it ‘_’ (line 9). Now
we create two copies of the tree at =g , change the ranges to ‘[0, 5)’
(resp., ‘[5, 10]’), and attach them to left (resp., right) children of
=0g (lines 10 to 13). =0g is our new =g (line 17). Now, we repeat the
process for each child of =g . However, as none of the children nodes
are labelled with quanti�ers, g 0¬i1 = =g is our desired partitioned
tree from g¬i1 at time C = 5, shown in Fig. 7a. Following the same
process, we get g 0¬i2 as our partitioned tree from g¬i2 at time C = 5,
shown in Fig. 7b.

L���� 5.1 (SMT ��������� ���� �����). Let (⇢, ) be a dis-
tributed signal and i be an STL formula. FinalSMT for (⇢, ) and gi



Monitoring STL in Distributed CPS ICCPS ’23, May 9–12, 2023, San Antonio, TX, USA

Algorithm 1: Function ⇤

Data: SMT syntax tree gi , partition time C
Result: SMT syntax tree g 0i

1 Let A>>Cg be the root node of gi and =g be a node
2 Function PartitionTree(=g ):
3 if =g has a quanti�er with range ‘[0,1 ]’ then
4 if 0 < C  1 then
5 Let =0g be an empty node
6 if =g has quanti�er ‘8’ then
7 Label =0g as ‘^’
8 if =g has quanti�er ‘9’ then
9 Label =0g as _

10 =0g .le�child  copy subtree rooted at =g
11 Set ‘[0,min(1, C ) ) ’ as the quanti�er range of =0g .;
12 =0g .rightchild  copy subtree rooted at =g
13 Set ‘[max(0, C ),1 ]’ as the quanti�er range of =0g .A
14 if =g < A>>Cg then
15 =g .?0A4=C .2⌘8;3  =0g
16 else
17 =g  =0g

18 foreach =g .2⌘8;3 in =g do
19 PartitionTree(=g .2⌘8;3)

20 return PartitionTree(rootg )

is satis�able if and only if FinalSMT for (⇢, ) and ⇤(gi , | (⇢, ) |)
is sati�able.

Given a distributed signal (⇢0, ) and an STL formula i , the
following theorem shows that the subtree g 0i`

of ⇤(g¬i , | (⇢, ) |)
allows computing the progressed formula by discharging g 0i`

.

T������ 5.2 (P������ ���������� �������). Let (⇢, ) be
a distributed signal and i be an STL formula. It is the case that
(⇢, ) |= i` if and only if FinalSMT for (⇢, ) and g 0i`

is satis�able.

Simply evaluating FinalSMT for (⇢, ) and g 0i`
is not enough, as

we must ensure that there is no loss of information when modifying
g 0i using the said evaluation results. For example, in Fig. 7b, Since
(f, 92) |= ¬@ cannot be evaluated on the �rst segment, �nding only
one value of 81 in this segment may lead to loss of information,
as this may ignore other valid values of 81 that are required to
evaluated (f, 92) |= ¬@ on the next segment.

Note that any modi�cation to g 0i would naturally occur only
in its g 0i`

subtree. To this end, we de�ne a function h, that takes
as inputs an SMT syntax tree g 0i`

and a distributed signal (⇢, ),
and returns an SMT syntax tree g 0ih , such that, upon replacing g 0i`

with g 0ih in g 0i , g 0i can su�ciently evaluate (⇢0, ). In other words,
the STL representation of g 0i becomes the desired progression of
i on (⇢, ). However, before de�ning h, we specify the following
shorthand notations we will be using throughout its de�nition:
• ‘gi = ?’: The root of the tree gi is labelled ? 2 AP.
• gi = gi1-gi2 , where - = {^,_} : The root of the tree gi is
labelled - , and it has two children gi1 and gi2 .

• gi = [0,1 ] gk : The root of the tree gi contains label 88 2 [0,1],
and it has a child gk .

• gi = [0,1 ] gk : The root of the tree gi contains label 98 2 [0,1],
and it has a child gk .

• ((⇢, ), C) |= gi : At time instance C , FinalSMT for (⇢, ) and
gi is satis�able.

Now we de�ne h in a case-by-case manner for the relevant STL
operators:

Atomic propositions. Let gi` = ? for some ? 2 AP. We have:

h ((⇢, ), gi` ) =
(
> if ((⇢, ), 0) |= ?

? otherwise

Conjunction. Let gi` = gi`1
^ gi`2

. We have:

h ((⇢, ), gi` ) = h ((⇢, ), gi`1
) ^ h ((⇢, ), gi`2

)

Disjunction. Let gi` = gi`1
_ gi`2

. We have:

h ((⇢, ), gi` ) = h ((⇢, ), gi`1
) _ h ((⇢, ), gi`2

)

Always operator. Let gi` = gi 0̀ . In this case, the transformation
of gi` is fairly straightforward:

h ((⇢, ), gi` ) =
(

[0,1 ] gi 0̀ if 8: 2 [0,1] .((⇢, ),:) |= gi 0̀

? if 9: 2 [0,1] .((⇢, ),:) 6|= gi 0̀

Eventually operator. Let gi` = gi 0̀ . In this case, instead of
�nding a single time instance where FinalSMT for (⇢, ) and gi 0̀ is
satis�able, a valid range [:,1] must be identi�ed, where : 2 [0,1]
is the earliest time instance where FinalSMT for (⇢, ) and gi 0̀ is
satis�able:

h ((⇢, ), gi` ) =
(

[:,1 ] gi 0̀ if argmin:2 [0,1 ] (((⇢, ),:) |= gi 0̀ )
? if 8: 2 [0,1] .((⇢, ),:) 6|= gi 0̀

R����� 1. Since Until (Fig. 5a) and Release (Fig. 5b) operators are
expressed using existential and global quanti�ers in SMT syntax trees,
the de�nition of h does not need cases for them.

Now thatwe have de�nedh, we state the necessary steps required
to compute the progression of some STL formula i on a distributed
signal (⇢, ) as follows:
• First, we create the SMT syntax tree gi that corresponds to the

STL formula i using the methods detailed in Fig. 5. As examples,
let us consider the SMT syntax trees for the STL formulas, ¬i1 =

[0,10] ? (Fig. 6a) and ¬i2 = [0,10] (? ^ [0,5] ¬@) (Fig. 6b).
• Next, we partition gi at time | (⇢, ) | using Algorithm 1, and
obtain g 0i = ⇤(gi , | (⇢, ) |), such that gi` is the subtree in gi
that can be evaluated on (⇢, ). In our example, we consider
the case where the monitor only has the �rst 5 time units, that is,
| (⇢, ) | = 5. Fig. 7a (resp., Fig. 7b) shows the partitioned SMT
syntax tree for Fig. 6a (resp., Fig. 6b) at time instance | (⇢, ) | = 5
with subtrees g 0¬i1`

(resp., g 0¬i2`
) that can be evaluated on (⇢, ).

• Finally, we partially evaluate i on (⇢, ) by transforming g 0i`

to g 0ih = h ((⇢, ), g 0i`
). The STL representation of this new SMT

syntax tree g 0i is our desired progression of i on the extension
of (⇢, ). In our �rst example, ¬i1? is of the form [0,5] ¬i 01? .
Now, let us assume that ? is never true in (⇢, ). In that case,
according to the rules speci�ed for h, The label of the root of
g 0¬i1`

stays unchanged, and the child becomes false. Therefore,
the progression becomes ( [0,5] false) _ ( [5,10] ?), which is,

[5,10] ? upon simpli�cation. In our second example, ¬i2? is of
the form [0,5] ¬i 02? . Now, let us assume that the minimum 8
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_

982 2 [5, 10]981 2 [0, 5)

(f, 82) |= ?(f, 81) |= ?

g0¬i1`

(a) Partitioned SMT syntax tree of Fig. 6a for g 0¬i1 .

_

981 2 [0, 5) 982 2 [5, 10]

^ ^

(f, 81) |= ? ^ (f, 82) |= ? 893 2 [82, 5 + 82]

891 2 [0 + 81, 5) 892 2 [5, 5 + 81]

(f, 91) |= ¬@ (f, 92) |= ¬@

(f, 93) |= ¬@

g0¬i2`

(b) Partitioned SMT syntax tree of Fig 6b for g 0¬i2 .

Figure 7: Examples of partitioned SMT syntax tree of STL formulas
¬i1 and ¬i2 at C = 5.

for which 98 2 [0, 5) ((((⇢, ), 8) |= ?) ^ (89 2 [8 + 0,min(8 +
5, 5)] (((⇢, ), 8) |= ¬@))) is satis�ed at time 3.5. In that case,
according to the rules speci�ed for h, The label of the root of
g 0¬i2`

is changed to 981 2 [3.5, 5). Therefore, the progression
becomes ( [3.5,5) ( [0,5] ¬@)) _ ( [5,10] (? ^ ( [0,5] ¬@))).

6 CASE STUDIES AND EVALUATION
In this section, we evaluate our algorithm for monitoring STL speci-
�cations on distributed signals using two case studies. The source
codes related to our experiments can be found at: https://github.
com/A-N-I-K/CPS_STL_Prog_RE_Package.

6.1 Case Studies
6.1.1 Network of UAVs. We use the Fly-by-Logic framework [23],
a path planner software for UAVs, to simulate �ight paths of two
UAVs that take o� after 1.5B , hover, and then land after 4.5B . The
trajectories are sampled at 20Hz as G= , ~= , and I= coordinates for
each UAV with an Y ranging between 1 to 5ms.

6.1.2 Water Distribution System. We consider a hybrid water dis-
tribution system consisting of two tanks as shown in Figure 1. Each
tank has an inlet pipe connected to an external water source, and
an outlet pipe with a valve used to regulate high pressure water
out�ow. A controller on each tank operates its valve, and samples
the out�ow pressure at 20Hz using its local clock. We model such a
system in Simulink to emulate the Refueling Water Storage Tanks
(RWST) module of an Emergency Core Cooling System (ECCS) of a
Pressurized Water Reactor Plant [28]. ECCS provides core cooling
to minimize fuel damage following ‘loss of coolant’ incidents by
administering high pressure water injection from RWST. The tanks

and their controllers operate even when the supply of power is
lost to the plant. As a failsafe, ECCS incorporates Cold Leg Accu-
mulators (CLA) that do not require power to operate. These tanks
contain large amounts of borated water with a pressurized nitrogen
gas bubble at the top. If the out�ow pressure drops below a certain
threshold, the nitrogen forces borated water out of the tank and
into the reactor coolant system. A reasonable range for Y here is 5
to 500ms [3].

6.2 Experimental Setup
In our UAV related experiments, we monitor three STL properties:
(1) mutual separation between UAVs never falls below a threshold;
(2) all UAVs take o� simultaneously from standby state and hover at
the same altitude, and (3) all UAVs eventually land simultaneously.
The monitor receives a distributed signal every second, and we
measure its execution time for each formula progression to verify
truthfulness of the given formulas. In our water tank related exper-
iments, we simulate a plant failure where the RWST in the ECCS
is triggered upon receiving an emergency actuation signal. The
monitor receives a distributed signal at varying time intervals from
multiple water tanks. Our goal is to �nd possible violations caused
by clock drift, where the water pressure falls below threshold re-
quired to keep the failsafe CLA from triggering. All experiments are
replicated to exhibit 95% con�dence interval to provide statistical
signi�cance. The experimental platform is a CentOS server with
an Intel(R) Xeon(R) Platinum 8180 CPU @ 3.80GHz clock rate and
754G of RAM. Our implementation invokes the SMT-solver Z3 [21]
to solve the problem described in Sections 4 and 5.

6.3 Analysis of Results
Mutual separation. This property states that the distance between
every pair of UAVs in �eet always remain above a given threshold
X . The corresponding STL formula ims is:€

8, 92 [# ],8<9
[0,1]

⇣q
(G8 � G 9 )2 + (~8 � ~ 9 )2 + (I8 � I 9 )2 > X

⌘
.

Figure 8a shows the run time for each segment for evaluation
of ims on the distributed signal. In each segment the progression
formula remains unchanged. However, the �rst segment shows
minimal run time due to the fact that the UAVs are stationary
throughout the entirety of that segment and, therefore, require
very few ‘unique’ distance calculations. The run time for the second
segment and the last segment are slightly higher than that of the
�rst segment because of the same reason; the UAVs are partially
grounded throughout these two segments. Note that despite ims
seemingly being a simple STL formula, the average run time per
segment is relatively higher (compared to the run time of other
formulas) due to requiring quadratic equations to be solved.

Eventually hover. This property states that the UAVs in �eet are
eventually (within 2B) airborne and hover within a _ height margin.
Formally, the corresponding STL formula ieh is:€

8, 92 [# ],8<9
[0,2]

⇣
I8 , I 9 > 0

⌘
) [0,1]

⇣
|I8 � I 9 | < _)

⌘
.

Fig. 8b shows the run time for each segment for evaluation of ieh
on the distributed signal. The �rst segment has the lowest run time

https://github.com/A-N-I-K/CPS_STL_Prog_RE_Package
https://github.com/A-N-I-K/CPS_STL_Prog_RE_Package
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(a) ims (Mutual separation).
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(b) ieh (Eventually hover).
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(c) iel (Eventually land).

Figure 8: E�ect of segment number and number of agents on run time for di�erent �ight properties.

Clock
Skew (s)

True
Violations

Detected
Violations

False
Positives

False +ve
Percentage

0.05 9 25 16 64%
0.1 4 42 38 90.48%
0.15 12 65 53 81.54%
0.2 11 80 69 86.25%
0.25 4 86 82 95.35%
0.3 7 99 92 92.93%
0.35 5 112 107 95.54%
0.4 7 127 120 94.49%
0.45 10 145 135 93.1%
0.5 7 160 153 95.63%

(a) Water tanks.

Clock
Skew (s)

True
Violations

Detected
Violations

False
Positives

False +ve
Percentage

0.05 6 11 5 45.45%
0.1 6 20 14 70%
0.15 8 30 22 73.33%
0.2 4 39 35 89.74%
0.25 2 46 44 95.65%
0.3 1 48 47 97.92%
0.35 7 62 55 88.71%
0.4 2 66 64 96.97%
0.45 5 76 71 93.42%
0.5 6 84 78 92.86%

(b) UAVs.

Table 1: Impact of Y.

as the UAVs are stationary. The second segment has a higher run
time because (I8 , I 9 > 0) is observed and progression is needed
for the following segments, where the progressed formula simply
becomes [0,1] (I8 = I 9 ).
Eventually land This property states that the UAVs in �eet eventu-
ally land on the ground simultaneously. Formally, the corresponding
STL formula i4; is:€

8, 92 [# ],8<9
[2,1]

⇣
I8 = 0 ^ I 9 = 0

⌘
.

Fig. 8c shows the run time for each segment for evaluation ofiel on
the distributed signal. The temporal interval of iel is intentionally
[2,1] instead of [0,1] since the UAVs are on the ground at the
start of the distributed signal. The behavior in run time shown in

this �gure is opposite of what we have witnessed in Fig. 8b. In
segments 3 and 4, the UAVs are airborne, and therefore, the search-
space for the SMT problem is exhaustively traversed. However,
in segment 5, iel is satis�ed and the progression becomes true.
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Figure 9: E�ect of segment duration
and number of water tanks on run time
for iP.

Impact of segment
duration and num-
ber of water tanks.
Let P1, P2, . . . , P# de-
note the out�owpres-
sures of# number of
water tanks. For sim-
plicity, we assume all
the pipes are of the
same diameter. Thus,
the pressure exerted
on the CLA is P1 +
P2+. . .+P# . Wemon-
itor the property that
states out�ow pres-
sure remains above the threshold pressure 600?B86 [27] inde�nitely.
The corresponding STL formula iP is:

[0,1]
⇣ #’
==1

%= � 600
⌘
.

Fig. 9 shows the e�ect on run time for increasing the number of
tanks from 2 to 4 with Y = 0.05B over segment duration ranging
from 1B to 5B . As expected, both segment duration and the num-
ber of tanks drive up the run time. We note that even when the
monitor receives the distributed signals sent by the water tanks
at a reasonable 1B intervals, the monitor is still able to verify the
property online under around half a second for four tanks.

Impact of clock skew. In order to study the impact of Y on mon-
itoring verdicts, we model two RWST modules with intentional
‘faults’, where the out�ow pressures of either tank can drop below
the threshold pressure of the CLA. Thus, if both tanks’ pressures fall
simultaneously, the CLA gets triggered. We also introduce a clock
drift in the valve controller of one of the tanks. Table 1a shows the



ICCPS ’23, May 9–12, 2023, San Antonio, TX, USA Momtaz et al.

results for two tanks that were active for an hour. During this time,
Tank 1 and Tank 2 reported low pressures for a total of 35.5B and
36.1B respectively. Although generally we are interested in �nding
a single violation, in order to demonstrate the e�ect of clock skew,
we �nd multiple violation instances in this experiment by tallying
up pairs of piece-wise linear interpolations between samples where
violations are detected. We report the number of true violations as a
baseline that was reverse calculated from the introduced clock drift
Y, number of detected violations using our method, and the number
of false positives, which is essentially the di�erence between the true
violations and the detected violations1. Note that there are no false
negatives. Furthermore, as the clock drift is increased from 0.05B
to 0.5B , the number of false positives increase as well. Similarly,
we model a path for a pair of UAVs, where the agents periodically
reside within the given mutual separation threshold, and violate
the mutual separation property. Table 1b shows the results for two
UAVs in operation for half an hour. We again report the number of
true violations, detected violations, and false positives.

7 CONCLUSION
In this paper, we introduced a technique for monitoring speci�ca-
tions expressed in the STL for distributed CPS, where continuous-
time and valued signals from a set of agents do not share a global
clock. Our technique assumes an o�-the-shelf clock synchroniza-
tion algorithm (such as NTP) that ensures a maximum bounded
clock skew among all the agents in the system. We also introduced
a signal retiming technique that e�ciently aligns continuous sig-
nals to detect possible violations of STL speci�cations. We reduce
our runtime monitoring problem to an SMT solving problem and
introduce a formula progression technique that takes a distributed
signal and an STL formula as input and returns another STL formula
as output that represents the progression of the formula over the
signals. We also reported experimental results on monitoring a �eet
UAVs, as well as a water distribution system.

For future research, mapping fragments of STL to the right class
of complexity is a natural next step, as there may be cases where
the complexity of monitoring depend on the complexity hierarchy
of SMT solving. Incorporating a fully distributed monitoring frame-
work could be another possible focus. Furthermore, as monitors in
the system may be subject to faults, developing distributed fault-
tolerant monitoring algorithms could be another research avenue.
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A.1 Lemma 4.1
P����. Assume |min �= � min �< | > Y. However, both min �=

and min �< are lower bounds of �= and �< respectively, at the :C⌘
transmission. Therefore, by de�nition of partial synchrony, the
di�erence of their valuesmustnot exceed themaximum closk skew Y.
Therefore, our assumption is not possible. Thus, |min �=�min �< | 
Y. Similarly, we can show that |max �= �max �< |  Y. ⇤

A.2 Theorem 4.4
P����. We distinguish two cases:

• (() Suppose that such retimings exist. We de�ne local time
values for each time j 2 [C + 0, C + 1] for agents �1,�2, . . . ,�#
respectively as C j1 = 21 (j) and C j= = d�1= (21 (j)), where 2  = 
# . In other words, C j= is the local time of agent�= at global time j .
Furthermore, de�ne ⇠j = {(C=, G= (C=)) | C=  C j= ^ = 2 [# ]}. By
the construction of⇠j , and the fact that the retimings respect ,
it holds that if 4 2 ⇠j and 5  4 , then 5 2 ⇠j . For every =,< � 2
and = <<, it holds that C j< = d�1< (d= (C j= )) so |C j= � C

j
< |  Y. Thus,

⇠j is a consistent cut, and the �ow of frontiers front(⇠j ), where
j 2 R+, is a consistent cut �ow f 2 CCF that witnesses the
violation of i .

• ()) Suppose f 2 CCF is a consistent cut �ow that violatesi . By
de�nition, there must be a sequence of consistent cuts in f that vi-
olatesi . Let⇠j denote the last cut in the �ow (which by de�nition
contains all the cuts in the �ow) and let front(⇠j ) denote the fron-
tier of all these consistent cuts in the �ow. For every two events
(C=, G= (C=)) and (C<, G< (C<)) in front(⇠j ), we have |C= �C< |  Y.
Since (C=, G= (C=)) 2 front(⇠j ), we have (B, G< (B)) 2 ⇠j for all B
s.t. B + Y  C= . Thus, C< � B for all such B and so C< � C= � Y. By
symmetry of the argument, C= � C< � Y holds as well, implying a
retiming indeed does exist.

⇤

A.3 Lemma 5.1
P����. We distinguish the following cases:

Case 1: First, we consider the base case of this proof, where the
formula is an atomic proposition, that is, i = ? .

()) The SMT encoding generated by
for ⇢ and g? is:

(ccf, 0) |= ?

In other words, when the encoding above is satis�ed, the events
in the frontier of the consistent cut at time 0 satis�es ? . Now, as the
SMT syntax tree for ? does not have any quanti�ers, Algorithm 1
never enters Line 4. Hence, the SMT syntax tree for ? remains un-
changed, and the SMT encoding using ⇢ and g 0i = ⇤(gi , |⇢ |) is:

(ccf, 0) |= ?

(() Trivial.

Case 2: Assume that the proof has been established for the cases
when the formulas are i = i1 and i = i2. Now, we consider the

case where the formula is i = i1 ^ i2.

()) The SMT encoding generated by using ⇢ and gi1^i2 is:

(ccf, 0) |= i1 ^ i2
In other words, when the encoding above is satis�ed, the events

in the frontier of the consistent cut at time 0 satis�esi1^i2. Now, as
the SMT syntax tree fori does not have any quanti�ers, Algorithm 1
never enters Line 4. Hence, the SMT syntax tree for i remains un-
changed, and the SMT encoding using ⇢ and g 0i1^i2

= ⇤(gi1^i2 , C
0)

is:

(ccf, 0) |= (i1 ^ i2) ^ true
(() Trivial.

Case 3: Assume that the proof has been established for the cases
when the formulas are i = i1 and i = i2. Now, we consider the
case where the formula is i = i1 _ i2.

()) The SMT encoding using ⇢ and gi1_i2 is:

(ccf, 0) |= i1 _ i2
In other words, when the encoding above is satis�ed, the events

in the frontier of the consistent cut at time 0 satis�esi1_i2. Now, as
the SMT syntax tree fori does not have any quanti�ers, Algorithm 1
never enters Line 4. Hence, the SMT syntax tree for i remains un-
changed, and the SMT encoding using ⇢ and g 0i1_i2

= ⇤(gi1_i2 , C
0)

is:

(ccf, 0) |= i1 _ i2
(() Trivial.

Case 4: Assume that the proof has been established for the cases
when the formulas are i = i1 and i = i2. We consider the case
where the formula is i = i1U [0,1 ]i2.

()) The SMT encoding generated by using ⇢ and gi1 U [0,1 ]i2 is:

98 2 [0,1]
⇣
(ccf, 8) |= i2 ^ 89 2 [0, 8)

�
ccf, 9) |= i1

� ⌘
If the above encoding is SAT, then both 98 2 [0,1]

�
(ccf, 8) |= i2

�
and 98 2 [0,1]89 2 [0, 8)

�
(ccf, 9) |= i1

�
are SAT. For 0 < |⇢ |  1,

this can be written as:

981 2 [0, |⇢ |)
⇣
(ccf, 81) = i2 ^

�
891 2 [0, 81] ((ccf, 91) = i1)

� ⌘

_

982 2 [|⇢ |,1]
⇣
(ccf, 82) = i2 ^

�
892 2 [|⇢ |,1] ((ccf, 92) = i1)

� ⌘
Note that this is the SMT encoding generated by using ⇢ and

g 0i1 U [0,1 ]i2
= ⇤(gi1 U [0,1 ]i2 , |⇢ |), when 0 < |⇢ |  1. For any
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other value of 0 < |⇢ |  1, the SMT syntax tree remains un-
changed. When the SMT encoding of gi1 U [0,1 ]i2 is SAT, either (1)
i1U [0, |⇢ | ]i2 is satis�ed, or (2) i1 is satis�ed throughout [0, |⇢ |),
and i1U [|⇢ |,1 ]i2 is satis�ed. If i1U [0, |⇢ | ]i2 is satis�ed, then the
�rst part of the SMT encoding of g 0i1 U [0,1 ]i2

becomes SAT, and if i1
is satis�ed throughout [0, |⇢ |), and i1U [|⇢ |,1 ]i2 is satis�ed, then
the second part of the SMT encoding of g 0i1 U [0,1 ]i2

becomes SAT.
Therefore, in all possible cases, if the SMT encoding of gi1 U [0,1 ]i2
yields SAT, then the SMT encoding of g 0i1 U [0,1 ]i2

will also yield SAT.

( Trivial.

Case 5: Assume that the proof has been established for the cases
when the formulas are i = i1 and i = i2. Finally, we consider the
case where the formula is i = i1 R [0,1 ]i2.

()) The SMT encoding generated by using ⇢ and gi1 R [0,1 ]i2 is:

98 2 [0,1]
⇣
(ccf, 8) |= i1 ^ 89 2 [0, 8)

�
ccf, 9) |= i2

� ⌘
If the above encoding is SAT, then both 98 2 [0,1]

�
(ccf, 8) |= i1

�
and 98 2 [0,1]89 2 [0, 8)

�
(ccf, 9) |= i2

�
are SAT. For 0 < |⇢ |  1,

this can be written as:

981 2 [0, |⇢ |)
⇣
(ccf, 81) = i1 ^

�
891 2 [0, 81] ((ccf, 91) = i2)

� ⌘

_

982 2 [|⇢ |,1]
⇣
(ccf, 82) = i1 ^

�
892 2 [|⇢ |,1] ((ccf, 92) = i2)

� ⌘
Note that this is the SMT encoding generated by using ⇢ and

g 0i1 R [0,1 ]i2
= ⇤(gi1 R [0,1 ]i2 , |⇢ |), when 0 < |⇢ |  1. For any

other value of 0 < |⇢ |  1, the SMT syntax tree remains un-
changed. When the SMT encoding of gi1 R [0,1 ]i2 is SAT, either (1)
i1 R [0, |⇢ | ]i2 is satis�ed, or (2) i2 is satis�ed throughout [0, |⇢ |),
and i1 R [ |⇢ |,1 ]i2 is satis�ed. If i1 R [0, |⇢ | ]i2 is satis�ed, then the
�rst part of the SMT encoding of g 0i1 R [0,1 ]i2

becomes SAT, and if i2
is satis�ed throughout [0, |⇢ |), and i1 R [ |⇢ |,1 ]i2 is satis�ed, then
the second part of the SMT encoding of g 0i1 R [0,1 ]i2

becomes SAT.
Therefore, in all possible cases, if the SMT encoding of gi1 R [0,1 ]i2
yields SAT, then the SMT encoding of g 0i1 R [0,1 ]i2

will also yield SAT.

( Trivial.

⇤

A.4 Theorem 5.2
P����. Let us assume thatg 0i = ⇤(gi , |⇢ |),⇢ |= i` , and FinalSMT

for (⇢, ) and g 0i`
is not satis�able. This implies that g 0i`

has at
least one subtree, where the root node is the =C⌘ nested quanti�er
with an interval [U=, V=] and V= > |⇢ |. However, while constructing
g 0i`

, only the left child is kept for any node that has the label ^ or _
with children labelled with quanti�ers (see Section 5). Furthermore,
In Line 10 of Algorithm 1, the maximum range of the quanti�er

labelled on the left child is min(V=, |⇢ |). Therefore, V= > |⇢ | is not
possible. Therefore, such a subtree cannot exist, and by extension
g 0i`

cannot exist. Thus, ⇢ |= i` if and only if FinalSMT for (⇢, )
and g 0i`

is satis�able. ⇤
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