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ABSTRACT
Leveraging computational methods to generate small molecules
with desired properties has been an active research area in the drug
discovery �eld. Towards real-world applications, however, e�cient
generation of molecules that satisfy multiple property require-
ments simultaneously remains a key challenge. In this paper, we
tackle this challenge using a search-based approach and propose a
simple yet e�ective framework called MolSearch for multi-objective
molecular generation (optimization). We show that given proper de-
sign and su�cient domain information, search-based methods can
achieve performance comparable or even better than deep learn-
ing methods while being computationally e�cient. Such e�ciency
enables massive exploration of chemical space given constrained
computational resources. In particular, MolSearch starts with ex-
isting molecules and uses a two-stage search strategy to gradually
modify them into new ones, based on transformation rules derived
systematically and exhaustively from large compound libraries. We
evaluate MolSearch in multiple benchmark generation settings and
demonstrate its e�ectiveness and e�ciency.
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1 INTRODUCTION
Searching new compounds with desired properties is a routine
task in early-stage drug discovery [7]. Common examples include
improving the binding activity against one or multiple therapeu-
tic targets while keeping the drug-likeness property; increasing
drug solubility while minimizing the change of ADME properties.
However, a small modi�cation of chemical structures may lead
to an unwanted change of property that even seasoned chemists
cannot foresee. Moreover, the virtually in�nite chemical space and
the diverse properties for consideration impose signi�cant chal-
lenges in practice [31]. Advanced machine learning models built
upon historical biological and medicinal chemistry data are posed
to aid medicinal chemists in designing compounds with multiple
objectives e�ciently and e�ectively.

Leveraging computational methods to facilitate and speed up
the drug discovery process has always been an active research area
[34, 40]. In particular, using deep learning (DL) and reinforcement
learning (RL) to generate and optimize molecules has recently re-
ceived broad attentions [19, 37, 39], which we will summarize in
detail later in section 2. Despite the advances, such methods either
rely on the quality of latent space obtained by generative models
[32], or su�er from high variation, making it hard to train [35].
In reality, DL/RL methods consume large computational resources
while the generated molecules could be hard to synthesize. Methods
combing multiple objectives often do not work well [13].

In this paper, instead of leveraging DL, we propose a practical
search-driven approach based on Monte Carlo tree search (MCTS)
to generate molecules. We show that under proper design, search
methods can achieve comparable or even better results to DL meth-
ods in terms of multi-objective molecular generation and optimiza-
tion, while being computationally much more e�cient. The e�-
ciency and multi-objective nature allow it to be readily deployed in
massive real-world applications such as early-stage drug discovery.

To design an e�cient and e�ective search framework for prac-
tical multi-objective molecular generation and optimization, we
need to answer the following questions. Q1: where to start; Q2:
what to search; and Q3: how to search. For Q1, prior works us-
ing MCTS to generate molecules mostly start with empty or very
small molecules [18, 38]. Since most drug-like molecules have 10-40
atoms, the search tree can grow deep and the space grows expo-
nentially with the depth, making the search process less e�cient
and e�ective. Some work thus uses pre-trained RNN as a simulator
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to expand the tree however it requires additional pretraining [38].
Moreover, real optimization projects often have some candidates in
place. For Q2, most prior works use atom-wise actions to modify
molecules, which makes it hard to improve target property while
maintaining drug-likeness and synthesis abilities [39, 43]. Fragment-
wise actions tend to work better but the editing rules are mostly
heuristic [20, 37]. For Q3, most existing methods combine all the
objectives into one score and optimize for that [27, 37]. However,
simple aggregation of scores neither fully considers the di�erences
of objective classes nor re�ects real optimization scenario.

We seek solutions to Q1-Q3 and propose MolSearch, a simple
and practicable search framework for multi-objective molecular
generation and optimization. In MolSearch, we start with existing
molecules and optimize them towards desired ones (Q1). The mod-
i�cation is based on design moves [3], i.e., transformation rules
that are chemically reasonable and derived from large compound
libraries (Q2). The property objectives are split into two groups
with its rationale explained in detail later. The �rst group contains
all biological properties such as inhibition scores to proteins, and
the second group includes non-biological properties such as drug-
likeness (QED) and synthetic accessibility (SA). Correspondingly,
the entire search process consists of two stages: a HIT-MCTS stage
that aims to improve biological properties, followed by a LEAD-
MCTS stage that focuses on non-biological properties while keep-
ing biological ones above certain threshold. Each stage contains a
multi-objective Monte Carlo search tree where di�erent property
objectives are considered separately rather than combined (Q3).

We evaluate MolSearch on benchmark tasks under di�erent
generation settings and compare it with various baselines. The
results show that MolSearch is on par with or even better than the
baselines based on evaluation metrics calculated from success rate,
novelty and diversity, within much less running time. In summary,
our contributions are as follows:

• MolSearch is among the �rst that make search-based ap-
proaches comparable to DL-based methods in terms of multi-
objective molecular generation and optimization.

• MolSearch combines mature components, e.g., tree search,
design moves, multi-objective optimization, in a novel way
such that the generated molecules not only have desired
properties but also achieve a wide range of diversity.

• MolSearch is computationally very e�cient and can be eas-
ily adopted into any real drug discovery projects without
additional knowledge beyond property targets.

• Additional to molecular generation, MolSearch is more tai-
lored for hit-to-lead optimization given the nature of its
design, which makes it very general and applicable.

2 RELATEDWORK
In general, molecular property optimization comprises three com-
ponents or less: representation, generative model, and optimization
model. The representation of molecules can be simpli�ed molecular-
input line-entry system (SMILES) strings, circular �ngerprints, and
raw graphs, which often corresponds to certain type of generative
models. Grouping by each component can be too detailed to capture
the big picture, therefore we choose to categorize the related studies
based on optimization models.

The �rst group optimizes molecules via Bayesian optimization
[11, 16, 19, 23]. These methods �rst learn a latent space of molecules
via generative models such as auto-encoders (AEs), then optimize
the property by navigating in that latent space, and generates
molecules through the decoding process. Most methods in this
category only optimize for non-biological properties such as QED
and penalized logP 1, and focus on metrics such as validity of gen-
erated molecules. They heavily rely on the quality of learned latent
spaces, which impose challenges for multi-objective optimization.

Instead of manipulating latent representations, the second cat-
egory utilizes reinforcement learning (RL) to optimize molecu-
lar property. One line of research applies policy gradient to �ne-
tune generative models, e.g., GAN-based generator [12, 30], GNN-
based generator [39], Flow-based generator [25, 33, 41] to generate
molecules with better property scores. The other line of work di-
rectly learns the value function of molecule states and optimizes
for a given property via double Q-learning [43].

Besides RL, the third category uses genetic algorithms (GAs) to
generate molecules with desired properties [1, 18, 27]. The gener-
ation process of genetic algorithms usually follows mutation and
cross-over rules that are prede�ned from a reference compound
library or domain expertise, which are not easy to obtain in general.
Some work [27] also combines deep learning, e.g., a discriminator
into GA generator to increase the diversity of molecules.

The least explored category aims to optimize molecular prop-
erty using search methods, e.g., Monte Carlo tree search (MCTS).
The earliest work traces back to [18, 38] in which the authors use
pre-trained RNNs or genetic mutation rules as the simulator for
tree expansion and simulation. [28] proposes atom-based MCTS
method without prede�ned simulator. Again, all the methods focus
on single and non-biological properties and are not tailored for
multi-objective optimization. Not until recently RationaleRL [20]
enables multi-objective molecular generation by �rst searching
property-related fragments using MCTS and then completing the
molecular graph using reinforcement learning.

There are also pioneering works that do not fall into any of
the categories above, e.g., MARS [37] proposes a Markov sampling
process based on molecular fragments and graph neural networks
(GNNs) and achieves state-of-the-art performance. Li et al. [24]
proposed a conditional graph generative framework for optimiz-
ing molecular properties. In summary, we see a trend of utilizing
fragment-based actions and directly navigating in the chemical
space as opposed to generative models in recent works. Interested
readers can refer to [13, 42] for a comprehensive understanding of
advances in molecular generation and optimization.

3 METHOD
In this section, we present the proposed framework MolSearch as
shown in Figure 1. The entire process consists of two search stages: a
HIT-MCTS stage and a LEAD-MCTS stage. HIT-MCTS aims to mod-
ify molecules for better biological properties while LEAD-MCTS
stage seeks molecules with better non-biological properties. Each
stage utilizes a multi-objective Monte Carlo search tree to search
for desired molecules.

1water-octanol partition coe�cient penalized by synthesis accessibility and number
of cycles having more than 6 atoms, i.e., PlogP(m)=logP(m)-SA(m)-cycle(m)
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Figure 1: Overall framework of MolSearch. For a given start
molecule, it�rst goes through aHIT-MCTS stagewhich aims
to improve the biological properties, e.g., GSK3� and JNK3,
followed by a LEAD-MCTS stage where non-biological prop-
erties such as QED are optimized. n refers to number of gen-
erated molecules and y-axis re�ects the normalized scores.

3.1 Problem De�nition
Moleculemodi�cation can bemathematically formulated as aMarkov
decision process (MDP) [5] given that the generated molecule only
depends on the molecule being modi�ed. The MDP can be written
asM = (S,A, f ,R) where S denotes the set of states (molecules), A
denotes the set of actions (modi�cations), f : S ⇥A! S is the state
transition function. For molecule modi�cation, the state transition
is deterministic, i.e., p(st+1 |st ,at ) = 1 for a given state-action pair.
That is to say, by taking a modi�cation action, the current molecule
reaches the next molecule with that modi�cation with probability
1. R : S ! Rd is the reward received for a given state, where
d > 1 if multiple reward objectives are considered. The goal is to
take the action that maximizes the expected reward, which can be
approximated as Eq (1) under repeated simulations [15]:

Q(s,a) = 1
N (s,a)

’N (s)
i=1
Ii (s,a)zi , (1)

where N (s) denotes the simulation times starting from state s and
N (s,a) is the times that action a has been taken from state s . Ii (s,a)
is an indicator function with value 1 if action a is selected from
state s at i-th round, 0 otherwise. zi is the �nal reward for i-th
simulation round starting from state s . A larger value of Q(s,a)
indicates higher expected reward by taking action a from state s .

3.2 Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) adopts a tree structure to perform
simulations and estimate the value of actions. Meanwhile it also
uses the previously estimated action values to guide the search
process towards higher rewards [8]. The basic MCTS procedure
consists of four steps per iteration:

a) Selection. Starting from the root node, a best child is recursively
selected until a leaf node, i.e., a node that has not been expanded
or terminated, is reached.

b) Expansion. The selected leaf node is expanded based on a
policy until the maximum number of child nodes is reached.

c) Simulation. From each child node, recursively generate the
next state until termination and get the �nal reward.

Selection Expansion Simulation Backpropagation

…
…

! = ($!, . . , $")

Repeat
Global Pareto Set

Paret
o

New best score found?

Y N
!! = 1 !! = 0

Termination node

Pareto nodes Valid child nodes

Global Pareto nodes

Figure 2: Multi-objective Monte Carlo tree search procedure.
Each node represents an intermediate molecule which has
a reward vector associated with it. A search iteration con-
sists of selection, expansion, simulation, and backpropaga-
tion. For MolSearch, HIT-MCTS and LEAD-MCTS di�er in
the expansion and simulation policy (blue boxes).

d) Backpropagation. The reward is backpropagated along the
visited nodes to update their statistics until the root node.
The process is repeated until a certain computational budget is
met. The most important step of MCTS is the selection step where a
criterion needs to be determined to compare di�erent child nodes.
The most commonly used criteria is the upper con�dence bound
(UCB1) [2, 22] in which a child node is selected to maximize:

UCB1 = X̄ j +
q

2 lnn
nj ,

where X̄ j is the averaged reward obtained so far for node j, nj
denotes times of node j being selected and n is the total times of
iteration. The �rst term X̄ j favors exploitation, i.e., choose the node

with greater average performance; while the second term
q

2 lnn
nj

votes for exploration, i.e., choose nodes that have not been visited
so far. UCB1 balances between exploitation and exploration to avoid
being trapped in local optimums.

For single-objective MCTS, UCB1 is a scalar and maximization
picks the node with the largest value. For multi-objective MCTS,
the reward becomes a vector and the comparison is no longer
straightforward. Next we formally de�ne each component for multi-
objective MCTS under the context of molecular generation.

3.3 Multi-objective Monte Carlo Tree Search
For molecular generation, each node of the tree (e.g., �j ) represents
an intermediate molecule. It is associated with a molecule state
sj , number of visits nj , and a reward vector Xj = (x1, ..,xd ) 2 Rd
where d is the number of objectives. Without loss of generality,
we assume that each objective is to be maximized. Before present-
ing how the reward is calculated, we �rst introduce the following
de�nitions regarding comparisons between vectors:

De�nition 1. Pareto Dominate. Given two points X = (x1, ..,xd )
and X 0 = (x 01, ..,x 0d ) , X is said to dominate X 0, i.e., X ⌫ X 0 if and
only if xi � x 0i ,8i = 1, ..,d . X is said to strictly dominate X 0, i.e.,
X � X 0 if and only if X ⌫ X 0 and 9i such that xi > x 0i .

De�nition 2. Pareto Front. Given a set of vectors A ⇢ Rd , the
non-dominant set PA in A is de�ned as:

PA = {X 2 A : öX 0 2 A s .t . X 0 > X }
The Pareto front consists of all non-dominated points [36].
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Algorithm 1: UCT algorithm for MO-MCTS.
Input: root node �0 with state s0, computation budge N ,

maximum number of child K , exploration scalar �
1 Function SEARCH(�0):
2 for i = 1, ..,N do
3 �l = SELECTION(�0) // �l = �leaf
4 �c = EXPAND(�l) // �c = �child
5 rc = SIMULATION(�c)
6 BACKPROP(�c , rc)
7 return � 00;
8 Function SELECTION(�):
9 while � is fully expanded do
10 for k = 1, ..,K child node do
11 Uk =

Xk
nk + �

q
4 lnn+lnd

2nk

12 Vp = ParetoNodeSet(U1, ..,Uk)
13 return Random(Vp);

For a Monte Carlo search tree, we maintain a global pool of all
the Pareto molecules found so far. At each simulation round, given
a termination state (molecule) with property score h = (h1, ..,hd ) 2
Rd , by comparing it with all Pareto molecules in the global pool,
the reward vector R = (r1, .., rd ) 2 Rd of this state is de�ned as:

ri =
1
Np

’Np

l=1
I[hi > hli ], 8i = 1, . . . ,d

where Np is the number of Pareto molecules and hli is the i-th prop-
erty value of Paretomolecule l . The calculation of reward treats each
dimension separately, regardless of their scale di�erence, which
gains an advantage over methods that aggregate all dimensions
into one score using prede�ned weights. We also update the global
Pareto pool by adding new Pareto molecules if found and removing
invalid ones based on the comparison result. The reward R will be
used for backpropagation with the update formula:

n�  n� + 1, X�  X� + R, �  parent of �,

which concludes the backward part of MCTS.
Next we present the forward part. Starting from the root node,

we recursively select the best child to proceed. To determine the
best child for a given parent, we calculate the utility for each child:

Uk =
Xk
nk
+ �

s
4 lnn + lnd

2nk
,

where Xk is the average reward obtained so far, nk and n are the
times child node k being visited and the total iterations. d is the
reward dimension. Based on De�nition 1 and 2, we compute the
Pareto node set given statistics of all child nodes. Once the set is
computed, we randomly select one child in the set to proceed. Once
the selection step is done, we reach a node that has never expanded
before. Then we expand the leaf node and start simulations from its
children, get reward and backpropagate again. The overall MCTS
procedure is illustrated in Figure 2 and Algorithm 1. Due to space
limit, we do not present the procedure of expansion and simulation
in Algorithm 1 since they are the same as classic single-objective

Constant Environment (radius=3) Variable

FCl

Transformation: Cl >> F

Cl F
Transformation: Cl >> F

Figure 3: Example of designmoves. A transformation is only
valid conditional on the existence of certain environments.

count_stat n descriptive_stat rule env
# fragments 236,827 min 1 1

# environment 55,599 max 20,075 2,480
# rules 1,048,575 median 1 1

# unique rules 672,117 mean 1.78 1.56
Atom Types C, N, O, Cl, F, P, Br, I, S

# augment rules 436,532
# trim rules 443,995

Table 1: Statistics of rules extracted from ChEMBL on envi-
ronment radius r = 3. # denotes "number of".

MCTS and can be found in many places such as [8]. The key com-
ponent in expansion and simulation step is the policy that used
to generate the next state. In MolSearch, within each search tree,
expansion and simulation share the same policy to produce actions:

A� = actions(s� ),

for each node � given current state s� . The possible actions are
obtained using transformations we will mention in the next section.
Due to the large chemical space, usually there are thousands of
possible actions for a given state and not all of them are promising,
therefore a subset of actions are selected and served as a candidate
pool for both expansion and simulation.
HIT-MCTS vs LEAD-MCTS. The two search stages in MolSearch
di�er in how the candidates are picked given the original possible ac-
tions. In HIT-MCTS, the candidate actions are those yielding states
with better property scores as compared to the current parent state.
In LEAD-MCTS, the candidate actions are those producing states
with better property scores than a constant threshold.
Theoretical Analysis. The theoretical analysis of multi-objective
MCTS has been presented in prior works following concentration
inequalities and union bound. Readers can refer to [2, 10, 36].

3.4 Design Moves
A key challenge in MolSearch is the actions to take when searching
for new molecules. The modi�cation rules should be chemically
reasonable, covering a variety of modi�cation directions, and being
large in size in order to successfully navigate in the chemical space.
Design moves, proposed in [3], is such an approach. It extracts
transformations among molecules based on matched molecular pair
(MMP) [17] and outputs a collection of rules that systematically
summarize the modi�cation of molecules that exist and chemically
valid in the current large compound database such as ChEMBL [26].
The transformation rules contain both atom-wise and fragment-
wise modi�cation and for the purpose of simplicity, we refer all of
them as fragments.
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Each rule consists of three major components, a left-hand-side
fragment (lhs_frag), an environment, and a right-hand-side frag-
ment (rhs_frag), and can be written as follows:

lhs_frag + environment >> rhs_frag

An example of design move transformation is shown in Figure 3.
Each matched molecular pair has three parts. The constant part
denotes the places that remain the same before and after transfor-
mation. The variable part denotes the fragment to be replaced. The
environment is the most important part in design move which char-
acterizes the context of a transformation. The range of the context
is determined by the radius r and contains all the atoms that can be
reached from the fragment to be replaced within step size r . Such
constraint ensures the transformation is chemically reasonable and
the larger the radius r , the more likely the assumption holds true
[3]. In Figure 3, we see that even for the same lhs_frag and rhs_frag,
due to that environments are di�erent, the transformations are
treated as di�erent transformations rules.

We summarized the statistics of all the design move rules ex-
tracted from ChEMBL based on radius r = 3 in Table 1. We see
that it contains more than 1 million transformation rules with more
than 600K unique pairs of fragments to be replaced. There are also
more than 200K fragments and 50K environments in the total rules.
For a transformation rule, the frequency it happens in the database
ranges from 1 to 20K, which covers both common and rare trans-
formations. The number of environments for the same rule also
ranges from 1 to 2.5K. Given ChEMBL is one of the largest chemical
databases, the rules are expected to cover all the possible moves of
common molecules of biological interest. Moreover, unlike most
prior works which only allow atom or fragment addition, design
moves contain modi�cations that can either increase or decrease
the molecular size (436,532 vs 443,995), making it more �exible to
�nd better modi�cation directions.

3.5 Rationale of MolSearch
The last important question regarding MolSearch framework is the
two-stage design in which biological properties are �rst optimized
and then followed by optimization of non-biological properties. The
reason is two-folded. First, we observe that lower non-biological
property (e.g., QED and SA) values are often due to large size or
large number of rings of molecules since the fragments are already
chemically valid. That is to say, reducing the size of generated
molecules can achieve better QED and SA scores in general. How-
ever, design move requires valid environment in order to perform
modi�cation, the larger the molecules are, the more actions could
be found. Therefore, optimizing QED/SA has to come after opti-
mizing biological properties. Second, such design is also inspired
by the real-world drug discovery routine that we �rst �nd drugs
that are biologically active and then optimize them regarding other
properties.

Another interesting property of such design is that, in general,
molecules from HIT-MCTS stage are quite large, due to that HIT-
MCTS modi�es molecules into hits by adding property-related
fragments repeatedly; However, it is �ne because LEAD-MCTS
will trim the molecules for a higher QED/SA score by dropping
property-unrelated fragments. The entire process will ensure that
the �nal molecules satis�es all the property requirements.

4 EXPERIMENT
We conduct extensive experiments on benchmark tasks following
[20, 37] to demonstrate the e�ectiveness of MolSearch. The results
show that search methods can achieve comparable and sometimes
superior performance compared to advanced deep learningmethods
given su�cient information and proper design of the algorithm.

4.1 Experiment Setup
Property Objectives.We consider two biological properties that
measure the inhibition of proteins related to Alzheimer disease:

• GSK3� , score of inhibiting glycogen synthase kinase-3�
• JNK3, score of inhibiting c-Jun N-terminal kinase-3

The scores are predicted probabilities of inhibition by pretrained
random forest models from [20]. For non-biological properties, we
follow [20, 37] and also consider drug-likeness (QED) [6] and syn-
thesis accessibility (SA) [14] scores. The SA score (originally in
[1, 10]) is reversely normalized to [0, 1]. For all scores, the higher
the better. The goal is to �nd compounds that mostly inhibit two es-
sential proteins in Alzheimer’s such that their potency is maximized
while achieving favorable medicinal chemistry properties.
Multi-objective generation setting.We consider 6 di�erent gen-
eration settings as in [20, 37]:

• GSK3�/JNK3: inhibit GSK3� or JNK3 without constraints on
QED and SA scores.

• GSK3�+JNK3: jointly inhibit GSK3� and JNK3 without con-
straints on QED and SA scores.

• GSK3�/JNK3+QED+SA: inhibit GSK3� or JNK3 while being
druglike and easy to synthesize.

• GSK3�+JNK3+QED+SA: jointly inhibiting GSK3� and JNK3
while being druglike and easy to synthesize.

Baselines. We compare MolSearch with state-of-the-art methods
from each category summarized in section 2: 1) JT-VAE [19], a
method uses Bayesian optimization based on hidden representa-
tions from a VAE based on molecule fragments. 2) GCPN [39], a
method uses policy gradient to �netune a pre-trained molecule
generator based on GNN. 3) MolDQN [43], a method directly learns
the values of actions for target properties via double Q-learning and
generate molecules based on that. 4) GA+D [27], a method utilizes
genetic algorithm for molecule generation paired with an adversar-
ial module to increase diversity. 5) RationaleRL [20], a method uses
MCTS to �nd property-related fragments and then completes the
graph using RL. 6) MARS [37], a method utilizes Markov sampling
based on GNN and molecule fragments.
Evaluation Metrics.We evaluate the generated molecules using
metrics similar to prior works [20, 37]: 1) success rate (SR): the
proportion of resulted molecules that satisfy all the targeted objec-
tives, i.e., QED � 0.6, SA � 0.67, GSK3� � 0.5, and JNK3 � 0.5.
2) Novelty (Nov): the proportion of resulted molecules that have
similarity less than 0.4 compared to the nearest neighbor xSNN in
the reference dataset, i.e., Nov = 1

N
ÕN
i=1 I[sim(xi ,xSNN) < 0.4]

where the similarity is calculated as the Tanimoto coe�cient [4]
between two Morgan �ngerprints [29] of molecules. The reference
dataset in prior works is training data while in our work, the ref-
erence data becomes the start molecules. 3) Diversity (Div): the
pair-wise dissimilarity among the generated molecules, i.e., Div
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Objectives GSK3� JNK3 GSK3�+JNK3
Method SR Nov Div PM SR Nov Div PM SR Nov Div PM
JT-VAE 0.322 0.118 0.901 0.030 0.235 0.029 0.882 0.006 0.033 0.079 0.883 0.002
GCPN 0.424 0.116 0.904 0.040 0.323 0.044 0.884 0.013 0.035 0.080 0.874 0.002

RationaleRL 0.939 0.457 0.890 0.381 0.880 0.419 0.872 0.321 0.842 0.981 0.831 0.686
GA+D 0.85 1.00 0.71 0.60 0.53 0.98 0.73 0.38 0.85 1.00 0.42 0.36
MARS 1.000 0.840 0.718 0.603 0.988 0.889 0.748 0.657 0.995 0.753 0.691 0.518

MolDQN-emtpy 0.000 0.038 0.204 0.000 0.000 0.019 0.116 0.000 0.000 0.025 0.126 0.000
MolDQN-nonemtpy 0.341 0.304 0.856 0.089 0.175 0.288 0.857 0.043 0.050 0.421 0.858 0.018

MolSearch 1.000 0.739 0.862 0.637 ± 0.009 1.000 0.728 0.846 0.616 ± 0.015 1.000 0.787 0.826 0.650 ± 0.009
MolSearch-5000 1.000 0.706 0.850 0.601 ± 0.023 1.000 0.685 0.845 0.579 ± 0.027 1.000 0.756 0.836 0.632 ± 0.030

Ranking 1st 2nd 2nd
Table 2: Overall performance of comparisonmethods on bio-activity objectives. Results of RationaleRL, MolDQN are obtained
by running their open source code. Results of JT-VAE, GCPN, GA+D and MARS are taken from [20, 37]. For MolSearch, we
repeat the experiments for 10 times and report the mean and standard deviation.

Objectives GSK3�+QED+SA JNK3+QED+SA GSK3�+JNK3+QED+SA
Method SR Nov Div PM SR Nov Div PM SR Nov Div PM
JT-VAE 0.096 0.958 0.680 0.063 0.218 1.000 0.600 0.131 0.054 1.000 0.277 0.015
GCPN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

RationaleRL 0.891 0.341 0.891 0.270 0.787 0.190 0.874 0.131 0.750 0.555 0.706 0.294
GA+D 0.89 1.00 0.68 0.61 0.86 1.00 0.50 0.43 0.86 1.00 0.36 0.31
MARS 0.995 0.950 0.719 0.680 0.913 0.948 0.779 0.674 0.923 0.824 0.719 0.547

MolDQN-empty 0.000 0.224 0.331 0.000 0.000 0.089 0.245 0.000 0.000 0.046 0.166 0.000
MolDQN-nonempty 0.000 0.431 0.850 0.000 0.000 0.525 0.856 0.000 0.000 0.499 0.857 0.000

MolSearch 1.000 0.821 0.856 0.702 ± 0.005 1.000 0.783 0.831 0.651 ± 0.009 1.000 0.818 0.811 0.664 ± 0.007
MolSearch-5000 1.000 0.810 0.869 0.704 ± 0.009 1.000 0.743 0.843 0.626 ± 0.012 1.000 0.797 0.827 0.660 ± 0.009

Ranking 1st 2nd 1st
Table 3: Overall performance of comparison methods on bio-activity plus non-bioactivity objectives. Results of RationaleRL,
MolDQN are obtained by running their open source code. Results of JT-VAE, GCPN, GA+D and MARS are taken from [37]. For
MolSearch, we repeat the experiments for 10 times and report the mean and standard deviation.

= 2
N (N�1)

ÕN
i, j=1;i,j [1 � sim(xi ,x j )]. 4) PM: the product of SR, Nov

and Div metrics, representing the possibility of generated molecules
being simultaneously active, novel and diverse [37].
Start Molecules. A critical step in MolSearch is to pick the start
molecules. We �rst download dataset from the Repurposing Hub
(https://clue.io/repurposing), which consists of 6,758 FDA-approved
and clinical trail drugs. We then cluster all the drugs based on their
Tanimoto similarity using Butina algorithm [9] with threshold 0.4, a
commonly used cuto� to quantify the structural similarity between
molecules. It results in 5,727 small clusters, indicating that most
molecules are not similar to each other. We select the centroid of
each cluster, i.e., 5,727 dissimilar molecules, as the pre-processed
dataset and construct start molecules from it. For benchmark objec-
tives, to avoid making the task easier, we remove 1) all successful
molecules, i.e., GSK3� � 0.5, JNK3 � 0.5, QED � 0.6, SA � 0.67; 2)
top molecules with either GSK3� or JNK3 score larger than 0.8 in
the dataset. That is to say, no start molecules has biological score
higher than 0.8. We then choose the remaining molecules with
GSK3� and JNK3 score no less than 0.3 as the start molecules. Such
selection strategy aligns with molecular optimization in reality
that starts with molecules having some signals towards the desired
property. In total 96 molecules satisfy the starting criteria.
Implementation Details. For MCTS, we set the maximum level
of tree depth as 5 and test di�erent values of maximum child nodes
K = [3, 5, 7] and the number of simulations N = [5, 10, 20]. For

design move, we utilize rules derived from environmental radius
r = 3 and do not impose frequency constraint on the actions,
i.e., any action with frequency � 1 will be considered in each
modi�cation step. All MolSearch experiments are done on AMD
EPYC CPU cores 2. Baselines requiring deep learning libraries are
done on TITAN RTX GPUs with 24GB Memory.

n_child n_sim Avg Median STD
3 10 0.4h 0.38h 0.19h
5 20 1.02h 0.87h 0.93h

Table 4: Running time per molecule for MolSearch.

RunningTime. In theGSK3�+JNK3+QED+SA setting, RationaleRL
takes 6 hours to �netune the model; GA+D takes 300 steps and 4
hours to reach its best performance; MARS takes 10 hours to con-
verge; MolDQN takes 5 and 10 hours to �nish for empty and non-
empty variants respectively. MolSearch takes on average 0.4-1.0
hours per molecule in both search stages (Table 4). Each molecule
only occupies very small amount of memory and computational re-
sources, making MolSearch much more e�cient than deep learning
methods regardless of computation constraints.

4.2 Benchmark Results
We performMolSearch, i.e., start molecules!HIT MCTS! LEAD
MCTS 10 times for each generation settings. In each search stage, we
2MolSearch code available at https://github.com/illidanlab/MolSearch.
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(a) biological property (b) non-biological property

(c) biological property (d) non-biological property

Figure 4: Property dynamics across MolSearch stages. (a)(b):
average scores over 10 runs at each stage. (c): distribution of
bioactivity scores during Start andHIT-MCTS stage. (d): QED
distribution between HIT-MCTS and LEAD-MCTS stage.
keep track of valid molecules and add them to the �nal set. Because
the number of generated molecules is not controllable in MolSearch,
we calculated the metrics for two sets of generated molecules: 1)
MolSearch: all the molecules generated byMolSearch; 2) MolSearch-
5000: top 5000 molecules generated by MolSearch, ranked by the
average score of all properties considered in one setting, to match
the number of molecules generated by other baseline methods.
Overall Performance.We summarize all the results in Table 2 and
Table 3. MolSearch outperforms all baselines on 3 generation set-
tings and always rank high (1st or 2nd) in terms of PM. Speci�cally,
when considering non-bioactivity objectives, i.e., GSK3�+JNK3+QED+SA,
MolSearch signi�cantly outperforms the best baseline by 21.4% on
the PM metric. Among all the metrics, MolSearch falls short on the
novelty metric since it starts from known molecules and modify
them into new ones. However, the novelty still ranks good via the
two-stage design of MolSearch such that the generated molecules
are not too similar as the original ones. The diversity of molecules
generated by MolSearch always ranks high, possibly due to 1) dis-
similarity of start molecules, 2) separation of di�erent property
objectives and 3) Pareto search on all objective directions.

Start Molecule GSK3� JNK3 QED SA
Empty 0.262 0.083 0.870 0.603

Non-empty 0.334 0.216 0.217 0.586
Table 5: Average scores of generated molecules by MolDQN
in GSK3�+JNK3+QED+SA setting.

Moreover, we conduct extensive experiments for the baseline
MolDQN because it is the deep learning version of MCTS that
tries to learn the values of all the actions and generate molecules
that maximize the values. The di�erences between MolDQN and
MolSearch can help verify the motivation and e�ectiveness of
MolSearch. First, MolDQN-empty starts with empty molecules
and uses atom-wise actions, and the SR of generated molecules
are extreme low (⇡ 0.00) in all settings. When we look into the
scores of generated molecules, as shown in Table 5, we �nd the
QED and SA score of generated molecules are relatively high while
GSK3� and JNK3 scores are very low. This means that QED and

(a) Across stages (b) Across objectives.

Figure 5: Number of generated molecules across MolSearch
stages and di�erent generation settings (10 runs).

SA are easier to optimize than biological objectives when start-
ing from empty molecules and using atom-wise actions. However,
in most real applications, optimizing biological objectives are the
major focus before one considers drug-likeness and synthesis abili-
ties. Second, MolDQN-nonempty starts from the same molecules
we used in MolSearch, however, the success rates are still low al-
though improved compared to MolDQN-empty. This is due to that
MolDQN only allows addition actions thus cannot reduce the size
of molecules, making QED and SA drop signi�cantly. Third, the
low performances of both MolDQN variants imply that atom-wise
actions generally works less e�ective compared to fragment-based
actions for improving biological properties. For MolSearch, the
search trees can �nd desired molecules with relatively small depth
and width, therefore it is not necessary to use Deep Q-learning to
approximate the action values. All the above observations echo the
rationale of MolSearch’s design.
MolSearch Dynamics. We next verify if the change of property
scores across stages aligns with design motivation of MolSearch.
HIT-MCTS aims to improve biological properties and Figure 4a
con�rms a signi�cant elevation for GSK3� and JNK3 scores. LEAD-
MCTS aims to improve non-biological properties and Figure 4b
re�ects such improvement especially for QED (Figure 4d). Figure
4c demonstrates that, even if we remove all successful molecules
and top molecules at start (0.3-0.8 dashed box with grey points),
MolSearch is still able to �nd molecules with both scores larger
than 0.8 (red region outside dashed box), demonstrating its power.
Figure 5a shows the number ofmolecules generated in each stage for
three settings where both biological and non-biological objectives
are considered. We observe an exponential increase from start
molecules to the later two stages. GSK3� is easier to optimize as
compared to JNK3. Figure 5b shows the number of �nal molecules
generated byMolSearch for all settings. As the number of objectives
increases, less valid molecules are found, which is reasonable.
Visualization.We compare the molecules generated under setting
GSK3�+JNK3+QED+SA by di�erent methods using t-SNE plots
shown in Figure 6 (a)-(c). The red crosses are the molecules that
satisfy all the requirements in reference (training) dataset, while
grey dots are molecules generated by each method. For MolSearch,
there are no successful molecules in the start (reference) dataset,
instead we plot the successful ones in HIT-MCTS stage. The start
molecules of MolSearch are also plotted for reference (Figure 6c).
We observe that baseline methods such as GA+D and RationaleRL
generate molecules with large clusters, indicating relatively low
diversity. The molecules generated by MolSearch evenly span the
entire embedding space and also cover some novel regions com-
pared to start molecules. MARS is very similar to MolSearch whose
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(a) RationaleRL (b) GA+D (c) MolSearch (d) MolSearch vs MARS

Figure 6: t-SNE visualization of generated molecules and positive molecules in the reference (training) dataset.
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Figure 7: Sample molecules generated by MolSearch in the
GSK3�+JNK3+QED+SA setting with associated scores.
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Figure 8: MolSearch path for GSK3� + JNK3 + QED + SA.

generated molecules enjoy both diversity and novelty, therefore we
seek other comparison between MARS and MolSearch. As shown
in Figure 6d, MolSearch is able to �nd more dominant molecules in
terms of biological properties as compared to MARS (5 runs). We
visualize the structure of several molecules generated by MolSearch
with high property scores in Figure 7.

Figure 8 shows an example trajectory of MolSearch under the
generation setting GSK3� + JNK3 + QED + SA. The property scores
for the start molecule are relatively low. After HIT-MCTS stage,
the generated molecules obtain higher GSK3� and JNK3 score by
replacing certain substructures of the original molecule while also
keeping certain original substructures. As we also can see, the QED
score for HIT molecules are extremely low due to their large size.
After LEAD-MCTS stage, the QED scores of the �nal molecules
are elevated by dropping fragments that are less property related.
The sca�old of the �nal molecules is not simply the substructure
of start molecules but rather a combination of fragments from
start molecules and new fragments from transformation rules. Also,
the replacement is not completed in one round because the added
fragments are relatively large, indicating the states are reached by
multiple search steps instead of one.
Sensitivity Analysis. Table 6 shows the overall performance of
MolSearch under di�erent combination of hyper-parameters for

Setting GSK3�+JNK3 GSK3�+JNK3+QED+SA
K, N SR Nov Div PM SR Nov Div PM
3, 5 1.00 0.72 0.83 0.60 1.00 0.77 0.82 0.63
3, 10 1.00 0.78 0.83 0.65 1.00 0.82 0.81 0.67
3, 20 1.00 0.77 0.83 0.64 1.00 0.80 0.81 0.65
5, 5 1.00 0.76 0.83 0.63 1.00 0.79 0.82 0.65
5, 10 1.00 0.77 0.83 0.64 1.00 0.81 0.81 0.66
5, 20 1.00 0.80 0.83 0.66 1.00 0.82 0.81 0.67
7, 5 1.00 0.76 0.83 0.63 1.00 0.79 0.81 0.64
7, 10 1.00 0.78 0.83 0.65 1.00 0.84 0.81 0.68
7, 20 1.00 0.80 0.83 0.66 1.00 0.82 0.81 0.67

Table 6: Performance of MolSearch under di�erent hyper-
parameters for two generation settings.

Setting GSK3�+JNK3 GSK3�+JNK3+QED+SA
N/K 3 5 7 3 5 7
5 9,373 14,776 18,077 3,543 5,463 6,773
10 13,960 21,982 28,659 5,499 7,772 10,295
20 16,085 29,912 43,778 6,233 10,406 13,884

Table 7: Number of generatedmolecules byMolSearchunder
di�erent hyper-parameters for two generation settings.

two generation settings. Table 7 shows the number of validmolecules
corresponding to Table 6. We observe that the performance is not
very di�erent regarding di�erent hyper-parameters, but rather the
number of generated molecules are highly a�ected by these hyper-
parameters. Because the maximum number of child nodes and
simulations rounds actually increases the search range such that
more molecules can be found along the way.

4.3 Discussion
The extensive experiments of MolSearch demonstrated that given
proper design and su�cient information, search-based method
is also able to �nd molecules that satisfy multiple property re-
quirements simultaneously with performance comparable to ad-
vanced methods using deep learning and reinforcement learning,
while being much more time e�cient. For MolSearch, the bene�ts
comes from several aspects. For example, the two-stage design in-
creases the novelty of generated molecules; Treating di�erent objec-
tives separately improves the diversity of the generated molecules;
Fragment-based actions and starting from existing molecules main-
tain the synthesis abilities and drug-likeness of generatedmolecules.
Additional to properties in benchmark tasks, MolSearch can be
easily adopted into real drug discovery projects targeting other
objectives. For example, replacing GSK3� and JNK3 scoring models
with COVID related predictors [21] may lead to the identi�cation of
novel and synthesizable compounds. Properties other than QED/SA,
such as solubility and ADMET properties can also be included to
search for more promising candidates.

MolSearch also has its own limitations. First, the bioactivity
scores drop in LEAD-MCTS compared to HIT-MCTS although they
are still signi�cantly higher than start molecules (Figure 4a). It is
because the child nodes only need to maintain bioacitivity score
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above 0.5 threshold in LEAD-MCTS in exchange of higher non-
bioacitvity scores. It is possible to improve the situation by setting
more strict constraint during LEAD-MCTS. Second, the evaluation
metrics are calculated based on unique molecules found in the
search process, however, we do observe the molecules generated
in LEAD-MCTS often contain many duplicates and thus causes
redundancy. Third, for objectives that has relatively clear structural
requirement, e.g., binding to a speci�c protein target, MolSearch
is able to �nd desired molecules. However, if the objective is not
sensitive to structure changes, i.e., regulation e�ects of multiple
genes, then MolSearch, or any other related methods works less
e�ectively. Last but not least, the scoring models are not perfect in
reality since they also come form machine learning models, which
may a�ect the quality of generation results.
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