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A dynamic treatment regime (DTR) is a sequence of decision rules, one
per stage of intervention, that maps up-to-date patient information to a rec-
ommended treatment. Discovering an appropriate DTR for a given disease
is a challenging issue especially when a large set of prognostic variables are
observed. To address this problem, we propose penalized regression-based
learning methods with /| penalty to estimate the optimal DTR that would
maximize the expected outcome if implemented. We also provide general-
ization error bounds of the estimated DTR in the setting of finite number of
stages with multiple treatment options. We first examine the relationship be-
tween value and Q-functions and derive a finite sample upper bound on the
difference in values between the optimal and the estimated DTRs. For prac-
tical implementation, we develop an algorithm with partial regularization via
orthogonality to construct the optimal DTR. The advantages of the proposed
methods are demonstrated with extensive simulation studies and data analysis
of depression clinical trials.

1. Introduction. Discovering effective treatment regimes for life-threatening diseases
is one of the key goals in medical research. In many trials, a drug that works effectively
for one individual may not work or may cause serious adverse reactions for another. The
classical “one-size-fits-all” approach is not appropriate if responses to the drug are hetero-
geneous among individuals. For instance, a significant proportion of treated patients with
anti-thrombotic therapy for cardiovascular diseases suffer a new thrombotic event (Marin
et al. (2009)), and patients with different levels of psychiatric symptoms show heterogene-
ity in treatment responses (Piper et al. (1995)). Precision medicine seeks solutions to such
challenges by determining optimal patient-tailored treatments for a given disease.

A dynamic treatment regime (DTR) is a sequence of decision rules, one per treatment
decision, that provides the mechanism by which patient’s key features, called tailoring vari-
ables, are translated into dosage level or intervention type. DTRs, also known as adaptive
interventions or multistage treatment strategies, operationalize sequential decision making
with the goal of improving patient outcome over time. Instead of assigning the same treat-
ment to all individuals, a treatment policy may assign different treatment types or dosages
across patients and across time according to patient’s evolving status. This concept has been
adopted in a variety of health domains, such as depression (Lavori, Dawson and Rush (2000),
Murphy et al. (2007), Pineau et al. (2007)), diabetes (Zhao et al. (2020)) and HIV infection
(Robins, Orellana and Rotnitzky (2008), Jiang et al. (2017)). A DTR is considered optimal
if, when implemented, it optimizes the expected desired cumulative outcome over the study
population.

Various statistical methods have been proposed to estimate the optimal DTRs. These meth-
ods can be classified into two categories: the indirect approach and the direct approach. In
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the indirect approach, one estimates the full or part of the conditional outcome model given
the past history at each stage, and then derives a DTR from the estimated conditional out-
come model. This includes g-estimation (Robins (1989), Robins (1993), Robins (1997)),
Q-learning (Ertefaie and Strawderman (2018), Laber et al. (2014), Moodie, Dean and Sun
(2014), Murphy (2005), Song et al. (2015), Wallace and Moodie (2015), Watkins (1989),
Ertefaie et al. (2021)) and A-learning (Blatt, Murphy and Zhu (2004), Fan, Lu and Song
(2016), Murphy (2003), Robins (2004), Shi et al. (2018)). A comparison of Q- and A-learning
can be found in Schulte et al. (2014). In the direct approach, researchers aim to estimate the
expected outcome following a DTR using inverse probability weighting methods (Murphy,
van der Laan and Robins (2001), Robins (1998), Robins, Orellana and Rotnitzky (2008)),
and then choose a DTR that maximizes the estimated expected outcome within a function
class. See Zhang et al. (2013) and Zhang and Zhang (2018) for directly searching a DTR
that maximizes a doubly robust estimate of the expected outcome, Zhao et al. (2015), Zhou
etal. (2017) and Liu et al. (2018) for the outcome weighted learning framework by replacing
the indicator loss with a surrogate hinge loss in the objective function, Jiang et al. (2019) for
the use of a surrogate binomial deviance loss instead of the indicator loss and Luckett et al.
(2020) for an actor-critic V-learning method. Other work along this line includes tree based
methods (Foster, Taylor and Ruberg (2011), Laber and Zhao (2015), Lipkovich et al. (2011),
Su et al. (2008), Zhu, Zeng and Kosorok (2015)), list-based methods (Zhang et al. (2015),
Zhang et al. (2018), Rudin and Ertekin (2018)), and so forth. A detailed discussion of the
indirect and direct approaches can be found in Laber et al. (2014).

In this paper, we consider the development of optimal DTRs in the presence of high-
dimensional covariates. Our work is motivated by two clinical trials, COPES and CODIACS
(Davidson et al. (2010), Davidson et al. (2013)), that compare a centralized depression care
approach with standard care for patients with depression after acute coronary syndrome us-
ing a stepped care approach. Under the stepped care approach, initial treatments were chosen
based on patient’s preference or standard care, and then subsequent treatments were assigned
based on intermediate symptoms, resulting in different treatment sequences. In the studies,
a large number of covariates were collected at baseline (e.g., SF-12 scores, affinity to sero-
tonin), and some were repeatedly recorded over time. We aim to develop an optimal DTR
composed of a sequence of intervention decision rules that dynamically map evolving patient
information to a recommended treatment over time. A key issue here is to identify features
that are useful in tailoring treatments among time-varying covariates and treatment history
from the patients.

Constructing an optimal DTR is challenging in high-dimensional data, particularly when a
large collection of prognostic factors is measured. In the single-stage decision setting, quite a
few methods have been proposed to tackle this problem (see Lu, Zhang and Zeng (2013), Qi
and Liu (2018), Qian and Murphy (2011), Shi, Song and Lu (2016), Tian et al. (2014), Zhao
et al. (2012), Zhou et al. (2017), Zhu, Zeng and Kosorok (2015), Oh et al. (2020)). The mul-
tistage decision-making problem has been discussed in Zhao et al. (2015), Liu et al. (2018),
Zhu, Zeng and Song (2019) and Shi et al. (2018). The first two of these considered outcome
weighted learning with an I, type regularization, and the third focused on the inference of
value function with Q-learning. The last considered doubly robust A-learning with variable
selection, which is closely related to our work. Specifically, Shi et al. (2018) considered the
use of doubly robust estimating equations for A-learning with binary treatment and adopted
the Dantzig selector to achieve variable selection. However, the double robustness property
is only valid under correct specification of the contrast function in the conditional outcome
models, which is unlikely to be satisfied for nonterminal stages.

In the present work, we adopt an indirect regression-based approach, in particular Q- and
A-learning, for estimating the optimal DTR. The conditional outcome model at each stage is
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estimated using (weighted) /{-penalized least squares, such as Lasso (Tibshirani (2011)) or
adaptive Lasso (Zou (2006)), backwards to achieve sparsity. We derive generalization error
bounds for the mean outcome of the estimated DTR. Instead of assuming (approximately)
correct specification of the conditional mean model as in other papers (e.g., Shi et al. (2018)),
we explicitly incorporate potential approximation error due to model misspecification in the
error bounds. The upper bounds are composed of minimized sum of the approximation error
and estimation error bound of the conditional outcome model at each stage, up to a power
depending on the difference in the expected outcome between optimal and suboptimal de-
cisions. The result is further strengthened to include only approximation error of treatment-
by-covariate interactions if the propensity score is known or can be consistently estimated.
We shall see that in high-dimensional setting, rather than estimating the best approximation
model, the goal would be to estimate a linear model that balances the approximation and es-
timation errors among a set of suitably sparse linear models. With appropriate choices of the
tuning parameters, the estimation error achieves the best known convergence rate in existing
literature on /1-penalized regression. The theoretical derivation of our results is valid for an
arbitrary number of stages and any number of treatment options at each stage.

The paper is organized as follows. In Section 2, we introduce a general framework of
obtaining optimal DTR with /;-penalized A-learning. In Section 3, we express the reduction
in value in terms of Q-functions and derive a finite sample upper bound on the difference in
values between the optimal and the estimated DTRs in penalized A-learning. Analogously,
the penalized Q-learning framework and the corresponding finite sample upper bound are
described in Section 4. In Sections 5 and 6, we compare our proposed methods with other
alternative methods through extensive simulation studies and a real data example from the
COPES and CODIACS trials. Discussion and conclusions are presented in Section 7. Proofs
of theorems are included in the Appendix.

2. A-learning with /1-penalization. Consider a finite horizon decision problem with T
decision points. Suppose we have data from n independent subjects. For each subject, we ob-
serve a time ordered trajectory {O1, Ay, O2, A2, ..., Or, Ar, Or41} from a distribution P,
where A; is the treatment assignment at time ¢ fort =1, ..., T, O contains baseline infor-
mation, Oy is the information observed after treatment assignment at time (¢ — 1) and prior to
time t fort =2, ..., T and O74 is information measured after the last treatment assignment.
Denote the history at time ¢ as H; = (01, A1, O2, Az, ..., O;), which takes value in space
‘H;. That is, H; contains all information available to make decision at time ¢. Following treat-
ment assignment at each time point t =1, ..., T, there is a scalar outcome Y; = y;(H;+1),
where y; is a known function. We assume that A, takes values in a finite, discrete space 4;,
and Y; is continuous that is coded so that larger values are preferred.

In this setting, a dynamic treatment regime (DTR) is a sequence of decision rules & =
(71, ..., 7r), where m; : H; — A, takes patient’s history as input, and returns a treatment as
output at time 7. Let E; denote the expectation with respect to the distribution of a trajectory
whereby the DTR x is used to determine the treatment assignment at each decision time (i.e.,
Ay =m(Hy) fort =1,...,T). The value of a DTR, denoted by V (1) L E, (Z,T:1 Y;), is the
expected cumulative outcome if the entire study population were to follow the regime x. The
optimal DTR, denoted by m?, is the regime that when implemented will yield the maximal
value, V (x°) = max, V().

The goal is to use the observed data to estimate the optimal DTR, 7. Denote the vector of
treatment decisions past history at time # by A; = (Ay, ..., A;). Let Yy (A;) be the potential
outcome corresponding to the treatment pattern A7. Denote the potential information prior
to time interval ¢ of (past) treatments by O;k(At_l). All subject’s potential outcomes are
denoted by W = {O5(a1), ..., O (ar), Y{(a1), ..., Yj(ar); ar € Ar}. Throughout the
article, we assume the following:
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(C1) The stable unit treatment value assumption (SUTVA) holds; that is, ¥; = Yy (A,) and
Or1= 07 (A, t=1,...,T.

(C2) There are no unmeasured confounders, which is also known as sequential ignora-
bility (Murphy (2003), Murphy, van der Laan and Robins (2001), Robins (1997)). It implies
A; NIW|H, foreacht=1,...,T.

(C3) There is some positive constant S such that the propensity score satisfies p;(as|h;) =S
P(A; =a;|H; = h;) > S~ for all pairs (h;,a;) e H; x A, t=1,...,T.

Let E denote the expectation with respect to the distribution P. As demonstrated in Murphy
(2005), the optimal DTR is related to optimal Q-functions via Bellman optimality equations.
Specifically, define the optimal Q-functions

Q% (hr,ar)=EXr|Hr =hr,Ar =ar),
and

) (h,a) = E[Y, + max QO (Hyst,ar)|Hy=h, Ay =a;| fort=T—1,...1,
ar41€A14+1

where Q stands for “quality” of the decision based on the past history. Then, by backward

induction, the optimal DTR 7° = (r{, ..., wy) satisfies

ﬂ;)(ht) = argame%% Q;)(ht» a)
t t

fort=1,...,T.

Quite a few methods have been proposed based on the above arguments. Q-learning is one
of the most popular approaches. It aims to estimate the optimal Q-functions backwards se-
quentially using regression and construct the optimal DTR by choosing a treatment that max-
imizes the estimated Q-functions. In contrast to Q-learning, A-learning is motivated by the
fact that the optimal decisions only depend on the interaction between history and treatment
in the Q-functions. Murphy (2003) and Blatt, Murphy and Zhu (2004) proposed an iterative
minimization method to directly estimate the interaction part, and Robins (2004) proposed
a g-estimating equation, which can be used to produce consistent estimate of the treatment-
by-history interaction if either the main effect of history on outcome or the propensity score
model is correctly specified. Details and comparison of the two versions of A-learning can
be found in Moodie, Richardson and Stephens (2007).

In this paper, we adopt the framework in Blatt, Murphy and Zhu (2004). Note that the
optimal Q-function at each stage can be decomposed as

Q7 (H;, Ay) = M7 (Hy) + U/ (H;, Ay),

where M (H;) = E[Q7(H;, A;)|H;]1s the main effect of H; and U (H;, A;) = Q7 (H;, A;) —
E[Q?(H;, A;)|H;] is the centered treatment effect at H,. Thus, the optimal stage- decision
only depends on U .

We propose to model M/ (H;) and U/(H;, A;) by QDITl (H;)0;1 and CDZTZ(H;, A, re-
spectively, where &, € R/ is a vector summary of Hy, ®; € R/ is a vector summary of
(H;, A;), and 0,1 and 0, are the corresponding parameters. Since E[U/(H;, A;)|H;] =0, in
practical implementation, we center dDITZ(H,, Ay) by its conditional mean E [thTZ(Ht, Ap)|H].
This can be easily done in sequentially randomized trials where the propensity score is
known. Otherwise, we can plug in the propensity score estimate.

Denote &, (H;, A;) = (®;1(H)T, ®12(H,;, A)TT. This gives a working model for Q-
function

(2-1) Qt(Hz, At§ 01) = CI%(H,, At)Tot = q’zl(Ht)Tatl + (th(Hz, At)Totz,
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where 0; = (0:1, 6’,T2)T e R’ is the parameter of interest with J; = J;1 4 J;2. By the definition
of the optimal Q-functions, we can verify that

T
0 (hy, ar) = E{Yt + 2 [¥o+ max QU(Hy.ay) — QF(Hs. A ||Hi = he. A =a,}
s=t+1 s

fort =T —1,..., 1. Thus, the estimate of #; can be obtained by regressing an estimate of
Y + Y0, 1 [Ys 4+ maxgea, Q9(Hy, ag) — Q9(Hs, Ay)] against Q;(H;, Ay; ;). To address
the high-dimensionality problem, we propose to use regression with a Lasso-type penalty.
The penalized A-learning algorithm is as follows:

1. Atstage T, estimate 67 by
07 = argHoliH{Pn[YT — &r(Hr, Ar)'07]" + A1 ) wTjIQle},
T .
J=1

where [P, denote the empirical average over n subjects, wr; > 0 is the weight for 67;, the
jth component of 87, and A7 is a tuning parameter that controls model complexity.
2. Fort=T-1,...,1,

(a) construct the pseudo outcome

T
Y=Y+ Y [V +max ] (Hy, a8, — @] (H, A6, |

s=t+1
T ~ ~
=Y+ Z [Ys + HtllaX q)Iz(Hs’ as)0o — q);rZ(HS’ As)0s2]§
s=r+1 y

(b) estimate 6; by

Ji
0, = argn;in{IP’n[Yt - CD;I—(Ht, At)oz]z + At Z wzj|9tj|},
t ]:1

where w;; > 0 is the weight for the jth component of 8,, and A, is a tuning parameter.
3. The estimated DTR is ® = (771, ..., 7iT) satisfies

71 (Hy) € arg nllax(CDtTé;) = argI%ax(CDthétz), t=1,...,T.
t t

The weights wy;’s in the above algorithm are used to adjust level of penalization on individual
variables. For example, the weights can be set to zero for a prespecified set of clinically im-
portant variables. Alternatively, the weights could be data dependent. For example, in adap-
tive Lasso, the weights are set to be inverse proportional to the magnitude of the ordinary
least square or elastic net estimate of the coefficients, so that the weights are not too large for
truly nonzero coefficients and not too small for zero coefficients.

3. Generalization error bounds for A-learning. In this section, we provide generaliza-
tion error bounds of the estimated DTR through /{-penalized A-learning. Note that the valid-
ity of the error bounds do not depend on correct specification of the Q-functions. However, if
the Q-functions or the treatment-by-history interaction in the Q-functions are correctly spec-
ified, then the upper bounds imply that the estimated DTR is consistent. The upper bounds
provide a convergence rate as well. First, we examine the relationship between value and the
Q-functions, and then we provide a finite sample upper bound on the difference in values
between the optimal and the estimated DTRs.
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3.1. Relationship between value and Q-functions. For any DTR m = (wy,...,7w7)
and any square integrable functions {Q;(H;, A;) : t = 1,...,T} such that m;(H;) €
argmax,, Q;(H;, a;), Murphy (2005) showed that

T
G.1) V(r®) = V() < S 28 E[(Qi(H,, A — Q¢ (H,. AD) ]}

t=1

under conditions (C1)—(C3). The left-hand side of (3.1) is the reduction in value of the DTR
7 as compared to the optimal DTR, and the right-hand side measures the distance between
Q; and the optimal Q-functions.

In the theorem below, we derive several sharper upper bounds under a margin type con-
dition. First, we show that an upper bound with exponent larger than 1/2 can be obtained
under a low noise condition, which implicitly implies a faster rate of convergence. Second, as
we have discussed previously, the optimal decision only depends on the interaction between
treatment and history, and thus our second bound only involves the model for U°(H;, A;) on
the right-hand side of the upper bound.

THEOREM 1. Suppose conditions (C1)—(C3) hold. Assume there exist some constants
C > 0 and o > 0 such that

(3.2) P(max QY(Hy,a;) — max QY(Hy.a;) < e) <Ce”

a;eA; are A \argmaxy, Q7 (Hy,ar)
for all positive ¢; fort =1, ..., T. Then for any dynamic treatment regime &t = (7w, ..., TT)
and sequence of square integrable functions {Q;(H;, A;) :t =1, ..., T} such that m;(H;) €
argmax,, Q;(Hy,a;),t=1,...,T, we have

T
(33) V(@) =V <Y CrdE[Qi(Hy A) — Q7 (Hy, ApJT} T/ EH.

t=1

Furthermore, for any square integrable function U;(H;, A;) such that argmax,, Q;(H;, a;) =
argmaxy, U;(H;, a;) fort =1,...,T, we have

T
B4 V(@)= V@) <Y CLdE[U(H, A — UL (Hy, Ap]7 YT/

t=1

where C1; = (2 + a)[22%(1 + )~ (1T §EF@)i=1C]l/C+e)

REMARK. Condition (3.2) is a margin type condition, which is similar to the margin as-
sumptions that are widely used in the classification context (Tsybakov (2004), Gey (2012)).
In a related line of research in contextual bandits, similar conditions are used for the gap be-
tween the best and suboptimal arms; see, for example, Lattimore and Munos (2014), Bubeck,
Perchet and Rigollet (2013) and references therein. Condition (3.2) measures the difference
in mean outcomes between the 7-stage optimal action(s) and the ¢-stage best suboptimal ac-
tion(s) at H;. For instance, if max,,c4, Of (H;, a;) — MaXg, e A, \arg max,, QF(Hy.a;) QY(H;, a;)
has bounded continuous density, then condition (3.2) holds with o = 1. This condition also
holds for positive « in many scenarios where Qf(H;, a;) has a mixture of continuous and
discrete distributions. Clearly, condition (3.2) always holds for C = 1 and o = 0. In this case,
(3.3) reduces to (3.1) up to a constant; see Qian and Murphy (2011) for more discussion of
the condition.
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3.2. Quality of the estimated DTR. In this section, we provide finite sample upper bounds
on the difference between the optimal value and the value obtained by our estimator in terms

of the prediction errors resulting from the estimation of Q7 or Uf fort =1,...,T. These
upper bounds guarantee that if Qf (or U/) is consistently specified for t =1,..., T, the
value of the estimated DTR will converge to the optimal value.
Define
2
T =arg min E[Yr — o7 (Hr, Ar)0r]
0T€R T
(3.5) T 2
and 07 =arg min 1Y+ Y |Ys — ®](Hy, A0 +max &) (Hy, ;)07 ] — @70,
0, R s=t+1
fort=T—1,..., 1. Note that CID;FH;k represents the best linear approximation of Qf (H;, A).
For expositional simplicity, assume that 6} is unique for 7 =1, ..., 7. Results for nonunique

07’s can be obtained with slight modification of the assumptions as stated in Qian and Murphy
(2011). Denote w;; = wy; + Loy, j=0- Our results rely on the following assumptions:

(Al) Define error terms e7; = Y7; — Q% (Hri, Ari), and & =Yy + ZST:,H[Ysi +
max,, OF (Hyi,asi) — OF (Hyi, Asi)] — Q7 (Hyi, Ayi) fort =T —1,..., 1. At each stage f,
we assume the error terms &, i = 1,...,n, are independent of (Hy;, A;;),i=1,...,n and
are i.i.d. with E(&;;) =0 and E[|e;; |1] < l!cl_202/2 for some ¢, 6% > 0 forall [ > 2.

(A2) Fort=1,...,T, the matrix E[(¢;1/wy1, ..., ¢tj,/ﬁ)tjt)-r(¢zl/wtl, coes Grg /Wi g,)]
is positive definite with the smallest eigenvalue z; > 0.

(A3) There exist finite, positive constants n and u such that max,eq,.. 7} 107 —
®T0% |00 < nand maxjeqr, . syeett... TG oo/ Wij} < u.

(A4) There exists a positive constant b such that max (1., s,},re(1,.... 7} El¢rj /0y j]2 < b2

For any 6, eR’, t=1,...,T,define the index set
LO)={je{l,....J;}:w;=0or6;#0).

Intuitively, 1;(0;) can be viewed as a sparsity measure that indices either nonzero elements in
0, or nonpenalized terms.
Further define the set

T
® = (0T,...,0;)TEHRJ" max ||d>T( —07)] . <n

te{l,....,T}
(3.6) max_ E[®] (0, —07)]*/A2 < (21b —8) 2
te{l,....,T}
(2156 — 10)? n
and max {|It(0,)]/rt}_ 5 ,
refl s 288bu(21b — 8)2\ 210g[3T J (J + 1)n]

where J = max;c(1,...7} J; and |I,(0,)| is the cardinality of 7;(6,).

The set ® contains sparse parameters that are close to the best 67 ’s. Thus, it can be viewed
as an oracle parameter set in the sense that parameters in the set have balanced sparsity and
prediction performance. Note that ® is nonempty when sample size » is large as long as J,
the maximum number of parameters at each stage, does not grow too fast with .

Below, we provide finite sample upper bounds for the difference in value of the opti-
mal DTR and the value of the estimated DTR. The first upper bound is presented in terms
of the approximation and estimation errors of Qf, the optimal Q-functions. Furthermore, if
E [d> »(H;, Ay)|H;] = 0 a.s., then the upper bound can be further strengthened by involving
only the approximation and estimation errors in U/, which is the centered treatment effect
partin QY.
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THEOREM 2. Suppose conditions (C1)—(C3) hold, and the margin condition (3.2) holds
for some C > 0, o > 0 and all positive ¢; fort =1, ..., T. Assume assumptions (A1)—-(A4)
hold. Suppose the tuning parameters A, t =1, ..., T, satisfy

(.7) At = 967/2[1 +2(T — 1)]bmax{c, o, n}\/@,

and )»tz > c,,s)»f fort=1,...,T,s=t,...,T, where ¢;; = 1, ¢; s = 2(105b — 38)(5S +
3T — t)zct+1,s/[9(21b — 8)]. Let © be the set defined in (3.6) and assume © is nonempty.
Then for any n > 8u?log(12T Jn)/(9b?), with the probability at least 1 — 1/n we have

V(x®) - V(x)

< min [
07,....07)7co

where J = max, J;, C1; = (2 + a)[22¢(1 + )~ §CF=1C1/C+) gpq K| = [64 x
(105b — 38)%1/[81(21b — 8)2]1 + [32b(105b — 38)1/[3(21b — 8)(21b — 10)].

Furthermore, suppose E[dDITZ(H,, ADIH ) =0a.s. fort =1,...,T. Then with the proba-
bility at least 1 — 1/n,

V(%) — V(#)

T
ZCl,z(E[QDITat — Q;’]2 + K1 max {c,,
=1 Se{t ..... T}

|15(05)122 })“*‘W “‘”}
SiA 9

Ts

T
i 2
(38) < n Cl, (E CDT 0 5 — U°
O]....07)Te0 ;é; (( E[®0002 — UY]

I1-(0 )\2 (14a)/(2+a)
LK maxT}{Et,s| 52(05) A5 }) ’

N

where I;2(0;) = I;(0,) N {J + 1,....J:}, K» = [3 — 21b — 10)2/[921b — 8)%]]* +
[2b/(21b — 8)1[81(21b — 8)%/(21b — 10)> — 3], &, = 1, and &5 = 2(T — 1)*(S +
1){81(215 — 8)> maxye(i+1,... 7} {Ci+1,s/Ci11,s}/[16(21b — 10)2] + 1}{3 — (216 — 10)/[9 x
Q1b—8)NVeiq1 g fort=1,...,T,s=t+1,...,T.

PROOF. The result follows from the inequalities (3.3) and (3.4) in Theorem 1 and
inequalities (C.5) and (C.6) in Theorem 4 in the Appendix with ¢ = log(nT) and y =
1/(21b — 8), and noticing that

(21b — 10)2 n
288bhu(21b — 8)2\ 21og[3T J (J + 1)n]

- (21b — 10)2 [ 1+ n 1}
= 144b(21b — 8)2 L\ 962 2u2log[3TJ(J + )n]  3b

under the condition n > 8u?log(127 Jn)/(9b%). [

REMARKS.

1. Assumption (A1) implies that the error terms do not have heavy tails. Assumptions
(A1) and (A3) are needed to show that the sample mean is concentrated around the true
mean. Assumption (A2) is used to avoid collinearity. In addition, for any 6, ét € R’ one can
easily verify that E[®] (8, — 01> = (W, (0, — 0) M, W, (0, — 0,) = ©1(Xjcs 0, Wrj 161 —
0; j|)2 /11;(8;)| by eigendecomposition and simple algebra, where W; = diag{w,1, ..., w;y,}
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and M, is the gram-matrix provided in Assumption (A2). Thus, Assumption (A2) is a suffi-
cient condition for

2
(3.9) E[¢I(0,—0[>]2|1f<oz>|zrf( )3 wtjwtj—e,ﬂ) ,
Jjel ()

for any 6, ] ; € R7: see, for example, van de Geer (2008) for more details. Condition (3.9) is
employed in the proofs of Lemmas 1 and 2 in the supplementary material (Oh et al. (2022)).
This condition holds if the correlation |E¢; ¢k |/(w;jwy) is small for all k € I,(0;), j # k.
Assumption (A4) is used to ensure

(3.10) mJ‘;1x|E[<I>,T(01 —05)¢y; /1] < yeb,

for §;, € ®, to derive Theorem 4 in the Appendix. When w;; = (E ¢fj)1/ 2 as in Qian and
Murphy (2011), condition (3.10) is satisfied with b = 1.

2. The validity of (3.8) requires that E[CDITZ(H,, A)|H]=0as.fort=1,...,T.Thiscan
be easily achieved in sequential randomized trials, where treatment allocation probabilities
P(A; = a;|H; = h;) are known. In observation studies, similar results can be obtained if the
treatment allocation probabilities can be consistently estimated at /7 rate.

3. The first term in the generalization error bounds is called the approximation error, and
the second term is the estimation error, which provides the convergence rate. When QY or U/
is well approximated, the fastest convergence rate can be achieved by choosing the tuning
parameter as Af = O (maxy (s, 7y(log(Jyn))/n). Also, the convergence rate is affected by
|I5(05)|. To our best knowledge, this is the sharpest convergence rate for Lasso estimators.
Also, suppose either Q¢ = &0 or U? = ®/,6%,. Then the generalization error bounds imply
V(x°) — V(&) < Op((maxeq1,...7) | 1/(8,)|(log(Jyn)) /n) 1T/ @Hedy,

4. The number of stages, T, affects the sharpness of the theoretical bounds. Each stage, ¢,
plays arole in Cy 4, ¢ 5, and ¢; ¢ given in the upper bounds. Cy ; involves a factor of S, and
both ¢; ¢ and ¢; s in the estimation error involve a factor of ((T — t)!)z. Finally, the effect of
T is reflected by the summation from¢r=1tot =T.

5. In the proof, the weights w;; are assumed to be data independent and finite. As dis-
cussed before, w;; can also be data dependent such as w;; = (|9At j(enet)| + 1/ min{n, ch~ 1,

where 6, j(enet) is the elastic net estimate of 6;; and c is a sufficiently large constant. Similar
results can be obtained if the data dependent weight converges to a bounded constant.

4. Q-learning with /;-penalization. In what follows, we introduce a framework for ob-
taining optimal dynamic treatment regimes in penalized Q-learning. It estimates the condi-
tional outcome model using (weighted) /{-penalized least squares at each stage backwards,
which is analogous to penalized A-learning. The main difference between penalized Q- and
A-learning is the construction of pseudo-outcome at nonterminal stages. The penalized Q-
learning algorithm is given below:

1. Atstage T, estimate 1 by

Jr
~Q . 2
67 = argmin) P, [Y7 — @7 (Hr, ADOr 42> wrjlor;l g,
T .
j=1
where [P, denote the empirical average over n subjects, wr; > 0 is the weight for 07;, the

jth component of §7, and A? is a tuning parameter that controls model complexity.
2. Fort=T-1,...,1,
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(a) construct the pseudo outcome

3 ~0
vl =y + max O (Hp1a11)8,4

T ~Q0 T ~Q .
=Y+ Py (Hip )0 oy +max i)y (Higr a1)0 1)
(b) estimate 6; by
~Q ~ 5 Ji
0, = argn;in!]P’n[YtQ _ CI);F(H,, At)0,] + )L,Q Z wtj|91j|}»
t =1

where w,; > 0 is the weight for the jth component of 6,, and AtQ is a tuning parameter.

3. The estimated DTR is # ¢ = (frlQ, ,ﬁTQ) satisfies
#2(H,) e argnlaax(QDITé,Q) = argmaax(dD,Tzéth), r=1,...,T.
t t

Next, we show that the finite sample upper bound on the difference in values between the
optimal and the estimated DTRs in penalized Q-learning. Note that the pseudo-outcome in Q-

learning is YtQ =Y; + max,,, CD;FH(HH] , a,+|)0tQ+1, which involves q>-(r1+1)1(Ht+1)0(Q;+1)1,
estimate of the main effect of H;, | at stage t 4 1. Therefore, if the main effect is misspecified,
then the pseudo-outcome will be biased. Based on the theorem below, we observe that penal-
ized Q-learning does not have a sharper bound, which involves only the treatment-by-history
terms like penalized A-learning.

Define

OTQ =arg min E[Yr — ®L(Hr, AT)OT]
0T€R T
4.1)

and 6; Q_arg min E[Yz+maxd>t+l(H,+1,a,+1)0t+1 @TO]
0;cRt

forr=T —1,..., 1. Denote w;; = wy; + lw,jzo. We state the following assumptions.

(B1) Define error terms 8% = Yri — Q%7(Hri,Ari), and sg = Y, + max,,,
Qf+1(H(,+1),-, ar+1yi) — QF (Hyi, Ayi) fort =T — 1, ..., 1. At each stage ¢, we assume the
error terms eg, i =1,...,n, are independent of (H,,, Asi), i =1,...,n and are 1.i.d. with
E(e2)=0and E[|8Q| ] <1!c!=262/2 for some ¢, 0> > 0 forall [ > 2.

(BZ) Fort=1,...,T, the matrix E[(¢;1/wy1, .. ¢tJ,/th,) (Pr1/ws1,s - ., ¢tJ,/U_)tJ,)]
is positive definite with the smallest eigenvalue 7; > O

(B3) There exist finite, positive constants 1 and u such that max,eq,.. 7y 1Q7 —

©70; oo < 1 and maxjeqi.... s, ) b1 lloo /) < u.
(B4) There exists a positive constantbsuch that maxe(i,..., ), re(l, ..., T}E[qﬁtj/d),j]2 < b2

Further define the set

02=1(6],....07) ¢ anr- _max HcpT( —079)] . <7
4.2) {I}laXT}E[CDT(H — 077/ (A )2 <Qlb—8)2
teil,...,
(21b — 10)? n
I
and te{rflf?f @0 1/71) = egpucatn - 8)2\/210g[3TJ(J—|— D

7y J: and |1;(0,)| is the cardinality of 1,(0;).

.....
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The theorem below implies that the upper bound of Q-learning guarantees that the value
of the estimated DTR will converge to the optimal value if the entire Q-function QY is con-
sistently specified fort =1,...,T.

THEOREM 3 (Q-learning). Suppose conditions (C1)—(C3) hold, and the margin condi-
tion (3.2) holds for some C > 0, a > 0 and all positive €; fort =1, ..., T. Assume assump-
tions (B1)—(B4) hold. Suppose the tuning parameters AIQ, t=1,..., T, satisfy

4.3) }»;Q = 96\/5[1 +2(T —1)]b max{c, o, n}\/@,

and 022 > ¢ 02 fort =1,...,T, s =1+ 1, where ¢, = 1 and &4 = (105b —
38)5Sci4+1,5/[9(21b — 8)]. Let O2 be the set defined in (4.2) and assume 09 is nonempty.
Then for any n > 8u?1og(12T Jn)/(9b?), with the probability at least 1 — 1/n we have

V(z°) —V(#9)

T
< min ci.(E[®Te, — 0°1
~ol.... o})Te(aQ[; “( [®:6: = 07]

+ K; max {E,,

se{t,t+1} Ty

11,0,)|(12)2 })(1+W)/(2+a):|
S— 9

where J =max, J;, C1; = (2 4+ a)[2°* (1 4+ o) "I+ §CF+0I=1cl/C+e) | g\ — [64(105b —
38)%1/[81(21b —8)21+[32b(105b —38)1/[3(21b —8)(21b — 10)], and max,c( ++1) is defined
forallt =1, ..., T by understanding that the stage T + 1 is not included for the convenience
of notation.

PROOF OF THEOREM 3. The result follows from the inequalities (3.3) and (3.4) in The-
orem 1 and inequality (C.5) in Theorem 5 in the supplementary material with ¢ = log(nT)
and y =1/(21b — 8), and noticing that

(21b — 10)? n
288bu(21b — 8)2\ 210g[3T J (J + 1)n]

<(mw4m2[ 1+ n q
= 144b(21b — 8)2 [\ 92 * 2u2log[3TJ(J + )n]  3b
under the condition n > 8u?log(12T Jn)/(96%). O

S. Simulation studies. In this section, we study the performance of the proposed A-
learning and Q-learning methods using simulated data. For computations, we apply a tech-
nique called partial regularization via orthogonality using the adaptive Lasso (PROaL) to
achieve sparsity in the prognostic factors and retain a few key variables, such as treatments,
in the model. Thus, we call the methods Alearn-PROal. and Qlearn-PROaL, respectively.
To apply the PRO technique, we first divide ®; into two parts: those need to be penalized,
denoted by X, € RPr!, and those left unpenalized, denoted by Z;. Usually Z; € RP?2 is low-
dimensional and only includes several key variables. Then we can consider a working model
as

(5.1 Q:(H;, A a4, B,) = Z;I-(Ht, Apa; + X;I-(Ht, A)B;,
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where model (5.1) is equivalent to model (2.1) by letting &; = (Z;, X;) and 0; = (oth, ﬂ,T)T.
The Alearn-PROaL aims to minimize the following stage-¢ objective function:

Pr1
Li(ots, B;) = Pn[Yt — Qi (Hy, Ag; oy, ﬂz)]z + A Z wej|Brjl,
j=1

where Y7 = Y7, ¥, = Y, + Y1_, [Vy + maxy, Qs(Hy, ag; &5, By) — Qs (Hy, Ag; &y, B,)] for
t=T—-1,...,1, and A; is a tuning parameter controlling the amount of penalization at
time 7. Note that w; = (w1, ..., wyp,,) is a vector of weights adjusting a level of penalization
on individual variables at time 7. One can adopt w; = 1/| El,l‘3 for some & > 0 with Bt being
a root-(n/ p;1) consistent estimator. In practice, we propose to set B ; as perturbed elastic net
estimates, following Zou and Zhang (2009). The Alearn-PROaL algorithm, which imposes
the adaptive Lasso penalty only on X; but not on Z;, is given in Appendix A. The Qlearn-
PROaL algorithm can be analogously derived by changing the pseudo-outcome formulation.
For comparison, we consider the following competing methods: penalized A-learning (PAL)
proposed by Shi et al. (2018) and backward outcome weighted learning (BOWL) proposed
by Zhao et al. (2015). For the BOWL method, we consider both linear and radial kernels,
which we refer to as BOWL-linear and BOWL-radial, respectively.

We consider five scenarios with two decision points 7 = 2. In all scenarios, the treatment
at stage 1, A, is randomly generated from Bernoulli(0.5). The baseline covariates O is a
p-dimensional standard normal random vector. The intermediate covariate is O, ~ N(O11 +
A1+ A1 011,0.5%), where O is the first component of 0. The second stage treatments and
outcomes are generated as below:

Scenario 1: P(A2=1)=0.5,Y; =0, Y2~ N(A1A2 + A2(013 — O14 + 0y), 1%);
Scenario 2: P(A; =1)=0.5,Y1=0,Y, ~N(A1A2 + A»(013 — O14+ O2) + A1(O15 —
O16), 1%);

Scenario 3: P(Az = 1) = Pr(N(0,1) < (01,02)7(0,_2,1,—-1,D)7), Y1 =0, > ~
N(A1A2 + A2(013 — O1a + 02), 17);

Scenario 4: P(Ay = 1) = Pr(N(0,1) < (01,02)7(0,—2, 1,1, D)), Y1 =0, Y» ~
N(A1A2+ A2(013 — O14+ 02) + A1(O15 — O6), 1%);

Scenario 5: P(Ay = 1) = 0.5, ¥ ~ N(0.501324; — 1),1%), Y» ~ N([(0}, + 0%, —
0.2)(0.5— 07, — 0%) + Y1124, — 1), 12).

We consider the same set of working models for the Alearn-PROalL and PAL meth-
ods. Specifically, we use ®21(Hz) = (1, A1, O1, O2) and Dr(Hr, Az) = $o1(Ha) ®
(A2 — pa(Az|Hp)) to model MSJ(Hp) and UJ(Hp, Az), respectively, at stage 2, and
®11(Hy) = (1, 01) and @12(Hy, Ay) = 11(H) ® (A1 — p1(A1|Hy)) to model M{(Hy) and
UY(H\, A1), respectively, at stage 1. For the Qlearn-PROaL, we consider the same ®;1(H;)
as in the Alearn-PROaL, but consider ®;2(H;, A;) = ®;1(H;) ® A;. For the PRO methods,
we choose not to penalize the intercept and A in the first stage, and the intercept, A, and
A1 A3 in the second stage. The propensity scores are estimated using a logistic regression
with Lasso. The PAL method is implemented using the R package provided in Shi et al.
(2018). For the implementation of BOWL, we consider the class of linear and radial kernels
f2(Hp) and f1(Hy) with H = (1, O1) and H>, = (1, Ay, O1, O>) as input.

Scenarios 1-4 are adopted from Shi et al. (2018). In these scenarios, the models for treat-
ment effect Q7(H;, 1) — Q7 (H;, 0) are correctly specified at stage 2 but always misspecified
at stage 1 because a nonlinear relationship exists between the baseline covariates and the
treatment in the Q-function at stage 1. The baseline function at stage 2 is correctly specified
in Scenarios 1 and 3, but not in Scenarios 2 and 4, whereas the baseline function at stage 1
is always misspecified. The propensity models at stage 1 in all five scenarios are correctly
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specified. However, at stage 2, the propensity models are correctly specified in Scenarios 1,
2 and 5, but misspecified in Scenarios 3 and 4. In Scenarios 1 and 3, the active variables
are (Ag, O13, O14, O7) at stage 2 and (O, O13, O14) at stage 1, since these are associ-
ated with A, and Ay, respectively. Similarly, in Scenarios 2 and 4, the active variables are
(A, O13, O14, Oy) atstage 2 and (011, O13, O14, O15, O16) at stage 1. Scenario 5 is adopted
from Zhao et al. (2015), where the treatment effect models are misspecified at both stages.
The active variables are (A1, O11, O12, O13) at stage 2 and O3 at stage 1.

We consider n = 50/150 and p = 60. Additional results for p = 200 are provided in the
supplementary material. Table 1 summarizes the performances of the methods based on 1000
replications for p = 60. For each replication, we compute the following performance statis-
tics: false positive (FP; the number of inactive variables incorrectly included in the model),
false negative (FN; the number of active variables left out of the model) and value func-
tion of the estimated optimal treatment regime. The contrast function root-mean-square er-
ror (CRMSE) is also calculated for the Alearn- and Qlearn-PROaL as well as for the PAL
method. The value function and the cRMSE are assessed using an independent test dataset
with sample size of 10,000. In all five scenarios, both Alearn- and Qlearn-PROaL outper-
form PAL and BOWL-linear in terms of higher value estimates due to not penalizing a few
key variables. Although the BOWL-radial also produces a fairly high value estimate when
n = 50, the value estimate remains very similar with the increased sample size of n = 150.
On the contrary, the estimated value by Alearn- and Qlearn-PROaL gets very close to the
true optimal value in Scenarios 1-4 as the sample size increases. It is worth noting that when
n = 150, in Scenario 2 where the propensity score is correctly specified but the main effect is
misspecified, Alearn-PROaL has a higher value than Qlearn-PROaL.. However, in Scenario 3

TABLE 1
Simulation results for p = 60. The mean value is reported with the standard deviation in parentheses. The
median FP, FN, and cRMSE are recorded with the mean absolute deviation in parentheses. The best results are
highlighted in boldface

Stage 2 Stage 1
n Method Value FP FN cRMSE FP FN cRMSE
Scenario 1
50 Optimal 2.29

Alearn-PROal  1.99 (0.28) 4 (4.45) 1(1.48) 1.89(0.53) 1(1.48) 3(0) 1.34 (0.33)
Qlearn-PROaL  2.13 (0.21) 2 (2.97) 0(0) 1.47 (0.61) 1(1.48) 2(1.48) 0.90(0.32)

PAL 1.67(0.38) 1(1.48) 2(1.48) 1.67(0.58) 2(1.48) 3(0) 2.01 (0.55)
BOWL-linear 0.90(0.24) 58 (0) 0(0) - 57 (0) 0 (0) -
BOWL-radial 1.92 (0.36) - - - - - -

150  Optimal 229

Alearn-PROal. 226 (0.02) 1 (1.48) 0(0) 0.79 (0.25) 0(0) 2(0) 0.70 (0.16)
Qlearn-PROaL  2.27 (0.02) 0(0) 0(0) 0.74 (0.22) 0(0) 1(1.48) 0.56 (0.09)

PAL 2.21 (0.07) 0(0) 1 (0) 0.57 (0.13) 1(1.48) 2 (0) 0.91 (0.29)
BOWL-linear 0.96 (0.14) 58 (0) 0(0) - 57 (0) 0 (0) -
BOWL-radial 1.98 (0.10) - - - - - _
Scenario 2
50 Optimal 2.48

Alearn-PROaL  1.89(0.33) 3(4.45) 1(1.48) 227(0.49) 1(1.48) 4(1.48) 1.97(0.23)
Qlearn-PROaL  2.04 (0.28) 2(2.97) 1(1.48) 1.83(0.62) 2(2.97) 3(1.48) 1.76(0.23)
PAL 1.55(0.42) 1(1.48) 3(1.48) 2.11(0.73) 2(1.48) 4(1.48) 2.56(0.57)
BOWL-linear ~ 0.92(0.24) 58 (0) 0 (0) - 55 (0) 0 (0) -
BOWL-radial  1.89 (0.41) - -
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TABLE 1
(Continued)
Stage 2 Stage 1

n Method Value FP FN cRMSE FP FN cRMSE

Scenario 2 (Continued)

150  Optimal 2.48
Alearn-PROal.  2.38 (0.05) 2(1.48) 0(0) 0.97 (0.34) 1(1.48) 2(0) 0.92 (0.24)
Qlearn-PROal.  2.26 (0.02) 1(1.48) 0(0) 0.75 (0.27) 2 (0) 2(1.48) 1.52 (0.04)
PAL 2.32(0.10) 0(0) 1(0) 0.74 (0.33) 1(1.48) 2 (0) 1.02 (0.41)
BOWL-linear 1.01 (0.15) 58 (0) 0(0) - 55 (0) 0(0) -
BOWL-radial 1.97 (0.15) - - - - - -

Scenario 3

50 Optimal 2.29
Alearn-PROal.  1.95(0.32) 2(2.97) 1(1.48) 2.27(0.75) 1(1.48) 3(0) 1.37 (0.28)
Qlearn-PROalL.  2.16 (0.11) 1 (1.48) 0(0) 1.34 (0.56) 1(1.48) 1(1.48) 0.87 (0.30)
PAL 1.53(0.39) 1(1.48) 3(1.48) 230(0.63) 2(1.48) 2(1.48) 2.04(0.64)
BOWL-linear 1.12 (0.22) 58 (0) 0(0) - 57 (0) 0(0) -
BOWL-radial 1.98 (0.13) - - - - - -

150  Optimal 2.29
Alearn-PROal.  2.21 (0.10) 0(0) 0(0) 1.29 (0.50) 0(0) 2(0) 0.76 (0.22)
Qlearn-PROal.  2.26 (0.02) 0 (0) 0(0) 0.70 (0.21) 0(0) 1(1.48) 0.57 (0.08)
PAL 1.93(0.28) 1(1.48) 2(1.48) 1.78(0.68) 1(1.48) 2 (0) 1.00 (0.36)
BOWL-linear 1.17 (0.13) 58 (0) 0(0) - 57 (0) 0(0) -
BOWL-radial 1.99 (0.00) - - - - - -

Scenario 4

50 Optimal 2.48
Alearn-PROal.  1.84 (0.38) 2(2.97) 2(1.48) 2.56(0.67) 1(1.48) 4(1.48) 1.99 (0.26)
Qlearn-PROal.  2.09 (0.15) 2(2.97) 1(1.48) 1.78(0.61) 21297) 3(1.48) 1.74(0.24)
PAL 146 (043) 1(1.48) 3(1.48) 258(0.59) 2(1.48) 4(1.48) 2.53(0.67)
BOWL-linear 1.11 (0.23) 58 (0) 0(0) - 55 (0) 0(0) -
BOWL-radial 1.97 (0.14) - - - - - -

150  Optimal 2.48
Alearn-PROal.  2.26 (0.15) 1 (1.48) 0(0) 1.61 (0.57) 1(1.48) 2(0.74) 1.05(0.35)
Qlearn-PROalL  2.26 (0.03) 1 (1.48) 0(0) 0.76 (0.26) 2 (0) 2(1.48) 1.52 (0.04)
PAL 1.94(0.32) 1(1.48) 2(1.48) 2.15(0.57) 1(1.48) 2 (0) 1.23 (0.49)
BOWL-linear 1.19 (0.14) 58 (0) 0(0) - 55 (0) 0(0) -
BOWL-radial 1.98 (0.06) - - - - - -

Scenario 5

50 Optimal 7.21
Alearn-PROal.  6.26 (1.48) 0(0) 3(0) 18.36 (1.85) 0(0) 1(0) 3.19 (2.99)
Qlearn-PROalL  6.33 (1.41) 0(0) 3(0) 17.06 (0.26) 0(0) 1(0) 0.50 (0.08)
PAL 3.28 (1.78) 2 (1.48) 4(0) 21.57 (4.06) 4(1.48) 1(0) 16.32 (7.58)
BOWL-linear 3.41 (1.13) 58 (0) 0(0) - 59 (0) 0(0) -
BOWL-radial 6.72 (0.34) - - - - - -

150  Optimal 7.21
Alearn-PROaL.  6.78 (0.00) 0(0) 3(0) 18.04 (0.94) 0(0) 1(0) 1.93 (1.66)
Qlearn-PROal.  6.78 (0.00) 0(0) 3(0) 16.87 (0.08) 0(0) 0(0) 0.33 (0.13)
PAL 4.99 (1.78) 1(1.48) 4(0) 1894 (1.23) 6(2.97) 1(0) 13.40 (3.47)
BOWL-linear 2.94 (0.58) 58 (0) 0(0) - 59 (0) 0(0) -

BOWL-radial

6.78 (0.00)
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where the main effect is correctly specified but the propensity score is misspecified, both
Alearn- and Qlearn-PROaL perform similarly in terms of value estimates. This is because
the condition £ [d>tTZ(H,, Ay)|H;] = 0, which is needed to derive a sharper upper bound for
penalized A-learning, may no longer hold in Scenario 3. Scenario 1 is supposedly the best
scenario for PAL (Shi et al. (2018)) since both the main effect and propensity score models
are correctly specified at stage 2. Under this scenario, PAL yields a smaller RMSE in con-
trast function estimation at stage 2 as compared to our Q- and A-learning methods. However,
their advantage is no longer observed in stage-1 contrast estimation, and thus in the value of
the estimated DTR, since the stage-1 contrast function is misspecified. Our Alearn-PROaL.
method performs better than PAL in terms of higher value estimate, lower cRMSE at stage 1,
and comparable or lower cRMSE at stage 2. Furthermore, in all scenarios, FP at stage 1 and
FN at stage 2 of our Alearn-PROaL. method are smaller than (or at least equal to) that of PAL.
In Scenario 5, where the treatment effects are misspecified, both Alearn- and Qlearn-PROaL.
perform better than PAL and BOWL-linear. In addition, the overall selection performance of
these two PROaL methods is better than PAL, and the stage-1 cRMSE by PAL is extremely
high in Scenario 5. Although all methods misspecify the relationship, the PRO technique
performs favorably against others since it prevents a model from overshrinking by not penal-
izing several key variables in the model. The BOWL-linear method fails in all scenarios due
to a very high FP. In particular, BOWL-radial performs well in Scenario 5 where nonlinear
relationships exist, but not in other scenarios with the increased sample size. In overall, both
Alearn- and Qlearn-PROaL seem to benefit from the incorporation of weights, which are used
to adjust a level of penalization on individual variables.

To explore the results with a larger number of stages, we also consider an extra scenario
with three decision points 7" = 3 adopting from Zhao et al. (2015). Since the R package
for PAL only works with a two-stage setting, we compare performance of the rest of the
methods. In this extra scenario, the Alearn-PROaL has the highest value estimate among all
the methods (see Table 4 in the supplementary material). In partciular, the Alearn-PROaL
has a higher value estimate than the Qlearn-PROaL. One reason is that the bias in stage-1
pseudo-outcome includes approximation errors due to misspecification of the main effects at
stages 2 and 3. Therefore, the advantage of A-learning is apparent as the number of stages
increases when the propensity score model is correctly specified. However, the value estimate
does not get close to the true optimal value as the sample size increases, which demonstrates
one of the limitations of the parametric method for a larger 7' due to model misspecification.
More detailed setting and the results are provided in the supplementary material.

6. Real data application. We apply the proposed methods to a combined data set from
the coronary psychosocial evaluation studies (COPES) and the comparison of depression
interventions after acute coronary syndrome (CODIACS) vanguard trial. Both studies were
designed to examine the benefits of stepped care approach in post-acute coronary syndrome
patients (Davidson et al. (2010), Davidson et al. (2013)). In both studies, patients received
either a treatment that contains problem-solving therapy (PST) or not at each stage. As the
CODIACS trial was planned as a continuation of the previous trial, COPES, with the same
treatment options and population of interest, the data from the two trials were concatenated
to increase the sample size. Thus, a total of 281 subjects were used in this study.

In this analysis, the terminal outcome Y» is defined as the 6-month reduction in Beck De-
pression Inventory (BDI), whereas Y| = 0. The treatment at each stage is coded as A; = {0, 1}
for t =1, 2 with 0 indicating non-PST treatment and 1 indicating PST-containing treatment.
We consider 29 baseline covariates including patient preference for treatment, age, sex, His-
panic race, Charlson comorbidity index, baseline BDI score and baseline SF-12 score; thus,
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TABLE 2
Estimated value and size of DTR in parentheses

Alearn-PROaL Qlearn-PROaLL PAL BOWL-linear BOWL-radial Observed

9.69 (13) 6.31 (12) 4.49 (19) 5.37 (62) 7.90 (312) 5.30

we have 0] € R%. We consider a dichotomized intermediate BDI reduction since initial treat-
ment as the second-stage covariates O, € R!. Specifically, it is defined by a BDI reduction of
at least 3 units (Cheung, Chakraborty and Davidson (2015)), that is, having

0 1 if the intermediate BDI reduction > 3,
710 if the intermediate BDI reduction < 3.

We apply the proposed methods and compare them with other methods as in Section 5.
The 5-fold cross-validation is used to estimate the optimal regime and the size of DTR on
each training set and evaluate the value of the estimated DTR on each test set. We then take
an average for the value and a median for the size of the DTR. The size of DTR is equivalent
to the sum of two components: the number of nonzero coefficients involving A; at stage 2,
and the number of nonzero coefficients involving A; at stage 1. It is called the size of DTR
since it specifies the number of input variables required to construct the optimal DTR.

Results are presented in Table 2. The last column of the table is the observed outcome
where it captures the performance of randomly assigned interventions in the trial. The Alearn-
PROaL yields the highest value estimate, followed by the BOWL-radial. The size of DTR for
the Alearn-PROaL is comparable to the Qlearn-PROaL. and is much smaller than the rest
of the methods. Specifically, the Alearn-PROaL increases the change in BDI scores over 6
months by 9.69 on average with fewer variables.

We illustrate the distribution of the estimated optimal DTR using the whole data. Since the
stage-2 optimal regime is estimated with H, = (01, A1, 03), it is worthwhile to note that the
estimated stage-2 optimal regime is conditioned on patients’ stage-1 treatment A not on the
estimated stage-1 optimal regime. The Alearn-PROaL. recommends PST-containing treatment
in about 61.9% and 85.1% in the second and first stage, respectively. The Qlearn-PROaL rec-
ommends PST-containing treatment in about 64.4% as the second-stage optimal regime and
always recommends PST-containing treatment as the first-stage optimal regime. In contrast,
the PAL recommends PST-containing treatment in about 53.4% and 70.8% as the second-
and first-stage optimal regime, respectively. The BOWL-linear recommends PST-containing
treatment in about 52.7% and 61.2% in the second and first stage, respectively. Lastly, the
BOWL-radial recommends PST-containing treatment in about 75.1% as the second-stage
optimal regime and always recommends PST-containing treatment as the first-stage optimal
regime.

7. Conclusion. In this paper, we have proposed penalized regression-based learning
methods, namely penalized Q- and A-learning, to construct the optimal DTR that would
maximize the expected outcome if implemented. The proposed methods place a Lasso-type
penalty on some or all variables to find a model that is simple and has a good prediction accu-
racy. Another advantage of the proposed approaches is that they handle numerous treatment
options in a multistage decision problem. We have also provided finite sample upper bounds
for the difference between the optimal value and the value obtained by the estimated DTR,
which are composed of the sum of approximation error and estimation error of the conditional
outcome model at each stage, up to a power depending on the difference in the expected out-
come between optimal and suboptimal decisions. The upper bounds guarantee that the value
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of the estimated DTR will converge to the optimal value if the optimal Q- or treatment effect-
functions are correctly specified for penalized A-learning and if the optimal Q-functions are
correctly specified for penalized Q-learning. However, the theoretical foundation is based on
continuous outcome only. Thus, it remains an interesting task for future studies to generalize
it to various types of data, including binary, ordinal and censored outcome.

There are several advantages of our proposed penalized A-learning method over Shi et al.
(2018). First, our method and theory apply to any number of stages and treatments per stage.
Their framework was formulated under a binary-treatment setting. It is not trivial to gener-
alize their method and proof to a general T (i.e., number of stages) with multiple treatments
per stage. Second, the theoretical results in Shi et al. (2018) are derived under the assumption
that the contrast functions at noninitial stages are well approximated by the linear models.
This assumption plays an important role in Shi et al. (2018) as the double robustness prop-
erties that they focused on is only meaningful under this assumption. However, in practice
this assumption is likely to be violated as it is challenging to correctly specify the contrast
functions at nonterminal stages. Our theoretical results, on the other hand, do not rely on this
assumption. Instead, we incorporate potential approximation error of the contrast functions
in the generalization error bounds.

Choosing a good representation for Q-functions is important for the proposed methods.
The linear basis functions usually work fine at the terminal stage, but choosing a good repre-
sentation for ®; for ¢ < T is challenging since the terms at nonterminal stages are likely to be
nonlinear. However, one can check residual plots for diagnosing model misspecification al-
though the patterns do not necessarily indicate in which a problem occurred; that is, whether
the problem is in the main or treatment effect terms (Chakraborty and Moodie (2013)). In-
cluding higher order terms may be helpful if there is a systematic effect remaining in the
residuals, as pointed by Henderson, Ansell and Alshibani (2010).

In practice, we have developed the PROaL algorithms to impose an adaptive Lasso penalty
only on a prespecified partial set of variables in each stage for the construction of opti-
mal DTR. A simulation study over different scenarios have shown that Alearn- and Qlearn-
PROaL methods produce higher values and better selection performances compared to other
competing methods. In the real data analysis, the proposed methods yielded simpler regimes
with higher values compared to their counterparts. It is also crucial to recognize that the use
of PRO technique mitigates the risk of overshrinkage, which can occur in a completely data-
driven regularization method. The optimal DTRs which are estimated from the stable and
interpretable model will provide good guidance on medical practitioners and future studies.

APPENDIX A: ALEARN-PROAL ALGORITHM

The Alearn-PROaL algorithm, which imposes the adaptive Lasso penalty only on X; but
not on Z;, is given in Algorithm 1.

APPENDIX B: PROOF OF THEOREM 1
For any policy & = (i, ..., 7T), denote

AQ:(H;, Ay) = n}ftlx Q?(Ht, ar) — Q;O(Ht, Ay)

fort =1,...,T. Following Murphy (2005), we have

T T
V(x®) = V(r)=Eq [Z[n}f}x Q7 (H;,a;) — Q7 (H;, At)]] =Y Ex[AQ:(H;, A)].

=1 t=1
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Algorithm 1 Alearn-PROaL algorithm

Require: Data (O, A1,7Y1,...,01,AT,YT)

Ensure: DTR 7 = (71, ..., 1)

1: Set history by H; = O

2. fort=2,...,T do

3: Set history H; = (01, A1, O2, A3, ..., Oy)

4: end for

5: Set YN'T = YT

6: fort = ,1do

7: 1fte{T—1 ., 1} then

8: Define 7, — ¥, + ST LY + (max, (XT B, + ZT&,)) — (XTB, + ZT&)]

9: end if

10: Formulate X; and Z; as a function of H; and A;

11: V; <~ argminvtIP’n(ﬁ — ZtTvt)2

12 for j=1,..., p; do

13: Vi < argminytj]P’n(X,j — ZtTytj)2

14: find for

15: I‘,<—(;7t1,...,y,pﬂ)

16: Construct ®; = |B,|~® for some § > 0, where ﬂ, is a root- (n / Pr1)-consistent esti-

mator obtained by regressing the outcome Y, Z v;on X, — Z I',
17: Define (X; — ZJT,)* = (X; — ZTT,) /b,
18: Solve the lasso problem for all A;,
R Pl
ﬁt <« argmingP, ( Z 0, — (X, — Z,TI‘,)*)T,BI)2 + A Z 1Bt
j=1
A o

19: B; < B, /w; A

20: &, < 0, — I'B,

21: 7T; € argmaxg, (X ﬂt + ZToc,)

22: end for

23 T 2(7:[1,...,7:[7")
Define the event

Qi = | max Q7 (Hy.a)) - max ) (Hr,ap) < &},
a€A; are A \argmaxy, Q7 (Hy,a;)

Then on the event Q¢

(B.1)

we have AQ,(H;, A;) <[AQ,(H;, A})]*/¢. Thus

€r,1°

T
V(r®) = V()= Z [lac , AQi(H:. A) + 1o, AQ:(Hy. Ap)]

[ Et(AQf(H,,A;»ZH%t((AQf(H,,A,))z+%)}

€t €t

[ (MO (Hy, AP + L B (1%,)]
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Under conditions (C3) and (3.2),

t—1

L Ay=m,(H) r—1
(B.2) Ezlg. , =E — " 1q., | < ST Ce/.
T [1]1 ps(Ag|Hy) '
In addition, note that

Ex[AQ/(H,, AD]
= Ex[max 07 (Hy, @) — max 0, (Hy, ap) + Q1 (Hy, i (HY) — 07 (Hy, A
< 2 [max Q7 (Hy, ay) — max Q,(Hy, )|
+2E[Q:(H;, 7 (Hy)) — QO (Hy, m(Hp) ]

(B.3)
< 4Eq (max[ Q7 (Hr. ar) — Qr(Hy.a)]’)

—1
tl_[ lAs:Tfs (Hy) 1At€argmaxa, [Q?(Ht,az)_Qt(Hhat)P
Ps(As|Hsy) pi(A¢|Hy)

s=1

x [QY(Hy. Ar) — Qs (H,, A,)]2>

<4S'E[QY(H;, A)) — Qi (Hy, Ap],

where the first equality follows since 7;(H;) € argmax,, Q;(H;, a;) and the last inequality
follows from condition (C3). Plugging (B.3) and (B.2) into (B.1) yields

T
V(z®) —V(x) < 2[14SZE[Q?(Hts A) — Q. (Hy, At)]2 + %SI_ICG;XH]'

=11

By choosing €, = {I6SE[Q¢(H,, A;) — Q,(H;, A)T?/[(1 + a)C1}'/?+) to minimize the
above upper bound, we have

T
V(r%) — V() <Y CLE[Q)(H,. Ay) — Qi (Hy, AP} H0 )
t=1

where Cl,t — (2 + a)[22(x(1 + O[)—(l—l-a)S(Z—l-a)t—lC]l/(2+a).
Next, note that

Q;U(Ht» Ap) — IT%IE}X Q;)(Ht» a;) = U;O(Ht, Ap) — H}{?X U;)(Ht» a).
Thus, using similar arguments, (3.4) can be shown by denoting
AU (H, Ay) = H};ax U;)(Hz, ar) — U;O(Ht, Ap),
t

and V(r°) — V() = Y| Ex[AU,(Hy, Ap)].

APPENDIX C: UPPER BOUNDS FOR E[®]6, — Q?]> AND E[®],0,, — U?T?

In this section, we first provide a step-by-step guide for the penalized A-learning theoreti-
cal development:
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e Theorem 2 in Section 3.2 provides the upper bounds for the value difference between
the optimal and estimated DTRs, V (r?) — V (&). The upper bounds are composed of the
sum of approximation error and estimation error of the conditional outcome model at each
stage, up to a power depending on the difference in the expected outcome between opti-
mal and suboptimal decisions. The result is further strengthened if the propensity score is
known or can be consistently estimated. This theorem is a combination of Theorem 1 and
Theorem 4. The proof is given in Section 3.2.

e Theorem 4 in Appendix C shows error bounds for Q-functions E [<I>,T§, — Q;’]2 and treat-
ment effect £ [thTzétz - Uy 12. We first derive the upper bounds under three sets of events
based on Lemmas 1 and 2, and then show that these events hold with high probabilities in
Lemmas 3-5 using Bernstein’s inequalities.

— Lemma 1 shows upper bounds for ZJJ.’:I Wy |9Atj —0,j] and E[CD,T(é, —0,)]? on three sets
of high probability events. The proof relies on mathematical induction, starting from the
terminal stage 7 and moving backwards (t =7 — 1,...,1).

— Lemma 2 shows upper bounds for Zj T+ w,j|9,j — (9,j| and E[(D (0,2 —0)]?
three sets of high probability events s1m11ar1y

e The proofs of Lemmas 1-5 are given in the supplementary material.

Forany ¢ > 0,0 <y <2/(21b — 8) and tuning parameter A,, define
07 = {0, RV [ 0] (0, —07)| o <n and  E[®] (0, —07)] <722

fort=1,...,T.Denote J =max;c(1,.. 1} J;, and
0= Cl I 0
{( el_[ max, {|150:)]/%)
(C.1H
_(1—2y)

n 1
= 144b [ o2 T 2u?log3J(J + 1) + @] E]}'

THEOREM 4. Suppose there exists a constant S > 1 such that p;(a;|h;) > S~ for all
(hy, ay) pairs fort =1, ..., T. Assume assumptions (A1)—(A4) hold. For any given 0 <y <
2/(21b — 8) and ¢ > 0, suppose the tuning parameters s, t =1, ..., T, satisfy

’

C2) ip> 8max{3c, 4n}ullog(12J7) + ¢] 12max{o, 2n}b \/2[log(12JT) + @]
- [1-2y(3b—2)In [1-2y(3b—2)]
16 max{3c, 4[1 + 2(T — t)In}ullog(12J;) + ¢]
[2—Q21b—8)y]ln
24 max{o, 2[1 + 2(T — t)]n}b\/2[log(12Jt) + ¢]
— 21b—8)y ’

n

r—

(C.3)

n
2
C4) and 3Fzershl withcry =1 cs =52y +5)S+ 3T =D,

fort=1,...,T,s=t,...,T. Let © be the set defined in (C.1) and assume ® is nonempty.
Then for any (0-{, e, 0})T € O, we have

T 2
. , |1,8) 122
(C.5) P(ﬂ{E[q’fT"f - 07T < E[@]6: - 07 + Kn se???fn(c” )D

t=1 Ts

> 1—Texp(—¢),
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where K;1 = [64Q2y + 5)2]/81 + [32y b2y + 5)]/[3(1 —2y)].
Furthermore, ifE[CDIZ(H,, Ap)|H;] = 0 a.s. Then with probability at least 1 — T exp(—¢),

! | 12(05) (22

P E[®h0, — U] < E[®L0,0 — U] + K max (5 #>}
(C.6) (g{ [ 12Y12 t] = [ 12Y12 t] 2 o 1,8

selt,..., T
>1—Texp(—¢),

where K;p = {3 —[(1 — 2)/)2]/9}2 + 6yb{27/[(1 — 2)/)2] — 1}, ¢0=1, and

81 G 1 —2y)?2
E,,s=2(T—t)2(S+1)[ maxXge(r41,... T){Cre1,5/Cri1,5) +1M3_( Y) }5z+1s,

16(1 —2y)?
fort=1,....,T,s=t+1,...,T

PROOF OF THEOREM 4. Forany (0],...,07)" € ®, we denote

€7 VOis1,....07) =Y, + Z [ ¥+ max ®] (Hy. ;)05 — @ (Hy. As)0s |

s=t+1
whent=T7T—1,...,1,and Y,(0t+1, ...,07)=Yr when t = T for the convenience of nota-
tion. Forr =1, ..., T, Let | A;| be the cardinality of .4;. Define the events
&tjPrk (1-2y)?
Q1000 =] (B -En (5222} < |
Lke{l ----- -]t wtjwtk 144maxve{t ..... T}{|I @)1/}
~ ¢ 4y +1
Q20;,....,07) =1 max En[(Yt(é?,H,...,() ) — /0, ”] A,},
jell,.., i) Wy
(Hy, H,,
Qt,3(0t5“'90T)= . max (E_En)< Z ¢ZJ( t (;ll’)(?l‘k( t at))‘
Jkell,..., s} ared, Wej Wk
- (1—2y)|A| }
- 144maXse{z,...,T}{|Is(0s)|/Ts} '

By the Cauchy—Schwarz inequality,

max
J

b1j Z
E[d)tT(O, — 0;")%” < \/E[CD,T(ot — 026)]2 m?x Elyj/ w1 < ybhs,
1j

where the second inequality holds from Assumption (A4). Thus
E[@]d, - 07T
—E[®]0, — Q) + E[®] @, — 0] +2E[®] (8, — 67)][®] 0, — 0))]
< E[©]8, — 07 + E[®] (0, — ‘svt)]2

+2 max
je{l, o di}

E[®]0, — Q%" + E[®] 0, — 0)]* + 2y DA, <Z W16, — 9,,»|).

J=1
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By Lemma 1 given below, on the event ﬂthl{Qtyl(f)t,...,GT) N Q200 ...,07) N
Q41,30:41,...,07)}, we have

TA 012 T 012 |1, (05) |22
E[®/0, — Q7] <E[®,0, — Q7] + K max o=,

Ts
fort=1,...,T, where Q741 3(014+1) is defined as the universe for the convenience of no-
tation.

If E[dDITZ(H,,At)|H,] = 0 a.s.,, by Lemma 2, on the event ﬂ,TZI{Qt,l(Ot,...,OT) N
Q20 ...,07)NQ24130:41,...,07)}, we have

E[®)0,2 — UT

Ji
< E[®)000 — U + E[®L,0.0 — 0.0)] + 2be< > Wil - 9sz)
Jj=Jn+l

|Isz(0s>|x§}

T 2 -
< E[Cthﬂtz — Uto] + KIZ I?aXT}{C[’ ‘[s
forr=1,...,T.

The conclusion of the theorem follows from the union probability bounds of the events
Q[’](ot, ey 0T), Qtyz(et, ey 0’]"), and 91’3(01‘, ey 0’[‘) fort = 1, ey T, prOVided in Lem-
mas 3,4and 5. O

LEMMA 1. Assume there exists a constant S > 1 such that p;(as\h;) > N for
all (h¢,a;) pairs. Suppose Assumption (A2) and condition (C.4) hold. Then, for any
@7],....00)7T € ©, on the event N_ {Q18;,....07) N 20, ....07) N Qi13041,
...,07)}, we have

Ji 2
N 16(2 5 I, (05)|A2
(C8) ZJJ,JIH,J—@A fﬁ max {Ct,s@},
i 3(1 —2y)A; seft,...,T} T,
A 642y +5)° 11 (05) 127
C.9 E[®] @6, —0)]? < — "~ { 7}
(C.9) [, (0; —0,)] < a1 R L
fort=1,...,T,where Qr113(071+1) is defined as the universe for the convenience of nota-
tion.

LEMMA 2. Suppose all conditions in Lemma 1 hold. Assume E[CD;FZ(H,, ANIH] =0
as.fort=1,...,T. Then, for any (0T, ...,0;)T € O, on the event ﬂthl{Qt,l(Ot, 0N
Q20:,....07) N Q1130141,...,07)}, we have

Ji

- A 81 — - |Is2(0s)|)¥2
(C.10) > wlo — 6,51 < [42 - 3:|k, I max {c,’s4“},
el 1-2y) seft,...,T} Ty
> (1-2y)°7 _ 20913
C.11 d E[®],0,—6 2<[3——} { 4S}
( ) an [ 2012 t2)] = 9 se{t,?.fT} Ct.s o
fort=1,..., T, where c; s is defined in Lemma 1, ¢, ; =1 and

8lmaxse(ry1,... . 11{Cr+1,5/Crv1,5} 4 1}[3 = 2)’)2]_

= 2
Grs =2T —1) (S+1>[ TR 5 |

fort=1,...,T,s=t+1,...,T.
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LEMMA 3. Suppose Assumptions (A3) and (A4) hold. Then for any ¢ > 0 and
@7, ....00)T €0, P(Q.10;,....07))C) <exp(—p)/3fort=1,...,T.

LEMMA 4. Suppose Assumptions (A1), (A3) and (A4) hold. Then for any ¢ > 0, if A; sat-
isfies conditions (C.2), (C.3) and (C.4), then for (0], ...,00)7 € ©,P({,2(0;,...,07)}C) <
exp(—¢)/3fort=1,...,T.

LEMMA 5. Suppose Assumptions (A3) and (A4) hold. Then for any ¢ > 0 and
@7, ....00) €0, P(230,,....07))°) <exp(—p)/3fort=1,...,T.
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SUPPLEMENTARY MATERIAL

Supplement to ‘“Generalization error bounds of dynamic treatment regimes in penal-
ized regression-based learning” (DOI: 10.1214/22-A0S2171SUPP; .pdf). The supplemen-
tary material contains proofs of the lemmas for penalized A-learning, theorems and proofs
for penalized Q-learning and additional simulation results.
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