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ABSTRACT

This paper solves the problem of runtime verification for signal tem-
poral logic in distributed cyber-physical systems (CPS). We assume
a partially synchronous setting, where a clock synchronization al-
gorithm guarantees a bound on clock drifts among all signals. We
introduce a formula progression and a signal retiming technique
that allow reasoning about the correctness of formulas among
continuous-time and continuous-valued signals that do not share
a global view of time. The resulting problem is encoded as a satis-
fiability modulo theory (SMT) solving problem, and we introduce
techniques to solve the SMT encoding efficiently. We also conduct
two case studies on monitoring a network of aerial vehicles and a
water distribution system.

CCS CONCEPTS

« Theory of computation — Automated reasoning; - Com-
puter systems organization — Embedded and cyber-physical
systems; « Computing methodologies — Distributed comput-
ing methodologies.
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1 INTRODUCTION

Cyber-physical systems (CPS) are making their way in masses into
our environment. With the advent of the Internet of Things (IoT)
and edge applications, CPS are particularly becoming distributed
over networks of agents. Examples of such multi-agent CPS include
networks of sensors in infrastructures, health-monitoring wear-
ables, networks of medical devices, and autonomous vehicles. CPS
generally have a safety-critical nature, hence, gaining assurance
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about their correctness is crucial. One way to gain such assurance
is by monitoring distributed CPS with respect to their formal spec-
ification in a systematic way. While there have been proposals
for monitoring temporal logics for distributed discrete-event sys-
tems (e.g., [12, 20, 22]), we currently lack a universal theory that
allows for monitoring distributed CPS with respect to sophisticated
specification languages such as signal temporal logic (STL).

The challenge of monitoring distributed CPS stems from two
key characteristics. First, in CPS, signals are analog and consist of
an infinite set of events which makes existing reasoning techniques
from the discrete-event distributed settings inapplicable. Second,
agents in distributed CPS often have independent local clocks that
may drift from each other over time. In fact, it is unclear when
exactly an infinity of events are sequential or concurrent. Thus, the
notion of global time in centralized CPS does not hold anymore.

The above characteristics constitute the notion we call distributed
signals, where reasoning about them demands establishing some
concept of serialization. However, building such serializations for
an infinite number of events from multiple signals under clock
drifts at run time is currently an uncharted territory. For instance,
consider the water distribution system shown in Figure 1, where
multiple water tanks (located at different offsite water distribu-
tion centers) supply water to a critical system in the event of an
emergency. The outflow rate and pressure of these water tanks are
measured locally using local clocks that are subject to clock drift.
Now, if the compounded pressure and flow rate of these tanks are
to be monitored, then a monitor must observe the values reported
by these tanks that happen to be timestamped by their respective
drifting local clocks. As the monitor only has access to the con-
tinuous signals representing the pressure and flow rate of these
tanks that are (at best) partially synchronized, accurately assessing
these values becomes a challenging task indeed. If the flow rate and
pressure have to remain under a certain threshold at all times, then
due to clock drift amongst the local clocks, it is possible to miss
values for which the threshold is breached.

In [19], the authors propose a technique for monitoring Boolean
predicates over a set of distributed signals. Our work in this paper
builds on [19] by extending monitoring Boolean predicates over
distributed signals to the full signal temporal logic (STL) [10]. To
this end, we first assume a partially synchronous setting, where a
clock synchronization algorithm guarantees a maximum bound ¢ on
clock drifts among all signals. This can be ensured by off-the-shelf
algorithms such as NTP [17]. We incorporate the notion of signal
retiming introduced in [19] that allows aligning continuous-time
signals that do not share a global view of time. Assuming the bound
¢, the decision problem is to search for a retiming function that
results in violation of an input STL formula. If such a function does
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Figure 1: Hybrid dynamic cooling system with water tanks.

not exist, it implies that the distributed signals have not yet violated
the formula (it may or may not in the future).

In order to cope with the computational complexity, given a
distributed signal, we split the original signal into smaller signals
that we refer to as segments. The challenge here is that the result
of monitoring one segment should carry over to the next segment.
For example, consider STL formula ¢ = [ 5] p (Which means
proposition p should hold at all times in time interval [0, 5]) and
the current segment of signals that end at time 3. This means if p
holds in the interval [0, 3], then the formula has to be rewritten
to ¢” =[Oy 2] p for the second segment. Of course, such rewriting
can become challenging when the formulas have multiple nested
temporal operators with relative time intervals. To this end, we
propose a formula progression technique that takes as inputs an STL
formula and a finite-time distributed signal o and returns an STL
formula ¢’ such that for any extension o’, we have oo’ | ¢ if and
only if ¢’ |= ¢’. We encode the resulting problem as a satisfiability
modulo theory (SMT) problem that searches for a retiming function
given the constraints of the current segment and STL formula. We
introduce techniques to solve the SMT encoding efficiently.

We have fully implemented our approach on two distributed
CPS applications: monitoring of a (1) network of aerial vehicles
with respect to a set of properties such as mutual separation and
formation, and (2) a water distribution system with respect to the
property in which the outflow pressure reaches above the threshold
pressure. The results show that in some cases, it is even possible to
monitor a distributed CPS sufficiently fast for online deployment.

Organization. In Section 2, we present the background concepts
on STL and distributed signals. Section 3 formally states the moni-
toring problem. Our formula progression technique for STL and the
SMT formulation are introduced in Sections 4 and 5, respectively.
We evaluate our approach through case studies and experiments in
Section 6. Finally, we make concluding results and discuss future
work in Section 7. All proofs appear in the appendix.

1.1 Related Work

There is extensive literature on runtime monitoring of CPS where
perfect time synchrony is assumed. In [9] the authors propose tech-
niques for online monitoring of STL [10]. A predictive monitoring
approach is explored in [8] that requires knowledge on the full
system model. In [13] monitoring is done by assuming worst-case
bounds on signal values. The effects of timing inaccuracies on sat-
isfaction of temporal properties is studied in [1, 25]. A minimally
intrusive CPS monitoring approach is studied in [16].
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In [5, 18] approaches for Lattice-theoretic centralized and de-
centralized online predicate detection in discreet-event distributed
systems are reported. This is extended to include temporal oper-
ators in [20, 22]. A method for monitoring safety properties in
distributed systems using the past-time LTL is proposed in [26].
Finally, runtime monitoring of LTL formulas for synchronous dis-
tributed systems has been studied in [2, 6, 7].

In the context of monitoring partially synchronous systems,
in [29] the feasibility of monitoring partially synchronous dis-
tributed systems in order to detect latent bugs was first investigated.
This technique was later generalized to full LTL in [12], where the
presence of latent bugs are detected using SMT solvers in a dis-
crete setting. A tool for identifying data races in distributed system
traces is introduced in [24] for handling non-deterministic discrete
event orderings. However, these approaches cannot fully capture
the continuous-time and continuous-valued behavior of CPS. Our
work is closer to [19] where the authors propose a technique to
monitor predicates on a partially synchronous distributed system
by retiming continuous signals. While this approach improves mon-
itoring efficiency by levering knowledge about system dynamics,
it is limited to only being able to monitor predicates, and cannot
capture temporal behavior.

2 PRELIMINARIES

We denote the set of reals as R, the set of non-negative reals as
R4, and the set of positive reals as R}. The set of natural numbers
{1,..., N} is abbreviated as [N]. Global (hypothetical) time values
are denoted by y, x/, etc, while ¢, t’, t1, t2, s,5’, 51, $2, etc, denote
local clock values specific to given signals/agents.

2.1 Signal Model

Definition 2.1. An output signal (of some agent A) is a function
x:[ab] — Rd, which is right-continuous, left-limited, and is not
Zeno. Here, [a, b] is an interval in Ry, and will be referred to as the
timeline of the signal. m

Without loss of generality, we assume that x is one-dimensional,
i.e.,d = 1. Right-continuitymeans at all t in its support, lims_;, x(s)
x(t). Left-limitedness means the function has a finite left-limit at
every ¢ in its support: lims—;_ x(s) < co. Not being Zeno means that
x has a finite number of discontinuities in any bounded interval in
its support. A discontinuity in a signal x(-) can be due to a discrete
event internal to agent A (like a variable updated by software).

We consider a loosely coupled system consisting of N agents that
do not fail, denoted by {A;, ..., AN}, without any shared memory
or global clock. The output signal of agent A, is denoted by xp, for
n € [N]. We refer to some global clock which acts as a ‘real’ time-
keeper. However, this global clock is a hypothetical object used in
definitions and theorems. We make the following assumption:

Partial synchrony. The local clock (or time) of an agent A, can
be represented as an increasing function ¢, : Ry — R4, where
cn(y) is the value of the local clock at global time y. Then, for
any two agents A, and Ay, where m,n € [N], we have Vy €
Ry den(x) —em(x)| < &, where € € R} is the maximum clock skew,
that is assumed fixed and known by the monitor. In the sequel,
we make it explicit when we refer to ‘local’ or ‘global’ time. This
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assumption is met by using a clock synchronization algorithm, such
as NTP [17], to ensure bounded clock skew among all agents.

In the discrete-time setting, an event is a value change in an
agent’s variables. We now update this definition for the continuous-
time setting. Specifically, in an agent A,, an event is a pair (¢, x,(t)),
where t is the local time (i.e., returned by function ¢, defined above).

A distributed signal is modeled as a set of signals, where events
in each signal are partially ordered by a variation of the happened-
before (~) relation [14], extended by our assumption (A1) on bounded
clock skew among all agents. The following defines a continuous-
time/value distributed signal under partial synchrony.

Definition 2.2. A distributed signal on N agents is a pair (E, ~»),
where E = (x1,...,xn) is a vector of signals and ~~ is a relation
between events in signals such that for any bounded non-empty
interval I,

(1) In any signal xp, all events are totally ordered, that is, for alln €
[N], for any t,t" € I, if t < t/, then (£, x,(£)) ~ (¢, xn(1)).

(2) If the time between any two events is more than the maximum
clock skew ¢, then the events are totally ordered, that is, for
allm,n € [N],forany t € Iy and t’ € Iy, if t + ¢ < t/, then
(&, xn (1)) ~ (1", xm (). W

In Definition, 2.2, the classic
case of complete asynchrony is 3 -
achie.veid by setting & = co. The c gﬂ\\g
restrictions on I, (bounded and Lo
non-empty) are necessary in the ’
continuous-time setting and will ¢ s 15
be revisited in the next section.
As the agents are synchronized !
within ¢, it is not possible to eval- . A

uate all signals at the same mo-
ment in global time. The notion
of consistent cut, defined next,
captures possible global states.
We borrow the notion of con-
sistent cuts from [4], and modify it to fit continuous signals.
Figure 2 shows two partially synchronous concurrent timelines
generated by two agents. Every moment in each timeline cor-
responds to an event (t,x,(t)), n € [2]. Thus, the following
hold: (1,x1(1)) ~ (2.3,x1(2.3)), (2.3,x1(2.3)) ~ (2.94,x2(2.94)),
(1.5,%2(1.5)) ~ (2.94, x2(2.94)), and (2.94, x2(2.94)) /= (3,x1(3)).

Definition 2.3. Let (E, ~+) be a distributed signal over N agents,
and S = {(t,xn(t)) | xo» € EAt € I, AL, C Ry} be the set
of all events. A set C C S is a consistent cut if and only if when
C contains an event e, then it contains all events that happened
before e. Formally, Ve, f € S. (e€ C) A (f ~e) = (feC).1

From this definition and Definition 2.2, it follows that if (', x, (¢"))
is in C, then C also contains every event (t,x,,(t)) s.t. t + & < t’.
Due to time asynchrony, at any global time y € Ry, there exists
infinite number of consistent cuts denoted by C(y). This is due to
the existence of an infinite number of time instances between any
two local time instances t; and ¢ on some signal x. Therefore, an
infinite number of consistent cuts can be constructed. A consistent
cut C can be represented by its frontier:

front(C) = {(t1, x1(t1)), ..., (tn, xN (EN)) ),

Figure 2: Two partially syn-
chronous concurrent time-
lines with £ = 0.1.
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in which each (t,, x5 (tn)), where 1 < n < N, is the last event
of agent A, appearing in C. Formally, Vn € [N] . (tp,xn(tn)) €
C and t, = max{t € I, | 3(t,x,(t)) € C}. In Fig. 2 where ¢ = 0.1,
all events below the solid arc form a consistent cut C with frontier
front(C) = {(3,x1(3)), (2.94,x2(2.94))}. On the other hand, all
events below the dashed arc do not form a consistent cut since
(2.3,x1(2.3)) ~ (3.1,x2(3.1)) and (3.1, x2(3.1)) is in the set C’, but
(2.3,x1(2.3)) isnot in C’.

2.2 Signal Temporal Logic (STL) [15]

Let AP be a set of atomic propositions. We assume signal temporal
logic (STL) formula to be in the negation normal form. The syntax
for STL is defined for infinite signals using the following grammar:

p=pl-plerolovele Upp ¢l Rap ¢

where p € AP, and U (resp., R) is the ‘Until’ (resp., ‘Release’)
temporal operator. We view other propositional and temporal op-
erators as abbreviations, that is, T = p V =p (true), L = p A —p
(false), <>[a,b] o=TU [a,b]® (eventually), Opape =41 R [a,b]?
(always). We denote the set of all STL formulas by ®st .

Let a trace o = (x1,...,xN) be a vector of N continuous-time
and continuous-valued signals. In the context of STL, we express
pas f(xq[t],...,xn[t]) > O, where (x1[t],...,xp[t]) € R"isa
vector of signal values at time ¢, and f : R” — R is a function that
evaluates a vector of signal values.

The infinite-trace semantics of STL is defined as follows. Let |
be the satisfaction relation, and the satisfaction of formula ¢ by a
trace o at time ¢ be:

(0,8) E p iff (... xnlt]) > 0
(o.t) E-p it fCaltl....xaltD) <0
(0.0 EoAy iff (o.0) Fpand (0,0) k¥

(o) EoVvy iff
(o) FoUapy iff

(o.t) Egor(ot) Y

' et+at+b]:(o,') F¢ and
Vi"” e [t,t") : (o, t) E @

' et+at+b]:(o,') Eg and
Vi e [tt'): (o, t") EY

(o.) FoR[gny iff

Also, 0 E ¢ holds if
and only if (6,0) E ¢ q | 1
holds. For example, given
the trace o shown in !
Fig. 3, the STL formula
¢ = pU 46519 holds at 0 45 6
time 0, that is, o E ¢.
However, ¢ does not hold
after time 2, as in that
case, ¢ must hold after
time 2 + 4 and before 2 + 6.5, which does not happen.

A subtlety is that a distributed signal E is defined to be of finite
duration (I, are bounded), which suits the online monitoring setup,
while the STL semantics are over infinite signals. This is handled
in the classical manner: given a (fully synchronous) finite duration
signal x, we say it satisfies/violates ¢ iff every extension (x.y), where
y is an infinite signal, satisfies/violates ¢. Otherwise, the monitor
returns Unknown. Here, the dot ‘” denotes concatenation in time.

Communication between nodes necessarily involves sampling
the analog signal, transmitting the samples, and reconstructing

Figure 3: A trace o generated by a
system.
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the signal at the receiving node. Our objective is to monitor the
reconstructed analog signals. This is different from monitoring a
discrete-time signal consisting of the samples — the applications
we target are concerned with the value of the signal between sam-
ples, and potential violations they reveal. Methods for signal trans-
mission, including sampling and reconstruction, are standard in
communication theory. Errors due to sampling and reconstruction
(say, because of bandwidth limitations) can be accounted for by
strictifying the STL formula using the methods of [11]. The choice
of reconstruction algorithm is application-dependent and follows
domain knowledge. In this paper, for simplicity and without loss of
generality, we assume that every output signal x, is reconstructed
as piece-wise linear between the samples. This ensures violations
can be detected from the piece-wise linear interpolations even if
no violations are detected on the samples.

3 PROBLEM STATEMENT

As distributed agents are partially synchronized within ¢ clock skew,
amonitoring algorithm must explore all (infinite) possible reachable
consistent cuts. We call the progress of consistent cuts over time
a consistent cut flow. Our objective is to determine whether there
exists some flow of moments that are within ¢ of each other for
which at least one reachable consistent cut results in violation of a
given STL formula. This intuition is formalized below, starting with
the notion of a consistent cut flow.

Definition 3.1 (Consistent cut flow). Let (E, ~+) be a distributed
signal over N agents with time interval [a, b], and S be the set of all
events over E. A consistent cut flow is a function ccf : [a,b] — 25
that maps each time y € [a, b] to the frontier of a consistent cut
at time y; i.e., ccf(y) € {front(C) | C € C(y)}. For each time
x' € [a,b], and for each n € [N], if y < yx/, then for all events
(en(x), xn(cn(x))) € ccf(x),and forallevents (cn(x'), xn(cn(x")))
ccf(x"), (en (20 %n(en(x)) ~ (n(x ) %n(cn(x’))) hold. m

Notice that a consistent

cut flow induces a vector of x1 2 ‘\3 >3
N signals that are fully syn- ‘) , i
chronized, and thus, can be X2 — - .
verified against an STL for- 50 L L
’ x5 i
mula ¢ at time t as (ccf, t) |= w0 i) o

¢ using the standard seman-
tics described in Section 2.2.
That is, for a consistent cut
flow ccf on (E, ~), individ-
ual signals (xi,...,x]’\]) can be constructed, such that, for all
1 <i < Nandforall y € [ab],if (ci(y),xi(ci(x))) € ccf(y),
then x]()) = x;(c;(x)). For example, let (E, ~) be a distributed
signal consisting of signals x1, x2, and x3 as shown Fig. 4. For an
STL formula (g 37 (x1 + x2 + x3 < 10), ccf is a valid consistent

Figure 4: A valid ccf for the for-
mula Go3)(x1 +x2 +x3 < 10).

flow on (E, ~~). Note that a distributed signal (E, ~~) encodes un-
countably infinite consistent cut flows. Let us denote the set of all
consistent cut flows by CC¥ . Our decision problem consists of
determining whether there is a violation of a given STL formula by
some consistent cut flow.

Definition 3.2 (Distributed satisfaction). Let ¢ be an STL formula,
(E, ~~) be a distributed signal over N agents and CCF be the set of
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all induced consistent cut flows. We say that ((E, ~), 0), or simply
(E, ~») satisfies ¢, iff for each 0 € CCF, we have 0 = ¢. W

Problem Statement

Given maximum clock skew & > 0, a distributed sig-
nal (E, ~») over N agents, and an STL formula ¢, decide
whether there exists a consistent cut flow 0 € CCF where

o £ .

4 MONITORING ALGORITHM SKETCH

In this paper, we assume the monitor receives output signals from
Xp as piece-wise linear signals (this is by choice and other forms
of discretization will not change the core monitoring algorithm).
This transmission happens in segments of length T: at the k" trans-
mission, agent A, transmits xp|[(x-1)T,kT], the restriction of its
output signal to the interval [(k — 1)T, kT] as measured by its local
clock. In the rest of this paper, we refer exclusively to the signal
fragments received by the monitor in a given transmission.

We now revisit the restriction placed on I, in Definition 2.2,
namely, that the monitor only deals with non-empty bounded sig-
nal fragments xp|[(x—1)1,k7]> therefore, I = [(k — 1)T,kT] for
every agent at the k" transmission, measured in local time. By the
bounded skew assumption, we have:

LEMMA 4.1 (BOUNDED SKEW LEMMA). For any two agents Ap, Am
with intervals I, = [minI,, maxI,] and I;, = [min Iy, maxI,],
| minI; — minT,| < € and | max I, — maxI,y| < . W

Since online monitoring happens in segments, at the end of each
segment the monitor either returns T (formula already satisfied), L
(already violated), or unknown, and the next segment is processed.
For simplicity, our solution employs a central monitor. Our moni-
toring algorithm involves three key ideas: (1) formula progression,
(2) signal retiming, and (3) SMT-based implementation, explained
in Sections 4.1 - 4.3, respectively.

4.1 Formula Progression

Let ¢ be an STL formula and (E, ~~) be a distributed signal. Without
loss of generality, let this signal be split into two segments: prefix
(E1, ~») and suffix (Eg, ~), that is, (E, ~~) = (E1E2, ~). Thus, the
monitor first evaluates ¢ on (Ej, ~»). If the verdict yields true or
false, then this verdict is returned and monitoring for (E, ~) is al-
ready complete. Otherwise, the monitor computes a new progressed
formula ¢’ which will be evaluated for segment (Ez, ~).

Definition 4.2 (Formula progression). Let (E1, ~>) be a finite dis-
tributed signal starting at time 0 whose duration is denoted by
|(E1, ~>)|, and (Eg, ~~) be a finite or infinite extension of (Eq, ~).
We say STL formula ¢’ is a progression of STL formula ¢ for (Eq, ~)
if and only if ((E1E2,~~),0) E ¢ © ((Ez,~>),0) E¢’. 1

It stands to reason that if ((E1, ~~),0) |= ¢ (resp., ((E1,~>),0) =
@), then the progression of ¢ is trivially ¢’ = T (resp., ¢’ = L1).

4.2 Signal Retiming

Recall that signals are measured using their local clocks. Since the
signals in our setting are partially synchronized within an ¢, it is not
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possible to evaluate all signals at the same moment in global time.
Rather, the best a monitor can do is explore all valid alighments of
the concurrent local moments (i.e., those moments that are within
¢ of each other) and determine whether at least one such alignment
violates the formula. This intuition is formalized below, starting
with the notion of a retiming function borrowed from [19] that
establishes the happened-before relation in the continuous-time
setting, and stretches or compresses signals to align them with each
other within the ¢ clock skew bound.

Definition 4.3 (Retiming functions). A retiming function (or retim-
ing) is an increasing function p : Ry — Ry. An ¢-retiming is a retim-
ing where Vt € Ry : |t—p(t)| < €. Given a distributed signal (E, ~)
over N agents and two agents A;, Aj, where i, j € [N], a retiming
p from Aj to A; respects ~ if we have ((t,x;(t)) ~ (¢, x;(t"))),
then (t < p(t")) for any two events (t,x;(t)), (t',x;(t")) € E. An
e-retiming that respects ~~ is a valid retiming.

A valid retiming formalizes the notion of alignment of timelines:
given two e-synchronous timelines ¢ and s (on two agents), we treat
moments t and s = p(t) as being simultaneous. Thus, the signal
x(t) = [x1(t), x2(p(t))] is now a fully synchronous signal. An e-
retiming p maps Ry to itself, but the restriction of p to a bounded
interval I is an increasing function from I to p(I) that respects the
constraint |t — p(t)| < € for all t € I. Thus, we restrict our attention
to e-retimings on bounded intervals. Between 2 agents, we need
one retiming p : Iy — I;, and between N agents, we need N — 1
retimings I, — I. In general there is an infinity of valid retimings,
any of which might reveal a potential violation. The next theorem
establish the fundamental condition on é-retimings among agents
and violation of an STL formula.

THEOREM 4.4. Given a distributed signal (E, ~) over N agents,
and an STL formula ¢ with time interval [a, b], there exists a violation
at timet € Ry, if and only if there exists N — 1 e-retimings pp : In —
I; that respect ~, where 2 < n < N, such that:

((xl,xgOpz_l,...,xNOp;]l),t) o 1)

Here, p;,)! o pn : Iy — I is an e-retiming for alln # m, and o’
denotes the function composition operator, where given two functions

fandg, h=go f suchthat h(x) = g(f(x)). ®

4.3 SMT Encoding

We solve the monitoring problem by transforming it into an in-
stance of the satisfiability modulo theory (SMT). Specifically, we ask
whether there exists N — 1 retimings, such that (1) holds; equiv-
alently, whether there exists a consistent cut flow that witnesses
satisfaction of —¢. That is, the distributed signal violates ¢ iff the
following SMT problem is satisfiable. This transformation to SMT
solving is the focus of the next section.

5 SMT-BASED MONITORING ALGORITHM

The SMT formulation part of our solution is constructed by en-
coding both formula progression and signal retiming into a single
SMT-solving problem, and then solving it using an SMT-solver.
First, we define the SMT entities and constraints, then demonstrate
our monitoring approach with two complete examples. In both
examples, we consider a distributed signal (E, ~~) comprised of
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two individual 10 time unit long signals x; and x3, generated by
agents A; and Ay respectively, with a clock skew bound ¢ = 1. Our
running examples involve monitoring formulas —¢1 = O 10] p
and =@z = o101 (P A Ojo,51 ~9)-

5.1 SMT Entities

In our encoding, N signals and time intervals are defined in the same
fashion as the mathematical representation in previous sections. We
also include p;, retiming functions, where 2 < n < N, a consistent
cut flow function ccf as an uninterpreted function, and real numbers
t, s, and y. Identifying interpretations of these functions will be
the output SMT solving and, hence, the verdict of monitoring. The
sampled signal values are constants in the encoding that are known
to the monitor: {x, (t,) | t, € I,}.

5.2 SMT Constraints — Single Segment

Recall from Section 3 that (ccf, t) |= p denotes a consistent cut flow
at time ¢ on signals (xi, .. "xj,\l) satisfies the atom p. To express this
as an SMT problem, we encode (ccf, t) | pas f(x][t],...,xp[t]) >
0, where (x1[t],...,xn[t]) € R" is a vector of signal values at time
t,and f : R” — R is a function that evaluates a vector of signal
values. The SMT constraints are primarily comprised of (1) a set
of constraints that ensures valid consistent cut flow, (2) a set of
constraints that find violation, and (3) a set of constraints that
enforce valid retimings under a given clock skew.

Consistent cut flow constraints. In order to ensure that ccf iden-
tifies a valid consistent cut flow on (E, ~») over time interval [a, b],
first we define the happened-before (~) notation in SMT according
to Definition 2.2, and ensure that the events in the consistent cuts
mapped by ccf respect the happened-before relation:

SMTiow, =Vx € [a,b] . ¥(tn, xn(tn)), (tn, xn(t;)) €E .
(30 (t2) ~ (ts 30 (t0))) A (1 X0 (10)) € cF())

- ((t;l,xn(t;l)) c ccf()()).

And that the consistent cuts mapped by ccf always increase and
never intersect:

SMTfiow, =V 1’ € [a,b] Vn e [N] . (x < ' = eai) < en(x))-

Thus, the SMT constraint for consistent cut flow is the following:

SMTjow = SMTrowl A SMTrowz- ]

Retiming constraints over ccf. We ensure p is a e-retiming from
I, to I1:

SMTretime, =Vx € [a,b] . VYea(y) € I . Fer(x) € It .
(Pleai) = c100) A (le1 (0 = c2()] < e)
And that p is always increasing;
SMT etime, =V x> x" € [a,b] . Ve2 (), ca(x)) € Iz .
(c200 < 2(x) = pleai0) < plez(xD)

When there are more than 2 agents , we must also encode the
constraint that for all n # m, p;,! o pp, is an e-retiming. Thus, for all
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Figure 5: Conversion of STL syntax trees to their corresponding
SMT syntax tree.

n # m, denoting f;,; as the uninterpreted function that represents
the inverse of the uninterpreted c,:

SMTretime3 =Vtel,. fm(Pn(t)) =t
Thus, the SMT constraint for signal retiming if the following:

[ SMTretime :SMTretime1 A SMTretimez A SMTretimeg-

Constraints for the STL formula. Let y,, be the syntax tree repre-
sentation of an STL formula ¢, where each internal node represents
an operator, and each leaf node represents an atomic proposition.
We convert y,, to its SMT syntax tree representation 7,. An SMT
syntax tree 7, is a tree obtained from an STL syntax tree Yo by
replacing each temporal operator in the non-leaf node of y,, with
its corresponding SMT encoding. In 7,, as well, each leaf represents
an atomic proposition. The purpose of converting an STL formula ¢
to its SMT syntax tree representation 7, is to be able to easily ma-
nipulate the syntax tree and parse its corresponding SMT encoding.
Figure 5 shows the process of converting all five subtrees with STL
operators to their corresponding SMT syntax tree representations.
For nested formulas, this process is done for every formula in the
STL syntax tree, starting from the root of the tree.

For example, Figs. 6a and 6b show creating SMT syntax trees of
-1 and g3 using the technique shown in Fig. 5. Let 7, (resp.,

] [Ba] >

(o, i) Fp‘ ‘Vje [0+i,5+1]

‘ Olo0] ‘ i € [o, 10]‘
.
I

@) ~@1 =o10] P (b) =p2 = 0,101 (p ADjo,51 ~9)

Figure 6: SMT syntax tree of STL formulas —¢; and —¢,.
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T-p,) be the SMT syntax trees created from —¢; (resp., =¢2). Let us
first consider the case where the monitor has the whole distributed
signal (E, ~) (i.e., no segmentation). The case of a segmented signal
will be handled by formula progression explained in Section 5.3.
Thus, we keep the SMT syntax trees unchanged and we denote the
corresponding SMT constraint by SMT~,,. From Fig. 6a, for —¢1, the
distributed signal (E, ~), and the SMT syntax tree T-p,» We have:

SMT-., =3i € [0,10].((ccf. i) F p).

Recall from the beginning of this section ‘(ccf, i) | p’ is replaced
with the f(.) > 0 in the SMT constraint. For —¢,, we have:

SMT =i € [0,10].((ccf, i) E p A Vj e [0+, 5+i] (= ((ccf, j) E

Ty

Putting everything together. The final SMT constraint is the
following:

FinalSMT = SMTfioy, A SMTietime A SMTx.,. ]

Obviously, since there is logical equivalence between an STL
formula ¢ and its corresponding SMT encoding SMTr,,, for any
given a distributed signal (E, ~~) over N agents, we have (E, ~~) [~
¢ if and only if FinalSMT is satisfiable (assuming all time intervals
of temporal operators are within [0, |(E, ~)[]).

5.3 Formula Progression

We now consider the case where the monitor does not have the en-
tire distributed signal and receives it in segments, or, time intervals
of some temporal operators are not within [0, |(E, ~»)|]. Given a
segment (E, ~~) and formula ¢, our goal is to obtain a progressed
formula ¢’ such that any (finite or infinite) extension (E’, ~) will
be evaluated for ¢’.

We define function A, that takes as input an SMT syntax tree
7y and a segment duration |(E, ~+)| and returns as output (see
Algorithm 1) an SMT syntax tree T(;, = A(7y, |(E, ~)|). We construct
an SMT syntax tree T(’pﬂ from r(;, such that the following properties
hold:

e The root of T("ou is the topmost (and leftmost if there are two)
node of 7;, which has a quantifier label.
e For every subsequent nodes, in 7, , if the node n has the label

A or V with children labelled with quantifiers, remove the node

and only keep the left child by doing n.parent = n.leftchild.

As examples, let us partition the SMT syntax trees in 7, (Fig. 6a)
and 7—, (Fig. 6b) at time t = 5 using Algorithm 1. For 7—, , since
the starting node n;, which is the root node in this case, is labelled
‘Ji € [0,10]’, we create a node n} and label it ‘v’ (line 9). Now
we create two copies of the tree at n;, change the ranges to ‘[0, 5)’
(resp., ‘[5,10]’), and attach them to left (resp., right) children of
n}. (lines 10 to 13). n} is our new n; (line 17). Now, we repeat the
process for each child of n;. However, as none of the children nodes
are labelled with quantifiers, Ti,q, , = nr is our desired partitioned
tree from 7—p, at time ¢ = 5, shown in Fig. 7a. Following the same
process, we get 7, ,, as our partitioned tree from 7—, at time t = 5,
shown in Fig. 7b.

P2

LEMMA 5.1 (SMT PARTITION TREE LEMMA). Let (E, ~>) be a dis-
tributed signal and ¢ be an STL formula. FinalSMT for (E, ~~) and 7,

9))-
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Algorithm 1: Function A

Data: SMT syntax tree 7y, partition time ¢
Result: SMT syntax tree T(/p
1 Let rootz be the root node of 7 and nz be a node

2 Function PartitionTree(nz):

3 if nr has a quantifier with range {a, b]’ then

4 ifa <t < bthen

5 Let n; be an empty node

6 if nz has quantifier V' then

7 L Label n/; as ‘A’

8 if n has quantifier 3’ then

9 | LabelnasV

10 n’,.leftchild « copy subtree rooted at n,

1 Set ‘[, min(b, £))’ as the quantifier range of n’y.l
12 n’..rightchild « copy subtree rooted at ns

13 Set ‘[max(a, t), b] as the quantifier range of n.r
14 if ny # root; then

15 | nc.parent.child — n;

16 else

17 L neceng
18 foreach n.child inn; do
19 L PartitionTree(n;.child)

20 return PartitionTree(root;)

is satisfiable if and only if FinalSMT for (E, ~~) and A(typ, |(E, ~)|)
is satifiable.

Given a distributed signal (E’,~) and an STL formula ¢, the
following theorem shows that the subtree Tq’,,u of A(7—g, [(E, ~)|)
allows computing the progressed formula by discharging r&,y.

THEOREM 5.2 (PARTIAL EVALUATION THEOREM). Let (E,~~) be
a distributed signal and ¢ be an STL formula. It is the case that
(E,~) E @y if and only if FinalSMT for (E, ~) and Tq/au is satisfiable.

Simply evaluating FinalSMT for (E, ~») and r;,” is not enough, as
we must ensure that there is no loss of information when modifying
T;a using the said evaluation results. For example, in Fig. 7b, Since
(o, j2) |E —q cannot be evaluated on the first segment, finding only
one value of i; in this segment may lead to loss of information,
as this may ignore other valid values of i; that are required to
evaluated (o, j2) |F —q on the next segment.

Note that any modification to 7, would naturally occur only

¢

in its Té,y subtree. To this end, we define a function v, that takes

as inputs an SMT syntax tree r(;)” and a distributed signal (E, ~~),
and returns an SMT syntax tree 7,, , such that, upon replacing T(;Ju
with T(;,U int, rg’,) can sufficiently evaluate (E’, ~~). In other words,
the STL representation of 7, becomes the desired progression of
¢ on (E, ~~). However, before defining v, we specify the following
shorthand notations we will be using throughout its definition:

<

e ‘7, = p’: The root of the tree 7, is labelled p € AP.

® 7y = 79, X7p,, where X = {A, V} : The root of the tree Tp is
labelled X, and it has two children To, and 7,.

® 7p =O[ap] Ty The root of the tree Ty contains label Vi € [a, b],
and it has a child Ty

Ty = <>[a,h] Ty The root of the tree Ty contains label 3i € [a, b],
and it has a child Ty

o ((E,~),t) | 1y : At time instance ¢, FinalSMT for (E, ~+) and
T, is satisfiable.
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Now we define v in a case-by-case manner for the relevant STL
operators:

Atomic propositions. Let 7,, = p for some p € AP. We have:

T if ((E,~),0) Fp
1 otherwise

v((E,~), 7g,) = {

Conjunction. Let 7y, =17y, ATy,  We have:

U((E’ W)’ T(/Jy) = U((E’ W)s T(Pﬂl) A U((Es W)’ T(pﬂz)

Disjunction. Let 7y, =7y, V 7p,,. We have:

U((E, W)s T(Pu) = U((E: W)s T(Pul ) \ U((E> W)’ T(p/-‘Z)

Always operator. Let Tp, = O Ty, In this case, the transformation
of 7y, is fairly straightforward:

0((E.~),7,) = {D[a’b] o tviee laBLUE L0 Py

1 if 3k € [a,b].((E,~), k) £ Ty,
Eventually operator. Let 7y, = & Tg;,- In this case, instead of
finding a single time instance where FinalSMT for (E, ~~) and Ty, 1
satisfiable, a valid range [k, b] must be identified, where k € [a, b]
is the earliest time instance where FinalSMT for (E, ~~) and Ty, is
satisfiable:

(B~ 7 ) = Olkb) Ty, i argminge g1 (((E,~), k) [ 747)
IR Y if Vk € [a,b].((E,~),k) [ 74,

REMARK 1. Since Until (Fig. 5a) and Release (Fig. 5b) operators are
expressed using existential and global quantifiers in SMT syntax trees,
the definition of v does not need cases for them.

Now that we have defined v, we state the necessary steps required
to compute the progression of some STL formula ¢ on a distributed
signal (E, ~») as follows:

e First, we create the SMT syntax tree 7, that corresponds to the
STL formula ¢ using the methods detailed in Fig. 5. As examples,
let us consider the SMT syntax trees for the STL formulas, —¢1 =
Oo,10] P (Fig. 6a) and g2 = Opo,101 (P A Opo,51 ~q) (Fig. 6b).

o Next, we partition 7, at time |(E, ~»)| using Algorithm 1, and
obtain T("o = A(zp, |(E,~)|), such that 7, is the subtree in 7,
that can be evaluated on (E, ~»). In our example, we consider
the case where the monitor only has the first 5 time units, that is,
|(E,~>)| = 5. Fig. 7a (resp., Fig. 7b) shows the partitioned SMT
syntax tree for Fig. 6a (resp., Fig. 6b) at time instance | (E, ~~)| = 5
with subtrees Ti,q,lﬂ (resp., TL(/,Z#) that can be evaluated on (E, ~~).

e Finally, we partially evaluate ¢ on (E, ~») by transforming r[pﬂ
to 75, = v((E,~), T(’P#). The STL representation of this new SMT
syntax tree Tq/o is our desired progression of ¢ on the extension
of (E, ~»). In our first example, —p1, is of the form &g 5 wp;p.
Now, let us assume that p is never true in (E, ~»). In that case,
according to the rules specified for v, The label of the root of
Ti(plu stays unchanged, and the child becomes false. Therefore,

the progression becomes (g 51 false) V (Oys,101 £), which is,

{5,101 P upon simplification. In our second example, =g, is of

the form g 51 ) " Now, let us assume that the minimum i
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3i; € [0,5) Fil e [5, 1oi

L] |

(0.i1) Ep| |(0.i2) I=P‘

(a) Partitioned SMT syntax tree of Fig. 6a for 7/, .

(U,il)':P‘ ‘ A ‘ (U»iz)):P‘ "7]3€[i2»5+i4

=N

Vji € [0+11,5) r/jz € [5,5+i1] (0,j3) E~q

l l

(o) E=~q | | (0.j2) F~q

(b) Partitioned SMT syntax tree of Fig 6b for TQW .

Figure 7: Examples of partitioned SMT syntax tree of STL formulas
-1 and ~¢@y at £ = 5.
for which 3i € [0,5)((((E,~),i) E p) A (Vj € [i+0,min(i +
5,5)](((E,~»),i) | —q))) is satisfied at time 3.5. In that case,
according to the rules specified for v, The label of the root of
TL(/,Z” is changed to 3i; € [3.5,5). Therefore, the progression

becomes (O3.5,5) (Ojo,51 79)) V (Crs,101 (P A (Ojo,5] =9)))-
6 CASE STUDIES AND EVALUATION

In this section, we evaluate our algorithm for monitoring STL speci-
fications on distributed signals using two case studies. The source
codes related to our experiments can be found at: https://github.
com/A-N-I-K/CPS_STL_Prog_RE_Package.

6.1 Case Studies

6.1.1  Network of UAVs. We use the Fly-by-Logic framework [23],
a path planner software for UAVSs, to simulate flight paths of two
UAVs that take off after 1.5s, hover, and then land after 4.5s. The
trajectories are sampled at 20Hz as xp, yn, and z, coordinates for
each UAV with an ¢ ranging between 1 to 5ms.

6.1.2  Water Distribution System. We consider a hybrid water dis-
tribution system consisting of two tanks as shown in Figure 1. Each
tank has an inlet pipe connected to an external water source, and
an outlet pipe with a valve used to regulate high pressure water
outflow. A controller on each tank operates its valve, and samples
the outflow pressure at 20Hz using its local clock. We model such a
system in Simulink to emulate the Refueling Water Storage Tanks
(RWST) module of an Emergency Core Cooling System (ECCS) of a
Pressurized Water Reactor Plant [28]. ECCS provides core cooling
to minimize fuel damage following ‘loss of coolant’ incidents by
administering high pressure water injection from RWST. The tanks
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and their controllers operate even when the supply of power is
lost to the plant. As a failsafe, ECCS incorporates Cold Leg Accu-
mulators (CLA) that do not require power to operate. These tanks
contain large amounts of borated water with a pressurized nitrogen
gas bubble at the top. If the outflow pressure drops below a certain
threshold, the nitrogen forces borated water out of the tank and
into the reactor coolant system. A reasonable range for ¢ here is 5
to 500ms [3].

6.2 Experimental Setup

In our UAV related experiments, we monitor three STL properties:
(1) mutual separation between UAVs never falls below a threshold;
(2) all UAVSs take off simultaneously from standby state and hover at
the same altitude, and (3) all UAVs eventually land simultaneously.
The monitor receives a distributed signal every second, and we
measure its execution time for each formula progression to verify
truthfulness of the given formulas. In our water tank related exper-
iments, we simulate a plant failure where the RWST in the ECCS
is triggered upon receiving an emergency actuation signal. The
monitor receives a distributed signal at varying time intervals from
multiple water tanks. Our goal is to find possible violations caused
by clock drift, where the water pressure falls below threshold re-
quired to keep the failsafe CLA from triggering. All experiments are
replicated to exhibit 95% confidence interval to provide statistical
significance. The experimental platform is a CentOS server with
an Intel(R) Xeon(R) Platinum 8180 CPU @ 3.80GHz clock rate and
754G of RAM. Our implementation invokes the SMT-solver Z3 [21]
to solve the problem described in Sections 4 and 5.

6.3 Analysis of Results

Mutual separation. This property states that the distance between
every pair of UAVs in fleet always remain above a given threshold
. The corresponding STL formula ¢ is:

/\ D[O,oo] (\/(xi - x]‘)2 + (yi - yj)2 + (Zi - Zj)z > 5).

Lj€[N]i#j

Figure 8a shows the run time for each segment for evaluation
of pms on the distributed signal. In each segment the progression
formula remains unchanged. However, the first segment shows
minimal run time due to the fact that the UAVs are stationary
throughout the entirety of that segment and, therefore, require
very few ‘unique’ distance calculations. The run time for the second
segment and the last segment are slightly higher than that of the
first segment because of the same reason; the UAVs are partially
grounded throughout these two segments. Note that despite ¢ms
seemingly being a simple STL formula, the average run time per
segment is relatively higher (compared to the run time of other
formulas) due to requiring quadratic equations to be solved.

Eventually hover. This property states that the UAVs in fleet are
eventually (within 2s) airborne and hover within a A height margin.
Formally, the corresponding STL formula ¢}, is:

/\ {logz2] (Ziszj > 0) = Ojo,c0] (Izi -zj| < )L)).
i,je[N],i#j
Fig. 8b shows the run time for each segment for evaluation of @ep,
on the distributed signal. The first segment has the lowest run time
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Figure 8: Effect of segment number and number of agents on run time for different flight properties.
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(a) ¢ms (Mutual separation).
Clock True Detected False False +ve
Skew (s) Violations Violations Positives Percentage
0.05 9 25 16 64%
0.1 4 42 38 90.48%
0.15 12 65 53 81.54%
0.2 11 80 69 86.25%
0.25 4 86 82 95.35%
0.3 7 99 92 92.93%
0.35 5 112 107 95.54%
0.4 7 127 120 94.49%
0.45 10 145 135 93.1%
0.5 7 160 153 95.63%
(a) Water tanks.
Clock True Detected False False +ve
Skew (s) Violations Violations Positives Percentage
0.05 6 11 5 45.45%
0.1 6 20 14 70%
0.15 8 30 22 73.33%
0.2 4 39 35 89.74%
0.25 2 46 44 95.65%
0.3 1 48 47 97.92%
0.35 7 62 55 88.71%
0.4 2 66 64 96.97%
0.45 5 76 71 93.42%
0.5 6 84 78 92.86%
(b) UAVs.

Table 1: Impact of ¢.

as the UAVs are stationary. The second segment has a higher run
time because (z;,z; > 0) is observed and progression is needed
for the following segments, where the progressed formula simply
becomes O[g,c0 (21 = 2j)-

Eventually land This property states that the UAVs in fleet eventu-
ally land on the ground simultaneously. Formally, the corresponding
STL formula ¢, is:

A <>[2,oo] (ZiZO/\ZjZO).
i,je[N]i#j
Fig. 8c shows the run time for each segment for evaluation of ¢¢| on
the distributed signal. The temporal interval of ¢ is intentionally
[2, co] instead of [0, o] since the UAVs are on the ground at the
start of the distributed signal. The behavior in run time shown in

this figure is opposite of what we have witnessed in Fig. 8b. In
segments 3 and 4, the UAVs are airborne, and therefore, the search-
space for the SMT problem is exhaustively traversed. However,
in segment 5, ¢, is satisfied and the progression becomes true.

Impact of segment
duration and num-
ber of water tanks.
Let Py, Py, ..., Py de-
note the outflow pres-
sures of N number of
water tanks. For sim-
plicity, we assume all
the pipes are of the )
same diameter. Thus, ) &
Segment duration (s)

the pressure exerted

on the CLA is P; +
Py+...+PN. We mon-
itor the property that
states outflow pres-
sure remains above the threshold pressure 600psig [27] indefinitely.
The corresponding STL formula ¢p is:

N
Olfo.co] (Zan > 600).
=

Fig. 9 shows the effect on run time for increasing the number of
tanks from 2 to 4 with ¢ = 0.05s over segment duration ranging
from 1s to 5s. As expected, both segment duration and the num-
ber of tanks drive up the run time. We note that even when the
monitor receives the distributed signals sent by the water tanks
at a reasonable 1s intervals, the monitor is still able to verify the
property online under around half a second for four tanks.

Run time (s)

Figure 9: Effect of segment duration
and number of water tanks on run time
for @p.

Impact of clock skew. In order to study the impact of ¢ on mon-
itoring verdicts, we model two RWST modules with intentional
‘faults’, where the outflow pressures of either tank can drop below
the threshold pressure of the CLA. Thus, if both tanks’ pressures fall
simultaneously, the CLA gets triggered. We also introduce a clock
drift in the valve controller of one of the tanks. Table 1a shows the



ICCPS °23, May 9-12, 2023, San Antonio, TX, USA

results for two tanks that were active for an hour. During this time,
Tank 1 and Tank 2 reported low pressures for a total of 35.5s and
36.1s respectively. Although generally we are interested in finding
a single violation, in order to demonstrate the effect of clock skew,
we find multiple violation instances in this experiment by tallying
up pairs of piece-wise linear interpolations between samples where
violations are detected. We report the number of true violations as a
baseline that was reverse calculated from the introduced clock drift
¢, number of detected violations using our method, and the number
of false positives, which is essentially the difference between the true
violations and the detected violations'. Note that there are no false
negatives. Furthermore, as the clock drift is increased from 0.05s
to 0.5s, the number of false positives increase as well. Similarly,
we model a path for a pair of UAVs, where the agents periodically
reside within the given mutual separation threshold, and violate
the mutual separation property. Table 1b shows the results for two
UAVs in operation for half an hour. We again report the number of
true violations, detected violations, and false positives.

7 CONCLUSION

In this paper, we introduced a technique for monitoring specifica-
tions expressed in the STL for distributed CPS, where continuous-
time and valued signals from a set of agents do not share a global
clock. Our technique assumes an off-the-shelf clock synchroniza-
tion algorithm (such as NTP) that ensures a maximum bounded
clock skew among all the agents in the system. We also introduced
a signal retiming technique that efficiently aligns continuous sig-
nals to detect possible violations of STL specifications. We reduce
our runtime monitoring problem to an SMT solving problem and
introduce a formula progression technique that takes a distributed
signal and an STL formula as input and returns another STL formula
as output that represents the progression of the formula over the
signals. We also reported experimental results on monitoring a fleet
UAVs, as well as a water distribution system.

For future research, mapping fragments of STL to the right class
of complexity is a natural next step, as there may be cases where
the complexity of monitoring depend on the complexity hierarchy
of SMT solving. Incorporating a fully distributed monitoring frame-
work could be another possible focus. Furthermore, as monitors in
the system may be subject to faults, developing distributed fault-
tolerant monitoring algorithms could be another research avenue.
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A.1 Lemmad4.1

ProOOF. Assume |minl,;, — minl,| > ¢ However, both minI,
and min I,,, are lower bounds of I, and I, respectively, at the k* h
transmission. Therefore, by definition of partial synchrony, the
difference of their values mustnot exceed the maximum closk skew &.
Therefore, our assumption is not possible. Thus, | min I, —min I, | <
¢. Similarly, we can show that | max I, — max ;| < e. O

A.2 Theorem 4.4

Proor. We distinguish two cases:

e (&) Suppose that such retimings exist. We define local time
values for each time y € [t + a,t + b] for agents A1, Ag, ..., AN
respectively as tf{ =c1(y) and tf = p,(c1(x)), where 2 < n <
N.In other words, £{ is the local time of agent A, at global time y.
Furthermore, define Cy = {(tn, xn(tn)) | tn < tX Ane[N]}. By
the construction of C e and the fact that the retimings respect ~,
it holds thatife € Cy and f ~+ e, then f € Cy. For every n,m > 2
and n # m, it holds that 5, = p71(pn (t))) so [t = t}| < e. Thus,
Cy is a consistent cut, and the flow of frontiers front(C,), where
X € Ry, is a consistent cut flow ¢ € CC¥ that witnesses the
violation of ¢.

e (=) Suppose o € CC¥ is a consistent cut flow that violates ¢. By
definition, there must be a sequence of consistent cuts in ¢ that vi-
olates ¢. Let C, denote the last cut in the flow (which by definition
contains all the cuts in the flow) and let front(C,) denote the fron-
tier of all these consistent cuts in the flow. For every two events
(tn xn(tn)) and (tm, Xm (tm)) in front(Cy), we have |t —tm| < &.
Since (tn, xn(tn)) € front(Cy), we have (s, xm(s)) € Cy forall s
s.t. s+ ¢ < ty. Thus, t, > s for all such s and so t,,, > t,, — €. By
symmetry of the argument, ¢, > t, — ¢ holds as well, implying a
retiming indeed does exist.

O

A.3 Lemma 5.1

Proor. We distinguish the following cases:

Case 1: First, we consider the base case of this proof, where the
formula is an atomic proposition, that is, ¢ = p.

(=) The SMT encoding generated by
for E and 1, is:

(ccf,0) E p
In other words, when the encoding above is satisfied, the events
in the frontier of the consistent cut at time 0 satisfies p. Now, as the
SMT syntax tree for p does not have any quantifiers, Algorithm 1
never enters Line 4. Hence, the SMT syntax tree for p remains un-
changed, and the SMT encoding using E and r(;, = A(zy, |E|) is:

(ccf,0) Ep
(&) Trivial.

Case 2: Assume that the proof has been established for the cases
when the formulas are ¢ = ¢; and ¢ = ¢2. Now, we consider the
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case where the formula is ¢ = ¢1 A @2.

(=) The SMT encoding generated by using E and 7y, ¢, is:

(ccf,0) F @1 A @2
In other words, when the encoding above is satisfied, the events
in the frontier of the consistent cut at time 0 satisfies ¢1 A@2. Now, as
the SMT syntax tree for ¢ does not have any quantifiers, Algorithm 1
never enters Line 4. Hence, the SMT syntax tree for ¢ remains un-
changed, and the SMT encoding using E and 7, ,,, = A(7g,ngz: 1)
is:

(ccf,0) = (o1 A @2) A true
(&) Trivial.

Case 3: Assume that the proof has been established for the cases
when the formulas are ¢ = ¢; and ¢ = ¢2. Now, we consider the
case where the formula is ¢ = @1 V ¢2.

(=) The SMT encoding using E and 7, v, is:

(ccf,0) F @1V @2
In other words, when the encoding above is satisfied, the events
in the frontier of the consistent cut at time 0 satisfies @1 V¢2. Now, as
the SMT syntax tree for ¢ does not have any quantifiers, Algorithm 1
never enters Line 4. Hence, the SMT syntax tree for ¢ remains un-
changed, and the SMT encoding using E and 7, \,,, = A(7g, v, ')
is:

(ccf,0) F o1V @2
(&) Trivial.

Case 4: Assume that the proof has been established for the cases
when the formulas are ¢ = ¢ and ¢ = @2. We consider the case
where the formula is ¢ = o1 U [4p) @2

(=) The SMT encoding generated by using E and 7, ¢/ (ab] @2 1S

Ji € [a,b] ((ccf, i) g2 AVJ € [0,0)(ccf, ) E (pl))

If the above encoding is SAT, then both 3i € [a, b] ((ccf, i) = ¢2)
and 3i € [a,b]Vj € [0,i)((ccf, j) £ ¢1) are sAT. For a < |E| < b,
this can be written as:

3 € [a |ED((ccf i) = g2 A (Vi1 € [0,1]((ccf, j1) = 1)) )

\

i, € [|E|,b]((ccf, i2) = g2 A (Vja € [|EL,B]((ccf, o) = (pl)))

Note that this is the SMT encoding generated by using E and

4 —
T Ut 02— A(T§01’U[a,b]tpz’|E|)’ when a < |E| < b. For any
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other value of a < |E| < b, the SMT syntax tree remains un-
changed. When the SMT encoding of 7, ¢/ ap] @2 1S SAT either (1)
@1 U 4, 5| 02 is satisfied, or (2) ¢ is satisfied throughout [0, |E]),
and @1 U [|g| p) 02 is satisfied. If o1 U 4] @2 is satisfied, then the

. , .
first part of the SMT encoding of Tor U 1) 02 becomes SAT, and if ¢

is satisfied throughout [0, |E|), and ¢1 U [|E p] @2 is satisfied, then
the second part of the SMT encoding of T(;l T becomes SAT.
Therefore, in all possible cases, if the SMT encoding of Ty U (a1 02
yields SAT, then the SMT encoding of T:p LU () 02 will also yield SAT.

< Trivial.

Case 5: Assume that the proof has been established for the cases
when the formulas are ¢ = @1 and ¢ = @,. Finally, we consider the
case where the formula is ¢ = @1 R 45102

(=) The SMT encoding generated by using E and 7, ® (ab] @2 1S

i e [ab] ((ccf, i) E g1 AV € [0,0)(ccf, j) | (pz))

If the above encoding is SAT, then both 3i € [a, b] ((ccf, i) = ¢1)
and 3i € [a,b]Vj € [0,i)((ccf, j) [ ¢2) are sAT. For a < |E| < b,
this can be written as:

3ir € [a |ED((ccf i) = o1 A (V)i € [0,i1](cc. j1) = 02))

\%

3iz € [|EL bl ((ccf i2) = o1 A (V2 € [IELBI((ccf, 12) = ¢2)))

Note that this is the SMT encoding generated by using E and
7,';01 R a0 = ATy, R (ab] P27 |E|), when a < |E| < b. For any
other value of a < |E| < b, the SMT syntax tree remains un-
changed. When the SMT encoding of 7y, % (¢, is SAT, either (1)
@1 R [4,|E| 92 is satisfied, or (2) @2 is satisfied throughout [0, |E]),
and @1 R [|E|,p) @2 is satisfied. If p1 R [4|E|| 2 is satisfied, then the
first part of the SMT encoding of T:p \ R ab] 02 becomes SAT, and if @2
is satisfied throughout [0, |E|), and ¢ R [|E|,b]®2 is satisfied, then
the second part of the SMT encoding of T:pl R ap) 02 becomes SAT.
Therefore, in all possible cases, if the SMT encoding of 75, R (ab] 02
yields SAT, then the SMT encoding of r;) LR (] 02 will also yield SAT.

< Trivial.

A.4 Theorem 5.2

PRrROOF. Letusassume that T(;) = A(typ, |E|), E ¢y, and FinalSMT
for (E, ~») and T(;,u is not satisfiable. This implies that T(;,ﬂ has at
least one subtree, where the root node is the nth nested quantifier
with an interval [ay, ] and B, > |E|. However, while constructing
rq’o” , only the left child is kept for any node that has the label A or v

with children labelled with quantifiers (see Section 5). Furthermore,
In Line 10 of Algorithm 1, the maximum range of the quantifier
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labelled on the left child is min(fp, |E|). Therefore, §, > |E| is not
possible. Therefore, such a subtree cannot exist, and by extension

T&,y cannot exist. Thus, E | ¢, if and only if FinalSMT for (E, ~)

and T(/pﬂ is satisfiable. O
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