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ABSTRACT

Tensegrity structures have experienced continued research
and development interests in the past several decades. Revealing
dynamic characteristics of a tensegrity structure, for example:
vibration analysis, is an important objective in structural design
and analysis. Traditional dynamic modeling methods are
inaccurate in predicting dynamic responding of a tensegrity
structure, due to their neglection of internal displacements of
structure members. 1o solve this issue, a new nonlinear dynamic
modeling method for tensegrity structures is proposed in this
paper. This method defines position of a structure member as a
summation of boundary-induced terms and internal terms in a
global coordinate system. A nonlinear dynamic model of a
tensegrity structure is derived from Lagrange equation, as a
system of ordinary differential equations. This dynamic model
can be linearized at an equilibrium configuration for vibration
analysis. As shown in simulation results, the proposed method
can predict natural frequencies of a tensegrity structure with a
better accuracy than the traditional methods. Unlike the
traditional methods that can only predict dynamic responses in
a low frequency domain, the proposed method can also reveal
dynamic responses of a tensegrity structure in a higher frequency
domain by only using a small number of internal terms.

Keywords: Tensegrity structure, Nonlinear dynamics,
Vibration analysis, Modal analysis, Spatial discretization
method,
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internal terms of a differential element
position

natural spatial variable

boundary induced terms of a differential
element position

number of internal terms

generalized coordinates representing the
internal displacement of a member

unit vector of R

deformed length of a member
position of a differential element
velocity of a differential element

internal terms of a differential element
velocity

boundary induced terms of a differential
element velocity

mass of a member

kinetic energy of a member

x-, y- and z-coordinates of u

deformed length of a differential element
undeformed length of a member

undeformed length of a differential element
strain of a differential element

average internal axial force applied to a
differential element from its undeformed to
deformed lengths

internal force of a member

Young’s modulus member material

cross section area of a member
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dwe work done to a differential element by internal
conservative force

14 potential energy of a member

Ly Lagrangian of a member

0 generalized coordinates of a member

Jre generalized force associate with
nonconservative loads

M mass matrix

C damping matrix

K stiffness matrix

Sext generalized force associate with externally
applied loads

1. INTRODUCTION

Tensegrity structures, due to their lightweight, foldability,
and high stiffness, have experienced continued research and
development interests in the past several decades [1-4]. In early
work, a tensegrity structure is defined as a pin-jointed structure
that is composed of isolated members in compression inside a
net of continuous members in tension. Such assembly produces
a lightweight, deployable, and yet self-standing structure with
high stiffness [5, 6]. A tensegrity structure is designed so that its
compressed members do not touch each other and prestressed
tensioned members spatially delineate the structure. This
definition was later generalized, where a tensegrity structure
consists of both bars and cables, with contacts among bar
members being allowed [7].

Revealing dynamic characteristics of tensegrity structures,
for example: vibration analysis, is an important objective in
structural design and analysis. However, research aiming to
address this type of problem is seen in very few literatures. Early
research was found in work of Motro [8], who obtained dynamic
response of a tensegrity structure by both numerical and
experimental approaches; and in work of Furuya [9], who
performed vibration analysis of a tensegrity mast and revealed a
relationship between natural frequencies and level of self-stress
of the structure.

For vibration analysis of a tensegrity structure, development
of a dynamic model is a key step. One commonly used type of
methods for nonlinear dynamic modeling of tensegrity structures
is based on generalized coordinates and Lagrange approach,
which was seen in work of Sultan [10, 11] and Oppenhem [12].
In this type of methods, a system of generalized coordinates,
which is highly coupled with topology and geometric
configuration of a specific tensegrity structure, is first defined.
All generalized coordinates are required to be independent. By
treating bar and cable members of the tensegrity structure as rigid
bodies and massless springs, a system of second order nonlinear
ordinary differential (ODE) equations that describes the
mechanical motion of the structure is obtained by the Lagrange
approach. The advantage of this type of approach is that design
constraints, such as axial symmetry, of a tensegrity structure are
well maintained during a dynamic analysis. But a generalized
coordinate system often highly relies on geometric simplicity of
a tensegrity structure. Thus, this type of approach is restricted in

modeling only regular tensegrity structures with a small number
of nodes and members.

Another approach to nonlinear dynamic modeling of
tensegrity structures is based on finite element methods, which
were seen in work of Ali [13], Faroughi [14], Ashwear [15] and
Feng [16]. This type of methods starts by obtaining mass and
stiffness matrices of a single member in local coordinate system.
Then, mass and stiffness matrices of a whole tensegrity structure
are established by transforming from local to global coordinates
through a co-rotational approach. This type of methods provides
a simple approach in obtaining a linear dynamic model for
vibration analysis, and offers capability of modeling irregular
tensegrity structures that usually lack geometric symmetry.
However, it is inefficient when applying to tensegrity structures
subjected to large deformations.

A common issue in the above-mentioned nonlinear dynamic
modeling methods of tensegrity structure is that structure
members are over simplified. This is mainly due to the
neglection of internal displacements of structure members in the
longitudinal directions. In these traditional methods, bar
members were modeled either as rigid bodies with no internal
displacement at all (seen in Lagrange and rigid-body based
approaches), or as elastic elements whose internal displacements
are uniformly distributed along their longitudinal directions (see
the shape function used in finite-element-analysis based
approaches). Similar issues were also seen in cable member
modeling by traditional methods, where cable members were
modeled either as massless springs or as elastic elements with
uniformly distributed longitudinal displacements. Such
oversimplification of structure members will inevitably prevent
the nonlinear dynamic model from predicting dynamic responses
with a high accuracy, especially for responses in a higher
frequency domain.

To resolve the issues in traditional methods, a new nonlinear
dynamic modeling method for vibration analysis of tensegrity
structures is proposed. This method defines position of a
structure member as a summation of boundary-induced terms
and internal terms in a global coordinate system. A nonlinear
dynamic model of a tensegrity structure is then derived from
Lagrange equation, as a system of ordinary differential
equations. This dynamic model can be linearized at an
equilibrium configuration of the tensegrity structure for vibration
analysis. The proposed method is new in that internal
deformations of both bar and cable members are considered as
depend variables in the dynamic model of a tensegrity structure
so developed. Thus, over simplification of a tensegrity structure,
which was often seen in traditional dynamic modeling methods,
is successfully avoided. The proposed method can predict natural
frequencies of a tensegrity structure with a better accuracy than
the traditional methods. Unlike the traditional methods that can
only predict dynamic responses in a low frequency domain, the
proposed method can also reveal dynamic responses of a
tensegrity structure in a higher frequency domain by only using
a small number of internal terms.
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2. NEW METHOD FOR NONLINEAR DYNAMIC

MODELING OF TENSEGRITY STRUCTURES

In this section, a new method for nonlinear dynamic
modeling and vibration analysis of tensegrity structures shall be
presented. Consider a member that connects two nodes of a
tensegrity structure in a three-dimensional global coordinate
system, see Fig. 1. Coordinates of the two nodes are given as (xo,
Yo, 20) and (x1, y1, z1), respectively. The longitudinal direction of
the member can be expressed by a position vector as

X =Xy
R=|y -, (1
Z1 ™2y

An independent natural spatial variable & is defined to represent
the internal positions of the member. 0 and 1 are boundary
locations for the natural spatial variable, which means that
&=0and &= 1 represent the locations of (xo, yo, zo) and (x1, yi,
z1), respectively. According to the spatial discretization method
[17], the position u of a differential element of the member at
position & can be expressed as a summation of internal terms and
boundary-induced terms:

u(S,0) =u(S,0) +u(&,1) 2

(xpyle)

(x():yoszo)

X

FIGURE 1: MOTION OF A MEMBER IN THE GLOBAL
COORDINATE SYSTEM

The internal terms and boundary-induced terms of position
u are represented as vector forms in the three-dimensional global
coordinate system as

(& 1) = i g, sin(ing)F
X X €)

u(&,)=01-5)| y, |+&| y,

Z, z,

where N is the number of internal terms, and ¢; is generalized
coordinates that describes internal displacement of the member
in the longitudinal direction. ¢; = 0 for all i means the
longitudinal displacement is uniformly distributed along the
axial direction of the member. If the two boundary nodes are
fixed, the member is at equilibrium when all ¢; are to zero. 7
is a unit vector that represents the longitudinal direction of the
member, given as

“4)

=N
Il

~ | =

where L is deformed length of the member under a level of self-
stress, calculated as

L:\/(xl_xo)2+(y1_y0)2+(Zl_20)2 (5)

It should also be emphasized that the boundary induced term in
Eq. (3) coincides with a shape function in elastic rod modeling
in the finite element method [18]. So, the finite element method
for dynamic modeling of bar members of a tensegrity structure
can also be viewed as a simplified version of the proposed
method without internal terms.

2.1 Kinetic energy

Velocity of a differential element at location £ on the
member can be obtained by taking the time derivative to Eq. (2):

(&, 1) = (& 1) +i(E 1) 6)

The time derivatives of the internal terms and the boundary-
induced terms are given as

(&= i{qg sin(iné)F + (%Jsin(mf)ﬁ - [%]sm(m@% ﬁ} (7)

%, X,
W& =(1-8)| 3, [+&| 3, (8)
ZO Z'l
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Since the internal displacement, described by the general
coordinate g, is usually significantly small than the deformed
length of the member (g, < L), it can be assumed that

9+ )

By substituting Eq. (9) into Eq. (6), the second and third terms
of Eq. (7) vanish. The internal term of velocity becomes

i(£0)= Y sinGim)F (10)

Substituting Eqgs. (10) and (8) into Eq. (6) yields

xO xl
W(E,0) = g sinag)F +(1-&)| vy [+&| ¥y | (11)
. Z.O Z.l

By an assumption of uniform mass distribution along the
axial direction of the member, mass of the differential element
can be expressed md&, where m is the mass of the whole member.
The kinetic energy of the differential element is given as

dr = %m||a||2 dé (12)

Thus, the kinetic energy of the member can be obtained by the
taking the integration with respect to & in the domain of the entire
member length ([0,1]) as

T=["ar
£=0

(13)
2.2 Potential energy

A differential element of a structure member, that starts at
location ¢ and ends at location (& + d¢&), of a member is shown
in Fig. 2. The global coordinates of the starting and the ending

points of the differential element are given as (u,,u ,u ) and
(u, + Uy dé,u Uy dé,u. +—=d&), respectively, where uy, u
os os o¢ ’
and u. are the x-, y- and z-coordinates of u(&, f) obtained from
Eq. (2). uy , Ou, and o are calculated as
og  o¢ og

—-X,) {1 + Li ﬁ: qirm COS(l'ﬂ'f):|

aL_(yl [ Liz mcos(iﬂé:)} (14)

5

The deformed length dL of the differential element can be
calculated by the corresponding geometry information shown in

Fig. 2 as
ou ) (ou 0
dL= || S| 4] =2 e d§ (15)
4 0¢ 55
Substituting Eq. (14) and Eq. (5) into Eq. (15) yields an explicit
expression of dL:

=(z,—z,) [1 + T Z qir cos(z;zf)}

p i=1

:{L+iqii7zcos(im§)}d§ (16)

ou,
u, + 0% e+ S0 e+ Ot e

o ot ot

(ux,uy,u__) e

FIGURE 2: KINETIC DIAGRAM OF A DIFFERENTIAL
ELEMENT OF A STRUCTURE MEMBER

Let the undeformed length of the member be Lo, and the
undeformed length of the differential element be

dL, = Lyd¢$ (17)

Then, the strain & of the differential element of the member at
location & can be obtained as

_dL-dI,
dL

0

(18)
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Based on linear elasticity assumption, the average internal axial
force Fo applied to the differential element from undeformed
length dLo to deformed length dL is P/2 (internal force increases
linearly, from zero to P), where the internal force P is calculated
as

P=FA¢ (19)
where E and A are the Young’s modulus and cross section area
of the member, respectively. The work dw. done to the
differential element by the internal conservative force Fiug is
given as

dw.=F,

avg

(dL—dL,) (20)

The potential energy V of the member is then obtained taking the

integration of dw. with respect to & in domain of the entire
member length ([0,1]).

£=1
V= dw,
£=0

21
Finally, let the Lagrangian be L;, = T — V, a system of nonlinear
equations of motion of a member of a tensegrity structure can be
obtained by the Lagrange’s Equation as

dfa e, gy
di\ 00 ) 80
where Q is the generalized coordinate, defined as
Q:[xo Yo 20 X N 4 4 CIN] (23)

and f,. i1s a vector generalized force associate with
nonconservative loads, obtained by the principle of virtual work.

2.3 Linearized equations of motion for vibration
analysis

The system of nonlinear equations of motion of a member
can be linearized at an equilibrium configuration of a tensegrity
structure for vibration analysis. Denote global nodal coordinates
of the two ends of the member at the equilibrium state as
(x5,¥5-25) and (x7,y/,z’) . Values of other generalized
coordinates g; associate with internal longitudinal displacements
are zero at the equilibrium state. The linearized equations of
motion for the member are given in the second order form as

MO+CO+KQ=f., (24)

where M, C and K are mass, damping and stiffness matrices, and
fex: 1s a vector of generalized force associate with externally
applied loads.

A system of equations of motion for the entire tensegrity
structure can be obtained by directly assembling Eq. (24) for
each member without any local-to-global coordinate
transformation. The linearized dynamic model for the whole
tensegrity structure is also useful for various design and analysis
tasks, such as model analysis, control system design and
structure health monitoring.

3. SIMULATION RESULTS

For demonstration of the proposed nonlinear dynamic
modeling method for vibration analysis of tensegrity structures,
a planar Snelson’s X tensegrity structure with four nodes, two
bars and four cables, is investigated. Topology and dimensions
of the structure are shown in Fig. 3. Materials of bar and cable
members are assumed to be carbon fiber and steel, respectively.
The dimensional and material parameters of the bar and cable
members are given in Table 1. The structure is self-stressed, with
member internal force being 141.42N in compression for the two
bar members, and 100N in tension for the four cable members.
To eliminate the three modes of rigid-body motion of the
structure, displacements of node one in the x- and the y-
directions, and displacement of node two in the y-direction are
restricted.

TABLE 1: DIMENSIONAL AND MATERIAL PARAMETERS OF
CABLE AND BAR MEMBERS OF THE SNELSON’S X
TENSEGRITY STRUCTURE

Parameter Value
Young’s modulus of bar member 183GPa
Young’s modulus of cable member 200GPa
Radius of bar member Smm

Radius of cable member Imm
Material density of bar member 1750kg/m’
Material density of cable member 7850kg/m’

bar member

cable member

Im

&
L >l

1m

FIGURE 3: A PLANAR SNELSON’S X TENSEGRITY
STRUCTURE
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The proposed method is compared with the finite element
analysis (FEA) method given in Ref. [18], which assumed
uniform distribution of displacements of material particles on
structure members. In other words, the FEA method for
comparison does not include internal displacements of structure
members.

3.1 Model analysis

The five natural frequencies associate with nodal motions
are investigated for a direct comparison. This is because the FEA
method can only reveal the modes associate with nodal motions.
Values of the five natural frequencies are presented in Tables 2,
with the corresponding mode shapes shown in Fig. 4.

X

02 0 02 04 06 08 1 12 02 0 02 04 06 08 1 12
x

02 0 02 04 06 08 1 12 02 0 02 04 06 08 1 12
x x

Mode(5)

02 o0 02 04 06 08 1 12
x

FIGURE 4: FIRST FIVE MODE SHAPES ASSOCIATE WITH
NODAL MOTIONS

TABLE 2: THE FIVE NATURAL FREQUENCIES (NF)
ASSOCIATE WITH NODAL MOTIONS (HZ)

NF1 NF2 NF3 NF4 NF5
FEM 25936 450.22 538.73 1840.94 2675.81
N=1 259.17 44827 53832 1692.53 2274.68
N=2 25917 44824 53825 1687.20 2261.56
N=3 259.17 44821 53825 1686.24 2261.16

As observed from the results, accuracy of natural
frequencies associate with modes of nodal motions can be

significantly improved by the proposed method. According to
Table 2, improvement of 9.17% and 18.34% in accuracies of the
fourth and fifth natural frequencies are achieved by only using
three internal terms of member positions (N = 3).
3.2 Frequency response

Let a point-wise sinusoidal force Fr= Fosin(27zft) be applied
at node two of the tensegrity structure in the x-direction, with Fo
= 1000N. The frequency response of node four in the y-direction
of the structure can be determined by the FEA method and the
proposed method, respectively. As seen in Fig. 5, the FEA
method and the proposed method are in good agreement under
1000 Hz. In the range of 1500-3000Hz, which is near the fourth
and fifth natural frequencies, significant improvement of
accuracy is achieved by the proposed method.

-50 T e s
\ | FEAMethod |
| }* ——— Proposed Method, N=11
100 L | Proposed Method, N=2: ]
h | = — = — Proposed Method, N=3 |
\ o _Froposed Vethod, =+ #
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\ (o
-150 | ! I : } 1
— I I
a | ////\\\\ |
- I o LA W
[} s | \\ /
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-250 i B
I
|
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|
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|
|
|
350 . . . . .
0 500 1000 1500 2000 2500 3000

Frequency (Hz)

FIGURE 5: FREQUENCY RESPONSE IN 0-3000HZ OF NODE
FOUR IN THE Y-DIRECTION
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FIGURE 6: FREQUENCY RESPONSE IN 5000-10000HZ OF
NODE FOUR IN THE Y-DIRECTION

Frequency responses of the tensegrity structure in the range
of 5000-10000Hz are shown in Fig. 6. As observed, the proposed
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method shows a significant advantage over the FEA method, as
the FEA method failed to reveal the natural frequencies in this
range. The proposed method can reveal more peaks in the
frequency response as the value of N increases.

3.3 Transient response

Let a point-wise sinusoidal force Fr= Fosin(2zft) be applied
at node two in the x-direction, with £, = 10N. The displacements
of node three of the tensegrity structure in the x-direction are
plotted in Figs. 7 and 8, at excitation frequencies of 2000Hz and
15000Hz, respectively.

%10®

Displacement (m)

2 L L L L L L
0 0.002 0.004 0.006 0.008 0.01 0.012
Time (s)
FIGURE 7: DISPLACEMENT OF NODE THREE IN THE X-
DIRECTION AT EXCITATION FREQUENCY OF 2000HZ

Displacement (m)

25 I I I
0 0.5 1 1.5 2 25 3

Time (s) %107
FIGURE 8: DISPLACEMENT OF NODE THREE IN THE X-
DIRECTION AT EXCITATION FREQUENCY OF 15000HZ

In both cases, the results obtained by the FEA method are
inaccurate, as it fails to reveal dynamic responses with higher
frequencies. As observed from Fig. 7, the proposed method can
accurately predict the transient response for the 2000Hz
excitation frequency with only a small number of internal terms

of member positions. The results obtained by the proposed
method for N = 1~3 are in good agreement. As observed from
Figs. 8, only the proposed method can reveal the high-frequency
response for the 15000Hz excitation frequency. The results
obtained by the proposed method for N = 8 and 12 are in good
agreement. However, the results do not match those for N = 4.
So, it can be concluded that more internal terms of member
positions are needed for the proposed method to predict
tensegrity structure dynamic response with higher frequencies.

4. CONCLUSION

A new nonlinear dynamic modeling method for vibration
analysis of tensegrity structures is proposed. In this method,
position of a structure member is defined of as a summation of
boundary-induced terms and internal terms in a global
coordinate system. A system of nonlinear equations of motion is
derived from Lagrange equation. The nonlinear equations of
motion can be linearized at an equilibrium configuration of a
tensegrity structure for vibration analysis. Simulation results
show that the proposed method can accurately predict natural
frequencies by only using a small number of internal terms,
which validates the numerical efficiency of the proposed
method. It is also proved that the proposed method can predict
dynamic response of tensegrity structures in a higher frequency
domain than the finite element method.

ACKNOWLEDGEMENTS
The authors acknowledge support from the US NSF
(National Science Foundation) through grant 2104237.

REFERENCES

[1] Rhode-Barbarigos, L., Ali, N. B. H., Motro, R., and Smith, .
F., 2010, "Designing tensegrity modules for pedestrian bridges,"
Engineering Structures, 32(4), pp. 1158-1167.

[2] Tibert, A., and Pellegrino, S., 2002, "Deployable tensegrity
reflectors for small satellites," Journal of Spacecraft and
Rockets, 39(5), pp. 701-709.

[3] Yuan, S., Yang, B., and Fang, H., 2018, "The Projecting
Surface Method for improvement of surface accuracy of large
deployable mesh reflectors," Acta Astronautica, 151, pp. 678-
690.

[4] Yuan, S., Jing, W., and Jiang, H., "A Deployable Tensegrity
Microrobot for Minimally Invasive Interventions," Proc. ASME
International Mechanical Engineering Congress and Exposition,
American Society of Mechanical Engineers, p. VOOST005A061.
[5] Yuan, S., and Yang, B., 2019, "The fixed nodal position
method for form finding of high-precision lightweight truss
structures," International journal of Solids and Structures, 161,
pp- 82-95.

[6] Yuan, S., and Zhu, W., 2021, "Optimal self-stress
determination of tensegrity structures," Engineering Structures,
238, p. 112003.

[7] Motro, R., 1996, "Structural morphology of tensegrity
systems," International Journal of Space Structures, 11(1-2), pp.
233-240.

Copyright © 2022 by ASME

€202 Yol LL uo sasn Aysiaalun [eviBojouyos ) souaimeT Aq ypd 9y, ¥6-2202a99WI-7018L0IS00A/Z9Z L 869/70LVL0.LS00A/0.998/22023DTINIAPd-sBuipesdoid/3HFNI/B10°dwse  uoyoa)|oojeyBipawse/:dyy woly papeojumoq



[8] Motro, R., Najari, S., and Jouanna, P., 1987, "Static and
dynamic analysis of tensegrity systems," Shell and Spatial
Structures: Computational Aspects, Springer, pp. 270-279.

[9] Furuya, H., 1992, "Concept of deployable tensegrity
structures in space application," International Journal of Space
Structures, 7(2), pp. 143-151.

[10] Sultan, C., and Skelton, R. T., "Tendon control deployment
of tensegrity structures," Proc. Smart Structures and Materials
1998: Mathematics and Control in Smart Structures,
International Society for Optics and Photonics, pp. 455-466.
[11] Sultan, C., Corless, M., and Skelton, R. E., 2002,
"Symmetrical reconfiguration of tensegrity structures,"”
International Journal of Solids and Structures, 39(8), pp. 2215-
2234,

[12] Oppenheim, 1. J., and Williams, W. O., 2001, "Vibration of
an elastic tensegrity structure," European Journal of Mechanics-
A/Solids, 20(6), pp. 1023-1031.

[13] Ali, N. B. H., and Smith, 1., 2010, "Dynamic behavior and
vibration control of a tensegrity structure," International Journal
of Solids and Structures, 47(9), pp. 1285-1296.

[14] Faroughi, S., and Tur, J. M. M., 2015, "Vibration properties
in the design of tensegrity structure," Journal of Vibration and
Control, 21(3), pp. 611-624.

[15] Ashwear, N., and Eriksson, A., 2014, "Natural frequencies
describe the pre-stress in tensegrity structures," Computers &
Structures, 138, pp. 162-171.

[16] Feng, X., Miah, M. S., and Ou, Y., 2018, "Dynamic behavior
and vibration mitigation of a spatial tensegrity beam,"
Engineering Structures, 171, pp. 1007-1016.

[17] Wu, K., Zhu, W., and Fan, W., 2017, "On a comparative
study of an accurate spatial discretization method for one-
dimensional continuous systems," Journal of Sound and
Vibration, 399, pp. 257-284.

[18] Ma, S., Chen, M., and Skelton, R. E.; 2022, "Tensegrity
system dynamics based on finite element method," Composite
Structures, 280, p. 114838.

Copyright © 2022 by ASME

€202 Yol LL uo sasn Aysiaalun [eviBojouyos ) souaimeT Aq ypd 9y, ¥6-2202a99WI-7018L0IS00A/Z9Z L 869/70LVL0.LS00A/0.998/22023DTINIAPd-sBuipesdoid/3HFNI/B10°dwse  uoyoa)|oojeyBipawse/:dyy woly papeojumoq



