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ABSTRACT

For vibration analysis of a tensegrity structure, the development of a dynamic model is a key step. A common
issue in the traditional dynamic modeling methods for vibration analysis of tensegrity structures is that structural
members are oversimplified. Member internal displacements, including those in longitudinal directions for bar
and cable members and those in transverse directions for cable members, were neglected. This oversimplification
would inevitably prevent the dynamic model of a tensegrity structure so developed from revealing accurate
responses, especially for those in the high-frequency domain. To resolve this issue, a new method called the
Cartesian spatial discretization method is developed for nonlinear dynamic modeling and vibration analysis of
tensegrity structures. This method can successfully incorporate member internal displacements in dynamic
modeling of a tensegrity structure by defining positions of structural members as a summation of internal terms
and boundary-induced terms in a global Cartesian coordinate system. The proposed method is applied to vi-
bration analysis of a planar Snelson’s X tensegrity structure, a three-dimensional tensegrity tower, and an
irregular tensegrity grid in simulation, and compared with the Lagrangian method based on generalized co-
ordinates, the commercial finite element analysis software ANSYS and the finite element analysis method in
literatures, respectively. Results show that the proposed method is accurate in predicting dynamic responses of
tensegrity structures, especially for vibration analysis in the high-frequency domain. It is also demonstrated that
the proposed method is applicable to both simple and complex tensegrity structures, and computationally effi-
cient as it converges in a super-linear rate by using only a small number of internal terms of member
displacements.

1. Introduction

this early work, a tensegrity structure is defined as a pin-jointed struc-
ture that is composed of isolated members in compression (usually bars

Tensegrity structures, due to their lightweight, foldability and high
stiffness, have experienced continued research and development in-
terests in the past several decades. Due to the capability of sustaining
large deformations, tensegrity structures are recognized as flexible or
deployable structures in various engineering applications, such as
bridges (Rhode-Barbarigos et al., 2010; Veuve et al., 2015), space re-
flectors (Tibert and Pellegrino, 2002), soft robots (Caluwaerts et al.,
2014; Shah et al., 2021; Yuan et al., 2021), mechanical metamaterials
(De Tommasi et al., 2017; Liu et al., 2019), and active building facades
that harvest wind and solar energy (Cimmino et al., 2017). Tensegrity
structures have also been popular for mechanical modeling of cell
structures (Ingber, 2003) in biology. As an engineering structural design
concept, a tensegrity structure was first introduced by Fuller (1982). In
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or struts) inside a net of continuous members in tension (usually cables
or tendons). A tensegrity structure is designed so that its compressed
members do not touch each other and prestressed tensioned members
spatially delineate the structure. This definition was later generalized by
Motro (1996), where a tensegrity structure consists of both bars and
cables, with contacts among bar members being allowed.

In existing work of design and analysis, tensegrity structures are
investigated mainly from a static point of view. Design of a tensegrity
structure usually starts from topology design. Then an initial equilib-
rium configuration of the structure is obtained by a procedure named
form finding, where the geometric configuration and force distribution
among members of the structure are determined (Schek, 1974; Yuan and
Yang, 2019; Zhang and Ohsaki, 2006). For tensegrity structures with
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high surface accuracy requirements and multiple states of self-stress,
self-stress determination, which is also called member force assign-
ment or force finding, is needed. If nodal positions of a tensegrity
structural are restricted by high surface accuracy requirements, optimal
design of its stiffness and stability can only be accomplished by assign-
ment of member internal forces (Feng, 2017; Tran and Lee, 2010; Yuan
and Zhu, 2021).

Revealing dynamic characteristics of tensegrity structures, for
example, vibration and deployment analysis, is another important
objective in structural design and analysis. Early research was found in
work of Motro et al. (1987), who obtained dynamic responses of a
tensegrity structure by both numerical and experimental approaches,
and in work of Furuya (1992), who performed vibration analysis of a
tensegrity mast and revealed a relationship between natural frequencies
and self-stress of the structure.

For vibration analysis of a tensegrity structure, the development of a
dynamic model is a key step. One commonly used type of approach for
dynamic modeling of tensegrity structures is the Lagrangian method,
which was seen in works of Skelton and Sultan (1997), Sultan et al.
(2002a), Sultan et al. (2002b), Sultan and Skelton (2003), Oppenheim and
Williams (2001a), Oppenheim and Williams (2001b) and Kan et al.
(2018b). In this type of approach, a system of generalized coordinates,
which is highly coupled with the topology and the geometric configuration
of a specific tensegrity structure, is first defined. All generalized co-
ordinates are required to be independent of each other. By treating bar and
cable members of the tensegrity structure as rigid bodies and massless
springs, respectively, a system of second-order nonlinear ordinary differ-
ential equations (ODEs) that describes the mechanical motion of the
structure is obtained by the Lagrangian method. This type of methods was
later modified for dynamic modeling of tensegrity-membrane systems
(Yang and Sultan, 2016, 2017, 2019), in which bar members were
modeled as truss elements with flexibilities along their longitudinal di-
rections being considered. The Lagrangian method is preferred for dy-
namic modeling of large-scale tensegrity structures (tensegrity structures
with many nodes and members). The advantage of using generalized co-
ordinates is that design constraints, such as axial symmetry, of a tensegrity
structure are well maintained.

Another approach to dynamic modeling of tensegrity structures is the
finite element analysis (FEA) methods, which were seen in works of Ali
etal. (2010), Ali and Smith (2010), Faroughi and Tur (2015), Ashwear and
Eriksson (2014), Ashwear et al. (2016), Feng et al. (2018) and Kahla et al.
(2020). This type of modeling methods starts by obtaining mass and
stiffness matrices of a single member obtained in a local coordinate system.
Then, mass and stiffness matrices of a whole tensegrity structure are
established by transforming from local to global coordinates through a co-
rotational approach. This type of methods provides a simple approach in
obtaining a linear dynamic model for vibration analysis. However, it is
inefficient when these methods are applied to tensegrity structures sub-
jected to large displacements, such as deployment, since large rigid-body
motions of structural members are not considered. Kan et al. (2018a),
Peng et al. (2020) and Ma et al. (2022) directly used global coordinates in
obtaining mass and stiffness matrices of each member. This method is
applicable to nonlinear dynamic analysis, since large rigid-body motions
are naturally handled by global coordinates.

A common issue in the traditional dynamic modeling methods for
tensegrity structures is that structural members are oversimplified.
Member internal displacements, including those in the longitudinal di-
rections for bar and cable members and those in the transverse directions
for cable members, were neglected. In the traditional methods, structural
members were either modeled as rigid bodies and massless springs with no
internal displacements at all (seen in Lagrange-based methods), or as
elastic rods with an assumption of uniform distribution of internal dis-
placements (see shape functions used by FEA-based methods). In fact, the
impact of member internal displacements on dynamic characteristics of a
tensegrity structure is significant, which shall be seen in numerical simu-
lation of this work. This oversimplification would inevitably prevent the

International Journal of Solids and Structures 270 (2023) 112179

dynamic model of a tensegrity structure so developed from revealing ac-
curate responses, especially for those in the high-frequency domain.

To fill the above-mentioned technical gap, a novel method for
nonlinear dynamic modeling of tensegrity structures, named the Cartesian
spatial discretization (CSD) method, is developed in this work. This
method defines positions of structural members as a summation of internal
terms and boundary-induced terms in a global Cartesian coordinate sys-
tem. A nonlinear dynamic model of a member is then derived from
Lagrange’s equations as a system of ODEs. This dynamic model can be
linearized at an equilibrium configuration of the tensegrity structure for
vibration analysis. A dynamic model of the whole structure is finally
assembled by using common nodal coordinates of structural members. The
proposed method is new in that member internal displacements are well
incorporated in the nonlinear dynamic model of a tensegrity structure so
developed. Thus, the oversimplification of structural members, which was
often seen in the traditional dynamic modeling methods, is successfully
avoided. The incorporation of member internal displacements grants the
proposed method an ability to predict accurate dynamic responses of
tensegrity structures, especially for vibration analysis in the high-
frequency domain. In addition, the use of a global Cartesian coordinate
system by the proposed method in member modeling provides a fast and
straight-forward structure assembly, and automatic incorporation of rigid-
body motions of structural members. The proposed method is applicable to
both simple and complex tensegrity structures, and computationally effi-
cient as it converges in a super-linear rate by using only a small number of
internal terms of member displacements.

The remainder of this paper is arranged as follows. Properties and
relevant concepts of tensegrity structures are clarified in Section 2. The
spatial discretization method for one-dimensional continuous bar and
cable members is introduced in Section 3. The CSD method for nonlinear
dynamic modeling of tensegrity structures is presented in Section 4. Re-
sults from numerical simulations are given in Section 5. Conclusions from
this study are presented in Section 6.

2. Problem Statement, form finding and force finding

The objective of this research is to provide an approach to nonlinear
dynamic modeling and vibration analysis of tensegrity structures.
Properties and relevant concepts of tensegrity structures are clarified in
this section for a better understanding of the proposed method. To this
end, the following five assumptions about a tensegrity structure are
made:

(A1) Bar and cable members of a tensegrity structure are connected
by frictionless pin-joints.

(A2) Alevel of self-stress is required to stiffen the structure and avoid
slacking cable members.

(A3) Mass moments of inertia of bar and cable members along their
axial directions are neglected.

(A4) Only axial forces are transmitted in members. Bar members can
sustain both tension and compression forces, and cable members can
only sustain tension forces. Bending of bar and cable members, and
buckling of bar members do not occur.

(A5) Materials of bar and cable members are elastic and homoge-
neous. Cross-sectional areas are constant along lengths of bar and cable
members. Thus, mass distributions of bar and cable members are uni-
form along their axial directions.

For a general truss structure, the matrix equilibrium equation is

Mo =1 (€D)]

where M is the equilibrium matrix consisting of direction cosines, o is a
vector of generalized stresses, and [ is a vector of generalized loads.
Because cross-sectional areas and elastic properties of members do not
have to be specified and during a form-finding process a tensegrity struc-
ture is not subject to any external load, it is convenient to replace ¢ by a
vector of member internal forces and set [ = 0. Thus, the matrix equilibrium
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equation can be written as (Pellegrino and Calladine, 1986)

MT =0 2

where for a 3-D tensegrity structure, M is a 3n x k matrix with n being
the number of nodes and k being the number of members, which is
obtained from nodal coordinates, and T is a k x 1 vector of member
internal forces. The number of mechanisms and states of self-stress of a
tensegrity structure can be obtained from the matrix M in Eq. (2).

In this work, it is assumed that a nonlinear dynamic model is
developed given an initial equilibrium configuration of a tensegrity
structure. Such an equilibrium configuration can be obtained by a pro-
cedure in tensegrity structure design, named form finding of the initial
equilibrium configuration (FF-IEC) (Yuan and Yang, 2019). The goal of
FF-IEC is to determine nodal positions and member internal forces that
satisfy Eq. (2) for a tensegrity structure with a predetermined topology.
Thus, the tensegrity structure is at a stable equilibrium configuration
with a certain level of stiffness. Commonly used methods for FF-IEC can
be found in works of Barnes (1999), Zhang and Ohsaki (2006), Lee et al.
(2016) and Yuan and Yang (2019).

For tensegrity structures with high surface accuracy requirements
and multiple states of self-stress, self-stress determination, which is also
called member force assignment or force finding, is an essential part in
structural design. During a process of self-stress determination, nodal
positions of a tensegrity structure remain unchanged. However, deter-
mining self-stress of a tensegrity structure to improve its stiffness and
stability (also called optimal self-stress determination), while main-
taining its desired configuration, is not well addressed by the form-
finding methods introduced above. Because most of the methods are
stress-first and displacement-later methods (these methods usually start
from assigning a set of member internal forces (or force densities in the
force density method (Zhang and Ohsaki, 2006)), and the nodal dis-
placements are then determined by using these assigned member in-
ternal forces). In these methods, nodes of a tensegrity structure cannot
be freely placed at desired locations and multiple states of self-stress are
not fully utilized to improve the stiffness and stability of the structure. In
fact, a set of member force distribution can be optimally assigned, so
that the stiffness and stability of the tensegrity structure are further
improved. Commonly used methods for self-stress determination are
seen in works of Tran and Lee (2010), Feng (2017) and Yuan and Zhu
(2021). The assigned member internal forces must satisfy unilateral
properties (cable members can only sustain tension forces as compared
with bar members that can sustain both tension and compression forces)
and other member stress constraints upon engineering requirements (for
example, member stresses must lie within a specific region to avoid
damage).

3. Spatial discretization method for one-dimensional continuous
bar and cable members

A tensegrity structure is composed of bar and cable members. These
two types of members are in general modeled as elastic rods and taut
strings, respectively, which are one-dimensional continuous systems, in
nonlinear dynamic modeling and vibration analysis. However, a
continuous or distributed-parameter system model is difficult to
analyze, since its governing equations are one or more partial differ-
ential equations (PDEs). This problem even aggravates when modeling a
tensegrity structure, which is usually composed of many bar and cable
members placed and connected in a three-dimensional space. This is the
case because PDEs are inefficient in handling large-scale systems (sys-
tems with many equations and variables) due to the involvement of
complicated coordinate transforms.

To resolve this issue, a spatial discretization method (Ren and Zhu,
2013; Wu et al., 2017; Zhu and Ren, 2013) is used to convert PDEs of a
continuous system model to a set of ODEs, such that the dynamic
response of the system can be revealed by an ODE solver. The spatial
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discretization method discretizes a continuous system with complicated
boundary conditions by separating a displacement of the system into
internal terms and boundary-induced terms. The internal terms satisfy
certain prescribed simple homogeneous boundary conditions, and the
boundary-induced terms account for corresponding boundary condi-
tions that are not satisfied by the internal terms by using additional
degrees of freedom at boundaries of the system.

For illustration, applications of the spatial discretization method to
one-dimensional continuous bar and cable members are given in this
section. Trial functions for both internal and boundary-induced terms
obtained in the one-dimensional continuous bar and cable members are
used in the CSD method proposed in this paper for nonlinear dynamic
modeling and vibration analysis of tensegrity structures in the three-
dimensional space.

3.1. Spatial discretization method for a general second-order system

The governing equation of a second-order one-dimensional contin-

uous system can be written in a general form as
Fu(&, 1) A u(&, 1)
a—2 L+ p——22=0, £c(0,1), t>0 3
ar P ¢e(0,1),

where ¢ and t are the independent dimensionless spatial variable and
temporal variable, respectively; u is the dependent variable that denotes
certain physical quantity; 0 and 1 are boundary locations for the
dimensionless spatial variable; and a and g are prescribed coefficients.
Boundary conditions of Eq. (3) are given in the general form as

"u(ér) ?u(é, 1)

T |, =e(1), o |, =et) 4

where s; and s; are either 0 or 1, and e;(t) and ey(t) are unknown
boundary motions.
Let u(¢&,t) be represented in the following form:

u(&, 1) =u(&,t) +01()er (1) + 02(&)ex(r) 5)

where 0;(¢) (i = 1, 2) are corresponding interpolation functions, and
u(é,t) is the internal term of the function u(é,t). The function u(é,t) is
defined to satisfy only simple homogeneous boundary conditions of the
system:

uen| o aen| ©

0. ém 0 ) 0 6&: -

By the spatial discretization method, u(¢,t) is expressed in an expansion
form as

WED =) 0,0 @

where ¢j(¢) (j = 1, 2, ...) are trial functions, which are chosen to be
eigenfunctions of a simple self-adjoint system with simple homogeneous
boundary conditions, and gj(t) are corresponding generalized co-
ordinates. The functions 6;(£) must be properly defined to satisfy the
rules given in Eq. (8), so as to satisfy the boundary conditions in Eq. (4):

@0, e
S ®
a 92(5)' —0 d26,(§)|  _ 1
de dg” e=1

Thus, u(¢, t) can be expressed by the sum of terms 1i(&, t) and U(¢, t) in the
spatial discretization method:

u(é,r) =u(§ o) +u(é 1) ©
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Fig. 1. Displacement and loading of (a) an elastic rod in longitudinal motion and (b) a taut string in transverse motion.

where U(¢, t) is the boundary-induced term of the function u(¢,t), defined
as

u(g,1) = 01(8er(t) +02(E)ea(r) (10)

According to Eq. (10), the boundary-induced term u(¢&,t) is inter-
polated from boundary degrees of freedom e;(t) (i = 1 or 2 for a second-
order system), which are the dependent variable and/or its spatial de-
rivatives at the boundaries. By substituting Eq. (10) into Eq. (8), u(¢,t)
must satisfy the boundary conditions of the original system:

a"u, | _d"u ) 0‘%(5,1)! _d”u(r)

- ) 52 = 5 11
afsl |§:0 afsl o aé 2 af 2 o ( )

el

By substituting Egs. (7) and (10) into Eq. (9), the expression of u(¢, t) has
an expansion form

W& =D 0 Ea(0) + (D 1) + (D) a2

It should be noticed that the spatial discretization method can also be
applied to a continuous system with a higher order (greater than two), as
shown by Wu et al. (2017). Since both bar and cable members of a
tensegrity structure are modeled as second-order systems (elastic rods
and taut strings), details of applying the spatial discretization method to
a higher-order system are not given in this paper.

3.2. Bar and cable models with fixed—fixed boundary conditions

In the proposed CSD method for dynamic modeling of a tensegrity
structure, a bar member is modeled as an elastic rod with only a lon-
gitudinal displacement (see Fig. 1 (a)). An equation of motion of a one-
dimensional bar member in longitudinal vibration can be easily derived
by the extended Hamilton’s principle as

azub (57 t)
0

(32ub(§,t)

R =fi(& 1), €€(0,1), t>0 (13)

— EyAy

where ¢ is the natural coordinate in the longitudinal direction; t is time;
up(é, t) is the displacement of a differential element d¢; pp is the linear
density of the bar member, given in mass per unit length; E; and Aj are
the Young’s modulus and cross-sectional area of bar members, assumed
constant by assumption (A4); and f,(¢&, t) is an external load applied in
the axial direction of the bar member. In dynamic modeling of a ten-
segrity structure, fixed-fixed boundary conditions are assumed for
structural members. Thus, boundary motions are selected to be the
prescribed longitudinal displacements (eqg(t) and e;(t)) at the two ends:

eo(t) = up(0,2), e(r) = up(1,1) 14
By the spatial discretization method, up(&,t) is expressed as

up(€,1) = up(&,1) + 14y (8,1) 1s)
where

(60 =3 qsin(ing),  @y(E0) = (1 - Eeolr) + e (1) 16)

in which N is a positive integer that controls the complexity and ac-
curacy of the method, and q? is the generalized coordinate that describes
the internal longitudinal displacement of the bar member. As seen from
Eq. (16), the internal term u, satisfies the homogeneous boundary
conditions. The boundary-induced term u, satisfies the boundary con-
ditions in Eq. (14) (1p(0,t) = eg(t), Up(1,t) = e;1(t)). Note that selec-
tion of trial functions for the internal term, and interpolation for the
boundary-induced term are not unique. Any selection is considered
acceptable if homogeneous boundary conditions and boundary condi-
tions in Eq. (14) are satisfied for the internal term and the boundary-
induced term, respectively. It should also be emphasized that the
boundary-induced term in Eq. (16) coincides with a shape function in
elastic rod modeling in the finite element method (Kan et al., 2018a). So,
the finite element method for dynamic modeling of bar members of a
tensegrity structure can also be viewed as a simplified version of the CSD
method without internal terms.

Cable dynamics has been of great research interest for the past
several decades (Sarkar and Manohar, 1996; Starossek, 1991, 1994). A
cable member in the proposed CSD method is modeled as a taut string
with displacements in both longitudinal and transverse directions. The
governing equation of a cable member in the longitudinal direction is
the same as that of a bar member given in Eq. (13). So, a dependent
variable ulc(é t), where ¢ € (0,1), which represents the displacement in
the longitudinal direction, can be expressed in the same form as that for
a bar member:

wl(€,1) = W (& 1) + (&, 1) a7
where
alen =" gsin(ing), (& 1) = (1 - Eeolt) + Eer(1) (18)

in which Nj is a positive integer that controls the complexity and accu-
racy of the method, and ¢! is the generalized coordinate that describes
the internal longitudinal displacements of the cable member. Thus, the
boundary motions are selected to be the displacements at the two ends in
the longitudinal direction:

eo(t) = u.(0,1), e (t) =u.(1,1) 19

The transverse displacement of a cable member is shown in Fig. 1(b).
The equation of motion for a cable member in the transverse vibration
can also be easily derived by the extended Hamilton’s principle:

Ful(ér) 0 ol (&,1)

pTUED 8 (192MED) e, ceon, 1m0 @)

where u.(&, t) is transverse displacement of a differential element d¢; p, is
the linear density of the cable member, given in mass per unit length; T
(&) is the tension force in the cable member; and g.(&, t) is an external
load applied in the transverse direction of the cable member.

In dynamic modeling of a tensegrity structure, fixed-fixed boundary
conditions of structural members are assumed. As will be shown in the
next section, in the global Cartesian coordinate system, the transverse
displacements at the two ends of a cable member are considered as a
combination of its rigid-body motion and longitudinal displacement in
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Fig. 2. Motion of a bar member: (a) positions in the global Cartesian coordinate system, and (b) the kinetic diagram of a differential element.

the three-dimensional space. Therefore, boundary motions in the
transverse direction are assumed in a homogeneous form

ul(0,1) =0, ul(1,6)=0 21
Thus, the boundary-induced term vanishes, which yields an expression

of ut(&,t) with only the internal terms:

N
W (E,1) =T (&,1) = ) gsin(jxé) (22)
j=1

where Ny is a positive integer that controls the complexity and accuracy
of the method, and ¢} is the generalized coordinate that describes the
internal transverse displacement of the member. As seen from Eq. (22),
the internal term satisfies the homogeneous boundary condition in Eq.
(21).

4. New Cartesian spatial discretization method for three-
dimensional bar and cable members of a tensegrity structure

The CSD method for nonlinear dynamic modeling and vibration
analysis of tensegrity structures is proposed. The development of dy-
namic models of three-dimensional bar and cable members of a ten-
segrity structure is given in this section.

4.1. Nonlinear dynamic model of a bar member

Consider a bar member that connects two nodes of a tensegrity
structure in a three-dimensional global Cartesian coordinate system (see
Fig. 2(a)). Global Cartesian coordinates of the two nodes are given as (xo,
Yo, Zo) and (x1, y1, 21), respectively. The longitudinal direction of the bar

member can be expressed by the position vector Eb:

N X1 — Xo
Ry=1y1—y 23)
21 — 2o

An independent natural spatial variable ¢ € [0, 1] is used to describe
an internal position of the bar member. Note that u, was defined by the
spatial discretization method in Section 3 as a displacement, not a po-
sition, of a bar member, due to the assumption that the bar member is at
an equilibrium state with a zero displacement. However, according to
the form finding process introduced in Section 2, an initial equilibrium
configuration of a tensegrity structure is determined by assignment of a
set of nodal coordinates. Thus, it is convenient to define 1, in Eq. (15) as
a position of the bar member for nonlinear dynamic modeling of a
tensegrity structure in the three-dimensional space. The internal terms
and boundary-induced terms given in Eq. (16) are represented as vector
forms in the three-dimensional global Cartesian coordinate system:

Xo X
up(6,t) =(1=&) |y | +&|n

20 21

W (60 =Y " ¢sin(ing) T, 24

where ¢? is the generalized coordinate that describe internal displace-
ments of the bar member in the longitudinal direction; ¢* = 0 means that
there is no internal displacement in the longitudinal direction. If the two
boundary nodes are fixed, the bar member is at equilibrium when the
generalized coordinate q¥ is zero. The unit vector 7' = ﬁb /Ly repre-
sents the longitudinal direction of the bar member, where L is the
deformed length of the bar member subject to a level of self-stress (see
assumption (A2)):

Ly, = \/(Xl —x0)"+ (0 —y0)’ + (21 — ) (25)

Substituting Eq. (24) into Eq. (15) yields an expression of up(&,t) in the
global Cartesian coordinate system:

Ny Xo X1
up(€,1) = up(&,1) + s (&, 1) :Z{Q?Sin(l‘ﬂé)?b} +(A=8 |y | +&|n
i=1 20 21

(26)

4.1.1. Kinetic energy of a bar member
The velocity uy(&,t) of a differential element at the location ¢ on the
bar member can be obtained by taking the time derivative of Eq. (26):

liy (&, 1) = 1y (&,1) + 14y (€,1) 27)

The time derivatives of the internal term ﬁb(ﬁ, t) and boundary-induced
term U (&, t) are given as

A Ny qb iy qb Lh*)
y(&,1) =Y | disin(ing) 7, + (f) sin(iné) R ), — <f) sin(in) R,

P b b b

(28)
) Xo X1
up(&,t) =(1-¢) )?0 +¢& )fl 29)
20 21

respectively. Since the internal displacement described by the general-
ized coordinate g’ is usually significantly small than the deformed
length of the bar member (q{?<<Lb), it can be assumed that

a7
Ly,

~0 (30)
By substituting Eq. (30) into Eq. (27), the second and third terms in Eq.

(28) vanish. The internal term ﬁb(f, t) of the velocity becomes

Np,

T (&,1) = Z gosin(ing) 7

i=1

(3D

Substituting Egs. (31) and (29) into Eq. (27) yields
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Fig. 3. Motion of a cable member: (a) positions in the global Cartesian coordinate system; (b) the kinetic diagram of a differential element in the longitudinal
direction; and (c) the kinetic diagram of a differential element in the transverses directions.

N, Xo X
= dpsin(ing) T+ (1= &) | Yo | +€| % (32)
i= 20 21

Since assumption (A5) states that there is a uniformly distributed mass
along the axial direction of the bar member, the mass of the differential
element d¢ is mpdé, where my, is the mass of the whole bar member. The
kinetic energy of the differential element d¢ on the bar member is given
as

2

1
dTb = Emb u, df (33)

Thus, the kinetic energy of the whole bar member can be obtained by
integrating Eq. (33) with respect to ¢ in the domain [0,1]:

=1
T, — / dT, (34)
&

=0

The explicit form of the kinetic energy of the bar member can be ob-
tained by substituting Egs. (32) and (33) into Eq. (34):

1
T, = Emh(rt +T,+T,) (35)

where

4.1.2. Potential energy of a bar member

A differential element of a bar member that starts at the location &
and ends at the location & + d¢ is shown in Fig. 2(b). The global Cartesian
coordinates of the starting and ending points of the differential element

df, uy +
tively, where u, uz and uj are the x-, y- and z—coordlnates of up(¢,t)
obtained from Eq. (26):

are given as (uf,u),u?) and (uf + %df, d§) respec-

x

N, Xo0 X1
) :Z{qﬁ’sin(iﬂf)?b]Jr(lff) Yo | +&|m (37
MZ; i=1 20 21

ouf ou
One can obtain —2. 05, i > and 2 l’ as

0:; (%1 — x0) {1 + Z s mcos(zfrf)}

Ou, 1 b e .

T = 1= 0) |14 13 atimcos(n)| 38)
duh 1 1 Np  p. o

o =(z1 — 2) { + L—bzizlq[ mcos(mtf)}

The deformed length dL, of the differential element of the bar
member can be calculated by the corresponding geometry information
shown in Fig. 2(b):

B PR M [ 1 /x =%\ 2 247 (%0 — x1)[imh cos(ir) —
T(:anl‘i‘g(/\fo—xl) +Zi1{§( (@) + ;

)
L, L,

Ty = 5’05’1

1 Y1 — Y . b\ 2 qu(y -y ) l.ﬂ')./ COS(iﬂ) —
Y1 JF E { < ! U) (qf;) ° l [12 2]
ﬂ Lb

l’ﬂ)‘h)} } (36)

T. = 20z +
L,

N |1 (2 =20\ .2 240 (z0 — z1)[imzicos(in) —
s (3 (52) el

in) }
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o\’ al\? AN
L, = b —b e}
o \/(azf) +<65> +(a§> * 9
Substituting Egs. (38) and (25) into Eq. (39) yields an explicit expression
of dLy:

dL, =

Np
Ly, + Z q,.biﬂcos(iﬂf)] dé (40)

i=1

Let the undeformed length of the bar member be LY, and the undeformed
length of the differential element be

dL) = L)d¢ (41)

Then, the strain ¢, of the differential element of the bar member at the
location ¢ is calculated as
dL, — dL0
— 42
ar0 (42)
Based on the linear elasticity assumption, the average internal axial
force applied to the differential element from the undeformed length dL)
to the deformed length dLj is Pp/2, where P, = EpApep is the tension
force.
The work dw? done by the conservative internal force on the differ-
ential element is given as

P
dw’ = ?" (dL, — dL)) (43)

The potential energy V; of the bar member is then obtained by inte-
grating dw? with respect to ¢ in the domain [0,1]:

=0

E=1
v, = / dw? (44)
&

The explicit form of V} can be obtained by substituting Eqs. (40)-(43)
into Eq. (44):

EA(Ly — L9 EApm® on L, 42
- > (g 45
219 BT 2la) (45)

i=1

Finally, let the Lagrangian be L} = T}, —V;; the nonlinear equations of
motion of a bar member of a tensegrity structure can be obtained by
Lagrange’s equations

d (ot ort
dt 0q b ()q b

= Jue (46)

where qp are generalized coordinates defined as

Qb:[xo Yo 20 X1 Yoz g e (Ii/,,] (47)

and fy,. is the generalized force vector associated with nonconservative
loads obtained by the virtual work expression.

4.2. Nonlinear dynamic model of a cable member

Consider a cable member that connects two nodes of a tensegrity
structure in a three-dimensional global Cartesian coordinate system (see
Fig. 3(a)). Global Cartesian coordinates of the two nodes are (xo, yo, 20)
and (x1, y1, 21), respectively. The longitudinal direction of the cable

. =
member can be expressed by the position vector R:
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R X1 — Xo
Re={y1—Y (48)
21— 20

An independent natural spatial variable ¢ € [0, 1] is used to describe
an internal position of the cable member. Similar to modeling of bar
members in Section 4.1, it is convenient to define u, as a position, not a
displacement, of the cable member for nonlinear dynamic modeling of a
tensegrity structure in the three-dimensional space. According to Egs.
(17) and (22), the global coordinate u, of a differential element of the
cable member can be expressed as a summation of internal terms and the
boundary-induced term:

uc(&,1) = W&, 1) +TL(E, 1) + T (£,1) (49)

Since the cable member is modeled as a taut string with both lon-
gitudinal and transverse displacements, the internal term is composed of

. . . ~1 .
a corresponding longitudinal term 1, and a corresponding transverse

term u':
L) =Y qsin(rg) Fe, W (E1) =, Wi+ T, W2 (50)
where
Z i sin(jzé)
(51)

" —z

The generalized coordinates qJ, q" and q are used to describe internal

7 sin(jmg)

displacements of the cable member in the longitudinal and transverse
directions, respectively; q]L = 0 means that there is no internal
displacement in the longitudinal direction, (q}l,q]@) =0 means that
there are no internal displacements in the two transverse directions.
Note that the transverse displacements at the two boundary nodes are
zero at all time, since the nodal displacement is considered as a com-
bination of the member rigid-body motion and longitudinal displace-
ment in the three-dimensional space by the CSD method. If the two
boundary nodes are fixed, the cable member is at equilibrium when the

generalized coordinates q], “ and q are zero. The unit vectors 7, W1

and W in Egs. (50) and (51) are used to represent the longitudinal di-
rection and two transverse directions of the cable member, respectively:

— — —
— R c W Wl W WZ (52)

where the unit vectors W, and W, are perpendicular to the longitudinal
direction 7. of the cable member, and are perpendicular to each other;

L. is the magnitude of the vector R., representing the length of the cable
member subject to the longitudinal displacements:

L= \/(x] —x0)* + O —y0)* + (@1 — 20)° (53)
. — — . —

L; and L, are magnitudes of the vectors W; and W5, respectively; W; can

be defined as one of the three possible forms:

20— 0

20— 21 (54)

Y1 —Yo

Yo — N
— — —
Wi=lxi—x|, Wi = 0 , W=

0 X1 — Xo

and Wz is obtained by
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—

— -
W, =R, x W, (55)

The boundary-induced term in Eq. (16) is represented in the three-
dimensional global coordinate system as

mmo-u—&%ﬂ+:%ﬁ 56)

20 21

According to Eq. (56), £ = 0 represents the location of the node (xo, yo,
20), and & = 1 represents the location of the node (x1, y1, 21). Then, an
expansion form of the global Cartesian coordinate u(¢, t) of the differ-
ential element of the cable member at the position ¢ is obtained by
substituting Egs. (50) and (56) into Eq. (49):

we(&r) = [ u)

T

uﬂT-i-[uf u ] 57)

where

[ w w]" =(1-8[x
i=1
N,

[} sin(ine) W, + g sin(jng) W]

J=1

[ w ] =
(58)

4.2.1. Kinetic energy of a cable member
The velocity u.(¢,t) of a differential element at £ on the cable
member can be obtained by taking the time derivative of Eq. (49):

o (E,1) = (&, 1) + L (E1) + (&, 1) (59)

The time derivatives of the longitudinal and transverse internal terms

ﬁlc(f, t) and ﬁi(g,r), and the boundary-induced term ﬁb(g, t) are given by

N

o ] g ql. R LC—>
u.(&,t) = qsm né +( )sm né — (—‘)sm né)—R.
(60 =3 |dintine o+ () sintine) R — () sinGne) -

(60)
. N | r,
ﬁi(:, 1) = ; _q" sin(jn€)w) +L—sm(ﬁr£)W1 — L—sm([ﬂf)
+ q 2sin(jré) W, + L (/mf)Wz — %sm(/ﬂf) } (61)
Xo X1
(57 ) = ( 5) Yo | +& |0 (62)
2y 2

respectively. Since the internal displacements described by the gener-
alized coordinates qu-, q}?‘ and q]@ are usually significantly smaller than the
deformed length of the cable member, it can be assumed that

! 41 12
Do, Lno, Lno (63)
L. L, L,

By substituting Eq. (63) into Egs. (60) and (61), the terms associated
1 g
with Eq. (63) vanish. The internal terms 1, (¢, t) and uZ(é, t) become

N
(e = 3 |disintine) 7. (60
i=1
N,
Z {q" sin(jzg) W + ¢ sin(jzng) w ] (65)

N
Yo 2l +Ex oy al +) ] gisin(iné) 7.
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Substituting Eq. (62) and Egs. (64) and (65) into Eq. (59) yields an
expansion of the velocity of the differential element of the cable member
in the global Cartesian coordinate system:

Ni Ni

i(En =3 {q’fsin(iﬂé)?c} +>

i1 j=1

g sin(jné) w,

)é() xl
+ Psin(irE) W | + (1= &) | Yy | +&| W (66)
Z 3

Since assumption (A5) states that there is a uniformly distributed
mass along the axial direction of the cable member, the mass of the
differential element d¢ is m.dé, where m, is the mass of the whole cable
member. The kinetic energy of the differential element d¢ on the cable
member is given as

2

ar. = dé 67)

2|

Thus, the kinetic energy of the entire cable member can be obtained by
integrating Eq. (67) with respect to ¢ in the domain [0,1]:

=1
T, = / dT, (68)
<

£—0

The explicit form of the kinetic energy of the cable member can be ob-
tained by substituting Egs. (66) and (67) into Eq. (68):

1
T. = im((Tx + Tv + Tz) (69)
where

1
T, = %o, + g(xo — &)+ T T+ T

. 1,. X
Ty = Yoy, +§(y” _y')2 + T‘I + T; + T‘“ (70)
1
T.=doh + 36 —4) + T+ L+ TV

Tl ¢, T, Tt and TL are given as

Expressions of the terms T, T¢, T, T T¢ Vo T

x? txr tx o y’

X1 — X N
1 0
T[ =

* 2L, i:l{ L.

T;:%g[(q;‘wfﬁqfw;) (g + ) sl

X1 — Xo .2

(@) +4

Xo — xjcos(in) .,
i i

L X1 —Xo WA (712)
i w
L D D)L
= J=
: . q,(q"w +q2w‘> if i=j
with T}, =
0, if i#j
T! _ 1Yo i N —yo(q()Z +4)"0 —ylcos(i”)qz_
TS A in ‘
1 N N — .
T, :72 ( W)+ g ‘> +4(£]}‘W¥+i{}zvvé)w
255 Jz
S Z ZT (71b)
. N q,("w? +qu2) if i=j
with T3, =

0, if i#Aj
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N, . . .

21— 2 21— 20,.2 2o — Zycos(im),

T = =2 4= =y
<7 oL Z{ L @)+ iz

i=1

R i 20 — z1c08(j)
275 E: {( g wi + g ) +4( W1+q/w2)j7ﬂ
1 21 — 20 M Y (71C)
A S Z
D 3D L
=1 j=

dgwi+apws), it i=j
0, if i)

where wf, w}, w8, w¥
=,
w1 and Wo.

X, W and w5 are the x-, y- and z-components of the
vectors w

4.2.2. Potential energy of a cable member

The differential element of a cable member that starts at the position
£ and ends at the position ¢ + d¢ is shown in Fig. 3(b) and 3(c). The
displacement of the differential element is composed of longitudinal and
transverse ones. The derivation of the potential energy of a cable
member associated with the longitudinal displacement is the same as
that of a bar member. By following the procedure in Section 4.1.2, the
longitudinal potential energy V. of a cable member is given as

— 1% EA7
¢ 20 AL Z #(a)’ 72)
c c =1

After the differential element elongates to the length dL, due to a
longitudinal displacement (see Fig. 3(b)), a transverse displacement is
imposed to the same element (see Fig. 3(c)). Under the transverse
displacement, the differential element elongates to the length dS. Ac-
cording to geometry information in Fig. 3(c), dS, dL. and dW, have the
following relationship as they form a right triangle:

dS, = \/(dL,)* + (dW,)* (73)

where the transverse displacement dW, is expressed as

aw, — | 2+ i, dg 74)
‘o 3 o

and dL. is obtained by the procedure given in Egs. (37)-(40):

dL. =

N
L.+ Z qﬁiﬂ'COS(iﬂ,’f):| dé (75)

i=1

Since the transverse displacement of the cable member usually causes
little additional change in the member length, it is assumed that the
cable tension force P, can only be changed by longitudinal displace-
ments. In other words, the cable tension remains the same after the
transverse displacement is imposed to the differential element of the
cable member. Thus, the work done by the tension force on the differ-
ential element of the cable member associated with the longitudinal and
transverse displacements are independent of each other. The work done
by the tension force associated with the transverse displacement is

dw' = P (dS. — dL,) (76)
where P, = EA.¢. is the cable tension force. The strain ¢, of the differ-
ential element of the cable member at the location & is calculated as

dL, — dI?

dr? a7)

£ =

The undeformed length dL? of the differential element is
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ard = Ld¢ (78)

where L? is the undeformed length of the cable member.
By substituting Eq. (73) into Eq. (76), dw’ can be rewritten as

PAAN
dw' = P.dL. [ 1/1 ) —1 79
We ( + (dL) ) (79)

Since the transverse displacement of the differential element of the cable
member is significantly smaller than its deformed length:

AW, <dL, (80)

Thus, one has

1 aw.\> P,
P 1 f
aw' 2PCdL[< dL(,> 3L, (dW,)? (81)

By condition (63) and Eq. (75), one has

1 1
~—d. 82
a. L ¢ (82)

Substituting Eqgs. (74) and (82) into Eq. (81) yields the expanded form of
dwt:

2

. EA, 0 NN ST

aw'. = TR L —L)+ Zqimcos(mf) Z q;' jmeos(jné)
el i=1 J=1

N, 2
+ ( Z q}ﬁﬂcos(iﬂf)) } dé (83)
=1

The potential energy V! of the cable member associated with the

transverse displacement is then obtained by integrating dw’ with respect
to & in the domain [0,1]:

=1
V= f dw' (84)
£=0

The explicit form of V{ can be obtained by substituting Eq. (83) into Eq.
(84):

Vi=Vi4+VE (85)

where
E AT N, 5 s
V=SS (L- L)Y R + (6]
4L, ( );
N N N
Vi = Z Z Z Vijk

=1 =1 k=1

(86)

in which V; i is given as

EA, jq'n 2 277 . D1 e e mm g
AL i+ [(q]") +(qj’?) ][IZCOSZ(/E)—Z_/ZL if (i=2)N({=k)
Vijk e
f i j—k=0
(+jrhG+i-oa—j+o "
Vije = Vijk L
’ fi—j+k=0
(TR -Gk "
Vijk e e
f —k=0
(G Ri—j—r "'
0, else

(87)

with
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bar member

cable member

1m

Fig. 4. A planar Snelson’s X tensegrity structure.

Table 1
Dimensional and material parameters of cable and bar members of the
Snelson’s X tensegrity structure.

Parameter Value
Young’s modulus of bar member 183 GPa
Young’s modulus of cable member 200 GPa
Radius of bar member 5mm
Radius of cable member 1 mm
Material density of bar member 1750 kg/m®
Material density of cable member 7850 kg/m®

EA(—1)

D Pk + K - ) qi(q} ¢

+ ¢ q}?)cos(jr)cos(kx)

Vijk = — /i

(88)

The total potential energy of the cable member is obtained by summing
terms associated with the longitudinal and transverse displacements:

V.=V 4Vt (89)

Finally, let the Lagrangian be L: = T, —V,; the nonlinear equation of
motion of a cable member of a tensegrity structure can be obtained by
Lagrange’s equations

L
K% °0)

d [ort B
aqc — Jnc

dt \ g,

where q. are generalized coordinates of the cable member, defined as

n 12
4qn, 4N, ]
(€)Y}

_ 1 ! 1 15}
g=[x% Yo 20 @ y u ¢ qy, 4\ 4

4.3. Linearized equations of motion for vibration analysis

The nonlinear equations of motion of bar and cable members can be
linearized at an equilibrium configuration of a tensegrity structure for its
vibration analysis. Denote global nodal coordinates of the two ends of a
bar and cable member at the equilibrium state as (x{,y§,2§) and (x§,y5,
#4), respectively. Values of other generalized coordinates ¢, ¢\, ¢ and
g™ associated with internal longitudinal and transverse displacements
are zero at the equilibrium state. Linearized equations of motion of a bar
and cable member are given as

My, + Kqy = fue (92)

MG, +Kege = fuc 93

10
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respectively, where M}, and M, are the linear mass matrices, and K; and
K. are the linear stiffness matrices of the bar and cable members,
respectively. A dynamic model of the whole tensegrity structure can be
assembled in a straight-forward way by using common nodal co-
ordinates of structural members in Egs. (92) and (93), without a local-to-
global coordinate transformation. The linearized dynamic model of the
whole tensegrity structure is useful for various analysis and design tasks,
such as modal analysis, control system design and structural health
monitoring.

The highlight of the proposed CSD method is that internal dis-
placements of structural members are successfully incorporated in the
process of nonlinear dynamic modeling of tensegrity structures. The use
of generalized coordinates that describe internal displacements of
structural members grants the proposed method an ability to achieve
accurate dynamic responses of tensegrity structures, especially for vi-
bration analysis in the high-frequency domain. The proposed method is
applicable to both simple and complex tensegrity structures, and
computationally efficient as it converges in a super-linear rate by using
only a small number of internal terms of member displacements.
Meanwhile, the use of the global Cartesian coordinate system in the
proposed method provides the following advantages: first, a dynamic
system of the whole tensegrity structure can be assembled in a fast and
straight-forward manner; second, rigid-body motions of structural
members are automatically incorporated in the process of dynamic
modeling; and third, large-scale and irregular tensegrity structures are
effectively handled.

5. Numerical examples

For demonstration of the CSD method, three examples of vibration
analysis of tensegrity structures are studied in this section. In the first
example, a planar Snelson’s X tensegrity structure is investigated for
illustrating the use of the CSD method. The second example is a three-
dimensional tensegrity tower. The aim of this example is to verify the
accuracy and efficiency of the CSD method on a regular tensegrity
structure in the three-dimensional space. The third example is an
irregular tensegrity structure, which is used to demonstrate the
remarkable accuracy and efficiency of the CSD method in handling
extremely complicated and irregular tensegrity structures. In the three
examples, the CSD method is compared with the Lagrangian method
based on generalized coordinates proposed by Sultan and Skelton
(2003), the commercial FEA software ANSYS, and the FEA method
proposed by Kan et al. (2018a). Approaches to dynamic modeling of
tensegrity structures similar to the Lagrangian method based on gener-
alized coordinates can also be found in works of Oppenheim and Wil-
liams (2001a), Oppenheim and Williams (2001b) and Kan et al. (2018b),
where bar members are treated as rigid bodies and cable members are
treated as massless springs; those similar to the FEA methods can also be
found in works of Ali and Smith (2010), Faroughi and Lee (2015) and Ma
et al. (2022), which assumed uniform material particle distribution
along structural members. Note that other dynamic modeling methods,
for example, the dynamic stiffness method (Fergusson and Pilkey,
1993), can also potentially predict accurate dynamic responses of ten-
segrity structures. Therefore, in future research, it is worth investigating
the performance of these dynamic modeling methods, while comparing
them with the CSD method proposed in this paper.

5.1. A planar Snelson’s X tensegrity structure

A planar Snelson’s X tensegrity structure with four nodes, two bars
and four cables is investigated in the first numerical example. The to-
pology and dimensions of the structure are shown in Fig. 4. Materials of
bar and cable members are assumed to be carbon fiber and steel,
respectively, with their parameters given in Table 1. The structure is
self-stressed, with member internal forces being 141.42 N in
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Mode 3
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Fig. 5. The three mode shapes of the planar Snelson’s X tensegrity structure obtained by the Lagrangian method.
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Fig. 6. The fifth throug ninth mode shapes of the planar Snelson’s X tensegrity structure obtained by the CSD method.
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Fig. 7. Mode shapes of the planar Snelson’s X tensegrity structure associated with only transverse displacements of cable members.

Table 2 Table 4
Natural frequencies in Hz of the Snelson’s X tensegrity structure obtained by the

Natural frequencies in Hz of the Snelson’s X tensegrity structure obtained by the
Lagrangian method and the CSD method for N; = 0 and N, = 0.

Lagrangian method and the CSD method for N, = 0 and N; = 0.

f1 (fs) f2 (fe) f3 (F7) fa (fs) fs (fo) fi (fs) f2 (fe) f3(F) fa (fs) fs (fo)
Lagrangian method 294.15 495.69 609.96 NA NA Lagrangian method 294.15 495.69 609.96 NA NA
CSD method Np = 0 259.36 450.22 538.73 1840.94 2675.81 CSD method N; = 0 259.36 450.22 538.73 1840.94 2675.81
CSD method N = 1 259.28 448.75 538.72 1722.21 2626.21 CSD method N, =1 267.41 455.16 566.35 1891.75 2821.01
CSD method N = 2 259.28 448.75 538.72 1717.51 2581.14 CSD method N, = 2 269.05 461.70 568.36 1910.06 2854.01
CSD method N = 3 259.28 448.73 538.72 1716.63 2580.98 CSD method N; = 3 270.12 462.23 571.98 1916.04 2873.11

CSD method N, = 4 270.63 464.03 572.52 1920.75 2881.80

Table 3
Natural frequencies in Hz of the Snelson’s X tensegrity structure obtained by the
Lagrangian method and the CSD method for N, = 0 and N; = 0.

5.1.1. Modal analysis

Natural frequencies and mode shapes of the dynamic model of the
planar Snelson’s X tensegrity structure are calculated by solving the

A () f2 (fe) f3 (f7) fa (fe) fs (fo) eigenvalue problem of
Lagrangian method 294.15 495.69 609.96 NA NA - -
CSD method N; = 0 259.36  450.22  538.73 1840.94  2675.81 MapQap + KopQop = 0 (94)
CSD method N; = 1 259.25 449.73 538.33 1789.57 2294.10 . .
CSD method N; = 2 259.25 449.70 538.26 1787.75 2291.09 where Myp and Kyp are mass and stiffness matrices of the whole struc-

CSD method N; = 3 259.25 449.69 538.25 1787.46 2290.83

ture, and Q2p is the generalized coordinate vector of the whole structure.
CSD method N; = 4 259.25 449.69 538.25 1787.36 2290.66

These two matrices are obtained through an assembly of mass and
stiffness matrices of each member of the structure. For comparison, a

compression for the two bar members, and 100 N in tension for the four dynamic model of the structure 1s alst? developed by the Lagrangla.n
cable members. To eliminate rigid-body motions of the structure, dis- metho‘? based on t.h.e generalized coordinates X», 61 and 6, where x; is
placements at node one in the x- and the y-directions, and the the horizontal p.osmon of node two, e.md 01 an.d 0 are angles of t1.1e two
displacement at node two in the y-direction are restricted to zero. bar members with respect to the horizontal direction. The equations of

11
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Table 5
Natural frequencies in Hz associated with cable member transverse displace-

ments of the planar Snelson’s X tensegrity structure obtained by the CSD method
for N, = 0 and N; = 0.

fl fS f9 fl3 fl7
No=1 31.82 N/A N/A N/A N/A
N=2 31.82 63.65 N/A N/A N/A
N,=3 31.82 63.65 95.46 N/A N/A
N=4 31.82 63.65 95.46 127.28 N/A
N.=5 31.82 63.65 95.46 127.28 159.08
3000 . ,
2000 | e ——— :
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/'/‘ 7777777 N(
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Number of internal terms

Fig. 8. History of convergence of the natural frequency fo of the Snelson’s X
tensegrity structure.

motion based on the generalized coordinates are derived in Appendix A.

The dynamic model developed by the Lagrangian method has three
degrees of freedom, and one can obtain three natural frequencies. All the
three natural frequencies are investigated in this example. The three
corresponding mode shapes are shown in Fig. 5. For a direct comparison,
the fifth through ninth mode shapes associated with nodal modtions
obtained by the CSD method for N, = 0, N; = 0 and N; = 1 are presented
in Fig. 6. As seen from Figs. 5 and 6, nodal motions of the three mode
shapes obtained by the two methods are in good agreement. Different
from the Lagrangian method, the CSD method can also reveal the mode
shapes associated with bar member elongations (see the fourth and fifth
mode shapes in Fig. 6). In addition, the CSD method can also predict
transverse motions of cable members within these mode shapes. The
first four mode shapes of the dynamic model developed by the CSD
method for N, = 0, N; = 0 and N; = 1 are presented in Fig. 7, which
shows that the CSD method can also reveal mode shapes associated with
transverse displacements of cable members.

The five natural frequencies of the planar Snelson’s X tensegrity
structure obtained by the two methods are given in Tables 2-4. Note that
the three natural frequencies (f1-f3) of the dynamic model developed by
the Lagrangian method are compared with the natural frequencies of
those developed by the CSD method with similar nodal motions of their
mode shapes. As observed from the results, accuracy of the natural
frequencies can be significantly improved by use of the internal
displacement terms in the CSD method. According to Table 2,
improvement of 13.45%, 10.46% and 13.22% in accuracies of f (fs), fa
(fe) and f3 (f7) are achieved by using three terms of internal displace-
ments of bar members (N, = 3). According to Table 3, improvement of
13.46%, 10.23% and 13.32% in accuracies of f (fs), f2 (fe) and f3 (f7) are
achieved by using four terms of internal displacements of cable members
in longitudinal directions (N; = 4). According to Table 4, improvement
of 8.89%, 6.82% and 6.54% in accuracies of fi (fs), f2 (fs) and f3 (f7) are
achieved by using only four terms of internal displacements of cable
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Fig. 9. Frequency responses at node four of the planar Snelson’s X tensegrity
structure in the y-direction at 0-3000 Hz obtained by the Lagrangian method
and the CSD method for: (a) N, = 0-3, N;= 0 and N; = 0; (b) N, = 0, N;= 0-3
and N, = 0; and (c) N, = 0, N; = 0 and N, = 0-3.

members in transverse directions (N; = 4).

The first, fifth, ninth, 13th and 17th natural frequencies, whose mode
shapes are associated with only transverse displacements of cable
members, of the dynamic model developed by the CSD method are given
in Table 5. As seen from the table, the first several natural frequencies
associated with transverse displacements of cable members are signifi-
cantly lower than those associated with nodal motions. This is due to the
low stiffness of cable members in their transverse directions.

The history of convergence for the last natural frequency fy is shown
in Fig. 8. Convergence is defined as follows: the difference of fg between
two adjacent values of Np, N and N; is smaller than 0.01%. As observed,
the natural frequency fg converges in a super-linear rate. Convergence of
foisreached at Np = 3, N; = 4 and N; = 24, which shows that the the CSD
method can accurately predict natural frequencies of the planar Snel-
son’s X tensegrity structure by using only a small number of internal
terms of member displacements.

5.1.2. Frequency response

Let a point-wise sinusoidal force Fr = Fosin(2zft) be applied at node
two of the Snelson’s X tensegrity structure in the x-direction with Fy =
1000 N. The frequency response at node four of the structure in the y-
direction can be predicted by the Lagrangian method and the CSD
method. As seen in Fig. 9, the results of the Lagrangian method and the
CSD method do not match. It is shown that consideration of bar mem-
bers elongations and member internal displacements is essential in
predicting accurate dynamic responses of some tensegrity structures in



S. Yuan and W. Zhu

-6
10
35 | | :
—— Lagrangian Method
251 CSD Method, N,=0, N;=0, N;=0 J
—_CSD Method, N,=1, N;=1, N,=5
2r ~ - CSD Method, N,=2, N;=3, N=15 1
A
150 i\ |~~~ - CSD Method, N,=3, N=4, N=24 j\ A\ .
N A LA S
; v ) [
[

Displacement (m)
o
o o

-0.5

0.004 0.006

Time (s)

Fig. 10. Displacement at node three of the planar Snelson’s X
structure in the x-direction at the excitation frequency of 2000 Hz.

tensegrity

%107
T T T T T T
E
=
[
E .
8 L jan Method
8 agrangian Mef S _ _ N
s -~ CSD Method, N, =0, N,=0, N,=0 i ,/—
a ~———CSD Method, N, =4, N;=7, N,=33 \ / g
A5 ———— CSD Method, N, =8, N;=14, N =66 - ,,// 1
ol —~—— — CSD Method, N, =12, N,=22, N=100 K’\A/"\/\/” 1
251 ]
3 . . . . , .
0 0.5 1 15 2 25 3
Time (s) %107

Fig. 11. Displacement at node three of the planar Snelson’s X tensegrity
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Fig. 12. Displacement at node three of the planar Snelson’s X tensegrity
structure in the x-direction in free vibration.

both low- and high-frequency domains.

As seen in Fig. 9 (a) and (b), the CSD method for N, = 0 and N; = 0,
and that for N = 1-3 and N; = 1-3 are in good agreement under 1000
Hz. This is the case because the natural frequencies revealed by adding
internal terms of member longitudinal displacements are above 5000 Hz
for N, > 0, and above 2600 Hz for N; > 0. However, Fig. 9 (c) shows that
the results of the CSD method for N; = 0 and that for N; > 0 do not match
under 500 Hz when internal terms of cable member transverse dis-
placements are used (N; > 0) by the CSD method. This is due to the fact
that the natural frequencies associated with cable member transverse
displacements are in a lower frequency range (under 50 Hz). Thus, these
results show that the CSD method can provide more accurate dynamic
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node

cable

bar

Fig. 13. A three-dimensional tensegrity tower.

responses in a low-frequency domain. It is also shown that in the fre-
quency range of 1500-3000 Hz, which is near the natural frequencies f4
and f5 of the dynamic model developed by the CSD method for N, = 0, N;
= 0 and N; = 0, the use of any type of internal terms of member dis-
placements (N > 0, N; > 0 and N; > 0) by the CSD method can signif-
icantly improve the accuracy of frequency response prediction.

5.1.3. Transient response

Let a point-wise sinusoidal force Fy = Fosin(2xft) be applied at node
two of the Snelson’s X tensegrity structure in the x-direction with Fy =
10 N. The transient responses at node three of the structure in the x-
direction are plotted in Figs. 10 and 11 at excitation frequencies of 2000
Hz and 15000 Hz, respectively. In both cases, the solutions obtained by
the Lagrangian method are inaccurate, compared with the CSD method.
As observed from Fig. 10, the CSD method can accurately predict the
transient response for the 2000 Hz excitation frequency by using only a
small number of internal terms of member displacements. The results for
Np = 1-3, N; = 1-4 and N; = 5-24 obtained by the CSD method are in
good agreement, which shows a trend of convergence. As observed from
Fig. 11, only the CSD method can reveal the high-frequency responses
for the 15000 Hz excitation frequency. Note that the high-frequency
vibration of node two cannot be captured by the Lagrangian method.
The results for N, = 8-12, N; = 14-22 and N; = 66-100 obtained by the
CSD method are in good agreement, which shows a trend of conver-
gence, while the result for N = 4, N; = 14 and N, = 33 is inaccurate. This
is the case because more internal terms of member displacements are
needed by the CSD method to accurately predict dynamic responses of a
tensegrity structure in the high-frequency domain.

The transient response of the planar Snelson’s X tensegrity structure
in free vibration at node three in the x-direction is plotted in Fig. 12,
with the initial displacement at node two in the x-direction being 1 x 10
6 m. Initial conditions for all other nodes and member internal dis-
placements are at the initial equilibrium configuration of the structure.
Similar to the results for forced vibration, the Lagrangian method cannot
accurately predict dynamic responses of the structure in free vibration.
For the CSD method, more internal terms of member displacements are
needed if dynamic responses in the high-frequency domain need to be
accurately revealed.

5.2. A three-dimensional tensegrity tower

A three-dimensional tensegrity tower with nine nodes, six bars and
12 cables, which is similar to the structure studied by Ma et al. (2022), is
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Fig. 14. The first two mode shapes of the dynamic model of the three-dimensional tensegrity tower developed by: (a) ANSYS; and (b) the CSD method for N, = 0, N;

=0and N, = 0.
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Fig. 15. The 17th and 18th mode shapes of the dynamic model of the three-dimensional tensegrity tower developed by:
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Table 6
The first, second, 17th and 18th natural frequencies in Hz of the three-
dimensional tensegrity tower obtained by ANSYS and the CSD method.

f f2 f7 fis
ANSYS 0.0109 0.0195 8.6101 8.6210
CSD Method N, = 0, N;= 0, N, =0 0.0109 0.0195 8.6100 8.6210
CSD Method N, =3, N;=3,N,=3 0.0109 0.0195 2.0495 2.0495

investigated here as the second numerical example. A perspective view
of the structure is shown in Fig. 13, with nodal coordinates given in
Appendix B. The material parameters, topology and member internal
forces of the structure are given in Appendix B, where compression and
tension forces are given as negative and positive values, respectively.
Positions of nodes one, two and three in the x-, y- and z-directions are

14

Mode17
f=2.0495Hz

Mode18
f=2.0495Hz

-10

(a) ANSYS; and (b) the CSD method for N;, =

fixed for elimination of rigid-body motions of the tensegrity tower. In
this example, the proposed CSD method is compared with the com-
mercial FEA software ANSYS.

5.2.1. Modal analysis
Natural frequencies and mode shapes of the three-dimensional ten-
segrity tower are calculated by solving the eigenvalue problem of

Mtuwchmwer + Kiower Qiower =0 (95)

where Mioyer and Kioyer are mass and stiffness matrices of the whole
structure, respectively, and Qyer is the generalized coordinate vector of
the whole structure. These two matrices are obtained through an as-
sembly of mass and stiffness matrices of each member of the structure.

The dynamic model of the three-dimensional tensegrity tower
developed by ANSYS has 18 degrees of freedom, and can thus yield 18
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Fig. 16. Frequency responses at node six of the three-dimensional tensegrity
tower in the z-direction at 0-6 Hz obtained by ANSYS and the CSD method for:
(@) Ny =1-3, N; = 1-3 and N; = 0; and (b) N, = 0, N; = 0 and N, = 1-3.
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Fig. 17. Frequency responses at node six of the three-dimensional tensegrity
tower in the z-direction at 6-20 Hz obtained by ANSYS and the CSD method for:
(@) N, =1-3, N;=1-3 and N, = 0; and (b) N, = 0, N; = 0 and N, = 1-3.

natural frequencies. The first two mode shapes obtained by ANSYS and
the CSD method for N, = 0, N; = 0 and N; = O are shown in Fig. 14 for a
direct comparison. As observed, the nodal motions of the two mode
shapes obtained by the two methods are in good agreement, which
shows the correctness of the CSD method. The 17th and 18th mode
shapes obtained by ANSYS and the CSD method for N, = 0, N;= 0 and N;
=1 are given in Fig. 15. As observed, the mode shapes obtained by the

15

International Journal of Solids and Structures 270 (2023) 112179

x10®
Al ANSYS

————— CSD Method, Nb=1, N|=1, N‘=5
————— CSD Method, Nb=2’ N|=2, Nt=10

G - CSD Method, N, =3, N=3, N=15 | |

<

@

IS

@

9]

©

[o%

L

o

Time (s)

Fig. 18. Displacement at node six of the three-dimensional tensegrity tower in
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Fig. 19. Displacement at node six of the three-dimensional tensegrity tower in
the z-direction at the excitation frequency of 50 Hz.

two methods are different. This is the case because the CSD method can
also reveal mode shapes associated with transverse displacements of
cable members, while these mode shapes cannot be obtained by ANSYS.
The natural frequencies obtained by ANSYS and the CSD method are
compared in Table 6. As seen from the table, the natural frequencies f,
f2, fi7 and f1g obtained by ANSYS and the CSD method without using
internal terms of member displacements (N, = 0, N; = 0, N; = 0) are in
good agreement, which shows the correctness of the CSD method. The
use of internal terms of member displacements by the CSD method (N
= 3, N; = 3, N; = 3) provides little impact on the first two natural fre-
quencies. On the other hand, the use of internal terms of member dis-
placements shows a strong impact on the values of f;7 and fig. This is the
case because the natural frequencies f17 and fig obtained by the CSD
method for N, = 3, N; = 3 and N; = 3 are for modes shapes that cannot be
revealed by ANSYS or the CSD method for N, = 0, N; = 0 and N, = 0.

5.2.2. Frequency response

Let a point-wise sinusoidal force Fr = Fosin(2xft) be applied at node
nine of the three-dimensional tensegrity tower in the z-direction with Fy
= 10000 N. The frequency response at node six in the z-direction of the
structure is predicted by ANSYS and the CSD method in Figs. 16 and 17.
Asseen in Fig. 16 (a), the two methods are in good agreement under 6 Hz
for N, = 1-3 and N; = 1-3. This is the case because the natural fre-
quencies revealed by adding internal terms of member longitudinal
displacements are above 13 Hz for N}, > 0, and above 50 Hz for N; > 0.
However, the results in Fig. 16 (b) show that the results obtained by
ANSYS cannot reveal some peaks of the results obtained by the CSD
method when internal terms of cable member transverse displacements
are used (N; > 0). This is due to the fact that these peaks are the natural
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Fig. 20. Displacement at node six of the three-dimensional tower in the z-di-
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frequencies associated with transverse displacements of cable members,
which can only be revealed by the CSD method. In the frequency range
of 6-20 Hz, the results in Fig. 17 show that the use of all three types of
internal terms (longitudinal displacement terms of bar and cable mem-
bers, and transverse displacement terms of cable members) by the CSD
method can significantly improve the accuracy of the frequency
response of the three-dimensional tensegrity tower, as compared with
those obtained from ANSYS.

5.2.3. Transient response

Let a point-wise sinusoidal force Fy = Fosin(2xft) be applied at node
nine of the three-dimensional tensegrity tower in the z-direction with Fy
= 10000 N. The transverse displacements at node six of the structure in
the z-direction are plotted in Figs. 18 and 19 at excitation frequencies of
9.5 Hz and 50 Hz, respectively. As observed from Fig. 18, the results
obtained by the CSD method for N = 2-3, N; = 2-3 and N; = 10-15 are
in good agreement, which shows a trend of convergence. However, the
results obtained by the CSD method for N, = 1, Ny =1 and N, = 5, and
those by ANSYS are inaccurate. As observed from Fig. 19, only the CSD
method can accurately predict dynamic responses of the structure at the
50 Hz excitation frequency and reveal the high-frequency vibration,
while the high-frequency vibration of node six cannot be captured by
ANSYS. The results for N, = 10-15, N; = 10-15 and N; = 10-15 obtained
by the CSD method are in good agreement, which shows a trend of
convergence, while the results obtained by the CSD method for N = 5,
N; =5 and N, = 5, and those by ANSYS are inaccurate. This is the case
because more internal terms of member displacements are needed by the
CSD method to accurately predict dynamic responses of a tensegrity
structure in the high-frequency domain.

The transient response of the three-dimensional tensegrity tower in
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free vibration at node six in the z-direction is plotted in Fig. 20, with the
initial displacement at node nine in the z-direction being 1 x 10 m.
Initial conditions for all other nodes and member internal displacements
are at the initial equilibrium configuration of the structure. Similar to
the results of forced vibration, as shown in Fig. 20, the results obtained
by the CSD method for N, =1, N;=1 and N; = 5 and those by ANSYS are
inaccurate. The results obtained by the CSD method with N = 2-3, N; =
2-3 and N; = 10-15 are in good agreement, which shows a trend of
convergence.

5.3. An irregular tensegrity grid

In this example, a largely distorted tensegrity grid with an irregular
layout is studied to demonstrate the efficiency of the CSD method in
handling a large-scale irregular tensegrity structure. The irregular to-
pology layout of this structure was first introduced by Shekastehband
et al. (2013). In this work, nodal positions are changed to form a com-
plete irregular tensegrity structure, as shown in Fig. 21. This structure is
composed of 40 nodes, 36 bars and 84 cables with six rigid-body
mechanisms, three internal mechanisms, and nine states of self-stress.
Although this structure has internal mechanisms, it can still be a sta-
ble structure by properly assigning member internal forces. Materials of
bar and cable members are assumed to be carbon fiber and steel,
respectively, with their parameters being the same as those in the first
numerical example given in Table 1. An initial equilibrium configura-
tion of the irregular tensegrity structure is determined by the stochastic
fixed nodal displacement method proposed by Yuan and Zhu (2021).
Positions of nodes one, 23 and 34 in the x-, y- and z-directions are fixed
for elimination of rigid-body motions of the structure. The proposed CSD
method is compared with the FEA method proposed by Kan et al.
(2018a).

Table 7
Comparison of the first five natural frequencies in Hz of the irregular tensegrity
grid.

fi f2 f3 fa fs
FEA method 71.01 159.72 219.96 233.57 295.50
CSD method 70.98 159.27 218.92 232.60 293.41
Table 8

Comparison of the sixth to the 10th natural frequency in Hz of the irregular
tensegrity grid.

fe f7 fs fo f1o
FEA method 472.31 475.66 621.61 639.25 888.51
CSD method 459.07 460.37 489.10 494.77 500.52
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Fig. 21. An irregular tensegrity grid: (a) the perspective view and (b) the top view.
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Fig. 22. The first mode shapes of the irregular tensegrity grid obtained by (a) the FEA method and (b) the CSD method.
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Fig. 23. The 10th mode shapes of the irregular tensegrity grid obtained by (a) the FEA method and (b) the CSD method.
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Fig. 24. Frequency responses at node 16 of the irregular tensegrity grid in the Fig. 25. Frequency responses at node 16 of the irregular tensegrity grid in the

z-direction at 0-8000 Hz obtained by the FEA method and the CSD method for: z-direction at 8000-30000 Hz obtained by the FEA method and the CSD method
(@) Np = 1-3, Ny = 1-3 and N; = 0; and (b) N, = 0, N; = 0 and N, = 1-3. for: (a) N, = 1-3, N; = 1-3 and N, = 0; and (b) N, = 0, N; = 0 and N, = 1-3.
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Fig. 26. Displacement at node 16 of the irregular tensegrity grid in the z-di-
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Fig. 27. Displacement at node 16 of the irregular tensegrity grid in the z-di-

rection at the excitation frequency of 28000 Hz.
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Fig. 28. Displacement at node 16 of the irregular tensegrity grid in the z-di-
rection in free vibration.

5.3.1. Modal analysis

The first 10 natural frequencies (fi-f19) of dynamic models of the
irregular tensegrity grid developed by the FEA method and the CSD
method for N, = 1, N; = 1 and N; = 1 are investigated, with the results
given in Tables 7 and 8. The corresponding first and 10th mode shapes
are shown in Figs. 22 and 23, respectively. As seen in Table 7, the natural
frequencies fi-fs obtained by the two methods are in good agreement,
with errors being less than 1%. However, the results in Table 8 show that
the natural frequencies fg-f1¢ obtained by the two methods do not match,
with errors being 2.88%-77.52%. It can also be observed that the mode
shapes obtained by the two methods are similar to each other when the
corresponding natural frequencies are close to each other (see Fig. 22
that shows the first mode shape as an example). However, the mode
shapes obtained by the two methods are different when there is a
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significant deviation between the corresponding natural frequencies, see
Fig. 23 that shows the 10th mode shape as an example, since the CSD
method can yield modes that cannot be revealed by the FEA method
even in the low-frequency domain.

5.3.2. Frequency response

Let a point-wise sinusoidal force Fr = Fosin(2zft) be applied at node
39 of the irregular tensegrity grid in the z-direction with Fy = 1000 N.
The frequency responses at node 16 of the structure in the z-direction are
obtained by the FEA method and the CSD method at 0-30000 Hz and
plotted in Figs. 24 and 25. As seen in Fig. 24 (a), the FEA method and the
CSD method are in good agreement under 8000 Hz for N, = 1-3 and N;
= 1-3. This is the case because the natural frequencies obtained by the
CSD method associated with internal terms of member longitudinal
displacements are above 30000 Hz for Nj > 0, and above 15000 Hz for
N > 0, which are far from 8000 Hz. However, Fig. 24 (b) shows that the
results of the two methods match only under 500 Hz when internal terms
of cable member transverse displacements are used (N; > 0) by the CSD
method. This is due to the fact that the natural frequencies associated
with cable member transverse displacements are in a lower frequency
range (450 Hz and above), which shows that the CSD method can pro-
vide a more accurate dynamic response than the FEA method even in a
low-frequency domain. In the frequency range of 8000-30000 Hz, the
results in Fig. 25 show that the use of all three types of internal terms
(longitudinal displacement terms of bar and cable members, and
transverse displacement terms of cable members) by the CSD method
can significantly improve the accuracy of the frequency response pre-
dicted, as compared with the FEA method.

5.3.3. Transient response

Let a point-wise sinusoidal force Fy = Fosin(2xft) be applied at node
39 of the irregular tensegrity grid in the z-direction with Fy = 100 N. The
displacements at node 16 of the structure in the z-direction are plotted in
Figs. 26 and 27, at excitation frequencies of 4700 Hz and 28000 Hz,
respectively. As observed from Fig. 26, the results obtained by the CSD
method for different values of Np, N; and N; are in good agreement,
which shows a fast trend of convergence. However, significant differ-
ences between the results obtained by the FEA method and the CSD
method are observed. As observed from Fig. 27, only the CSD method
can reveal the high-frequency responses for the 28000 Hz excitation
frequency. The results for Np = 2 and 3, N;= 2 and 3, and N;= 10 and 15
obtained by the CSD method are in good agreement. However, the dy-
namic responses obtained by the CSD method for Ny =1, Ny=1 and N; =
5, and those by the FEA method are inaccurate. It is thus shown that the
CSD method can accurately predict dynamic responses of the irregular
tensegrity grid in the high-frequency domain. The use of more internal
terms of member displacements are required by the CSD method to
provide convergence for high excitation frequencies.

The transient response at node 16 of the irregular tensegrity grid in
the z-direction in free vibration is plotted in Fig. 28, with the initial
displacement at node 39 in the z-direction being 1 x 10 m. Initial
conditions for all other nodes and member internal displacements are at
the initial equilibrium configuration of the structure. As shown in
Fig. 28, the results obtained by the CSD method for different values of
Np, N; and N; are in good agreement, which shows a fast trend of
convergence. However, significant differences between the results ob-
tained by the two methods are observed. Therefore, the efficiency and
accuracy of the CSD method in predicting dynamic responses of the
irregular tensegrity structure in free vibration are verified.

As observed from the simulation results of the three numerical ex-
amples, the following conclusion about the CSD method can be made: 1)
The CSD method can reveal more modes of a tensegrity structure than
the Lagrangian method based on generalized coordinates and the FEA
method. These revealed modes can have either local mode shapes
associated with only member internal displacements, or global mode
shapes in which nodal motions and member internal displacements are



S. Yuan and W. Zhu

coupled. 2) More internal terms of member displacements are needed for
the CSD method if the dynamic response in the high-frequency domain
needs to be revealed. 3) It is shown that the dynamic response of a
tensegrity structure predicted by the CSD method is more accurate than
that predicted by the Lagrangian method and the FEA method, espe-
cially in the high-frequency domain. This is supported by the dynamic
responses predicted by the CSD method, which show the existence of the
natural frequencies in the high-frequency domain, and the trend of
convergence with more terms of member internal displacements being
used. 4) The computational efficiency of the CSD method is verified,
since accurate dynamic responses are predicted by the CSD method by
using only a small number of internal terms of member displacements.

6. Conclusions

The Cartesian spatial discretization method is developed for
nonlinear dynamic modeling and vibration analysis of tensegrity struc-
tures. Different from traditional dynamic modeling methods, which
often oversimplify structural members of a tensegrity structure by
neglecting internal displacements, this new method can accurately
predict the dynamic response of a tensegrity structure by incorporating
member internal displacements in the dynamic model so developed. In
this method, the position of a structural member is defined as a sum-
mation of internal terms and boundary-induced terms in a global Car-
tesian coordinate system. A nonlinear dynamic model of the member is
then derived from Lagrange’s equations as a system of ordinary differ-
ential equations. This dynamic model can be linearized at an equilib-
rium configuration for vibration analysis. A dynamic model of the whole
structure is finally assembled in a straight-forward way by using
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common nodal coordinates of structural members. The proposed
method is applied to vibration analysis of a planar Snelson’s X tensegrity
structure, a three-dimensional tensegrity tower, and an irregular ten-
segrity grid, while compared with the Lagrangian method based on
generalized coordinates, the commercial software ANSYS and the finite
element analysis method, to show its capability to handle both simple
and complex tensegrity structures. According to the simulation results,
the proposed method can yield more natural frequencies and mode
shapes with much higher accuracies than the Lagrangian method and
the finite element analysis method, especially in the high-frequency
domain. It is also demonstrated that the proposed method is computa-
tionally efficient as it converges in a super-linear rate by using only a
small number of internal terms of member displacements.
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Appendix A:. Derivation of equations of motion of the Snelson’s X planar tensegrity structure by the Lagrangian method based on
generalized coordinates

The derivation of equations of motion of the Snelson’s X planar tensegrity structure shown in Fig. 4 by the Lagrangian method based on generalized
coordinates is presented here. In this approach, the two bar members and the four cable members are treated as rigid bodies and massless linear elastic
springs, respectively. The three generalized coordinates x», 6; and 09 are defined as the x-coordinate of node two, the angle between the first bar
member and the positive x-direction and the angle between the second bar member and the positive x-direction, respectively (see Fig. 4). One can
obtain the kinetic energies of the two bar members as

1 .

1 . .
I, =gm (L2602 — 3sin0 L, %, + 342) (A2)

where m; and m;, are the masses of the two bar members, which can be calculated using the dimensional and material parameters given in Table 1, and
L; and L are the lengths of the two bar members, which can be calculated from the nodal positions. The potential energy of the four cable members can
be calculated as

Vs = b;ﬁf (x, — L2’ (A3)
V= E;L? <\/(L,cosﬁl —x)° + (Lysing,)* — LS)2 (A4)
Vs = E;Iif <\/(xz + Lycos0, — Licosd; )’ + (Lsind, — L;sind;)> — L2>2 (A5)
Ve = %’fg" (\/ (x2 4 Lycosh)* + (Lpsing,)* — L2)2 (A6)

where EiA; is the longitudinal rigidity of cable member i, determined by the dimensional and material parameters given in Table 1, and L? is the
undeformed length of cable member i, determined by the longitudinal rigidity (E;A;) and the tension force (100 N) of the member at the initial
equilibrium configuration. Thus, the total kinetic energy and potential energy of the structure can be obtained as
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T=T+T, (A7)

V=Vs+Vi+Vs+ Vs (A8)

Let the Lagrangian be L' = T-V; the nonlinear equations of motion of the Snelson’s X planar tensegrity structure can be derived using Lagrange’s
equations

d (oLt oL*
7 (07q> g = fc (A9)

where g = [x3, 01 92]T, and f; is the non-conservative force. Values of some important parameters in Eq. (A.9) are given as: m; =my = 0.1944 kg; L; =
Ly = 1.4142 m; EsA3 = E4A4 = EsAs = EgAg = 6.2832 x 10°N; and LY =19 =13 =13 =0.9998 m.
Equation (A.9) can be linearized at the equilibrium configuration x, = 1 m, 6; = /4 and ¢, = 3z/4, for vibration analysis of the structure:

Mg+ Kq = f. (A10)
where
0.1944 0 -0.0972 1.2570 0.6285 - 0.6285
M= 0 0.1296 0 , K= 0.6285 1.2568 -0.6283 | x 10° (A11)
- 0.0972 0 0.1296 -0.6285 -0.6283  1.2568

Appendix B:. Topology, nodal coordinates, material parameters and member internal forces of the three-dimensional tensegrity tower
in Section 5.2

Nodal coordinates of the three-dimensional tensegrity tower in Section 5.2 are given in Table B1. The topology, material parameters, and member
internal forces of the structure are shown in Table B2.

Table B1
Nodal coordinates of the three-dimensional tensegrity tower in Section 5.2 (m).
Node index x y 2
1 10.0000 0.0000 0.0000
2 —5.0000 8.6603 0.0000
3 —5.0000 —8.6603 0.0000
4 8.6603 5.0000 30.0000
5 —8.6603 5.0000 30.0000
6 —0.0000 —~10.0000 30.0000
7 5.0000 8.6603 60.0000
8 —10.0000 0.0000 60.0000
9 5.0000 —8.6603 60.0000
Table B2
Topology, material parameters and member internal forces of the three-dimensional tensegrity tower in Section 5.2.
Member index Nodes connected Internal force (N) Mass (kg) Longitudinal rigidity EA (N)
1 1,5 —~1.0000 x 10° 1.2454 x 10° 1.8276 x 10'°
2 (2, 6) —1.0000 x 10° 1.2454 x 10° 1.8276 x 10'°
3 3,4 ~1.0000 x 10° 1.2454 x 10° 1.8276 x 10'°
4 (5,9 —~1.0000 x 10° 1.2454 x 10° 1.8276 x 10'°
5 6,7) —1.0000 x 10° 1.2454 x 10° 1.8276 x 10'°
6 (4, 8) —1.0000 x 10° 1.2454 x 10° 1.8276 x 10'°
7 (4,5) 5.6051 x 10* 62.3467 3.4816 x 107
8 (5, 6) 5.6051 x 10* 62.3467 3.4816 x 107
9 6, 4) 5.6051 x 10* 62.3467 3.4816 x 107
10 7,8) 2.8025 x 10* 31.1734 1.7408 x 107
11 8,9 2.8025 x 10* 31.1734 1.7408 x 107
12 9,7) 2.8025 x 10* 31.1734 1.7408 x 107
13 1,4 8.5318 x 10* 166.8041 5.2996 x 107
14 2,5) 8.5318 x 10* 166.8041 5.2996 x 107
15 (3,6) 8.5318 x 10* 166.8041 5.2996 x 107
16 4,7) 8.5318 x 10* 166.8041 5.2996 x 107
17 (5, 8) 8.5318 x 10* 166.8041 5.2996 x 107
18 6,9) 8.5318 x 10* 166.8041 5.2996 x 107
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