


dwc work done to a differential element by internal 

conservative force 

V  potential energy of a member 

LL  Lagrangian of a member 

Q  generalized coordinates of a member 

fnc generalized force associate with 

nonconservative loads 

M  mass matrix 

C  damping matrix 

K  stiffness matrix 

fext generalized force associate with externally 

applied loads 

 

1. INTRODUCTION 
 Tensegrity structures, due to their lightweight, foldability, 
and high stiffness, have experienced continued research and 
development interests in the past several decades [1-4]. In early 
work, a tensegrity structure is defined as a pin-jointed structure 
that is composed of isolated members in compression inside a 
net of continuous members in tension. Such assembly produces 
a lightweight, deployable, and yet self-standing structure with 
high stiffness [5, 6]. A tensegrity structure is designed so that its 
compressed members do not touch each other and prestressed 
tensioned members spatially delineate the structure. This 
definition was later generalized, where a tensegrity structure 
consists of both bars and cables, with contacts among bar 
members being allowed [7]. 

Revealing dynamic characteristics of tensegrity structures, 
for example: vibration analysis, is an important objective in 
structural design and analysis. However, research aiming to 
address this type of problem is seen in very few literatures. Early 
research was found in work of Motro [8], who obtained dynamic 
response of a tensegrity structure by both numerical and 
experimental approaches; and in work of Furuya [9], who 
performed vibration analysis of a tensegrity mast and revealed a 
relationship between natural frequencies and level of self-stress 
of the structure. 

For vibration analysis of a tensegrity structure, development 
of a dynamic model is a key step. One commonly used type of 
methods for nonlinear dynamic modeling of tensegrity structures 
is based on generalized coordinates and Lagrange approach, 
which was seen in work of Sultan [10, 11] and Oppenhem [12]. 
In this type of methods, a system of generalized coordinates, 
which is highly coupled with topology and geometric 
configuration of a specific tensegrity structure, is first defined. 
All generalized coordinates are required to be independent. By 
treating bar and cable members of the tensegrity structure as rigid 
bodies and massless springs, a system of second order nonlinear 
ordinary differential (ODE) equations that describes the 
mechanical motion of the structure is obtained by the Lagrange 
approach. The advantage of this type of approach is that design 
constraints, such as axial symmetry, of a tensegrity structure are 
well maintained during a dynamic analysis. But a generalized 
coordinate system often highly relies on geometric simplicity of 
a tensegrity structure. Thus, this type of approach is restricted in 

modeling only regular tensegrity structures with a small number 
of nodes and members.  

Another approach to nonlinear dynamic modeling of 
tensegrity structures is based on finite element methods, which 
were seen in work of Ali [13], Faroughi [14], Ashwear [15] and 
Feng [16]. This type of methods starts by obtaining mass and 
stiffness matrices of a single member in local coordinate system. 
Then, mass and stiffness matrices of a whole tensegrity structure 
are established by transforming from local to global coordinates 
through a co-rotational approach. This type of methods provides 
a simple approach in obtaining a linear dynamic model for 
vibration analysis, and offers capability of modeling irregular 
tensegrity structures that usually lack geometric symmetry. 
However, it is inefficient when applying to tensegrity structures 
subjected to large deformations. 

A common issue in the above-mentioned nonlinear dynamic 
modeling methods of tensegrity structure is that structure 
members are over simplified. This is mainly due to the 
neglection of internal displacements of structure members in the 
longitudinal directions. In these traditional methods, bar 
members were modeled either as rigid bodies with no internal 
displacement at all (seen in Lagrange and rigid-body based 
approaches), or as elastic elements whose internal displacements 
are uniformly distributed along their longitudinal directions (see 
the shape function used in finite-element-analysis based 
approaches). Similar issues were also seen in cable member 
modeling by traditional methods, where cable members were 
modeled either as massless springs or as elastic elements with 
uniformly distributed longitudinal displacements. Such 
oversimplification of structure members will inevitably prevent 
the nonlinear dynamic model from predicting dynamic responses 
with a high accuracy, especially for responses in a higher 
frequency domain. 

To resolve the issues in traditional methods, a new nonlinear 
dynamic modeling method for vibration analysis of tensegrity 
structures is proposed. This method defines position of a 
structure member as a summation of boundary-induced terms 
and internal terms in a global coordinate system. A nonlinear 
dynamic model of a tensegrity structure is then derived from 
Lagrange equation, as a system of ordinary differential 
equations. This dynamic model can be linearized at an 
equilibrium configuration of the tensegrity structure for vibration 
analysis. The proposed method is new in that internal 
deformations of both bar and cable members are considered as 
depend variables in the dynamic model of a tensegrity structure 
so developed. Thus, over simplification of a tensegrity structure, 
which was often seen in traditional dynamic modeling methods, 
is successfully avoided. The proposed method can predict natural 
frequencies of a tensegrity structure with a better accuracy than 
the traditional methods. Unlike the traditional methods that can 
only predict dynamic responses in a low frequency domain, the 
proposed method can also reveal dynamic responses of a 
tensegrity structure in a higher frequency domain by only using 
a small number of internal terms. 
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2. NEW METHOD FOR NONLINEAR DYNAMIC 
MODELING OF TENSEGRITY STRUCTURES 
In this section, a new method for nonlinear dynamic 

modeling and vibration analysis of tensegrity structures shall be 

presented. Consider a member that connects two nodes of a 

tensegrity structure in a three-dimensional global coordinate 

system, see Fig. 1. Coordinates of the two nodes are given as (x0, 

y0, z0) and (x1, y1, z1), respectively. The longitudinal direction of 

the member can be expressed by a position vector as 

 

 

1 0

1 0

1 0

x x

R y y

z z

− 
 = − 
 − 

r

 (1) 

 

An independent natural spatial variable  is defined to represent 

the internal positions of the member. 0 and 1 are boundary 

locations for the natural spatial variable, which means that 

 =  and  =  represent the locations of (x0, y0, z0) and (x1, y1, 

z1), respectively. According to the spatial discretization method 

[17], the position u of a differential element of the member at 

position  can be expressed as a summation of internal terms and 

boundary-induced terms: 

 

 ˆ( , ) ( , ) ( , )u t u t u t  = +%  (2) 

 

 

 
FIGURE 1: MOTION OF A MEMBER IN THE GLOBAL 

COORDINATE SYSTEM 
 

The internal terms and boundary-induced terms of position 

u are represented as vector forms in the three-dimensional global 

coordinate system as 

 

 

1

0 1

0 1

0 1

( , ) sin( )

ˆ( , ) (1 )

N

i

i

u t q i r

x x

u t y y

z z

 

  

=

=

   
   = − +   
      

 r
%

 (3) 

 

where N is the number of internal terms, and qi is generalized 

coordinates that describes internal displacement of the member 

in the longitudinal direction. qi = 0 for all i means the 

longitudinal displacement is uniformly distributed along the 

axial direction of the member. If the two boundary nodes are 

fixed, the member is at equilibrium when all qi are to zero. r
r  

is a unit vector that represents the longitudinal direction of the 

member, given as 

 

 
R

r
L

=
r

r
 (4) 

 

where L is deformed length of the member under a level of self-

stress, calculated as  

 

 
2 2 2

1 0 1 0 1 0( ) ( ) ( )L x x y y z z= − + − + −  (5) 

 

It should also be emphasized that the boundary induced term in 

Eq. (3) coincides with a shape function in elastic rod modeling 

in the finite element method [18]. So, the finite element method 

for dynamic modeling of bar members of a tensegrity structure 

can also be viewed as a simplified version of the proposed 

method without internal terms. 

 

2.1 Kinetic energy 

Velocity of a differential element at location  on the 

member can be obtained by taking the time derivative to Eq. (2): 

 

 ˆ( , ) ( , ) ( , )u t u t u t  = + &&& %  (6) 

 

The time derivatives of the internal terms and the boundary-

induced terms are given as 

 

1

( , ) sin( ) sin( ) sin( )
N

i i
i

i

q q L
u t q i r i R i R

L L L
   

=

    = + −    
    


&r rr &&% &  (7) 

 

 

0 1

0 1

0 1

ˆ( , ) (1 )

x x

u t y y

z z

  
   
   = − +   
      

& &

& & &

& &

 (8) 
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Since the internal displacement, described by the general 

coordinate qi, is usually significantly small than the deformed 

length of the member ( iq L= ), it can be assumed that 

 

 0iq

L
  (9) 

 

By substituting Eq. (9) into Eq. (6), the second and third terms 

of Eq. (7) vanish. The internal term of velocity becomes 

 

 
1

( , ) sin( )
N

i

i

u t q i r 
=

=  r
&% &  (10) 

 

Substituting Eqs. (10) and (8) into Eq. (6) yields 

 

 

0 1

0 1

1

0 1

( , ) sin( ) (1 )
N

i

i

x x

u t q i r y y

z z

   
=

   
   = + − +   
      


& &

r
& & & &

& &

 (11) 

 

By an assumption of uniform mass distribution along the 

axial direction of the member, mass of the differential element 

can be expressed md where m is the mass of the whole member. 

The kinetic energy of the differential element is given as 

 

 
21

2
dT m u d= &  (12) 

 

Thus, the kinetic energy of the member can be obtained by the 

taking the integration with respect to  in the domain of the entire 

member length ([0,1]) as 

 

 
1

0
T dT





=

=
=   (13) 

 

2.2 Potential energy 
A differential element of a structure member, that starts at 

location   and ends at location ( + d) of a member is shown 

in Fig. 2. The global coordinates of the starting and the ending 

points of the differential element are given as ( , , )x y zu u u  and 

( , , )
yx z

x y z

uu u
u d u d u d  

  
 

+ + +
  

, respectively, where ux, uy 

and uz are the x-, y- and z-coordinates of u( t) obtained from 

Eq. (2). xu





, yu





 and zu





 are calculated as 

 

 

1 0

1

1 0

1

1 0

1

1
( ) 1 cos( )

1
( ) 1 cos( )

1
( ) 1 cos( )

N
x

i

ib

N
y

i

ib

N
z

i

ib

u
x x q i i

L

u
y y q i i

L

u
z z q i i

L

 


 


 


=

=

=

 
= − +   

  
= − +   

 
= − +   







 (14) 

 
The deformed length dL of the differential element can be 

calculated by the corresponding geometry information shown in 

Fig. 2 as 

 

 

22 2

yx z
uu u

dL d
  

     
= + +          

 (15) 

 

Substituting Eq. (14) and Eq. (5) into Eq. (15) yields an explicit 

expression of dL: 

 

 

1

cos( )
N

i

i

dL L q i i d  
=

 
= +  

  (16) 

 

 
FIGURE 2: KINETIC DIAGRAM OF A DIFFERENTIAL 

ELEMENT OF A STRUCTURE MEMBER 
 

Let the undeformed length of the member be L0, and the 

undeformed length of the differential element be 

 

 0 0dL L d=  (17) 

 

Then, the strain  of the differential element of the member at 

location  can be obtained as 

 

 
0

0

dL dL

dL
 −

=  (18) 
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Based on linear elasticity assumption, the average internal axial 

force Favg applied to the differential element from undeformed 

length dL0 to deformed length dL is P/2 (internal force increases 

linearly, from zero to P), where the internal force P is calculated 

as 

 

 P EA=  (19) 
 

where E and A are the Young’s modulus and cross section area 
of the member, respectively. The work dwc done to the 

differential element by the internal conservative force Favg is 

given as 

 

 0( )c avgdw F dL dL= −  (20) 

 

The potential energy V of the member is then obtained taking the 

integration of dwc with respect to  in domain of the entire 

member length ([0,1]). 

 

 
1

0
cV dw





=

=
=   (21) 

 

Finally, let the Lagrangian be LL = T − V, a system of nonlinear 

equations of motion of a member of a tensegrity structure can be 

obtained by the Lagrange’s Equation as 

 

 L L
nc

L Ld
f

dt Q Q

  
− =   &

 (22) 

 

where Q is the generalized coordinate, defined as 

 

  0 0 0 1 1 1 1 NQ x y z x y z q q= L  (23) 

 

and fnc is a vector generalized force associate with 

nonconservative loads, obtained by the principle of virtual work. 

 

2.3 Linearized equations of motion for vibration 
analysis 

The system of nonlinear equations of motion of a member 

can be linearized at an equilibrium configuration of a tensegrity 

structure for vibration analysis. Denote global nodal coordinates 

of the two ends of the member at the equilibrium state as 

0 0 0( , , )e e ex y z  and 
1 1 1( , , )e e ex y z  . Values of other generalized 

coordinates qi associate with internal longitudinal displacements 

are zero at the equilibrium state. The linearized equations of 

motion for the member are given in the second order form as 

 

 extMQ CQ KQ f+ + =&& &  (24) 

 

where M, C and K are mass, damping and stiffness matrices, and 

fext is a vector of generalized force associate with externally 

applied loads.  

A system of equations of motion for the entire tensegrity 

structure can be obtained by directly assembling Eq. (24) for 

each member without any local-to-global coordinate 

transformation. The linearized dynamic model for the whole 

tensegrity structure is also useful for various design and analysis 

tasks, such as model analysis, control system design and 

structure health monitoring. 

 

3. SIMULATION RESULTS 
For demonstration of the proposed nonlinear dynamic 

modeling method for vibration analysis of tensegrity structures, 

a planar Snelson’s X tensegrity structure with four nodes, two 
bars and four cables, is investigated. Topology and dimensions 

of the structure are shown in Fig. 3. Materials of bar and cable 

members are assumed to be carbon fiber and steel, respectively. 

The dimensional and material parameters of the bar and cable 

members are given in Table 1. The structure is self-stressed, with 

member internal force being 141.42N in compression for the two 

bar members, and 100N in tension for the four cable members. 

To eliminate the three modes of rigid-body motion of the 

structure, displacements of node one in the x- and the y-

directions, and displacement of node two in the y-direction are 

restricted.  

 
TABLE 1: DIMENSIONAL AND MATERIAL PARAMETERS OF 

CABLE AND BAR MEMBERS OF THE SNELSON’S X 
TENSEGRITY STRUCTURE 

 

Parameter Value 

Young’s modulus of bar member 183GPa 

Young’s modulus of cable member 200GPa 

Radius of bar member 5mm 

Radius of cable member mm 

Material density of bar member kg/m3 

Material density of cable member kg/m3 

 

 
FIGURE 3: A PLANAR SNELSON’S X TENSEGRITY 
STRUCTURE 
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The proposed method is compared with the finite element 

analysis (FEA) method given in Ref. [18], which assumed 

uniform distribution of displacements of material particles on 

structure members. In other words, the FEA method for 

comparison does not include internal displacements of structure 

members.  

 
3.1 Model analysis 

The five natural frequencies associate with nodal motions 
are investigated for a direct comparison. This is because the FEA 
method can only reveal the modes associate with nodal motions. 
Values of the five natural frequencies are presented in Tables 2, 
with the corresponding mode shapes shown in Fig. 4. 
 

 
FIGURE 4: FIRST FIVE MODE SHAPES ASSOCIATE WITH 

NODAL MOTIONS 
 

TABLE 2: THE FIVE NATURAL FREQUENCIES (NF) 

ASSOCIATE WITH NODAL MOTIONS (HZ) 

 

 NF1 NF2 NF3 NF4 NF5 

FEM 259.36 450.22 538.73 1840.94 2675.81 

N = 1 259.17 448.27 538.32 1692.53 2274.68 

N = 2 259.17 448.24 538.25 1687.20 2261.56 

N = 3    1686.24 2261.16 

  

As observed from the results, accuracy of natural 
frequencies associate with modes of nodal motions can be 

significantly improved by the proposed method. According to 
Table 2, improvement of 9.17% and 18.34% in accuracies of the 
fourth and fifth natural frequencies are achieved by only using 
three internal terms of member positions (N = 3).  

3.2 Frequency response 

Let a point-wise sinusoidal force Ff = F0sin(2ft) be applied 
at node two of the tensegrity structure in the x-direction, with F0 
= 1000N. The frequency response of node four in the y-direction 
of the structure can be determined by the FEA method and the 
proposed method, respectively. As seen in Fig. 5, the FEA 
method and the proposed method are in good agreement under 
1000 Hz. In the range of 1500-3000Hz, which is near the fourth 
and fifth natural frequencies, significant improvement of 
accuracy is achieved by the proposed method.  

 

 
FIGURE 5: FREQUENCY RESPONSE IN 0-3000HZ OF NODE 

FOUR IN THE Y-DIRECTION 

 

 
FIGURE 6: FREQUENCY RESPONSE IN 5000-10000HZ OF 

NODE FOUR IN THE Y-DIRECTION  

 

Frequency responses of the tensegrity structure in the range 
of 5000-10000Hz are shown in Fig. 6. As observed, the proposed 
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method shows a significant advantage over the FEA method, as 
the FEA method failed to reveal the natural frequencies in this 
range. The proposed method can reveal more peaks in the 
frequency response as the value of N increases.  

 

3.3 Transient response 

Let a point-wise sinusoidal force Ff = F0sin(2ft) be applied 
at node two in the x-direction, with F0 = 10N. The displacements 
of node three of the tensegrity structure in the x-direction are 
plotted in Figs. 7 and 8, at excitation frequencies of 2000Hz and 
15000Hz, respectively.  

 

 
FIGURE 7: DISPLACEMENT OF NODE THREE IN THE X-

DIRECTION AT EXCITATION FREQUENCY OF 2000HZ 

 

 
FIGURE 8: DISPLACEMENT OF NODE THREE IN THE X-

DIRECTION AT EXCITATION FREQUENCY OF 15000HZ 

 

In both cases, the results obtained by the FEA method are 
inaccurate, as it fails to reveal dynamic responses with higher 
frequencies. As observed from Fig. 7, the proposed method can 
accurately predict the transient response for the 2000Hz 
excitation frequency with only a small number of internal terms 

of member positions. The results obtained by the proposed 
method for N = 1~3 are in good agreement. As observed from 
Figs. 8, only the proposed method can reveal the high-frequency 
response for the 15000Hz excitation frequency. The results 
obtained by the proposed method for N = 8 and 12 are in good 
agreement. However, the results do not match those for N = 4. 
So, it can be concluded that more internal terms of member 
positions are needed for the proposed method to predict 
tensegrity structure dynamic response with higher frequencies. 

 

4. CONCLUSION 
A new nonlinear dynamic modeling method for vibration 

analysis of tensegrity structures is proposed. In this method, 
position of a structure member is defined of as a summation of 
boundary-induced terms and internal terms in a global 
coordinate system. A system of nonlinear equations of motion is 
derived from Lagrange equation. The nonlinear equations of 
motion can be linearized at an equilibrium configuration of a 
tensegrity structure for vibration analysis. Simulation results 
show that the proposed method can accurately predict natural 
frequencies by only using a small number of internal terms, 
which validates the numerical efficiency of the proposed 
method. It is also proved that the proposed method can predict 
dynamic response of tensegrity structures in a higher frequency 
domain than the finite element method.    
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