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A B S T R A C T   

For vibration analysis of a tensegrity structure, the development of a dynamic model is a key step. A common 
issue in the traditional dynamic modeling methods for vibration analysis of tensegrity structures is that structural 
members are oversimplified. Member internal displacements, including those in longitudinal directions for bar 
and cable members and those in transverse directions for cable members, were neglected. This oversimplification 
would inevitably prevent the dynamic model of a tensegrity structure so developed from revealing accurate 
responses, especially for those in the high-frequency domain. To resolve this issue, a new method called the 
Cartesian spatial discretization method is developed for nonlinear dynamic modeling and vibration analysis of 
tensegrity structures. This method can successfully incorporate member internal displacements in dynamic 
modeling of a tensegrity structure by defining positions of structural members as a summation of internal terms 
and boundary-induced terms in a global Cartesian coordinate system. The proposed method is applied to vi
bration analysis of a planar Snelson’s X tensegrity structure, a three-dimensional tensegrity tower, and an 
irregular tensegrity grid in simulation, and compared with the Lagrangian method based on generalized co
ordinates, the commercial finite element analysis software ANSYS and the finite element analysis method in 
literatures, respectively. Results show that the proposed method is accurate in predicting dynamic responses of 
tensegrity structures, especially for vibration analysis in the high-frequency domain. It is also demonstrated that 
the proposed method is applicable to both simple and complex tensegrity structures, and computationally effi
cient as it converges in a super-linear rate by using only a small number of internal terms of member 
displacements.   

1. Introduction 

Tensegrity structures, due to their lightweight, foldability and high 
stiffness, have experienced continued research and development in
terests in the past several decades. Due to the capability of sustaining 
large deformations, tensegrity structures are recognized as flexible or 
deployable structures in various engineering applications, such as 
bridges (Rhode-Barbarigos et al., 2010; Veuve et al., 2015), space re
flectors (Tibert and Pellegrino, 2002), soft robots (Caluwaerts et al., 
2014; Shah et al., 2021; Yuan et al., 2021), mechanical metamaterials 
(De Tommasi et al., 2017; Liu et al., 2019), and active building façades 
that harvest wind and solar energy (Cimmino et al., 2017). Tensegrity 
structures have also been popular for mechanical modeling of cell 
structures (Ingber, 2003) in biology. As an engineering structural design 
concept, a tensegrity structure was first introduced by Fuller (1982). In 

this early work, a tensegrity structure is defined as a pin-jointed struc
ture that is composed of isolated members in compression (usually bars 
or struts) inside a net of continuous members in tension (usually cables 
or tendons). A tensegrity structure is designed so that its compressed 
members do not touch each other and prestressed tensioned members 
spatially delineate the structure. This definition was later generalized by 
Motro (1996), where a tensegrity structure consists of both bars and 
cables, with contacts among bar members being allowed. 

In existing work of design and analysis, tensegrity structures are 
investigated mainly from a static point of view. Design of a tensegrity 
structure usually starts from topology design. Then an initial equilib
rium configuration of the structure is obtained by a procedure named 
form finding, where the geometric configuration and force distribution 
among members of the structure are determined (Schek, 1974; Yuan and 
Yang, 2019; Zhang and Ohsaki, 2006). For tensegrity structures with 
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high surface accuracy requirements and multiple states of self-stress, 
self-stress determination, which is also called member force assign
ment or force finding, is needed. If nodal positions of a tensegrity 
structural are restricted by high surface accuracy requirements, optimal 
design of its stiffness and stability can only be accomplished by assign
ment of member internal forces (Feng, 2017; Tran and Lee, 2010; Yuan 
and Zhu, 2021). 

Revealing dynamic characteristics of tensegrity structures, for 
example, vibration and deployment analysis, is another important 
objective in structural design and analysis. Early research was found in 
work of Motro et al. (1987), who obtained dynamic responses of a 
tensegrity structure by both numerical and experimental approaches, 
and in work of Furuya (1992), who performed vibration analysis of a 
tensegrity mast and revealed a relationship between natural frequencies 
and self-stress of the structure. 

For vibration analysis of a tensegrity structure, the development of a 
dynamic model is a key step. One commonly used type of approach for 
dynamic modeling of tensegrity structures is the Lagrangian method, 
which was seen in works of Skelton and Sultan (1997), Sultan et al. 
(2002a), Sultan et al. (2002b), Sultan and Skelton (2003), Oppenheim and 
Williams (2001a), Oppenheim and Williams (2001b) and Kan et al. 
(2018b). In this type of approach, a system of generalized coordinates, 
which is highly coupled with the topology and the geometric configuration 
of a specific tensegrity structure, is first defined. All generalized co
ordinates are required to be independent of each other. By treating bar and 
cable members of the tensegrity structure as rigid bodies and massless 
springs, respectively, a system of second-order nonlinear ordinary differ
ential equations (ODEs) that describes the mechanical motion of the 
structure is obtained by the Lagrangian method. This type of methods was 
later modified for dynamic modeling of tensegrity-membrane systems 
(Yang and Sultan, 2016, 2017, 2019), in which bar members were 
modeled as truss elements with flexibilities along their longitudinal di
rections being considered. The Lagrangian method is preferred for dy
namic modeling of large-scale tensegrity structures (tensegrity structures 
with many nodes and members). The advantage of using generalized co
ordinates is that design constraints, such as axial symmetry, of a tensegrity 
structure are well maintained. 

Another approach to dynamic modeling of tensegrity structures is the 
finite element analysis (FEA) methods, which were seen in works of Ali 
et al. (2010), Ali and Smith (2010), Faroughi and Tur (2015), Ashwear and 
Eriksson (2014), Ashwear et al. (2016), Feng et al. (2018) and Kahla et al. 
(2020). This type of modeling methods starts by obtaining mass and 
stiffness matrices of a single member obtained in a local coordinate system. 
Then, mass and stiffness matrices of a whole tensegrity structure are 
established by transforming from local to global coordinates through a co- 
rotational approach. This type of methods provides a simple approach in 
obtaining a linear dynamic model for vibration analysis. However, it is 
inefficient when these methods are applied to tensegrity structures sub
jected to large displacements, such as deployment, since large rigid-body 
motions of structural members are not considered. Kan et al. (2018a), 
Peng et al. (2020) and Ma et al. (2022) directly used global coordinates in 
obtaining mass and stiffness matrices of each member. This method is 
applicable to nonlinear dynamic analysis, since large rigid-body motions 
are naturally handled by global coordinates. 

A common issue in the traditional dynamic modeling methods for 
tensegrity structures is that structural members are oversimplified. 
Member internal displacements, including those in the longitudinal di
rections for bar and cable members and those in the transverse directions 
for cable members, were neglected. In the traditional methods, structural 
members were either modeled as rigid bodies and massless springs with no 
internal displacements at all (seen in Lagrange-based methods), or as 
elastic rods with an assumption of uniform distribution of internal dis
placements (see shape functions used by FEA-based methods). In fact, the 
impact of member internal displacements on dynamic characteristics of a 
tensegrity structure is significant, which shall be seen in numerical simu
lation of this work. This oversimplification would inevitably prevent the 

dynamic model of a tensegrity structure so developed from revealing ac
curate responses, especially for those in the high-frequency domain. 

To fill the above-mentioned technical gap, a novel method for 
nonlinear dynamic modeling of tensegrity structures, named the Cartesian 
spatial discretization (CSD) method, is developed in this work. This 
method defines positions of structural members as a summation of internal 
terms and boundary-induced terms in a global Cartesian coordinate sys
tem. A nonlinear dynamic model of a member is then derived from 
Lagrange’s equations as a system of ODEs. This dynamic model can be 
linearized at an equilibrium configuration of the tensegrity structure for 
vibration analysis. A dynamic model of the whole structure is finally 
assembled by using common nodal coordinates of structural members. The 
proposed method is new in that member internal displacements are well 
incorporated in the nonlinear dynamic model of a tensegrity structure so 
developed. Thus, the oversimplification of structural members, which was 
often seen in the traditional dynamic modeling methods, is successfully 
avoided. The incorporation of member internal displacements grants the 
proposed method an ability to predict accurate dynamic responses of 
tensegrity structures, especially for vibration analysis in the high- 
frequency domain. In addition, the use of a global Cartesian coordinate 
system by the proposed method in member modeling provides a fast and 
straight-forward structure assembly, and automatic incorporation of rigid- 
body motions of structural members. The proposed method is applicable to 
both simple and complex tensegrity structures, and computationally effi
cient as it converges in a super-linear rate by using only a small number of 
internal terms of member displacements. 

The remainder of this paper is arranged as follows. Properties and 
relevant concepts of tensegrity structures are clarified in Section 2. The 
spatial discretization method for one-dimensional continuous bar and 
cable members is introduced in Section 3. The CSD method for nonlinear 
dynamic modeling of tensegrity structures is presented in Section 4. Re
sults from numerical simulations are given in Section 5. Conclusions from 
this study are presented in Section 6. 

2. Problem Statement, form finding and force finding 

The objective of this research is to provide an approach to nonlinear 
dynamic modeling and vibration analysis of tensegrity structures. 
Properties and relevant concepts of tensegrity structures are clarified in 
this section for a better understanding of the proposed method. To this 
end, the following five assumptions about a tensegrity structure are 
made: 

(A1) Bar and cable members of a tensegrity structure are connected 
by frictionless pin-joints. 

(A2) A level of self-stress is required to stiffen the structure and avoid 
slacking cable members. 

(A3) Mass moments of inertia of bar and cable members along their 
axial directions are neglected. 

(A4) Only axial forces are transmitted in members. Bar members can 
sustain both tension and compression forces, and cable members can 
only sustain tension forces. Bending of bar and cable members, and 
buckling of bar members do not occur. 

(A5) Materials of bar and cable members are elastic and homoge
neous. Cross-sectional areas are constant along lengths of bar and cable 
members. Thus, mass distributions of bar and cable members are uni
form along their axial directions. 

For a general truss structure, the matrix equilibrium equation is 

Mσ = l (1)  

where M is the equilibrium matrix consisting of direction cosines, σ is a 
vector of generalized stresses, and l is a vector of generalized loads. 
Because cross-sectional areas and elastic properties of members do not 
have to be specified and during a form-finding process a tensegrity struc
ture is not subject to any external load, it is convenient to replace σ by a 
vector of member internal forces and set l =0. Thus, the matrix equilibrium 
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equation can be written as (Pellegrino and Calladine, 1986) 

MT = 0 (2)  

where for a 3-D tensegrity structure, M is a 3n × k matrix with n being 
the number of nodes and k being the number of members, which is 
obtained from nodal coordinates, and T is a k × 1 vector of member 
internal forces. The number of mechanisms and states of self-stress of a 
tensegrity structure can be obtained from the matrix M in Eq. (2). 

In this work, it is assumed that a nonlinear dynamic model is 
developed given an initial equilibrium configuration of a tensegrity 
structure. Such an equilibrium configuration can be obtained by a pro
cedure in tensegrity structure design, named form finding of the initial 
equilibrium configuration (FF-IEC) (Yuan and Yang, 2019). The goal of 
FF-IEC is to determine nodal positions and member internal forces that 
satisfy Eq. (2) for a tensegrity structure with a predetermined topology. 
Thus, the tensegrity structure is at a stable equilibrium configuration 
with a certain level of stiffness. Commonly used methods for FF-IEC can 
be found in works of Barnes (1999), Zhang and Ohsaki (2006), Lee et al. 
(2016) and Yuan and Yang (2019). 

For tensegrity structures with high surface accuracy requirements 
and multiple states of self-stress, self-stress determination, which is also 
called member force assignment or force finding, is an essential part in 
structural design. During a process of self-stress determination, nodal 
positions of a tensegrity structure remain unchanged. However, deter
mining self-stress of a tensegrity structure to improve its stiffness and 
stability (also called optimal self-stress determination), while main
taining its desired configuration, is not well addressed by the form- 
finding methods introduced above. Because most of the methods are 
stress-first and displacement-later methods (these methods usually start 
from assigning a set of member internal forces (or force densities in the 
force density method (Zhang and Ohsaki, 2006)), and the nodal dis
placements are then determined by using these assigned member in
ternal forces). In these methods, nodes of a tensegrity structure cannot 
be freely placed at desired locations and multiple states of self-stress are 
not fully utilized to improve the stiffness and stability of the structure. In 
fact, a set of member force distribution can be optimally assigned, so 
that the stiffness and stability of the tensegrity structure are further 
improved. Commonly used methods for self-stress determination are 
seen in works of Tran and Lee (2010), Feng (2017) and Yuan and Zhu 
(2021). The assigned member internal forces must satisfy unilateral 
properties (cable members can only sustain tension forces as compared 
with bar members that can sustain both tension and compression forces) 
and other member stress constraints upon engineering requirements (for 
example, member stresses must lie within a specific region to avoid 
damage). 

3. Spatial discretization method for one-dimensional continuous 
bar and cable members 

A tensegrity structure is composed of bar and cable members. These 
two types of members are in general modeled as elastic rods and taut 
strings, respectively, which are one-dimensional continuous systems, in 
nonlinear dynamic modeling and vibration analysis. However, a 
continuous or distributed-parameter system model is difficult to 
analyze, since its governing equations are one or more partial differ
ential equations (PDEs). This problem even aggravates when modeling a 
tensegrity structure, which is usually composed of many bar and cable 
members placed and connected in a three-dimensional space. This is the 
case because PDEs are inefficient in handling large-scale systems (sys
tems with many equations and variables) due to the involvement of 
complicated coordinate transforms. 

To resolve this issue, a spatial discretization method (Ren and Zhu, 
2013; Wu et al., 2017; Zhu and Ren, 2013) is used to convert PDEs of a 
continuous system model to a set of ODEs, such that the dynamic 
response of the system can be revealed by an ODE solver. The spatial 

discretization method discretizes a continuous system with complicated 
boundary conditions by separating a displacement of the system into 
internal terms and boundary-induced terms. The internal terms satisfy 
certain prescribed simple homogeneous boundary conditions, and the 
boundary-induced terms account for corresponding boundary condi
tions that are not satisfied by the internal terms by using additional 
degrees of freedom at boundaries of the system. 

For illustration, applications of the spatial discretization method to 
one-dimensional continuous bar and cable members are given in this 
section. Trial functions for both internal and boundary-induced terms 
obtained in the one-dimensional continuous bar and cable members are 
used in the CSD method proposed in this paper for nonlinear dynamic 
modeling and vibration analysis of tensegrity structures in the three- 
dimensional space. 

3.1. Spatial discretization method for a general second-order system 

The governing equation of a second-order one-dimensional contin
uous system can be written in a general form as 

α ∂2u(ξ, t)
∂t2 + β

∂2u(ξ, t)
∂ξ2 = 0, ξ ∈ (0, 1), t > 0 (3)  

where ξ and t are the independent dimensionless spatial variable and 
temporal variable, respectively; u is the dependent variable that denotes 
certain physical quantity; 0 and 1 are boundary locations for the 
dimensionless spatial variable; and α and β are prescribed coefficients. 
Boundary conditions of Eq. (3) are given in the general form as 

∂s1 u(ξ, t)
∂ξs1

⃒
⃒
⃒
⃒

ξ=0
= e1(t),

∂s2 u(ξ, t)
∂ξs2

⃒
⃒
⃒
⃒

ξ=1
= e2(t) (4)  

where s1 and s2 are either 0 or 1, and e1(t) and e2(t) are unknown 
boundary motions. 

Let u(ξ,t) be represented in the following form: 

u(ξ, t) = ũ(ξ, t)+ θ1(ξ)e1(t)+ θ2(ξ)e2(t) (5)  

where θi(ξ) (i = 1, 2) are corresponding interpolation functions, and 
ũ(ξ, t) is the internal term of the function u(ξ,t). The function ũ(ξ, t) is 
defined to satisfy only simple homogeneous boundary conditions of the 
system: 

∂s1 ũ(ξ, t)
∂ξs1

⃒
⃒
⃒
⃒

ξ=0
= 0,

∂s2 ũ(ξ, t)
∂ξs2

⃒
⃒
⃒
⃒

ξ=1
= 0 (6)  

By the spatial discretization method, ̃u(ξ, t) is expressed in an expansion 
form as 

ũ(ξ, t) =
∑∞

j=1
φj(ξ)qj(t) (7)  

where φj(ξ) (j = 1, 2, …) are trial functions, which are chosen to be 
eigenfunctions of a simple self-adjoint system with simple homogeneous 
boundary conditions, and qj(t) are corresponding generalized co
ordinates. The functions θi(ξ) must be properly defined to satisfy the 
rules given in Eq. (8), so as to satisfy the boundary conditions in Eq. (4): 

ds1 θ1(ξ)
dξs1

⃒
⃒
⃒
⃒

ξ=0
= 1,

ds2 θ1(ξ)
dξs2

⃒
⃒
⃒
⃒

ξ=1
= 0

ds1 θ2(ξ)
dξs1

⃒
⃒
⃒
⃒

ξ=0
= 0,

ds2 θ2(ξ)
dξs2

⃒
⃒
⃒
⃒

ξ=1
= 1

(8)  

Thus, u(ξ, t) can be expressed by the sum of terms ̃u(ξ, t) and û(ξ, t) in the 
spatial discretization method: 

u(ξ, t) = ũ(ξ, t)+ û(ξ, t) (9)  
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where ̂u(ξ, t) is the boundary-induced term of the function u(ξ,t), defined 
as 

û(ξ, t) = θ1(ξ)e1(t)+ θ2(ξ)e2(t) (10) 

According to Eq. (10), the boundary-induced term û(ξ, t) is inter
polated from boundary degrees of freedom ei(t) (i = 1 or 2 for a second- 
order system), which are the dependent variable and/or its spatial de
rivatives at the boundaries. By substituting Eq. (10) into Eq. (8), û(ξ, t)
must satisfy the boundary conditions of the original system: 

∂s1 û(ξ, t)
∂ξs1

⃒
⃒
⃒
⃒

ξ=0
=

∂s1 u(ξ, t)
∂ξs1

⃒
⃒
⃒
⃒

ξ=0
,

∂s2 û(ξ, t)
∂ξs2

⃒
⃒
⃒
⃒

ξ=1
=

∂s2 u(ξ, t)
∂ξs2

⃒
⃒
⃒
⃒

ξ=1
(11)  

By substituting Eqs. (7) and (10) into Eq. (9), the expression of u(ξ, t) has 
an expansion form 

u(ξ, t) =
∑∞

j=1
φj(ξ)qj(t)+ θ1(ξ)e1(t)+ θ2(ξ)e2(t) (12) 

It should be noticed that the spatial discretization method can also be 
applied to a continuous system with a higher order (greater than two), as 
shown by Wu et al. (2017). Since both bar and cable members of a 
tensegrity structure are modeled as second-order systems (elastic rods 
and taut strings), details of applying the spatial discretization method to 
a higher-order system are not given in this paper. 

3.2. Bar and cable models with fixed–fixed boundary conditions 

In the proposed CSD method for dynamic modeling of a tensegrity 
structure, a bar member is modeled as an elastic rod with only a lon
gitudinal displacement (see Fig. 1 (a)). An equation of motion of a one- 
dimensional bar member in longitudinal vibration can be easily derived 
by the extended Hamilton’s principle as 

ρb
∂2ub(ξ, t)

∂t2 − EbAb
∂2ub(ξ, t)

∂ξ2 = fb(ξ, t), ξ ∈ (0, 1), t > 0 (13)  

where ξ is the natural coordinate in the longitudinal direction; t is time; 
ub(ξ, t) is the displacement of a differential element dξ; ρb is the linear 
density of the bar member, given in mass per unit length; Eb and Ab are 
the Young’s modulus and cross-sectional area of bar members, assumed 
constant by assumption (A4); and fb(ξ, t) is an external load applied in 
the axial direction of the bar member. In dynamic modeling of a ten
segrity structure, fixed–fixed boundary conditions are assumed for 
structural members. Thus, boundary motions are selected to be the 
prescribed longitudinal displacements (e0(t) and e1(t)) at the two ends: 

e0(t) = ub(0, t), e1(t) = ub(1, t) (14)  

By the spatial discretization method, ub(ξ,t) is expressed as 

ub(ξ, t) = ũb(ξ, t)+ ûb(ξ, t) (15)  

where 

ũb (ξ, t) =
∑Nb

i=1
qb

i sin(iπξ), ûb(ξ, t) = (1 − ξ)e0(t) + ξe1(t) (16)  

in which Nb is a positive integer that controls the complexity and ac
curacy of the method, and qb

i is the generalized coordinate that describes 
the internal longitudinal displacement of the bar member. As seen from 
Eq. (16), the internal term ũb satisfies the homogeneous boundary 
conditions. The boundary-induced term ûb satisfies the boundary con
ditions in Eq. (14) ( ûb(0, t) = e0(t), ûb(1, t) = e1(t) ). Note that selec
tion of trial functions for the internal term, and interpolation for the 
boundary-induced term are not unique. Any selection is considered 
acceptable if homogeneous boundary conditions and boundary condi
tions in Eq. (14) are satisfied for the internal term and the boundary- 
induced term, respectively. It should also be emphasized that the 
boundary-induced term in Eq. (16) coincides with a shape function in 
elastic rod modeling in the finite element method (Kan et al., 2018a). So, 
the finite element method for dynamic modeling of bar members of a 
tensegrity structure can also be viewed as a simplified version of the CSD 
method without internal terms. 

Cable dynamics has been of great research interest for the past 
several decades (Sarkar and Manohar, 1996; Starossek, 1991, 1994). A 
cable member in the proposed CSD method is modeled as a taut string 
with displacements in both longitudinal and transverse directions. The 
governing equation of a cable member in the longitudinal direction is 
the same as that of a bar member given in Eq. (13). So, a dependent 
variable ul

c(ξ, t), where ξ ∈ (0,1), which represents the displacement in 
the longitudinal direction, can be expressed in the same form as that for 
a bar member: 

ul
c(ξ, t) = ũl

c(ξ, t) + ûl
c(ξ, t) (17)  

where 

ũ l
c(ξ, t) =

∑Nl

i=1
ql

isin(iπξ), ûl
c(ξ, t) = (1 − ξ)e0(t) + ξe1(t) (18)  

in which Nl is a positive integer that controls the complexity and accu
racy of the method, and ql

i is the generalized coordinate that describes 
the internal longitudinal displacements of the cable member. Thus, the 
boundary motions are selected to be the displacements at the two ends in 
the longitudinal direction: 

e0(t) = uc(0, t), e1(t) = uc(1, t) (19) 

The transverse displacement of a cable member is shown in Fig. 1(b). 
The equation of motion for a cable member in the transverse vibration 
can also be easily derived by the extended Hamilton’s principle: 

ρc
∂2ut

c(ξ, t)
∂t2 −

∂
∂ξ

(

T(ξ)
∂ut

c(ξ, t)
∂ξ

)

= gc(ξ, t), ξ ∈ (0, 1), t > 0 (20)  

where uc(ξ, t) is transverse displacement of a differential element dξ; ρc is 
the linear density of the cable member, given in mass per unit length; T 
(ξ) is the tension force in the cable member; and gc(ξ, t) is an external 
load applied in the transverse direction of the cable member. 

In dynamic modeling of a tensegrity structure, fixed–fixed boundary 
conditions of structural members are assumed. As will be shown in the 
next section, in the global Cartesian coordinate system, the transverse 
displacements at the two ends of a cable member are considered as a 
combination of its rigid-body motion and longitudinal displacement in 

Fig. 1. Displacement and loading of (a) an elastic rod in longitudinal motion and (b) a taut string in transverse motion.  
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the three-dimensional space. Therefore, boundary motions in the 
transverse direction are assumed in a homogeneous form 

ut
c(0, t) = 0, ut

c(1, t) = 0 (21)  

Thus, the boundary-induced term vanishes, which yields an expression 
of ut

c(ξ, t) with only the internal terms: 

ut
c(ξ, t) = ũt

c(ξ, t) =
∑Nt

j=1
qt

jsin(jπξ) (22)  

where Nt is a positive integer that controls the complexity and accuracy 
of the method, and qt

j is the generalized coordinate that describes the 
internal transverse displacement of the member. As seen from Eq. (22), 
the internal term satisfies the homogeneous boundary condition in Eq. 
(21). 

4. New Cartesian spatial discretization method for three- 
dimensional bar and cable members of a tensegrity structure 

The CSD method for nonlinear dynamic modeling and vibration 
analysis of tensegrity structures is proposed. The development of dy
namic models of three-dimensional bar and cable members of a ten
segrity structure is given in this section. 

4.1. Nonlinear dynamic model of a bar member 

Consider a bar member that connects two nodes of a tensegrity 
structure in a three-dimensional global Cartesian coordinate system (see 
Fig. 2(a)). Global Cartesian coordinates of the two nodes are given as (x0, 
y0, z0) and (x1, y1, z1), respectively. The longitudinal direction of the bar 
member can be expressed by the position vector R→b: 

R→b =

⎡

⎣
x1 − x0
y1 − y0
z1 − z0

⎤

⎦ (23) 

An independent natural spatial variable ξ ∈ [0,1] is used to describe 
an internal position of the bar member. Note that ub was defined by the 
spatial discretization method in Section 3 as a displacement, not a po
sition, of a bar member, due to the assumption that the bar member is at 
an equilibrium state with a zero displacement. However, according to 
the form finding process introduced in Section 2, an initial equilibrium 
configuration of a tensegrity structure is determined by assignment of a 
set of nodal coordinates. Thus, it is convenient to define ub in Eq. (15) as 
a position of the bar member for nonlinear dynamic modeling of a 
tensegrity structure in the three-dimensional space. The internal terms 
and boundary-induced terms given in Eq. (16) are represented as vector 
forms in the three-dimensional global Cartesian coordinate system: 

ũb (ξ, t) =
∑Nb

i=1
qb

i sin(iπξ) r→b, ûb(ξ, t) = (1 − ξ)

⎡

⎢
⎣

x0

y0

z0

⎤

⎥
⎦+ ξ

⎡

⎢
⎣

x1

y1

z1

⎤

⎥
⎦ (24)  

where qb
i is the generalized coordinate that describe internal displace

ments of the bar member in the longitudinal direction; qb
i = 0 means that 

there is no internal displacement in the longitudinal direction. If the two 
boundary nodes are fixed, the bar member is at equilibrium when the 
generalized coordinate qb

i is zero. The unit vector r→b = R→b/Lb repre
sents the longitudinal direction of the bar member, where Lb is the 
deformed length of the bar member subject to a level of self-stress (see 
assumption (A2)): 

Lb =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x1 − x0)
2
+ (y1 − y0)

2
+ (z1 − z0)

2
√

(25)  

Substituting Eq. (24) into Eq. (15) yields an expression of ub(ξ,t) in the 
global Cartesian coordinate system: 

ub(ξ, t) = ũb(ξ, t)+ ûb(ξ, t) =
∑Nb

i=1

[

qb
i sin(iπξ) r→b

]

+(1 − ξ)

⎡

⎣
x0
y0
z0

⎤

⎦+ ξ

⎡

⎣
x1
y1
z1

⎤

⎦

(26)  

4.1.1. Kinetic energy of a bar member 
The velocity u̇b(ξ, t) of a differential element at the location ξ on the 

bar member can be obtained by taking the time derivative of Eq. (26): 

u̇b(ξ, t) = ˙̃ub(ξ, t)+ ˙̂ub(ξ, t) (27)  

The time derivatives of the internal term ˙̃ub(ξ, t) and boundary-induced 
term ˙̂ub(ξ, t) are given as 

˙̃ub(ξ, t) =
∑Nb

i=1

⎡

⎣q̇b
i sin(iπξ) r→b +

(
qb

i

Lb

)

sin(iπξ) ˙R→
˙

b −

(
qb

i

Lb

)

sin(iπξ)
L̇b

Lb
R→b

⎤

⎦

(28)  

˙̂ub(ξ, t) = (1 − ξ)

⎡

⎢
⎢
⎣

ẋ0
ẏ0
ż0

⎤

⎥
⎥
⎦+ ξ

⎡

⎢
⎢
⎣

ẋ1
ẏ1
ż1

⎤

⎥
⎥
⎦ (29)  

respectively. Since the internal displacement described by the general
ized coordinate qb

i is usually significantly small than the deformed 
length of the bar member (qb

i ≪Lb), it can be assumed that 

qb
i

Lb
≈ 0 (30)  

By substituting Eq. (30) into Eq. (27), the second and third terms in Eq. 
(28) vanish. The internal term ˙̃ub(ξ, t) of the velocity becomes 

˙̃ub(ξ, t) =
∑Nb

i=1
q̇b

i sin(iπξ) r→b (31)  

Substituting Eqs. (31) and (29) into Eq. (27) yields 

Fig. 2. Motion of a bar member: (a) positions in the global Cartesian coordinate system, and (b) the kinetic diagram of a differential element.  
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u̇b(ξ, t) =
∑Nb

i=1
q̇b

i sin(iπξ) r→b +(1 − ξ)

⎡

⎢
⎢
⎣

ẋ0
ẏ0
ż0

⎤

⎥
⎥
⎦+ ξ

⎡

⎢
⎢
⎣

ẋ1
ẏ1
ż1

⎤

⎥
⎥
⎦ (32)  

Since assumption (A5) states that there is a uniformly distributed mass 
along the axial direction of the bar member, the mass of the differential 
element dξ is mbdξ, where mb is the mass of the whole bar member. The 
kinetic energy of the differential element dξ on the bar member is given 
as 

dTb =
1
2
mb

⃦
⃦
⃦
⃦u̇b

⃦
⃦
⃦
⃦

2

dξ (33)  

Thus, the kinetic energy of the whole bar member can be obtained by 
integrating Eq. (33) with respect to ξ in the domain [0,1]: 

Tb =

∫ ξ=1

ξ=0
dTb (34)  

The explicit form of the kinetic energy of the bar member can be ob
tained by substituting Eqs. (32) and (33) into Eq. (34): 

Tb =
1
2

mb(Tx + Ty + Tz) (35)  

where   

4.1.2. Potential energy of a bar member 
A differential element of a bar member that starts at the location ξ 

and ends at the location ξ + dξ is shown in Fig. 2(b). The global Cartesian 
coordinates of the starting and ending points of the differential element 

are given as (ux
b , u

y
b, u

z
b) and (ux

b +
∂ux

b
∂ξ dξ, uy

b +
∂uy

b
∂ξ dξ, uz

b +
∂uz

b
∂ξ dξ), respec

tively, where ux
b, uy

b and uz
b are the x-, y- and z-coordinates of ub(ξ, t)

obtained from Eq. (26): 
⎡

⎢
⎢
⎣

ux
b

uy
b

uz
b

⎤

⎥
⎥
⎦ =

∑Nb

i=1

[

qb
i sin(iπξ) r→b

]

+(1 − ξ)

⎡

⎣
x0
y0
z0

⎤

⎦+ ξ

⎡

⎣
x1
y1
z1

⎤

⎦ (37)  

One can obtain ∂ux
b

∂ξ , ∂uy
b

∂ξ and ∂uz
b

∂ξ as 

∂ux
b

∂ξ
= (x1 − x0)

[

1 +
1
Lb

∑Nb

i=1
qb

i iπcos(iπξ)
]

∂uy
b

∂ξ
= (y1 − y0)

[

1 +
1
Lb

∑Nb

i=1
qb

i iπcos(iπξ)
]

∂uz
b

∂ξ
= (z1 − z0)

[

1 +
1
Lb

∑Nb

i=1
qb

i iπcos(iπξ)
]

(38) 

The deformed length dLb of the differential element of the bar 
member can be calculated by the corresponding geometry information 
shown in Fig. 2(b): 

Fig. 3. Motion of a cable member: (a) positions in the global Cartesian coordinate system; (b) the kinetic diagram of a differential element in the longitudinal 
direction; and (c) the kinetic diagram of a differential element in the transverses directions. 

Tx = ẋ0ẋ1 +
1
3
(ẋ0 − ẋ1)

2
+
∑Nb

i=1

{
1
2

(
x1 − x0

Lb

)2(
q̇b

i

)2
+

2q̇b
i (x0 − x1)[iπẋ1cos(iπ) − iπẋ0]

i2π2Lb

}

Ty = ẏ0ẏ1 +
1
3
(ẏ0 − ẏ1)

2
+
∑Nb

i=1

{
1
2

(
y1 − y0

Lb

)2(
q̇b

i

)2
+

2q̇b
i (y0 − y1)[iπẏ1cos(iπ) − iπẏ0]

i2π2Lb

}

Tz = ż0 ż1 +
1
3
(ż0 − ż1)

2
+
∑Nb

i=1

{
1
2

(
z1 − z0

Lb

)2(
q̇b

i

)2
+

2q̇b
i (z0 − z1)[iπż1cos(iπ) − iπż0]

i2π2Lb

}

(36)   
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dLb =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

∂ux
b

∂ξ

)2

+

(
∂uy

b

∂ξ

)2

+

(
∂uz

b

∂ξ

)2
√

dξ (39)  

Substituting Eqs. (38) and (25) into Eq. (39) yields an explicit expression 
of dLb: 

dLb =

[

Lb +
∑Nb

i=1
qb

i iπcos(iπξ)

]

dξ (40)  

Let the undeformed length of the bar member be L0
b , and the undeformed 

length of the differential element be 

dL0
b = L0

bdξ (41)  

Then, the strain εb of the differential element of the bar member at the 
location ξ is calculated as 

εb =
dLb − dL0

b

dL0
b

(42)  

Based on the linear elasticity assumption, the average internal axial 
force applied to the differential element from the undeformed length dL0

b 
to the deformed length dLb is Pb/2, where Pb = EbAbεb is the tension 
force. 

The work dwb
c done by the conservative internal force on the differ

ential element is given as 

dwb
c =

Pb

2
(dLb − dL0

b) (43)  

The potential energy Vb of the bar member is then obtained by inte
grating dwb

c with respect to ξ in the domain [0,1]: 

Vb =

∫ ξ=1

ξ=0
dwb

c (44)  

The explicit form of Vb can be obtained by substituting Eqs. (40)-(43) 
into Eq. (44): 

Vb =
EbAb(Lb − L0

b)
2

2L0
b

+
EbAbπ2

4L0
b

∑Nb

i=1
i2(qb

i

)2 (45) 

Finally, let the Lagrangian be LL
b = Tb −Vb; the nonlinear equations of 

motion of a bar member of a tensegrity structure can be obtained by 
Lagrange’s equations 

d
dt

⎛

⎝∂LL
b

∂q̇b

⎞

⎠−
∂LL

b

∂qb
= fnc (46)  

where qb are generalized coordinates defined as 

qb =
[

x0 y0 z0 x1 y1 z1 qb
1 ⋯ qb

Nb

]
(47)  

and fnc is the generalized force vector associated with nonconservative 
loads obtained by the virtual work expression. 

4.2. Nonlinear dynamic model of a cable member 

Consider a cable member that connects two nodes of a tensegrity 
structure in a three-dimensional global Cartesian coordinate system (see 
Fig. 3(a)). Global Cartesian coordinates of the two nodes are (x0, y0, z0) 
and (x1, y1, z1), respectively. The longitudinal direction of the cable 
member can be expressed by the position vector R→c: 

R→c =

⎡

⎣
x1 − x0
y1 − y0
z1 − z0

⎤

⎦ (48) 

An independent natural spatial variable ξ ∈ [0,1] is used to describe 
an internal position of the cable member. Similar to modeling of bar 
members in Section 4.1, it is convenient to define uc as a position, not a 
displacement, of the cable member for nonlinear dynamic modeling of a 
tensegrity structure in the three-dimensional space. According to Eqs. 
(17) and (22), the global coordinate uc of a differential element of the 
cable member can be expressed as a summation of internal terms and the 
boundary-induced term: 

uc(ξ, t) = ũl
c(ξ, t) + ũt

c(ξ, t)+ ûc(ξ, t) (49) 

Since the cable member is modeled as a taut string with both lon
gitudinal and transverse displacements, the internal term is composed of 
a corresponding longitudinal term ũl

c and a corresponding transverse 
term ũt

c: 

ũ l
c(ξ, t) =

∑Nl

i=1
ql

isin(iπξ) r→c, ũ
t

c
(ξ, t) = ũt

w1
w→1 + ũt

w2
w→2 (50)  

where 

ũt
w1

=
∑Nt

j=1
qt1

j sin(jπξ)

ũt
w2

=
∑Nt

j=1
qt2

j sin(jπξ)
(51)  

The generalized coordinates ql
j, qt1

j and qt2
j are used to describe internal 

displacements of the cable member in the longitudinal and transverse 
directions, respectively; ql

j = 0 means that there is no internal 
displacement in the longitudinal direction, (qt1

j , q
t2
j ) = 0 means that 

there are no internal displacements in the two transverse directions. 
Note that the transverse displacements at the two boundary nodes are 
zero at all time, since the nodal displacement is considered as a com
bination of the member rigid-body motion and longitudinal displace
ment in the three-dimensional space by the CSD method. If the two 
boundary nodes are fixed, the cable member is at equilibrium when the 
generalized coordinates ql

j, qt1
j and qt2

j are zero. The unit vectors r→c, w→1 

and w→2 in Eqs. (50) and (51) are used to represent the longitudinal di
rection and two transverse directions of the cable member, respectively: 

r→c =
R→c

Lc
, w→1 =

W→1

L1
, w→2 =

W→2

L2
(52)  

where the unit vectors w→1 and w→2 are perpendicular to the longitudinal 
direction r→c of the cable member, and are perpendicular to each other; 
Lc is the magnitude of the vector R→c, representing the length of the cable 
member subject to the longitudinal displacements: 

Lc =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x1 − x0)
2
+ (y1 − y0)

2
+ (z1 − z0)

2
√

(53)  

L1 and L2 are magnitudes of the vectors W→1 and W→2, respectively; W→1 can 
be defined as one of the three possible forms: 

W→1 =

⎡

⎢
⎢
⎣

y0 − y1

x1 − x0

0

⎤

⎥
⎥
⎦, W→1 =

⎡

⎢
⎢
⎣

z0 − z1

0

x1 − x0

⎤

⎥
⎥
⎦, W→1 =

⎡

⎢
⎢
⎣

0

z0 − z1

y1 − y0

⎤

⎥
⎥
⎦ (54)  

and W→2 is obtained by 
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W→2 = R→c × W→1 (55)  

The boundary-induced term in Eq. (16) is represented in the three- 
dimensional global coordinate system as 

ûc(ξ, t) = (1 − ξ)

⎡

⎣
x0
y0
z0

⎤

⎦+ ξ

⎡

⎣
x1
y1
z1

⎤

⎦ (56)  

According to Eq. (56), ξ = 0 represents the location of the node (x0, y0, 
z0), and ξ = 1 represents the location of the node (x1, y1, z1). Then, an 
expansion form of the global Cartesian coordinate uc(ξ, t) of the differ
ential element of the cable member at the position ξ is obtained by 
substituting Eqs. (50) and (56) into Eq. (49): 

uc(ξ, t) =
[

ux
l uy

l uz
l
]T

+
[

ux
t uy

t uz
t

]T (57)  

where 

[
ux

l uy
l uz

l
]T

= (1 − ξ)[ x0 y0 z0 ]
T
+ ξ[ x1 y1 z1 ]

T
+
∑Nl

i=1
ql

isin(iπξ) r→c

[
ux

t uy
t uz

t

]T
=
∑Nt

j=1

[
qt1

j sin(jπξ)w→1 + qt2
j sin(jπξ)w→2

]

(58)  

4.2.1. Kinetic energy of a cable member 
The velocity u̇c(ξ, t) of a differential element at ξ on the cable 

member can be obtained by taking the time derivative of Eq. (49): 

u̇c(ξ, t) = ˙̃u
l
c(ξ, t)+ ˙̃u

t
c(ξ, t)+ ˙̂uc(ξ, t) (59)  

The time derivatives of the longitudinal and transverse internal terms 
˙̃u
l
c(ξ, t) and ˙̃u

t
c(ξ, t), and the boundary-induced term ˙̂ub(ξ, t) are given by 

˙̃u
l
c(ξ, t) =

∑Nl

i=1

⎡

⎣q̇l
isin(iπξ) r→c +

(
ql

i

Lc

)

sin(iπξ) ˙R→
˙

c −

(
ql

i

Lc

)

sin(iπξ)
L̇c

Lc
R→c

⎤

⎦

(60)  

˙̃u
t
c(ξ, t) =

∑Nt

j=1

[

q̇t1
j sin(jπξ)w→1 +

qt1
j

L1
sin(jπξ) ˙W→

˙

1 −
qt1

j

L1
sin(jπξ)

L̇1

L1
W→1

+ q̇t2
j sin(jπξ)w→2 +

qt2
j

L2
sin(jπξ) ˙W→

˙

2 −
qt2

j

L2
sin(jπξ)

L̇2

L2
W→2

]

(61)  

˙̂uc(ξ, t) = (1 − ξ)

⎡

⎢
⎢
⎣

ẋ0
ẏ0
ż0

⎤

⎥
⎥
⎦+ ξ

⎡

⎢
⎢
⎣

ẋ1
ẏ1
ż1

⎤

⎥
⎥
⎦ (62)  

respectively. Since the internal displacements described by the gener
alized coordinates ql

j, qt1
j and qt2

j are usually significantly smaller than the 
deformed length of the cable member, it can be assumed that 

ql
j

Lc
≈ 0,

qt1
j

L1
≈ 0,

qt2
j

L2
≈ 0 (63)  

By substituting Eq. (63) into Eqs. (60) and (61), the terms associated 

with Eq. (63) vanish. The internal terms ˙̃u
l
c(ξ, t) and ˙̃u

t
c(ξ, t) become 

˙̃u
l
c(ξ, t) =

∑Nl

i=1

[

q̇l
isin(iπξ) r→c

]

(64)  

˙̃u
t
c(ξ, t) =

∑Nt

j=1

[

q̇t1
j sin(jπξ)w→1 + q̇t2

j sin(jπξ)w→2

]

(65)  

Substituting Eq. (62) and Eqs. (64) and (65) into Eq. (59) yields an 
expansion of the velocity of the differential element of the cable member 
in the global Cartesian coordinate system: 

u̇c(ξ, t) =
∑Nl

i=1

[

q̇l
isin(iπξ) r→c

]

+
∑Nt

j=1

[

q̇t1
j sin(jπξ)w→1

+ q̇t2
j sin(jπξ)w→2

]

+(1 − ξ)

⎡

⎢
⎢
⎣

ẋ0
ẏ0
ż0

⎤

⎥
⎥
⎦+ ξ

⎡

⎢
⎢
⎣

ẋ1
ẏ1
ż1

⎤

⎥
⎥
⎦ (66) 

Since assumption (A5) states that there is a uniformly distributed 
mass along the axial direction of the cable member, the mass of the 
differential element dξ is mcdξ, where mc is the mass of the whole cable 
member. The kinetic energy of the differential element dξ on the cable 
member is given as 

dTc =
1
2
mc

⃦
⃦
⃦u̇c

⃦
⃦
⃦

2
dξ (67)  

Thus, the kinetic energy of the entire cable member can be obtained by 
integrating Eq. (67) with respect to ξ in the domain [0,1]: 

Tc =

∫ ξ=1

ξ=0
dTc (68)  

The explicit form of the kinetic energy of the cable member can be ob
tained by substituting Eqs. (66) and (67) into Eq. (68): 

Tc =
1
2
mc(Tx + Ty + Tz) (69)  

where 

Tx = ẋ0ẋ1 +
1
3
(ẋ0 − ẋ1)

2
+ Tl

x + Tt
x + Tl,t

x

Ty = ẏ0ẏ1 +
1
3
(ẏ0 − ẏ1)

2
+ Tl

y + Tt
y + Tl,t

y

Tz = ż0 ż1 +
1
3
(ż0 − ż1)

2
+ Tl

z + Tt
z + Tl,t

z

(70)  

Expressions of the terms Tl
x, Tt

x, Tl,t
x , Tl

y, Tt
y, Tl,t

y , Tl
z, Tt

z and Tl,t
z are given as 

Tl
x =

x1 − x0

2Lc

∑Nl

i=1

[
x1 − x0

Lc

(
q̇l

i

)2
+ 4

ẋ0 − ẋ1cos(iπ)
iπ q̇l

i

]

Tt
x =

1
2
∑Nt

j=1

[(
q̇t1

j wx
1 + q̇t2

j wx
2

)2
+ 4
(

q̇t1
j wx

1 + q̇t2
j wx

2

) ẋ0 − ẋ1cos(jπ)
jπ

]

Tl,t
x =

x1 − x0

Lc

∑Nl

i=1

∑Nt

j=1
Tx

i,j

with Tx
i,j =

⎧
⎪⎨

⎪⎩

q̇l
i

(
q̇t1

j wx
1 + q̇t2

j wx
2

)
, if i = j

0, if i ∕= j

(71a)  

Tl
y =

y1 − y0

2Lc

∑Nl

i=1

[
y1 − y0

Lc

(
q̇l

i

)2
+ 4

ẏ0 − ẏ1cos(iπ)
iπ q̇l

i

]

Tt
y =

1
2
∑Nt

j=1

[(
q̇t1

j wy
1 + q̇t2

j wy
2

)2
+ 4
(

q̇t1
j wy

1 + q̇t2
j wy

2

) ẏ0 − ẏ1cos(jπ)
jπ

]

Tl,t
y =

y1 − y0

Lc

∑Nl

i=1

∑Nt

j=1
Ty

i,j

with Ty
i,j =

⎧
⎪⎨

⎪⎩

q̇l
i

(
q̇t1

j wy
1 + q̇t2

j wy
2

)
, if i = j

0, if i ∕= j

(71b) 
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Tl
z =

z1 − z0

2Lc

∑Nl

i=1

[
z1 − z0

Lc

(
q̇l

i

)2
+ 4

ż0 − ż1cos(iπ)
iπ q̇l

i

]

Tt
z =

1
2
∑Nt

j=1

[(
q̇t1

j wz
1 + q̇t2

j wz
2

)2
+ 4
(

q̇t1
j wz

1 + q̇t2
j wz

2

) ż0 − ż1cos(jπ)
jπ

]

Tl,t
z =

z1 − z0

Lc

∑Nl

i=1

∑Nt

j=1
Tz

i,j

with Tz
i,j =

⎧
⎪⎨

⎪⎩

q̇l
i

(
q̇t1

j wz
1 + q̇t2

j wz
2

)
, if i = j

0, if i ∕= j

(71c)  

where wx
1, wy

1, wz
1, wx

2, wy
2 and wz

2 are the x-, y- and z-components of the 
vectors w→1 and w→2. 

4.2.2. Potential energy of a cable member 
The differential element of a cable member that starts at the position 

ξ and ends at the position ξ + dξ is shown in Fig. 3(b) and 3(c). The 
displacement of the differential element is composed of longitudinal and 
transverse ones. The derivation of the potential energy of a cable 
member associated with the longitudinal displacement is the same as 
that of a bar member. By following the procedure in Section 4.1.2, the 
longitudinal potential energy Vl

c of a cable member is given as 

Vl
c =

EcAc(Lc − L0
c)

2

2L0
c

+
EcAcπ2

4L0
c

∑Nl

i=1
i2(ql

i

)2 (72) 

After the differential element elongates to the length dLc due to a 
longitudinal displacement (see Fig. 3(b)), a transverse displacement is 
imposed to the same element (see Fig. 3(c)). Under the transverse 
displacement, the differential element elongates to the length dS. Ac
cording to geometry information in Fig. 3(c), dSc, dLc and dWc have the 
following relationship as they form a right triangle: 

dSc =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(dLc)
2
+ (dWc)

2
√

(73)  

where the transverse displacement dWc is expressed as 

dWc =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

∂ũt
w1

∂ξ

)2

+

(
∂ũt

w2

∂ξ

)2
√
√
√
√ dξ (74)  

and dLc is obtained by the procedure given in Eqs. (37)-(40): 

dLc =

[

Lc +
∑Nl

i=1
ql

iiπcos(iπξ)

]

dξ (75)  

Since the transverse displacement of the cable member usually causes 
little additional change in the member length, it is assumed that the 
cable tension force Pc can only be changed by longitudinal displace
ments. In other words, the cable tension remains the same after the 
transverse displacement is imposed to the differential element of the 
cable member. Thus, the work done by the tension force on the differ
ential element of the cable member associated with the longitudinal and 
transverse displacements are independent of each other. The work done 
by the tension force associated with the transverse displacement is 

dwt
c = Pc(dSc − dLc) (76)  

where Pc = EcAcεc is the cable tension force. The strain εc of the differ
ential element of the cable member at the location ξ is calculated as 

εc =
dLc − dL0

c

dL0
c

(77)  

The undeformed length dL0
c of the differential element is 

dL0
c = L0

cdξ (78)  

where L0
c is the undeformed length of the cable member. 

By substituting Eq. (73) into Eq. (76), dwt
c can be rewritten as 

dwt
c = PcdLc

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +

(
dWc

dLc

)2
√

− 1

⎞

⎠ (79)  

Since the transverse displacement of the differential element of the cable 
member is significantly smaller than its deformed length: 

dWc≪dLc (80)  

Thus, one has 

dwt
c ≈

1
2
PcdLc

(
dWc

dLc

)2

=
Pc

2dLc
(dWc)

2 (81)  

By condition (63) and Eq. (75), one has 

1
dLc

≈
1
Lc

dξ (82)  

Substituting Eqs. (74) and (82) into Eq. (81) yields the expanded form of 
dwt

c: 

dwt
c =

EcAc

2LcL0
c

[

Lc − L0
c +

∑Nl

i=1
ql

iiπcos(iπξ)

][(
∑Nt

j=1
qt1

j jπcos(jπξ)

)2

+

(
∑Nt

j=1
qt2

j jπcos(jπξ)

)2 ]

dξ (83)  

The potential energy Vt
c of the cable member associated with the 

transverse displacement is then obtained by integrating dwt
c with respect 

to ξ in the domain [0,1]: 

Vt
c =

∫ ξ=1

ξ=0
dwt

c (84)  

The explicit form of Vt
c can be obtained by substituting Eq. (83) into Eq. 

(84): 

Vt
c = Vt1

c +Vt2
c (85)  

where 

Vt1
c =

EcAcπ2

4L0
cLc

(
Lc − L0

c

)∑Nt

i=1
i2
[
(qt1

i )
2
+ (qt2

i )
2
]

Vt,2
c =

∑Nl

i=1

∑Nt

j=1

∑Nt

k=1
Vi,j,k

(86)  

in which Vi,j,k is given as 

Vi,j,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EcAc

2LcL0
c

j2ql
iπ3

i+2j

[(
qt1

j
)2
+
(
qt2

j
)2
][

i2cos2(jπ)−2j2], if (i= 2j)∩(j= k)

vi,j,k

(i+ j+ k)(i+ j− k)(i− j+ k)
, if i− j−k= 0

vi,j,k

(i+ j+ k)(i+ j− k)(i− j− k)
, if i− j+k= 0

vi,j,k

(i+ j+ k)(i− j+ k)(i− j− k)
, if i+ j−k= 0

0, else

(87)  

with 
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vi,j,k = −
EcAc(−1)i

2LcL0
c

i2jk(j2 + k2 − i2)π3ql
i(q

t1
j qt1

k + qt2
j qt2

k )cos(jπ)cos(kπ)

(88)  

The total potential energy of the cable member is obtained by summing 
terms associated with the longitudinal and transverse displacements: 

Vc = Vl
c +Vt

c (89) 

Finally, let the Lagrangian be LL
c = Tc −Vc; the nonlinear equation of 

motion of a cable member of a tensegrity structure can be obtained by 
Lagrange’s equations 

d
dt

⎛

⎝∂LL
c

∂q̇c

⎞

⎠−
∂LL

c

∂qc
= fnc (90)  

where qc are generalized coordinates of the cable member, defined as 

qc =
[

x0 y0 z0 x1 y1 z1 ql
1 ⋯ ql

Nl
qt1

1 qt2
1 ⋯ qt1

Nt
qt2

Nt

]

(91)  

4.3. Linearized equations of motion for vibration analysis 

The nonlinear equations of motion of bar and cable members can be 
linearized at an equilibrium configuration of a tensegrity structure for its 
vibration analysis. Denote global nodal coordinates of the two ends of a 
bar and cable member at the equilibrium state as (xe

0, ye
0, ze

0) and (xe
1,ye

1,

ze
1), respectively. Values of other generalized coordinates qb, ql, qt1 and 

qt2 associated with internal longitudinal and transverse displacements 
are zero at the equilibrium state. Linearized equations of motion of a bar 
and cable member are given as 

Mbq̈b +Kbqb = fnc (92)  

Mcq̈c +Kcqc = fnc (93)  

respectively, where Mb and Mc are the linear mass matrices, and Kb and 
Kc are the linear stiffness matrices of the bar and cable members, 
respectively. A dynamic model of the whole tensegrity structure can be 
assembled in a straight-forward way by using common nodal co
ordinates of structural members in Eqs. (92) and (93), without a local-to- 
global coordinate transformation. The linearized dynamic model of the 
whole tensegrity structure is useful for various analysis and design tasks, 
such as modal analysis, control system design and structural health 
monitoring. 

The highlight of the proposed CSD method is that internal dis
placements of structural members are successfully incorporated in the 
process of nonlinear dynamic modeling of tensegrity structures. The use 
of generalized coordinates that describe internal displacements of 
structural members grants the proposed method an ability to achieve 
accurate dynamic responses of tensegrity structures, especially for vi
bration analysis in the high-frequency domain. The proposed method is 
applicable to both simple and complex tensegrity structures, and 
computationally efficient as it converges in a super-linear rate by using 
only a small number of internal terms of member displacements. 
Meanwhile, the use of the global Cartesian coordinate system in the 
proposed method provides the following advantages: first, a dynamic 
system of the whole tensegrity structure can be assembled in a fast and 
straight-forward manner; second, rigid-body motions of structural 
members are automatically incorporated in the process of dynamic 
modeling; and third, large-scale and irregular tensegrity structures are 
effectively handled. 

5. Numerical examples 

For demonstration of the CSD method, three examples of vibration 
analysis of tensegrity structures are studied in this section. In the first 
example, a planar Snelson’s X tensegrity structure is investigated for 
illustrating the use of the CSD method. The second example is a three- 
dimensional tensegrity tower. The aim of this example is to verify the 
accuracy and efficiency of the CSD method on a regular tensegrity 
structure in the three-dimensional space. The third example is an 
irregular tensegrity structure, which is used to demonstrate the 
remarkable accuracy and efficiency of the CSD method in handling 
extremely complicated and irregular tensegrity structures. In the three 
examples, the CSD method is compared with the Lagrangian method 
based on generalized coordinates proposed by Sultan and Skelton 
(2003), the commercial FEA software ANSYS, and the FEA method 
proposed by Kan et al. (2018a). Approaches to dynamic modeling of 
tensegrity structures similar to the Lagrangian method based on gener
alized coordinates can also be found in works of Oppenheim and Wil
liams (2001a), Oppenheim and Williams (2001b) and Kan et al. (2018b), 
where bar members are treated as rigid bodies and cable members are 
treated as massless springs; those similar to the FEA methods can also be 
found in works of Ali and Smith (2010), Faroughi and Lee (2015) and Ma 
et al. (2022), which assumed uniform material particle distribution 
along structural members. Note that other dynamic modeling methods, 
for example, the dynamic stiffness method (Fergusson and Pilkey, 
1993), can also potentially predict accurate dynamic responses of ten
segrity structures. Therefore, in future research, it is worth investigating 
the performance of these dynamic modeling methods, while comparing 
them with the CSD method proposed in this paper. 

5.1. A planar Snelson’s X tensegrity structure 

A planar Snelson’s X tensegrity structure with four nodes, two bars 
and four cables is investigated in the first numerical example. The to
pology and dimensions of the structure are shown in Fig. 4. Materials of 
bar and cable members are assumed to be carbon fiber and steel, 
respectively, with their parameters given in Table 1. The structure is 
self-stressed, with member internal forces being 141.42 N in 

Fig. 4. A planar Snelson’s X tensegrity structure.  

Table 1 
Dimensional and material parameters of cable and bar members of the 
Snelson’s X tensegrity structure.  

Parameter Value 

Young’s modulus of bar member 183 GPa 
Young’s modulus of cable member 200 GPa 
Radius of bar member 5 mm 
Radius of cable member 1 mm 
Material density of bar member 1750 kg/m3 

Material density of cable member 7850 kg/m3  
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compression for the two bar members, and 100 N in tension for the four 
cable members. To eliminate rigid-body motions of the structure, dis
placements at node one in the x- and the y-directions, and the 
displacement at node two in the y-direction are restricted to zero. 

5.1.1. Modal analysis 
Natural frequencies and mode shapes of the dynamic model of the 

planar Snelson’s X tensegrity structure are calculated by solving the 
eigenvalue problem of 

M2DQ̈2D +K2DQ2D = 0 (94)  

where M2D and K2D are mass and stiffness matrices of the whole struc
ture, and Q2D is the generalized coordinate vector of the whole structure. 
These two matrices are obtained through an assembly of mass and 
stiffness matrices of each member of the structure. For comparison, a 
dynamic model of the structure is also developed by the Lagrangian 
method based on the generalized coordinates x2, θ1 and θ2, where x2 is 
the horizontal position of node two, and θ1 and θ2 are angles of the two 
bar members with respect to the horizontal direction. The equations of 

Fig. 5. The three mode shapes of the planar Snelson’s X tensegrity structure obtained by the Lagrangian method.  

Fig. 6. The fifth throug ninth mode shapes of the planar Snelson’s X tensegrity structure obtained by the CSD method.  

Fig. 7. Mode shapes of the planar Snelson’s X tensegrity structure associated with only transverse displacements of cable members.  

Table 2 
Natural frequencies in Hz of the Snelson’s X tensegrity structure obtained by the 
Lagrangian method and the CSD method for Nl = 0 and Nt = 0.   

f1 (f5) f2 (f6) f3 (f7) f4 (f8) f5 (f9) 

Lagrangian method  294.15  495.69  609.96 NA NA 
CSD method Nb = 0  259.36  450.22  538.73 1840.94 2675.81 
CSD method Nb = 1  259.28  448.75  538.72 1722.21 2626.21 
CSD method Nb = 2  259.28  448.75  538.72 1717.51 2581.14 
CSD method Nb = 3  259.28  448.73  538.72 1716.63 2580.98  

Table 3 
Natural frequencies in Hz of the Snelson’s X tensegrity structure obtained by the 
Lagrangian method and the CSD method for Nb = 0 and Nt = 0.   

f1 (f5) f2 (f6) f3 (f7) f4 (f8) f5 (f9) 

Lagrangian method  294.15  495.69  609.96 NA NA 
CSD method Nl = 0  259.36  450.22  538.73 1840.94 2675.81 
CSD method Nl = 1  259.25  449.73  538.33 1789.57 2294.10 
CSD method Nl = 2  259.25  449.70  538.26 1787.75 2291.09 
CSD method Nl = 3  259.25  449.69  538.25 1787.46 2290.83 
CSD method Nl = 4  259.25  449.69  538.25 1787.36 2290.66  

Table 4 
Natural frequencies in Hz of the Snelson’s X tensegrity structure obtained by the 
Lagrangian method and the CSD method for Nb = 0 and Nl = 0.   

f1 (f5) f2 (f6) f3 (f7) f4 (f8) f5 (f9) 

Lagrangian method  294.15  495.69  609.96 NA NA 
CSD method Nt = 0  259.36  450.22  538.73 1840.94 2675.81 
CSD method Nt = 1  267.41  455.16  566.35 1891.75 2821.01 
CSD method Nt = 2  269.05  461.70  568.36 1910.06 2854.01 
CSD method Nt = 3  270.12  462.23  571.98 1916.04 2873.11 
CSD method Nt = 4  270.63  464.03  572.52 1920.75 2881.80  
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motion based on the generalized coordinates are derived in Appendix A. 
The dynamic model developed by the Lagrangian method has three 

degrees of freedom, and one can obtain three natural frequencies. All the 
three natural frequencies are investigated in this example. The three 
corresponding mode shapes are shown in Fig. 5. For a direct comparison, 
the fifth through ninth mode shapes associated with nodal modtions 
obtained by the CSD method for Nb = 0, Nl = 0 and Nt = 1 are presented 
in Fig. 6. As seen from Figs. 5 and 6, nodal motions of the three mode 
shapes obtained by the two methods are in good agreement. Different 
from the Lagrangian method, the CSD method can also reveal the mode 
shapes associated with bar member elongations (see the fourth and fifth 
mode shapes in Fig. 6). In addition, the CSD method can also predict 
transverse motions of cable members within these mode shapes. The 
first four mode shapes of the dynamic model developed by the CSD 
method for Nb = 0, Nl = 0 and Nt = 1 are presented in Fig. 7, which 
shows that the CSD method can also reveal mode shapes associated with 
transverse displacements of cable members. 

The five natural frequencies of the planar Snelson’s X tensegrity 
structure obtained by the two methods are given in Tables 2-4. Note that 
the three natural frequencies (f1-f3) of the dynamic model developed by 
the Lagrangian method are compared with the natural frequencies of 
those developed by the CSD method with similar nodal motions of their 
mode shapes. As observed from the results, accuracy of the natural 
frequencies can be significantly improved by use of the internal 
displacement terms in the CSD method. According to Table 2, 
improvement of 13.45%, 10.46% and 13.22% in accuracies of f1 (f5), f2 
(f6) and f3 (f7) are achieved by using three terms of internal displace
ments of bar members (Nb = 3). According to Table 3, improvement of 
13.46%, 10.23% and 13.32% in accuracies of f1 (f5), f2 (f6) and f3 (f7) are 
achieved by using four terms of internal displacements of cable members 
in longitudinal directions (Nl = 4). According to Table 4, improvement 
of 8.89%, 6.82% and 6.54% in accuracies of f1 (f5), f2 (f6) and f3 (f7) are 
achieved by using only four terms of internal displacements of cable 

members in transverse directions (Nt = 4). 
The first, fifth, ninth, 13th and 17th natural frequencies, whose mode 

shapes are associated with only transverse displacements of cable 
members, of the dynamic model developed by the CSD method are given 
in Table 5. As seen from the table, the first several natural frequencies 
associated with transverse displacements of cable members are signifi
cantly lower than those associated with nodal motions. This is due to the 
low stiffness of cable members in their transverse directions. 

The history of convergence for the last natural frequency f9 is shown 
in Fig. 8. Convergence is defined as follows: the difference of f9 between 
two adjacent values of Nb, Nl and Nt is smaller than 0.01%. As observed, 
the natural frequency f9 converges in a super-linear rate. Convergence of 
f9 is reached at Nb = 3, Nl = 4 and Nt = 24, which shows that the the CSD 
method can accurately predict natural frequencies of the planar Snel
son’s X tensegrity structure by using only a small number of internal 
terms of member displacements. 

5.1.2. Frequency response 
Let a point-wise sinusoidal force Ff = F0sin(2πft) be applied at node 

two of the Snelson’s X tensegrity structure in the x-direction with F0 =

1000 N. The frequency response at node four of the structure in the y- 
direction can be predicted by the Lagrangian method and the CSD 
method. As seen in Fig. 9, the results of the Lagrangian method and the 
CSD method do not match. It is shown that consideration of bar mem
bers elongations and member internal displacements is essential in 
predicting accurate dynamic responses of some tensegrity structures in 

Table 5 
Natural frequencies in Hz associated with cable member transverse displace
ments of the planar Snelson’s X tensegrity structure obtained by the CSD method 
for Nb = 0 and Nl = 0.   

f1 f5 f9 f13 f17 

Nt = 1  31.82 N/A N/A N/A N/A 
Nt = 2  31.82 63.65 N/A N/A N/A 
Nt = 3  31.82 63.65 95.46 N/A N/A 
Nt = 4  31.82 63.65 95.46 127.28 N/A 
Nt = 5  31.82 63.65 95.46 127.28 159.08  

Fig. 8. History of convergence of the natural frequency f9 of the Snelson’s X 
tensegrity structure. 

Fig. 9. Frequency responses at node four of the planar Snelson’s X tensegrity 
structure in the y-direction at 0–3000 Hz obtained by the Lagrangian method 
and the CSD method for: (a) Nb = 0–3, Nl = 0 and Nt = 0; (b) Nb = 0, Nl = 0–3 
and Nt = 0; and (c) Nb = 0, Nl = 0 and Nt = 0–3. 
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both low- and high-frequency domains. 
As seen in Fig. 9 (a) and (b), the CSD method for Nb = 0 and Nl = 0, 

and that for Nb = 1–3 and Nl = 1–3 are in good agreement under 1000 
Hz. This is the case because the natural frequencies revealed by adding 
internal terms of member longitudinal displacements are above 5000 Hz 
for Nb > 0, and above 2600 Hz for Nl > 0. However, Fig. 9 (c) shows that 
the results of the CSD method for Nt = 0 and that for Nt > 0 do not match 
under 500 Hz when internal terms of cable member transverse dis
placements are used (Nt > 0) by the CSD method. This is due to the fact 
that the natural frequencies associated with cable member transverse 
displacements are in a lower frequency range (under 50 Hz). Thus, these 
results show that the CSD method can provide more accurate dynamic 

responses in a low-frequency domain. It is also shown that in the fre
quency range of 1500–3000 Hz, which is near the natural frequencies f4 
and f5 of the dynamic model developed by the CSD method for Nb = 0, Nl 
= 0 and Nt = 0, the use of any type of internal terms of member dis
placements (Nb > 0, Nl > 0 and Nt > 0) by the CSD method can signif
icantly improve the accuracy of frequency response prediction. 

5.1.3. Transient response 
Let a point-wise sinusoidal force Ff = F0sin(2πft) be applied at node 

two of the Snelson’s X tensegrity structure in the x-direction with F0 =

10 N. The transient responses at node three of the structure in the x- 
direction are plotted in Figs. 10 and 11 at excitation frequencies of 2000 
Hz and 15000 Hz, respectively. In both cases, the solutions obtained by 
the Lagrangian method are inaccurate, compared with the CSD method. 
As observed from Fig. 10, the CSD method can accurately predict the 
transient response for the 2000 Hz excitation frequency by using only a 
small number of internal terms of member displacements. The results for 
Nb = 1–3, Nl = 1–4 and Nt = 5–24 obtained by the CSD method are in 
good agreement, which shows a trend of convergence. As observed from 
Fig. 11, only the CSD method can reveal the high-frequency responses 
for the 15000 Hz excitation frequency. Note that the high-frequency 
vibration of node two cannot be captured by the Lagrangian method. 
The results for Nb = 8–12, Nl = 14–22 and Nt = 66–100 obtained by the 
CSD method are in good agreement, which shows a trend of conver
gence, while the result for Nb = 4, Nl = 14 and Nt = 33 is inaccurate. This 
is the case because more internal terms of member displacements are 
needed by the CSD method to accurately predict dynamic responses of a 
tensegrity structure in the high-frequency domain. 

The transient response of the planar Snelson’s X tensegrity structure 
in free vibration at node three in the x-direction is plotted in Fig. 12, 
with the initial displacement at node two in the x-direction being 1 × 10- 

6 m. Initial conditions for all other nodes and member internal dis
placements are at the initial equilibrium configuration of the structure. 
Similar to the results for forced vibration, the Lagrangian method cannot 
accurately predict dynamic responses of the structure in free vibration. 
For the CSD method, more internal terms of member displacements are 
needed if dynamic responses in the high-frequency domain need to be 
accurately revealed. 

5.2. A three-dimensional tensegrity tower 

A three-dimensional tensegrity tower with nine nodes, six bars and 
12 cables, which is similar to the structure studied by Ma et al. (2022), is 

Fig. 10. Displacement at node three of the planar Snelson’s X tensegrity 
structure in the x-direction at the excitation frequency of 2000 Hz. 

Fig. 11. Displacement at node three of the planar Snelson’s X tensegrity 
structure in the x-direction at the excitation frequency of 15000 Hz. 

Fig. 12. Displacement at node three of the planar Snelson’s X tensegrity 
structure in the x-direction in free vibration. 

Fig. 13. A three-dimensional tensegrity tower.  
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investigated here as the second numerical example. A perspective view 
of the structure is shown in Fig. 13, with nodal coordinates given in 
Appendix B. The material parameters, topology and member internal 
forces of the structure are given in Appendix B, where compression and 
tension forces are given as negative and positive values, respectively. 
Positions of nodes one, two and three in the x-, y- and z-directions are 

fixed for elimination of rigid-body motions of the tensegrity tower. In 
this example, the proposed CSD method is compared with the com
mercial FEA software ANSYS. 

5.2.1. Modal analysis 
Natural frequencies and mode shapes of the three-dimensional ten

segrity tower are calculated by solving the eigenvalue problem of 

MtowerQ̈tower +KtowerQtower = 0 (95)  

where Mtower and Ktower are mass and stiffness matrices of the whole 
structure, respectively, and Qtower is the generalized coordinate vector of 
the whole structure. These two matrices are obtained through an as
sembly of mass and stiffness matrices of each member of the structure. 

The dynamic model of the three-dimensional tensegrity tower 
developed by ANSYS has 18 degrees of freedom, and can thus yield 18 

Fig. 14. The first two mode shapes of the dynamic model of the three-dimensional tensegrity tower developed by: (a) ANSYS; and (b) the CSD method for Nb = 0, Nl 
= 0 and Nt = 0. 

Fig. 15. The 17th and 18th mode shapes of the dynamic model of the three-dimensional tensegrity tower developed by: (a) ANSYS; and (b) the CSD method for Nb =

0, Nl = 0 and Nt = 1. 

Table 6 
The first, second, 17th and 18th natural frequencies in Hz of the three- 
dimensional tensegrity tower obtained by ANSYS and the CSD method.   

f1 f2 f17 f18 

ANSYS  0.0109  0.0195  8.6101  8.6210 
CSD Method Nb = 0, Nl = 0, Nt = 0  0.0109  0.0195  8.6100  8.6210 
CSD Method Nb = 3, Nl = 3, Nt = 3  0.0109  0.0195  2.0495  2.0495  
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natural frequencies. The first two mode shapes obtained by ANSYS and 
the CSD method for Nb = 0, Nl = 0 and Nt = 0 are shown in Fig. 14 for a 
direct comparison. As observed, the nodal motions of the two mode 
shapes obtained by the two methods are in good agreement, which 
shows the correctness of the CSD method. The 17th and 18th mode 
shapes obtained by ANSYS and the CSD method for Nb = 0, Nl = 0 and Nt 
= 1 are given in Fig. 15. As observed, the mode shapes obtained by the 

two methods are different. This is the case because the CSD method can 
also reveal mode shapes associated with transverse displacements of 
cable members, while these mode shapes cannot be obtained by ANSYS. 

The natural frequencies obtained by ANSYS and the CSD method are 
compared in Table 6. As seen from the table, the natural frequencies f1, 
f2, f17 and f18 obtained by ANSYS and the CSD method without using 
internal terms of member displacements (Nb = 0, Nl = 0, Nt = 0) are in 
good agreement, which shows the correctness of the CSD method. The 
use of internal terms of member displacements by the CSD method (Nb 
= 3, Nl = 3, Nt = 3) provides little impact on the first two natural fre
quencies. On the other hand, the use of internal terms of member dis
placements shows a strong impact on the values of f17 and f18. This is the 
case because the natural frequencies f17 and f18 obtained by the CSD 
method for Nb = 3, Nl = 3 and Nt = 3 are for modes shapes that cannot be 
revealed by ANSYS or the CSD method for Nb = 0, Nl = 0 and Nt = 0. 

5.2.2. Frequency response 
Let a point-wise sinusoidal force Ff = F0sin(2πft) be applied at node 

nine of the three-dimensional tensegrity tower in the z-direction with F0 
= 10000 N. The frequency response at node six in the z-direction of the 
structure is predicted by ANSYS and the CSD method in Figs. 16 and 17. 
As seen in Fig. 16 (a), the two methods are in good agreement under 6 Hz 
for Nb = 1–3 and Nl = 1–3. This is the case because the natural fre
quencies revealed by adding internal terms of member longitudinal 
displacements are above 13 Hz for Nb > 0, and above 50 Hz for Nl > 0. 
However, the results in Fig. 16 (b) show that the results obtained by 
ANSYS cannot reveal some peaks of the results obtained by the CSD 
method when internal terms of cable member transverse displacements 
are used (Nt > 0). This is due to the fact that these peaks are the natural 

Fig. 16. Frequency responses at node six of the three-dimensional tensegrity 
tower in the z-direction at 0–6 Hz obtained by ANSYS and the CSD method for: 
(a) Nb = 1–3, Nl = 1–3 and Nt = 0; and (b) Nb = 0, Nl = 0 and Nt = 1–3. 

Fig. 17. Frequency responses at node six of the three-dimensional tensegrity 
tower in the z-direction at 6–20 Hz obtained by ANSYS and the CSD method for: 
(a) Nb = 1–3, Nl = 1–3 and Nt = 0; and (b) Nb = 0, Nl = 0 and Nt = 1–3. 

Fig. 18. Displacement at node six of the three-dimensional tensegrity tower in 
the z-direction at the excitation frequency of 9.5 Hz. 

Fig. 19. Displacement at node six of the three-dimensional tensegrity tower in 
the z-direction at the excitation frequency of 50 Hz. 
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frequencies associated with transverse displacements of cable members, 
which can only be revealed by the CSD method. In the frequency range 
of 6–20 Hz, the results in Fig. 17 show that the use of all three types of 
internal terms (longitudinal displacement terms of bar and cable mem
bers, and transverse displacement terms of cable members) by the CSD 
method can significantly improve the accuracy of the frequency 
response of the three-dimensional tensegrity tower, as compared with 
those obtained from ANSYS. 

5.2.3. Transient response 
Let a point-wise sinusoidal force Ff = F0sin(2πft) be applied at node 

nine of the three-dimensional tensegrity tower in the z-direction with F0 
= 10000 N. The transverse displacements at node six of the structure in 
the z-direction are plotted in Figs. 18 and 19 at excitation frequencies of 
9.5 Hz and 50 Hz, respectively. As observed from Fig. 18, the results 
obtained by the CSD method for Nb = 2–3, Nl = 2–3 and Nt = 10–15 are 
in good agreement, which shows a trend of convergence. However, the 
results obtained by the CSD method for Nb = 1, Nl = 1 and Nt = 5, and 
those by ANSYS are inaccurate. As observed from Fig. 19, only the CSD 
method can accurately predict dynamic responses of the structure at the 
50 Hz excitation frequency and reveal the high-frequency vibration, 
while the high-frequency vibration of node six cannot be captured by 
ANSYS. The results for Nb = 10–15, Nl = 10–15 and Nt = 10–15 obtained 
by the CSD method are in good agreement, which shows a trend of 
convergence, while the results obtained by the CSD method for Nb = 5, 
Nl = 5 and Nt = 5, and those by ANSYS are inaccurate. This is the case 
because more internal terms of member displacements are needed by the 
CSD method to accurately predict dynamic responses of a tensegrity 
structure in the high-frequency domain. 

The transient response of the three-dimensional tensegrity tower in 

free vibration at node six in the z-direction is plotted in Fig. 20, with the 
initial displacement at node nine in the z-direction being 1 × 10-5 m. 
Initial conditions for all other nodes and member internal displacements 
are at the initial equilibrium configuration of the structure. Similar to 
the results of forced vibration, as shown in Fig. 20, the results obtained 
by the CSD method for Nb = 1, Nl = 1 and Nt = 5 and those by ANSYS are 
inaccurate. The results obtained by the CSD method with Nb = 2–3, Nl =

2–3 and Nt = 10–15 are in good agreement, which shows a trend of 
convergence. 

5.3. An irregular tensegrity grid 

In this example, a largely distorted tensegrity grid with an irregular 
layout is studied to demonstrate the efficiency of the CSD method in 
handling a large-scale irregular tensegrity structure. The irregular to
pology layout of this structure was first introduced by Shekastehband 
et al. (2013). In this work, nodal positions are changed to form a com
plete irregular tensegrity structure, as shown in Fig. 21. This structure is 
composed of 40 nodes, 36 bars and 84 cables with six rigid-body 
mechanisms, three internal mechanisms, and nine states of self-stress. 
Although this structure has internal mechanisms, it can still be a sta
ble structure by properly assigning member internal forces. Materials of 
bar and cable members are assumed to be carbon fiber and steel, 
respectively, with their parameters being the same as those in the first 
numerical example given in Table 1. An initial equilibrium configura
tion of the irregular tensegrity structure is determined by the stochastic 
fixed nodal displacement method proposed by Yuan and Zhu (2021). 
Positions of nodes one, 23 and 34 in the x-, y- and z-directions are fixed 
for elimination of rigid-body motions of the structure. The proposed CSD 
method is compared with the FEA method proposed by Kan et al. 
(2018a). 

Fig. 20. Displacement at node six of the three-dimensional tower in the z-di
rection in free vibration. 

Fig. 21. An irregular tensegrity grid: (a) the perspective view and (b) the top view.  

Table 7 
Comparison of the first five natural frequencies in Hz of the irregular tensegrity 
grid.   

f1 f2 f3 f4 f5 

FEA method  71.01  159.72  219.96  233.57  295.50 
CSD method  70.98  159.27  218.92  232.60  293.41  

Table 8 
Comparison of the sixth to the 10th natural frequency in Hz of the irregular 
tensegrity grid.   

f6 f7 f8 f9 f10 

FEA method  472.31  475.66  621.61  639.25  888.51 
CSD method  459.07  460.37  489.10  494.77  500.52  
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Fig. 22. The first mode shapes of the irregular tensegrity grid obtained by (a) the FEA method and (b) the CSD method.  

Fig. 23. The 10th mode shapes of the irregular tensegrity grid obtained by (a) the FEA method and (b) the CSD method.  

Fig. 24. Frequency responses at node 16 of the irregular tensegrity grid in the 
z-direction at 0–8000 Hz obtained by the FEA method and the CSD method for: 
(a) Nb = 1–3, Nl = 1–3 and Nt = 0; and (b) Nb = 0, Nl = 0 and Nt = 1–3. 

Fig. 25. Frequency responses at node 16 of the irregular tensegrity grid in the 
z-direction at 8000–30000 Hz obtained by the FEA method and the CSD method 
for: (a) Nb = 1–3, Nl = 1–3 and Nt = 0; and (b) Nb = 0, Nl = 0 and Nt = 1–3. 
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5.3.1. Modal analysis 
The first 10 natural frequencies (f1-f10) of dynamic models of the 

irregular tensegrity grid developed by the FEA method and the CSD 
method for Nb = 1, Nl = 1 and Nt = 1 are investigated, with the results 
given in Tables 7 and 8. The corresponding first and 10th mode shapes 
are shown in Figs. 22 and 23, respectively. As seen in Table 7, the natural 
frequencies f1-f5 obtained by the two methods are in good agreement, 
with errors being less than 1%. However, the results in Table 8 show that 
the natural frequencies f6-f10 obtained by the two methods do not match, 
with errors being 2.88%-77.52%. It can also be observed that the mode 
shapes obtained by the two methods are similar to each other when the 
corresponding natural frequencies are close to each other (see Fig. 22 
that shows the first mode shape as an example). However, the mode 
shapes obtained by the two methods are different when there is a 

significant deviation between the corresponding natural frequencies, see 
Fig. 23 that shows the 10th mode shape as an example, since the CSD 
method can yield modes that cannot be revealed by the FEA method 
even in the low-frequency domain. 

5.3.2. Frequency response 
Let a point-wise sinusoidal force Ff = F0sin(2πft) be applied at node 

39 of the irregular tensegrity grid in the z-direction with F0 = 1000 N. 
The frequency responses at node 16 of the structure in the z-direction are 
obtained by the FEA method and the CSD method at 0–30000 Hz and 
plotted in Figs. 24 and 25. As seen in Fig. 24 (a), the FEA method and the 
CSD method are in good agreement under 8000 Hz for Nb = 1–3 and Nl 
= 1–3. This is the case because the natural frequencies obtained by the 
CSD method associated with internal terms of member longitudinal 
displacements are above 30000 Hz for Nb > 0, and above 15000 Hz for 
Nl > 0, which are far from 8000 Hz. However, Fig. 24 (b) shows that the 
results of the two methods match only under 500 Hz when internal terms 
of cable member transverse displacements are used (Nt > 0) by the CSD 
method. This is due to the fact that the natural frequencies associated 
with cable member transverse displacements are in a lower frequency 
range (450 Hz and above), which shows that the CSD method can pro
vide a more accurate dynamic response than the FEA method even in a 
low-frequency domain. In the frequency range of 8000–30000 Hz, the 
results in Fig. 25 show that the use of all three types of internal terms 
(longitudinal displacement terms of bar and cable members, and 
transverse displacement terms of cable members) by the CSD method 
can significantly improve the accuracy of the frequency response pre
dicted, as compared with the FEA method. 

5.3.3. Transient response 
Let a point-wise sinusoidal force Ff = F0sin(2πft) be applied at node 

39 of the irregular tensegrity grid in the z-direction with F0 = 100 N. The 
displacements at node 16 of the structure in the z-direction are plotted in 
Figs. 26 and 27, at excitation frequencies of 4700 Hz and 28000 Hz, 
respectively. As observed from Fig. 26, the results obtained by the CSD 
method for different values of Nb, Nl and Nt are in good agreement, 
which shows a fast trend of convergence. However, significant differ
ences between the results obtained by the FEA method and the CSD 
method are observed. As observed from Fig. 27, only the CSD method 
can reveal the high-frequency responses for the 28000 Hz excitation 
frequency. The results for Nb = 2 and 3, Nl = 2 and 3, and Nt = 10 and 15 
obtained by the CSD method are in good agreement. However, the dy
namic responses obtained by the CSD method for Nb = 1, Nl = 1 and Nt =

5, and those by the FEA method are inaccurate. It is thus shown that the 
CSD method can accurately predict dynamic responses of the irregular 
tensegrity grid in the high-frequency domain. The use of more internal 
terms of member displacements are required by the CSD method to 
provide convergence for high excitation frequencies. 

The transient response at node 16 of the irregular tensegrity grid in 
the z-direction in free vibration is plotted in Fig. 28, with the initial 
displacement at node 39 in the z-direction being 1 × 10-6 m. Initial 
conditions for all other nodes and member internal displacements are at 
the initial equilibrium configuration of the structure. As shown in 
Fig. 28, the results obtained by the CSD method for different values of 
Nb, Nl and Nt are in good agreement, which shows a fast trend of 
convergence. However, significant differences between the results ob
tained by the two methods are observed. Therefore, the efficiency and 
accuracy of the CSD method in predicting dynamic responses of the 
irregular tensegrity structure in free vibration are verified. 

As observed from the simulation results of the three numerical ex
amples, the following conclusion about the CSD method can be made: 1) 
The CSD method can reveal more modes of a tensegrity structure than 
the Lagrangian method based on generalized coordinates and the FEA 
method. These revealed modes can have either local mode shapes 
associated with only member internal displacements, or global mode 
shapes in which nodal motions and member internal displacements are 

Fig. 26. Displacement at node 16 of the irregular tensegrity grid in the z-di
rection at the excitation frequency of 4700 Hz. 

Fig. 27. Displacement at node 16 of the irregular tensegrity grid in the z-di
rection at the excitation frequency of 28000 Hz. 

Fig. 28. Displacement at node 16 of the irregular tensegrity grid in the z-di
rection in free vibration. 

S. Yuan and W. Zhu                                                                                                                                                                                                                           



International Journal of Solids and Structures 270 (2023) 112179

19

coupled. 2) More internal terms of member displacements are needed for 
the CSD method if the dynamic response in the high-frequency domain 
needs to be revealed. 3) It is shown that the dynamic response of a 
tensegrity structure predicted by the CSD method is more accurate than 
that predicted by the Lagrangian method and the FEA method, espe
cially in the high-frequency domain. This is supported by the dynamic 
responses predicted by the CSD method, which show the existence of the 
natural frequencies in the high-frequency domain, and the trend of 
convergence with more terms of member internal displacements being 
used. 4) The computational efficiency of the CSD method is verified, 
since accurate dynamic responses are predicted by the CSD method by 
using only a small number of internal terms of member displacements. 

6. Conclusions 

The Cartesian spatial discretization method is developed for 
nonlinear dynamic modeling and vibration analysis of tensegrity struc
tures. Different from traditional dynamic modeling methods, which 
often oversimplify structural members of a tensegrity structure by 
neglecting internal displacements, this new method can accurately 
predict the dynamic response of a tensegrity structure by incorporating 
member internal displacements in the dynamic model so developed. In 
this method, the position of a structural member is defined as a sum
mation of internal terms and boundary-induced terms in a global Car
tesian coordinate system. A nonlinear dynamic model of the member is 
then derived from Lagrange’s equations as a system of ordinary differ
ential equations. This dynamic model can be linearized at an equilib
rium configuration for vibration analysis. A dynamic model of the whole 
structure is finally assembled in a straight-forward way by using 

common nodal coordinates of structural members. The proposed 
method is applied to vibration analysis of a planar Snelson’s X tensegrity 
structure, a three-dimensional tensegrity tower, and an irregular ten
segrity grid, while compared with the Lagrangian method based on 
generalized coordinates, the commercial software ANSYS and the finite 
element analysis method, to show its capability to handle both simple 
and complex tensegrity structures. According to the simulation results, 
the proposed method can yield more natural frequencies and mode 
shapes with much higher accuracies than the Lagrangian method and 
the finite element analysis method, especially in the high-frequency 
domain. It is also demonstrated that the proposed method is computa
tionally efficient as it converges in a super-linear rate by using only a 
small number of internal terms of member displacements. 
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Appendix A:. Derivation of equations of motion of the Snelson’s X planar tensegrity structure by the Lagrangian method based on 
generalized coordinates 

The derivation of equations of motion of the Snelson’s X planar tensegrity structure shown in Fig. 4 by the Lagrangian method based on generalized 
coordinates is presented here. In this approach, the two bar members and the four cable members are treated as rigid bodies and massless linear elastic 
springs, respectively. The three generalized coordinates x2, θ1 and θ2 are defined as the x-coordinate of node two, the angle between the first bar 
member and the positive x-direction and the angle between the second bar member and the positive x-direction, respectively (see Fig. 4). One can 
obtain the kinetic energies of the two bar members as 

T1 =
1
6

m1L2
1θ̇

2
1 (A1)  

T2 =
1
6

m2(L2
2θ̇

2
2 − 3sinθ2L2θ̇2ẋ2 + 3ẋ2

2) (A2)  

where m1 and m2 are the masses of the two bar members, which can be calculated using the dimensional and material parameters given in Table 1, and 
L1 and L2 are the lengths of the two bar members, which can be calculated from the nodal positions. The potential energy of the four cable members can 
be calculated as 

V3 =
E3A3

2L0
3
(x2 − L0

3)
2 (A3)  

V4 =
E4A4

2L0
4

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(L1cosθ1 − x2)
2
+ (L1sinθ1)

2
√

− L0
4

)2

(A4)  

V5 =
E5A5

2L0
5

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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6
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(A6)  

where EiAi is the longitudinal rigidity of cable member i, determined by the dimensional and material parameters given in Table 1, and L0
i is the 

undeformed length of cable member i, determined by the longitudinal rigidity (EiAi) and the tension force (100 N) of the member at the initial 
equilibrium configuration. Thus, the total kinetic energy and potential energy of the structure can be obtained as 
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T = T1 + T2 (A7)  

V = V3 +V4 +V5 +V6 (A8) 

Let the Lagrangian be LL = T-V; the nonlinear equations of motion of the Snelson’s X planar tensegrity structure can be derived using Lagrange’s 
equations 

d
dt

(
∂LL

∂q̇

)

−
∂LL

∂q
= fnc (A9)  

where q = [x2, θ1 θ2]T, and fnc is the non-conservative force. Values of some important parameters in Eq. (A.9) are given as: m1 = m2 = 0.1944 kg; L1 =

L2 = 1.4142 m; E3A3 = E4A4 = E5A5 = E6A6 = 6.2832 × 105N; and L0
3 = L0

4 = L0
4 = L0

4 = 0.9998 m. 
Equation (A.9) can be linearized at the equilibrium configuration x2 = 1 m, θ1 = π/4 and θ1 = 3π/4, for vibration analysis of the structure: 

Mq̈+Kq = fnc (A10)  

where 

M =

⎡

⎢
⎢
⎣

0.1944 0 - 0.0972

0 0.1296 0

- 0.0972 0 0.1296

⎤

⎥
⎥
⎦, K =

⎡

⎢
⎢
⎣

1.2570 0.6285 - 0.6285

0.6285 1.2568 - 0.6283

- 0.6285 - 0.6283 1.2568

⎤

⎥
⎥
⎦ × 106 (A11)  

Appendix B:. Topology, nodal coordinates, material parameters and member internal forces of the three-dimensional tensegrity tower 
in Section 5.2 

Nodal coordinates of the three-dimensional tensegrity tower in Section 5.2 are given in Table B1. The topology, material parameters, and member 
internal forces of the structure are shown in Table B2. 

Table B2 
Topology, material parameters and member internal forces of the three-dimensional tensegrity tower in Section 5.2.  

Member index Nodes connected Internal force (N) Mass (kg) Longitudinal rigidity EA (N) 

1 (1, 5) −1.0000 × 105 1.2454 × 106 1.8276 × 1010 

2 (2, 6) −1.0000 × 105 1.2454 × 106 1.8276 × 1010 

3 (3, 4) −1.0000 × 105 1.2454 × 106 1.8276 × 1010 

4 (5, 9) −1.0000 × 105 1.2454 × 106 1.8276 × 1010 

5 (6, 7) −1.0000 × 105 1.2454 × 106 1.8276 × 1010 

6 (4, 8) −1.0000 × 105 1.2454 × 106 1.8276 × 1010 

7 (4, 5) 5.6051 × 104 62.3467 3.4816 × 107 

8 (5, 6) 5.6051 × 104 62.3467 3.4816 × 107 

9 (6, 4) 5.6051 × 104 62.3467 3.4816 × 107 

10 (7, 8) 2.8025 × 104 31.1734 1.7408 × 107 

11 (8, 9) 2.8025 × 104 31.1734 1.7408 × 107 

12 (9, 7) 2.8025 × 104 31.1734 1.7408 × 107 

13 (1, 4) 8.5318 × 104 166.8041 5.2996 × 107 

14 (2, 5) 8.5318 × 104 166.8041 5.2996 × 107 

15 (3, 6) 8.5318 × 104 166.8041 5.2996 × 107 

16 (4, 7) 8.5318 × 104 166.8041 5.2996 × 107 

17 (5, 8) 8.5318 × 104 166.8041 5.2996 × 107 

18 (6, 9) 8.5318 × 104 166.8041 5.2996 × 107  

Table B1 
Nodal coordinates of the three-dimensional tensegrity tower in Section 5.2 (m).  

Node index x y z 

1  10.0000  0.0000  0.0000 
2  −5.0000  8.6603  0.0000 
3  −5.0000  −8.6603  0.0000 
4  8.6603  5.0000  30.0000 
5  −8.6603  5.0000  30.0000 
6  −0.0000  −10.0000  30.0000 
7  5.0000  8.6603  60.0000 
8  −10.0000  0.0000  60.0000 
9  5.0000  −8.6603  60.0000  
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