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In the design of a large deployable mesh reflector, high surface accuracy is one of ultimate goals since it directly determines overall
performance of the reflector. Therefore, evaluation of surface accuracy is needed in many cases of design and analysis of large
deployable mesh reflectors. The surface accuracy is usually specified as root-mean-square error, which measures deviation of a
mesh geometry from a desired working surface. In this paper, methods of root-mean-square error calculation for large
deployable mesh reflectors are reviewed. Concept of reflector gain, which describes reflector performance, and its relationship
with the root-mean-square error is presented. Approaches to prediction or estimation of root-mean-square error in
preliminary design of a large deployable mesh reflector are shown. Three methods of root-mean-square error calculation for
large deployable mesh reflectors, namely, the nodal deviation root-mean-square error, the best-fit surface root-mean-square
error, and the direct root-mean-square error, are presented. Concept of effective region is introduced. An adjusted calculation
of root-mean-square error is suggested when the concept of effective region is involved. Finally, these reviewed methods of
root-mean-square error calculation are applied to surface accuracy evaluation of a two-facet mesh geometry, a center-feed
mesh reflector, and an offset-feed mesh reflector for demonstration and comparison.

1. Introduction

Large deployable mesh reflectors (DMRs), due to their impor-
tant space applications, have experienced continued research
and development interest in the past several decades [1–4].
A deployable mesh reflector uses a spherical or parabolic sur-
face as a working shape (a required radiofrequency surface),
which is formed by a network or mesh of tensioned facets.

A DMR in consideration is illustrated in Figure 1, which,
after full deployment, is supported by a stiff and stable flat
frame. Although there are some variations, a typical DMR
is composed of a front cable net, a rear cable net, tension ties,
and a supporting structure. The front net (working surface)
in the figure, as well as the rear net, is constructed by a mesh
of flat triangular facets. Edges of the facets are elastic cable
elements interconnected at facet nodes. The nodes of the
front and rear nets are also connected by tension ties of
adjustable lengths. In setting up the DMR, folded nets are

deployed into highly stretched elastic meshes, with lengths
of the tension ties being properly adjusted such that the
facets of the front net eventually form a working surface that
is approximate to the desired radiofrequency surface.

In the design of a large DMR, high surface accuracy is
one of the ultimate goals since it directly determines overall
performance of the reflector. Therefore, evaluation of surface
accuracy is needed in many cases of design and analysis of
large DMRs. For example, surface accuracy can be either
roughly estimated in preliminary design of a DMR to deter-
mine topology, member materials, and facet sizes [1, 5] or
accurately evaluated for analysis of generated mesh geome-
try [1, 6]. The surface accuracy is usually specified as root-
mean-square (RMS) error, which measures deviation of the
mesh geometry from the desired working surface.

In this paper, commonly used state-of-the-art methods
of RMS error calculation for large DMRs shall be reviewed.
Methods to be reviewed include approaches to both rough
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estimation of RMS error for preliminary design and accurate
calculation of RMS error for performance evaluation of large
DMRs. Concepts of reflector gain and effective region, and
their relationship with RMS error calculation shall also be
reviewed. A comprehensive mathematical description shall
be given for each method introduced. The reviewed methods
shall be implemented both in a simple example for illustra-
tive purpose and in practical examples for validation of engi-
neering applicability.

The remainder of this paper is organized as follows: con-
cept of reflector gain, which is a factor that describes reflec-
tor performance, and its relationship with RMS error
calculation will be presented in Section 2. Methods of RMS
error prediction in preliminary DMR design will be intro-
duced in Section 3. Method of RMS error calculation for
generated mesh geometries of DMRs will be described in
Section 4. Concept of effective region and the corresponding
incorporation in RMS error calculation will be shown in Sec-
tion 5. Reviewed methods of RMS error calculation will be
applied to evaluate surface accuracies of several mesh geom-
etries for demonstration and comparison in Section 6. Con-
clusions of the reviewed methods of RMS error calculation
will be given in Section 7.

2. Reflector Gain and RMS Effective
Surface Error

Gain of a reflector is a factor that describes reflector perfor-
mance. It is essential to obtain a reflector with high gain
since loss of gain will seriously reduce efficiency in signal
transmission. An axial gain of a circular aperture may be
written as [7]

G = G0e
−�δ2 , �δ = 4πε

λ
: ð1Þ

where G0 is the gain of no-error reflecting surface with the
value being ηeff ðπD/λÞ2. ηeff is the aperture efficiency. D is

the aperture diameter. λ is the wavelength. �δ is the illumina-
tion weighted mean phase error. ε is called half-path-length
error [8] or effective surface error [7] of a reflecting point on
the reflecting surface with coordinate (xε, yε, zε) (see
Figure 2). In Equation (1), it is assumed that random reflec-
tor surface deformation is much smaller than the
wavelength.

A relationship between reflector gain and half-path-
length error is described in Equation (1), which indicates
that large surface error significantly deteriorates gain of a
reflector, which was first found out by Spencer [9]. Accord-
ing to Ruze [7], ε may be obtained by Equations (2a) and
(2b) with a measurement of a surface deviation Δz in the z
-direction or a surface deviation Δn in the direction normal
to the reflecting surface (see Figure 2).

ε = Δz

1 + rε/2Fð Þ2 , ð2aÞ

Flat truss
Mesh

Front net

Rear net
Tension tie

Figure 1: A typical DMR with deployed working surface.
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Figure 2: Geometric information of surface deviations in the z
-direction and in the direction normal to the reflecting surface.

2 International Journal of Aerospace Engineering



ε = Δnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + rε/2Fð Þ2

q , ð2bÞ

where F is the focal length of a reflector and rε =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ε + y2ε

p
is

the distance from this given reflecting point to the center of a
reflector in the xy-plane.

According to Tanaka [8], ε may also be obtained by
Equation (3)

ε = 1 + cos θð ÞΔz
2 : ð3Þ

Figure 3 shows the geometric information of ε. In this
figure, θ is the angle between focal point direction and direc-
tion from a reflecting point on the reflector to the focal
point.

Note that in Equations (2a), (2b), and (3), ε is defined
as surface error of a specific reflecting point within a
reflector aperture. To evaluate surface error of the whole
reflector, a root-mean-square effective surface error is
defined in [10, 11]

εrms =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∬

S′ε x, yð Þ2ψdS′
∬

S′ψdS′

vuut , ð4Þ

where ψ is an “illumination function” which sometimes is
assumed uniform with ψ = 1 [11]. S′ is aperture area of
the reflector.

3. RMS Error Prediction in Preliminary
Design of DMRs

For a large DMR whose reflecting surface is formed by
facets, it is essential to predict surface accuracy of the
DMR before a mesh geometry is fully generated. Facet sizes
need to be known in preliminary design, such that numbers
of nodes and facets can be determined. Different from the
root-mean-square half-path-length error εrms, which mea-
sures deviation of a deformed reflecting surface from a

desired working surface of general reflectors, the root-
mean-square flat facets error δrms is used to evaluate devia-
tion of a mesh geometry from a desired working surface.
δrms is defined to have the same unit of wavelength λ.
Depending on applications, different budgets for surface
accuracy related to the facet geometry are suggested as
follows [6, 12]:

δrms ≤
λ

N
, ð5Þ

whereN = 50, 75, 100, 150, or 200. Surface deviation of a
DMR may be caused by geometric difference between flat
facets and desired working surface (say, a parabolic or
spherical surface), variation of tension tie load, member
length imperfection, ring structure distortion, and/or ther-
mal strain.

A link between δrms and gain/loss estimation can be
obtained by an approach similar to Equation (1) [13]:

ηrms = exp −
4πδrms

λ

� �2
" #

, ð6Þ

where ηrms is the efficiency factor of reflector gain due to the
RMS error. The reflector gain estimation due to the RMS
error can be obtained as

G = ηrmsG0: ð7Þ

Although Ruze’s derivation in Equation (1) assumes ran-
dom surface errors, it was proved that the approach in Equa-
tion (6) is also useful for estimating gain/loss from
systematic error sources [14].

Agrawal et al. [1] proposed a technique to predict RMS
error for a mesh reflector. RMS error δrms−pre in preliminary
design is estimated in Equation (8) as

δrms‐pre =
1

8
ffiffiffiffiffi
15

p L2

R
: ð8Þ
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Figure 3: Geometric relation between path length error and antenna surface deformation from Ref. [8].
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Note that this approximation is obtained under two
assumptions: first, the desired working surface is a sphere
with radius being R; second, all facets are equilateral trian-
gles with the lengths of three sides being L. Then, the allow-
able length of facet edge is calculated as

L
D

= 4
ffiffiffiffiffi
154

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δrms‐pre

D
F
D

r
: ð9Þ

Reference [1] also introduced an RMS error prediction
method for equilateral square and hexagonal facets as

L
D

= K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δrms‐pre

D
F
D

r
, ð10Þ

where K in Equation (10) is 6.160 for square facets and 4.046
for hexagonal facets. Equations (8) and (9) are widely used
in stage of preliminary design of large DMRs to determine
the maximum allowable facet size [14–16].

Meyer [17] introduced differential geometry of a mesh
surface and used membrane theory to calculate RMS error
for a mesh reflector. Fichter [18] extended theory in Equa-
tions (8)–(10) by considering stress of membrane within
the facets. Similar with the work in Ref. [1], RMS error of
a shallow reflector with equilateral triangular facets is pre-
dicted as

δrms‐pre
D

=
ffiffiffiffiffi
15

p

560
L/Dð Þ2
F/D : ð11Þ

For equilateral rectangular facets of length 2h and width
2k = 2ρh, with 0 < ρ ≤ 1, RMS error was estimated as

δrms‐pre
D

=
ffiffiffi
5

p

120
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + ρ4

p 2h/Dð Þ2
F/D : ð12Þ

Hedgepeth [19, 20] considered mesh saddling in RMS
error prediction by introducing stress of membrane within
the facets, which was also pointed out in Refs. [13, 21].
When effect of membrane tension is considered, mesh of a
reflector is often pulled into a dish shape by auxiliary chords
attached to several interior points. The lateral loading tends
to curve the supporting members inward. Thus, nodal posi-
tions of the mesh were suggested to be adjusted, so as to
compensate this effect. According to Refs. [13, 19], RMS
error of a mesh of equilateral triangular facets is estimated as

δrms‐pre
D

= 0:01614 L/Dð Þ2
F/D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 0:660 pL

t
+ 0:133 pL

t

� �2
s

,

ð13Þ

where p and t are mesh tension and force in supporting
elements.

Influences of member lengths imperfection and thermal
strain on the surface accuracy of large DMRs were studied
by many researchers in the past decades [5, 22–24]. RMS
error prediction for various types of structures including tet-

rahedral truss, geodesic dome, radial ribs, and pretensioned
truss were investigated by Hedgepeth [5]. For a geodesic
dome, RMS error under member lengths imperfection is
estimated as

δrms‐pre
D

= 2F
D

σε, ð14Þ

where σε is the standard deviation of member errors.
Hedgepeth [20] and Mobrem [25] used natural frequency

results from available closed form solutions to estimate surface
error under member length imperfection in preliminary
design of a large DMR. In this inverse frequency squared
method, weighted lump masses were assigned on nodes of a
mesh in the direction normal to the reflecting surface. With
computed natural frequencies wi, RMS error is estimated by

δrms‐pre =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EALσ2

ε

� �
ref

�m
〠
n

i=1

1
w2

i

s
, ð15Þ

where n is the number of modes, E and A are Young’s modu-
lus and the cross-sectional area of members, and �m is the total
weighted masses. ðEALσ2εÞref is the reference values of these
variables under the assumption of

EAjLjσ
2
ε,j = EALσ2ε

� �
ref , ð16Þ

where Aj, Lj, and σ2
ε,j are the cross-sectional area, length, and

standard deviation of error of the j-th member.
RMS error prediction for mesh reflectors considering

deformation caused by thermal loads during in-orbit missions
was investigated in Ref. [5]. Due to a significant temperature
change when entering or leaving the Earth’s shadow, the cor-
responding thermal strain may result in large surface distor-
tion of a mesh reflector. The work in Ref. [5] also studied
temperature difference at nodes of a reflecting surface due to
their different angles to solar radiation. RMS error was pre-
dicted in Equations (17) and (18) by the average strain εave
and the maximum shear strain γmax, if the strains are
expressed in terms of equivalent biaxial membrane strains.

δrms‐pre
D

= 0:0180 εave
F/D , ð17Þ

δrms‐pre
D

= 0:0128 γmax
F/D : ð18Þ

Τhe calculations of εave and γmax are given in Figure 13 of
Ref. [5]

4. RMS Error Calculation for a Generated
Mesh Geometry

Geometric surface error of a DMR can be obtained by either
rough estimation (prediction) or analytical calculation. For a
large DMR, rough surface error estimation (prediction), as
introduced in Section 3, is only used for a preliminary
design. When a mesh geometry is fully generated, evaluation
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of surface accuracy for a given topology and nodal positions
are needed in complete DMR design, especially in compar-
ing different structural design techniques [26] or form-
finding methods [27, 28]. Methods of RMS error calculation
for evaluating surface accuracy of a generated mesh geome-
try shall be introduced and compared in this section.

Surface accuracy of a generated mesh geometry in gen-
eral can be evaluated by three methods: the nodal deviation
RMS error, the best-fit surface RMS error, and the direct
RMS error. Note that the nodal deviation RMS error and
the best-fit surface RMS error do not measure a real devia-
tion of the mesh geometry from the desired working surface.
If stringent requirement on high surface accuracy in DMR
design is implemented, or if nodes of a mesh geometry are
placed off the desired working surface [29], the direct RMS
error is necessary for a more accurate evaluation.

4.1. Nodal Deviation RMS Error. One commonly used eval-
uation of surface accuracy of a DMR is to calculate an
RMS error due to deviation of the nodes of a mesh geometry
from a desired working surface. For instance, such an RMS
error δrms−n can be expressed by [30, 31]

δrms‐n =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
Δx2i + Δy2i + Δz2i
� �s

, ð19Þ

where Δxi, Δyi and Δzi are the normal distances between the i
-th node and the desired working surface in the x-, y- and z
-directions and n is the total number of nodes. This method
is developed under an assumption that the nodes of a reflector
are moved off the desired working surface by certain predict-
able or unpredictable influences, such as thermal loads and

fabrication errors. While being simple and easy to use, the for-
mula in Equation (19) is not accurate enough because it fails to
consider geometric difference between facet planes and curved
working surface. For instance, the surface deviation of a trian-
gular facet from the desired working surface in Figure 4(a)
should be smaller than that in Figure 4(b), but the δrms−n in
Equation (19) gives an opposite result simply because the facet
nodes in Figure 4(a) are off the desired working surface. Fur-
thermore, Equation (19) concludes zero surface error if all
nodes of a mesh are on the desired working surface, regardless
of the number of nodes, which is misleading.

Another type of nodal deviation RMS error, used in Ref.
[32], is to compare values of two parameters: Z′gi and Z′i,
where Z′gi is the z-coordinate of the gravity center (centroid
[1]) of the i-th computed triangular facet on the z-axis and
Z′i is the z-coordinate of the gravity center of the i-th com-
puted triangular facet when projected vertically onto the
desired working surface, shown in Figure 5. The RMS error
δrms−gc is then given by

δrms‐gc =
∑n

i=1S′i Z′i − Z′gi
� �2
∑n

i=1S′i

0
B@

1
CA

1/2

, ð20Þ

with S′i being the projected area of the i-th triangular facet
on the xy-plane. This calculation generally provides an eval-
uation of surface error with relatively low accuracy because
only one point (gravity center) is used for each facet. This
method is developed under an assumption that nodes of a
triangular facet are placed on the desired working surface
of a reflector. To achieve a more accurate evaluation of

Desired working surface

Triangular facet
(a) (b)

Figure 4: Triangular facet and desired working surface: (a) nodes are placed off the desired working surface and (b) nodes are placed on the
desired working surface.

y

z Z'g

Z'
Desired working surface

Triangular facet

Gravity center (Centroid)

Figure 5: Geometric illustration of facet gravity center deviation RMS error.
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surface error, geometric difference between facet planes and
desired working surface must be considered.

4.2. Best-Fit Surface RMS Error. After a mesh geometry of a
DMR is generated, it is natural to find out what surface
(spherical or parabolic) the mesh geometry best represents.
A concept of best-fit surface is thus introduced. The best-
fit surface of a DMR mesh geometry is a sphere or parab-
oloid, which, among all possible spherical or parabolic sur-
faces, has the least deviation from the mesh geometry [22,
33]. Such best-fit surface and the corresponding best-fit
surface RMS error are obtained through a try and error
process. To avoid confusion, the candidate of best-fit sur-
face in each iteration is named effective surface [1]. For
illustration, a schematic of a mesh geometry of a DMR,
its best-fit surface, and the desired working surface is
shown Figure 6.

The best-fit surface RMS error of a center-feed reflector
is defined as follows. As shown in Figure 7, for a given tri-
angular facet of the generated mesh, a plane P is defined
by containing the z-axis and the centroid of the triangular
facet. A local coordinate system (ξ, η) is generated by having
a triangular facet node with the largest z-coordinate being

the origin. The ξ-axis is parallel to the intersection between
plane P and plane of the triangular facet. The η-axis is in
plane of the triangular facet, perpendicular to the ξ-axis.
Let ðξ1, η1Þ, ðξ2, η2Þ, and ðξ3, η3Þ be positions of the three
nodes of the triangular facet in the local coordinate system.
Denote the normal distance between a point on the facet
plane and the effective surface by ω ðξ, ηÞ. The calculation
of ω ðξ, ηÞ was given in Ref. [1] with the mistakes corrected
by Ref. [6] (see Equation (24)). By assuming a shallow
desired working surface, an equation of ω is given as

ω ξ, ηð Þ = a + bξ + cη + ξ2

2Rξ

+ η2

2Rη

, ð21Þ

where a is the normal distance from the three nodes of the
triangular facet to the effective surface. Since the DMR is
assumed to be shallow, the normal distances from the three
nodes to the effective surface are the same in Equation (21).

In Equation (21), b and c are constants which shall be
calculated later. Rξ and Rη are radius of curvatures. For a
spherical effective surface, Rξ = Rη = R, where R is the radius
of the sphere. For a parabolic effective surface,

xy

z

Best-fit surface

Mesh reflector

Desired working surface

Figure 6: Schematic of the best-fit surface and desired working surface of a DMR.

𝜉

𝜂

x

y

z

Plane P

Triangular facet

Figure 7: Local coordinate system (ξ, η) of a triangular facet in Ref. [1].
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Rξ = 2F ′ 1 + rc
2F ′

� �2
" #3/2

,

Rη = rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2F ′

rc

 !2
vuut ,

ð22Þ

with rc =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2c + y2c

p
. xc and yc are the global coordinates of

the centroid (gravity center) of the triangular facet. F ′ is
the focal length of the effective surface. Assume the three
nodes of the triangular facet are all on the effective surface
(As shall be seen later in this section, it is almost impossible.
This assumption is only for illustrative purpose.) and the
origin of the local coordinate system (ξ, η) is at the first node
of the facet, then obviously a = 0 and ðξ1, η1Þ = ð0, 0Þ and ω
at the three nodes is

ω ξ1, η1ð Þ = ω 0, 0ð Þ = 0,
ω ξ2, η2ð Þ = 0,
ω ξ3, η3ð Þ = 0:

ð23Þ

Combining Equation (21) and Equation (23), the
remaining constants are then obtained as

b = − η3d2 − η2d3ð Þ
4S ,

c = ξ2d3 − ξ3d2ð Þ
4S ,

S = 1
2 ξ2η3 − ξ3η2ð Þ,

di =
ξ2i
Rξ

+ η2i
Rη

:

ð24Þ

S is the area of the triangular facet. It should be noticed
that Equation (24) is different from (A. 5) in Ref. [1], which
mistakenly calculated b as b = ðη3d2 − η2d3Þ/4S.

With Equation (21), squared deviation of the facet plane
from the effective surface is calculated by integrating ω2 over
the facet area S:

ϕ =∬
S
ω2dξdη = S a2 −

af
6 + f 2

120 −
S2

90RξRη

$ %
, ð25Þ

where

f =
ξ22 − ξ2ξ3 + ξ23

� �
Rξ

+ η22 − η2η3 + η23
� �

Rη

: ð26Þ

The effective surface RMS error δrms−eff of the entire
mesh then is defined by adding up ϕ of facets of the whole
reflector and divided by the summation of facet areas, given

as follows:

δrms‐eff =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Smesh
〠
i

ϕi

s
, ð27Þ

where Smesh =∑iSi is the total area of all facets of the mesh
geometry.

The best-fit surface of a generated mesh geometry can
then be found by properly determining its focal length Fbf
and the vertex height Hbf through a try and error process,
such that δrms−eff in Equation (27) is minimized. Therefore,
the value of a in each iteration is different. The calculation
of a was given in Ref. [1] and the mistake which was cor-
rected in Ref. [6].

Geometries of a general triangular mesh facet, a desired
working surface, and an effective surface are given in
Figure 8. The equations of the desired working surface and
the effective surface are

x2 + y2 = 4F H − xð Þ, ð28Þ

x2 + y2 = 4F ′ H − h − zð Þ, ð29Þ

where h is distance in the vertical direction between the ver-
tices of the desired working surface and the effective surface.
H is height of the desired working surface. The facet plane is
defined by an equation z = A + Bx + Cy.

There are two assumptions in the calculation of the best-
fit RMS error: first, reflector is shallow; second, the nodes are
all placed on the desired working surface. Thus, under the
two assumptions, a is also the normal distance between the
effective surface and the desired working surface for a given
mesh facet.

A line PQ is created by passing through the centroid C of
the facet normal to its plane. The equation of the line in its
plane created by r and z is given in (A. 10) of Ref. [1] which
is represented here:

r2 = x2 + y2,

z = zc +
r − rcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 + C2

p ,
ð30Þ

where zc and rc are coordinates of the centroid of the facet.
The rc is given as

r2c = x2c + y2c : ð31Þ

rp, rq, zp, and zq are shown in Figure 8, and their formu-
las of calculation are obtained by substituting Equation (30)
into Equations (28) and (29):

rq =
−2Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 + C2

p + 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2

B2 + C2 + F H − zc +
rcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 + C2
p

� �s
,

ð32Þ
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rp =
−2F ′ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 + C2

p + 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F′2

B2 + C2 + F ′ H − h − zc +
rcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 + C2
p

� �s
,

ð33Þ

zq =H −
r2q
4F ,

ð34Þ

zp =H − h −
r2p
4F ′

, ð35Þ

a =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zp − zq
� �2 + rp − rq

� �2q
, ð36Þ

where Equation (35) is different from the incorrect form in
(A. 12) of Ref. [1] shown in

zp =H −
r2q
4F ′

: ð37Þ

With the value of a, the best-fit parabolic or sphere sur-
face is then found by adjusting F ′ and h to minimize the
RMS error in Equation (27). The optimal result is the best-
fit surface RMS error δrms−bf . This can be done by a numer-
ical optimization algorithm [34].

min δrms F ′, h
� �h i

, ð38Þ

Fbf = F′min,
Hbf =H − hmin:

ð39Þ

The evaluation of the best-fit surface of an offset-feed
parabolic mesh geometry is different from that of a
center-feed one and can be found in Ref. [6]. As shown
in Figure 9, the parent paraboloid and its best-fit surface
are in the global coordinates. Here, Dca,bf is the diameter
of the circular aperture of the reflector’s best-fit working
surface which is the portion of the parent best-fit surface

within the offset aperture; Fp,bf and ΔHg,bf are the parent
best-fit focal length and the vertical deviation; and φ is
the slope of the best-fit parabola at the point intersecting
with the parent aperture in the xgzg-plane. From
Figure 9,

Dp,bf = 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fp,bf Hg − ΔHg,bf

� �q
, ð40Þ

φ = sin−1
Dp,bf
2Rs,bf

 !
, ð41Þ

φof f = tan−1
Hg − ez
2Rc

� �
: ð42Þ

If ΔHg,bf is always sufficiently small, it can be
assumed that

Rs = Rs,bf ,

φ = φ′:
ð43Þ

From the geometry in Figure 9,

AC
BC

= 1 − tan φoffð Þ
tan φð Þ , ð44Þ

where

AC = 1
2 Dca −Dca,bf
� �

,

BC = 1
2 Dp −Dp,bf
� �

:

ð45Þ

Hence,

Dca,bf =Dca −
tan φð Þ

tan φð Þ − tan φoffð Þ Dp −Dp,bf
� �

: ð46Þ

Desired working surface

Effective surface

z

xy

a

zq zp

Triangular facet

rp

rq

P

Q

CH

h

Figure 8: Geometries of desired working surface, effective surface, and a facet.
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4.3. Direct RMS Error. The best-fit surface RMS error
described in Section 4.2 is not a true evaluation of geo-
metric deviation of a DMR mesh geometry from its
desired working surface. For design of a DMR with high
surface accuracy, the direct RMS error that truly mea-
sures geometric deviation of a DMR mesh geometry from
its desired working surface was proposed in Refs. [35,
36]. A comparison of these two types of RMS errors is
shown in Figure 10.

Consider a typical triangular facet in Figure 11, where
the desired working surface is also shown. To calculate the
direct RMS error, a local coordinate system (τ, υ) is estab-

lished on the facet plane; see Figure 12, where the origin
can be any one of nodes of the facet. Let μ ðτ, υÞ be normal
distance between a point on the facet plane and the desired
working surface. Squared deviation of the triangular facet
from the desired working surface is

φ =∬
S
μ2dτdυ: ð47Þ

By summing the deviations of all facets, the direct RMS
error δrms−d of a DMR mesh geometry is defined as follows:

zg

xg

Hg

𝛥Hg, bf

Parent paraboloid

Best-fit parent paraboloid Offset aperture

Dca

Dca,bf

Dp, bf

Dp
Rs, bf

Rs

Fp
Fp,bf

C

B

A
D

𝜑

A

D

B C
𝜑off

𝜑

𝜑'

Figure 9: The best-fit surface for an offset-feed parabolic reflector in the xgzg-plane.

xy

z
Desired working surface

Mesh Reflector

Best-fit surface

xy

z

(a) (b)

Best-fit surface
RMS error Direct rms error

Figure 10: Comparison of two types of RMS errors: (a) the best-fit surface RMS error and (b) the direct RMS error.
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δrms‐d =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Smesh
〠
i

φi

s
: ð48Þ

Note that the distance ω ðξ, ηÞ and the distance μ ðτ, υÞ are
not the same. In calculation of ω ðξ, ηÞ, many assumptions,
including shallow reflecting surface and nodes being placed
on the desired working surface, have been made. Because of
this, formulas for computing the best-fit surface RMS error
are not applicable in calculation of the direct RMS error.
For example, normal distances from the three nodes of
the triangular facets to the best-fit surface are assumed
the same. This is not true in general case if stringent sur-
face accuracy evaluation is required. For design of a DMR
with high surface accuracy, exact analytical formulas for
computing the direct RMS error are needed.

Equation (48) can be directly used to calculate the
direct RMS error if μ is obtained. To obtain μ for a typ-
ical triangular facet, a local coordinate system ðτ, υ, μÞ is
defined in Figure 12, where the origin is at one of the
facet nodes; the τ-axis is in the direction from ðτ1, υ1Þ
to ðτ2, υ2Þ; the υ-axis is normal to the τ-axis, lying within
the facet plane; and the μ-axis is normal to the facet
plane. The equation of the facet plane in the global coor-
dinate system ðx, y, zÞ is

apx + bpy + cpz + dp = 0, ð49Þ

which can be obtained from coordinates of the three nodes,
namely, ðx1, y1, z1Þ, ðx2, y2, z2Þ, and ðx3, y3, z3Þ. Here for
convenience, it is assumed that the node ðx1, y1, z1Þ is the
origin of the local coordinate system ðτ, υ, μÞ. In the global
coordinate system, let the unit vectors of the τ-, υ-, and
μ-axes be e1, e2, and e3, respectively. These unit vectors
are given by

e1 =
x2 − x1 y2 − y1 z2 − z1½ �Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 − x1ð Þ2 + y2 − y1ð Þ2 + z2 − z1ð Þ2
q ,

e3 =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2p + b2p + c2p
q ap bp cp

	 
T ,
e2 =

e1 × e3
e1 × e3j j :

ð50Þ

Denote the unit vectors of the global coordinate sys-
tem xyz as e1 ′, e2 ′, and e3 ′, which are expressed by

e1 ′ =
1
0
0

8>><
>>:

9>>=
>>;,

e2 ′ =
0
1
0

8>><
>>:

9>>=
>>;,

e3 ′ =
0
0
1

8>><
>>:

9>>=
>>;:

ð51Þ

The coordinate transformation matrix E from the
local coordinate system ðτ, υ, μÞ to the global coordinated
system ðx, y, zÞ is given as

E =
E11 E12 E13

E21 E22 E23

E31 E32 E33

2
664

3
775 =

eT1 e1 ′ eT1 e2 ′ eT1 e3 ′

eT2 e1 ′ eT2 e2 ′ eT2 e3 ′

eT3 e1 ′ eT3 e2 ′ eT3 e3 ′

2
664

3
775:

ð52Þ

The global and local coordinates are related by

τ

υ

μ

8>><
>>:

9>>=
>>; = E

x − x1

y − y1

z − z1

8>><
>>:

9>>=
>>;: ð53Þ

Because E is an orthogonal matrix,

x

y

z

8>><
>>:

9>>=
>>; = E−1

τ

υ

μ

8>><
>>:

9>>=
>>; +

x1

y1

z1

8>><
>>:

9>>=
>>; = ET

τ

υ

μ

8>><
>>:

9>>=
>>; +

x1

y1

z1

8>><
>>:

9>>=
>>;:

ð54Þ

It follows that the global coordinates can be expressed by

x = E11τ + E21υ + E31μ + x1,
y = E12τ + E22υ + E32μ + y1,
z = E13τ + E23υ + E33μ + z1:

ð55Þ

Recall that the equation of the desired parabolic working
surface is

z −H = −
1
4F x2 + y2
� �

: ð56Þ

Substitute Equation (55) into Equation (56) and rearrange
the resulting equation with respect to μ to obtain

a1μ
2 + a2μ + a3 = 0, ð57Þ

(𝜏, 𝜐)
𝜇 (𝜏, 𝜐)

Working surface Triangular facet

Figure 11: The desired working surface and a triangular facet for
calculation of direct RMS error.
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with

a1 = E2
31 + E2

32
� � 1

4F ,

a2 = E33 + E31 x1 + E11τ + E21υð Þ 1
2F + E32 y1 + E12τ + E22υð Þ 1

2F ,

a3 = −H + z1 + E13τ + E23υ + x1 + E11τ + E21υð Þ2 1
4F + y1 + E12τ + E22υð Þ2 1

4F :

ð58Þ

According to Equation (57), μ is a function of τ and υ,
namely, μ = μ ðτ, υÞ. For a point ðτ∗, υ∗Þ on the facet, μ
ðτ∗, υ∗Þ is the normal distance from the point on the
facet to the parabola as described by Equation (56). Solu-
tion of Equation (57) gives

μ τ, υð Þ = −a2 ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 − 4a1a3

p
2a1

: ð59Þ

As shown in Figure 13, for a line that is normal to
the facet plane and passes through one point on the
facet, there are two intersections between the line and
the parabola. For calculation of the direct RMS error,
only the intersection with smaller distance from the point
on the facet represents the deviation of the point from
the desired working surface. Thus, out of the two roots
given by Equation (59), only the one with smaller abso-

lute value is the true solution. With such selected μ,
the direct RMS error can be computed by Equations
(47) and (48).

Note that the double integral in Equation (47) can also
be computed numerically by applying the coordinate trans-
formation technique introduced in Equations (49)–(59).
This calculation is efficient especially when number of facets
of a reflecting surface is large.

In this section, the nodal deviation RMS error, the best-
fit surface RMS error, and the direct RMS error for surface
accuracy evaluation of a generated mesh geometry are
reviewed. The reviewed RMS calculation methods are com-
pared in Table 1 in terms of computational efficiency and
working requirements.

5. Effective Region RMS Error

During in-orbit mission of a large DMR, only central por-
tion of the reflecting surface is being used for signal trans-
mission since accuracy of boundary layers of the reflector
is usually low. This portion of a DMR is called effective
region. It is desired in design of a DMR to obtain a large
effective region area. However, many DMR designs can only
deliver a reflecting surface either with high surface accuracy
and small effective region area, or with low surface accuracy
and large effective region area. Therefore, calculation of RMS
error also calls for consideration of the effective region area.

(𝜏3, 𝜐3)

(𝜏2, 𝜐2)

(𝜏1, 𝜐1)

𝜐

𝜏

Figure 12: Local coordinate of a triangular facet for calculation of direct RMS error.

Triangular facet

Desired parabolic working surface

Line normal to the facet plane

Two intersections between the line
and the parabolic working surface

Figure 13: Two intersections between the line normal to the facet plane and the desired parabolic working surface.
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For convenience of analysis and design, working sur-
face of a DMR can be viewed as a cluster of cocentered
facet layers, as shown Figure 14, where each layer is a
ring of facets. The layers are assigned index numbers
starting from the center of the working surface, with
the first layer consisting of the center of the reflector
and the last layer being the one connected to the bound-
ary. Accordingly, a layer of a smaller index number is
closer to the center of the working surface than a layer
of a larger index number.

A definition of effective region of a DMR was carried out
by Yuan et al. [37]. In this definition, the effective region was
considered as a portion of its working surface that meets the
surface accuracy requirement for signal transmission. For a
smooth working surface (either parabolic or spherical), due
to the vertical directions of tension tie forces, the slope of a
point on the surface that is near the boundary is larger than
that of a point which is relatively away from the boundary.
Because of this, for an almost uniform distribution of cable
member tensions, a layer of a smaller index number has
shorter member lengths than a layer of a larger index num-
ber [6]. This yields smaller RMS errors for the inner layers of
a reflector. Thus, the layers of a working surface can be
divided into two types: (i) the inner layers, which are closer
to the center of the working surface and meet the surface
accuracy requirement, and (ii) the outer layers, which are
near the boundary of the working surface and do not satisfy
the surface accuracy requirement. Obviously, the effective
region of a DMR is formed by all the inner layers.

Assume that the working surface of a designed DMR has
nr facet layers. Let the RMS error of the k-th layer be δrms,k ,
k = 1, 2,⋯, nr , which can be easily computed [38]. Assume
that the reflector working surface has ker inner layers.
According to the above discussion, the effective region of
the DMR is formed by the first ker layers of the working sur-
face. In other words, δrms,k ≤ δrms for 1 ≤ k ≤ ker and δrms,k
> δrms for ker + 1 ≤ k ≤ nr , where δrms is the required surface
error upper bound given in Equation (5).

One objective in design of a DMR is to assure enough
effective region area for operation. For a reflector, which
can be either a center-feed parabolic reflector or an offset-
feed parabolic reflector, its effective region can be calculated

by Se =∑ker
k=1Sk where Sk is the surface area of the k-th layer.

The RMS error δrms−er of the effective region can be evalu-
ated either by the outmost inner layer:

δrms‐er =
δrms,ker
β

, ð60Þ

or by a mean value:

δrms‐er =
1
Seβ

〠
ker

k=1
Skδrms,k, ð61Þ

where

β = Se
S
, ð62Þ

with S being the area of the whole aperture of the reflector. Note
that for a reflector without a clear aperture rim, for example,
some reflectors are hexagonal with only six nodes being
attached to a supporting structure [15], S in Equation (62) is
the area of all mesh facets that are used for reflecting signals.

6. Numerical Examples

In this work, several methods of RMS error calculation for
large DMRs have been reviewed. For a clearly comparison,
the nodal deviation RMS errors, the best-fit surface RMS
errors, and the direct RMS errors of three mesh geometries
(a two-facet mesh geometry, a center-feed parabolic DMR,
and an offset-feed parabolic DMR) are calculated, respec-
tively. Advantages and limitations of the reviewed methods
of RMS error calculation shall be presented by examples in
this section.

Table 1: Comparison of RMS error calculation methods for surface accuracy evaluation of a mesh geometry.

Nodal deviation
RMS error δrms−n

Facet gravity center deviation
RMS error δrms−gc

Best-fit surface
RMS error δrms−bf

Direct RMS
error δrms−d

Computational efficiency High High Low Low

Nodes placed on the working surface Not allowed Required Required Not required

Nodes placed off the working surface Required Not allowed Not allowed Not required

Shallow working surface Not required Not required Required Not required

Layer 2

Layer 3

Layer 1

6

6

4

4

2

2

0

0

x

y

–2

–2

–4

–4

–6

–6

Layer 4

Figure 14: Layers of a mesh geometry of a DMR.
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6.1. A Two-Facet Mesh Geometry

6.1.1. Calculation of the Nodal Deviation RMS Error. A two-
facet mesh geometry and a desired working surface are
shown in Figure 15. Recall the two assumptions (shallow
desired working surface and placement of nodes on the
desired working surface) made in the best-fit RMS error cal-
culation; the desired working surface in this example is a
shallow center feed parabola with focal length F being 10
meters and aperture diameter D being 4 meters. Equation
of the desired working surface is

z − 0:1 = −
1
40 x2 + y2
� �

: ð63Þ

The four nodes that form the two triangular facets are
placed on the desired working surface, with coordinates
given as

x1, y1, z1ð Þ = 0,−2, 0ð Þ,
x2, y2, z2ð Þ = 1, 0, 0:075ð Þ,
x3, y3, z3ð Þ = −1, 0, 0:075ð Þ,
x4, y4, z4ð Þ = 0, 2, 0ð Þ:

ð64Þ

Thus, the gravity center of the two facets are

xc,1, yc,1, zc,1
� �

= 0,−0:6667, 0:05ð Þ,
xc,2, yc,2, zc,2
� �

= 0, 0:6667, 0:05ð Þ:
ð65Þ

For the nodal deviation RMS error calculated in Equa-
tion (19), calculation is trivial with δrms−n = 0, because all
nodes of the mesh geometry are on the desired working sur-
face. Calculation in Equation (20) is given as

δrms‐gc =
∑n

t=1S′t Z′t − Z′gt
� �2
∑n

t=1S′t

0
B@

1
CA

1/2

= 0:0389, ð66Þ

with

S′1 = 2,
S′2 = 2,
Z′1 = 0:0889,
Z′2 = 0:0889,
Z′g1 = 0:05,

Z′g2 = 0:05:

ð67Þ

6.1.2. Calculation of the Best-Fit Surface RMS Error. The
best-fit surface RMS error is obtained by properly determin-
ing a best-fit surface of a mesh geometry through an iterative
process that is usually solved by a numerical optimization
algorithm [34]. To show application of the technique, calcu-
lation of the best-fit surface RMS error in one iteration is
given in details. In this iteration, focal length F ′ of the effec-
tive surface and the vertices distance h between the effective
surface and the desired working surface are assumed as 9.9
meters and 0.01 meter, respectively.

The first step is to define two local coordinate systems (ξ,
η) for the two triangular facets and obtain local coordinates
for nodes of the two facets as

ξ1,1 = 0,
ξ1,2 = 2:0014,
ξ1,3 = 0,
ξ2,1 = 0,
ξ2,2 = 0,
ξ2,3 = 2:0014,
η1,1 = 0,
η1,2 = −1,
η1,3 = −2,
η2,1 = 0,
η2,2 = 2,
η2,3 = 1:

ð68Þ

x

y

z

1

23

4
Desired working surface

Two triangular facets

Figure 15: Two triangular facets with nodes being placed on the desired working surface.
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Areas S of the two facets are

S1 = S2 = 2:0014: ð69Þ

ϕ1 and ϕ2 are calculated as

ϕ1 = ϕ2 =∬
S
ω2dξdη = 8:6921 × 10−4: ð70Þ

The RMS error of this effective surface is

δrms‐eff =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Smesh
〠
i

ϕi

s
= 0:0208: ð71Þ

According to the definition of the best-fit surface RMS
error, in a numerical optimization algorithm, δrms−eff is cal-
culated in each iteration with F ′ and h being adjusted until
the smallest value of δrms−eff is found. This value is the
best-fit RMS error δrms−bf . After minimized by the numerical
optimization algorithm, the best-fit RMS error is obtained as

δrms‐bf = 0:0077, ð72Þ

with the corresponding Fbf and hbf being 10 meters and
0.0292 meter. Thus, equation of the best-fit surface is

z − 0:0708 = −
1
40 x2 + y2
� �

: ð73Þ

6.1.3. Calculation of the Direct RMS Error. For direct RMS
error calculation, nodal coordinates of the two facets under
local coordinate system ðτ, υÞ are

τ1,1 = 0
τ1,2 = 2:2373
τ1,3 = 0
τ2,1 = 0,
τ2,2 = 2,
τ2,3 = 1,
υ1,1 = 0,
υ1,2 = 1:3434,
υ1,3 = 1:7891,
υ2,1 = 0,
υ2,2 = 0,
υ2,3 = −2:0014:

ð74Þ

Due the simplicity of this example, φ for the two facets

can be directly obtained as

φ1 = φ2 =∬
S1
μ21dτdυ = 1:8193 × 10−3: ð75Þ

The direct RMS error is then calculated as

δrms‐d =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Smesh
〠
i

φi

s
= 0:0302: ð76Þ

For comparison, the RMS errors calculated by the three
methods reviewed are listed in Table 2.

6.2. A Center-Feed Mesh Reflector and an Offset-Feed Mesh
Reflector. In this section, the reviewed methods of RMS error
calculation shall be applied to a parabolic center-feed mesh
reflector and a parabolic offset-feed mesh reflector both with
127 nodes. The aperture diameter D of the center-feed
reflector is 12 meters, with the focal ratio (F/D) being 0.5.
F is the focal length of the center-feed reflector. The aperture
diameter Dp of the parent parabola of the offset-feed reflec-
tor is 12 meters, with the focal ratio (Fp/Dp) being 0.33. Fp

is the focal length of the parent parabola of the offset-feed
reflector. The offset distance is 1 meter. Technique of bound-
ary nodes reduction introduced in Ref. [6] is applied to
topology design of both reflectors. Form findings of these
reflectors are done by the fixed nodal position method intro-
duced in Ref. [28]. For simplicity, all nodes are placed on the
desired working surfaces. Top views of these two reflectors
that show topology designs and effective region areas are
given in Figure 16.

The nodal deviation RMS error δrms−n, the facet gravity
center deviation RMS error δrms−gc, the best-fit surface
RMS error δrms−bf , the direct RMS error δrms−d, and the
effective region RMS error δrms−d of this mesh reflector are
listed in Table 3. From observation of Table 3, RMS errors
vary significantly in different calculation methods. Methods
that only consider nodal deviation have limitation for strin-
gent surface accuracy analysis because it fails to consider
geometric difference between the facet planes and the curved
desired working surface. The best-fit surface RMS error,
while being used in many cases, measures deviation of a
mesh geometry from its best-fit surface, not the desired
working surface. This is an accurate evaluation only for shal-
low reflectors with nodes all being placed on the desired
working surface. When a reflector is deep or nodes are
placed off the desired working surface, the best-fit surface
RMS error is not an appropriate measurement. Since the
best-fit surface so generated is different from the desired
working surface, the location of focal point of the reflector
also changes. So the best-fit surface RMS error does not
applied to a DMR with fixed feed source. The direct RMS

Table 2: Comparison of different RMS error calculation methods (mm).

Nodal deviation
RMS error δrms−n

Facet gravity center deviation
RMS error δrms−gc

Best-fit surface
RMS error δrms−bf

Direct RMS
error δrms−d

Mesh geometry with two facets 0 38.9 7.7 30.2
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error evaluates deviation of a mesh geometry directly from
the desired working surface. It is extremely useful in evaluat-
ing a reflector with high surface accuracy requirement. It is

applicable to both shallow and deep reflectors, while allow-
ing nodes being placed both on and off the desired working
surface. It can also be observed from Table 3 that the δrms−er
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Figure 16: Top view of the two mesh reflectors with 127 nodes: (a) the center-feed mesh reflector and (b) the offset-feed mesh reflector.

Table 3: Comparison of different RMS error calculation methods (mm).

Nodal deviation
RMS error δrms−n

Facet gravity center
deviation RMS error δrms−gc

Best-fit surface
RMS error δrms−bf

Direct RMS
error δrms−d

Effective region
RMS error δrms−er

Center-feed mesh reflector 0 7.08 1.40 4.24 10.22

Offset-feed mesh reflector 0 2.41 0.44 1.26 3.50
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Figure 17: Comparison of RMS errors as the focal ratio increases for (a) the center-feed mesh reflector and (b) the offset-feed mesh reflector.
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is not always consistent with other definitions of RMS errors,
since the effective region area is also included in the surface
accuracy evaluation. For a reflector with smaller effective
region area, δrms−er can still be large even when the RMS
error of facets within the effective region is small.

In addition, the simulation results show that that the
RMS errors of the offset-feed mesh reflector are much
smaller than those of the center-feed mesh reflector. This is
because an offset-feed mesh reflector is cut from a parent
sphere or parabola. Thus, it is usually shallower than a
center-feed reflector with a similar aperture diameter. As
seen in many reflector designs, a shallow DMR can achieve
a much higher surface accuracy than a deep one.

The comparison of the three RMS error calculation
methods, δrms−gc, δrms−bf , and δrms−d, under different focal
ratio are presented in Figure 17. As seen in the simulation
results, all the three RMS errors decrease as the focal ration
of the reflector increases, because a shallow DMR with high
focal ratio can achieve a much higher surface accuracy than
a deep one with low focal ratio. This property is successfully
captured by all the three methods in comparison.

The comparison of the reflector gain efficiency factor
ηrms in Equation (6) under the three RMS error calculation
methods, δrms−gc, δrms−bf , and δrms−d within a wavelength
range of 7.5-300mm are plotted in Figure 18. As seen in
Figure 18, differences among the reflector gain/loss estima-
tions by the three methods of RMS error calculation are
significant. Meanwhile, the reflector gain efficiency factor
ηrms varies for different wavelengths. Note that Equation
(6) is only for rough estimation of RMS error impact on
the reflector gain. Accurate reflector gain evaluation
requires a detailed radiofrequency analysis, which can be
performed by a software for radiofrequency pattern
calculation.

7. Conclusions

Methods of root-mean-square error calculation for large
deployable mesh reflectors are reviewed. The main results
from this investigation are summarized as follows.

(i) Concept of reflector gain and effective surface error
(half path length error) are given. The reflector gain
is a factor to measure the reflector performance

(ii) Approaches to RMS error prediction or estimation
in preliminary design of large deployable mesh
reflectors are shown. The predicted RMS error can
be used as a guidance in reflector design, mainly to
determine the maximum allowable member length.
Influences of mesh saddling, thermal loads, and
member length imperfection are considered in these
estimations

(iii) Methods of RMS error calculation for generated
mesh geometry of large deployable mesh reflectors
are presented. The nodal deviation RMS error is
easy to implement but fails to include geometric dif-
ference between facet planes and the desired work-
ing surface. The best-fit surface RMS error
evaluates deviation of a mesh geometry from its
best-fit surface. This method requires shallow reflec-
tor and nodes being placed on the desired working
surface. Therefore, the best-fit surface RMS error is
not applicable to mesh reflectors with stringent sur-
face accuracy requirement. In addition, the best-fit
surface RMS error cannot be used to evaluate sur-
face accuracy for a mesh geometry with nodes being
placed off the desired working surface. The direct
RMS error calculates deviation of a mesh geometry
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Figure 18: Comparison of reflector gain efficiency factor ηrms obtained by the three RMS error calculation methods, δrms−gc, δrms−bf , and
δrms−d for (a) the center-feed mesh reflector and (b) the offset-feed mesh reflector.

16 International Journal of Aerospace Engineering



directly from the desired working surface. It is
applicable to both shallow and deep reflecting sur-
faces. It also allows reflector nodes to be placed off
the desired working surface. For complicated mesh
geometry with many facets, numerical methods
may be required in calculating the double integral
of normal distance between the facets to the desired
working surface over the facet area

(iv) Concept of effective region is introduced. An
adjusted measurement of surface accuracy is sug-
gested when the concept of effective region is
involved. This measurement has two evaluation fac-
tors, the effective region area and the RMS error of
facets within the effective region

(v) RMS errors of a mesh geometry with two triangular
facets, a center-feed mesh reflector, and an offset-
feed mesh reflector are calculated by the RMS error
calculation methods reviewed. Results in these
demonstrative examples show that RMS errors
may vary significantly if calculated by different
methods

(vi) The effective region RMS error is also used in mea-
suring surface accuracy for a center-feed mesh
reflector and an offset-feed mesh reflector. Numeri-
cal results show importance and necessity of consid-
ering the area of effective region in surface accuracy
evaluation of large deployable mesh reflectors
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