MolSearch: Search-based Multi-objective Molecular Generation
and Property Optimization

Mengying Sun
sunmeng2@msu.edu
Michigan State University
East Lansing, Michigan, USA

Huijun Wang
huijun.wang@agios.com
Agios Pharmaceuticals
Cambridge, Massachusetts, USA

ABSTRACT

Leveraging computational methods to generate small molecules
with desired properties has been an active research area in the drug
discovery field. Towards real-world applications, however, efficient
generation of molecules that satisfy multiple property require-
ments simultaneously remains a key challenge. In this paper, we
tackle this challenge using a search-based approach and propose a
simple yet effective framework called MolSearch for multi-objective
molecular generation (optimization). We show that given proper de-
sign and sufficient domain information, search-based methods can
achieve performance comparable or even better than deep learn-
ing methods while being computationally efficient. Such efficiency
enables massive exploration of chemical space given constrained
computational resources. In particular, MolSearch starts with ex-
isting molecules and uses a two-stage search strategy to gradually
modify them into new ones, based on transformation rules derived
systematically and exhaustively from large compound libraries. We
evaluate MolSearch in multiple benchmark generation settings and
demonstrate its effectiveness and efficiency.

CCS CONCEPTS

« Applied computing — Bioinformatics; - Computing method-
ologies — Machine learning algorithms.

KEYWORDS

Molecular Generation and Optimization, Monte Carlo Tree Search,
Design Moves

ACM Reference Format:

Mengying Sun, Jing Xing, Han Meng, Huijun Wang, Bin Chen, and Jiayu
Zhou. 2022. MolSearch: Search-based Multi-objective Molecular Generation
and Property Optimization. In Proceedings of Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD °22).
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3534678.3542676

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD °22, August 14-18, 2022, Washington, DC, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9385-0/22/08....$15.00
https://doi.org/10.1145/3534678.3542676

Jing Xing
xingjinl@msu.edu
Michigan State University
Grand Rapids, Michigan, USA

Bin Chen
chenbil2@msu.edu
Michigan State University
Grand Rapids, Michigan, USA

Han Meng
menghanl@msu.edu
Michigan State University
East Lansing, Michigan, USA

Jiayu Zhou
jlayuz@msu.edu
Michigan State University
East Lansing, Michigan, USA

1 INTRODUCTION

Searching new compounds with desired properties is a routine
task in early-stage drug discovery [7]. Common examples include
improving the binding activity against one or multiple therapeu-
tic targets while keeping the drug-likeness property; increasing
drug solubility while minimizing the change of ADME properties.
However, a small modification of chemical structures may lead
to an unwanted change of property that even seasoned chemists
cannot foresee. Moreover, the virtually infinite chemical space and
the diverse properties for consideration impose significant chal-
lenges in practice [31]. Advanced machine learning models built
upon historical biological and medicinal chemistry data are posed
to aid medicinal chemists in designing compounds with multiple
objectives efficiently and effectively.

Leveraging computational methods to facilitate and speed up
the drug discovery process has always been an active research area
[34, 40]. In particular, using deep learning (DL) and reinforcement
learning (RL) to generate and optimize molecules has recently re-
ceived broad attentions [19, 37, 39], which we will summarize in
detail later in section 2. Despite the advances, such methods either
rely on the quality of latent space obtained by generative models
[32], or suffer from high variation, making it hard to train [35].
In reality, DL/RL methods consume large computational resources
while the generated molecules could be hard to synthesize. Methods
combing multiple objectives often do not work well [13].

In this paper, instead of leveraging DL, we propose a practical
search-driven approach based on Monte Carlo tree search (MCTS)
to generate molecules. We show that under proper design, search
methods can achieve comparable or even better results to DL meth-
ods in terms of multi-objective molecular generation and optimiza-
tion, while being computationally much more efficient. The effi-
ciency and multi-objective nature allow it to be readily deployed in
massive real-world applications such as early-stage drug discovery.

To design an efficient and effective search framework for prac-
tical multi-objective molecular generation and optimization, we
need to answer the following questions. Q1: where to start; Q2:
what to search; and Q3: how to search. For Q1, prior works us-
ing MCTS to generate molecules mostly start with empty or very
small molecules [18, 38]. Since most drug-like molecules have 10-40
atoms, the search tree can grow deep and the space grows expo-
nentially with the depth, making the search process less efficient
and effective. Some work thus uses pre-trained RNN as a simulator

https://doi.org/10.1145/3534678.3542676
https://doi.org/10.1145/3534678.3542676

KDD ’22, August 14-18, 2022, Washington, DC, USA

to expand the tree however it requires additional pretraining [38].
Moreover, real optimization projects often have some candidates in
place. For Q2, most prior works use atom-wise actions to modify
molecules, which makes it hard to improve target property while
maintaining drug-likeness and synthesis abilities [39, 43]. Fragment-
wise actions tend to work better but the editing rules are mostly
heuristic [20, 37]. For Q3, most existing methods combine all the
objectives into one score and optimize for that [27, 37]. However,
simple aggregation of scores neither fully considers the differences
of objective classes nor reflects real optimization scenario.

We seek solutions to Q1-Q3 and propose MolSearch, a simple
and practicable search framework for multi-objective molecular
generation and optimization. In MolSearch, we start with existing
molecules and optimize them towards desired ones (Q1). The mod-
ification is based on design moves [3], i.e., transformation rules
that are chemically reasonable and derived from large compound
libraries (Q2). The property objectives are split into two groups
with its rationale explained in detail later. The first group contains
all biological properties such as inhibition scores to proteins, and
the second group includes non-biological properties such as drug-
likeness (QED) and synthetic accessibility (SA). Correspondingly,
the entire search process consists of two stages: a HIT-MCTS stage
that aims to improve biological properties, followed by a LEAD-
MCTS stage that focuses on non-biological properties while keep-
ing biological ones above certain threshold. Each stage contains a
multi-objective Monte Carlo search tree where different property
objectives are considered separately rather than combined (Q3).

We evaluate MolSearch on benchmark tasks under different
generation settings and compare it with various baselines. The
results show that MolSearch is on par with or even better than the
baselines based on evaluation metrics calculated from success rate,
novelty and diversity, within much less running time. In summary,
our contributions are as follows:

e MolSearch is among the first that make search-based ap-
proaches comparable to DL-based methods in terms of multi-
objective molecular generation and optimization.

e MolSearch combines mature components, e.g., tree search,
design moves, multi-objective optimization, in a novel way
such that the generated molecules not only have desired
properties but also achieve a wide range of diversity.

e MolSearch is computationally very efficient and can be eas-
ily adopted into any real drug discovery projects without
additional knowledge beyond property targets.

o Additional to molecular generation, MolSearch is more tai-
lored for hit-to-lead optimization given the nature of its
design, which makes it very general and applicable.

2 RELATED WORK

In general, molecular property optimization comprises three com-
ponents or less: representation, generative model, and optimization
model. The representation of molecules can be simplified molecular-
input line-entry system (SMILES) strings, circular fingerprints, and
raw graphs, which often corresponds to certain type of generative
models. Grouping by each component can be too detailed to capture
the big picture, therefore we choose to categorize the related studies
based on optimization models.

Mengying Sun et al.

The first group optimizes molecules via Bayesian optimization
[11, 16, 19, 23]. These methods first learn a latent space of molecules
via generative models such as auto-encoders (AEs), then optimize
the property by navigating in that latent space, and generates
molecules through the decoding process. Most methods in this
category only optimize for non-biological properties such as QED
and penalized logP !, and focus on metrics such as validity of gen-
erated molecules. They heavily rely on the quality of learned latent
spaces, which impose challenges for multi-objective optimization.

Instead of manipulating latent representations, the second cat-
egory utilizes reinforcement learning (RL) to optimize molecu-
lar property. One line of research applies policy gradient to fine-
tune generative models, e.g., GAN-based generator [12, 30], GNN-
based generator [39], Flow-based generator [25, 33, 41] to generate
molecules with better property scores. The other line of work di-
rectly learns the value function of molecule states and optimizes
for a given property via double Q-learning [43].

Besides RL, the third category uses genetic algorithms (GAs) to
generate molecules with desired properties [1, 18, 27]. The gener-
ation process of genetic algorithms usually follows mutation and
cross-over rules that are predefined from a reference compound
library or domain expertise, which are not easy to obtain in general.
Some work [27] also combines deep learning, e.g., a discriminator
into GA generator to increase the diversity of molecules.

The least explored category aims to optimize molecular prop-
erty using search methods, e.g., Monte Carlo tree search (MCTS).
The earliest work traces back to [18, 38] in which the authors use
pre-trained RNNs or genetic mutation rules as the simulator for
tree expansion and simulation. [28] proposes atom-based MCTS
method without predefined simulator. Again, all the methods focus
on single and non-biological properties and are not tailored for
multi-objective optimization. Not until recently RationaleRL [20]
enables multi-objective molecular generation by first searching
property-related fragments using MCTS and then completing the
molecular graph using reinforcement learning.

There are also pioneering works that do not fall into any of
the categories above, e.g., MARS [37] proposes a Markov sampling
process based on molecular fragments and graph neural networks
(GNN5s) and achieves state-of-the-art performance. Li et al. [24]
proposed a conditional graph generative framework for optimiz-
ing molecular properties. In summary, we see a trend of utilizing
fragment-based actions and directly navigating in the chemical
space as opposed to generative models in recent works. Interested
readers can refer to [13, 42] for a comprehensive understanding of
advances in molecular generation and optimization.

3 METHOD

In this section, we present the proposed framework MolSearch as
shown in Figure 1. The entire process consists of two search stages: a
HIT-MCTS stage and a LEAD-MCTS stage. HIT-MCTS aims to mod-
ify molecules for better biological properties while LEAD-MCTS
stage seeks molecules with better non-biological properties. Each
stage utilizes a multi-objective Monte Carlo search tree to search
for desired molecules.

!water-octanol partition coefficient penalized by synthesis accessibility and number
of cycles having more than 6 atoms, i.e., PlogP(m)=logP(m)-SA(m)-cycle(m)

MolSearch: Search-based Multi-objective Molecular Generation and Property Optimization

b O ,\jzﬂi'fi,
¢ ‘oo o
3 S0 ;

n=1) (n =~ 10)

ﬂ (n~ 10%)

Start Molecule i HIT-MCTS —» LEAD-MCTS
A A A
EIX) P) S L) S

>
GSK3B JNK3 QED

GSK3B JNK3 QED

GSK3B JNK3 QED

Figure 1: Overall framework of MolSearch. For a given start
molecule, it first goes through a HIT-MCTS stage which aims
to improve the biological properties, e.g., GSK3$ and JNK3,
followed by a LEAD-MCTS stage where non-biological prop-
erties such as QED are optimized. n refers to number of gen-
erated molecules and y-axis reflects the normalized scores.

3.1 Problem Definition

Molecule modification can be mathematically formulated as a Markov
decision process (MDP) [5] given that the generated molecule only
depends on the molecule being modified. The MDP can be written
as M = (S, A, f,R) where S denotes the set of states (molecules), A
denotes the set of actions (modifications), f : S X A — S is the state
transition function. For molecule modification, the state transition
is deterministic, i.e., p(s¢+1|s¢, ar) = 1 for a given state-action pair.
That is to say, by taking a modification action, the current molecule
reaches the next molecule with that modification with probability
1.R: S — RY is the reward received for a given state, where
d > 1 if multiple reward objectives are considered. The goal is to
take the action that maximizes the expected reward, which can be
approximated as Eq (1) under repeated simulations [15]:

S LG, 1)

Q(s,a) = NG.a) i1

where N(s) denotes the simulation times starting from state s and
N(s, a) is the times that action a has been taken from state s. I;(s, a)
is an indicator function with value 1 if action a is selected from
state s at i-th round, 0 otherwise. z; is the final reward for i-th
simulation round starting from state s. A larger value of Q(s, a)
indicates higher expected reward by taking action a from state s.

3.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) adopts a tree structure to perform
simulations and estimate the value of actions. Meanwhile it also
uses the previously estimated action values to guide the search
process towards higher rewards [8]. The basic MCTS procedure
consists of four steps per iteration:

a) Selection. Starting from the root node, a best child is recursively
selected until a leaf node, i.e., a node that has not been expanded
or terminated, is reached.

b) Expansion. The selected leaf node is expanded based on a
policy until the maximum number of child nodes is reached.

c) Simulation. From each child node, recursively generate the
next state until termination and get the final reward.

KDD ’22, August 14-18, 2022, Washington, DC, USA

Repea .
L.{ - }J: Global Pareto Set
selection | —»[_ Expansion | i [Bac
(0] Q ©)
o é) Q 0 QQ O QQ o Q New best score found?
O AO000 O GO0 O AROOO O 0ROV | T/ 1
[J
; 7 "
() Pareto nodes O Valid child nodes : . .
@ Termination node Global Pareto nodes @ R=(r..r)*

Figure 2: Multi-objective Monte Carlo tree search procedure.
Each node represents an intermediate molecule which has
a reward vector associated with it. A search iteration con-
sists of selection, expansion, simulation, and backpropaga-
tion. For MolSearch, HIT-MCTS and LEAD-MCTS differ in
the expansion and simulation policy (blue boxes).

d) Backpropagation. The reward is backpropagated along the
visited nodes to update their statistics until the root node.
The process is repeated until a certain computational budget is
met. The most important step of MCTS is the selection step where a
criterion needs to be determined to compare different child nodes.
The most commonly used criteria is the upper confidence bound
(UCB1) [2, 22] in which a child node is selected to maximize:

— Y. 21
UCBI1 = X; +\/7%

where X is the averaged reward obtained so far for node j, n;
denotes times of node j being selected and n is the total times of
iteration. The first term X ; favors exploitation, i.e., choose the node
with greater average performance; while the second term ZIHM
votes for exploration, i.e., choose nodes that have not been visited
so far. UCB1 balances between exploitation and exploration to avoid
being trapped in local optimums.

For single-objective MCTS, UCBI is a scalar and maximization
picks the node with the largest value. For multi-objective MCTS,
the reward becomes a vector and the comparison is no longer
straightforward. Next we formally define each component for multi-
objective MCTS under the context of molecular generation.

3.3 Multi-objective Monte Carlo Tree Search

For molecular generation, each node of the tree (e.g., vj) represents
an intermediate molecule. It is associated with a molecule state
sj, number of visits nj, and a reward vector X; = (x1,..,x4) € R4
where d is the number of objectives. Without loss of generality,
we assume that each objective is to be maximized. Before present-
ing how the reward is calculated, we first introduce the following
definitions regarding comparisons between vectors:

Definition 1. Pareto Dominate. Given two points X = (x1, .., x4)
and X’ = (x{, ..,x{’i) , X is said to dominate X', i.e., X > X’ if and
only if x; > xlf, Vi = 1,..,d. X is said to strictly dominate X', i.e.,
X > X’ if and only if X > X’ and 3i such that x; > x].

Definition 2. Pareto Front. Given a set of vectors A C R?, the
non-dominant set P in A is defined as:

Pa={XeA : DX e Ast. X' > X}

The Pareto front consists of all non-dominated points [36].

KDD ’22, August 14-18, 2022, Washington, DC, USA

Algorithm 1: UCT algorithm for MO-MCTS.

Input: root node vy with state sy, computation budge N,
maximum number of child K, exploration scalar A
1 Function SEARCH(vp):
2 fori=1,..,Ndo

3 o = SELECTION(vg) 1/ V] = Vleaf
4 v = EXPAND (vp) /] Ve = Uchild
5 re = SIMULATION(v,)

6 BACKPROP (v,)

7 return v/;

0
s Function SELECTION(v):
9 while v is fully expanded do

10 for k = 1, ..,K child node do

11 L U, = Xk +/1\/W

12 Vp = ParetoNodeSet(Uy, .., Ug)
13 return Random(V});

For a Monte Carlo search tree, we maintain a global pool of all
the Pareto molecules found so far. At each simulation round, given
a termination state (molecule) with property score h = (hy, .., hy) €
R4, by comparing it with all Pareto molecules in the global pool,
the reward vector R = (rq, ..,rg) € RY of this state is defined as:

le]lh,>h Vi=1,....d

where N, is the number of Pareto molecules and hé is the i-th prop-
erty value of Pareto molecule I. The calculation of reward treats each
dimension separately, regardless of their scale difference, which
gains an advantage over methods that aggregate all dimensions
into one score using predefined weights. We also update the global
Pareto pool by adding new Pareto molecules if found and removing
invalid ones based on the comparison result. The reward R will be
used for backpropagation with the update formula:

Xy «— Xy +R,

which concludes the backward part of MCTS.

Next we present the forward part. Starting from the root node,
we recursively select the best child to proceed. To determine the
best child for a given parent, we calculate the utility for each child:

Ny < Ny + 1, v « parent of v,

Up = X ol 4lnn+lnd’
ng 2ng
where X}, is the average reward obtained so far, ny and n are the
times child node k being visited and the total iterations. d is the
reward dimension. Based on Definition 1 and 2, we compute the
Pareto node set given statistics of all child nodes. Once the set is
computed, we randomly select one child in the set to proceed. Once
the selection step is done, we reach a node that has never expanded
before. Then we expand the leaf node and start simulations from its
children, get reward and backpropagate again. The overall MCTS
procedure is illustrated in Figure 2 and Algorithm 1. Due to space
limit, we do not present the procedure of expansion and simulation
in Algorithm 1 since they are the same as classic single-objective

Mengying Sun et al.

Transformation: Cl >> F

\ 7

‘ Transformation: CI>>F 4

Constant Environment (radius=3) Variable

Figure 3: Example of design moves. A transformation is only
valid conditional on the existence of certain environments.

count_stat n descriptive_stat rule env
fragments 236,827 min 1 1
environment 55,599 max 20,075 2,480
rules 1,048,575 median 1 1
unique rules 672,117 mean 1.78 1.56
Atom Types C,N,O,CLFPBr1S
augment rules 436,532
trim rules 443,995

Table 1: Statistics of rules extracted from ChEMBL on envi-
ronment radius r = 3. # denotes "number of™".

MCTS and can be found in many places such as [8]. The key com-
ponent in expansion and simulation step is the policy that used
to generate the next state. In MolSearch, within each search tree,
expansion and simulation share the same policy to produce actions:

A, = actions(sy),

for each node v given current state s,. The possible actions are
obtained using transformations we will mention in the next section.
Due to the large chemical space, usually there are thousands of
possible actions for a given state and not all of them are promising,
therefore a subset of actions are selected and served as a candidate
pool for both expansion and simulation.

HIT-MCTS vs LEAD-MCTS. The two search stages in MolSearch
differ in how the candidates are picked given the original possible ac-
tions. In HIT-MCTS, the candidate actions are those yielding states
with better property scores as compared to the current parent state.
In LEAD-MCTS, the candidate actions are those producing states
with better property scores than a constant threshold.
Theoretical Analysis. The theoretical analysis of multi-objective
MCTS has been presented in prior works following concentration
inequalities and union bound. Readers can refer to [2, 10, 36].

3.4 Design Moves

A key challenge in MolSearch is the actions to take when searching
for new molecules. The modification rules should be chemically
reasonable, covering a variety of modification directions, and being
large in size in order to successfully navigate in the chemical space.
Design moves, proposed in [3], is such an approach. It extracts
transformations among molecules based on matched molecular pair
(MMP) [17] and outputs a collection of rules that systematically
summarize the modification of molecules that exist and chemically
valid in the current large compound database such as ChEMBL [26].
The transformation rules contain both atom-wise and fragment-
wise modification and for the purpose of simplicity, we refer all of
them as fragments.

MolSearch: Search-based Multi-objective Molecular Generation and Property Optimization

Each rule consists of three major components, a left-hand-side
fragment (lhs_frag), an environment, and a right-hand-side frag-
ment (rhs_frag), and can be written as follows:

lhs_frag + environment >> rhs_frag

An example of design move transformation is shown in Figure 3.
Each matched molecular pair has three parts. The constant part
denotes the places that remain the same before and after transfor-
mation. The variable part denotes the fragment to be replaced. The
environment is the most important part in design move which char-
acterizes the context of a transformation. The range of the context
is determined by the radius r and contains all the atoms that can be
reached from the fragment to be replaced within step size r. Such
constraint ensures the transformation is chemically reasonable and
the larger the radius r, the more likely the assumption holds true
[3]. In Figure 3, we see that even for the same lhs_frag and rhs_frag,
due to that environments are different, the transformations are
treated as different transformations rules.

We summarized the statistics of all the design move rules ex-
tracted from ChEMBL based on radius r = 3 in Table 1. We see
that it contains more than 1 million transformation rules with more
than 600K unique pairs of fragments to be replaced. There are also
more than 200K fragments and 50K environments in the total rules.
For a transformation rule, the frequency it happens in the database
ranges from 1 to 20K, which covers both common and rare trans-
formations. The number of environments for the same rule also
ranges from 1 to 2.5K. Given ChEMBL is one of the largest chemical
databases, the rules are expected to cover all the possible moves of
common molecules of biological interest. Moreover, unlike most
prior works which only allow atom or fragment addition, design
moves contain modifications that can either increase or decrease
the molecular size (436,532 vs 443,995), making it more flexible to
find better modification directions.

3.5 Rationale of MolSearch

The last important question regarding MolSearch framework is the
two-stage design in which biological properties are first optimized
and then followed by optimization of non-biological properties. The
reason is two-folded. First, we observe that lower non-biological
property (e.g., QED and SA) values are often due to large size or
large number of rings of molecules since the fragments are already
chemically valid. That is to say, reducing the size of generated
molecules can achieve better QED and SA scores in general. How-
ever, design move requires valid environment in order to perform
modification, the larger the molecules are, the more actions could
be found. Therefore, optimizing QED/SA has to come after opti-
mizing biological properties. Second, such design is also inspired
by the real-world drug discovery routine that we first find drugs
that are biologically active and then optimize them regarding other
properties.

Another interesting property of such design is that, in general,
molecules from HIT-MCTS stage are quite large, due to that HIT-
MCTS modifies molecules into hits by adding property-related
fragments repeatedly; However, it is fine because LEAD-MCTS
will trim the molecules for a higher QED/SA score by dropping
property-unrelated fragments. The entire process will ensure that
the final molecules satisfies all the property requirements.

KDD ’22, August 14-18, 2022, Washington, DC, USA

4 EXPERIMENT

We conduct extensive experiments on benchmark tasks following
[20, 37] to demonstrate the effectiveness of MolSearch. The results
show that search methods can achieve comparable and sometimes
superior performance compared to advanced deep learning methods
given sufficient information and proper design of the algorithm.

4.1 Experiment Setup

Property Objectives. We consider two biological properties that
measure the inhibition of proteins related to Alzheimer disease:

e GSK3p, score of inhibiting glycogen synthase kinase-34
e JNK3, score of inhibiting c-Jun N-terminal kinase-3

The scores are predicted probabilities of inhibition by pretrained
random forest models from [20]. For non-biological properties, we
follow [20, 37] and also consider drug-likeness (QED) [6] and syn-
thesis accessibility (SA) [14] scores. The SA score (originally in
[1, 10]) is reversely normalized to [0, 1]. For all scores, the higher
the better. The goal is to find compounds that mostly inhibit two es-
sential proteins in Alzheimer’s such that their potency is maximized
while achieving favorable medicinal chemistry properties.
Multi-objective generation setting. We consider 6 different gen-
eration settings as in [20, 37]:

e GSK3p/JNK3: inhibit GSK3p or JNK3 without constraints on
QED and SA scores.

e GSK3p+JNK3: jointly inhibit GSK3f and JNK3 without con-
straints on QED and SA scores.

o GSK3p/JNK3+QED+SA: inhibit GSK3f or JNK3 while being
druglike and easy to synthesize.

o GSK3p+JNK3+QED+SA: jointly inhibiting GSK3/ and JNK3
while being druglike and easy to synthesize.

Baselines. We compare MolSearch with state-of-the-art methods
from each category summarized in section 2: 1) JT-VAE [19], a
method uses Bayesian optimization based on hidden representa-
tions from a VAE based on molecule fragments. 2) GCPN [39], a
method uses policy gradient to finetune a pre-trained molecule
generator based on GNN. 3) MolDQN [43], a method directly learns
the values of actions for target properties via double Q-learning and
generate molecules based on that. 4) GA+D [27], a method utilizes
genetic algorithm for molecule generation paired with an adversar-
ial module to increase diversity. 5) RationaleRL [20], a method uses
MCTS to find property-related fragments and then completes the
graph using RL. 6) MARS [37], a method utilizes Markov sampling
based on GNN and molecule fragments.

Evaluation Metrics. We evaluate the generated molecules using
metrics similar to prior works [20, 37]: 1) success rate (SR): the
proportion of resulted molecules that satisfy all the targeted objec-
tives, i.e., QED > 0.6, SA > 0.67, GSK3f > 0.5, and JNK3 > 0.5.
2) Novelty (Nov): the proportion of resulted molecules that have
similarity less than 0.4 compared to the nearest neighbor xgnN in
the reference dataset, i.e., Nov = % Zf\il I[sim(x;, xsNN) < 0.4]
where the similarity is calculated as the Tanimoto coefficient [4]
between two Morgan fingerprints [29] of molecules. The reference
dataset in prior works is training data while in our work, the ref-
erence data becomes the start molecules. 3) Diversity (Div): the
pair-wise dissimilarity among the generated molecules, i.e., Div

KDD ’22, August 14-18, 2022, Washington, DC, USA

Mengying Sun et al.

Objectives GSK3p JNK3 GSK3+JNK3
Method SR Nov Div PM SR Nov Div PM SR Nov Div PM
JT-VAE 0.322 0.118 0.901 0.030 0.235 0.029 0.882 0.006 0.033 0.079 0.883 0.002
GCPN 0.424 0.116 0.904 0.040 0.323 0.044 0.884 0.013 0.035 0.080 0.874 0.002
RationaleRL 0.939 0.457 0.890 0.381 0.880 0.419 0.872 0.321 0.842 0981 0.831 0.686
GA+D 0.85 1.00 0.71 0.60 0.53 0.98 0.73 0.38 0.85 1.00 0.42 0.36
MARS 1.000 0.840 0.718 0.603 0.988 0.889 0.748 0.657 0.995 0.753 0.691 0.518
MolDQN-emtpy 0.000 0.038 0.204 0.000 0.000 0.019 0.116 0.000 0.000 0.025 0.126 0.000
MolDQN-nonemtpy 0.341 0.304 0.856 0.089 0.175 0.288 0.857 0.043 0.050 0.421 0.858 0.018
MolSearch 1.000 0.739 0.862 0.637 £0.009 1.000 0.728 0.846 0.616 + 0.015 1.000 0.787 0.826 0.650 + 0.009
MolSearch-5000 1.000 0.706 0.850 0.601 + 0.023 1.000 0.685 0.845 0.579 £0.027 1.000 0.756 0.836 0.632 £ 0.030
Ranking 1st 2nd 2nd

Table 2: Overall performance of comparison methods on bio-activity objectives. Results of RationaleRL, MolDQN are obtained
by running their open source code. Results of JT-VAE, GCPN, GA+D and MARS are taken from [20, 37]. For MolSearch, we
repeat the experiments for 10 times and report the mean and standard deviation.

Objectives GSK3+QED+SA JNK3+QED+SA GSK3+JNK3+QED+SA
Method SR Nov Div PM SR Nov Div PM SR Nov Div PM
JT-VAE 0.096 0.958 0.680 0.063 0.218 1.000 0.600 0.131 0.054 1.000 0.277 0.015

GCPN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RationaleRL 0.891 0.341 0.891 0.270 0.787 0.190 0.874 0.131 0.750 0.555 0.706 0.294
GA+D 0.89 1.00 0.68 0.61 0.86 1.00 0.50 0.43 0.86 1.00 0.36 0.31
MARS 0.995 0950 0.719 0.680 0913 0.948 0.779 0.674 0.923 0824 0.719 0.547
MolDQN-empty 0.000 0.224 0.331 0.000 0.000 0.089 0.245 0.000 0.000 0.046 0.166 0.000
MolDQN-nonempty 0.000 0.431 0.850 0.000 0.000 0.525 0.856 0.000 0.000 0.499 0.857 0.000
MolSearch 1.000 0.821 0.856 0.702 £+ 0.005 1.000 0.783 0.831 0.651 +0.009 1.000 0.818 0.811 0.664 + 0.007
MolSearch-5000 1.000 0.810 0.869 0.704 + 0.009 1.000 0.743 0.843 0.626 + 0.012 1.000 0.797 0.827 0.660 + 0.009
Ranking 1st 2nd 1st

Table 3: Overall performance of comparison methods on bio-activity plus non-bioactivity objectives. Results of RationaleRL,
MolDOQN are obtained by running their open source code. Results of JT-VAE, GCPN, GA+D and MARS are taken from [37]. For
MolSearch, we repeat the experiments for 10 times and report the mean and standard deviation.

=m Zf:]j:l;#j[l — sim(x;, xj)]. 4) PM: the product of SR, Nov
and Div metrics, representing the possibility of generated molecules
being simultaneously active, novel and diverse [37].

Start Molecules. A critical step in MolSearch is to pick the start
molecules. We first download dataset from the Repurposing Hub
(https://clue.io/repurposing), which consists of 6,758 FDA-approved
and clinical trail drugs. We then cluster all the drugs based on their
Tanimoto similarity using Butina algorithm [9] with threshold 0.4, a
commonly used cutoff to quantify the structural similarity between
molecules. It results in 5,727 small clusters, indicating that most
molecules are not similar to each other. We select the centroid of
each cluster, i.e., 5,727 dissimilar molecules, as the pre-processed
dataset and construct start molecules from it. For benchmark objec-
tives, to avoid making the task easier, we remove 1) all successful
molecules, i.e., GSK36 > 0.5, JNK3 > 0.5, QED > 0.6, SA > 0.67; 2)
top molecules with either GSK3/ or JNK3 score larger than 0.8 in
the dataset. That is to say, no start molecules has biological score
higher than 0.8. We then choose the remaining molecules with
GSK3p and JNK3 score no less than 0.3 as the start molecules. Such
selection strategy aligns with molecular optimization in reality
that starts with molecules having some signals towards the desired
property. In total 96 molecules satisfy the starting criteria.
Implementation Details. For MCTS, we set the maximum level
of tree depth as 5 and test different values of maximum child nodes
K = [3,5,7] and the number of simulations N = [5, 10, 20]. For

design move, we utilize rules derived from environmental radius
3 and do not impose frequency constraint on the actions,
i.e., any action with frequency > 1 will be considered in each
modification step. All MolSearch experiments are done on AMD
EPYC CPU cores 2. Baselines requiring deep learning libraries are
done on TITAN RTX GPUs with 24GB Memory.

r =

n_child n_sim Avg Median STD
3 10 0.4h 0.38h 0.1%h
5 20 1.02h 0.87h 0.93h

Table 4: Running time per molecule for MolSearch.

Running Time. In the GSK35+JNK3+QED+SA setting, RationaleRL
takes 6 hours to finetune the model; GA+D takes 300 steps and 4
hours to reach its best performance; MARS takes 10 hours to con-
verge; MolDQN takes 5 and 10 hours to finish for empty and non-
empty variants respectively. MolSearch takes on average 0.4-1.0
hours per molecule in both search stages (Table 4). Each molecule
only occupies very small amount of memory and computational re-
sources, making MolSearch much more efficient than deep learning
methods regardless of computation constraints.

4.2 Benchmark Results

We perform MolSearch, i.e., start molecules — HIT MCTS — LEAD
MCTS 10 times for each generation settings. In each search stage, we

2MolSearch code available at https://github.com/illidanlab/MolSearch.

MolSearch: Search-based Multi-objective Molecular Generation and Property Optimization

Start HIT-MCTS LEAD-MCTS Start HIT-MCTS LEAD-MCTS
08 08 = -

GSK3B JNK3 QED SA

(a) biological property (b) non-biological property

10w start ¢ HIT-MCTS
0.0 M HIT-MCTS 5 3 LEAD-MCTS
081 —mz-——mm——m—— e - ——==
i .
007 i z
Zos =E=t !' g’
o EN ol ,
04 | 1
03 : 0 ‘
05 o4 o5 o 07 os s 1o 2 o1 o os
GSK3B QED Score
(c) biological property (d) non-biological property

Figure 4: Property dynamics across MolSearch stages. (a)(b):
average scores over 10 runs at each stage. (c): distribution of
bioactivity scores during Start and HIT-MCTS stage. (d): QED
distribution between HIT-MCTS and LEAD-MCTS stage.

keep track of valid molecules and add them to the final set. Because
the number of generated molecules is not controllable in MolSearch,
we calculated the metrics for two sets of generated molecules: 1)
MolSearch: all the molecules generated by MolSearch; 2) MolSearch-
5000: top 5000 molecules generated by MolSearch, ranked by the
average score of all properties considered in one setting, to match
the number of molecules generated by other baseline methods.

Overall Performance. We summarize all the results in Table 2 and
Table 3. MolSearch outperforms all baselines on 3 generation set-
tings and always rank high (1st or 2nd) in terms of PM. Specifically,

when considering non-bioactivity objectives, i.e., GSK35+JNK3+QED+SA,

MolSearch significantly outperforms the best baseline by 21.4% on
the PM metric. Among all the metrics, MolSearch falls short on the
novelty metric since it starts from known molecules and modify
them into new ones. However, the novelty still ranks good via the
two-stage design of MolSearch such that the generated molecules
are not too similar as the original ones. The diversity of molecules
generated by MolSearch always ranks high, possibly due to 1) dis-
similarity of start molecules, 2) separation of different property
objectives and 3) Pareto search on all objective directions.

Start Molecule GSK38 JNK3 QED SA
Empty 0.262 0.083 0.870 0.603
Non-empty 0.334 0.216 0.217 0.586
Table 5: Average scores of generated molecules by MolDQN
in GSK34+JNK3+QED+SA setting.

Moreover, we conduct extensive experiments for the baseline
MOoIDOQN because it is the deep learning version of MCTS that
tries to learn the values of all the actions and generate molecules
that maximize the values. The differences between MolDQN and
MolSearch can help verify the motivation and effectiveness of
MolSearch. First, MolDQN-empty starts with empty molecules
and uses atom-wise actions, and the SR of generated molecules
are extreme low (= 0.00) in all settings. When we look into the
scores of generated molecules, as shown in Table 5, we find the
QED and SA score of generated molecules are relatively high while
GSK3p and JNK3 scores are very low. This means that QED and

KDD ’22, August 14-18, 2022, Washington, DC, USA

20000 GSK3B+QED+SA 60000 — LEAD-MCTS
17500{ — INK3+QED+SA <0000
—— GSK3B+JNK3+QED+SA
15000 2

¢ 40000
» 12500 ul
° 30000
£,10000
< 20000
7500

10000 —

5000
2500

7 Y
Soiy, M Gs%f%@ s S5
e, 0%
iy Ok

%
start HIT-MCTS LEAD'MCTS Rl

(a) Across stages (b) Across objectives.

Figure 5: Number of generated molecules across MolSearch
stages and different generation settings (10 runs).

SA are easier to optimize than biological objectives when start-
ing from empty molecules and using atom-wise actions. However,
in most real applications, optimizing biological objectives are the
major focus before one considers drug-likeness and synthesis abili-
ties. Second, MolDQN-nonempty starts from the same molecules
we used in MolSearch, however, the success rates are still low al-
though improved compared to MoIDQN-empty. This is due to that
MOolDON only allows addition actions thus cannot reduce the size
of molecules, making QED and SA drop significantly. Third, the
low performances of both MoIDQN variants imply that atom-wise
actions generally works less effective compared to fragment-based
actions for improving biological properties. For MolSearch, the
search trees can find desired molecules with relatively small depth
and width, therefore it is not necessary to use Deep Q-learning to
approximate the action values. All the above observations echo the
rationale of MolSearch’s design.

MolSearch Dynamics. We next verify if the change of property
scores across stages aligns with design motivation of MolSearch.
HIT-MCTS aims to improve biological properties and Figure 4a
confirms a significant elevation for GSK3f and JNK3 scores. LEAD-
MCTS aims to improve non-biological properties and Figure 4b
reflects such improvement especially for QED (Figure 4d). Figure
4c demonstrates that, even if we remove all successful molecules
and top molecules at start (0.3-0.8 dashed box with grey points),
MolSearch is still able to find molecules with both scores larger
than 0.8 (red region outside dashed box), demonstrating its power.
Figure 5a shows the number of molecules generated in each stage for
three settings where both biological and non-biological objectives
are considered. We observe an exponential increase from start
molecules to the later two stages. GSK3f is easier to optimize as
compared to JNK3. Figure 5b shows the number of final molecules
generated by MolSearch for all settings. As the number of objectives
increases, less valid molecules are found, which is reasonable.
Visualization. We compare the molecules generated under setting
GSK3p+]JNK3+QED+SA by different methods using t-SNE plots
shown in Figure 6 (a)-(c). The red crosses are the molecules that
satisfy all the requirements in reference (training) dataset, while
grey dots are molecules generated by each method. For MolSearch,
there are no successful molecules in the start (reference) dataset,
instead we plot the successful ones in HIT-MCTS stage. The start
molecules of MolSearch are also plotted for reference (Figure 6c).
We observe that baseline methods such as GA+D and RationaleRL
generate molecules with large clusters, indicating relatively low
diversity. The molecules generated by MolSearch evenly span the
entire embedding space and also cover some novel regions com-
pared to start molecules. MARS is very similar to MolSearch whose

KDD ’22, August 14-18, 2022, Washington, DC, USA

Taining @ GeneratedbyGA+D % Success Mols n Training

o Generated by RationaleRL % _ Success Mols in

(a) RationaleRL (b) GA+D

Mengying Sun et al.

o Gnerated by Molsearch m Start Mols 1
% Success Mols in HITMCTS

» MolSearch
o MARS

(c) MolSearch (d) MolSearch vs MARS

Figure 6: t-SNE visualization of generated molecules and positive molecules in the reference (training) dataset.

N N e
A .

s A) _/)
{ \ Y

(0.91,0.85,0.78,0.92) (0.93,0.81,0.72,0.91) (0.89,0.80,0.77,0.88) (0.80,0.90,0.79,0.90)
Figure 7: Sample molecules generated by MolSearch in the

GSK34+JNK3+QED+SA setting with associated scores.

i Common substructure |
with start molecules

H H (0.90,0.65,0.77,0.91)
i Common substructure | AN,
with hit molecules

(GSK3B, JNK3, QED, SA)

(0.89,0.57,0.61,0.86)

(0.89,0.65,0.71, 0.88)

(0.84,0.71,0.27,0.85)

(0.58,0.35,0.45,0.79)

Start Molecule HIT-MCTS Molecule LEAD-MCTS Molecule

Figure 8: MolSearch path for GSK3/ + JNK3 + QED + SA.

generated molecules enjoy both diversity and novelty, therefore we
seek other comparison between MARS and MolSearch. As shown
in Figure 6d, MolSearch is able to find more dominant molecules in
terms of biological properties as compared to MARS (5 runs). We
visualize the structure of several molecules generated by MolSearch
with high property scores in Figure 7.

Figure 8 shows an example trajectory of MolSearch under the
generation setting GSK3f + JNK3 + QED + SA. The property scores
for the start molecule are relatively low. After HIT-MCTS stage,
the generated molecules obtain higher GSK3/4 and JNK3 score by
replacing certain substructures of the original molecule while also
keeping certain original substructures. As we also can see, the QED
score for HIT molecules are extremely low due to their large size.
After LEAD-MCTS stage, the QED scores of the final molecules
are elevated by dropping fragments that are less property related.
The scaffold of the final molecules is not simply the substructure
of start molecules but rather a combination of fragments from
start molecules and new fragments from transformation rules. Also,
the replacement is not completed in one round because the added
fragments are relatively large, indicating the states are reached by
multiple search steps instead of one.

Sensitivity Analysis. Table 6 shows the overall performance of
MolSearch under different combination of hyper-parameters for

Setting GSK3B+JNK3 GSK3 B +JNK3+QED+SA
K, N SR Nov Div PM SR Nov Div PM
3,5 1.00 0.72 0.83 0.60 1.00 0.77 0.82 0.63
3,10 1.00 0.78 0.83 0.65 1.00 0.82 0.81 0.67
3,20 1.00 0.77 0.83 0.64 1.00 0.80 0.81 0.65
55 1.00 0.76 0.83 0.63 1.00 0.79 0.82 0.65
5,10 1.00 0.77 0.83 0.64 1.00 0.81 0.81 0.66
5,20 1.00 0.80 0.83 0.66 1.00 0.82 0.81 0.67
7.5 1.00 0.76 0.83 0.63 1.00 0.79 0.81 0.64
7,10 1.00 0.78 0.83 0.65 1.00 0.84 0.81 0.68
7,20 1.00 0.80 0.83 0.66 1.00 0.82 0.81 0.67

Table 6: Performance of MolSearch under different hyper-
parameters for two generation settings.

Setting GSK3+JNK3 GSK33+]NK3+QED+SA
N/K 3 5 7 3 5 7
5 9373 14776 18,077 | 3543 5463 6.773
10 13,960 21,982 28659 | 5499 7,772 10,295
20 16085 29912 43778 | 6233 10406 13,884

Table 7: Number of generated molecules by MolSearch under
different hyper-parameters for two generation settings.

two generation settings. Table 7 shows the number of valid molecules
corresponding to Table 6. We observe that the performance is not

very different regarding different hyper-parameters, but rather the

number of generated molecules are highly affected by these hyper-
parameters. Because the maximum number of child nodes and

simulations rounds actually increases the search range such that

more molecules can be found along the way.

4.3 Discussion

The extensive experiments of MolSearch demonstrated that given
proper design and sufficient information, search-based method
is also able to find molecules that satisfy multiple property re-
quirements simultaneously with performance comparable to ad-
vanced methods using deep learning and reinforcement learning,
while being much more time efficient. For MolSearch, the benefits
comes from several aspects. For example, the two-stage design in-
creases the novelty of generated molecules; Treating different objec-
tives separately improves the diversity of the generated molecules;
Fragment-based actions and starting from existing molecules main-
tain the synthesis abilities and drug-likeness of generated molecules.
Additional to properties in benchmark tasks, MolSearch can be
easily adopted into real drug discovery projects targeting other
objectives. For example, replacing GSK3f and JNK3 scoring models
with COVID related predictors [21] may lead to the identification of
novel and synthesizable compounds. Properties other than QED/SA,
such as solubility and ADMET properties can also be included to
search for more promising candidates.

MolSearch also has its own limitations. First, the bioactivity
scores drop in LEAD-MCTS compared to HIT-MCTS although they
are still significantly higher than start molecules (Figure 4a). It is
because the child nodes only need to maintain bioacitivity score

MolSearch: Search-based Multi-objective Molecular Generation and Property Optimization

above 0.5 threshold in LEAD-MCTS in exchange of higher non-
bioacitvity scores. It is possible to improve the situation by setting
more strict constraint during LEAD-MCTS. Second, the evaluation
metrics are calculated based on unique molecules found in the
search process, however, we do observe the molecules generated
in LEAD-MCTS often contain many duplicates and thus causes
redundancy. Third, for objectives that has relatively clear structural
requirement, e.g., binding to a specific protein target, MolSearch
is able to find desired molecules. However, if the objective is not
sensitive to structure changes, i.e., regulation effects of multiple
genes, then MolSearch, or any other related methods works less
effectively. Last but not least, the scoring models are not perfect in
reality since they also come form machine learning models, which
may affect the quality of generation results.

ACKNOWLEDGMENT

This research is funded in part by National Science Foundation
I1S-1749940 (JZ), Office of Naval Research N00014-20-1-2382 (JZ),
National Institute of Health R0O1GM134307 (JZ, BC). This work is
also supported via computational resources and services provided
by the Institute for Cyber-Enabled Research (ICER) at MSU.

REFERENCES

[1] Sungsoo Ahn, Junsu Kim, Hankook Lee, and Jinwoo Shin. 2020. Guiding deep
molecular optimization with genetic exploration. arXiv preprint arXiv:2007.04897
(2020).

[2] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of
the multiarmed bandit problem. Machine learning 47, 2 (2002), 235-256.

[3] Mahendra Awale, Jérome Hert, Laura Guasch, Sereina Riniker, and Christian
Kramer. 2021. The Playbooks of Medicinal Chemistry Design Moves. Journal of
Chemical Information and Modeling 61, 2 (2021), 729-742.

[4] David Bajusz, Anita Racz, and Karoly Héberger. 2015. Why is Tanimoto index
an appropriate choice for fingerprint-based similarity calculations? Journal of
cheminformatics 7, 1 (2015), 1-13.

[5] Richard Bellman. 1957. A Markovian decision process. Journal of mathematics
and mechanics 6, 5 (1957), 679-684.

[6] G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and An-
drew L Hopkins. 2012. Quantifying the chemical beauty of drugs. Nature
chemistry 4, 2 (2012), 90-98.

[7] Benjamin E Blass. 2015. Basic principles of drug discovery and development.
Elsevier.

[8] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I

Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-

rakis, and Simon Colton. 2012. A survey of monte carlo tree search methods.

IEEE Transactions on Computational Intelligence and Al in games 4, 1 (2012), 1-43.

Darko Butina. 1999. Unsupervised data base clustering based on daylight’s

fingerprint and Tanimoto similarity: A fast and automated way to cluster small

and large data sets. Journal of Chemical Information and Computer Sciences 39, 4

(1999), 747-750.

[10] Weizhe Chen and Lantao Liu. 2021. Pareto monte carlo tree search for multi-
objective informative planning. arXiv preprint arXiv:2111.01825 (2021).

[11] Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. 2018.
Syntax-directed variational autoencoder for structured data. arXiv preprint
arXiv:1802.08786 (2018).

[12] Nicola De Cao and Thomas Kipf. 2018. MolGAN: An implicit generative model

for small molecular graphs. arXiv preprint arXiv:1805.11973 (2018).

Daniel C Elton, Zois Boukouvalas, Mark D Fuge, and Peter W Chung. 2019. Deep

learning for molecular design—a review of the state of the art. Molecular Systems

Design & Engineering 4, 4 (2019), 828-849.

[14] Peter Ertl and Ansgar Schuffenhauer. 2009. Estimation of synthetic accessibil-

ity score of drug-like molecules based on molecular complexity and fragment

contributions. Journal of cheminformatics 1, 1 (2009), 1-11.

Sylvain Gelly and David Silver. 2011. Monte-Carlo tree search and rapid action

value estimation in computer Go. Artificial Intelligence 175, 11 (2011), 1856-1875.

[16] Rafael Gémez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel
Hernandez-Lobato, Benjamin Sanchez-Lengeling, Dennis Sheberla, Jorge
Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams, and Alan Aspuru-Guzik.
2018. Automatic chemical design using a data-driven continuous representation
of molecules. ACS central science 4, 2 (2018), 268—276.

=
X0,

[13

(15

KDD ’22, August 14-18, 2022, Washington, DC, USA

[17] Jameed Hussain and Ceara Rea. 2010. Computationally efficient algorithm to
identify matched molecular pairs (MMPs) in large data sets. Journal of chemical
information and modeling 50, 3 (2010), 339-348.

[18] JanH Jensen. 2019. A graph-based genetic algorithm and generative model/Monte
Carlo tree search for the exploration of chemical space. Chemical science 10, 12
(2019), 3567-3572.

[19] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. 2018. Junction tree varia-

tional autoencoder for molecular graph generation. In International conference

on machine learning. PMLR, 2323-2332.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. 2020. Multi-objective mole-

cule generation using interpretable substructures. In International Conference on

Machine Learning. PMLR, 4849-4859.

Govinda B Kc, Giovanni Bocci, Srijan Verma, Md Mahmudulla Hassan, Jayme

Holmes, Jeremy J Yang, Suman Sirimulla, and Tudor I Oprea. 2021. A machine

learning platform to estimate anti-SARS-CoV-2 activities. Nature Machine Intelli-

gence 3, 6 (2021), 527-535.

Levente Kocsis and Csaba Szepesvari. 2006. Bandit based monte-carlo planning.

In European conference on machine learning. Springer, 282-293.

[23] Matt J Kusner, Brooks Paige, and José Miguel Hernandez-Lobato. 2017. Grammar
variational autoencoder. In International Conference on Machine Learning. PMLR,
1945-1954.

[24] Yibo Li, Liangren Zhang, and Zhenming Liu. 2018. Multi-objective de novo drug
design with conditional graph generative model. Journal of cheminformatics 10,
1(2018), 1-24.

[25] Youzhi Luo, Kegiang Yan, and Shuiwang Ji. 2021. GraphDF: A discrete flow model
for molecular graph generation. arXiv preprint arXiv:2102.01189 (2021).

[26] David Mendez, Anna Gaulton, A Patricia Bento, Jon Chambers, Marleen De Veij,

Eloy Félix, Maria Paula Magarifos, Juan F Mosquera, Prudence Mutowo, Michat

Nowotka, et al. 2019. ChEMBL: towards direct deposition of bioassay data. Nucleic

acids research 47, D1 (2019), D930-D940.

AkshatKumar Nigam, Pascal Friederich, Mario Krenn, and Alan Aspuru-Guzik.

2019. Augmenting genetic algorithms with deep neural networks for exploring

the chemical space. arXiv preprint arXiv:1909.11655 (2019).

Anand A Rajasekar, Karthik Raman, and Balaraman Ravindran. 2020. Goal

directed molecule generation using monte carlo tree search. arXiv preprint

arXiv:2010.16399 (2020).

David Rogers and Mathew Hahn. 2010. Extended-connectivity fingerprints.

Journal of chemical information and modeling 50, 5 (2010), 742-754.

Benjamin Sanchez-Lengeling, Carlos Outeiral, Gabriel L Guimaraes, and Alan

Aspuru-Guzik. 2017. Optimizing distributions over molecular space. An objective-

reinforced generative adversarial network for inverse-design chemistry (OR-

GANIC). (2017).

Gisbert Schneider and Uli Fechner. 2005. Computer-based de novo design of

drug-like molecules. Nature Reviews Drug Discovery 4, 8 (2005), 649-663.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Fre-

itas. 2015. Taking the human out of the loop: A review of Bayesian optimization.

Proc. IEEE 104, 1 (2015), 148-175.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian

Tang. 2020. Graphaf: a flow-based autoregressive model for molecular graph

generation. arXiv preprint arXiv:2001.09382 (2020).

Gregory Sliwoski, Sandeepkumar Kothiwale, Jens Meiler, and Edward W Lowe.

2014. Computational methods in drug discovery. Pharmacological reviews 66, 1

(2014), 334-395.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. 1999.

Policy gradient methods for reinforcement learning with function approximation.

Advances in neural information processing systems 12 (1999).

Weijia Wang and Michele Sebag. 2012. Multi-objective monte-carlo tree search.

In Asian conference on machine learning. PMLR, 507-522.

Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei

Li. 2021. Mars: Markov molecular sampling for multi-objective drug discovery.

arXiv preprint arXiv:2103.10432 (2021).

[38] Xiufeng Yang, Jinzhe Zhang, Kazuki Yoshizoe, Kei Terayama, and Koji Tsuda.
2017. ChemTsS: an efficient python library for de novo molecular generation.
Science and technology of advanced materials 18, 1 (2017), 972-976.

[39] Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec. 2018. Graph
convolutional policy network for goal-directed molecular graph generation. arXiv
preprint arXiv:1806.02473 (2018).

[40] Wenbo Yu and Alexander D MacKerell. 2017. Computer-aided drug design
methods. In Antibiotics. Springer, 85-106.

[41] Chengxi Zang and Fei Wang. 2020. MoFlow: an invertible flow model for gen-
erating molecular graphs. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 617-626.

[42] Yi Zhang. 2021. An In-depth Summary of Recent Artificial Intelligence Applica-

tions in Drug Design. arXiv preprint arXiv:2110.05478 (2021).

Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N Zare, and Patrick Riley. 2019.

Optimization of molecules via deep reinforcement learning. Scientific reports 9, 1

(2019), 1-10.

[20

)
=

~
&,

[27

[28

[29

[30

[31

(32

[33

[34

@
i

[36

[37

=
&

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Problem Definition
	3.2 Monte Carlo Tree Search
	3.3 Multi-objective Monte Carlo Tree Search
	3.4 Design Moves
	3.5 Rationale of MolSearch

	4 Experiment
	4.1 Experiment Setup
	4.2 Benchmark Results
	4.3 Discussion

	References

