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Abstract

This paper develops a nonparametric inference frame-

work that is applicable to occupation time curves

derived from wearable device data. These curves con-

sider all activity levels within the range of device read-

ings, which is preferable to the practice of classifying

activity into discrete categories. Motivated by certain

features of these curves, we introduce a powerful like-

lihood ratio approach to construct confidence bands

and compare functional means. Notably, our approach

allows discontinuities in the functional covariances

while accommodating discretization of the observed

trajectories. A simulation study shows that the pro-

posed procedures outperform competing functional data

procedures. We illustrate the proposed methods using

wearable device data from an NHANES study.
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1 INTRODUCTION

The motivation for this paper comes from applications of physiological monitoring in which

there is a need to compare groups of subjects in terms of health outcomes that are functional

in nature. Inexpensive wearable sensors are now capable of generating massive amounts of data

collected longitudinally (for weeks or months at a time), and they are playing an increasingly

important role in epidemiological, public health and biomedical research; for example, in studies

J R Stat Soc Series B. 2022;84:1947–1968. wileyonlinelibrary.com/journal/rssb © 2022 Royal Statistical Society. 1947

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jrs
s
s
b
/a

rtic
le

/8
4
/5

/1
9
4
7
/7

0
7
2
8
9
1
 b

y
 C

o
lu

m
b
ia

 U
n
iv

e
rs

ity
 u

s
e
r o

n
 0

8
 J

u
ly

 2
0
2
3



1948 CHANG and McKEAGUE

of congestive heart failure, pulmonary disease, diabetes, obesity and Alzheimer’s disease. Various

functional datamethods have been proposed to analyse such data (see, e.g. Backenroth et al., 2020;

Zhang, Li, et al., 2019, and references therein), and to our knowledge all of these methods imple-

mented model-based and smoothing approaches. However, such approaches can result in loss of

information from smoothing∕dimension reduction (Dette et al., 2020), for example when faced

with discontinuities in occupation time data (to be described later). Inspired by this problem,

we propose a powerful nonparametric approach that does not require smoothing, for compar-

ing functional means and constructing confidence bands. A distinct feature of our approach is

in allowing discontinuities in the functional means and covariances while accounting for dense

discretization of the observed trajectories, in contrast to the existing literature (see, e.g. Cao

et al., 2012; Choi & Reimherr, 2018; Degras, 2011; Zhang, Cheng, et al., 2019) concerning dense

functional data analysis.

Our application focuses on wearable device measurements used to assess physical activ-

ity, which is of great interest in human physiology and pathophysiology research (Wright

et al., 2017). Physical activity is often quantified by time spent in activities of various

intensities (e.g. sedentary, light, moderate, vigorous) during the study period (see, e.g.

Staudenmayer et al., 2012). The amount and intensity of physical activity is typically deter-

mined from accelerometer readings (Migueles et al., 2017), for example, ‘counts’ from

ActiGraph devices, as shown in Figure 1. Thresholds for the readings are often used to

specify the various activity categories. For example, the time spent in sedentary behaviour

could be represented by the accumulated amount of time below 100 counts∕min (Matthews

et al., 2008). Such thresholds, however, are arbitrary in the absence of separate validation

studies.
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F IGURE 1 ActiGraph raw activity data during 1 week for two subjects in the 2005–2006 National Health

and Nutrition Examination Survey (NHANES).

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jrs
s
s
b
/a

rtic
le

/8
4
/5

/1
9
4
7
/7

0
7
2
8
9
1
 b

y
 C

o
lu

m
b
ia

 U
n
iv

e
rs

ity
 u

s
e
r o

n
 0

8
 J

u
ly

 2
0
2
3



CHANG and McKEAGUE 1949

To deal with this issue, instead of just measuring time spent in discrete activity categories,

we consider activity over a continuum of levels. This is done in terms of an occupation time: the

total amount of time spent above an activity level as a function of that level over the range of sen-

sor readings. This coincides with occupation time measures in the theory of stochastic processes

(Samorodnitsky, 2016). Such measures can readily be used to obtain the time spent in activi-

ties of various intensities that is of interest in the physical activity literature (see, e.g. Matthews

et al., 2008; Staudenmayer et al., 2012). To avoid confusing occupation time data with the original

accelerometer readings as shown in Figure 1, we will refer to the latter as ‘raw activity curves’ or

‘raw activity data’.

Occupation time curves constructed from the raw activity data will be viewed as

non-increasing piecewise-constant functions with discontinuities on a (fixed) common grid hav-

ing the resolution of the measurement unit of the device. These features will be exploited for

more efficient inference than what can be provided by existing functional data methods. In

particular, in the absence of substantial measurement errors, it is not necessary to smooth

these curves before the proposed statistical analysis (see Section 2.1 for more details). This

‘non-smoothing’ approach is commonly implemented when the observed curves are available

on a common grid of points (Górecki & Smaga, 2018; Zhang, Cheng, et al., 2019). It can

allow discontinuities in the functional moments to be captured accurately; see Figure 2 for

a simulated data example in which the band based on non-smoothing is accurate whereas

the one based on smoothing is misleading in the neighbourhood of the discontinuity. On the

other hand, an attractive feature of the occupation time curves is that they are automatically

aligned on the grid of activity levels, as opposed to the raw activity curves being indexed by

the follow-up time. The latter case needs curve alignment∕registration methods (Wrobel et al.,

2019) to deal with the difference between the chronological follow-up time and the internal time

on which major features are aligned across the curves; see Figure 1 for an example of this dif-

ference, where the subject in the top panel has peak activity later in the day than the subject

below.

F IGURE 2 95% simultaneous confidence bands based on smoothing (dotted black) and non-smoothing

(solid black) for a functional mean (solid dark grey) with one discontinuity at 0.25.
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1950 CHANG and McKEAGUE

To justify our non-smoothing approach,we provide a novel theoretical framework that accom-

modates discretization of the observed trajectories without the need for smoothing. Viewing the

discretized data as step functions obviates the need for further regularization. Moreover, the

conditions we need are weaker than existing conditions imposed when using smoothing to esti-

mate functional means under a fixed dense design (Cao et al., 2012; Degras, 2011). This allows

us to deal with a wider range of functional data (beyond occupation time), such as curves with

non-smooth latent mean and covariance functions (see Section 3.1 for an illustration). Cai and

Yuan (2011) studied discretely observed functional data using spline interpolation (rather than

piecewise-constant interpolation) to reconstruct the data between fixed common design points,

and showed that the minimax convergence rate (for the mean) does not improve from further

smoothing. Other non-smoothing methods for dense functional data include linear interpolation

for two-sample tests (Yuan et al., 2020) and direct discretization for ANOVA tests (Zhang, Cheng,

et al., 2019). However, these methods require the assumption of smooth covariance functions,

which is not needed in our approach.

Under this discretization framework, we develop an empirical likelihood (EL) approach to

nonparametric inference for functional means. We choose to utilize EL due to its proven opti-

mality properties (see Remark 1 after Theorem 2). Moreover, EL confidence bands respect range

and monotonicity constraints (see Section 2.3). Thus EL is well suited to the task of analysing

occupation time curves, which are bounded and non-increasing, as mentioned previously. Specif-

ically, we introduce an EL-based simultaneous confidence band for the functional mean, and

an EL-based functional ANOVA test. Most of the literature on functional data analysis that is

applicable in our fixed dense design setting focuses on less-than-optimal Wald-type procedures

that are not range-respecting nor monotonicity-preserving, for example, confidence bands for the

mean based on local linear smoothing (Degras, 2011, 2017), polynomial splines (Cao et al., 2012)

and geometry (Choi & Reimherr, 2018), two-sample problems (see, e.g. Fan & Lin, 1998; Yuan

et al., 2020; Zhang, 2013, and references therein) and Wald-type ANOVA tests (see, e.g. Cuevas

et al., 2004; Górecki & Smaga, 2015, 2018; Zhang, Cheng, et al., 2019, and references therein).

The use of EL in functional data analysis is a fairly recent development. Sang et al. (2019) con-

structedEL-based confidence intervals for dynamical correlation, andWang et al. (2018) proposed

EL-based tests in a concurrent linear model for functional data. However, both of these papers

used local linear smoothing and assumed continuity of at least the second derivatives of the tar-

get functions. In contrast, we do not require smoothing, andwe allow discontinuities in the target

functions.

Our approach is developed for functional data in the space of functions of bounded variation

(equipped with sup-norm), in contrast to L2[0, 1] or C[0, 1] used in most functional data analy-

sis literature (Cuevas, 2014). This is general enough to handle occupation time curves that are

bounded andmonotonic, but not necessarily continuous, and is well matched with our sup-norm

formulation used for the EL-based confidence band and ANOVA test. The need to choose the

function space (and metric) in a way that is compatible with the key sample-path properties of

the functional data has been emphasized in a recent paper by Dette et al. (2020), who promote the

use ofC[0, 1] equippedwith the sup-norm for analysing continuous functional data instead of the

L2[0, 1] framework. Note that the Lipschitz continuity and moment assumptions made in Dette

et al. (2020) are stronger than our assumptions (see Section 2.2). An example of non-monotonic

and discontinuous functional data of bounded variation is the extent covered by Arctic sea ice

as a function of time (Witze, 2019), although not pursued in the sequel. Sea ice extent is calcu-

lated in terms of the number of ice-covered pixels in a satellite image (NASA, 2016), pixels being

‘ice-covered’ if the percentage of sea ice is no less than some threshold (commonly set at 15%).
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Sea ice extent changes when there is a crossing of the threshold in any pixel, and thus it is a step

function over time. Furthermore, this function is of bounded variation because sea ice reacts

slowly to changes in temperature over short time scales.

The paper is organized as follows. In Section 2.1, we first present our application and

show how to construct occupation time curves from raw activity data. Certain features of these

curves motivate the general theory: the empirical estimator of the functional mean is given in

Section 2.2, the EL-based confidence band in Section 2.3, andEL-basedANOVA test in Section 2.4.

Section 3 presents simulation results showing that the proposed procedures outperform compet-

ing Wald-type procedures. In Section 4 we analyse the NHANES data. A discussion is given in

Section 5. Proofs are presented in the Supplement. R code for implementing all the methods and

for reproducing the results in Sections 3 and 4 can be obtained from https://github.com/news11/

paper_fdEL.

2 INFERENCE FOR FUNCTIONAL DATA OF BOUNDED
VARIATION

We introduce the application to occupation time data in Section 2.1. In the subsequent sections

we develop an inferential framework that can be applied to general functional data of bounded

variation.

2.1 Occupation time

Occupation time is defined as the amount of time a stochastic process spends in a given set (e.g.

above some level a). Let X = {X(t), t ∈ [0, 𝜏]} be a measurable stochastic process representing the

fully observed trajectory of a raw activity curve (on a given subject). The (occupation) time that X

spends above the level a is given by L(a)= Leb({t ∈ [0, 𝜏]:X(t)> a}), where Leb denotes Lebesgue

measure on the real line. Here the index a varies over the range of activity levels of interest. As a

function of a, L(a) is bounded between 0 and 𝜏, monotonically decreasing, and right-continuous,

by definition. A flat in X(t) can result in a left-discontinuity in L(a), and hence its moments;

in our data example, the number of flats per individual can be as high as 148 min∕week. The

boundedness and monotonicity can be seen from Figure 3, which illustrates the occupation time

curves of the two subjects from Figure 1 with 𝜏 = 168 h (10,080 min). The curves are smooth

apart from hidden jump discontinuities, instead of having noisy fluctuations commonly seen in

functional data.

Regarding observability, note thatL(a) ismerely a transformation of the original dataX(t) via a

knownmap, and thus ifX(t) is directly observable, so is L(a). Instead of fully observed trajectories,

both L(a) andX(t) will be observed on grids, with the grid of L(a) having the resolution of themea-

surement unit of the wearable device. Such domain discretization will be incorporated into our

theory, to be described in Section 2.2. Note that the discretization of the domain of X(t) becomes

a discretization in the range of L(a), which is typically ignored in functional data analysis.

In the rest of Section 2, we introduce inference methods in terms of a more general stochas-

tic process T(a) that can be applied to these occupation time curves. Our framework does not

smooth the observed discretized processes, due to the following reasons. First, smoothing is fre-

quently implemented as away to pool information fromneighbourhood indices on the gridwhere

the functional data are observed (Wang et al., 2016), but we find a way to pool information via
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F IGURE 3 Occupation time (in hours) during 1 week for the first (blue) and second (red) subjects in

Figure 1. Each occupation time curve is discretized using the function fn defined in (1), although the jumps in the

step function are not apparent due to line thickness and high density of the grid (> 8000 points). [Colour figure

can be viewed at wileyonlinelibrary.com]

a step function approach instead of smoothing. The benefit of this step function approach is a

more flexible framework and weaker assumptions compared to existing approaches in the liter-

ature, in particular in allowing discontinuities in the functional means and covariances under

a dense design. Second, smoothing frequently serves the purpose of dampening fluctuations of

the observations across the indices, in particular measurement errors. However, as the observed

occupation time curves are smooth already (apart from barely visible jump discontinuities; see

Figure 3) and an explicit modelling of measurement error is not necessarily implemented in the

literature of wearable sensors (see, e.g. Huang et al., 2019; Song et al., 2019), we do not find

smoothing necessary in our application to occupation time. Not implementing smoothing does

not mean measurement errors cannot be taken into account in our framework, but just that they

are incorporated implicitly into the covariance function of the limiting distributions of the empir-

ical mean function and EL statistics. For more details about the effect of measurement error, see

Supplement Section 13.3.

2.2 Empirical mean for discretized observations

In this section we investigate the properties of a discretized version of the empirical mean func-

tion. We view the data through the lens of a discretization mechanism defined as follows. Let

{T1(a), … ,Tn(a), a ∈ [𝛼1, 𝛼2]} be n i.i.d. realizations of ameasurable stochastic process T(a) hav-

ing right-continuous sample paths of bounded variation. Let 𝜇(a) ≡ ET(a) be the mean of T(a)

and 𝜇̂(a) the corresponding sample mean. Instead of fully observed trajectories (of the stochastic

process T = {T(a)}), we can only observe T(a) onGn, a (not necessarily equispaced) grid of points

in [𝛼1, 𝛼2] (including the endpoints). Denote this discretized observation as fn(T), and fn(𝜇) and

fn(𝜇̂) the corresponding mean and sample mean, respectively. Here fn(g) is the discretization of a

function g ∶ [𝛼1, 𝛼2] → R defined by
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CHANG and McKEAGUE 1953

fn(g)(a) =

{
g(a), a ∈ Gn,

g(ba), a ∈ [𝛼1, 𝛼2]∖Gn,
(1)

and ba is the closest point on the grid to the right of a. This discretization fn(g) transforms the

complete trajectory of g into a step function. The mesh of Gn (the maximal distance between

adjacent grid points) is assumed to converge to zero as n→∞. Without requiring a rate of con-

vergence for the mesh, we establish a parametric
√
n-convergence rate of fn(𝜇̂) when centred on

fn(𝜇). To approximate the mean function outside Gn, we need an infill condition in which the

mesh of Gn shrinks more quickly than a certain negative power of n, as is typically assumed in

dense functional data analysis settings (Wang et al., 2018).

Furthermore, we need a condition involving an extended version of the right-hand Dini

derivatives (see, e.g. Hagood & Thomson, 2006):

D+(𝜇, 𝛽)(a) = lim sup
h→0+

𝜇(a + h) − 𝜇(a)

h𝛽
, and D+(𝜇, 𝛽)(a) = lim inf

h→0+

𝜇(a + h) − 𝜇(a)

h𝛽

for 𝛽 > 0. Here we term them right-hand 𝛽-Dini derivatives, although these numbers have been

studied under different names in themathematics literature, such as right upper∕lower Lipschitz

numbers (Besicovitch, 1929) and 𝛽-right local derivatives (BenAdda&Cresson, 2001). The special

case of 𝛽 = 1 leads to the usual right-hand Dini derivatives. These 𝛽-Dini derivatives always exist,

if we allow values in the extended real line. They are reminiscent of 𝛽-Hölder continuity, but

our requirement of boundedness of the right-hand 𝛽-Dini derivatives in the following theorem is

much weaker than 𝛽-Hölder continuity. This is because we just focus on pointwise convergence

(unlike 𝛽-Hölder continuity being a global feature) and right-hand limits.

The following theorem describes the asymptotic behaviour of the estimated mean function

based on the aforementioned discretization. Here and in the sequel, the convergence in distribu-

tion (denoted by
d
−→) of a sequence of random elements in a metric spaceDmeans convergence of

the expectation of every bounded, continuous real-valued function applied to each element of the

sequence (see, e.g. van der Vaart, 2000, p. 258). In the following theoremwe useD = 𝓁
∞([𝛼1, 𝛼2]),

the space of all bounded real-valued functions on [𝛼1, 𝛼2], endowed with the supremum norm.

The proof of the theorem is in Supplement Section 1.

Theorem 1. Suppose the sample paths of T(a) are right-continuous, of bounded variation, ET2(a)

is bounded over a ∈ [𝛼1, 𝛼2], and 𝜇(⋅) has at most finitely many jump discontinuities. If the

mesh of Gn is o(1), then for all sufficiently small 𝛿 > 0, there exists I𝛿 ⊂ [𝛼1, 𝛼2]having Lebesgue

measure 𝛿 such that

√
n{fn(𝜇̂) − fn(𝜇)}(a)

d
−−−−−→U(a)

in 𝓁
∞([𝛼1, 𝛼2]∖I𝛿) as n → ∞, where U(a) is a zero-mean Gaussian process with Cov{U(a),

U(b)} = Cov{T(a), T(b)}. Suppose, in addition, that D+(𝜇, 𝛽)(a) and D+(𝜇, 𝛽)(a) are bounded

over a ∈ [𝛼1, 𝛼2] for some 𝛽 > 0. If the mesh of Gn is o(n−1∕(2𝛽)), then

√
n{fn(𝜇̂) − 𝜇}(a)

d
−−−−−→ U(a)

in 𝓁
∞([𝛼1, 𝛼2]∖I𝛿) as n→∞.
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Remark 1. Using the first part of Theorem 1, or more generally Theorem S.1 in Supplement

Section 11, we can construct a confidence band for 𝜇(a) over a ∈ Gn, irrespective of how

quickly its mesh shrinks as n→∞. Thus, there is no distinction between moderately dense

and dense functional data here (Wang et al., 2018). Such a distinction only matters in the

second part of the theorem,which can be used to construct a simultaneous confidence band

for 𝜇(⋅) for essentially all a ∈ [𝛼1, 𝛼2] (see Supplement Section 2.1), provided the mesh ofGn

tends to zero faster than n−1∕(2𝛽).

Remark 2. Since both |D+(𝜇, 𝛽)(a)| and |D+(𝜇, 𝛽)(a)| are non-decreasing in 𝛽, if they are bounded
over a ∈ [𝛼1, 𝛼2], for some 𝛽 = 𝛽1 > 0, then the boundedness also holds for all 0 < 𝛽 ≤
𝛽1. See Supplement Section 2.2 for some example functions in which such a boundedness

holds.

Remark 3. The first part of the theorem applies to occupation time because the bounded variation

assumption of the result is satisfied due to themonotonicity of L(a). Themoment condition

is satisfied because L(a) is bounded. Furthermore, the right-continuity holds by the strict

inequality in the definition of L(a). The second part of the theorem applies to occupation

time for 𝛽 = 1 because the instantaneous change inEL(a) from the right is bounded between

0 and 𝜏, by definition of L(a).

Remark 4. The condition that ET2(a) is bounded over a ∈ [𝛼1, 𝛼2] can be reduced to assuming

EV2(𝛼2) and ET2(𝛼1) are finite, where V(a) is the total variation of T(⋅) over [𝛼1, a]. This

is because |T(a)| ≤ |T(𝛼1)| + |T(a) − T(𝛼1)| ≤ |T(𝛼1)| + V(a), by the assumption that each

sample path a → T(a) has bounded variation.

Remark 5. Here we compare our framework with the approach of using smoothing to accom-

modate fixed dense trajectory discretization in inference for the functional mean (Cao

et al., 2012; Degras, 2011). Besides having similar moment assumptions on the data, the

smoothness conditions we use, namely right-continuity, bounded variation, finite number

of discontinuities, and boundedness of the right-hand 𝛽-Dini derivatives, are weaker than

the assumptions on the data made in the papers mentioned above: Degras (2011) utilizes

bounded second-order derivative and 𝛽1-Hölder continuity for some 𝛽1 > 0, whereas Cao

et al. (2012) uses Lipschitz continuity of the qth order derivatives for some q ∈ {0} ∪ N and

𝛽2-Hölder continuity for some 𝛽2 ∈ (0, 1]. Having fewer assumptions means we can deal

with a wider range of data (beyond occupation time), such as processes with non-smooth

latentmoments (see Section 3.1 for an illustration). Furthermore,we donot require smooth-

ing as Degras (2011) and Cao et al. (2012) do: the resulting rate at which the mesh of Gn

tends to zero is characterized by mesh × log(mesh−1) = o(n−1∕4) and mesh = o(n−1∕{2(q+1)})

in Degras (2011) and Cao et al. (2012), respectively. To see that our rate is competitive, our

𝛽 = 1 case is a weaker version of the least stringent q = 0 assumption in Cao et al. (2012),

but both lead to mesh = o(n−1∕2). Last but not least, our framework provides insights on

the price for constructing the confidence band at points outside Gn, namely the additional

need to control the rate at which the mesh of Gn tends to zero.

The distribution of the limiting process U(a) needs to be estimated because it is not

distribution-free. This can be done using the nonparametric bootstrap fn(U∗
n)(a) based on sam-

pling n curves with replacement from the data {fn(T1)(a), … , fn(Tn)(a), a ∈ [𝛼1, 𝛼2]}, where

U∗
n(a) =

√
n{𝜇̂∗(a) − 𝜇̂(a)}, 𝜇̂∗(a) =

∑n
i=1WniTi(a)∕n, andWni is the number of times that fn(Ti)(a)

is redrawn from the data. We examine an alternative method of calibration based on simulating
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an estimated U(a) in the Supplement Section 13.2, and we find similar results in one particular

example.

Bootstrap consistency of fn(U∗
n)(a) is established as follows (see Supplement Section 3.1 for the

proof). Interestingly, in contrast to the different conditions needed in the two parts of Theorem 1,

this bootstrap consistency result holds irrespective of how quickly the mesh shrinks.

Corollary 1. Under the conditions of the first part of Theorem 1, for all sufficiently small 𝛿 > 0,

there exists I𝛿 ⊂ [𝛼1, 𝛼2] having Lebesgue measure 𝛿 such that fn(U
∗
n) converges weakly to

U(a) in 𝓁∞([𝛼1, 𝛼2]∖I𝛿) as n→∞, given the data sequence {fj(Ti), i = 1, … , j, j = 1, 2, …}, in

probability.

From this result, according to Theorem1 and Supplement Section 2.1, we can construct an asymp-

totic 100(1 − 𝛼)% simultaneous confidence band for 𝜇(⋅) as fn(𝜇̂)(a) ± n−1∕2c∗
NS,𝛼

for essentially all

a ∈ [𝛼1, 𝛼2], where c∗NS,𝛼 denotes the upper 𝛼-quantile of the supa∈[𝛼1,𝛼2]|fn(U
∗
n(a))| values obtained

from B bootstrap samples; we use B = 1000 for implementation (see Supplement Section 3.2 for

details). We refer to this as the Wald-type NS band, where NS stands for ‘non-standardized’, in

contrast to existing bands in the literature (Cao et al., 2012; Choi & Reimherr, 2018; Degras, 2011)

that use standardized estimators in forming the simultaneous confidence bands. Unfortunately,

this band did not perform well in our simulation study (see Section 3.1). Besides the fact that it

does not have the optimality EL enjoys, this band does not fully exploit the boundedness feature

of the occupation time. An alternative approach is developed in Section 2.3.

2.3 Empirical likelihood confidence band

In this section, we develop the proposed simultaneous confidence band for the mean 𝜇(⋅). Our

approach is based on inverting a localized form of the EL statistic at each value of a. For simplicity

of exposition, we define the observed EL ratio by discretizing the fully observed trajectories of the

EL ratio process in the following, instead of defining the discretized version of each component

that determines the EL ratio. But note that those components are available to us only in their

discretized forms. Such exposition will be used in the next section, too.

For a given a ∈ [𝛼1, 𝛼2], the local EL ratio for 𝜇(a) is fn((𝜇̃))(a) at a given value 𝜇̃(a), where

(𝜇̃)(a) =
sup {L(Fa) ∶ m(a) = 𝜇̃(a),Fa ∈ Γa}

sup{L(Fa) ∶ Fa ∈ Γa}
, (2)

Fa(⋅) is a candidate for the cumulative distribution function of T(a),m(a) is the mean of Fa(⋅), Γa
is the set of distributions supported by the data {Ti(a), i = 1, … ,n}, L(Fa) =

∏n
i=1pi(a) is the non-

parametric likelihood, pi(a) = Fa{Ti(a)} − Fa{Ti(a)−}, and we follow the convention sup∅ = 0.

By the same reasoning as in EL for a univariate mean (Owen, 2001, p. 70), any feasible solution

for 𝜇̃(a) in computing fn((𝜇̃))(a) lies in the interval [mini=1,… ,n fn(Ti)(a),maxi=1,… ,n fn(Ti)(a)].

This is what we mean by EL respecting the range restrictions inherent in the data, as mentioned

in Section 1.

We now state our first key result, giving the asymptotic distribution of the EL statistic

−2 log fn((𝜇))(a) viewed as a process indexed by a.

Theorem 2. Suppose the conditions of the first part of Theorem 1 hold and in addition,

infa∈[𝛼1,𝛼2] 𝜎
2(a) > 0 and 𝜎2(⋅) has at most finitely many jump discontinuities, where 𝜎2(a) =

Var{T(a)}. Then for all sufficiently small 𝛿 > 0, there exists I𝛿 ⊂ [𝛼1, 𝛼2] having Lebesgue
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1956 CHANG and McKEAGUE

measure 𝛿 such that −2 log fn((𝜇))(a)
d

−−−−−→ U2(a)∕𝜎2(a) in 𝓁
∞([𝛼1, 𝛼2]∖I𝛿) as n → ∞,

where the process U(a) is defined in Section 2.2.

Remark 1. The optimality of EL is obtained in terms of (i) the large deviation principle (Kita-

mura, 2007; Kitamura et al., 2012), and (ii) a second-order local maximinity property which

also characterizes an ordinary parametric likelihood ratio (Bravo, 2003; Mukerjee, 1994).

Here we explain the intuition as to why EL performs optimally in the large deviation sense.

The reason is due to the fact that EL minimizes the Kullback–Leibler divergence between

the empirical measure and the probability measure satisfying the (pointwise) null hypoth-

esis. Since the large deviation principle for empirical measures (i.e. Sanov’s Theorem)

shows the probability that the empirical measure falls into any given set of probability

measures is governed by the minimum value of the Kullback–Leibler divergence num-

ber, it can be expected that using the minimum (empirical) Kullback–Leibler divergence

as a statistical criterion leads to an optimal procedure, in contrast to procedures based on

minimizing any other objective function that contrasts the aforementioned two probability

measures.

Remark 2. The proof (given in Supplement Section 4) is based on a uniform approximation

of the EL statistic by fn(Ψ̂)2(a), where Ψ̂(a) =
√
n{𝜇̂(a) − 𝜇(a)}∕𝜎(a). Note, however, that

the asymptotic equivalence of fn(Ψ̂)2(a) to the EL statistic does not imply optimality of

fn(Ψ̂)2(a), because it is known that Pitman efficiency based on first-order linear approxi-

mations is not informative enough in distinguishing among the performance of procedures

satisfying the same moment condition. Thus, higher-order asymptotics and large devi-

ation theory have been used to show that EL enjoys optimality while other procedures

(even the first-order asymptotically equivalent ones) do not, as mentioned in the previous

remark.

Remark 3. The condition infa∈[𝛼1,𝛼2]𝜎
2(a) > 0 is similar to the condition of a positive definite infor-

mation or covariancematrix in theWilks type theorem (Owen, 2001). To deal with data that

violate this condition, we adapt a two-step approach that has been proposed in Nair (1984),

as discussed in Supplement Section 5.1.

For calibration, we use a similar nonparametric bootstrap method as in Section 2.2, based on

sampling n curves with replacement from the data {fn(T1)(a), … , fn(Tn)(a), a ∈ [𝛼1, 𝛼2]}. Since

Mn = supa∈[𝛼1,𝛼2]{−2 log fn((𝜇))(a)} is asymptotically equivalent to supa∈[𝛼1,𝛼2] fn(Ψ̂)
2(a) by the

above Remark 2, it suffices to bootstrap fn(Ψ̂)(a) by fn(Ψ̂
∗
)(a), where Ψ̂

∗
(a) = U∗

n(a)∕Ŝ(a), U
∗
n(a)

is defined in Section 2.2 and Ŝ(a) =
[∑n

i=1{Ti(a) − 𝜇̂(a)}2∕n
]1∕2

is the sample version of 𝜎(a). The

resulting bootstrap for Mn is M∗
n = supa∈[𝛼1,𝛼2] fn(Ψ̂

∗
)2(a). The relevant bootstrap consistency is

established as follows (see Supplement Section 6.1 for the proof).

Corollary 2. Under the conditions of Theorem 2, for all sufficiently small 𝛿 > 0, there exists

I𝛿 ⊂ [𝛼1, 𝛼2] having Lebesguemeasure 𝛿 such that fn(Ψ̂
∗
)2(a) converges weakly to U2(a)∕𝜎2(a)

in 𝓁
∞([𝛼1, 𝛼2]∖I𝛿) as n → ∞, given the data sequence {fj(Ti), i = 1, … , j, j = 1, 2, …}, in

probability.

Under the conditions of the second part of Theorem 1, Corollary 2 provides an asymptotic

100(1 − 𝛼)% simultaneous confidence band for 𝜇(⋅) for essentially all a ∈ [𝛼1, 𝛼2]:

{(a, 𝜇̃(a)) ∶ −2 log fn((𝜇̃))(a) ≤ c∗EL,𝛼 , 𝜇̃ ∈ n},
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where c∗
EL,𝛼

denotes the upper 𝛼-quantile of the M∗
n values obtained from B = 1000 (as in

Section 2.2) bootstrap samples (see Supplement Section 6.2 for details), and n is the class

of functions of the form in (1) (see Supplement Section 7.1 for details). We refer to this as

the EL band. It can be shown that if the observed processes are monotone in a, as is the

case for L(a), then the lower and upper boundaries of the EL band will respect this mono-

tonicity. See Supplement Section 7.2 for a proof and an illustration of this monotonicity

in Figure S.1.

The NS band we introduced in Section 2.2 also respects such monotonicity, by the fact

that fn(𝜇̂)(a) is monotone in a and n−1∕2c∗
NS,𝛼

is constant in a. However, as mentioned in

Section 2.2, it is not an optimal band and does not respect the range restrictions imposed by

the data.

By the first-order asymptotic equivalence of fn(Ψ̂)2(a) to −2 log fn((𝜇))(a) in Remark 2 after

Theorem 2, another asymptotic 100(1 − 𝛼)% simultaneous confidence band for 𝜇(⋅) is fn(𝜇̂)(a) ±

n−1∕2c∗
EP,𝛼

fn(Ŝ)(a) for essentially all a ∈ [𝛼1, 𝛼2], where c∗EP,𝛼 denotes the upper 𝛼-quantile of the

supa∈[𝛼1,𝛼2]|fn(Ψ̂
∗
)(a)| values obtained from B = 1000 (as in Section 2.2) bootstrap samples (see

Supplement Section 6.2 for details). This is another Wald-type band, but with equal precision

across different values of a, in the sense that its pointwise width is proportional to its pointwise

estimated standard deviation (Nair, 1984). We refer to this as the EP band. This band does not

respect monotonicity of the observed processes in the sense described in the previous two para-

graphs, nor the range restrictions imposed by the data. Furthermore, it is not optimal as explained

in Remark 2 after Theorem 2.

2.4 Empirical likelihood-based ANOVA test

Nowwe consider the setting of k independent samples, where we use the same notation as before

exceptwith a further subscript j indicating the jth sample, j= 1, … , k.Wewant to testH0 ∶ 𝜇1(⋅) =

… = 𝜇k(⋅) ≡ 𝜇0(⋅) versus the omnibus alternative H1. Assume the proportion of data in the jth

sample nj∕n → 𝛾j > 0 for some fixed 𝛾j as n→∞, where n is the total sample size. The local EL

ratio at a given activity level a is defined by fn(k)(a), where

k(a) =
sup

{∏k
j=1L(Faj) ∶ m1(a) = … = mk(a),Faj ∈ Γaj, j = 1, … , k

}

sup
{∏k

j=1L(Faj) ∶ Faj ∈ Γaj, j = 1, … , k
} , (3)

where L(Faj) is the nonparametric likelihood for the jth sample at level a.

To test H0 versus H1, we propose the following maximally selected EL statistic:

Kn = sup
a∈[𝛼1,𝛼2]

{
−2 log fn(k)(a)

}
.

This maximal-deviation-type statistic is sensitive to any local difference among the functional

means, and provides a consistent test against the omnibus hypothesisH1. An alternative approach

would be to use the integral-type statistic ∫ 𝛼2
𝛼1
{−2 log fn()(a)} da, which can detect differences

dispersed over the range of indices. In our simulation studies, however, we found strong evidence

that Kn consistently outperforms the above integral-type statistic, so in the sequel we restrict

attention to Kn.
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1958 CHANG and McKEAGUE

The following result gives the approximation of Kn (see Supplement Section 8 for the proof),

expressed in terms of the Gaussian processΨj(a) = Uj(a)∕𝜎j(a) arising in the asymptotic distribu-

tion of Ψ̂j(a).

Theorem 3. Suppose the conditions of Theorem 2 hold for each group indexed by j = 1, … , k.

Then, under H0, as n→∞,

Kn = sup
a∈[𝛼1,𝛼2]

fn(ŜSB)(a) + op(1) and ŜSB(a)
d

−−−−−→ SSB (a)

in 𝓁
∞([𝛼1, 𝛼2]), where

ŜSB(a) =

k∑

j=1

wj(a)

{
Ψ̂j(a)
√
wj(a)

− Ψ̌(a)

}2

, SSB (a) =

k∑

j=1

wj(a)

{
Ψj(a)
√
wj(a)

− Ψ(a)

}2

,

Ψ̌(a) =
∑k

j=1

√
wj(a)Ψ̂j(a), Ψ(a) =

∑k
j=1

√
wj(a)Ψj(a), and the varying weights wj(a) ∝

𝛾j∕𝜎
2
j
(a) are normalized to sum to 1 across the groups.

Remark 1. Note that SSB(a) is a weighted sum of squares between blocks, with each block con-

trasting a weighted version of Ψj(a) with the overall weighted average, in parallel with

standard ANOVA. A similar structure emerges in k-sample EL-based tests for differences

in survival functions (Chang & McKeague, 2019, section 3.4).

Remark 2. As in Remark 3 following Theorem 2, the procedure needs to be modified to deal with

data that violate the nonzero variance condition. To this end, we adapt Uno et al. (2015)’s

selection approach, as described in Supplement Section 5.2.

Remark 3. The approximation of Kn in Theorem 3 leads to a Wald-type test of H0 versus H1

as Kn,Wald = supa∈[𝛼1,𝛼2] fn(ŜSB)(a). Note, however, that the first-order asymptotic equiv-

alence of Kn,Wald to Kn does not imply optimality of Kn,Wald, as we pointed out in

Remark 2 after Theorem 2. This will be seen in our simulation study in Section 3.2

as well.

For calibration, again we use a similar nonparametric bootstrap method as in Sections 2.2

and 2.3, based on sampling nj curves with replacement from the jth sample for j = 1, … , k.

Since Kn is asymptotically equivalent to supa∈[𝛼1,𝛼2] fn(ŜSB)(a), it suffices to bootstrap fn(ŜSB)(a)

by fn(ŜSB
∗
)(a), where

ŜSB
∗
(a) =

k∑

j=1

ŵj(a)

{
Ψ̂

∗
j (a)

√
ŵj(a)

− Ψ̌
∗
(a)

}2

,

ŵj(a) ∝ 𝛾̂ j∕Ŝ
2
j (a) are normalized to sum to 1 across the groups, 𝛾̂ j = nj∕n, Ψ̂

∗
j (a) is defined in

Section 2.3 for j = 1 and Ψ̌
∗
(a) =

∑k
j=1

√
ŵj(a)Ψ̂

∗
j (a). The resulting bootstrap for Kn is K∗

n =

supa∈[𝛼1,𝛼2] fn(ŜSB
∗
)(a). To calibrate the test, we compare the upper 𝛼-quantile of the K∗

n val-

ues obtained from B = 1000 bootstrap samples (as in Sections 2.2 and 2.3) with our test

statistic Kn (see Supplement Section 10 for details). The Wald-type test Kn,Wald can be cal-

ibrated the same way due to its asymptotic equivalence to Kn (see Supplement Section 10

for details).
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3 SIMULATION STUDY

In this section, we compare the performance of the proposed simultaneous confidence band with

five other types of Wald-type simultaneous confidence bands for the mean of functional data:

the NS band in Section 2.2, the EP band in Section 2.3, the band by Degras (2011, 2017) (MFD)

with cross-validated bandwidth selection implemented in the R package SCBmeanfd (Degras,

2016), the band by Cao et al. (2012) (Cao1) with the initially smoothed covariance estimates pro-

jected onto the space of non-negative definite matrices (Hall et al., 2008), and the hyper-ellipsoid

Scheffé-style band (Geo) of Choi and Reimherr (2018) implemented in the R package fregion

(Choi, 2017). TheMFDband is based on local linear smoothing andnormal quantiles,which turns

out to have poor performance in our simulation settings, so we provide an alternative band using

bootstrap calibration and our step-function approach (MFDbs). The Cao1 band is based on spline

smoothing and the recommended number of interior knots in the original paper; we provide an

alternative (Cao2) band by using the number of grid points on which the functional trajectory is

observed as the number of knots. Since the Geo band is based on any readily available functional

mean estimators the user would like, we use our discretized mean estimates and incorporate our

step-function approach into constructing the band. Note that besides MFDbs, the first two types

of bands are also based on bootstrap, whereas the Cao1, Cao2 and Geo bands do not have readily

available bootstrapped versions.

We also compare the proposed EL-based ANOVA test (in terms of accuracy and power) with

four Wald-type functional ANOVA tests: the Wald-type test in the previous subsection, the Fmax

test by Zhang, Cheng, et al. (2019) based on amaximally selectedF-statistic, theGPF test by Zhang

and Liang (2014) based on an integrated F-statistic and a test based on random projections with

a Wald-type permutation statistic (Cuesta-Albertos & Febrero-Bande, 2010; Pauly et al., 2015)

(TRP). The latter three tests are recommended in the literature based on extensive simulation

studies (Górecki & Smaga, 2015, 2018; Zhang, Cheng, et al., 2019), and they are implemented in

the R package fdANOVA (Górecki & Smaga, 2018). In implementing the confidence bands and

tests,weuse the default settings given in the aforementioned three packages, except the number of

bootstrap or permutation replications is taken as 1000 in all procedures tomake themcomparable.

3.1 Performance of simultaneous confidence bands

We consider two simulation examples in this subsection: general functional data (not occupa-

tion time) with non-smooth means and covariances, and occupation time curves. For the first,

we generate T(a) = max(J(a), 0), a ∈ [0, 1], where J(a) is a zero-mean Gaussian process having

a non-smooth Cov{J(a), J(b)}= (0.6 + 𝜈T)I{a < 0.25, a = b} + 0.6I{a ≥ 0.25, a = b} + 1.5I{a, b <

0.25, a ≠ b} + 0.5I{a or b ≥ 0.25, a ≠ b} for some 𝜈T > 1 (See Supplement Section 13.1 for further

discussion). We expect the range of the EL band to be non-negative but not necessarily for the

other bands.We use regular gridsGn of 26 and 51 points for n= 100 and 200, respectively. The cov-

erage is evaluated on a regular grid of 101 points. Since the marginal variance of T(a) is bounded

away from 0, there is no need to modify any of the bands in the way described in Supplement

Section 5.1.

For the second example, we generated occupation time data L(a) from

X(t) =
⌊
{1010𝜋(t)∕𝜀}1∕4

⌋
I{𝜋(t) > 𝜉} for t ∈ Hn, a regular grid on [0, 1), where 𝜋(⋅) is a random

permutation of Hn, 𝜀 ∼ Log-normal(0, 𝜈2
L
) + 10−6, 𝜈L > 0 is the log-normal scale parameter,

𝜉 ∼ Uniform(0, 1), and 𝜀,𝜋(⋅), 𝜉 are independent. Hn is taken to have 1000 and 2000 points for
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1960 CHANG and McKEAGUE

n = 100 and 200, respectively. Here X(t) takes only non-negative integer values, reflecting the

same property found in activity count data from the wearable (ActiGraph) devices. The true

mean occupation time E{L(a)} is readily calculated, allowing us to assess the coverage of con-

fidence bands; see Supplement Section 12 for the calculation, and Figure S.2 for a simulated

sample path of X along with E{L(a)} for 𝜈L = 2. The grid Gn is taken to be every fourth and

second non-negative integer for n= 100 and 200, respectively. The coverage is evaluated at each

non-negative integer. All the bands except for NS utilize the two-step approach described in Sup-

plement Section 5.1 to handle zero-variance situations. Comparing the mean functions in the

two examples, there is a larger jump (0.9898) when 𝜈T = 10 compared to jumps of sizes 0.0019

and 0.0016 in the second example when 𝜈L = 1.5 and 2.

Empirical coverage rates, average widths, range-violation and monotonicity preservation of

the various bands are given in Table 1, where we define the width of a band as the average

width over the range of activity levels. The empirical coverage rates of our EL band and the

NS band are closer to the nominal 95% level compared with other bands, but NS is much

wider than the EL band (up to 2.5 times wider). Although first-order asymptotically equiva-

lent to the EL band, the EP band still has worse coverage, as explained in Remarks 1 and 2

after Theorem 2. Existing bands based on smoothing, namely MFD, Cao1 and Cao2 bands,

tend to have undercoverage due to the phenomenon illustrated in Figure 2, with severe under-

coverage in the first example. Existing bands not based on smoothing tend to either under-

cover or overcover: MFDbs undercovers in the first example and overcovers in the second,

whereas Geo has the opposite behaviour. Note that the range-respecting and monotonicity

properties of EL are reflected in the results. None of the other bands have these proper-

ties, although our results only reflect this for NS, MFD, MFDbs, Cao1 and Geo. We conclude

that the proposed EL confidence bands have the best performance in terms of the properties

mentioned above.

3.2 Performance of ANOVA tests

In this section, the empirical level and power of the proposed EL test is compared with the four

Wald-type functional ANOVA tests mentioned earlier. We restrict attention to k = 3 groups and

the application to occupation time. We study how the performance of the tests is affected by

unequal sample sizes and unequal variance functions (heteroscedasticity) among the groups.

For each group j, we generated the raw activity data Xj(t) =
⌊
300max(Ωj(t), 0)

⌋
, where Ωj(t)

is an Ornstein–Uhlenbeck process, and the floor function and the positive part are to reflect

non-negative integer values of activity count data from wearable (ActiGraph) devices. Here t

belongs to a regular grid on [0, 1) with 1000 points. The resulting functional data of interest are

Lj(a)Σj, whereΣj is an independent beta random variable to allow flexible control of Var
{
Lj(a)Σj

}

through different parameters from those that control E
{
Lj(a)Σj

}
(see Supplement Section 13.4

for details). The gridGn of Lj(a) is taken to be every second non-negative integer. Each group has a

distinct set of Ornstein–Uhlenbeck and beta parameters. These parameters are chosen to produce

identical functional means (scenario A, upper left panel of Figure 4), crossing functional means

(scenario B, upper middle panel of Figure 4) or ordered functional means (scenario C, upper

right panel of Figure 4). Here the underlying functional mean is obtained by averaging 50,000

replicates in each group (closed-form expressions are not available). For each scenario, the devi-

ations (of the group functional means) from the grand mean, along with the variance functions,

are plotted beneath their respective mean functions in Figure 4. In all scenarios, the third group
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TABLE 1 Simulation study for 95% simultaneous confidence bands: Empirical coverage (percentage),

average width (in parenthesis), range-violation rate (percentage, in square brackets) and average number of

confidence band boundaries that satisfy monotonicity (rounded to two decimal places, in curly brackets); 1000

Monte Carlo replications, 1000 bootstrap samples, jump parameter 𝜈T = 10, 15, log-normal scale parameter

𝜈L = 1.5, 2, n = 100, 200

Case 1 Case 2

𝝂T = 10 𝝂T = 15 𝝂L = 1.5 𝝂L = 2

Tests n = 100 n = 200 n = 100 n = 200 n = 100 n = 200 n = 100 n = 200

EL 94.5 94.8 94.2 94.9 93.9 94.4 94.3 94.8

(0.47) (0.35) (0.53) (0.40) (0.10) (0.08) (0.10) (0.09)

[0] [0] [0] [0] [0] [0] [0] [0]

{2} {2} {2} {2}

EP 88.7 91.1 91.5 91.2 91.7 93.7 92.2 93.8

(0.47) (0.35) (0.52) (0.39) (0.09) (0.08) (0.09) (0.08)

[0] [0] [0] [0] [0] [0] [0] [0]

{2} {2} {2} {2}

NS 95.1 96.1 95.0 96.5 93.9 95.2 93.6 95.1

(1.03) (0.78) (1.25) (0.95) (0.14) (0.10) (0.14) (0.10)

[100] [100] [100] [100] [100] [100] [100] [100]

{2} {2} {2} {2}

MFD 0 0 0 0 90.6 93.7 90.8 93.4

(0.40) (0.29) (0.45) (0.33) (0.09) (0.08) (0.09) (0.08)

[0] [0] [0] [0] [0.4] [0] [2.2] [0]

{0.19} {0.12} {1.24} {0.84}

MFDbs 89.4 91.2 91.3 91.6 98.6 99.3 99.0 99.5

(0.47) (0.35) (0.53) (0.39) (0.09) (0.08) (0.09) (0.08)

[0] [0] [0] [0] [0] [0] [0.1] [0]

{2} {2} {2} {2}

Cao1 0 0 0 0 89.1 91.1 88.4 91.9

(0.21) (0.15) (0.21) (0.15) (0.09) (0.08) (0.09) (0.08)

[17.6] [0] [51.6] [0] [0] [0] [0] [0]

{2} {2} {2} {2}

Cao2 0 0 0 0 89.7 91.3 89.0 92.0

(0.21) (0.15) (0.22) (0.15) (0.09) (0.08) (0.09) (0.08)

[0] [0] [0] [0] [0] [0] [0] [0]

{2} {2} {2} {2}

Geo 99.9 100 99.8 100 74.9 78.2 74.4 77.8

(0.82) (0.73) (0.94) (0.83) (0.16) (0.12) (0.16) (0.12)

[73.9] [12.2] [92.2] [41.4] [100] [100] [100] [100]

{0} {0} {0} {0}
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1962 CHANG and McKEAGUE

F IGURE 4 Simulation study for the functional ANOVA tests: the mean (top row), deviations (of the group

means) from the grand mean (denoted as 𝜇(a)) (middle row), and variance functions (bottom row) in the first

(solid), second (dashed), and third (dotted) groups. Scenario A (top left panel): identical means (i.e. under H0).

Scenario B (top middle panel): crossing pattern. Scenario C (top right panel): ordered pattern.

has the largest variance function, followed by the second and first groups. All the tests except for

TRP utilize the selection approach described in Supplement Section 5.2 to handle zero-variance

situations.

In classical ANOVA testing, it is well known (Horsnell, 1953) that size and power are adversely

affected by heteroscedasticity and lack-of-balance in the sample sizes. The above simulation

model can address the question of whether our proposed EL-based approach mitigates this

problem in the functional data setting.

The empirical rejection rates of the tests are given in Table 2, for sample size combinations

(n1,n2,n3) = (70, 100, 130), (130, 100, 70). In scenario A (underH0), the empirical levels of the EL

test are close to the nominal 5% level. TRPbecomes conservativewhen (n1,n2,n3) = (70, 100, 130),

whereas the other tests are highly anti-conservative when (n1,n2,n3) = (130, 100, 70), reflecting

the adverse performance pointed out by Horsnell (1953). In scenarios B and C (underH1), the EL

test has improved power in all cases, with an increase in power over existing tests ranging from
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TABLE 2 Empirical rejection rates (percentages) for functional ANOVA tests under various scenarios

(depicted in Figure 4) and sample sizes, based on 1000 Monte Carlo replications, 1000 bootstrap or permutation

samples, and a nominal level of 5%

Scenario (n1, n2, n3) EL test Wald Fmax GPF TRP

A (70, 100, 130) 5.7 7.6 4.8 4.5 3.2

(130, 100, 70) 6.3 9.1 12.8 15.1 5.5

B (70, 100, 130) 73.3 72.7 39.9 36.1 65.6

(130, 100, 70) 68.7 67.5 65.4 63.9 58.4

C (70, 100, 130) 82.4 81.8 22.8 24.4 67.7

(130, 100, 70) 84.2 83.1 58.8 60.1 71.0

3.3 to 59.6%. Although first-order asymptotically equivalent to the EL test, the Wald-type test in

Section 2.4 is anti-conservative under H0 and has less power under H1; this less-than-optimal

performance is discussed in Remark 3 about Theorem 3. In summary, our results show that the

EL test outperforms the four Wald-type functional ANOVA tests.

4 APPLICATION

We return to the occupation time application based on data from the 2005–2006 U.S. National

Health and Nutrition Examination Survey (United States National Center for Health Statistics,

2005–2006). Each raw activity curve was measured in 1-min epochs using a wearable ActiGraph

device for seven consecutive days (normalized to [0, 𝜏] = [0, 1]); we only keep measurements

that NHANES flagged as both ‘reliable’ and ‘in calibration’. We restrict attention to subjects aged

65-and-older and consider the following four subgroups: veterans aged 75-and-older (n1 = 160),

non-veterans aged 75-and-older (n2 = 279), veterans aged 65–74 (n3 = 139) and non-veterans

aged 65–74 (n4 = 348); systematically selected occupation time from each group are displayed in

the left panel of Figure 5. We consider the maximal range of activity levels that has been cate-

gorized as sedentary in existing physical activity literature (Gorman et al., 2014), namely < 500

counts∕min. The occupation time curves are restricted to the interval [𝛼1, 𝛼2] = [0, 499] and dis-

cretized at each intensity count (i.e. integers). There are five and two subjects with missing data

in the second and fourth groups, respectively, and those subjects have 5%–62% missing readings

that are handled using the imputation method described in Supplement Section 14. An alterna-

tive graphical comparison on the basis of sample means for the raw activity data is provided in

Supplement Section 13.5.

The results of the functional ANOVA tests are summarized in Table 3. All the tests suggest

that there are some significantly different mean occupation time curves among the four groups,

as the p-values are all < 0.001 (see the row ‘all groups’ in Table 3). Next we investigate whether

this result is driven by veteran status or age. Specifically, we conduct four pairwise comparisons

among the groups, namely 1:2, 3:4, 1:3 and 2:4. The former two comparisons refer to the effect of

veteran status, and the latter two refer to the effect of age, controlling for the other factor. Under

a Bonferroni adjustment, we use 𝛼 = 0.05∕4 = 0.0125. Regarding the effect of veteran status, in

the older age group (i.e. the comparison 1:2), EL, Wald and Fmax indicate a significant differ-

ence (with EL being the most significant), whereas GPF and TRP fail to detect a difference. One

possible explanation is that there are large local differences among the groups (e.g. in the tail of
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TABLE 3 p-values from various functional ANOVA test statistics for comparing the mean occupation time

of the four groups in the 2005–2006 NHANES study: Veterans aged 75-and-older (group 1), non-veterans aged

75-and-older (group 2), veterans aged 65–74 (group 3) and non-veterans aged 65–74 (group 4)

Comparison EL test Wald GPF Fmax TRP

All groups <0.001 <0.001 <0.001 <0.001 <0.001

Group 1 versus 2 0.007 0.010 0.040 0.012 0.030

Group 3 versus 4 0.333 0.331 0.436 0.375 0.375

Group 1 versus 3 <0.001 <0.001 <0.001 <0.001 <0.001

Group 2 versus 4 <0.001 <0.001 <0.001 <0.001 <0.001

F IGURE 5 Left panel: occupation time (hours per day) from systematically selected (the smallest and

largest observations, and every 20th percentile at a = 0) veterans aged 75-and-older (black), non-veterans aged

75-and-older (green), veterans aged 65–74 (red), and non-veterans aged 65–74 (dotted purple), based on the

NHANES physical activity data. Middle panel: comparison of EL simultaneous confidence bands for the mean

occupation time (estimates in dashed line) of veterans aged 75-and-older (black) and veterans aged 65–74 (red).

Right panel: EL (dashed black), EP (pink), NS (purple), MFDbs (orange) and Geo (light green) 95% simultaneous

confidence bands for the mean occupation time (dashed black line in the middle panel) of veterans

aged-75-and-older, zooming-in on activity levels in the range 90–100 counts∕min. [Colour figure can be viewed at

wileyonlinelibrary.com]

the middle panel of Figure 5) that are better detected by statistics of maximal-deviation type (EL,

Wald, Fmax) than integral type (GPF) or projection type (TRP) that can miss particular areas. In

the younger age group (i.e. the comparison 3:4), none of the tests detect a significant difference

between veterans and non-veterans. As for the effect of age, all the tests give significant results

regardless of veteran status (see the comparisons 1:3 and 2:4). Such patterns are reflected in the

confidence bands, for example, of older versus younger veterans (see themiddle panel of Figure 5),

where the younger group can be seen to spend more time at higher activity levels.

Turning to a comparison of the confidence bands based on EL, EP, NS, MFDbs and Geo, for

veterans aged-75-and-older, see the right panel of Figure 5 (which zooms-in on activity levels

in the range 90–100 counts∕min). The comparison is restricted to bands that are not based on

smoothing (see Section 3.1). EP andEL are close to one another, whereasNS ismuchwider, which

is consistent with the simulation results in Table 1. On the other hand, MFDbs is wider than EL,
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and Geo has similar width to EL, in contrast to the simulation results in Table 1. Comparing the

EL bandwith these two bands over the entire range of activity levels, MFDbs is consistently wider

than EL. Geo is wider than EL in the extremes of the activity levels. All the bands respect range

and monotonicity constraints of the occupation time data.

As mentioned in the Introduction, sedentary behaviour has typically been defined as < 100

counts∕min (Matthews et al., 2008). Alternative cut-points have been suggested, however, namely

50, 200, 260 and 500 (Gorman et al., 2014). For veterans aged 75-and-older, we consider the

cut-points 50, 100 and 500. A 95% confidence interval for the mean hours per day of sedentary

behaviour using 50 as the cut-point can be obtained by subtracting from 24 the black confidence

band in themiddle panel of Figure 5 at a= 49, similarly for the other cut-points. This results in the

EL confidence intervals 18.7–19.4, 19.8–20.4 and 22.5–22.9 for the mean hours per day of seden-

tary behaviour, for cut-points 50, 100 and 500, respectively. We see that there is a 3-h difference

between the upper limit of the first confidence interval and the lower limit of the third confidence

interval. This illustrates how dramatically the quantification of sedentary behaviour can change

when the cut-points are changed, hence our preference for analysing the full occupation time

curve.

5 DISCUSSION

In this paper we developed a general nonparametric framework for the analysis of functional

means that allows discontinuities in the functional means and covariances under a dense

non-random design. We applied this framework to occupation time data derived from wearable

devices. Indexed by activity level ranging continuously over the range of device readings, the occu-

pation time curves are automatically aligned and contain more information than time spent in

discrete activity categories (cf., Matthews et al., 2008; Staudenmayer et al., 2012). Taking advan-

tage of optimality properties and the ability to handle the boundedness andmonotonicity of these

occupation time curves, our EL approach is used to construct a simultaneous confidence band

and an ANOVA test for the functional means. We have shown via simulations that the new test

adapts well to heteroscedasticity and imbalance in the sample sizes, and the proposed confidence

band has more accurate coverage while being narrower than alternative approaches. In particu-

lar, when there is a discontinuity in the functional means and covariances, the EL band is shown

to maintain accuracy, whereas alternative bands based on smoothing can have severe undercov-

erage.We applied the proposed procedures to wearable device data from the 2005–2006 NHANES

study, obtaining narrower confidence bands than existing ones that are not based on smoothing;

we also obtain more significant results for the ANOVA test.

By definition, the occupation time curve L(a) given in Section 2.1 is proportional to a (random)

survival function. In contrast to viewing L(a) as an observed random measure, and then using

functional data analysis of distributions (see, e.g. Bigot et al., 2018; Delicado, 2011), for us L(a)

is a directly observed (in the discretized form) quantity of interest. This aspect also distinguishes

our problem from situations where the randommeasures are not directly observable (Bigot et al.,

2018; Petersen&Müller, 2016).More specifically,methods of functional data analysis for densities

do not apply to our setting because the functions need to be bounded belowandhave a constrained

integral (see, e.g. Han et al., 2020; Petersen &Müller, 2016, and references therein), whereas L(a)

is bounded both above and below and does not have a constrained integral.

A future direction is to consider the occupation time L(a) with a multi-dimensional index a.

This scenario ariseswhen the data contain additional physiological information such as heart rate
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or blood pressure, where it would be necessary to treat X(⋅) as a vector-valued stochastic process.

Another future direction is to develop inference for the local times corresponding to occupation

time measures. In order to estimate the mean local time, namely the derivative of E{L(a)}, we

could use a kernel estimator based on the sample mean of E{L(a)} (cf., hazard function estima-

tion based on the Nelson—Aalen estimator; Andersen et al., 1993, section IV.2.1). This way, local

differences in occupation time could be explored in a more detailed way. Still another interesting

direction for future work would be goodness-of-fit testing for parametric models of mean occupa-

tion time. These could be used to provide parsimonious descriptions of mean occupation time for

comparing groups of subjects. One possibility is a Weibull-type model (cf., the survival function

of aWeibull distribution); our nonparametric estimates of themean occupation time displayed in

Figure 5 based on the NHANES data, however, suggest marked departures from aWeibull model,

so more flexible types of parametric models would need to be developed.
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