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Abstract

How well mRNA transcript levels represent protein abundances has been a controversial

issue. Particularly across different environments, correlations between mRNA and protein

exhibit remarkable variability from gene to gene. Translational regulation is likely to be one

of the key factors contributing to mismatches between mRNA level and protein abundance

in bacteria. Here, we quantified genome-wide transcriptome and relative translation effi-

ciency (RTE) under 12 different conditions in Escherichia coli. By quantifying the mRNA-

RTE correlation both across genes and across conditions, we uncovered a diversity of

gene-specific translational regulations, cooperating with transcriptional regulations, in

response to carbon (C), nitrogen (N), and phosphate (P) limitations. Intriguingly, we found

that many genes regulating translation are themselves subject to translational regulation,

suggesting possible feedbacks. Furthermore, a random forest model suggests that codon

usage partially predicts a gene’s cross-condition variability in translation efficiency; such

cross-condition variability tends to be an inherent quality of a gene, independent of the spe-

cific nutrient limitations. These findings broaden the understanding of translational regula-

tion under different environments and provide novel strategies for the control of translation

in synthetic biology. In addition, our data offers a resource for future multi-omics studies.

Author summary

The central dogma connects DNA, RNA, and protein through transcription and transla-

tion. However, with the development of transcriptome and proteomics technology, it has

been widely reported that mRNA abundance is not a comprehensive indicator of protein

abundance. Translational regulation is critical in resolving this type of mismatch. It has
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been reported that bacteria respond to heat stress, oxidative stress, and other stressful

environments through translational regulation. Nutrient limitations are also fundamental

challenges for bacteria, with many unknowns in their adaptation strategies. Using tran-

scriptome and translatome quantification, we uncovered a diversity of gene-specific trans-

lational regulations, cooperating with transcriptional regulations, in response to carbon

(C), nitrogen (N), and phosphate (P) limitations. Furthermore, we found that codon bias

contributes substantially to gene-specific translational regulation. Our findings broaden

the understanding of translational regulation under environmental changes and may

assist in the design of effective translation strategies in synthetic biology.

Introduction

The central dogma connects DNA, RNA, and protein through transcription and translation.

While transcriptional regulation has been extensively studied in the past century [1], how well

transcript level represents protein abundance remains controversial [2,3]. Despite the overall

positive correlation between mRNA and protein abundance when different genes are com-

pared in bacteria, genes with similar mRNA abundance may show large differences in protein

abundance [4]. Given that a non-negligible portion of the bacterial genome exists as polycis-

trons, the difference in protein abundance can be traced to widespread differences in transla-

tional capacity between genes, e. g. arising from mRNA secondary structure, codon usage bias,

ribosome binding sites, riboswitches, and leader peptides [5–9]. Not only do these factors

result in differential protein synthesis under steady-state conditions, many of them also

respond to external stressors, confirming that translation is also a crucial stage in gene expres-

sion regulation. For example, the hairpin structure in the 5’UTR of pfrA in Listeria opens at

high temperatures to facilitate translation [10].

Cells regulate their protein expression profiles in response to environmental challenges.

While this regulation is conventionally thought to occur primarily at transcription [11], several

recent studies based on the translatome have revealed gene-specific translational regulation

when bacteria are exposed to heat stress, oxidative stress, or amino-acid starvation [12–15].

These studies specifically focused on translational regulation in specific genes contributing to

stress responses, such as the heat shock protein (HSP) gene family [16]. However, the univer-

sality of translational regulation as a response to general environmental challenges remains

largely unexplored. For instance, nutrient limitations are fundamental challenges for microbes,

and E. coli cells are known to adapt to different nutrient limitations by regulating ribosomal

synthesis and resource allocation strategies [17–19]. But we do not yet know if cells also regu-

late the translation of specific genes in response to nutrient limitations. Recently, quantitative

proteomic data provided valuable resources for the exploration of bacterial translational regu-

lation under various environments [20]. However, clarifying the detailed process and mecha-

nisms of translation regulation requires the integrated analysis of multiple omics, including

transcriptomics, translatomics, and proteomics. Moreover, as transcription and translation are

coupled in bacteria [21], it is worth quantifying the extent to which transcription and transla-

tion are regulated in concert to cope with environmental stresses.

To understand the general principles underlying the regulation of gene expression at the

translational stage, quantitative models have been developed to provide an integrative picture

of translational regulation [22–27]. However, the factors that contribute to gene-specific trans-

lational regulation upon environmental changes are still poorly understood [28]. In this

regard, some researchers have suggested that protein synthesis rates are tightly linked to tRNA
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composition and modification, which is known to vary across conditions [29–31]. However,

others suggest that mRNA structure itself is a key factor in translational regulation, and con-

tributes to rapid adaptation to changing environments by dynamically folding in response to

multiple signals, including temperature, ligands, regulatory proteins, and small RNAs [32,33].

Indeed, translation efficiency is highly correlated with ORF mRNA structure rather than other

mRNA features such as tRNA adaptation index (tAI) [34]. Therefore, the underlying mecha-

nisms of translational regulation in response to environmental changes are worth exploring.

Here we extended our previous research [18] and systematically quantified the total num-

ber, bound fraction, and elongation rates of ribosomes under carbon (C), nitrogen (N), and

phosphorus (P) limitations at different growth rates, and several other growth conditions.

Then we extended our perspective on translational regulation from the global scale to the level

of individual genes. We aimed to examine whether there is gene-specific translational regula-

tion in E. coli responding to different nutrient limitations, and then explore possible mecha-

nisms. Combining global ribosome profiling with RNA-seq, we quantified the correlation

between mRNA level and translation efficiency both across genes and across conditions, as

well as the variability of translation efficiencies across conditions. We uncovered a diverse

range of gene-specific translational regulations concerted with transcriptional regulations in

response to environmental deficiencies. Intriguingly, several translational regulation genes are

themselves subject to translational regulation, suggesting possible feedbacks. Further analysis

suggested that codon usage may play an important role in gene-specific translational regulation.

Using a random forest model, we quantified the contribution of codon usage towards condi-

tion-dependent translational regulation. This analysis revealed that the cross-condition variabil-

ity tends to be an inherent feature of individual genes, independent of particular conditions.

These findings expand our understanding of translational regulation in response to environ-

mental changes, and suggest novel strategies for effective translation in future synthetic biology.

Results

Cells adapt to different nutrient conditions through global translational

regulations

To explore the translational regulation in E. coli under different environments, we utilized 12

different growth conditions (Table 1). In an effort to focus on distinct yet stable steady-state

growth conditions, we grew E. coli in chemostats with dilution rates of 0.1 and 0.6 h-1 under

limitations for carbon (C), nitrogen (N), and phosphate (P). We also grew two mutant strains

in chemostats, ΔrplA and ΔleuB, with the same dilution rates of 0.1 and 0.6 h-1. rplA encodes a

component of the 50S ribosome subunit [35,36] and leuB is involved in leucine biosynthesis

[37]. These two mutant strains thus enabled us to probe how single-gene mutations that dis-

rupt distinct aspects of the translation process affect the overall pattern of translation. In addi-

tion, wild type E. coli was also grown in batch culture using both glucose minimal media and

defined rich MOPS media, with measured growth rates of 0.9 and 1.8 h-1, respectively.

E. coli was grown under glucose (C, carbon), ammonia (N, nitrogen) and phosphate (P,

phosphorus) limited conditions in chemostats at two different dilution rates of 0.1 and 0.6 h-1

Table 1. List of the 12 different conditions for Escherichia coli in our measurements.

Condition ID 1 2 3 4 5 6 7 8 9 10 11 12

Nutrient limitation C-limited N-limited P-limited glucose minimal defined rich MOPS N-limited for

ΔrplA

Leu-limited for

ΔleuB

Growth rate (h-1) 0.1 0.6 0.1 0.6 0.1 0.6 0.9 1.8 0.1 0.6 0.1 0.6

Culture environment chemostat batch culture chemostat

https://doi.org/10.1371/journal.pcbi.1010641.t001
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(equal to growth rates). ΔrplA and ΔleuB mutant strains were grown under ammonia and leu-

cine limitations, respectively. Three biological replicates were performed for all the 12

conditions.

As observed in a previous study [18], P-limited cells consistently exhibited lower RNA-to-

protein ratios than C-limited or N-limited cells. ΔrplA cells exhibited a higher RNA-to-protein

(R/P) ratio than other conditions at the growth rate of 0.6 h-1, consistent with the significantly

reduced activity of ribosomes for ΔrplA cells [38]. All other conditions are located on a single

line of R/P ratio versus growth rate (Fig 1A), consistent with the well-established linear rela-

tionship between growth rate and RNA-to-protein ratio in previous studies [18,19,39]. The

free ribosome pools decreased as growth rate increased across all the nutrient-limited condi-

tions (Fig 1B). Our previous study suggested that E. coli differentially tune multiple ribosomal

features, including ribosome total number, elongation rate, and active fraction, to achieve the

same growth rate of 0.1 h-1 under different nutrient limitations [18]. The current results con-

firmed that this pattern extends to a higher growth rate of 0.6 h-1 (Fig 1C–1E). Meanwhile,

under batch conditions, all three of these ribosomal features reached very high levels (Fig 1F).

The distribution of ribosome density along mRNAs also revealed differences between condi-

tions: For C- and N-limited conditions, there was a higher ribosome occupancy near the start

codon, particularly at the lower growth rate (Fig 1G and the inset). Across all conditions, after

the first few codons, the ribosome density exhibited no significant decrease along mRNAs (Fig

1G). In summary, cells adapt to different nutrient conditions by differentially tuning multiple

ribosome-related features, which act globally on the translation efficiencies of all genes. In

addition to such global translational regulation, we wondered whether there could be gene-

specific translational regulation in response to different environment conditions.

Quantifying transcriptome and translatome in E. coli under multiple

nutrient limitations

To explore individual gene expression regulation in E. coli under various nutrient conditions,

we quantified the genome-wide transcriptome and translatome by performing RNA-seq and

global ribosome profiling for all the conditions above [40]. After filtering out ribosomal RNA

(rRNA) and transfer RNA (tRNA) species, a total of 4321 genes were used as the reference for

mapping.

Translation efficiency (TE) has conventionally been quantified as the rate of protein pro-

duction per mRNA (the translating ribosome number per unit length of a mRNA) [41]. Here,

a version of TE is obtained by dividing the rate of synthesis of each protein (ribosome density

from ribosome profiling) by the mRNA levels from RNA-Seq under the corresponding condi-

tion; we call this quantity the “relative translation efficiency” (RTE, see Methods for details). It

is worth noting that the RTE represents the relative occupancy of ribosomal resources devoted

to translation, rather than the absolute protein production rate per mRNA molecule. To avoid

the high noise caused by low mRNA levels, we filtered genes with a cut-off of log10(mRNA

RPKM) > 1.5. After filtering, a total of 2914 genes were retained for further analysis. Scatter

plots and correlation analysis of per gene mRNA and ribosome level showed high data repro-

ducibility across different replicates (Fig A-B in S1 Text). Since RTE is the ratio of footprint

densities to RNA-seq read densities, it could be sensitive to the changes of mRNA levels. To

test whether RTE truly reflected differences in translation between genes, we analyzed the

expression pattern of genes from the dusB-fis operon and the F0F1 ATP complex, which are

two typical cases that controlled at translation level with similar mRNA abundances. dusB and

fis are coregulated as part of the same operon, and we observed that their mRNA levels were

comparable. However, because of the highly different mRNA structure [34], their RTEs
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Fig 1. Cells adapt to nutrient conditions through different ribosomal strategies. (A) RNA-to-protein ratios for 12 conditions at different growth rates. Each

data point represents one experimental measurement. (B) Fractions of assembled (70S) ribosomes under 12 conditions. The assembled ribosomes include free

70S monosomes, mRNA-bound 70S monosomes, and mRNA-bound 70S polysomes (multiple ribosomes on one mRNA). Free 70S, bound 70S, and polysomes

are represented in dark, light, and white colors, respectively. The bar heights represent mean values with error bars indicating s.e.m. from three biological

replicates. (C-E) Cells differentially regulate three ribosomal features in response to C-, N-, and P-limitations at the growth rates of 0.1 and 0.6 h-1. The three

features include total number of ribosomes per average cell (see Methods), elongation rate, and fraction of bound ribosomes. These features are scaled linearly

between the inner circle and the outer circle, which represent the minimum and maximum among all conditions, respectively. The scales of the three indicated

axes are the same for panels C-E. (F) Same as (C-E), but showing the differences between chemostat cultures and two batch conditions. The value of the

outermost circle is larger than in C-E, especially the total number of ribosomes. (G) Averaged A-site ribosome density within the first and last 50 codons of the

transcripts, from ribosome profiling analysis. Each curve shows the mean value from three replicates at each condition. Inset: ribosome density at the beginning

of the transcripts.

https://doi.org/10.1371/journal.pcbi.1010641.g001
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showed significant disparities (Fig C in S1 Text), consistent with the results of previous study

[34]. Eight subunits of the F0F1 ATP complex were from a single polycistronic transcript, and

the mRNA levels of these genes were similar (Fig C in S1 Text). However, their RTEs varied

substantially and were proportional to their stoichiometry in the F0F1 ATP complex (Fig C in

S1 Text), consistent with a previous study by Li et al. [17] on the quantification of absolute

translation efficiency. Thus, these results confirmed the reliability of RTE in quantifying trans-

lational differences among genes.

mRNA-RTE correlation analysis suggests the preponderance of both gene-

specific and condition-specific translational regulation

To quantify the correlation between mRNA level and RTE, we analyzed two types of correla-

tion: across genes and across conditions (Fig 2A). For cross-gene correlations, we confirmed

that, on average, mean mRNA levels positively correlated with RTEs (Fig 2B), with a coeffi-

cient of determination (R2) of 0.3. This means that in an average sense, if one gene has a higher

mRNA level than another, it is also likely to have a larger RTE.

Next, we wondered whether the mRNA levels and RTEs of individual genes change in con-

cert across different conditions. To answer this question, we examined the cross-condition

correlation between mRNA level and RTE for each gene. In contrast to the positive cross-gene

correlation, we found a broad distribution of the 2914 Spearman’s rank correlation coefficients

between a gene’s mRNA levels and its RTEs across the 12 conditions (Fig 2C, blue). The distri-

bution ranged from -1 to +1, asymmetrically biased toward negative values. The median of

this distribution was -0.23, and 24.5% of the genes exhibited a smaller than -0.5 correlation

between their mRNA levels and RTEs across conditions; only 4.7% of the genes exhibited a

larger than 0.5 correlation. To test the significance of this asymmetric and mostly negative dis-

tribution, we randomly scrambled the RTEs among conditions for each gene and recalculated

the 2914 correlation coefficients to obtain a null distribution (Fig 2C, grey). As confirmed by

theoretical analysis, this null distribution was symmetric with zero mean (see S1 Text for

details), and visibly distinct from the actual distribution. The sizable, statistically significant

difference between the actual distribution and the null distribution implied the widespread

existence of gene-specific translational regulation, where the RTE of an individual gene

changed in response to different environmental conditions (Fig D in S1 Text).

To further explore the possible roles of gene-specific translational regulation, we examined

two genes with highly negative and highly positive mRNA-RTE correlations. For the gene fieF,

which mediates metal-ion transport in response to iron poisoning [42], the correlation coeffi-

cient was -0.91 (Fig 2D). Iron homeostasis is essential for cell survival [42]. For the gene ycaO,

which is involved in the β-methylthiolation of the ribosome complex S12 [43], the correlation

coefficient was 0.73 (Fig 2E). Ribosome abundance has been known to change with growth

conditions or cellular status [44]. In addition, the top 5 genes with negative or positive correla-

tions between mRNA level and RTE are shown in Fig E in S1 Text. Among them, cutC and

fieF with negative correlation are involved in the maintenance of homeostasis, while phnG
with positive correlation is involved in the utilization of phosphorus. These examples raise a

more general question: Do genes with negative and positive mRNA-RTE correlations perform

different biological functions?

Correlations between mRNA level and RTE link to gene function

To test the hypothesis that genes with distinctive mRNA-RTE correlations fall into different

functional categories, we performed gene ontology (GO) enrichment analysis for the top 300

genes with the strongest negative mRNA-RTE correlations across conditions, as well as the top
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Fig 2. Global view of mRNA-Relative Translation Efficiency (RTE) correlations across genes and across conditions. (A) Two types of correlations between

mRNA level and RTE: across genes and across conditions. (B) Correlation between mean mRNA level and mean RTE, across different genes. Mean levels were

taken as the average of all 12 conditions (Table 1). Each dot represents one gene, and color depth depicts the density of points. (C) Distribution of Spearman’s

rank correlation coefficients between mRNA level and RTE across the 12 different conditions. Each gene provides one such correlation coefficient, and

distributions are shown for 2914 genes (blue bars–Actual RTE: original RTE from RNA-Seq and Ribosome profiling; gray bars–Random RTE: the RTE values

for each gene were randomly scrambled among the 12 conditions to obtain the randomly ordered RTEs, which was considered as the null distribution, see

methods and S1 Text for details). The p-value between the two distributions from Kolmogorov-Smirnov test was 5e-130. (D-E) Example of two genes with

negative correlation (D, gene fieF, left arrow in B) and positive correlation (E, gene ycaO, right arrow in B) between their mRNA levels and RTEs. The mRNA
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300 genes with the strongest positive correlations. We found that the top 300 most negatively

correlated genes were mainly involved in biological processes that may not be affected by our

nutrient limitations (Fig 3A). These genes, such as nagC, ascG, and kdgR, are essential for the

homeostasis of metabolism. Other genes in this group, such as rpoE, lacI, and frmR, respond to

inputs such as heat shock, lactose, or formaldehyde which were not assayed in our experimen-

tal condition. It is conceivable that the negative correlation between mRNA level and RTE for

genes in this group reduces the dependence of protein abundance on conditions.

By contrast, the top 300 genes with the strongest positive correlation were mainly involved

in nutrient utilization, stimulus response, and translational regulation itself (Fig 3B). These

genes are the key cellular factors that respond to the imposed nutrient limitations. Interest-

ingly, the observation of strong positive correlation for genes involved in translational regula-

tion hinted at possible direct feedback, i.e. that genes regulating translation are themselves

subject to translational regulation. Take two typical genes as examples: rplA, encoding a com-

ponent of the 50S ribosome subunit, functions in translational regulation [35,36]. The mRNA

level of rplA was significantly upregulated at a growth rate of 0.6 h-1 comparing to 0.1 h-1. In

concert, the RTE of rplA was also significantly upregulated at the faster growth rate (Fig 3C).

This phenomenon was robust under all three nutrient limitations, C, N, and P. Similarly, rmf,
a translation inhibitor, is also subject to translational regulation. RMF is a ribosome modula-

tion factor that reversibly converts active 70S ribosomes to a dimeric form, which is associated

with a decrease in overall translational activity during the transition from exponential growth

to stationary phase [45]. Our data show that for rmf, both mRNA level as well as RTE were sig-

nificantly down-regulated at faster growth rates, regardless of which nutrient was limiting

(Fig 3D).

Gene-specific translational regulation in response to nutrient limitations

Despite the mostly negative distribution of mRNA-RTE correlations for all genes, our former

analysis suggests concerted regulation of both mRNA level and RTE for genes responsive to

environmental changes. To systematically examine such concerted regulation, we analyzed the

relative changes at both mRNA and RTE levels between pairs of nutrient limitations under the

same growth rate of 0.1 h-1. We first compared the expression between C-limited and N-lim-

ited cells. We used a cutoff of log2(C-/N-limited mRNA fold change) > 4 and p-value < 0.05

to select a group of differentially expressed genes at the mRNA level. For genes with signifi-

cantly upregulated mRNA levels under C limitation, 83.3% (40/48) of their RTE fold changes

were also greater than 1, thus exhibiting concerted regulation of transcription and translation

(Fig 4A, red dots). In the same way, genes with significantly upregulated mRNA levels under

N limitation also showed upregulated RTEs (Fig 4A, blue dots). Similar phenomena can be

observed when comparing N-limited and P-limited cells: for genes with upregulated mRNA

levels under P limitation, their RTEs were also significantly upregulated (Fig 4B, green dots),

and similarly for genes upregulated under N limitation (Fig 4B, blue dots–same genes as in Fig

4A). Next, we compared the mRNA level and RTE across C, N, and P limitations in parallel for

the three gene groups selected above. The results further confirmed that mRNA and RTE

change in concert for genes that are specifically expressed under specific nutrient limitations

(Fig 4C–4E).

To verify whether these three groups of genes are actually involved in utilization of specific

nutrients, we performed GO analysis for each group. The resulting functional enrichment

level (up panel), ribosome footprints (middle panel), and RTE (down panel) under 12 conditions were shown. Error bars represent s.e.m. from three biological

replicates.

https://doi.org/10.1371/journal.pcbi.1010641.g002
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confirmed our hypothesis. Genes with concerted upregulation of both mRNA level and RTE

under C limitation were mainly involved in the transport of carbon-containing compounds or

cell locomotion (Fig 4F). For example, the gene yjcH (marked in red in the upper right region

of Fig 4A) encodes a protein involved in acetate catabolism and transport [46], while the genes

Fig 3. The correlation between mRNA level and RTE is related to specific gene functions. (A-B) Gene ontology (GO) enrichment for the top 300 genes with

the most negative correlation (A) and the most positive correlation (B) between mRNA levels and RTEs. The color of the dots represents the -log10 adjusted p-

value, and the dot size represents the number of genes appearing in each biological process. (C-D) Genes regulating translation are themselves subject to

translational regulation. Examples of positive correlation between mRNA level and RTE across different growth rates for one gene that promotes translation

(C, gene rplA) and one that inhibits translation (D, gene rmf). The mRNA level (up panel), ribosome footprints (middle panel), and RTE (down panel) under

12 conditions were shown. Student’s t-test was used to calculate the p-value. Reads Per Kilobase Million (RPKM) is used for mRNA level and ribosome

footprints.

https://doi.org/10.1371/journal.pcbi.1010641.g003
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mglA-C are involved in galactose transport, which also responds to C limitation [47]. Other

genes in this group, flgC-F, are involved in flagellar assembly. Genes with concerted upregula-

tion of both mRNA level and RTE under N limitation were mainly involved in nitrogen utili-

zation (Fig 4G). The genes rutA-G (marked in blue in the lower-left region of Fig 4A) in the

Fig 4. Transcription and translation couple together to respond to nutrient limitations. (A) Comparison of transcription changes (log2 mRNA fold change,

x-axis) and translation changes (log2 RTE fold change, y-axis) between carbon limitation and nitrogen limitation at the growth rate of 0.1 h-1. The averages of

three biological replicates are shown. Red dots represent genes with log2 mRNA fold change (C-limited / N-limited) > 4. Blue dots represent genes with log2

mRNA fold change (C-limited / N-limited) < -4. p-value was used to test the significance of the RTE fold change between the highlighted genes and the

background genes. (B) Same as (A), but showing the change between nitrogen limitation and phosphate limitation. Green dots represent genes with log2

mRNA fold change (N-limited / P-limited) < -4. (C-E) mRNA level (upper panel) and RTE level (lower panel) of the three groups of highlighted genes in (A)

and (B). The three highlighted groups of genes are upregulated under carbon (C), nitrogen (D), and phosphate (E) limitations. (F-H) Gene ontology (GO)

enrichment analysis for the three highlighted gene groups in (A) and (B). The color of the dots represents the -log10 adjusted p-value, and the size represents the

number of genes.

https://doi.org/10.1371/journal.pcbi.1010641.g004
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rut pathway are typical examples: they contribute to derivation of nitrogen from pyrimidines

[48, 49]. Similarly, genes with concerted upregulation of both mRNA level and RTE under P

limitation were mainly involved in phosphorus metabolism (Fig 4H). These genes mainly con-

sist of the phn gene cluster (marked in green in the lower-left region of Fig 4B), which is

induced under phosphate limitation and plays an important role in deriving phosphate from

phosphonate degradation [50,51]. The same analyses were performed for the growth rate of

0.6 h-1, with consistent results, except for no significant observed difference in RTE between C

and N limitations for the genes involved in nitrogen utilization (Fig F in S1 Text).

To test for gene-specific translational regulation between different growth rates, we per-

formed similar analyses at the growth rates of 0.1 h-1 and 0.6 h-1 under the same nutrient limi-

tation. Intriguingly, there were no evident differences in translational regulation between the

two different growth rates (Fig G in S1 Text). Even the highlighted subsets of genes identified

in Fig 4, involved in utilization of specific nutrients, showed no significant difference in RTE

between different growth rates under the same types of nutrient limitation (Fig G in S1 Text).

In summary, these results strongly suggest gene-specific translational regulation in response to

different nutrient limitations but not different growth rates.

Gene functions associate with translational regulation patterns

Our findings revealed a diverse spectrum of translational regulation in response to different

nutrient limitations but not in response to different growth rates. Next, we wanted to explore

whether different translational regulation patterns were associated with certain genetic func-

tions. The genes involved in the assimilations of C, N, and P all exhibited specific upregulation

in RTE under specific nutrient limitations, implying the existence of one class of genes–those

whose RTEs changed across conditions and, as a result, exhibited high RTE variability. Mean-

while, there could also be another class of genes with stable RTEs and consequently low RTE

variation. Therefore, we wanted to investigate the possible sources of RTE variance (Fig 5A).

To obtain a global view, we first calculated the mean and variance of RTE for each gene across

the 12 different conditions (Fig 5B). Overall, the results exhibited an overall positive correla-

tion between the mean and variance of RTE. However, genes with similar mean RTE still

exhibited remarkable differences in their RTE variance.

To clarify the relationship between RTE patterns and function, we zoomed in from a func-

tion-related perspective. We compared the translational regulation patterns of the 82 pathways

in E. coli [52], and found that several of them are distinguishable in the mean-variance biplot

of RTE (Fig H in S1 Text). For example, four functional pathways occupied two distinguish-

able regions in the biplot (Fig 5B, colored dots). Compared with the overall transcription and

translation pattern of background genes (Fig 5C), the TCA cycle and the pyruvate metabolism

pathways shared similar translation patterns, with a small RTE variance (Fig 5D). These two

pathways are both involved in basic metabolic processes [53,54]. By contrast, the flagellar

assembly pathway and the bacterial chemotaxis pathway both exhibited large RTE variance

(Fig 5E). In addition, their mean RTEs were significantly positively correlated across the 12

conditions (Fig 5F). These two pathways are both involved in cell motility [55,56].

Patterns of relative translation efficiency associate with codon usage

The fact that functionally relevant pathways share similar RTE patterns inspired us to search

for commonality between the above pairs of pathways with comparable functions and similar

RTE patterns. Intriguingly, we found that the codon frequencies of genes in pyruvate metabo-

lism and TCA cycle pathways were highly similar, with a Spearman’s rank correlation coeffi-

cient of 0.93 (Fig 6A). Also, genes in flagellar assembly and bacterial chemotaxis pathways
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share similar codon usage and the Spearman’s rank correlation coefficient between their

codon frequencies was 0.52 (Fig 6B). As a control analysis, we randomly selected gene sets con-

taining 50 genes (comparable to the number of genes in a typical pathway) and found that

most of the correlation coefficients were in the range of -0.5~0.5, suggesting that the high cor-

relation coefficients between the aforementioned pathways were meaningful (Fig I in S1 Text).

Overall, most of the 82 KEGG pathways in E. coli had small RTE variance. Therefore, the fact

that a few pathways exhibit large RTE variability under nutrient limitations may have impor-

tant biological implications, notably for flagellar assembly, bacterial chemotaxis, and some

aspects of biosynthesis and metabolism (Fig I in S1 Text). Interestingly, among the top 10

pathways with the highest RTE variance, codon frequency correlations are generally strong

(Fig I in S1 Text), suggesting possible shared sets of codon patterns that enable genes to exhibit

high variability in RTEs in response to environmental stresses.

The observation concerning specific pathways inspired us to quantify how much codon

usage contributes to this cross-condition RTE variance. Overall, the mean codon frequencies

for the top 200 genes with the largest RTE variance and those for the bottom 200 genes with

the smallest RTE variance exhibited a negative correlation (Fig 6C, Spearman’s rank correla-

tion coefficient -0.55). Globally, certain codons appeared with changing frequencies for genes

Fig 5. Pathways with similar gene expression patterns share similar gene functions. (A) Illustration of the question we investigated: when genes are

classified by their cross-condition variance of RTE, what is the cause of this high-or-low variance classification? (B) Relationship between mean and variance of

RTE across 12 conditions. Each dot represents one gene. Colored dots are genes involved in four selected pathways with different patterns of translational

regulation. (C) Distribution of RTEs (upper) and mRNA levels (lower) of all genes, under the 12 different conditions. (D) Distribution of RTEs (upper) and

mRNA levels (lower) for genes involved in TCA cycle (left panel) and those involved in pyruvate metabolism (right panel). (E) Distribution of RTEs (upper)

and mRNA levels (lower) for genes involved in flagellar assembly (left panel) and those involved in chemotaxis (right panel). (F) Correlation of mean RTE

across 12 conditions between genes involved in flagellar assembly and bacterial chemotaxis.

https://doi.org/10.1371/journal.pcbi.1010641.g005

PLOS COMPUTATIONAL BIOLOGY Translational regulation across conditions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010641 October 20, 2022 12 / 28

https://doi.org/10.1371/journal.pcbi.1010641.g005
https://doi.org/10.1371/journal.pcbi.1010641


with different RTE variabilities. We singled out four codons with discrepant frequencies

between the high-RTE-variability genes and the low-RTE-variability genes: The frequencies of

AAA and GAT in the 2914 genes showed an overall increasing trend with increasing RTE vari-

ance (Fig 6D, upper). On the other hand, the frequencies of CGT and CTG showed an overall

decreasing trend with increasing RTE variance (Fig 6D, lower). Interestingly, none of them is

a rare codon. Actually, the nine rarest codons in E. coli (AGA, AGG, ATA, CCC, CGA, CGG,

CTA, GGA, and TTA) showed no obvious bias in the two sets of genes with largest and

Fig 6. The relationship between codon usage and gene RTE patterns. (A) Correlation of codon frequencies between genes in the two pathways described in

(Fig 5B). After removing the overlapped genes, there are 38 and 13 genes involved in each pathway, respectively. The 64 codons are dotted with sizes

representing the rarity of codons in E. coli. (B) Correlation of codon frequencies between genes in the two pathways described in (Fig 5C). After removing the

overlapped genes, there are 38 and 15 genes involved in them, respectively. (C) Negative correlation between the codon frequencies for the top 200 and bottom

200 genes in their RTE cross-condition variances. Four anti-correlated codons are indicated by arrows. (D) Relationship between the gene-by-gene RTE

variance (x-axis) and codon frequencies (y-axis), for the four codons highlighted in (C). The average over 2914 genes is shown. The shadings represent the

fluctuation of codon usage frequencies and the highlighted lines show smoothed mean results.

https://doi.org/10.1371/journal.pcbi.1010641.g006
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smallest RTE variance [57]. By contrast, while the mean codon frequencies for the top 200

genes with the highest mRNA levels and those for the bottom 200 genes with the lowest

mRNA levels also exhibited negative correlation (Fig J in S1 Text, Spearman’s rank correlation

coefficient -0.30), the nine rarest codons were enriched in genes with low mRNA levels (Fig J

in S1 Text). This suggests that the RTE changes mediated by codon usage in our study are dis-

tinct from the low translation efficiency mediated by rare codons.

Codon usage partially predicts the cross-condition variability of RTE

Beside codon usage, RTE variance positively correlated with the mean value of RTE. In our

data, there was also a weak correlation between RTE variance and mRNA level. Therefore, we

needed to carefully separate the influences of the absolute value of RTE and mRNA level to

examine whether codon usage directly contributes to the cross-condition RTE variability. We

utilized a random forest model to quantify the contribution of different features to the predic-

tion of RTE variance. The flowchart of the algorithm is shown in Fig 7A. First of all, according

to the median of RTE variance, we divided the 2914 genes into two clusters, which represent

large and small RTE variance respectively. Then 80% of the genes were randomly sampled as

the training set, leaving 20% as the test set. For the training set, Breiman’s random forest algo-

rithm was used to train a random forest model until the error converged. Different combina-

tions of the features were separately used for training. By comparing the results from different

feature combinations used for classification, we were able to quantify how much each single

feature contributes to RTE variance. The receiver operating characteristic (ROC) curves sug-

gested that the absolute value of RTE contributes most of the classification accuracy (Fig 7B,

yellow line). The addition of the feature mRNA level only improved the classification accuracy

slightly (Fig 7B, purple line). Nevertheless, the addition of the feature codon frequency

improved the classification accuracy by approximately 10% (Fig 7B, red line, and Table 2), sug-

gesting a nonnegligible and independent contribution from codon frequency to the cross-con-

dition RTE variability.

An advantage of random forest models is that the contribution of each feature to the classi-

fication result can be quantified. The rank of codons contributing to classification from our

random forest model (Fig K in S1 Text) is consistent with the anti-correlated codons in

Fig 6C.

Furthermore, we examined whether other features contribute to RTE variance, such as the

distribution of the third base for codons, gene length, and translation pause motifs consisting

of adjacent double or triple codons [58–60]. The results showed that these features have little

effect on classification accuracy (Fig K and Table A in S1 Text). In addition, we used two other

evaluation indices to test whether the conclusion was robust with respect to different defini-

tions of RTE variability: the Fano factor and the coefficient of variation (CV, see Methods). In

both cases, the addition of the feature codon frequency markedly improved the classification

accuracy (Fig L in S1 Text), consistent with our results using the index of RTE variance. In

summary, codon usage contributed to the cross-condition RTE variability of genes and the

result was robust according to our tests.

Codon-related RTE variability is an inherent feature of genes

An intuitive hypothesis is that codon-related RTE variability could be due to the adaptation of

tRNA pools to the environment. Indeed, codon usage has been suggested as a mechanism of

translational regulation under oxidative stress or heat shock, as codon usage can be coupled to

environment-dependent factors such as the tRNA pool composition [30,61]. An analogous

extrapolation to explain our observed codon-related RTE variability would be as follows:
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Fig 7. Codon usage contributes to RTE variability across nutrient conditions. (A) Flowchart for predicting the classification of RTE cross-condition

variance using a random forest model. (B) The ROC curves of the classification accuracy using different combinations of features. An average of results for

1000 trainings was used. The shaded areas represent the S.D. Codon, mRNA, and RTE stand for the codon frequency, the mRNA level, and the RTE absolute

value, respectively. (C) Codon frequency correlations (evaluated as in Fig 6C) between different gene sets when pairs of conditions were compared (Fig M in S1

Text). The yellow box shows correlations between two sets of RTE up-regulated genes in each of the paired conditions. The blue box shows correlations

between RTE up-regulated and unchanged genes in each of the paired conditions. (D) The correlation coefficient was exactly as obtained in (Fig 6C), but for

different numbers of conditions used to calculate the RTE variance. Each box was derived from all possibilities of taking n from the 12 conditions.

https://doi.org/10.1371/journal.pcbi.1010641.g007

Table 2. Classification results of the random forest model.

Features Sensitivity Specificity Accuracy AUC

mRNA 53.4±3.19% 53.47±3.08% 53.41±1.81% 0.54±0.02

Codon 64.27±3.08% 71.96±2.9% 68.07±1.76% 0.75±0.02

RTE 72.58±2.68% 72.5±2.61% 72.52±1.61% 0.8±0.02

Codon + mRNA 66.44±3.07% 72.53±2.91% 69.45±1.87% 0.77±0.02

Codon + RTE 81.95±2.33% 81.53±2.31% 81.72±1.52% 0.89±0.01

Codon + mRNA + RTE 84.36±2.19% 82.99±2.24% 83.66±1.5% 0.91±0.01

The table shows the average results with S.D. from a thousand random samples.

https://doi.org/10.1371/journal.pcbi.1010641.t002
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different nutrient conditions lead to distinct compositions of the tRNA pool, so that genes

with codon frequencies matching a particular tRNA pool would have increased translation

efficiency in the corresponding nutrient condition, thus producing high cross-condition vari-

ability. This hypothesis predicts that codon-related RTE variability would be condition-depen-

dent. That is, there would be different sets of codons for high RTE genes for each nutrient

condition, and the identification of "high variability genes" would depend on which conditions

are being compared.

However, this hypothesis was found to test negative in our dataset. We compared the C-,

N-, and P-limited conditions in pairs. When any pair of conditions A and B were compared,

genes with a significantly higher RTE in A and those with significantly higher RTE in B actu-

ally share similar codon frequencies: there are no "condition-specific" codons that distinguish

high-RTE genes in A from those in B (Fig 7C, M in S1 Text). By contrast, negative correlations

of codon frequencies were observed between highly variable RTE genes and stable genes,

between any pairs of conditions (Fig 7D). These observations indicate that genes can be

divided into two classes according to their RTE variability, which has to do with their codon

usage, but is independent of nutrient conditions.

To further confirm that the codon-related RTE variability does not rely on specific condi-

tions, we randomly selected sets of conditions from the 12 conditions to calculate RTE vari-

ance. Then the top 200 and bottom 200 genes of RTE variance were used to calculate the

correlation coefficient of codon frequency. We found a clear downward trend of the correla-

tion coefficient with increasing number of conditions, asymptoting to a strongly negative cor-

relation of r ~ -0.55 when more than 8 conditions were picked. This indicates that codon-

related RTE variability is an inherent feature of genes that applies across multiple conditions.

Discussion

How well transcript level represents protein abundance remains a controversial issue [2,3].

Translational regulation is one of the key factors affecting the correlation between transcript

level and protein abundance in bacteria [2]. In this work, we systematically examined the ribo-

somal behaviors in response to various nutrient conditions. Then combining ribosome profil-

ing and RNA-seq in E. coli, we quantified genome-wide RTE under 12 conditions and

observed a diverse range of gene-specific translational regulations in response to nutrient con-

ditions. Furthermore, using a random forest model, we discovered that codon usage partially

predicts the cross-condition RTE variability, such that a particular subset of codons, especially

AAA (Lysine) and GAT (Aspartate), favors variability across all the nutrient conditions. By

contrast, CGT (Arginine) and CTG (Leucine) disfavor RTE cross-condition variability (Fig K

in S1 Text). These findings broaden the understanding of translational regulation under envi-

ronmental changes. What is more, our quantification of the contribution of codon usage to

translational regulation can assist in the design of effective translation strategies in synthetic

biology, as well as guide theoretical efforts to predict gene expression in response to environ-

mental changes.

One important note is that the notion of RTE used in this work is slightly different from the

TE in previous studies [17,41]. RTE represents the relative ribosomal resources allocated by

per unit length of mRNA molecules. It does not stand for the absolute translation efficiency

(TE), which also includes global translation-related factors such as the total number, the work-

ing fraction, and the elongation speed of ribosomes. These global factors affect the TE of all

genes as a whole [18], while RTE involves translational differences between individual genes.

Therefore, by quantifying RTE, we capture the ribosomal resources devoted to translation at

the single-gene level, and thus can compare translational regulation among different
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conditions, excluding the effect of global translation-related factors. In fact, according to com-

parison with previous studies on the translation efficiency of operons [17,34], RTE reliably

reflects translation differences between genes (Fig C in S1 Text).

Protein biosynthesis consumes a large amount of building blocks and energy in fast-grow-

ing bacteria [62]. To ensure efficient allocation of translation resources and so maximize cell

growth, the protein synthesis rate is precisely controlled in proportion to the stoichiometry of

complexes or hierarchical functions [17]. We found that the overall mRNA-RTE correlation

across genes is not affected by mutations in single genes such as ΔrplA and ΔleuB which are

involved in translation processes (Fig N in S1 Text). This positive mRNA-RTE correlation

reflects inherent translational differences along with the transcriptional differences between

genes. By contrast, the mRNA-RTE correlation of a single gene under multiple conditions

reflects whether the mRNA and RTE of the gene change consistently when the environment

changes. Previous studies reported gene-specific translational regulation in bacteria under var-

ious stimuli [12,13], which enables a faster response to environmental stresses than through

transcriptional regulation [2,63]. In our findings, both negative and positive mRNA-RTE cor-

relations are likely biologically meaningful. For genes not sensitive to environmental changes,

the mRNA level and RTE may be negatively correlated to stabilize protein production rate. For

genes responding to specific nutrient limitations, the RTE may positively correlate with its

mRNA level to amplify the change of protein synthesis rate, thus leading to a stronger correla-

tion between mRNA level and protein abundance [64]. Gene-specific translational regulation

is observed under C-, N-, and P-limitations. Therefore, the concerted regulation of transcrip-

tion and translation may be a general strategy for cells to amplify their adaptation to environ-

mental changes. In addition, the variance of RTE across conditions displays a large range,

indicating that different genes are subject to varying degrees of translational regulation.

Also, according to our data, we suspected that translational regulation not only acts on

genes responding to specific stressful conditions, but also acts on genes regulating translation

itself, forming possible feedbacks [65]. Studies have revealed certain ribosomal proteins as

feedback regulators, such as L1, S4, and S7 [66,67]. Previously, this kind of feedback regulation

was believed to be associated with growth-rate-dependent ribosome synthesis [35]. In our

findings, the RTEs of several proteins involved in translational regulation correlate strongly

with their mRNA levels, indicating concerted translational regulation. Feedback regulation on

translation allows for better regulation in the overall translation activity of cells, providing one

additional possible strategy for bacteria to rapidly and effectively respond to environment

changes.

Studies have suggested that rare codons do not limit translation efficiency in nutrient-rich

media [68]. By contrast, under stresses such as nutrient limitation and oxidative stress, transla-

tion efficiency becomes sensitive to codon-usage-mediated tRNA dynamics [69, 70]. However,

the details of how translation efficiency changes under stress remain unclear [71]. Our analysis

suggested that codon usage not only contributes to condition-independent translation effi-

ciency, but also partially predicts the variability of RTE across conditions. For condition-inde-

pendent translation efficiency, multiple factors encoded in mRNA sequences affect the

initiation, elongation, and termination of translation [5–7]. In particular, genome-scale studies

have revealed significant association between codon usage and translation efficiency [72].

Codon usage per se mainly contributes during the elongation process [73], as it couples trans-

lation rates to the composition of the tRNA pool. However, our analysis indicated that under

environmental stresses, the codon-related RTE variability across conditions was an inherent

feature of genes, independent of specific conditions. Therefore, such RTE variability cannot be

simply attributed to coupling between codon usage and the tRNA pool under any specific

nutrient condition. This finding is consistent with the speculation of a previous study that the
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change in tRNA composition leads to different translation efficiencies between stress-response

and non-stress-response genes [30].

One limitation of our study is the lack of a detailed mechanism for how codons contribute

to gene-specific translational regulation. As the translation process from mRNA to protein

involves many factors, the differences in codon frequencies among mRNAs cannot be directly

mapped to differences in translation efficiencies. In fact, it has been reported that there are

complex interactions among multiple factors affecting translation, making it difficult to char-

acterize the relation between codon frequency and translation efficiency [28]. For example,

trade-offs between tRNA-mediated codon selection and mRNA structure entangle their sepa-

rate roles [74]. Therefore, it remains an intriguing puzzle how codon frequency, a condition-

invariant innate property of a gene, influences a gene’s ability to respond to different condi-

tions. We believe that in future research, a combination of technical approaches such as tRNA

sequencing, mRNA structure probing, and translation-site-specific ribosome profiling will

help uncover more mechanistic features of translational regulation [75,76].

Methods

Cell strains and growth conditions

Escherichia coli strain NCM3722 was grown in batch or continuous cultures. Dilution rates of

0.1 h-1 and 0.6 h-1 were used to define slow and fast growth rates in chemostats. We utilized a

300mL volume chemostat (Sixfors, HT) with oxygen and pH probes to monitor the culture.

The aeration rate was set at 4.5 l/h and pH was kept at 7.2 +/- 0.1. For minimal glucose media,

40 mM MOPS media (M2120, Teknova) was utilized with glucose (0.4%, Sigma G8270),

ammonia (9.5 mM NH4Cl, Sigma A9434) and phosphate (1.32 mM K2HPO4, Sigma P3786)

added separately. For defined rich media, the minimal media is supplemented with 10x ACGU

(M2103, Teknova) and 5X Supplement EZ (M2104, Teknova). For carbon- and nitrogen-lim-

ited media, glucose and ammonia concentrations were reduced by 5-fold (0.08% and 1.9mM

respectively). Phosphorus-limited medium contains 0.132 mM K2HPO4. ΔleuB and ΔrplA
mutants were produced by P1 transduction from the KEIO collection [77] into Escherichia

coli strain NCM3722. Cell growth was monitored by checking absorbance at 600 nm using a

spectrophotometer (GENESYS 20, Thermo Scientific).

Experimental measurement of total RNA

The method for RNA measurement was adapted from You et al. [78]. The culture was 1.5 mL

and centrifuged at 13,000g for 1 min to form pellets. The pellet was frozen on dry ice and the

supernatant was used to measure absorbance for cell loss at 600 nm. Then the pellet was washed

twice with 0.6 M HCIO4, digested with 0.3 M KOH at 37˚C for 1h, and precipitated with 3 M

HCIO4 to collect the supernatant. Then the pellets were extracted again with 0.5 M HCIO4. The

supernatant was mixed and the absorbance was measured at 260 nm using Tecan Infinite 200

Pro (Tecan Trading AG, Switzerland). Finally, the total RNA concentration was the multiplica-

tion product of the absorbance value of A260 and the extinction coefficient (31 μg RNA mL-1).

Experimental measurement of total protein

The protein measurement method was adapted from You et al. [78]. The culture was 1.5 mL

and centrifuged at 13,000g for 1 min to form pellets. The cells were washed with 1mL MOPS

buffer once, suspended in 200 μL water again, and then placed on dry ice. All the supernatant

was collected and cell loss was measured with A600nm. Then the samples were thawed to mea-

sure protein content. The samples were added with 100 μL 3M NaOH and heated at 98˚C for 5
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min. The samples were cooled to 20˚C for 5min. After that, 300 μL 0.1% CuSO4 was added to

the samples for biuret assay. The samples were incubated at room temperature for 5 min and

centrifuged at 13,000g for 1 min. The supernatant was then collected and the absorbance of

200 μL sample volume was measured at 555 nm using software Gen5 in a Microplate reader

(Synergy HT, BioTek). The total protein concentration in the cell was inferred using a known

concentration of appropriately diluted albumin (23209, Thermo).

Quantification of the total number and fraction of ribosomes

At 37˚C, 200 ml of cells were extracted from cultures and passed through cellulose acetate

membranes (CA029025, Strelitech) with a 90 mm, 0.2 m-pore size. Then the cells were quickly

frozen in liquid nitrogen after being scratched with a clean, previously warmed stainless-steel

spatula. It took no more than two minutes to complete the filtration process in order to main-

tain the initial physiological state. Cell pellets and 650 μl of frozen nuggets of lysis buffer (20

mM Tris-HCl pH 8.0, 10 mM MgCl2, 100 mM NH4Cl, 0.4 percent Triton X-100, 0.1 percent

NP-40, and 1 mM Chloramphenicol, 100 U ml-1 RNase-free DNase I (04716728001 Roche))

were combined in a pre-chilled 10 ml jar (014620331, Retsch). The Cryomill (Retsch) was run

at a 15 Hz pulverization rate for 15 minutes. RNA concentrations ranging from 80 g to 500 g

in 200 μl of thawed cell lysates were measured using NanoDrop. Lysates were loaded to 10–55

percent linear sucrose gradients (20 mM Tris-HCl pH 8.0, 10 mM MgCl2, 100 mM NH4Cl,

and 300 μM Chloramphenicol) made by GradientMaster for overall polysome quantification.

The gradients were put in a SW41Ti bucket and centrifuged in a Beckman Coulter Optima

XE-100 Ultracentrifuge for two hours at 4˚C and 35,000 rpm. Utilizing the BioComp Gradient

Fractionator, the gradients were fractionated, and an ultraviolet monitor recorded the absorp-

tion curves at 254 nm (EM-1, BioRad). Polysome profiling was performed to quantify the ribo-

some fraction. The experimental methods were adapted from Li et al. [18]. The polysome

profiling data was processed using customized MATLAB codes. The baseline absorbance was

estimated using the average of the last 50 readings where RNA was not detected, and this back-

ground was subtracted. By fitting the exponential decay function to the first peak of the non-

ribosomal signal source, free nucleotides and tRNA backgrounds were removed. Then each

ribosome peak was selected and quantified by the area under the curve. The fraction of 70S

and Polysomes were calculated from the area under the curve.

It is not possible to distinguish the free 70S peak and bound 70S peak because of the rela-

tively small mass of mRNA compared to ribosome. To quantify the fraction of free 70S and

bound 70S, we adapted the method from Li et al [18]. 100 mM NH4Cl was replaced with 170

mM KCl, and high potassium causes free 70S to shift to a lower density but does not shift the

mRNA-bound 70S [79]. Cytolysis products were loaded into 10–30% linear gradient and cen-

trifuged at 35,000 r.p.m. in a SW41Ti barrels for 5h at 4˚C. Then the MATLAB file-exchange

scheme, Peakfit (2.0) esd used to fit the overlapped peaks (70S without mRNA, and 70S with

mRNA binding) into two Gaussian distributions.

The total number of ribosomes was calculated based on the experimentally measured

parameters as

Rt ¼ Vc � Cp � RPR �
fr
mr

;

where the Vc is cell volume (m3) [80], Cp is concentration of proteins (g/m3) [81], RPR repre-

sents RNA-to-protein ratio, mr is the mass of the rRNA component of a ribosome (g) [82], and

fr is the fractional mass of rRNA among total RNA. The quantification of fr was adapted from

Li et al. [18].
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lacZ induction and translational elongation rate measurement

The measurement of ribosome elongation rate was adapted from Zhu et al. [83]. Isopropyl-β-

D-thiogalactoside (IPTG) (I2481C-25, Gold Biotechnology) with concentration of 5mM was

added to the culture. Every 15 seconds, 1 mL of culture medium was taken and placed in a

tube containing 10 μL of 100mm chloramphenicol, immediately frozen in liquid nitrogen and

stored at -20˚C, followed by subsequent measurements. After thawing, 400 μL of the sample

was added to 100 μL of 5xZ buffer solution (0.3M Na2HPO4.7H2O, 0.2M NaH2PO4.H2O,

50mM KCl, 5mM MgSO4, 20 mM β-mercaptoethanol) and incubated at 37˚C for 10 minutes.

100 μL 4 mg mL-1 4-methylumbelliferyl-β-D-galactopyranoside (MUG, 337210010, ACROS

Organics) in DMSO was added to each sample every 10 s for precise control of the reaction

time. The samples were incubated in Eppendorf Thermomixer R at 37˚C at a mixing rate of

1400 r.p.m. for 30 min to 2 h, according to the enzyme expression levels. Then we added

300 μL 1 M Na2CO3 to stop the reaction. The tube was spun down at 16,000g for 3 min to pre-

cipitate cell debris. Finally, the fluorescence of 200 μL supernatant was measured with a micro-

plate reader (365 nm excitation and 450 nm emission filter). We integrated the signals and

performed a linear fit to infer the ribosome elongation rate. According to the previous study

[83], the elongation time was corrected by subtracting 10 s from the measured delay time.

RNA extraction and ribosome profiling

The method of RNA extraction and ribosome profiling is described in Li et al. [18]. The cell

collection step was the same as for polysome profiling in Li et al. [18] except that 1mM chlor-

amphenicol was utilized in the sucrose solution. The footprinting and library preparation steps

were adapted from Li et al. [17] After quantification of RNA concentration with NanoDrop,

samples with 500μg RNA were digested with 750U MNase (10107921001, Roche) for 1 hour at

25˚C before being quenched with 6mM EGTA. The lysates were then layered onto a 10%-55%

sucrose gradient and centrifuged. The monosome fraction was collected and snap frozen in

liquid nitrogen. There were no observed polysome peaks, which indicated thorough digestion.

The RNA was separated using hot phenol and size selected on 15% TBE-Urea PAGE gels run

for 1 hour at 210V. Gels were stained with SYBR Gold and visualized using Dark Reader

(Clare Chemical Research). Finally, RNA fragments with size between 25–40 nt were extracted

using isopropanol precipitation.

Library preparation and sequencing

RNA fragments from footprints were dephosphorylated at the 3’ end by PNK (M0201, NEB).

The repaired fragments were linked to the Universal miRNA Cloning Linker (S1315S, NEB),

reverse transcribed (18080044, Thermo), and circularized (CL4111K, Epicentre). rRNA was

subtracted from the circularized samples before PCR amplification (M0531L, NEB) and size

selection. High quality PCR samples were checked by Bioanalyzer highly sensitive DNA chip.

Deep sequencing was performed by Illumina HiSeq 2500 on Rapid flowcells with settings of

single end and 75 nt-long read length.

Mapping and sequencing data analysis

Data processing including barcode splitting, linker trimming, and mapping were performed

using Galaxy [84]. The processed reads were mapped to Escherichia coli genome escherichia_-

coli_k12_nc_000913_3 from the NCBI database with the BWA short read mapping algorithm

[85]. Only the reads between 20–45 nt that aligned to the coding region were extracted for fur-

ther analysis.
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To infer the ribosome A-site position, python package Plastid [86] was used to align the 3’

end of reads to the stop and start codons [87], which are known to have higher ribosome den-

sities. We found that the offsets were 12 nt for stop codon and 15 nt for start codon. Therefore,

we utilized 11nt for A site position and 14nt for P site. Further analysis was done using

MATLAB and R codes.

Analysis of deep-sequencing data

The counts from ribosome profiling and RNA-seq were used to calculate relative translation

efficiency (RTE) for each transcript:

RTE½ � ¼
½footprinting counts�=½gene length�

½relative mRNA level�
;

where the footprinting counts were normalized by the total counts in one experiment, reflect-

ing the percentage of ribosomes occupied by a gene. The ratio of footprinting counts to gene

length reflects the relative ribosome density: the percentage of ribosomes occupied by per unit

length of a gene. The relative mRNA levels were also normalized to the total counts and gene

length as reads per kilobase million (RPKM). In addition, genes with log10(RNA-seq RPKM)

> 1.5 were selected for subsequent analysis (selected genes n = 2914).

Mean levels were taken as the average of the 12 conditions for analyzing the correlation

between the mRNA level and RTE across genes. The Spearman’s rank correlation coefficient

was used for correlations both across genes and across conditions. In order to test the signifi-

cance of the distribution of correlation coefficients between mRNA and RTE across conditions,

the RTE values for each gene were randomly scrambled among the 12 conditions. The resulting

randomly ordered RTEs were used to recalculate the distribution of correlation coefficients,

which was considered as the null distribution. Then we used the package kstest2 in MATLAB to

test whether the two distributions are significantly different, and calculated the p-value.

When comparing two different nutritional restriction conditions, the RNA-seq RPKM

were averaged for three biological replicates. Then we screened for differential gene groups

with log2(mRNA fold change) > 4 or < -4 and p-value < 0.05. To test the significance of RTE

fold changes for the genes with differentially expressed mRNA, we first calculate the RTE fold

change distribution for this group of genes. Then the distribution of the RTE fold changes for

the whole set of 2914 genes was considered as the null distribution. A p-value was calculated

using student’s t-test for the two distributions. All the above processes were performed with

Matlab2020a.

GO analysis and KEGG pathway analysis

Functional enrichment analysis was carried out using function enrichGO in R package cluster-
Profiler [88]. In addition, genome wide annotation org.EcK12.eg.db for E. coli strain K12 was

used. The enrichment results were filtered with an adjusted p-value < 0.05. Furthermore, func-

tion dropGO was used to refine gene ontology level. Besides, KEGG pathway enrichment anal-

ysis was carried out using function enrichKEGG in R package clusterProfiler [88]. Genes

contained in the 82 pathways of E. coli strain K-12 MG1655 were obtained from https://www.

genome.jp/kegg/pathway.html.

Codon usage analysis

The codon frequency of a gene was defined as the ratio of the number of a certain codon to the

total number of codons. The frequencies of 64 codons constituted the codon frequency vector
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of a gene. Then we calculated the background codon frequencies from the complete set of ana-

lyzed genes. To characterize the bias for a gene towards certain codons, the background codon

frequencies were subtracted from the codon frequency vector.

Before comparing the codon usage between different pathways, the overlapped genes were

removed. Then we calculated the average codon frequencies for all genes in a pathway. As

shown in Fig 6A, the rarity of codons was ranked according to their background frequencies.

Evaluation indices for RTE variability

We used three different evaluation indices: the variance, the Fano factor, and the coefficient of

variation (CV). The variance is defined as

var RTEð Þ ¼

P
ðTE � RTEÞ

2

n � 1
;

where RTE is the sample mean of RTE, and the n is the sample size of RTE. The Fano factor is

defined as

Fano RTEð Þ ¼
s2
RTE

mRTE
;

where s2
RTE is the variance of RTE, and the μRTE is the sample mean of RTE. The CV is defined

as

CV RTEð Þ ¼
sRTE

mRTE
;

Where σRTE is the standard deviation of RTE, and the μRTE is the sample mean of RTE.

Random forest algorithm

We used the package TreeBagger in MATLAB to build the binary classification model. The

number of trees was set to 200 and the minimum number of observations per tree leaf was set

to 5. The number of variables to select at random for each decision split was set to the square

root of the total variable number. In our model, the total variable number is 64, corresponding

to the 64 codons. Finally, Breiman’s random forest algorithm was invoked to perform the

training [89].

As stated in the main text, features such as frequencies of the 64 codons, mRNA level, RTE

absolute value, the distribution of the third base of codons, and gene length were selected and

combined to determine their contribution to classification results. In addition, the frequencies

of typical translation pause motifs were also used as classification features.

1000 random samplings of the dataset were performed to exclude the contingency of

results. We used true positive rate to evaluate the sensitivity, defined as

sensitivity ¼
TP

TP þ FN
;

where TP and FN refer to the number of true positives and false negatives, respectively. The

specificity is defined as

specif icity ¼
TN

TN þ FP
;

The area under curve (AUC) was calculated as the area under ROC curve. To calculate the

sensitivity and specificity, a classification threshold is needed. The score for each gene from
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the model is in the range of [0, 1]. If the score is above the threshold, it is considered a positive

sample, otherwise it is considered a negative sample. The results shown in Table 2 used 0.5 as

the classification threshold.
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