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ABSTRACT

Coagulation is a key factor governing the size distribution of nanoclusters during the high
temperature synthesis of metal oxide nanomaterials. Population balance models are strongly
influenced by the coagulation rate coefficient utilized. Although simplified coagulation models
are often invoked, the coagulation process, particularly for nanometer-scale particles, is complex,
affected by the coagulating nanocluster sizes, the surrounding temperature, and potential
interactions. Towards developing improved models of nanocluster and nanoparticle growth, we
have developed a neural network (NN) model to describe titanium dioxide (TiO2) nanocluster
coagulation rate coefficients, trained with molecular dynamics (MD) trajectory calculations.
Specifically, we first calculated TiO2 nanocluster coagulation probabilities via MD-trajectory
calculations varying the nanocluster diameters from 0.6 nm to 3.0 nm, initial relative velocity from
20 to 700 m s™', and impact parameter from 0.0 to 8.0 nm. Calculations consider dipole-dipole
interactions, dispersion interactions, and short-range repulsive interactions. We trained a NN
model to predict whether a given set of nanocluster diameters, impact parameter, and initial
velocity would lead to the outcome of coagulation. The accuracy between the predicted outcomes
from the NN model and the MD trajectory calculation results are > 95%. We subsequently utilized
both the NN model and MD trajectory calculations to examine coagulation rate coefficients at 300
K and 1000 K. The NN model predictions are largely within the range 0.65-1.54 of MD
predictions, and importantly NN predictions capture the local minimum coagulation rate
coefficients observed in MD-trajectory calculations. The NN model can be directly implemented
in population balances of TiO; formation.



I

INTRODUCTION
The synthesis of oxide nanomaterials in flames typically involves the volatilization of an
organometallic precursor, oxidation of the precursor vapor, and subsequently the formation of
metal oxide nanoclusters, which are solid species with nanometer scale dimensions'*. Upon the
formation of nanoclusters®’, further growth into nanoparticles proceeds via surface growth by
nanocluster collisions with partially oxidized precursor molecules,® ? as well as by nanocluster-
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nanocluster collisions (coagulation . While the relative importance of these two processes is

dependent upon the temperature-time history in the reactor and the properties of the organometallic

precursor vapor'% 3

, nanocluster-nanocluster coagulational growth is likely a key contributor to
nanoparticle growth, as the precursor rapidly reacts and becomes depleted in concentration in
flame reactors.

For this reason, prediction of metal oxide nanoparticle growth rates in flames hinges upon
accurate calculation of nanocluster-nanocluster coagulation rate coefficients; these rate
coefficients are essential inputs to population balance models for nanocluster and nanoparticle size
distribution evolution predictions!*. Coagulation rates are dependent not only on the nanocluster
sizes and system temperature, but also the potential interactions between nanoclusters closely
approaching one another'® >!¥, Unfortunately, the conventional approach to coagulation rate
prediction is rather coarse. It is commonplace in modeling growth dynamics in combustion
systems to utilize the free molecular hard-sphere collision model for nanocluster-nanocluster
coagulation, in which the coagulation rate coefficients are the products of the mean thermal speed
of the reduced nanocluster masses and the nanocluster-nanocluster combined projected areas'®.

Attractive potential interactions are not explicitly considered in the hard-sphere collision model.

In instances where the effects of attractive potential interactions are considered, it is commonplace



to invoke a temperature-independent, constant “enhancement factor” for the coagulation rate
coefficient, i.e. a constant factor multiplied by the hard-sphere-predicted coagulation rate

coefficient?® 2!,

However, there is ample evidence, both computational and experimental, that
enhancement factors for metal oxide clusters are large (>2 for many materials), strongly
temperature-dependent, and also dependent on the coagulating nanocluster sizes. For example,
Goudeli et al??, theoretically examining SiO» nanocluster coagulation through molecular dynamics

trajectory calculations, found enhancement factors in the 3—9 for nanometer scale clusters, in the

300-1500 K temperature range, with enhancement factors decreasing with increasing temperature.
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Yan et al~ and Zhang et al'’ utilized molecular dynamics simulations to argue that for TiO»
nanoclusters ~2 nm in diameter, the coagulation rate coefficient at room temperature will be more
than 8 times higher than the hard-sphere predicted model, and this is largely due to dipole-dipole
interactions between closely approached nanoclusters. Experimentally, Sharma et al'! estimated
enhancement factors in the 3-7 range for 5-6 nm TiO; particles, also decreasing with increasing
temperature in the 673-1073 K range.

While prior research consistently yields large, temperature-dependent enhancement factors
for metal oxide nanocluster coagulation rates, studies to-date utilizing atomistic simulations to
infer nanocluster-nanocluster potential energy surfaces and coagulation rates have been limited to
specific circumstances!”2*?°. To incorporate improved coagulation rate models into nanoparticle
growth predictions, nanocluster-nanocluster collision models need to be used to provide
coagulation rate coefficients not only for explicitly simulated circumstances, but also over wider
nanocluster size and system temperature ranges. Towards this end, using TiO» nanoclusters in the

0.6-3.0 nm diameter range as a model system, we utilize molecular dynamics (MD) trajectory

calculations, similar to prior studies, to precisely examine nanocluster-nanocluster coagulation



rates. Subsequently, we utilize a neural network model to fit results for the coagulation probability
of nanoclusters for a given set of nanocluster diameters, impact parameter, and initial relative
velocity. While the neural network is ultimately, a “black-box” approach, because neural network
training and testing is readily facilitated by modern computational tools, the combination of
trajectory calculations with detailed potential interactions between nanoclusters (atomistic
simulations) and neural network training at present appears to be a more tractable approach
coagulation rate coefficient estimation than does the use of simpler potential function
approximations between nanoclusters and analytical modeling. We show that the fit coagulation
probability map can be used to predict coagulation rate coefficients for TiO nanoclusters under
widely variable temperatures and nanocluster diameters, i.e. the resulting modeling can be directly

used in population balance models for nanoparticles.

II. COMPUTATIONAL METHODS

We utilize MD-trajectory calculations®> 2*6 to examine TiO» nanocluster collisions,
defining the coagulation rate coefficient and enhancement factor in rate with respect to hard-sphere
collisions, and then subsequently developing a neural network (NN) model to fit trajectory
outcomes, and to develop a function for the coagulation rate coefficient. In section A, we define
the coagulation rate coefficient and enhancement factor. In section B, the methods employed to
determine probability maps for the outcomes of trajectories are briefly described, with reference
to prior work adopting similar methods. In section C, we provide a description of the neural
network (NN) fit to coagulation probability maps, including the structure of the NN, used

equations in NN, and training process using MD simulation results obtained in B.



A. Theories for coagulation rate coefficient and enhancement factor calculations

The coagulation rate coefficient for two nanoclusters, f;;, where the subscripts “i” and “j”
denote the nanocluster “type” (typically diameter or mass), can be calculated as?:
Bij=J, Jy Lijdbdv, (la)
Li; = 2mh - P(b,vy) - vofme(vo) (1b)
m;: \1.5 M Va2
fus(vo) = (507)  4mvoPexp (- 50T) (19)

L;j has been termed binding length??; it is a function of fyyg(vy), the Maxwell-Boltzmann
distribution, vy, the relative speed approaching nanoclusters, b, the impact parameter, m;;, the
reduced mass, ky,, Boltzmann’s constant, T, the background system temperature, and P(b, v,), the
probability that coagulation occurs, for a given b and vy. With the hard sphere assumption
(subscript “HS”) in the free molecular regime:

1 (b < aij)

Pys(b,vo) = {

. . . . Do i+Do
where a;; is the collision distance of the nanoclusters, defined as a;; = %, when D, ; and

Dy, ; are the nanocluster i and j diameters. Substituting equation 2 into equation 1 and integrating

yields the hard sphere coagulation rate coefficient?’:

_ 2 [8kpT
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Although the coagulation rate coefficient is predictable from this equation, as shown in previous
studies, the calculated values are often underestimations (especially on the nanocluster). The ratio
of the true coagulation rate coefficient (or at least improved approximations to it) to the hard sphere

coefficient is defined as the enhancement factor, n;;'> '°:



Bij
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MD-trajectory calculations are performed with the intention of evaluating P(b, v,) considering

potential interactions between nanoclusters.

B. Probability mapping, P(b, v,) prediction via MD simulation

While simple potential models have been found accurate for atomic scale systems with
stronger Coulombic interactions (i.e. those dominated by ion-dipole interactions®® or ion-ion
interactions®®), simple models have been less successful for electrically neutral nanoclusters
wherein dipole-dipole interactions may be significant. We simulated the coagulation of two TiO:
nanoclusters in the size range of 0.6 to 3.0 nm on the open-source MD software LAMMPS?
customized with a coagulation (collision) event detection sub-routine. A schematic diagram
depicting the coagulation MD simulation is shown in Figure 1. Prior to these simulations, we
prepared the different diameter TiO- test nanoclusters. Approximately spherical nanoclusters were
cut from a TiO; bulk crystal (10 nm X 10 nm X 10 nm, with the anatase structure) with target
sizes as the diameters while ensuring one titanium atom to two oxygen atoms. While simulations
of aerosol processes need to be performed unthermostated when the particles or nanoclusters are
smaller than the mean free path of the gas (i.e. thermal equilibration does not occur on the timescale

d24, 28, 30, 31)
5

of the process simulate initialization of the simulated species does require an

equilibration step. The nanoclusters were thermally relaxed individually at 300 K in canonical
ensemble (constant number, volume, and temperature: NVT) MD simulations with a Nose-Hoover

t32

thermostat™ for 2 ns. This thermal relaxation process was performed at only 300 K strictly, the

internal (vibrational and rotational) energies of atoms with nanoclusters will vary with system



temperature. However, prior work?, and preliminary simulations show that for nanocluster
coagulation the nanocluster internal temperature does not significantly influence on the
coagulation rate, although the processes after collision and binding is certainly affected (i.e. the

rate of coalescence’? 3

, not examined in the present study). Two sizes of thermally-relaxed
nanoclusters were chosen as nanocluster i and nanocluster j (Figure 1) and they were positioned in
a simulation domain at center of masses 7; = (-xo, b, 0) and »; = (0, 0, 0) with random orientations.

xo was fixed at 10 nm while the impact parameter, b, was varied in the range from 0 to 8 nm,

significantly larger than nanocluster radii. In such simulations, the nanocluster-nanocluster initial

distance (\/m ) needs to be long enough such that potential interactions are negligible
initially in comparison to the translational kinetic energy used to initialize motion. We found that
the minimum initial distance, xo = 10 nm was sufficient in this study as long-range Coulombic
interactions between two “neutral” nanoclusters diminished at this distance. At the same time, we
remark that for net charged nanoclusters, particularly with attractive interactions, it would be
necessary to increase this distance, and likely to consider the influence of neutral gas on
nanocluster trajectories as in Tamadate et al. ** 3% 3%, An initial center-of-mass translational
velocity vij = (vo, 0, 0) in the range of 20 to 700 m/s was given to nanocluster i, while the
nanocluster j was initialized with a zero center-of-mass velocity, where the range of vy is
determined to sufficiently cover the nanocluster Maxwell-Boltzmann thermal speed distribution at
standard to high temperature (300 K to 1000 K). The velocities of individual atoms were the sum
of the center-of-mass velocity and their thermal velocities resulting from thermal relaxation
simulations. MD-trajectory simulations were performed in the absence of neutral gas, in the
micro-canonical ensemble (constant number, volume, and energy: NVE) with varying the

conditions (Dy,i, Dy, b, vo). The combined conditions of simulations performed are summarized



in table S1 of supporting information and also mapped visually in figures S1 to S4 of the supporting
information. As shown in these table and figures, some of the impact parameter calculation ranges
are limited to reduce the total MD simulations since MD-trajectory calculation outcomes are
predictable when impact parameter is far away from the critical impact parameter (See Figure 2).
The distance between two nanocluster center-of-masses, 1;; was continuously tracked during each
MD simulation to determine the simulation outcome: (1) collision, when the distance is smaller

than the collision distance (r;; < a;;) for 200 ps and (2) non-collision, when the square of the

distance exceeds 200 nm? (rl- j2 > 200 nmz). Once one of the events (1) or (2) was detected, the
calculation in question was ceased and the outcome recorded. We note that all of simulations
performed in this study were classified as one of the events (collision or no-collision) in the
calculation total simulation time of 50 ns and collision induced dissociation was never observed
in the tested velocity range (< 700 m/s). Each set of trajectory initial conditions (Dy,, Dy, b, vo)
was repeated 10 times. While this is a coarser approximation for P(b,v,) than in prior
simulations, because P(b,v,) is typically either near “1” or “0” for all input conditions, 10
trajectory calculations appear to be reasonable for L;; estimation.

MD-trajectory calculations are of course strongly dependent on the potential interaction
model selected and the extent to which this model accurately describes the chemical properties of
the nanoclusters under examination. For TiO: potential interactions, we utilized the Matsui-
Akaogi potential®®; this model has been utilized previously in TiO2 nanocluster collision studies '

2337 The potential between atoms (including Ti-Ti, Ti-O, and O-O) are given by the expression

CiC Ap+A—
U =255+ fo(Be + Bl)eXp( Sl rkl) + Ik (5)

- Tklé Bk+B; 4ATEGT k1
where, subscription £ and / are the indexes of the atoms, &, is permittivity of vacuum, 4, B, C, and

fo are the parameters for Matsui-Akaogi potential whose values are provided in the supporting



information, adjusted for the atom type. The Matsui-Akaogi potential is the summation of the
Buckingham and the Coulomb potentials, and hence considers short-range attractive (1°' term) and
repulsive interactions (2" term), as well as Coulomb interactions (3™ term) resulting from partial
charges. The partial charges were assigned electron equivalent values of ¢ = +2.196 for titanium
and g = —1.098 for oxygen atoms, in accordance with the Matsui-Akaogi potential. The time
step was fixed to 0.2 fs in the thermal relaxation process and 1.0 fs in the coagulation simulations.
A smaller time step was required in the structural relaxation process, particularly for the calculation
of the initial nanocluster architect, where high initial velocities after obtaining structures from bulk
crystals necessitated smaller time steps. Time steps of 1.0 to 1.6 fs have been widely applied in
MD simulations with Matsui-Akaogi force field including the original study*® as well as in prior

TiO» nanocluster calculations!”- 233738,

Xo = 10 nm

cluster i |

No-collision

cluster j

D, ;

Figure 1. A schematic diagram depicting the MD trajectory calculation setup.
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C. Neural network (NN) setup

After obtaining P (b, vy) maps through trajectory calculations, for prescribed Dy, Dp;
combinations, we parametrized a NN coded in Python (version 3.8.10) using the Pytorch module®
of v1.12.1 with a CPU. We assumed that the coagulation probability is expressed as a simple
classification problem and the NN was created to generate a one-dimension output label, i.e.
collision (P = 1) or no-collision (P = 0) from a four-dimensional input parameter set (Dy,i, Dp,, b,
vo). Based on the obtained outcome coagulation probability maps both in this work and elsewhere,
we find that the binary output for the coagulation probability is reasonable for most (b, v,) input
pairs. The NN output layer was composed of two parameters, the probabilities of (1) coagulation
and (2) no-collision; the higher probability label is employed as the output label. Three hidden
layers were set in between the input and output layers with 10, 5, and 5 neurons, respectively.
Cross-entropy loss was applied as a loss function and the Adam optimizer was adopted for
updating weights and biases at each layer*’. These NN hyperparameters were selected after
examining 1-3 layers consisting of 5-10 neurons per layer and selecting the network deemed most
accurate after training. The training data sets were prepared from the MD simulation results as the
input parameters (Dp,, Dy, b, vo) and outcome labels created by rounding collision probabilities
from MD results. We trained the NN model under the assumption that nanocluster i is larger than
nanoclusterj (D, ; = Dy, j). Although we performed MD simulations with (D,,; < D, ;), such data
sets were introduced as training data sets reversing two nanocluster diameters under assumption
that the reversed particle size pairs, (Dp,;, Dp,) and (Dy, Dp,), yield an identical result. The training
data sets (N =41,600) were randomly split 8:2 for the training and the test process in each epoch.
The number of epochs was 150 to reach converged losses and accuracy while avoiding overtraining.

The model accuracy was defined as a ratio of the correct labels to the total labels, as is

11



commonplace in NN training for classification problem. After constructing the NN model, we
evaluated the model through comparing the MD-predicted and the NN-predicted critical impact
parameters as a function of velocity for coagulation to occur. From MD trajectory calculation
results, the critical impact parameter was calculated by linearly fitting the collision-to-no-collision
transition on the probability map, using probability (P = 0.5) to define the critical impact
parameter, bcmp. For the NN model, the probability map was also created and NN critical impact
parameter, benn was determined directly from the boundaries between coagulation and no-
collision outcomes. We also calculated the NN coagulation rate coefficient, B;;xn from the NN-

predicted collision probability map through equation (1) and B;~~n was compared with MD

coagulation rate coefficient, B mp.

In addition to the NN, we also attempted to develop a logistic regression model. In the
training process for the logistic regression model, the 41,600 data sets were randomly split into 8:2
for training and testing, as they were for the NN. The label accuracy, critical impact parameter,

benw, and coagulation rate coefficient, 3, nn, were also compared with MD predicted values.

III. RESULTS AND DISCUSSION
A. MD-Trajectory Calculations
Coagulation probability heat maps are provided in Figure 2, where the diameter of the
center nanocluster was fixed at 2.0 nm and the incoming nanocluster diameter was varied from 0.6
to 3.0 nm. We note that the original heat map point densities are 35 X 20 (numbers of impact
parameters X initial velocities tested) but we linearly interpolated the original grid to display 50x
higher resolution heat maps. Heat maps for the other size combination results are available in the

supporting information (Figure S5-7). Overall, features of the heat maps are similar for different

12



combinations, and in general: (1) all heat maps show a larger critical impact parameter, b. (where
boundary of coagulation to no-collision occurs, i.e. red to purple color transition in Figure 2) than
the hard sphere critical impact parameter, b, = a;;, which is drawn by black dashed line in the
Figure over entire vo range; (2) the critical impact parameters, b, are close to the hard sphere
collision distance at higher initial velocities, vo. The first feature demonstrates that the coagulation
rate coefficient predicted by MD trajectories calculations will be larger than the hard sphere
approximation (equation 3), hence the enhancement factor is also more than unity. This increase
is caused by the attractive van der Waals and dipole-dipole potential interactions between two
nanoclusters. From (2), we infer that the coagulation rate may be better described by the hard
sphere approximation at high velocity, i.e., high temperature. We also note larger critical impact
parameter differences between MD and hard sphere theory with smaller nanoclusters, specifically
Dp; = 0.6 and 0.8 nm in Figure 2. The smaller nanoclusters experience proportionally larger
attractive acceleration due to their small masses, an observation consistent with earlier MD-

trajectory calculations®® 24,

In this study, we extensionally confirmed this finding while
systematically varying the nanocluster size combinations in wide nanocluster size range (Dp = 0.6

to 3.0 nm) with fairly higher size resolution in comparison to prior studies.
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Figure 2. Coagulation probability heat maps P(b, vo) as functions of the impact parameter and the
initial velocity when the center particle diameter, D, is fixed to 2.0 nm and the second particle
diameter, Dy, is varied from 0.6 to 3.0 nm. The vertical dashed line denotes the critical collision
parameter of the hard sphere model (b = a;;).

Figure 3 shows the binding length maps of four selected nanocluster combinations at 300,
600, and 900 K. These binding length maps are obtained directly from coagulation probability
maps; they provide insight into the coagulation process as they demonstrate the most probable
impact parameter and velocity combinations at which coagulation occurs for a given set of
nanocluster diameters and a system temperature. Dashed vertical lines in Figure 3 denote the hard-
sphere collision radius, while dashed horizontal lines denote the mean thermal speed of the reduced
mass of the nanoclusters. The hard sphere model assumes that coagulation occurs for all velocities,
but only in instances where the impact parameter is less than or equal to the hard sphere collision
radius. However, similar to the findings of Goudeli et al??, the binding length maps obtained in
this study demonstrate that the most probable encounters leading to coagulation are for impact
parameters greater than the hard sphere collision radius and at speeds which can exceed the mean
thermal speed. Importantly, binding length heat maps also show that “head-on”, zero impact

14



parameter coagulation events are extremely rare, and instead coagulation occurs with nanocluster
oriented at “glancing” angles with respect to one another. The newly formed nanocluster will thus
have an elevated rotational energy about its center of mass. Results suggest that models of particle
collision processes should not utilize the zero-impact parameter, head-on collision framework,

though this is commonplace*'*3.

With increasing temperature, the region of (b, vo) space where
coagulation is most probable shifts to the upper left quadrant in all plots. The velocity shift is
clearly caused by the raising initial velocity at higher temperature, while the shift in impact
parameter range is due to diminished influence of attractive potentials at high initial kinetic
energies. We note that the high probability region of the binding length heat map at 1200 K for
two 0.6 nm nanoclusters coagulation is still bounded by, but is close to the initial velocity upper
limit, vo = 700 m/s, suggesting 1200 K is the highest temperature which can be examined using
the calculations reported here.

Figure 4 displays plots of the coagulation rate coefficients calculated for selected
nanocluster sizes, while Table 1 displays coagulation rate coefficients for all examined nanocluster
pairs at selected three temperatures (300 K, 500 K, and 1,000 K). Beginning first by examining
each subfigure individually, we find that in all cases lower coagulation rate coefficients are
obtained when one of the nanocluster diameters is either 1.2 nm or 1.8 nm, suggesting the
coagulation rate coefficient curve with size typically has a local minimum in the intermediate
nanocluster size range. More specifically, nanocluster pairs corresponding to minima in curves
for fixed size of nanocluster i are shaded in Table 1 which is D, ;= 1.0 to 1.2 nm for Dp; = 0.6 nm,
Dp;=1.0 nm for Dp; = 1.0 nm, and Dp; = 1.2 to 1.6 nm for D,; =2.0 nm. Such a minimum must

arise from a combination of factors; the coagulation rate increases with the physical cross-section

of the colliding nanoclusters, but also decreases with increasing the mass of the smaller nanocluster
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(which more strongly affects the thermal speed), and potential interactions are affected by
nanocluster size and encountering nanocluster size disparity in a complex manner. Without

considering the potential interactions, such as in equation (3), the nanocluster size combination

exhibiting the local minimum is simplified; the size ratio of the two nanoclusters ﬁ = 0.856
bl

leads to the local minimum in rate coefficient for nanocluster i (see section 4 in Supporting
information). However, MD-trajectory calculations yielded particle size-dependent local
minimum nanocluster size ratios, from 1.67 - 2.0 for 0.6 nm, 1.0 for 1.0 nm, and 0.6 - 0.8 for 2.0
nm nanoclusters. This suggests the potential interaction has a significant influence on the
coagulation rate coefficient for nanoclusters, and beyond observation of a minimum coagulation
rate coefficient for the intermediate size range examined (1 nm to 1.6 nm), it is difficult to make
generalizations about the size-dependency of the coagulation rate coefficient from MD trajectory
calculations (we remark this is a common finding in such studies??). Furthermore, coagulation rate
coefficients generally have a weak-dependency on temperature, with rates increasing in some
instances with temperature, and decreasing in others, and yet still other size combinations with a
local minimum in the coagulation rate coefficient versus temperature curves. The hard sphere
collision rate coefficient, and correspondingly hard sphere rates multiplied by a temperature
dependent enhancement factor, have B; < v/T (c.f. equation 3). Weak and fluctuating temperature
dependency is due to the interplay between the influence of translational kinetic energy and
potential energy on the coagulation. Increased translational energy of course increases the
frequency of nanocluster encounters due to increased velocities, but reduces the region of impact
parameter space in length where successful coagulation events occur. Combined, variations in

coagulation rate coefficients with particle diameters and with temperature shown rather non-

16



systematic variations which at present appear difficult to parameterize via simple models. For
this reason, we turn to a neural network approach in the subsequent section.

The coagulation rate coefficients in Figure 4 were also converted to enhancement factors,
i, through Equation (4), and are shown in Figure 5. Figure 5 is also smoothed to have higher
resolution, akin to Figure 4. Because enhancement factors are normalized by hard-sphere
coefficients, they monotonically decrease with increasing temperature. For most of the diameters
and temperatures examined, the enhancement factor is less than 10, in agreement with prior

studies'" 7

. The much higher enhancement factor exceptionally obtained with 0.6 nm — 0.6 nm
coagulation is caused by the large critical impact parameters, relative to the hard sphere collision
radius, leading to coagulation for these nanoclusters; this is shown in the coagulation probability
of map Figure S5. We note that the number of atoms in 0.6 nm nanocluster is 9 (Ti30¢) and it is
the out of the nanocluster size ranges (below) in previous studies. Yang et al** calculated smaller
enhancement factors (< 2.0) for gold nanocluster-monomer atom collisions, but such encounters

are subject to weaker potential interactions as a dipole-dipole potential is not present (as it is for

Ti0O; nanoclusters).
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Figure 3. Integrand heat maps of the 4 different particle size combinations (Dy,i, Dp,)
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Figure 4. Coagulation rate coefficients, 3; as functions of temperature for selected diameter
combinations. The diameter of the nanocluster i is fixed in each panel at D ; = 0.6 nm (a), 1.0 nm
(b), and 2.0 nm (c), while size of the nanocluster j is varied D, ;= 0.6 nm, 1.2 nm, 1.8 nm, 2.4 nm,
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Figure 5. Enhancement factors, m; as functions of temperature for selected diameter
combinations. The diameter of nanocluster i is fixed in each panel at Dp; = 0.6 nm (a), 1.0 nm (b),
and 2.0 nm (c), while size of the nanocluster j is varied Dp; = 0.6 nm, 1.2 nm, 1.8 nm, 2.4 nm, and
3.0 nm.

B. Neural network prediction

We calculated collision probabilities, P from 41,600 different input conditions (Dp,;, Dy,
,Uo, b) in MD-trajectory calculations, utilizing a NN to predict the binary coagulation probability
based on these results. The loss functions and accuracy of the labels during the NN training process

are shown in the supporting information (Figure S8). Both of loss function and accuracy
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converged with increasing epochs, where we confirmed that the accuracy reached a sufficiently
reliable value (> 95%) within 150 epochs in both of the training and testing samples. We note that
this training process includes the obvious collision and no-collision initial conditions, e.g. those of
high initial velocity and large impact parameter, hence the accuracy at the boundary of the
outcomes is predicted at lower than 95% accuracy. Figure 6a displays comparison of the critical
impact parameter obtained by MD simulation (a function of velocity, and determined as the point
where the coagulation probability is 0.5) and the prediction via trained NN model. The coefficient
of determination (R?) was 0.9544, suggesting the NN is a sufficiently reliable model for
coagulation probability prediction. We also note that most of the points plotted in Figure 6a fall
within a shaded gray region, which is 0.8 — 1.25 (= 1/0.8) times from the 1:1 line; more than 95 %
of data fall in this region. The NN is particularly accurate at higher velocities, likely because
higher velocities lead to better convergence with the well-behaved hard sphere model. The larger
disagreement observed for larger nanoclusters is presumably due to their increased degrees of
freedom, leading to greater uncertainty in the dipole moment orientation throughout the
coagulation process and complicating its influence on trajectories; this in turn complicates NN
training. We further compare MD-trajectory and NN predictions by directly plotting the calculated
coagulation rate coefficients, i.e., Bjmp vs. BNy where “MD” and “NN” denote molecular
dynamics and the neural network, respectively, in Figures 6b and 6¢ (with the ratios in Table 1).
The coefficients of determination at 300 K (6b) and 1000 K (6¢) are 0.8865 and 0.9204,
respectively, suggesting again that higher velocities yield improved NN predictions. There is a
higher degree of variability between the coagulation rate coefficients from NN calculations and
MD-trajectory calculations than observed for the critical impact parameter, as the coagulation rate

coefficients derive from the squares of critical impact parameters, magnifying deviations.
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Nonetheless, more than one standard deviation of the distribution (> 68.3 %; 71.7 % and 74.4 %
at 300 K and 1000 K) of NN-predicted rate coefficients fall within the shaded 0.8 — 1.25 (1/0.8)
region and two-standard deviations of the distribution (> 95.0 %; 97.4 % and 100 % at 300 K and
1,000 K) are within 0.65 — 1.54 (= 1/0.65), suggesting the NN approach will be much more
appropriate to describe TiO2 nanocluster growth than use of a constant enhancement factor in
conjunction with the hard sphere model.

Also for reference with a simpler classification model, logistic regression parameterization
is compared with MD predictions in Figure S9 of the supporting information. While outcome
label accuracy was 0.91, the coefficient of determination for critical impact parameter was 0.7321,
and for coagulation rate coefficient at 300 K it was 0.6724, which is unsatisfactory for
implementation. This further demonstrates the present need for non-linear classification
algorithms, such as the NN approach, though future studies may find alternative approaches more
accurate for coagulation rate coefficients. Towards implementation, those interested in using the

NN results may download it at https://github.com/tamadate/TiO2_collision_rate NN. Because the

NN model is trained with the MD trajectory calculations, the input parameter range is limited to
Onm <b <80nm, 20m/s <vy, <700m/s, D, <3.0nm, with an approximate upper
temperature limit of 1200 K. The extension of coagulation rate coefficient estimation to larger
nanoclusters also remains the subject of future work. We do expect that the larger nanoclusters
will yield closer agreement with hard sphere theories or with models considering simpler,
angularly averaged (spherically symmetric) potential interactions since (1) the length scale of the
potential interaction becomes short-distance relatively to the nanocluster diameters and (2) the

nanocluster acceleration is inversely-proportional to nanocluster mass. Future larger scale
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simulations will tell us the boundary of the size of nanoclusters where the NN remains accurate
and where simpler theories can be applied.

We also use NN results to predict the coagulation rate coefficients and enhancement factors
at 300 K and 1000 K, respectively, with a variety of nanocluster size combinations with results
shown in Figure 7. Enhancement factors are also displayed in Table 1. The predicted heat maps
are smooth and the range of both the rate coefficients and the enhancement factors fall well-within
the range expected based on MD-trajectory simulations (2 to 20). In the coagulation rate
coefficient heat maps shown in Figure 7a and 7b, local minimum values are evident in the
nanocluster diameter range of 1.0 — 1.5 nm, consistent with MD simulations. In addition, as shown

in Figure 7c, significantly higher enhancement factors are obtained for small nanoclusters at low

temperature.
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Figure 6. NN- predicted versus MD-predicted critical impact parameters, b. (a), coagulation rate
coefficient, B; at 300 K (b), and coagulation rate coefficient, 3; at 1,000 K (¢). The plot color
denotes the initial velocity, v, in (a) and collision distance a;; in (b) and (¢). The diagonal line is
the 1:1 line (benn = bemp or Biinn = Bijmp), dark gray shadings are 0.8 to 1.25 (1/0.8) times from
the 1:1 line, and light gray shadings are 0.65 to 1.54 (= 1/0.65). R’ is the coefficient of
determination.

22



Table 1. Comparison of MD-determined coagulation rate coefficients 3;;Mmp and enhancement
factors M mp along with the ratio of MD and NN -determined coagulation rate coefficients x;; =

Bij NN

BijmMD

at 300 K, 500 K, and 1,000 K. The unit of D, is [nm] and B; mp is [m3s™1 x

10715]. nymp and y;are dimensionless. The shaded numbers denote the local minimums for three
base particle diameters (0.6, 1.0, 2.0 nanometers) and three temperatures (300, 500, and 1,000

Kelvins).
Dpi Dp; | Bymp  Mymp Xy BiMp  Mimp Xii Biimp MiiMD Xi
300K 300K 300K {500K 500K 500K {1,000 K 1,000 K 1,000 K

0.6 0.6 4.75 19.60 1.08 4.65 14.59 1.02 4.25 9.52 1.01
0.6 0.8 4.01 14.41 1.15 4.24 10.62 1.11 3.94 7.11 1.09
0.6 1.0 2.57 7.66 1.49 3.61 5.80 1.44 3.49 3.99 1.42
0.6 1.2 3.08 7.52 1.10 3.32 5.77 1.09 3.50 4.07 1.15
0.6 1.4 4.45 8.99 0.86 3.77 6.87 0.86 3.86 4.92 0.87
0.6 1.6 3.55 6.01 1.26 4.44 4.58 1.27 4.64 3.27 1.31
0.6 1.8 3.83 5.49 1.40 5.39 4.20 1.42 5.67 3.03 1.47
0.6 2.0 5.18 6.35 1.29 6.76 4.87 1.32 7.11 3.48 1.37
0.6 2.2 7.33 7.78 1.16 8.70 6.12 1.17 9.03 4.48 1.17
0.6 24 10.30 9.56 0.93 9.76 7.35 0.96 10.10 523 0.98
0.6 2.6 5.71 4.66 1.63 9.58 3.81 1.59 10.30 2.96 1.56
0.6 2.8 6.25 4.52 1.48 9.62 3.80 1.42 10.70 3.04 1.40
0.6 3.0 10.90 7.02 0.88 9.97 5.39 0.92 11.50 3.81 1.06
1.0 0.6 2.57 7.66 1.49 3.61 5.80 1.44 3.49 3.99 1.42
1.0 0.8 1.91 6.21 0.98 1.88 4.65 1.02 2.03 3.24 1.12
1.0 1.0 1.28 4.10 1.37 1.76 3.27 1.33 1.85 2.53 1.28
1.0 1.2 1.32 3.94 1.35 1.84 3.22 1.31 2.01 2.49 1.31
1.0 1.4 1.78 4.77 1.07 2.01 3.77 1.11 2.15 2.82 1.12
1.0 1.6 1.65 3.94 1.25 2.21 3.23 1.27 2.45 2.51 1.28
1.0 1.8 1.79 3.81 1.34 2.57 3.08 1.37 2.80 2.38 1.37
1.0 2.0 343 6.49 0.81 3.02 5.06 0.88 3.37 3.66 0.95
1.0 2.2 2.68 4.52 1.24 3.63 3.68 1.29 4.11 2.85 1.33
1.0 2.4 3.66 5.52 0.90 3.60 4.47 0.94 4.09 3.38 1.00
1.0 2.6 2.30 3.12 1.38 3.45 2.72 1.34 3.95 2.30 1.28
1.0 2.8 245 3.00 1.33 3.47 2.58 1.28 4.07 2.19 1.24
1.0 3.0 3.95 4.38 0.90 3.81 3.47 0.94 4.41 2.60 1.03
2.0 0.6 5.18 6.35 1.29 6.76 4.87 1.32 7.11 3.48 1.37
2.0 0.8 5.14 8.23 0.70 3.73 6.32 0.73 4.00 4.43 0.79
2.0 1.0 3.44 6.51 0.81 3.02 5.07 0.87 3.37 3.67 0.95
2.0 1.2 2.79 5.86 0.97 2.76 4.61 0.98 2.99 3.37 1.02
2.0 1.4 3.08 6.88 0.93 2.79 5.31 0.91 2.75 3.75 0.90
2.0 1.6 2.50 5.74 1.26 3.09 4.53 1.21 2.95 3.32 1.12
2.0 1.8 2.58 5.94 1.38 3.53 4.49 1.40 3.45 3.16 1.37
2.0 2.0 4.26 9.63 0.93 4.03 7.97 0.89 4.07 5.77 0.87
2.0 2.2 341 7.47 1.23 4.40 6.12 1.22 4.53 4.51 1.20
2.0 2.4 4.42 9.29 0.91 4.24 7.63 0.90 4.38 5.63 0.90
2.0 2.6 3.01 6.04 1.25 4.03 4.51 1.39 4.25 3.11 1.50
2.0 2.8 3.15 5.99 1.15 3.91 4.49 1.28 4.14 3.14 1.37
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Figure 7. NN-predicted coagulation rate coefficients, 3; (a-b) and enhancement factors, n;; (c-d)
maps at two temperatures, 300 K (a & d) and 1000 K (¢ & d) with different particle diameter
combinations (Dy,i, Dp,).
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IVv.

CONCLUSIONS

We computed the trajectories of TiO, nanoclusters via MD simulations, using them to
compute coagulation rate coefficients for equal and unequal sized nanoclusters with diameters in
the 0.6 — 3.0 nm size range. Similar to prior efforts utilizing MD-trajectory calculations to study
coagulation, we find that the TiO2 nanocluster coagulation rate is significantly greater than the
hard sphere coagulation rate, with enhancement factors in the 20 to 2 range as the temperature
increases from 300 K to 1000 K. Simulations suggest that coagulation rate coefficients vary non-
monotonically with temperature nanocluster diameter, and nanocluster diameter disparity (relative
size with respect to one another), with a unique minimum in the rate observed when one of the
nanoclusters falls in the 1.0-1.8 nm diameter range (though this finding cannot be extrapolated
outside the tested diameter range).

We trained a NN to predict the critical impact parameter for coagulation to occur as a
function of the nanocluster diameters, and approach velocity. The trained NN shows reasonable
agreement with MD-trajectory calculations for both the critical impact parameter, and the
correspondingly calculated coagulation rate coefficient; most NN-predicted coagulation rate
coefficients are within a factor of 0.8-1.25 from the MD-trajectory calculated rate coefficient. In
addition to providing a NN which can be used to model TiO> nanocluster growth in high
temperature gas phase systems, the approach we apply here, i.e. MD-trajectory calculations
followed by NN training, is sufficiently general that it can be applied to a wide variety of systems
as a means to develop robust coagulation rate coefficient models as inputs to population balance
models. Improvements in both MD-modeling (more accurate potentials, consideration of variable
nanocluster internal energy) and further advanced machine learning approaches may enable even

more accurate and robust coagulation rate coefficient models in future work. In addition, while
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the analysis presented in this study focuses on metal oxide nanoclusters growth, as would be
expected in oxygen-rich synthesis systems, the approach can be adapted for metal and semimetal

44-46

nanoclusters or other ceramics, synthesized in low oxygen content gas phase reactors™ " or plasma

synthesis systems*”- 45,
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