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Abstract

In the wake of a cybersecurity incident, it is crucial to
promptly discover how the threat actors breached security
in order to assess the impact of the incident and to develop
and deploy countermeasures that can protect against further
attacks. To this end, defenders can launch a cyber-forensic
investigation, which discovers the techniques that the threat
actors used in the incident. A fundamental challenge in such
an investigation is prioritizing the investigation of particular
techniques since the investigation of each technique requires
time and effort, but forensic analysts cannot know which
ones were actually used before investigating them. To ensure
prompt discovery, it is imperative to provide decision sup-
port that can help forensic analysts with this prioritization.
A recent study demonstrated that data-driven decision sup-
port, based on a dataset of prior incidents, can provide state-
of-the-art prioritization. However, this data-driven approach,
called DISCLOSE, is based on a heuristic that utilizes only a
subset of the available information and does not approximate
optimal decisions. To improve upon this heuristic, we intro-
duce a principled approach for data-driven decision support
for cyber-forensic investigations. We formulate the decision-
support problem using a Markov decision process, whose
states represent the states of a forensic investigation. To solve
the decision problem, we propose a Monte Carlo tree search
based method, which relies on a k-NN regression over prior
incidents to estimate state-transition probabilities. We evalu-
ate our proposed approach on multiple versions of the MITRE
ATT&CK dataset, which is a knowledge base of adversarial
techniques and tactics based on real-world cyber incidents,
and demonstrate that our approach outperforms DISCLOSE
in terms of techniques discovered per effort spent.

1 Introduction
Cybersecurity is an ever growing concern for businesses and
individuals alike. While it is not always possible to prevent
cybersecurity incidents, one should always strive to mitigate
them promptly and to learn from them as much as possi-
ble. Thus, it is imperative in the aftermath of an incident to
promptly discover the techniques that the threat actors used
to breach security. By discovering how threat actors operate,
we can learn to develop more effective cyber defences and
detect—sufficiently early—cyber-attacks that bypass these
defences. To this end, victims of cyber incidents can launch
cyber-forensic investigations.

Since we do not know in advance which adversarial tech-
niques the threat actors used, we have to prioritize the in-
vestigation of these techniques under uncertainty, not know-
ing if the investigation of a technique will waste precious
time or reveal crucial information. In prior work, Nisioti
et al. (2021a) demonstrated that one can effectively prior-
itize the investigation of techniques based on datasets of
prior incidents, exploiting the fact that most threat actors
follow common tactics. However, this existing data-driven
approach is based on a heuristic that does not approximate
optimal decisions, regardless of the size of the dataset or the
available computational power.

To address this limitation, we propose a principled data-
driven approach for prioritization. We introduce a novel
model of cyber-forensic investigations based on Markov de-
cision processes, which enables us to formally define the
prioritization problem. Note that this problem is inherently
challenging for multiple reasons. First, datasets of prior inci-
dents are limited in size as many businesses are reluctant to
share detailed information about their security. Second, al-
though threat actors follow common tactics, it is inherently
difficult to predict which particular techniques were used in
a particular incident.

In light of these challenges, we propose a computa-
tional approach for decision support that combines a non-
parametric machine-learning model, based on k-nearest
neighbor, with a Monte Carlo tree search. By working di-
rectly with the data instead of training a parametric model,
we get as much “mileage” out of the limited data as possible.

The remainder of this paper is organized as follows.
In Section 2, we model cyber-forensic investigations as
Markov decision processes and formulate the problem of
cyber-forensic decision support. In Section 3, we describe
our computational approach, which is based on k-NN re-
gression and Monte Carlo tree search. In Section 4, we
evaluate our approach on datasets of real-world incidents,
demonstrating that it outperforms the state-of-the-art ap-
proach. In Section 5, we give a brief overview of related
work. Finally, in Section 6, we provide concluding remarks.

2 Model and Problem Formulation
To formally define the problem of providing optimal deci-
sion support for cyber forensics, we first introduce funda-
mental assumptions and notations for the key elements of
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Symbol Description

A set of adversarial techniques (actions in MDP)
I set of prior cyber incidents (dataset)
IY ⊆ A set of techniques used in incident I
IN ⊆ A set of techniques not used in incident I
Ca effort cost of investigating technique a ∈ A
Ba benefit from discovering technique a ∈ A
Yt ⊆ A set of used techniques discovered by step t

Nt ⊆ A set of not-used techniques discovered by step t

Pr[a|Yt, Nt] prob. that tech. a was used given state ⟨Yt, Nt⟩
γ ∈ (0, 1) temporal discount factor

Table 1: List of Model Symbols

cyber-forensic investigations (Section 2.1). Then, building
on these assumptions and notations, we model investiga-
tions as Markov decision processes (Section 2.2), formulat-
ing our problem as optimizing decisions within a process
(Section 2.3). For a list of symbols used in our model, we
refer the reader to Table 1.

2.1 Adversarial Techniques and Cyber Forensics
Adversarial Techniques We consider a forensic investi-
gation whose objective is to discover—as soon as possible—
what techniques the threat actors used in the incident that is
under investigation. The motivation for discovering how the
threat actors breached security is to learn from the incident
and to prevent or mitigate future breaches. We let A denote
the set of all techniques that threat actors may have used in
an incident (e.g., DLL search order hijacking, spearphish-
ing attachment, drive-by compromise). In practice, the setA
can be taken from a well-known knowledge base, such as
MITRE ATT&CK (Barnum 2012), which provides a com-
prehensive list of common adversarial techniques.

Incident Next, we let IY ⊆ A denote the set of techniques
that were used by threat actors in incident I; and for ease of
presentation, we let IN = A \ IY denote the set of tech-
niques that were not used in incident I . A key aspect of
cyber-forensic investigations is that IY is not known by the
forensic experts at the beginning of the investigation. Since
an investigation is typically launched when a breach is de-
tected, forensic experts might know some elements of IY
(e.g., techniques that triggered an intrusion detection system,
leading to the detection of the breach); however, discovering
set IY is the very objective of the investigation. To capture
this uncertainty that forensic experts face, we model the set
of techniques IY as a random variable, whose realization is
unknown at the beginning of the investigation. The distri-
bution of this random variable represents the threat actors’
tactics, that is, how likely they are to use certain subsets of
techniques in a cyber attack.

Prior Incidents In practice, we can estimate the distribu-
tion of IY from prior incidents, which have already been
investigated. Note that for this estimation, we can use a pub-
lic repository of prior incidents, which were perpetrated by
other threat actors against other targets (e.g., MITRE Cyber

Threat Intelligence Repository from MITRE Corporation).
While there are differences between how different threat ac-
tors operate, most threat actors do follow common tactics.
Therefore, subsets of techniques that were frequently used
in prior incidents are likely to have been used in the incident
that we are currently investigating. We let I denote the set of
prior incidents; and we assume that for each prior incident
Î ∈ I, we know the set ÎY ⊆ A and that ÎY was drawn from
the same distribution as IY .

Cyber-forensic Investigation During the investigation of
incident I , forensic experts discover the realization of IY
step-by-step. In each step, the experts choose and investi-
gate a technique a ∈ A that they have not investigated yet,
and they discover whether or not the threat actors used tech-
nique a. Note that we assume this discovery to be perfect
(i.e., if a technique is investigated, experts correctly learn
whether it was used or not); our model and computational
approach could be generalized in a straightforward manner
to account for false negatives and positives in discovery, but
this is not the focus of our work.

Costs and Benefits of Forensic Discovery To investigate
whether a particular technique was used by the threat actors,
forensic experts have to spend time, effort, resources, etc.
We let constant Ca denote the cost of investigating technique
a ∈ A, which represents the time, effort, resources, etc.
spent. In practice, we can estimate these costs based on do-
main experts’ knowledge (Nisioti et al. 2021a). On the other
hand, discovering that a technique was used by the threat
actors yields benefit since it provides information that we
can use to prevent or mitigate future breaches. We let con-
stant Ba denote the benefit obtained from discovering that
technique a ∈ A was used in the incident. In practice, we
can estimate these benefit values based on the impacts of us-
ing various techniques, which we can take from well-known
knowledge bases (e.g., MITRE ATT&CK (Barnum 2012)).
Some experts may inherently prefer investigating certain ac-
tions over others, e.g., because certain actions provide cru-
cial information on how the adversary breached the system.
All such preferences can be captured by the benefit values.

2.2 Markov Decision Process
Based on the assumptions and notations introduced in the
preceding subsection, we now model the cyber-forensic
investigation of an incident as a Markov decision pro-
cess (MDP) (Puterman 2014), whose steps correspond to
the step-by-step investigation of the adversarial techniques.
Modeling the cyber-forensic investigation as an MDP pro-
vides the foundation for formulating our decision-support
problem in the next subsection. To define an MDP, we have
to specify the state space of the process, the set of actions
that can be taken in each state, the transition probabilities
between subsequent states, and the immediate reward for
taking a particular action in a particular state.

State Space At any step during the investigation of an in-
cident, the forensic experts have already investigated some
techniques, while other techniques remain yet to be investi-
gated. Further, for each technique that the experts have al-
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ready investigated, they have discovered whether or not the
threat actors used the technique in the incident. To formalize
the state of the investigation process, we let Yt ⊆ A denote
the set of techniques that have been investigated by step t
and were used by the threat actors, and we let Nt ⊆ A de-
note the set of techniques that have been investigated by step
t but were not used by threat actors. Note that by definition,
Yt ⊆ IY and Yt∩Nt = ∅ for every t. At the beginning of the
investigation, before the first step, the process is in an initial
state ⟨Y0, N0⟩. In practice, Y0 can be the set of techniques
that triggered an intrusion detection system, leading to the
detection of the incident and the launch of the investigation.

Action Space At each step t, the forensic experts have to
choose a technique that they have not investigated yet, and
investigate it. To formalize this decision, we let the set of ac-
tions that can be taken in a state correspond to the set of tech-
niques that have not yet been investigated: in state ⟨Yt, Nt⟩,
the set of actions is the set of techniques A \ (Yt ∪Nt).

Transition Probabilities Recall that forensic experts do
not know in advance (i.e., before investigating) which tech-
niques were used by the threat actors, and we capture this
uncertainty by assuming that IY is a random variable whose
realization is unknown at the beginning of the investiga-
tion. When experts investigate a technique a, they discover
whether technique a was used or not (i.e., if technique a is
in the realization of IY ). Hence, if action a ∈ A\ (Yt ∪Nt)
is taken in state ⟨Yt, Nt⟩, then the process transitions either
to state ⟨Yt+1, Nt+1⟩ = ⟨Yt ∪ {a}, Nt⟩ (if technique a was
used) or to state ⟨Yt+1, Nt+1⟩ = ⟨Yt, Nt∪{a}⟩ (if technique
a was not used). The probabilities of these transitions are

Pr [⟨Yt+1, Nt+1⟩ = ⟨Yt ∪ {a}, Nt⟩]
= Pr [a ∈ IY |Yt ⊆ IY ∧Nt ∩ IY = ∅] (1)

and

Pr [⟨Yt+1, Nt+1⟩ = ⟨Yt, Nt ∪ {a}⟩]
= Pr [a ̸∈ IY |Yt ⊆ IY ∧Nt ∩ IY = ∅]
= 1− Pr [a ∈ IY |Yt ⊆ IY ∧Nt ∩ IY = ∅] . (2)

For ease of notation, we will let Pr[a |Yt, Nt] denote the
first probability (i.e., probability that the threat actors used
technique a given that the state is ⟨Yt, Nt⟩). In practice, we
have to estimate these conditional probabilities based on the
set of prior incidents I.

Rewards We formulate rewards to capture the benefits of
the cyber-forensic investigation. The experts obtain a benefit
Ba from investigating technique a only if technique a was
used in the incident. Hence, if the process transitions from
state ⟨Yt, Nt⟩ to state ⟨Yt+1, Nt+1⟩ = ⟨Yt ∪ {a}, Nt⟩, then
we let the reward for step t be Ba; if the process transitions
to state ⟨Yt+1, Nt+1⟩ = ⟨Yt, Nt ∪ {a}⟩, then we let the re-
ward for step t be 0.

2.3 Cyber-forensic Decision-Support Problem
We represent the decision-support system as a policy π,
which maps a state ⟨Yt, Nt⟩ to a recommended action at ∈
A \ (Yt ∪Nt) in each time step t. Our goal is to provide a

policy that maximizes the expected rewards obtained during
the forensic investigation. Following Nisioti et al. (2021a),
we formulate this objective with a budget limit G on the to-
tal cost

∑
Cat

:

max
π

EIY

[
Tlimit∑
t=0

1{at∈IY } ·Bat

∣∣∣∣∣ at = π (Yt, Nt)

]
(3)

where Tlimit = maxT
∑T

t=0 Cat
≤ G (i.e., Tlimit is the last

step before the investigation budget G is exhausted), and Cat

is the cost of investigating the action that is chosen in time
step t. Note that we focus on this objective because it is prac-
tical and enables a fair comparison with DISCLOSE (Nisioti
et al. 2021a); in Equation (8), we will provide a more con-
ventional formulation with temporal discounting.

In practice, the budget may be flexible, in which case our
goal is to provide a policy that attains a good cost-benefit
tradeoff. We will quantify this tradeoff in our experiments
using the area under the cost-benefit curve (i.e., AUC for the
expected benefit as a function of the budget limit).

3 Computational Approach
To solve the decision-support problem based on the objec-
tive in Equation (3), we propose a computational approach
based on Monte Carlo tree search (MCTS) and k-nearest
neighbour (k-NN) algorithms. Specifically, we implement
the policy π as an MCTS algorithm (Section 3.2), relying on
k-NN for estimating transition probabilities (Section 3.1).

Note that in recent years, deep reinforcement learning
(DRL) algorithms have garnered significant attention from
researchers for their applications in cybersecurity decision
support (e.g., (Ganesan et al. 2016; Kurt et al. 2018)). While
we could apply DRL algorithms to our problem in principle,
they are ill-suited to our problem for multiple reasons. First,
DRL algorithms tend to be sample inefficient (i.e., require a
large number of training experiences to learn a performant
policy), which poses a significant challenge since it is diffi-
cult to collect large datasets of prior incidents with sufficient
details. Second, the limited size of the dataset enables us to
make decisions based directly on the dataset, instead of hav-
ing to train a parametric machine-learning model. By work-
ing directly with the dataset, decisions can take advantage of
all the information in the dataset.

3.1 Probability Estimation
In a nutshell, Monte Carlo tree search finds which action
to take in a given state by randomly sampling sequences
of actions, simulating how they play out starting from the
given state, and choosing the action that leads to the high-
est rewards on average. We can simulate the cyber-forensic
investigation process from any given state using the state-
transition probabilities (Equations (1) and (2)).

Empirical Probabilities However, since we do not know
the underlying probability distribution in practice, we have
to estimate the probabilities based on the set of prior in-
cidents I. We can estimate the state-transition probability
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Pr[a |Yt, Nt] as the conditional empirical probability:
Pr[a|Yt, Nt] ≡ Pr [a ∈ IY |Yt ⊆ IY ∧Nt ∩ IY = ∅] (4)

≈

∣∣∣{Î ∈ I⟨Yt,Nt⟩

∣∣∣ a ∈ ÎY

}∣∣∣∣∣I⟨Yt,Nt⟩
∣∣ (5)

where

I⟨Yt,Nt⟩ =
{
Î ∈ I

∣∣∣Yt ⊆ ÎY ∧Nt ∩ ÎY = ∅
}
. (6)

In other words, I⟨Yt,Nt⟩ is the set of prior incidents which
“match” the current state of the investigation, that is, the
set of prior incidents in which threat actors did use all of
the techniques from Yt but did not use any of the tech-
niques from Nt. Equation (5) estimates the probability
Pr[a |Yt, Nt] as the ratio of incidents from I⟨Yt,Nt⟩ in which
threat actors used technique a.

k-nearest Neighbors The weakness of this estimation
is that its accuracy depends on the cardinality of the set
I⟨Yt,Nt⟩, and as the sets Yt and Nt grow with each step of
the cyber-forensic investigation, the set I⟨Yt,Nt⟩ shrinks. In
fact, due to the limited number of prior incidents, the num-
ber of prior incidents that “match” the current state of the
investigation may reach zero, which precludes us from cal-
culating the estimates at all. To address this issue, we extend
the set I⟨Yt,Nt⟩ to include prior incidents that do not exactly
“match” the current state of the investigation but are suffi-
ciently similar. We measure similarity between the current
state ⟨Yt, Nt⟩ and a prior incident Î ∈ I using a Hamming
distance over the techniques Yt ∪Nt that have already been
investigated:

d(⟨Yt, Nt⟩, Î) =
∣∣Yt ∩ ÎN

∣∣+ ∣∣Nt ∩ ÎY
∣∣. (7)

The first term of the right-hand side is the number of tech-
niques that were used in incident I but not in prior in-
cident Î , while the second term is the number of tech-
niques that were used in prior incident Î but not in inci-
dent I . Equivalently, we could formulate the following met-
ric: s(⟨Yt, Nt⟩, Î) =

∣∣Yt∩ ÎY
∣∣+ ∣∣Nt∩ ÎN

∣∣, which measures
similarity by counting techniques where the current state and
the prior incident are the same; in contrast, our formulation
measures dissimilarity (specifically, Hamming distance) by
counting techniques where the current state and the prior in-
cident differ. These measures are practically equivalent since
d(⟨Yt, Nt⟩, Î) = |Yt∪Nt|− s(⟨Yt, Nt⟩, Î); hence, selecting
k incidents with highest similarity is equivalent to selecting
k incidents with lowest distance (i.e., k-NN).

Finally, we replace the set of “matching” prior incidents
I⟨Yt,Nt⟩ in Equation (5) with the set of k prior incidents that
are closest with respect to metric d (breaking ties arbitrarily).
Notice that this estimation of the probability Pr[a |Yt, Nt]
is actually a k-nearest neighbor regression with prior inci-
dents I as the dataset, d as the distance metric, and a binary
value representing if technique a was used in an incident as
the output feature. While the value of k could be a constant
hyper-parameter, we found that our approach performs bet-
ter if k varies throughout the investigation. Hence, we let
k = β1 + β2 · t, where β1 and β2 are hyper-parameters,
which can find experimentally.

Algorithm 1 Exploration Decision
Function ExplorationDecision(Y,N,M,F ):

MP← argmaxA′⊆A\Y ∪N,
|A′|=F

∑
a∈A′ Pr[a |Y,N ]·Ba/Ca

n[Y,N ]←
∑

a∈A\(Y ∪N) n[Y,N, a]

return argmaxa∈MP R[Y,N, a] +M
√

lnn[Y,N ]
n[Y,N,a]+1

3.2 Monte Carlo Tree Search
Since Monte Carlo tree search randomly samples sequences
of actions, its coverage of the state space becomes sparser
and sparser as it looks further into the future. Therefore,
when choosing between actions, it should assign more im-
portance to the near future than the uncertain far future. We
can express this consideration by reformulating the objective
as maximizing the expected discounted sum of rewards:

max
π

E

[ |A|−1∑
t=0

γt · 1{at∈IY } ·Bat
/Cat

∣∣∣∣∣ at = π (Yt, Nt)

]
(8)

where γ ∈ (0, 1) is a temporal discount factor: rewards ob-
tained at step t are discounted by a factor γt.

Note that we also replace the reward Bat
with the benefit

to cost ratio Bat
/Cat

. The rationale behind this is to incen-
tivize the tree search to consider cost Ca regardless of how
far the investigation is from reaching a budget limit G; oth-
erwise, the tree search would focus only on immediate ben-
efit Ba. Note that we found the ratio Bat

/Cat
formulation

to work best in practice (e.g., better than the more intuitive
semi-MDP formulation with γ

∑t
τ=0 Caτ temporal discount

and reward Bat ).
In each step of the investigation, we run a Monte

Carlo tree search (Algorithm 2), starting from the current
state ⟨Yt, Nt⟩, which outputs an action at that is estimated to
result in the maximum expected discounted sum of rewards.
To estimate the expected rewards for each action, the algo-
rithm performs a number of iterations. In each iteration, it
first generates a sequence of actions and states, starting from
the current state, which is a random sample of how the inves-
tigation might play out if certain actions are selected. Then,
in the back-propagation phase of the iteration, it updates its
estimates of the expected rewards based on the experience
of the sampled sequence. While our algorithm follows the
common principles of MCTS, it is tailored to our problem
and takes advantage of the specific rules of our MDP.

Variables and Initialization Here, we describe the vari-
ables that are maintained by the algorithm throughout the
iterations and how they are initialized; we will describe later
how they are updated.

Variable n[Y,N, a] is the number of times that the algo-
rithm has tried action a in state ⟨Y,N⟩ (initialized to 0 at the
beginning of the search). Note that this and all other initial-
izations can be lazy, i.e., we can store these variables in a
dictionary that is initially empty, and we can assign an ini-
tial value to a variable when we use it for the first time. For
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Algorithm 2 MCTS for Forensic Decision Support
Input: state ⟨Yt, Nt⟩, constants A,B,C, γ,K,D,M,F
Output: action at
Initialization:
∀⟨Y,N, a⟩ : n[Y,N, a]← 0
∀⟨Y,N, a⟩ : R[Y,N, a]← 0
∀⟨Y,N⟩ : R[Y,N ]←∑

a∈A\(Y ∪N)

∑|A\(Y ∪N)|−1
j=0 γj Pr[a|Yt,Nt]·Ba/Ca

|A\(Y ∪N)|

for K times do
i← t
while Yi ∪Ni ̸= A and i < t+D do

ai ← ExplorationDecision(Yi, Ni,M, F )
n[Yi, Ni, ai]← n[Yi, Ni, ai] + 1
if random(0, 1) < 0.5 then

Yi+1 ← Yi ∪ {ai}
Ni+1 ← Ni

else
Yi+1 ← Yi

Ni+1 ← Ni ∪ {ai}
end
i← i+ 1

end
i← i− 1
while i ≥ t do

R[Yi, Ni, ai]←
Pr[ai|Yi, Ni] · (Bai

/Cai
+ γ ·R[Yi ∪ {ai}, Ni])

+ (1− Pr[ai|Yi, Ni]) · γ ·R[Yi, Ni ∪ {ai}]
R[Yi, Ni]← maxa∈A\(Yi∪Ni) R[Yi, Ni, a]
i← i− 1

end
end
at ← argmaxa∈A\(Yt∪Nt) R[Yt, Nt, a]

ease of presentation, the pseudocode initializes all variables
explicitly at the beginning.

Variable R[Y,N, a] is an estimate of the expected dis-
counted sum of rewards if we started from state ⟨Y,N⟩, took
action a first, and then followed an optimal policy.

Finally, variable R[Y,N ] is an estimate of the expected
discounted sum of rewards if we started from state ⟨Y,N⟩
and then followed an optimal policy. While these variables
could be initialized to 0, we can improve the performance of
the search by initializing them with an estimate:

R[Y,N ]←
∑

a∈A\(Y ∪N)

|A\(Y ∪N)|−1∑
j=0

γj Pr[a|Yt, Nt] ·Ba/Ca

|A \ (Y ∪N)|

Starting from state ⟨Y,N⟩, we can investigate techniques
A \ (Y ∪ N); however, we do not know the optimal or-
der in which to investigate them. Our estimate calculates
expected rewards assuming a random order: each technique
a ∈ A \ (Y ∪ N) is equally likely to be investigated first
(discount factor 1), second (factor γ), third (factor γ2), ...,
and last (factor γ|A\(Y ∪N)|−1). Our estimate can be calcu-
lated very quickly, especially since the probability estimates
Pr[a|Yt, Nt] need to be calculated anyway for the back-

propagation phase. Note that for terminal states (i.e., when
A \ (Y ∪N) = ∅), this formula correctly calculates the ex-
pected rewards to be 0, following the notational convention
that summation over an empty set yields 0.

Selection and Expansion In each iteration of the
MCTS, we first generate a sequence of states and actions
⟨Yt, Nt⟩, at, ⟨Yt+1, Nt+1⟩, at+1, ⟨Yt+2, Nt+2⟩, at+2, . . .,
which we then use in the back-propagation phase to improve
our estimates R[Y,N ] and R[Y,N, a] for the states and
actions in the sequence. We generate the sequence starting
from state ⟨Yt, Nt⟩ by alternating between selecting an
action ai to take and simulating the resulting transition to
state ⟨Yi+1, Ni+1⟩. To select each action ai, we use the
exploration rule described in Algorithm 1, which takes
a state ⟨Y,N⟩ and outputs a selected action a, balancing
exploration and exploitation. This rule is based on the
commonly used UCT (Upper Confidence Bound 1 applied
to trees) formula (Kocsis and Szepesvári 2006) with a
myopic pruning (see below). The first term R[Y,N, a] gives
preference to actions that should be selected because—
according to our current estimates—they lead to high
expected rewards; while the second term gives preference to
actions that have been explored less (i.e., tried fewer times)
than other actions in the given state. The exploration factor
M is a constant hyper-parameter that balances exploration
and exploitation, which we can find experimentally. Note
that we add 1 to the divisor to avoid division by zero since
n[Y,N, a] is initialized to 0; however, this is just for ease of
exposition, the addition of 1 is negligible as we run a large
number of iterations.

After selecting an action ai, we update the number of
times n[Yi, Ni, ai] that action ai has been tried, and we
simulate the random transition to state ⟨Yi+1, Ni+1⟩. How-
ever, instead of basing the transition on the actual probability
Pr[ai|Yi, Ni], we select one of the two possible transitions
with the same probability (i.e., 0.5 probability that ai was
used, and 0.5 probability that it was not). We use uniform
probabilities for two reasons. First, we factor in the actual
probability Pr[ai|Yi, Ni] during back-propagation; hence,
we obtain unbiased estimates regardless of the selection
probabilities. Second, uniform probabilities lead to a more
balanced and thorough exploration of the transitions; we
found that with the actual probabilities, transitions that have
high impact but low probability are not explored enough.

We stop generating the sequence of states and actions
when we reach either a terminal state (Yi ∪ Ni = A) or
the depth limit (i ≥ t+D, where D is a hyper-parameter).

Myopic Pruning To improve search performance, we
prune the search tree during selection by exploring only
those actions that are most attractive in terms of the ex-
pected immediate reward. Specifically, in state ⟨Y,N⟩, Al-
gorithm 1 explores only those F actions that have the highest
Pr[a |Y,N ] · Ba/Ca, where F is a hyper-parameter. While
myopically focusing on actions with the highest expected
immediate reward may occasionally disregard optimal ac-
tions, it typically provides better results by letting the search
thoroughly explore the most promising branches of the tree.
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Figure 1: Cumulative benefit obtained as a function of cu-
mulative effort cost (up to budget 45) on dataset v6.3.

Backpropagation During the back-propagation phase of
each iteration, we loop over the sequence of states and ac-
tions backwards, and we update our estimates based on the
experience of this sequence. For each action ai, we update
the estimate R[Yi, Ni, ai] using the following formula:

R[Yi, Ni, ai]←
Pr[ai|Yi, Ni] · (Bai/Cai + γ ·R[Yi ∪ {ai}, Ni])

+ (1− Pr[ai|Yi, Ni]) · (γ ·R[Yi, Ni ∪ {ai}]).

This formula calculates a best estimate of the expected dis-
counted sum of rewards (relying on the k-NN based prob-
ability estimate Pr[ai|Yi, Ni]): if technique ai was used in
the incident, we obtain immediate reward Bai/Cai and then
continue from state ⟨Yi ∪ {ai}, Ni⟩, factoring in discount γ
as this state is one step into the future; if technique ai was
not used, a similar argument applies. Note that each R[Y,N ]
is either the initial estimate, which is 0 for terminal states, or
an estimate based on prior iterations (see below).

For each state ⟨Yi, Ni⟩, we update the estimate R[Yi, Ni]
using the following formula:

R[Yi, Ni]← max
a∈A\(Yi∪Ni)

R[Yi, Ni, a] (9)

This formula calculates a best estimate since in each
state ⟨Yi, Ni⟩, we should take the optimal action a that max-
imizes the expected discounted sum of rewards (based on
our best estimates R[Yi, Ni, a]).

4 Numerical Evaluation
We evaluate our proposed approach numerically on public
datasets of real-world cyber incidents. For each cyber inci-
dent, we simulate how our approach would have prioritized
the investigation, and plot the benefit obtained through dis-
covery as a function of the effort spent. We compare our
approach to two baselines, DISCLOSE and a naı̈ve policy.
Our implementation and datasets are publicly available.1

1https://github.com/SoodehAtefi/DecisionSupport-AAAI-23
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Figure 2: Cumulative benefit obtained as a function of cu-
mulative effort cost (up to budget 65) on dataset v6.3.

4.1 Experimental Setup
Dataset We use the MITRE ATT&CK Enterprise repos-
itory (Barnum 2012), which is a public repository of ad-
versarial tactics, techniques, & procedures, referencing real-
world cyber incidents in which some of these techniques
were used. Since its original publication, both the ATT&CK
framework and its CTI dataset have been regularly up-
dated. We use three versions of the repository in our eval-
uation: v6.3 (2019), which is the version that Nisioti et
al. (2021a) used to evaluate DISCLOSE; v10.1 (2021); and
v11.3 (2022), which is the latest version at the time of writ-
ing. Evaluating our approach on multiple versions demon-
strates that it can be applied to newer versions without any
changes (other than standard hyper-parameter optimization).

For a fair comparison, we use the same 31 techniques A
and the same benefit B and cost C values as Nisioti et
al. (2021a). Since the categorization of techniques changed
slightly between versions, we had to map some techniques
to equivalent ones for later versions. This leaves us with 29
techniques for versions v10.1 and v11.3. The benefit and
cost values are based on the Common Vulnerability Scoring
System and interviews with cyber-forensic experts.

For each technique, we collected cyber incidents in which
the technique was used via the external references
field (replicating Nisioti et al. (2021a)). Our v6.3, v10.1, and
v11.3 datasets contain 331, 670, and 716 cyber incidents, re-
spectively. Version v11.3 includes 425 incidents that are new
compared to v6.3, and 73 incidents that are new compared to
v10.1. In these datasets, every incident used at least 2 tech-
niques. In dataset v11.3, incidents used 4.1 techniques on
average (min. 2; max. 17). One example of an incident that
used many techniques is the Frankenstein campaign (Biasini
2019), which employed Phishing, OS Credential Dumping,
Exfiltration Over C2 Channel, and other techniques.

Baselines We compare our approach to two base-
lines, DISCLOSE (implemented as specified in Nisioti et
al. (2021a)) and a naı̈ve baseline, which we call the static
policy. At every step, the static policy selects the technique
(from the set of techniques that have not been investigated
yet) that is most frequent across all prior incidents, instead

6
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of considering conditional probabilities. This naı̈ve baseline
represents investigation without decision support (i.e., deci-
sions that ignore the state).

Simulation Setup and Metrics Since the datasets are rel-
atively small, we use a leave-one-out cross-validation: when
evaluating a policy on an incident, we treat all other inci-
dents in our dataset as prior incidents I. We always simu-
late the investigation starting with a single randomly chosen
technique from IY as the singleton set Y0 (and letting N0 =
∅). Same as Nisioti et al. (2021a), we terminate an investi-
gation when the cumulative effort cost (i.e.,

∑
a∈Yt∪Nt

Ca)
reaches 45 or 65 to assess which techniques could have
been promptly discovered by the approach. We also con-
ducted experiments with two more budget limits (70 and
100) and without a budget limit to provide a more compre-
hensive comparison (we include results in Appendix A.1).
Further, to quantify promptness, we measure the area under
the benefit-effort curve (AUCBE): we plot the discovery of
benefits obtained as a function of the cumulative effort cost
for three different approaches (e.g., see Figure 1). Higher
AUCBE values are better. Solid lines are averages over all
incidents, dotted lines are 25% quantiles, and dashed lines
are 75% quantiles.

Hyperparameter Optimization While the baseline does
not have any hyper-parameters, our proposed approach has
a number of them. First, we optimized the hyper-parameters
for the k-NN probability estimation (β1, β2) using a grid
search, maximizing the average AUCBE over all incidents.
During this search, we restricted the MCTS to one-action
depth (D = 1, in which case the other parameters of
the MCTS are irrelevant), providing us with good hyper-
parameters for probability estimation. Then, we optimized
the hyper-parameters for MCTS using Hyperopt Python li-
brary, again maximizing AUCBE. Note that we optimized
the hyper-parameters for datasets separately. We provide re-
sults from the hyper-parameter search in Appendix A.2.

4.2 Numerical Results
Running Time For a single decision, the MCTS algorithm
takes less than 7 seconds on average using a single core of
a 2.4GHz Intel Core i9 CPU, and less than a second using
multiple cores. Compared to the amount of time that forensic
analysts need to investigate the selected technique (at the
very least minutes), these running times are negligible.

Benefits of Prioritization Figures 1 and 2 show cumula-
tive benefits obtained during the cyber-forensic investiga-
tions (i.e.,

∑
a∈Yt

Ba) as functions of the cumulative ef-
fort costs (i.e.,

∑
a∈Yt∪Nt

Ca) using MCTS, DISCLOSE,
and static approach on the v6.3 dataset. We conducted the
experiments with budgets 45 and 65. We provide results
for other versions of the dataset and different budgets in
Appendix A.1. Each curve is based on all incidents in the
dataset. For the v6.3 dataset, our approach outperforms the
baselines in both of the scenarios (45, and 65). The average
AUCBE of MCTS, DISCLOSE, and static policy for budget
limit 45 are 3,503, 3,411, and 3,175 respectively. The aver-
age AUCBE of our approach, DISCLOSE, and static policy

for budget limit 65 are 6,288, 6,108, and 5,826, respectively.
For the v11.3 dataset, our approach outperforms the base-

lines in both of the scenarios as well. The average AUCBE of
MCTS, DISCLOSE, and static policy for budget limit 45 are
4,061, 3,982, and 3,865, and for budget limit 65 are 7,072,
6,975, and 6,816 respectively. This demonstrates that while
our principled approach provides superior prioritization, the
decision-support problem is very challenging due to the in-
herent uncertainty of cyber incidents.

5 Related Work
Several prior research efforts focused on enhancing the ef-
ficacy of forensic investigations by decreasing the time or
resources required for an investigation without impacting
its quality and objectivity (Hossain et al. 2018, 2017; Hos-
sain, Sheikhi, and Sekar 2020; Hassan et al. 2020; Satvat,
Gjomemo, and Venkatakrishnan 2021). Our approach is pri-
marily motivated by DISCLOSE (Nisioti et al. 2021a), a
data-driven decision-support framework, which creates TTP
space using the MITRE ATT&CK dataset, computes condi-
tional probabilistic relations and proximity values between
TTPs, and proposes actions based on these relations. DIS-
CLOSE can assist an expert in each step of the investigation
by considering benefits, costs, and available budget. We ex-
tend this work by introducing a formal model of the cyber-
forensic investigation process, modeling it as a Markov deci-
sion process. Further, we propose a computational approach
which, at each step of the investigation, considers all the
techniques that have been investigated, instead of consider-
ing only the very last technique—as DISCLOSE does.

Horsman et al. (2014) present CBR-FT, a case driven rea-
soning based technique for device triage. Similar to our ap-
proach, CBR-FT uses a knowledge base of past cases to
calculate probable subsequent actions based on system file
paths, which is then used to offer prediction of triage process
of the current case under investigation. Unlike the system
file paths, we use TTPs which allows for more flexible anal-
ysis and reasoning of adversarial behavior. Attack graphs
were included in forensic investigation by Lui et al. (2012) to
guide the decision process. The notion of anti-forensic steps,
parallel to other adversarial actions, were included in the at-
tack graphs to represent that the adversary may hide rele-
vant forensic evidence to dissuade the defender. Likewise,
Nassif and Hruschka (2012) propose the use of clustering
techniques to support forensic investigation. Using a similar
approach, Barrere et al. (2017) proposed an algorithm us-
ing condensed attack graphs that transformed the structure
of the original attack graph allowing for more effective ex-
ploration. Algorithms are also proposed to support forensic
investigation of online social networks (Arshad et al. 2020)
and for unsupervised prediction for proactive forensic in-
vestigation of insider threats (Wei, Chow, and Yiu 2021).
Similar to our work, these algorithms aim to increase the
efficacy of forensic investigation by decreasing the investi-
gation time; however, they approach the problem differently
by decreasing the time required for crucial tasks.

Quick and Choo (2014) highlight the effects of large
amounts of digital-forensic data on modern forensic inves-
tigations. Saeed et al. (2020) and Nisioti et al. (2021b)
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present game-theoretic approaches used to model interac-
tions between an investigator and an adversary using anti-
forensic method. By finding the Nash equilibrium of the
game, the authors find the optimal trade-off strategy for each
player. Even though our work does not explicitly model anti-
forensic techniques and their analysis, our approach is de-
veloped considering the potential existence of anti-forensic
techniques for an incident under investigation.

Defenders face a similar prioritization problem with sen-
sitive intrusion-detection systems, which may raise a large
number of false alarms (Tong et al. 2020; Yan et al. 2019,
2018; Laszka et al. 2017).

6 Discussion and Conclusions
To address the limitations of DISCLOSE, we introduced a
principled approach by modeling cyber-forensic investiga-
tion as Markov decision processes and proposing an MCTS
and k-NN regression based computational approach. A key
advantage of our proposed approach is that it works directly
with the data (i.e., at every step and every iteration, probabil-
ities are estimated based on the dataset of all prior incidents),
instead of training a parametric machine-learning model. By
relying on non-parametric machine-learning models, we aim
to get as much “mileage” out of the data as possible, which
is both enabled and necessitated by the limited amount of
public data about cyber incidents. Another key advantage of
our proposed approach is that the tree search approximates
best estimates—and hence optimal decisions—based on the
dataset (as the number of iterations increases).

While these advantages enabled our approach to outper-
form baselines, including DISCLOSE, we found the priori-
tization problem to be very challenging. The primary reason
for this is the inherent difficulty of predicting how threat ac-
tors work. In fact, DISCLOSE itself is not too far from the
naı̈ve baseline policy.
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Figure 3: Cumulative benefit obtained as a function of cu-
mulative effort cost (up to budget 45) on v10.1.

A Appendix
A.1 Evaluation with Different Budgets
Figures 3 to 15 show cumulative benefits obtained during
the cyber-forensic investigations (i.e.,

∑
a∈Yt

Ba) as func-
tions of the cumulative effort costs (i.e.,

∑
a∈Yt∪Nt

Ca) us-
ing MCTS, DISCLOSE, and static approach on the v6.3,
v10.1, and v11.3 datasets with budget limits of 45 and 65
(except v6.3), 70, 100, and without budget limit. We pro-
vided figures for the v6.3 dataset with budget limits 45 and
65 in the main text (Section 4). Solid lines are averages
over all incidents, dotted lines are 25% quantiles, and dashed
lines are 75% quantiles.

A.2 Hyper-Parameter Search
For each budget limit and each dataset we performed hyper-
parameter optimization (β1, and β2) using Myopic ap-
proach. For each dataset and different budget limit, there is a
heatmap (see Figures 16 to 30). Each cell of heatmap shows
AUCBE of average percentage of benefit attained up to the
budget limit. β1 variable ranges from 1 to 130, and β2 ranges
from 0 to 6 with 0.1 intervals. For the sake of better visual-
ization, heatmaps are cropped at y-axis (β1) ranges 1 to 61,
1 to 101, and 1 to 121 for datasets v6.3, v10.1, and v11.3 re-
spectively. For all heatmaps the y-axis shows β1 and x-axis
shows β2.
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Figure 4: Cumulative benefit obtained as a function of cu-
mulative effort cost (up to budget 45) on v11.3.
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Figure 5: Cumulative benefit obtained as a function of cu-
mulative effort cost (up to budget 65) on v10.1.
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Figure 6: Cumulative benefit obtained as a function of cu-
mulative effort cost (up to budget 65) on v11.3.
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Figure 7: Cumulative benefit obtained as a function of cu-
mulative effort cost (up to budget 70) on v6.3.
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Figure 8: Cumulative benefit obtained as a function of cu-
mulative effort cost (up to budget 70) on v10.1.
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Figure 9: Cumulative benefit obtained as a function of cu-
mulative effort cost (up to budget 70) on v11.3.
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Figure 10: Cumulative benefit obtained as a function of cu-
mulative effort cost (up to budget 100) on v6.3.
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Figure 11: Cumulative benefit obtained as a function of cu-
mulative effort cost (up to budget 100) on v10.1.
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Figure 12: Cumulative benefit obtained as a function of cu-
mulative effort cost (up to budget 100) on v11.3.
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Figure 13: Cumulative benefit obtained as a function of cu-
mulative effort cost (without budget limitation) on v6.3.
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Figure 14: Cumulative benefit obtained as a function of cu-
mulative effort cost (without budget limitation) on v10.1.
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Figure 15: Cumulative benefit obtained as a function of cu-
mulative effort cost (without budget limitation) on v11.3.

Figure 16: Benefit percentage attained AUCBE (optimal val-
ues for β1 and β2 are 40 and 1.5 respectively) up to budget
45 on v6.3

Figure 17: Benefit percentage attained AUCBE (optimal val-
ues for β1 and β2 are 51 and 2.6 respectively) up to budget
65 on v6.3

Figure 18: Benefit percentage attained AUCBE (optimal val-
ues for β1 and β2 are 51 and 2.6 respectively) up to budget
70 on v6.3
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Figure 19: Benefit percentage attained AUCBE (optimal val-
ues for β1 and β2 are 57 and 0.9 respectively) up to budget
100 on v6.3

Figure 20: Benefit percentage attained AUCBE (optimal val-
ues for β1 and β2 are 47 and 0 respectively) without budget
limitation on v6.3

Figure 21: Benefit percentage attained AUCBE (optimal val-
ues for β1 and β2 are 81 and 1.4 respectively) up to budget
45 on v10.1

Figure 22: Benefit percentage attained AUCBE (optimal val-
ues for β1 and β2 are 80 and 1.8 respectively) up to budget
65 on v10.1
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Figure 23: Benefit percentage attained AUCBE (optimal val-
ues for β1 and β2 are 84 and 0 respectively) up to budget
70 on v10.1

Figure 24: Benefit percentage attained AUCBE (optimal val-
ues for β1 and β2 are 82 and 0.2 respectively) up to budget
100 on v10.1

Figure 25: Benefit percentage attained AUCBE (optimal val-
ues for β1 and β2 are 87 and 1 respectively) without budget
limitation on 10.1

Figure 26: Benefit percentage attained AUCBE (optimal val-
ues for β1 and β2 are 39 and 3.5 respectively) up to budget
45 on v11.1
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Figure 27: Benefit percentage attained AUCBE (optimal val-
ues for β1 and β2 are 39 and 3.5 respectively) up to budget
65 on v11.1

Figure 28: Benefit percentage attained AUCBE (optimal val-
ues for β1 and β2 are 103 and 2.2 respectively) up to budget
70 on v11.1

Figure 29: Benefit percentage attained AUCBE (optimal val-
ues for β1 and β2 are 118 and 0.6 respectively) up to budget
100 on v11.1

Figure 30: Benefit percentage attained AUCBE (optimal val-
ues for β1 and β2 are 118 and 0.6 respectively) without bud-
get limitation on 11.1
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