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ABSTRACT 

Coagulation is a key factor governing the size distribution of nanoclusters during the high 

temperature synthesis of metal oxide nanomaterials.  Population balance models are strongly 

influenced by the coagulation rate coefficient utilized.   Although simplified coagulation models 

are often invoked, the coagulation process, particularly for nanometer-scale particles, is complex, 

affected by the coagulating nanocluster sizes, the surrounding temperature, and potential 

interactions.  Towards developing improved models of nanocluster and nanoparticle growth, we 

have developed a neural network (NN) model to describe titanium dioxide (TiO2) nanocluster 

coagulation rate coefficients, trained with molecular dynamics (MD) trajectory calculations.  

Specifically, we first calculated TiO2 nanocluster coagulation probabilities via MD-trajectory 

calculations varying the nanocluster diameters from 0.6 nm to 3.0 nm, initial relative velocity from 

20 to 700 m s-1, and impact parameter from 0.0 to 8.0 nm.  Calculations consider dipole-dipole 

interactions, dispersion interactions, and short-range repulsive interactions.  We trained a NN 

model to predict whether a given set of nanocluster diameters, impact parameter, and initial 

velocity would lead to the outcome of coagulation.  The accuracy between the predicted outcomes 

from the NN model and the MD trajectory calculation results are > 95%.  We subsequently utilized 

both the NN model and MD trajectory calculations to examine coagulation rate coefficients at 300 

K and 1000 K.  The NN model predictions are largely within the range 0.65-1.54 of MD 

predictions, and importantly NN predictions capture the local minimum coagulation rate 

coefficients observed in MD-trajectory calculations.  The NN model can be directly implemented 

in population balances of TiO2 formation. 
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I. INTRODUCTION 

The synthesis of oxide nanomaterials in flames typically involves the volatilization of an 

organometallic precursor, oxidation of the precursor vapor, and subsequently the formation of 

metal oxide nanoclusters, which are solid species with nanometer scale dimensions1-4.  Upon the 

formation of nanoclusters5-7, further growth into nanoparticles proceeds via surface growth by 

nanocluster collisions with partially oxidized precursor molecules,8, 9 as well as by nanocluster-

nanocluster collisions (coagulation)10, 11.  While the relative importance of these two processes is 

dependent upon the temperature-time history in the reactor and the properties of the organometallic 

precursor vapor12, 13, nanocluster-nanocluster coagulational growth is likely a key contributor to 

nanoparticle growth, as the precursor rapidly reacts and becomes depleted in concentration in 

flame reactors. 

For this reason, prediction of metal oxide nanoparticle growth rates in flames hinges upon 

accurate calculation of nanocluster-nanocluster coagulation rate coefficients; these rate 

coefficients are essential inputs to population balance models for nanocluster and nanoparticle size 

distribution evolution predictions14.  Coagulation rates are dependent not only on the nanocluster 

sizes and system temperature, but also the potential interactions between nanoclusters closely 

approaching one another10, 15-18. Unfortunately, the conventional approach to coagulation rate 

prediction is rather coarse.  It is commonplace in modeling growth dynamics in combustion 

systems to utilize the free molecular hard-sphere collision model for nanocluster-nanocluster 

coagulation, in which the coagulation rate coefficients are the products of the mean thermal speed 

of the reduced nanocluster masses and the nanocluster-nanocluster combined projected areas19.  

Attractive potential interactions are not explicitly considered in the hard-sphere collision model.  

In instances where the effects of attractive potential interactions are considered, it is commonplace 
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to invoke a temperature-independent, constant “enhancement factor” for the coagulation rate 

coefficient, i.e. a constant factor multiplied by the hard-sphere-predicted coagulation rate 

coefficient20, 21.  However, there is ample evidence, both computational and experimental, that 

enhancement factors for metal oxide clusters are large (>2 for many materials), strongly 

temperature-dependent, and also dependent on the coagulating nanocluster sizes.  For example, 

Goudeli et al22 , theoretically examining SiO2 nanocluster coagulation through molecular dynamics 

trajectory calculations, found enhancement factors in the 3–9 for nanometer scale clusters, in the 

300-1500 K temperature range, with enhancement factors decreasing with increasing temperature.  

Yan et al23 and Zhang et al17 utilized molecular dynamics simulations to argue that for TiO2 

nanoclusters ~2 nm in diameter, the coagulation rate coefficient at room temperature will be more 

than 8 times higher than the hard-sphere predicted model, and this is largely due to dipole-dipole 

interactions between closely approached nanoclusters.  Experimentally, Sharma et al11 estimated 

enhancement factors in the 3-7 range for 5-6 nm TiO2 particles, also decreasing with increasing 

temperature in the 673-1073 K range. 

While prior research consistently yields large, temperature-dependent enhancement factors 

for metal oxide nanocluster coagulation rates, studies to-date utilizing atomistic simulations to 

infer nanocluster-nanocluster potential energy surfaces and coagulation rates have been limited to 

specific circumstances17, 22-25.  To incorporate improved coagulation rate models into nanoparticle 

growth predictions, nanocluster-nanocluster collision models need to be used to provide 

coagulation rate coefficients not only for explicitly simulated circumstances, but also over wider 

nanocluster size and system temperature ranges.  Towards this end, using TiO2 nanoclusters in the 

0.6-3.0 nm diameter range as a model system, we utilize molecular dynamics (MD) trajectory 

calculations, similar to prior studies, to precisely examine nanocluster-nanocluster coagulation 



5 
 

rates.  Subsequently, we utilize a neural network model to fit results for the coagulation probability 

of nanoclusters for a given set of nanocluster diameters, impact parameter, and initial relative 

velocity.  While the neural network is ultimately, a  “black-box” approach, because neural network 

training and testing is readily facilitated by modern computational tools, the combination of 

trajectory calculations with detailed potential interactions between nanoclusters (atomistic 

simulations) and neural network training at present appears to be a more tractable approach 

coagulation rate coefficient estimation than does the use of simpler potential function 

approximations between nanoclusters and analytical modeling. We show that the fit coagulation 

probability map can be used to predict coagulation rate coefficients for TiO2 nanoclusters under 

widely variable temperatures and nanocluster diameters, i.e. the resulting modeling can be directly 

used in population balance models for nanoparticles.   

 

II. COMPUTATIONAL METHODS 

We utilize MD-trajectory calculations22, 24-26 to examine TiO2 nanocluster collisions, 

defining the coagulation rate coefficient and enhancement factor in rate with respect to hard-sphere 

collisions, and then subsequently developing a neural network (NN) model to fit trajectory 

outcomes, and to develop a function for the coagulation rate coefficient.  In section A, we define 

the coagulation rate coefficient and enhancement factor.  In section B, the methods employed to 

determine probability maps for the outcomes of trajectories are briefly described, with reference 

to prior work adopting similar methods.  In section C, we provide a description of the neural 

network (NN) fit to coagulation probability maps, including the structure of the NN, used 

equations in NN, and training process using MD simulation results obtained in B.   
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A. Theories for coagulation rate coefficient and enhancement factor calculations 

The coagulation rate coefficient for two nanoclusters, 𝛽𝑖𝑗, where the subscripts “𝑖” and “𝑗” 

denote the nanocluster “type” (typically diameter or mass), can be calculated as22: 

𝛽𝑖𝑗 = ∫ ∫ 𝐿𝑖𝑗𝑑𝑏𝑑𝑣0
∞

0

∞

0
       (1a) 

𝐿𝑖𝑗 = 2𝜋𝑏 ∙ 𝑃(𝑏, 𝑣0) ∙ 𝑣0𝑓MB(𝑣0)      (1b) 

𝑓MB(𝑣0) = (
𝑚𝑖𝑗

2𝜋𝑘b𝑇
)
1.5

4𝜋𝑣0
2exp⁡(−

𝑚𝑖𝑗𝑣0
2

2𝑘b𝑇
)     (1c) 

𝐿𝑖𝑗  has been termed binding length22; it is a function of 𝑓MB(𝑣0) , the Maxwell-Boltzmann 

distribution, 𝑣0, the relative speed approaching nanoclusters, 𝑏, the impact parameter, 𝑚𝑖𝑗 , the 

reduced mass, 𝑘b, Boltzmann’s constant, 𝑇, the background system temperature, and 𝑃(𝑏, 𝑣0), the 

probability that coagulation occurs, for a given 𝑏  and 𝑣0 .  With the hard sphere assumption 

(subscript “HS”) in the free molecular regime: 

𝑃HS(𝑏, 𝑣0) = {
1 (𝑏 ≤ 𝑎𝑖𝑗)

0 (𝑏 > 𝑎𝑖𝑗)
       (2) 

where  𝑎𝑖𝑗 is the collision distance of the nanoclusters, defined as 𝑎𝑖𝑗 =
𝐷p,𝑖+𝐷p,𝑗

2
, when 𝐷p,𝑖 and 

𝐷p,𝑗 are the nanocluster i and j diameters.  Substituting equation 2 into equation 1 and integrating 

yields the hard sphere coagulation rate coefficient27: 

𝛽HS = 𝜋𝑎𝑖𝑗
2√

8𝑘b𝑇

𝜋𝑚𝑖𝑗
        (3) 

Although the coagulation rate coefficient is predictable from this equation, as shown in previous 

studies, the calculated values are often underestimations (especially on the nanocluster).  The ratio 

of the true coagulation rate coefficient (or at least improved approximations to it) to the hard sphere 

coefficient is defined as the enhancement factor, 𝜂𝑖𝑗
15, 16: 
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𝜂𝑖𝑗 =
𝛽𝑖𝑗

𝛽HS
         (4) 

MD-trajectory calculations are performed with the intention of evaluating 𝑃(𝑏, 𝑣0) considering 

potential interactions between nanoclusters.   

 

 

B. Probability mapping, 𝑷(𝒃, 𝒗𝟎) prediction via MD simulation 

While simple potential models have been found accurate for atomic scale systems with 

stronger Coulombic interactions (i.e. those dominated by ion-dipole interactions26 or ion-ion 

interactions28), simple models have been less successful for electrically neutral nanoclusters 

wherein dipole-dipole interactions may be significant. We simulated the coagulation of two TiO2 

nanoclusters in the size range of 0.6 to 3.0 nm on the open-source MD software LAMMPS29 

customized with a coagulation (collision) event detection sub-routine.  A schematic diagram 

depicting the coagulation MD simulation is shown in Figure 1.  Prior to these simulations, we 

prepared the different diameter TiO2 test nanoclusters.  Approximately spherical nanoclusters were 

cut from a TiO2 bulk crystal (10⁡nm × 10⁡nm × 10⁡nm, with the anatase structure) with target 

sizes as the diameters while ensuring one titanium atom to two oxygen atoms.  While simulations 

of aerosol processes need to be performed unthermostated when the particles or nanoclusters are 

smaller than the mean free path of the gas (i.e. thermal equilibration does not occur on the timescale 

of the process simulated24, 28, 30, 31), initialization of the simulated species does require an 

equilibration step. The nanoclusters were thermally relaxed individually at 300 K in canonical 

ensemble (constant number, volume, and temperature: NVT) MD simulations with a Nose-Hoover 

thermostat32 for 2 ns.  This thermal relaxation process was performed at only 300 K; strictly, the 

internal (vibrational and rotational) energies of atoms with nanoclusters will vary with system 
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temperature.  However, prior work24, and preliminary simulations show that for nanocluster 

coagulation the nanocluster internal temperature does not significantly influence on the 

coagulation rate, although the processes after collision and binding is certainly affected (i.e. the 

rate of coalescence33, 34, not examined in the present study).  Two sizes of thermally-relaxed 

nanoclusters were chosen as nanocluster i and nanocluster j (Figure 1) and they were positioned in 

a simulation domain at center of masses ri = (-x0, b, 0) and rj = (0, 0, 0) with random orientations.  

x0 was fixed at 10 nm while the impact parameter, b, was varied in the range from 0 to 8 nm, 

significantly larger than nanocluster radii.  In such simulations, the nanocluster-nanocluster initial 

distance (√𝑥0
2 + 𝑏2 ) needs to be long enough such that potential interactions are negligible 

initially in comparison to the translational kinetic energy used to initialize motion.  We found that 

the minimum initial distance, x0 = 10 nm was sufficient in this study as long-range Coulombic 

interactions between two “neutral” nanoclusters diminished at this distance.  At the same time, we 

remark that for net charged nanoclusters, particularly with attractive interactions, it would be 

necessary to increase this distance, and likely to consider the influence of neutral gas on 

nanocluster trajectories as in Tamadate et al. 28, 30, 35. An initial center-of-mass translational 

velocity vij = (v0, 0, 0) in the range of 20 to 700 m/s was given to nanocluster i, while the 

nanocluster j was initialized with a zero center-of-mass velocity, where the range of v0 is 

determined to sufficiently cover the nanocluster Maxwell-Boltzmann thermal speed distribution at 

standard to high temperature (300 K to 1000 K).  The velocities of individual atoms were the sum 

of the center-of-mass velocity and their thermal velocities resulting from thermal relaxation 

simulations.  MD-trajectory simulations were performed in the absence of neutral gas, in the 

micro-canonical ensemble (constant number, volume, and energy: NVE) with varying the 

conditions (Dp,i, Dp,j, b, v0).   The combined conditions of simulations performed are summarized 
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in table S1 of supporting information and also mapped visually in figures S1 to S4 of the supporting 

information.  As shown in these table and figures, some of the impact parameter calculation ranges 

are limited to reduce the total MD simulations since MD-trajectory calculation outcomes are 

predictable when impact parameter is far away from the critical impact parameter (See Figure 2).  

The distance between two nanocluster center-of-masses, 𝑟𝑖𝑗 was continuously tracked during each 

MD simulation to determine the simulation outcome: (1) collision, when the distance is smaller 

than the collision distance (𝑟𝑖𝑗 < 𝑎𝑖𝑗) for 200 ps and (2) non-collision, when the square of the 

distance exceeds 200 nm2 (𝑟𝑖𝑗
2 > 200⁡𝑛𝑚2).  Once one of the events (1) or (2) was detected, the 

calculation in question was ceased and the outcome recorded.  We note that all of simulations 

performed in this study were classified as one of the events (collision or no-collision) in the 

calculation total simulation time of 50 ns and collision induced dissociation was never observed 

in the tested velocity range (< 700 m/s).  Each set of trajectory initial conditions (Dp,i, Dp,j, b, v0) 

was repeated 10 times.  While this is a coarser approximation for 𝑃(𝑏, 𝑣0)  than in prior 

simulations, because 𝑃(𝑏, 𝑣0)  is typically either near “1” or “0” for all input conditions, 10 

trajectory calculations appear to be reasonable for 𝐿𝑖𝑗 estimation. 

MD-trajectory calculations are of course strongly dependent on the potential interaction 

model selected and the extent to which this model accurately describes the chemical properties of 

the nanoclusters under examination.  For TiO2 potential interactions, we utilized the Matsui-

Akaogi potential36; this model has been utilized previously in TiO2 nanocluster collision studies 17, 

23, 37. The potential between atoms (including Ti-Ti, Ti-O, and O-O) are given by the expression 

𝑈𝑘𝑙 =
𝐶𝑘𝐶𝑙

𝑟𝑘𝑙
6 + 𝑓0(𝐵𝑘 + 𝐵𝑙)exp (

𝐴𝑘+𝐴𝑙−𝑟𝑘𝑙

𝐵𝑘+𝐵𝑙
) +

𝑞𝑘𝑞𝑙

4𝜋𝜀0𝑟𝑘𝑙
     (5) 

where, subscription k and l are the indexes of the atoms, 𝜀0 is permittivity of vacuum, A, B, C, and 

f0 are the parameters for Matsui-Akaogi potential whose values are provided in the supporting 
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information, adjusted for the atom type.  The Matsui-Akaogi potential is the summation of the 

Buckingham and the Coulomb potentials, and hence considers short-range attractive (1st term) and 

repulsive interactions (2nd term), as well as Coulomb interactions (3rd term) resulting from partial 

charges.  The partial charges were assigned electron equivalent values of 𝑞 = +2.196⁡ for titanium 

and 𝑞 = −1.098⁡for oxygen atoms, in accordance with the Matsui-Akaogi potential.  The time 

step was fixed to 0.2 fs in the thermal relaxation process and 1.0 fs in the coagulation simulations.  

A smaller time step was required in the structural relaxation process, particularly for the calculation 

of the initial nanocluster architect, where high initial velocities after obtaining structures from bulk 

crystals necessitated smaller time steps.  Time steps of 1.0 to 1.6 fs have been widely applied in 

MD simulations with Matsui-Akaogi force field including the original study36 as well as in prior 

TiO2 nanocluster calculations17, 23, 37, 38. 

 
Figure 1.  A schematic diagram depicting the MD trajectory calculation setup. 
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C. Neural network (NN) setup 

After obtaining 𝑃(𝑏, 𝑣0)  maps through trajectory calculations, for prescribed Dp,i, Dp,j 

combinations, we parametrized a NN coded in Python (version 3.8.10) using the Pytorch module39 

of v1.12.1 with a CPU.  We assumed that the coagulation probability is expressed as a simple 

classification problem and the NN was created to generate a one-dimension output label, i.e. 

collision (P = 1) or no-collision (P = 0) from a four-dimensional input parameter set (Dp,i, Dp,j, b, 

v0).  Based on the obtained outcome coagulation probability maps both in this work and elsewhere, 

we find that the binary output for the coagulation probability is reasonable for most (𝑏, 𝑣0) input 

pairs.   The NN output layer was composed of two parameters, the probabilities of (1) coagulation 

and (2) no-collision; the higher probability label is employed as the output label.  Three hidden 

layers were set in between the input and output layers with 10, 5, and 5 neurons, respectively.  

Cross-entropy loss was applied as a loss function and the Adam optimizer was adopted for 

updating weights and biases at each layer40.  These NN hyperparameters were selected after 

examining 1-3 layers consisting of 5-10 neurons per layer and selecting the network deemed most 

accurate after training.  The training data sets were prepared from the MD simulation results as the 

input parameters (Dp,i, Dp,j, b, v0) and outcome labels created by rounding collision probabilities 

from MD results.  We trained the NN model under the assumption that nanocluster i is larger than 

nanocluster j (𝐷𝑝,𝑖 ≥ 𝐷𝑝,𝑗).  Although we performed MD simulations with (𝐷𝑝,𝑖 < 𝐷𝑝,𝑗), such data 

sets were introduced as training data sets reversing two nanocluster diameters under assumption 

that the reversed particle size pairs, (Dp,i, Dp,j) and (Dp,j, Dp,i), yield an identical result.   The training 

data sets (N = 41,600) were randomly split 8:2 for the training and the test process in each epoch.  

The number of epochs was 150 to reach converged losses and accuracy while avoiding overtraining.  

The model accuracy was defined as a ratio of the correct labels to the total labels, as is 
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commonplace in NN training for classification problem.  After constructing the NN model, we 

evaluated the model through comparing the MD-predicted and the NN-predicted critical impact 

parameters as a function of velocity for coagulation to occur.  From MD trajectory calculation 

results, the critical impact parameter was calculated by linearly fitting the collision-to-no-collision 

transition on the probability map, using probability (P = 0.5) to define the critical impact 

parameter, bc,MD.  For the NN model, the probability map was also created and NN critical impact 

parameter, bc,NN was determined directly from the boundaries between coagulation and no-

collision outcomes.  We also calculated the NN coagulation rate coefficient, ij,NN from the NN-

predicted collision probability map through equation (1) and ij,NN was compared with MD 

coagulation rate coefficient, ij,MD.   

In addition to the NN, we also attempted to develop a logistic regression model.  In the 

training process for the logistic regression model, the 41,600 data sets were randomly split into 8:2 

for training and testing, as they were for the NN.  The label accuracy, critical impact parameter, 

bc,NN, and coagulation rate coefficient, ij,NN, were also compared with MD predicted values. 

 

 

III. RESULTS AND DISCUSSION 

A. MD-Trajectory Calculations  

Coagulation probability heat maps are provided in Figure 2, where the diameter of the 

center nanocluster was fixed at 2.0 nm and the incoming nanocluster diameter was varied from 0.6 

to 3.0 nm.  We note that the original heat map point densities are 35 × 20 (numbers of impact 

parameters × initial velocities tested) but we linearly interpolated the original grid to display 50x 

higher resolution heat maps.  Heat maps for the other size combination results are available in the 

supporting information (Figure S5-7).  Overall, features of the heat maps are similar for different 
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combinations, and in general: (1) all heat maps show a larger critical impact parameter, bc (where 

boundary of coagulation to no-collision occurs, i.e. red to purple color transition in Figure 2) than 

the hard sphere critical impact parameter, 𝑏𝑐 = 𝑎𝑖𝑗, which is drawn by black dashed line in the 

Figure over entire v0 range; (2) the critical impact parameters, bc, are close to the hard sphere 

collision distance at higher initial velocities, v0.  The first feature demonstrates that the coagulation 

rate coefficient predicted by MD trajectories calculations will be larger than the hard sphere 

approximation (equation 3), hence the enhancement factor is also more than unity.  This increase 

is caused by the attractive van der Waals and dipole-dipole potential interactions between two 

nanoclusters.  From (2), we infer that the coagulation rate may be better described by the hard 

sphere approximation at high velocity, i.e., high temperature.  We also note larger critical impact 

parameter differences between MD and hard sphere theory with smaller nanoclusters, specifically 

Dp,j = 0.6 and 0.8 nm in Figure 2.  The smaller nanoclusters experience proportionally larger 

attractive acceleration due to their small masses, an observation consistent with earlier MD-

trajectory calculations22, 24.  In this study, we extensionally confirmed this finding while 

systematically varying the nanocluster size combinations in wide nanocluster size range (Dp = 0.6 

to 3.0 nm) with fairly higher size resolution in comparison to prior studies. 
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Figure 2.  Coagulation probability heat maps P(b, v0) as functions of the impact parameter and the 

initial velocity when the center particle diameter, Dp,i is fixed to 2.0 nm and the second particle 

diameter, Dp,j is varied from 0.6 to 3.0 nm.  The vertical dashed line denotes the critical collision 

parameter of the hard sphere model (𝑏 = 𝑎𝑖𝑗). 

 Figure 3 shows the binding length maps of four selected nanocluster combinations at 300, 

600, and 900 K.  These binding length maps are obtained directly from coagulation probability 

maps; they provide insight into the coagulation process as they demonstrate the most probable 

impact parameter and velocity combinations at which coagulation occurs for a given set of 

nanocluster diameters and a system temperature.  Dashed vertical lines in Figure 3 denote the hard-

sphere collision radius, while dashed horizontal lines denote the mean thermal speed of the reduced 

mass of the nanoclusters.  The hard sphere model assumes that coagulation occurs for all velocities, 

but only in instances where the impact parameter is less than or equal to the hard sphere collision 

radius.  However, similar to the findings of Goudeli et al22, the binding length maps obtained in 

this study demonstrate that the most probable encounters leading to coagulation are for impact 

parameters greater than the hard sphere collision radius and at speeds which can exceed the mean 

thermal speed.  Importantly, binding length heat maps also show that “head-on”, zero impact 
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parameter coagulation events are extremely rare, and instead coagulation occurs with nanocluster 

oriented at “glancing” angles with respect to one another.  The newly formed nanocluster will thus 

have an elevated rotational energy about its center of mass.  Results suggest that models of particle 

collision processes should not utilize the zero-impact parameter, head-on collision framework, 

though this is commonplace41-43.    With increasing temperature, the region of (b, v0) space where 

coagulation is most probable shifts to the upper left quadrant in all plots.  The velocity shift is 

clearly caused by the raising initial velocity at higher temperature, while the shift in impact 

parameter range is due to diminished influence of attractive potentials at high initial kinetic 

energies.  We note that the high probability region of the binding length heat map at 1200 K for 

two 0.6 nm nanoclusters coagulation is still bounded by, but is close to the initial velocity upper 

limit, v0 = 700 m/s, suggesting 1200 K is the highest temperature which can be examined using 

the calculations reported here. 

Figure 4 displays plots of the coagulation rate coefficients calculated for selected 

nanocluster sizes, while Table 1 displays coagulation rate coefficients for all examined nanocluster 

pairs at selected three temperatures (300 K, 500 K, and 1,000 K).  Beginning first by examining 

each subfigure individually, we find that in all cases lower coagulation rate coefficients are 

obtained when one of the nanocluster diameters is either 1.2 nm or 1.8 nm, suggesting the 

coagulation rate coefficient curve with size typically has a local minimum in the intermediate 

nanocluster size range.  More specifically, nanocluster pairs corresponding to minima in curves 

for fixed size of nanocluster i are shaded in Table 1 which is Dp,j = 1.0 to 1.2 nm for Dp,i = 0.6 nm, 

Dp,j = 1.0 nm for Dp,i = 1.0 nm, and Dp,j = 1.2 to 1.6 nm for Dp,i = 2.0 nm.  Such a minimum must 

arise from a combination of factors; the coagulation rate increases with the physical cross-section 

of the colliding nanoclusters, but also decreases with increasing the mass of the smaller nanocluster 
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(which more strongly affects the thermal speed), and potential interactions are affected by 

nanocluster size and encountering nanocluster size disparity in a complex manner.  Without 

considering the potential interactions, such as in equation (3), the nanocluster size combination 

exhibiting the local minimum is simplified; the size ratio of the  two nanoclusters 
𝐷𝑝,𝑗

𝐷𝑝,𝑖
= 0.856 

leads to the local minimum in rate coefficient for nanocluster i (see section 4 in Supporting 

information).  However, MD-trajectory calculations yielded particle size-dependent local 

minimum nanocluster size ratios, from 1.67 - 2.0 for 0.6 nm, 1.0 for 1.0 nm, and 0.6 - 0.8 for 2.0 

nm nanoclusters.  This suggests the potential interaction has a significant influence on the 

coagulation rate coefficient for nanoclusters, and beyond observation of a minimum coagulation 

rate coefficient for the intermediate size range examined (1 nm to 1.6 nm), it is difficult to make 

generalizations about the size-dependency of the coagulation rate coefficient from MD trajectory 

calculations (we remark this is a common finding in such studies22).  Furthermore, coagulation rate 

coefficients generally have a weak-dependency on temperature, with rates increasing in some 

instances with temperature, and decreasing in others, and yet still other size combinations with a 

local minimum in the coagulation rate coefficient versus temperature curves.  The hard sphere 

collision rate coefficient, and correspondingly hard sphere rates multiplied by a temperature 

dependent enhancement factor, have ij ∝ √T  (c.f. equation 3).  Weak and fluctuating temperature 

dependency is due to the interplay between the influence of translational kinetic energy and 

potential energy on the coagulation.  Increased translational energy of course increases the 

frequency of nanocluster encounters due to increased velocities, but reduces the region of impact 

parameter space in length where successful coagulation events occur.  Combined, variations in 

coagulation rate coefficients with particle diameters and with temperature shown rather non-
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systematic variations which at present appear difficult to parameterize via simple models.   For 

this reason, we turn to a neural network approach in the subsequent section.   

The coagulation rate coefficients in Figure 4 were also converted to enhancement factors, 

ij, through Equation (4), and are shown in Figure 5.  Figure 5 is also smoothed to have higher 

resolution, akin to Figure 4.  Because enhancement factors are normalized by hard-sphere 

coefficients, they monotonically decrease with increasing temperature.  For most of the diameters 

and temperatures examined, the enhancement factor is less than 10, in agreement with prior 

studies11, 17.  The much higher enhancement factor exceptionally obtained with 0.6 nm – 0.6 nm 

coagulation is caused by the large critical impact parameters, relative to the hard sphere collision 

radius, leading to coagulation for these nanoclusters; this is shown in the coagulation probability 

of map Figure S5.  We note that the number of atoms in 0.6 nm nanocluster is 9 (Ti3O6) and it is 

the out of the nanocluster size ranges (below) in previous studies.  Yang et al24 calculated smaller 

enhancement factors (< 2.0) for gold nanocluster-monomer atom collisions, but such encounters 

are subject to weaker potential interactions as a dipole-dipole potential is not present (as it is for 

TiO2 nanoclusters).  
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Figure 3.  Integrand heat maps of the 4 different particle size combinations (Dp,i, Dp,j) = (0.6 nm, 
0.8 nm) (a), (Dp,i, Dp,j) = (1.0 nm, 1.0 nm) (b), (Dp,i, Dp,j) = (1.0 nm, 2.8 nm) (c), (Dp,i, Dp,j) = (2.0 

nm, 1.8 nm) (d) at 3 different temperatures (T = 300, 600, 900 K).  The horizontal lines express 

the mean thermal speeds and vertical lines are hard sphere collision distances.  The binding length 

is normalized by the maximum value in each temperature and size combination. 
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Figure 4.  Coagulation rate coefficients, ij as functions of temperature for selected diameter 

combinations.  The diameter of the nanocluster i is fixed in each panel at Dp,i = 0.6 nm (a), 1.0 nm 

(b), and 2.0 nm (c), while size of the nanocluster j is varied Dp,j = 0.6 nm, 1.2 nm, 1.8 nm, 2.4 nm, 
and 3.0 nm. 

 

 
Figure 5.  Enhancement factors, ij as functions of temperature for selected diameter 
combinations.  The diameter of nanocluster i is fixed in each panel at Dp,i = 0.6 nm (a), 1.0 nm (b), 

and 2.0 nm (c), while size of the nanocluster j is varied Dp,j = 0.6 nm, 1.2 nm, 1.8 nm, 2.4 nm, and 

3.0 nm. 

 

 

B. Neural network prediction 

 

We calculated collision probabilities, P from 41,600 different input conditions (Dp,i, Dp,j 

,𝑣0, 𝑏) in MD-trajectory calculations, utilizing a NN to predict the binary coagulation probability 

based on these results.  The loss functions and accuracy of the labels during the NN training process 

are shown in the supporting information (Figure S8).  Both of loss function and accuracy 
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converged with increasing epochs, where we confirmed that the accuracy reached a sufficiently 

reliable value (> 95%) within 150 epochs in both of the training and testing samples.  We note that 

this training process includes the obvious collision and no-collision initial conditions, e.g. those of 

high initial velocity and large impact parameter, hence the accuracy at the boundary of the 

outcomes is predicted at lower than 95% accuracy.  Figure 6a displays comparison of the critical 

impact parameter obtained by MD simulation (a function of velocity, and determined as the point 

where the coagulation probability is 0.5) and the prediction via trained NN model.  The coefficient 

of determination (R2) was 0.9544, suggesting the NN is a sufficiently reliable model for 

coagulation probability prediction.  We also note that most of the points plotted in Figure 6a fall 

within a shaded gray region, which is 0.8 – 1.25 (= 1/0.8) times from the 1:1 line; more than 95 % 

of data fall in this region.  The NN is particularly accurate at higher velocities, likely because 

higher velocities lead to better convergence with the well-behaved hard sphere model.  The larger 

disagreement observed for larger nanoclusters is presumably due to their increased degrees of 

freedom, leading to greater uncertainty in the dipole moment orientation throughout the 

coagulation process and complicating its influence on trajectories; this in turn complicates NN 

training.  We further compare MD-trajectory and NN predictions by directly plotting the calculated 

coagulation rate coefficients, i.e., ij,MD vs. ij,NN where “MD” and “NN” denote molecular 

dynamics and the neural network, respectively, in Figures 6b and 6c (with the ratios in Table 1).  

The coefficients of determination at 300 K (6b) and 1000 K (6c) are 0.8865 and 0.9204, 

respectively, suggesting again that higher velocities yield improved NN predictions.  There is a 

higher degree of variability between the coagulation rate coefficients from NN calculations and 

MD-trajectory calculations than observed for the critical impact parameter, as the coagulation rate 

coefficients derive from the squares of critical impact parameters, magnifying deviations.  
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Nonetheless, more than one standard deviation of the distribution (> 68.3 %; 71.7 % and 74.4 % 

at 300 K and 1000 K) of NN-predicted rate coefficients fall within the shaded 0.8 – 1.25 (1/0.8) 

region and two-standard deviations of the distribution (> 95.0 %; 97.4 % and 100 % at 300 K and 

1,000 K) are within 0.65 – 1.54 (= 1/0.65), suggesting the NN approach will be much more 

appropriate to describe TiO2 nanocluster growth than use of a constant enhancement factor in 

conjunction with the hard sphere model.   

Also for reference with a simpler classification model, logistic regression parameterization 

is compared with MD predictions in Figure S9 of the supporting information.  While outcome 

label accuracy was 0.91, the coefficient of determination for critical impact parameter was 0.7321, 

and for coagulation rate coefficient at 300 K it was 0.6724, which is unsatisfactory for 

implementation.  This further demonstrates the present need for non-linear classification 

algorithms, such as the NN approach, though future studies may find alternative approaches more 

accurate for coagulation rate coefficients.  Towards implementation, those interested in using the 

NN results may download it at https://github.com/tamadate/TiO2_collision_rate_NN.  Because the 

NN model is trained with the MD trajectory calculations, the input parameter range is limited to 

0⁡nm ≤ 𝑏 ≤ 8.0⁡nm , 20⁡m/s ≤ 𝑣0 ≤ 700⁡m/s , 𝐷p ≤ 3.0⁡nm , with an approximate upper 

temperature limit of 1200 K.  The extension of coagulation rate coefficient estimation to larger 

nanoclusters also remains the subject of future work. We do expect that the larger nanoclusters 

will yield closer agreement with hard sphere theories or with models considering simpler, 

angularly averaged (spherically symmetric) potential interactions since (1) the length scale of the 

potential interaction becomes short-distance relatively to the nanocluster diameters and (2) the 

nanocluster acceleration is inversely-proportional to nanocluster mass.  Future larger scale 

https://github.com/tamadate/TiO2_collision_rate_NN
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simulations will tell us the boundary of the size of nanoclusters where the NN remains accurate 

and where simpler theories can be applied. 

We also use NN results to predict the coagulation rate coefficients and enhancement factors 

at 300 K and 1000 K, respectively, with a variety of nanocluster size combinations with results 

shown in Figure 7.  Enhancement factors are also displayed in Table 1.  The predicted heat maps 

are smooth and the range of both the rate coefficients and the enhancement factors fall well-within 

the range expected based on MD-trajectory simulations (2 to 20).  In the coagulation rate 

coefficient heat maps shown in Figure 7a and 7b, local minimum values are evident in the 

nanocluster diameter range of 1.0 – 1.5 nm, consistent with MD simulations.  In addition, as shown 

in Figure 7c, significantly higher enhancement factors are obtained for small nanoclusters at low 

temperature.   

 

 
 

Figure 6.  NN- predicted versus MD-predicted critical impact parameters, bc (a), coagulation rate 

coefficient, ij at 300 K (b), and coagulation rate coefficient, ij at 1,000 K (c).  The plot color 

denotes the initial velocity, 𝑣0 in (a) and collision distance aij in (b) and (c).  The diagonal line is 

the 1:1 line (bc,NN = bc,MD or ij,NN = ij,MD), dark gray shadings are 0.8 to 1.25 (1/0.8) times from 
the 1:1 line, and light gray shadings are 0.65 to 1.54 (= 1/0.65).  R2 is the coefficient of 

determination.   
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Table 1.  Comparison of MD-determined coagulation rate coefficients ij,MD  and enhancement 

factors ij,MD along with the ratio of MD and NN -determined coagulation rate coefficients χ𝑖𝑗 =
β𝑖𝑗,NN

β𝑖𝑗,MD
⁄  at 300 K, 500 K, and 1,000 K.  The unit of Dpis [nm] and ij, MD is [m3⁡s−1 ⁡×

⁡10−15]. ij,MD and ij are dimensionless.  The shaded numbers denote the local minimums for three 

base particle diameters (0.6, 1.0, 2.0 nanometers) and three temperatures (300, 500, and 1,000 

Kelvins). 

 

Dp,i  

 

Dp,j  

 
ij,MD  

300 K 

 ij,MD  

300 K 

ij  

300 K

ij,MD  

500 K 

ij,MD  

500 K  

ij  

500 K

ij,MD  

1,000 K  

ij,MD  

1,000 K  

ij  

1,000 K

0.6 0.6 4.75 19.60 1.08 4.65 14.59 1.02 4.25 9.52 1.01 

0.6 0.8 4.01 14.41 1.15 4.24 10.62 1.11 3.94 7.11 1.09 

0.6 1.0 2.57 7.66 1.49 3.61 5.80 1.44 3.49 3.99 1.42 

0.6 1.2 3.08 7.52 1.10 3.32 5.77 1.09 3.50 4.07 1.15 

0.6 1.4 4.45 8.99 0.86 3.77 6.87 0.86 3.86 4.92 0.87 

0.6 1.6 3.55 6.01 1.26 4.44 4.58 1.27 4.64 3.27 1.31 

0.6 1.8 3.83 5.49 1.40 5.39 4.20 1.42 5.67 3.03 1.47 

0.6 2.0 5.18 6.35 1.29 6.76 4.87 1.32 7.11 3.48 1.37 

0.6 2.2 7.33 7.78 1.16 8.70 6.12 1.17 9.03 4.48 1.17 

0.6 2.4 10.30 9.56 0.93 9.76 7.35 0.96 10.10 5.23 0.98 

0.6 2.6 5.71 4.66 1.63 9.58 3.81 1.59 10.30 2.96 1.56 

0.6 2.8 6.25 4.52 1.48 9.62 3.80 1.42 10.70 3.04 1.40 

0.6 3.0 10.90 7.02 0.88 9.97 5.39 0.92 11.50 3.81 1.06 

1.0 0.6 2.57 7.66 1.49 3.61 5.80 1.44 3.49 3.99 1.42 

1.0 0.8 1.91 6.21 0.98 1.88 4.65 1.02 2.03 3.24 1.12 

1.0 1.0 1.28 4.10 1.37 1.76 3.27 1.33 1.85 2.53 1.28 

1.0 1.2 1.32 3.94 1.35 1.84 3.22 1.31 2.01 2.49 1.31 

1.0 1.4 1.78 4.77 1.07 2.01 3.77 1.11 2.15 2.82 1.12 

1.0 1.6 1.65 3.94 1.25 2.21 3.23 1.27 2.45 2.51 1.28 

1.0 1.8 1.79 3.81 1.34 2.57 3.08 1.37 2.80 2.38 1.37 

1.0 2.0 3.43 6.49 0.81 3.02 5.06 0.88 3.37 3.66 0.95 

1.0 2.2 2.68 4.52 1.24 3.63 3.68 1.29 4.11 2.85 1.33 

1.0 2.4 3.66 5.52 0.90 3.60 4.47 0.94 4.09 3.38 1.00 

1.0 2.6 2.30 3.12 1.38 3.45 2.72 1.34 3.95 2.30 1.28 

1.0 2.8 2.45 3.00 1.33 3.47 2.58 1.28 4.07 2.19 1.24 

1.0 3.0 3.95 4.38 0.90 3.81 3.47 0.94 4.41 2.60 1.03 

2.0 0.6 5.18 6.35 1.29 6.76 4.87 1.32 7.11 3.48 1.37 

2.0 0.8 5.14 8.23 0.70 3.73 6.32 0.73 4.00 4.43 0.79 

2.0 1.0 3.44 6.51 0.81 3.02 5.07 0.87 3.37 3.67 0.95 

2.0 1.2 2.79 5.86 0.97 2.76 4.61 0.98 2.99 3.37 1.02 

2.0 1.4 3.08 6.88 0.93 2.79 5.31 0.91 2.75 3.75 0.90 

2.0 1.6 2.50 5.74 1.26 3.09 4.53 1.21 2.95 3.32 1.12 

2.0 1.8 2.58 5.94 1.38 3.53 4.49 1.40 3.45 3.16 1.37 

2.0 2.0 4.26 9.63 0.93 4.03 7.97 0.89 4.07 5.77 0.87 

2.0 2.2 3.41 7.47 1.23 4.40 6.12 1.22 4.53 4.51 1.20 

2.0 2.4 4.42 9.29 0.91 4.24 7.63 0.90 4.38 5.63 0.90 

2.0 2.6 3.01 6.04 1.25 4.03 4.51 1.39 4.25 3.11 1.50 

2.0 2.8 3.15 5.99 1.15 3.91 4.49 1.28 4.14 3.14 1.37 
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2.0 3.0 4.61 8.27 0.75 3.77 7.00 0.75 4.20 5.24 0.79 

 

 

  

 
 

Figure 7.  NN-predicted coagulation rate coefficients, ij (a-b) and enhancement factors, ij (c-d) 

maps at two temperatures, 300 K (a & d) and 1000 K (c & d) with different particle diameter 

combinations (Dp,i, Dp,j).    
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IV. CONCLUSIONS 

We computed the trajectories of TiO2 nanoclusters via MD simulations, using them to 

compute coagulation rate coefficients for equal and unequal sized nanoclusters with diameters in 

the 0.6 – 3.0 nm size range.   Similar to prior efforts utilizing MD-trajectory calculations to study 

coagulation, we find that the TiO2 nanocluster coagulation rate is significantly greater than the 

hard sphere coagulation rate, with enhancement factors in the 20 to 2 range as the temperature 

increases from 300 K to 1000 K.  Simulations suggest that coagulation rate coefficients vary non-

monotonically with temperature nanocluster diameter, and nanocluster diameter disparity (relative 

size with respect to one another), with a unique minimum in the rate observed when one of the 

nanoclusters falls in the 1.0-1.8 nm diameter range (though this finding cannot be extrapolated 

outside the tested diameter range).   

We trained a NN to predict the critical impact parameter for coagulation to occur as a 

function of the nanocluster diameters, and approach velocity.  The trained NN shows reasonable 

agreement with MD-trajectory calculations for both the critical impact parameter, and the 

correspondingly calculated coagulation rate coefficient; most NN-predicted coagulation rate 

coefficients are within a factor of 0.8-1.25 from the MD-trajectory calculated rate coefficient.  In 

addition to providing a NN which can be used to model TiO2 nanocluster growth in high 

temperature gas phase systems, the approach we apply here, i.e. MD-trajectory calculations 

followed by NN training, is sufficiently general that it can be applied to a wide variety of systems 

as a means to develop robust coagulation rate coefficient models as inputs to population balance 

models.  Improvements in both MD-modeling (more accurate potentials, consideration of variable 

nanocluster internal energy) and further advanced machine learning approaches may enable even 

more accurate and robust coagulation rate coefficient models in future work.  In addition, while 
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the analysis presented in this study focuses on metal oxide nanoclusters growth, as would be 

expected in oxygen-rich synthesis systems, the approach can be adapted for metal and semimetal 

nanoclusters or other ceramics, synthesized in low oxygen content gas phase reactors44-46 or plasma 

synthesis systems47, 48.   
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SUPPORTING INFORMATION 

 A list of MD simulation conditions, figures noting the ranges of impact parameters and 

velocities used in MD-trajectory calculations, a table noting molecular dynamics potential 

parameters, additional coagulation probability maps from MD-trajectory calculations, loss & 

accuracy plots for NN-training, and a comparison of logistic regression model training to MD-

trajectory calculations are available online. 
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