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An N-of-1 trial is a multi-period crossover trial performed in a single individ-

ual, with a primary goal to estimate treatment effect on the individual instead of

population-level mean responses. As in a conventional crossover trial, it is criti-

cal to understand carryover effects of the treatment in an N-of-1 trial, especially

when no washout periods between treatment periods are instituted to reduce

trial duration. To deal with this issue in situations where a high volume of mea-

surements aremade during the study, we introduce a novel Bayesian distributed

lagmodel that facilitates the estimation of carryover effects, while accounting for

temporal correlations using an autoregressive model. Specifically, we propose a

prior variance-covariance structure on the lag coefficients to address collinearity

caused by the fact that treatment exposures are typically identical on succes-

sive days. A connection between the proposed Bayesian model and penalized

regression is noted. Simulation results demonstrate that the proposed model

substantially reduces the root mean squared error in the estimation of carry-

over effects and immediate effects when compared to other existing methods,

while being comparable in the estimation of the total effects. We also apply the

proposed method to assess the extent of carryover effects of light therapies in

relieving depressive symptoms in cancer survivors.

KEYWORD S

Bayesian distributed lag model, carryover effects, N-of-1 trials, personalized treatment, regression
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1 INTRODUCTION

N-of-1 trials are multi-period crossover studies that compare two or more interventions in single individuals, and are

suitable for evaluating personalized treatment effects in those with chronic conditions where the outcome is relatively

stable.1 Advances in mobile and sensor technology2 and better understanding of patient preferences3 have improved the

implementation of N-of-1 trials. However, their uptake remains very small in clinical practice. In particular, the duration

of N-of-1 trials remains a key barrier. To reduce the duration needed to conduct an N-of-1 trial and to reduce the burden of

participation, it is often necessary to preclude scheduling washout periods between treatments. When physical washout

periods are not feasible, it is critical to have provisions for dealing with carryover effects analytically. To motivate our

work, consider an N-of-1 trial series that compare bright white light (10 000 lux) and dim red light (50 lux) in cancer

patients with depressive symptoms, where light therapy was delivered by portable light boxes with instructions.4 Briefly,

each individual would use one of two light boxes for 30minutes eachmorning over a 12weeks. Alongwith the light boxes,

a smartphone application would be used to give treatment reminders and to assess daily depressive symptoms and fatigue

2044 ©2023 JohnWiley&SonsLtd. wileyonlinelibrary.com/journal/sim Statistics in Medicine. 2023;42:2044–2060.
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F IGURE 1 Daily assessments of two patients id 7706 and 7708. Black line represents bright white light intervention, and grey line

represents dim red light.

level over the entire 12-week period. While theory suggests bright white light may reduce cancer-related depression and

fatigue, its effects may vary from individual to individual.5 Thus, the primary analytical goal in light therapy study is to

identify for each individual whether bright white light is superior in terms of symptom control and make light therapy

suggestion for their further clinical treatment. Figure 1 shows the daily assessments of two patients during the study

course.

In a systematic review of 108 N-of-1 trial series published between 1985 and 2010, Gabler et al reported on the ana-

lytic methods used to compare the effectiveness of two or more treatments being studied in an N-of-1 trial, including

graphical comparison, hypothesis tests (eg, t-test, nonparametric tests), and regression models.6 While there is no single

agreed-upon analysis method, these methods ignore two key features of experimental N-of-1 data. First, most methods

do not account for temporal dependence (ie, autocorrelation) between assessments. Second, the methods do not capture

the carryover effects of an intervention. The second data feature, which motivates this article, can be partly addressed by

using a distributed lagged model (DLM), which is widely used in economics,7,8 advertising,9 and environmental health

studies.10,11 A DLM postulates that the current value of the outcome variable depends on the previous values (lags) of

an exposure as well as the current exposure value, thus allowing the total exposure effect to be distributed over a time

period and facilitating explicit modeling of carryover effects. A potential challenge in fitting a DLM is collinearity of the

exposure lags. The N-of-1 trial design will further aggravate the problem: as illustrated in Figure 1, the exposure (light

box) often remains the same as in the previous day in order to avoid switching intervention too frequently during a trial.

A strategy to handle collinearity in DLM is by putting parametric constraints on the lag coefficients such as geometric

lags,7 or polynomial lags.8 Alternatively, one may consider putting informative prior on the coefficients in a Bayesian

framework.10
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In this article, we adopt the Bayesian framework and propose a Bayesian distributed lag model with autocorrelated

errors (BDLM-AR) as an extension of DLMs for N-of-1 trial data. The model is novel in several ways. First, we propose

a prior distribution that constrains the lag coefficients with shrinkage factors increasing over time. Second, we impose a

fused ridge-type penalty to address collinearity, which may be viewed as a variant of the fused lasso method.12,13 Third,

while current DLM methods assume independent error terms, we incorporate temporal correlations using an autore-

gressive error model. We will introduce the proposed BDLM-AR with details in Section 2, and describe the posterior

computations in Section 3. The performance of BDLM-AR will be evaluated and compared with other methods by simu-

lation studies presented in Section 4. We will apply the proposed method to the light therapy data in Section 5, and will

conclude this article with a discussion in Section 6. Technical details and additional numerical results are given in the

online Supporting Information.

2 BAYESIAN DISTRIBUTED LAG MODEL WITH AUTOCORRELATED
ERROR

2.1 Proposed model

Suppose we observe data from a patient on n consecutive days. On day t = 1, … ,n, let Xt and Yt denote the binary

treatment indicator and the continuous outcome of interest, respectively. We consider a distributed lag autoregressive

model for Y , described as follows:

Yt = 𝜇 + Z′
tb +

L∑
l=0

𝛽lXt−l + 𝜖t, (1)

for t = p + 1, … ,n, where Zt is a q-dimension vector, representing time varying covariates and the error term 𝜖t follows

an autoregressive process,

𝜖t = 𝜙1𝜖t−1 + 𝜙2𝜖t−2 + · · · + 𝜙p𝜖t−p + wt, (2)

wt is a white Gaussian noise with mean zero and unknown variance 𝜎2 > 0, and L and p are prespecified. Note that for

t ≤ L, the maximum lag effect is of order t − 1, and terms involving X with nonpositive subscript are not included in the

model.

Model (1) is composed of two parts. First, for the structural component, themeanmodel is specified by lag coefficients

𝜷 = (𝛽0, … , 𝛽L)
′ and control mean 𝜇. Specifically, the effect of a given treatment sequence is represented by the sum of

the corresponding lag coefficients. For example, if a patient receives the treatment for two successive days with no prior

treatment, the effect due to this sequence is indicated by 𝛽0 + 𝛽1. Likewise, if another patient receives treatment today

and the day before yesterday, but not yesterday, the effect of this treatment sequence will be 𝛽0 + 𝛽2. While the proposed

method will allow us to estimate individual coefficients (hence the effect of any given treatment sequence), we will focus

on a few specific parameters in this article. We define the total treatment effect by

L∑
l=0

𝛽l = E(Yt|Xt = 1, … ,Xt−L = 1) − E(Yt|Xt = 0, … ,Xt−L = 0). (3)

The total effect (3) is clinicallymeaningful because one of the goals of anN-of-1 trial is to determinewhether the treatment

should be given to the patient indefinitely if deemed effective.

The immediate treatment effect is measured by 𝛽0, and the carryover effect due to treatment on l days ago is measured

by 𝛽l for l > 0. In the model, we assume the carryover effect beyond day L is zero. As such, the total carryover treatment

effect due to treatment assuming the patient receives the treatment at all-time points before the current time but not at

the current time is captured as

𝛿 ≜

L∑
l=1

𝛽l = E(Yt|Xt−1 = 1, … ,Xt−L = 1,Xt) − E(Yt|Xt−1 = 0, … ,Xt−L = 0,Xt). (4)

Hence, the model naturally breaks down total treatment effect (3) into 𝛽0 and 𝛿. Apparently, if a patient has received the

treatment on fewer timepoints than L from the current time, the carryover effect due to that treatment sequence will be

different. However, the total carryover effect (4) indicates the maximal impact of the treatment over time.
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Second, for the stochastic component, temporal dependency between errors is specified using an order-p autoregres-

sive error model with autoregression coefficient 𝝓 = (𝜙1, … , 𝜙p)
′. Let B denote the backshift operator and Φ(B) be a

polynomial in the backshift operator, that is, havingΦ(B) = 1 − 𝜙1B − 𝜙2B2 − … − 𝜙pBp so that the autoregressionmodel

for the error terms can be written as Φ(B)𝜖t = wt. It is often convenient to work with the transformed data Y∗
t = Φ(B)Yt

and X∗
t = Φ(B)Xt in the estimation steps. Thus, applying Φ(B) to both sides of model (1), we will rewrite the model

Y∗
t = 𝜇∗ + Z∗′

t b +

L∑
l=0

𝛽lX
∗
t−l

+ wt, (5)

for t = p + 1, … ,n, where 𝜇∗ = Φ(B)𝜇 and Z∗
t = Φ(B)Zt. To stack the data in vector form, we have

(Y∗|X∗, 𝜇∗,b, 𝜷) ∼ N(𝜇∗1n−p + Z∗b + X∗𝜷, 𝜎2In−p) (6)

where Y∗ = (Y∗
p+1, … ,Y∗

n )
′, X∗ is a (n − p) × (L + 1) matrix with X∗

k−l+p+1
being the (k, l)th element of X∗, Z∗ =

(Z∗
p+1, … ,Z∗

n)
′, 1n−p is a 1-vector of length n − p, and In−p is the identity matrix of dimension n − p. We denote 𝜷̃ =

(𝜇,b′, 𝜷′)′, X̃ = (1n,Z,X) and X̃
∗ = (Φ(B)1n−p,Z

∗,X∗), so that X̃∗𝜷̃ = 𝜇∗1n−p + Z∗b + X∗𝜷.

2.2 Prior Distribution on the mean model

We consider normal prior distribution for 𝜷̃, that is, having

𝜷̃ ∼ N(0, 𝜎2𝛀̃
−1
), (7)

where 𝛀̃ = diag(c0Iq+1,𝛀) so that the prior variance of 𝜇 is 𝜎2c−10 , the prior variance-covariance matrix of b is 𝜎2c−10 Iq
and the prior variance-covariance matrix of 𝜷 is 𝜎2𝛀−1. We note that the prior variance depends on the variance 𝜎2

of the observations: such dependence renders a fused ridge penalized estimation procedure that is free of the variance

parameters, resulting in computational stability; see Equation (9) below. We will postulate a noninformative prior on 𝜇

and b by setting c0 to be a small number, and we will consider (L + 1) × (L + 1)matrix 𝛀 of the following form:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜆0 + 𝜆∗0 −𝜆∗0 0 … … 0

−𝜆∗0 𝜆1 + 𝜆∗0 + 𝜆∗1 −𝜆∗1 … … 0

0 −𝜆∗1 𝜆2 + 𝜆∗1 + 𝜆∗
2

… … 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 … 𝜆L−1 + 𝜆∗
L−2

+ 𝜆∗
L−1 −𝜆∗

L−1

0 0 0 … −𝜆∗
L−1 𝜆L + 𝜆∗

L−1 + 𝜆∗
L

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

where the hyperparameters 𝜆l, 𝜆∗l > 0, for l = 0, … ,L, are constrained to increase over l. As a result of the monotonicity

constraint, a lag coefficient 𝛽l at a greater lag l is associated with a larger diagonal element in𝛀, thus shrinking 𝛽l toward

the prior mean (zero) to a greater extent. This effectively addresses collinearity of the lag coefficients without imposing

strong parametric structure to 𝜷. In addition, using the normal prior (7) with precision matrix 𝜎−2
𝛀̃, we can show that

the maximum a posteriori probability estimate of 𝜷̃ minimizes a fused ridge-type penalty:

(Y∗ − X̃
∗
𝜷̃)′(Y∗ − X̃

∗
𝜷̃) + c0𝜇

2 + c0

q∑
i=1

b2i +

L∑
l=0

𝜆l𝛽
2
l
+

L∑
l=0

𝜆∗
l
(𝛽l − 𝛽l+1)

2, (9)

where 𝛽L+1 ≜ 0, thus giving insights on how the proposed prior constrains the lag coefficients: it regularizes not only the

𝓁2-norm of the coefficients but also their successive differences, thereby enhancing local smoothness. The equivalence

between the Bayesian inference and the fused ridge regularization (9) is proved in the online Supporting Information

Appendix A.
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There are many ways to specify 𝜆l and 𝜆∗
l
to meet the monotonicity constraints. In this article, we consider 𝜆l =

exp{𝛾1(l + 1)} − 1 and 𝜆∗
l
= exp{𝛾2(l + 1)} − 1 for 𝛾1, 𝛾2 > 0, so that 𝛾1 controls the rate at which the ridge penalty in

(9) increases, and 𝛾2 controls the increasing rate of smoothness of the coefficient curve 𝜷. Instead of treating these

hyperparameters as fixed, we postulate a standard exponential hyperprior on (𝛾1, 𝛾2), that is, having probability density

function

𝜋(𝛾1, 𝛾2) ∝ exp(−𝛾1 − 𝛾2). (10)

As such, the degree of ridge and smooth penalization can be determined according to the posterior distribution of the pair.

2.3 Prior distribution on the error model

We put the Jeffreys prior for the error variance 𝜎2, that is, having density function

𝜋(𝜎2) ∝ 1∕𝜎2. (11)

Note that any inverse-gammaprior for 𝜎2wouldmaintain conjugacy, and the Jeffreys prior can be regarded as an improper

limit of inverse-gamma prior distribution.

For the autoregressive process, we consider a truncated normal prior for 𝝓 subject to the constraint that the error

process is stationary. Specifically, we postulate

𝝓 ∼ Np

(
0p, 𝜎

2
𝝓
Ip
)
1S𝝓(𝝓), (12)

where S𝝓(𝝓) denotes the support where all roots of the polynomial Φ(B) = 1 −
∑p

l=1
𝜙lBl are outside the unit circle. The

process {𝜖t ∶ t = 1, 2, …} is stationary when 𝝓 ∈ S𝝓(𝝓).14,15 Note that the range of each 𝜙l is (−1, 1) and Figure A1 in the

online Supporting Information shows the probability density function of truncated normal prior with different values of

𝜎2
𝝓
= 50, 200, and 400, as well as a uniform prior on (−1, 1). A prior variance of 𝜎2

𝝓
= 200 is used in (12), which essentially

amounts to a flat prior.15

3 CONDITIONAL POSTERIOR DISTRIBUTIONS

The proposed Bayesian model includes several conditionally conjugate priors, which facilitate posterior computations

via a hybrid Metropolis-Hastings/Gibbs algorithm.We describe the conditional posterior distributions in this section; the

details of derivation can be found in the online Supporting Information Appendix B.

Working with the likelihood (6) based on the transformed data Y∗
t , we obtain that 𝜷̃ is conditionally normally

distributed a posteriori:

𝜷̃|Y, X̃, 𝜎2,𝝓, 𝜸 ∼ NL+1

{
[X̃

∗′

X̃
∗
+ 𝛀̃(𝜸)]−1X̃

∗′

Y∗, 𝜎2[X̃
∗′

X̃
∗
+ 𝛀̃(𝜸)]−1

}
(13)

and that 𝜎2 has an inverse-gamma conditional posterior:

𝜎2|Y, X̃, 𝜷̃,𝝓, 𝜸 ∼ IG

[
n − p + L + q + 2

2
,
(Y∗ − X̃

∗
𝜷̃)′(Y∗ − X̃

∗
𝜷̃) + 𝜷̃

′
𝛀̃(𝜸)𝜷̃

2

]
. (14)

Note that the dependence of (13) and (14) on 𝝓 is via the transformed data Y∗.

Working with model (2) and (12), we obtain the conditional posterior distribution of 𝝓 is truncated multivariate

normal:

𝝓|Y, X̃, 𝜷̃, 𝜎2, 𝜸 ∼ Np

[(
𝜎−2E∗′E∗ + 𝜎−2

𝝓
I
)−1

𝜎−2E∗′𝝐∗,
(
𝜎−2E∗′E∗ + 𝜎−2

𝝓
I
)−1

]
1S𝝓 (𝝓), (15)
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where 𝝐∗ = (𝜖∗p+1, … , 𝜖∗n)
′, 𝜖∗t = Yt − 𝜇 − Z′

tb −
∑L

l=0𝛽lXt−l, and E
∗ is a (n − p) × p matrix with 𝜖∗

p+k−j
being the (k, j)-th

element. Because of conjugacy, the parameters 𝜷̃, 𝜎2, and 𝝓 can be easily updated in a Gibbs sampling fashion.

Using the likelihood (6) and prior of 𝜸 and 𝜷̃, the conditional posterior distribution can be expressed as

𝜋(𝜸|Y, X̃, 𝜷̃,𝝓, 𝜎2) ∝ |𝜎−2
𝛀̃(𝜸)| 12 exp

[
−

1

2𝜎2
𝜷̃
′
𝛀̃(𝜸)𝜷̃

]
exp(−𝛾1 − 𝛾2). (16)

We propose to sample 𝜸 using a Metropolis-Hastings (MH) step with a uniform U(−a, a) proposal distribution, that is,

having an updating step 𝛾i,new = 𝛾i + U(−a, a), where the tuning parameter a is chosen such that the acceptance rate of

proposed sample is around 50%.16 Note that updating the hyperparameter 𝜸 involves the calculation of the matrix 𝛀̃(𝜸),

which needs to be positive definite. The (L + q + 2) × (L + q + 2)matrix 𝛀̃(𝜸) is a special case of tridiagonal matrix and it

can be shown that 𝛀̃(𝜸) is positive definite (see online Supporting Information Appendix C). The complete algorithm is

summarized in the online Supporting Information Appendix D.

4 SIMULATION STUDY

4.1 Comparison methods

In this section, we evaluate the performance of the proposed BDLM-AR using simulation studies. At the end of each

simulated trial, we fitted BDLM-AR with lag L = 7 and AR(1), that is, having

Yt = 𝜇 +

7∑
l=0

𝛽lXt−l + 𝜖t, (17)

where 𝜖t = 𝜙𝜖t−1 + wt andwt ∼ N(0, 𝜎2). Posterior distributions were derived using the hybridMetropolis Hastings/Gibbs

algorithm described in the previous section with 50 000 iterations, a burn-in period of 25 000, and a = 0.2 for sampling 𝛾

in the MH step.

We compared BDLM-ARwith some existingmethods including the Bayesian distributed lag model (BDLagM), which

incorporates prior knowledge about the shape of the DL function through a normal prior with a specified covariance

matrix,10 Bayesian ridge DLM (BR-DLM)with amean zero normal prior for 𝜷̃, and a noninformative prior Bayesian DLM

(NB-DLM) with a flat improper priors on each parameter in 𝜷̃. These existing methods would use the same mean model

(17) but assume independent errors without accounting for autocorrelation.

In addition, as a benchmark, we include the parametric Koyck’s DLM7 which assumes the knowledge of the true

autoregressive coefficients is known. Details of themodel specifications of the competingmethods are given in the online

Supporting Information Appendix E. The difference of four Bayesian distributed lag models can be found in Table A1 in

the online Supporting Information. For Bayesian models, we estimate the parameters using the posterior means and for

Koyck model, we use the maximum likelihood estimates.

4.2 Simulation scenarios and data generation

In each simulated N-of-1 trial, measurements were collected daily for 120 days, under one of two treatment sequences. In

the first sequence, a participant would receive xt = 1 on the first 30 days and the last 30 days, and receive xt = 0 between

days 31 and 90; that is,

x(1)t =

{
1 t = 30s + 1, … , 30s + 30 for s = 0, 3,

0 t = 30s + 1, … , 30s + 30 for s = 1, 2.

In the second treatment sequence, a participant would switch treatments more frequently; specifically,

x(2)t =

{
1 t = 15s + 1, … , 15s + 15 for s = 0, 3, 5, 6,

0 t = 15s + 1, … , 15s + 15 for s = 1, 2, 4, 7.
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2050 LIAO et al.

For each treatment sequence, the data were generated according to model (17) under five sets of lag coefficients (lag

curves, LC):

LC1. Exponential decay curve: 𝜷 = (5, 2.5, 1.25, 0.625, 0.3125, 0, 0, 0)′;

LC2. Exponential decay curve with oscillation: 𝜷 = (5, 2.5,−1.25,−0.625, 0.3125, 0, 0, 0)′;

LC3. Slow absorption curve: 𝜷 = (1.51, 2.75, 3.36, 2.03, 0.34, 0, 0, 0)′;

LC4. Slow absorption curve with oscillation: 𝜷 = (1.51, 2.75,−3.36,−2.03, 0.34, 0, 0, 0)′;

LC5. No carryover effect: 𝜷 = (10, 0, 0, 0, 0, 0, 0, 0)′.

The exponential decay curves (LC1 and LC2) specify coefficients that diminish in magnitude as lag lengthens. Specif-

ically, the coefficients under LC1 decrease geometrically, which is aligned with the assumption of Koyck DLM. The slow

absorption curves (LC3 and LC4) reflect scenarios where the carryover effect peaks at day 2 after treatment. LC5 is the

null scenario where there is no carryover effect. Themagnitudes of the coefficients were chosen in these scenarios so that

||𝜷||1 ≈ 10; in addition, the total carryover effects (𝛿) are 4.69, 0.94, 8.48, −2.30, and 0, respectively for LC1–LC5. We con-

sider 𝜎 = 10, 20 and 𝜙 = 0.5, 0.2 for the stochastic component in data generation. In addition to the two main treatment

sequences x(1)t and x(2)t , other treatment switching frequency sequences are investigated to understand the effect of treat-

ment design. x(1)t and x(2)t can be regarded as repeated treatment for a consecutive 30 and 15 days, respectively. Additional

treatment sequences with repeated treatment for a consecutive 1, 2, 6, 7, and 10 days are considered. For time-varying

covariates, we considered two scenarios: (1) linear time trend, that is, Zt = t for t = 1, … ,n, and (2) effect of weekend,

that is, setting Z1 = Z2 = … = Z5 = 0 and Z6 = Z7 = 1 and so on, where Zt is a weekend indicator. Time effect b is set

to be 0.3 and 3 respectively for linear time trend and effect of weekend. For each of these scenarios, the methods were

evaluated using 100 simulated trials.

4.3 Simulation results

The convergence of all MCMC simulations are checked by the Gelman-Rubin diagnostics, which use stable and consis-

tent estimators of Monte Carlo variance.17,18 To be specific, the multivariate potential scale reduction factors (PSRF) are

estimated to check the convergence of multiple parameters simultaneously. The point estimates of the multivariate PSRF

range from 1.000021 to 1.000073 (mean 1.000047, median 1.000048), indicating the convergence of posterior samples.

Figure 2 shows the bias and root mean squared error (RMSE) of the posterior means of individual lag coefficients. As

expected, the biases of NB-DLM are relatively small; however, the method also has the largest RMSE uniformly because

of the use of noninformative prior. The biases of the other methods are comparable. While the 𝓁2 penalty in BR-DLM

on the lag coefficients reduces variability when compared to NB-DLM, the additional constraints on diminishing coef-

ficients imposed by BDLagM and the proposed BDLM-AR further reduce RMSE for large lag l. Additionally, since the

proposed BDLM-AR explicitly incorporates ridge-type regularization on the lag coefficients, it results in smaller RMSE

for 𝛽0 and the earlier lag coefficients (eg, 𝛽1). However, as a trade-off, the bias of BDLM-AR for early lag coefficients will

be slightly inflated as compared to BDLagM, BR-DLM and NB-DLM, especially when true lag coefficient curve has fre-

quent fluctuation. The benchmark method, Koyck DLM, performs best in the exponential decay case, where the true

coefficient of autoregressive error (𝜙) is assumed to be known. The proposed BDLM-AR has very similar performance as

Koyck DLM. Note that the coefficient of autoregressive error is estimated directly from the proposed BDLM-AR model,

which is more practical in real application. In summary, the proposed BDLM-AR generally results in the smallest RMSE

for all lag coefficients.

To further examine the performance of each method in estimating the lag curve in aggregate, Figure 3 plots the

Euclidean distance between the vector of estimated lag coefficients and the vector of true lag coefficients. Under LC1

(exponential decay), the Koyck DLM has the best performance overall. This is not surprising because (i) the Koyck

model mimics the coefficients under LC1 closely, and (ii) Koyck DLM assumes knowledge of the true autoregres-

sive coefficients used in the simulation and hence it is not a method that can be implemented in practice. Thus, this

comparison serves as a benchmark about the efficiency of the proposed BDLM-AR and other Bayesian methods. The

figure demonstrates that the proposed BDLM-AR produces smaller distance from the true lag curve than the other

Bayesian methods.

Table 1 gives the bias and RMSE in the estimation of the total effect (
∑7

l=0𝛽l), the total carryover effect (𝛿 =
∑7

l=i𝛽l)

and the immediate effect (𝛽0) under different lag curves with 𝜎 = 10 and 𝜙 = 0.5 under treatment sequence x(1)t . Results
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LC1. Exponential decay LC2. Exponential decay (Oscillated) LC3. Slow absorption LC4. Slow absorption (Oscillated) LC5. No carryover effect
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F IGURE 2 Bias and RMSE of lag coefficients estimates under five lag curves, treatment sequence x(1)t , 𝜎 = 10 and 𝜙 = 0.5.

for other values of 𝜙, 𝜎 and treatment sequence are similar and are provided in Figure A2 to A4 in the online Supporting

Information. Overall, the proposed BDLM-AR yields consistently lower RMSE in estimating total effect, carryover effects,

and immediate effects than other comparison methods, except for Koyck DLM. This is consistent with what we observe

in Figures 2 and 3. And the bias of the proposed BDLM-AR is larger than the other models as a trade-off. We note that the

advantages of BDLM-AR in terms of RMSE for the total carryover effect (𝛿) and immediate effect (𝛽0) aremore pronounced

than that for total effect (𝛿 + 𝛽0). This is indeed the motivation that we set out to accomplish: to decompose the treatment

effects and separate carryover effect from the immediate effect. The simulation results for time-varying covariates are

summarized in Table 2. The proposed BDLM-ARwith time varying covariates can yield unbiased estimates for time effect

and has potentially better performance in estimating total effect, total carryover effect and immediate effect compared to

model without time varying covariates.

4.4 Effects of design

Figure 3 shows that the Euclidean distance between the vector of estimated lag coefficients and the truth under treatment

sequence x(1)t and x(2)t . The relative performance amongmethods is the same regardless of the treatment sequence, that is,

the proposed BDLM-AR yields the shortest distance from the true lag coefficients 𝜷. The simulation results for other treat-

ment switching frequency sequences are summarized in Figure 4. As we observe, frequently switching treatments will

generally help improve the performance of the proposed BDLM-AR. This is in line withwhat we expect because collinear-

ity of exposure lags will be lessened as treatments change frequently, while the total duration is held fixed. However,

when the true lag curve deviates from the monotone decreasing trend as LC3 and LC4, switching the treatment sequence

in the most extreme case will yield worse performance. From a practical perspective, switching treatments frequently
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LC1. Exponential decay LC2. Exponential decay (Oscillated) LC3. Slow absorption LC4. Slow absorption (Oscillated) LC5. No carryover effect
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F IGURE 3 Euclidean distance to true lag curves under: Treatment sequence x(1)t vs Treatment sequence x(2)t . Other simulation

parameters are fixed as: 𝜎 = 10 and 𝜙 = 0.5.

(eg, everyday) is infeasible as it will impose excessive burdens on patients and may cause treatment nonadherence. In

practice, the number of crossovers in anN-of-1 trial is expected to be determined based on the trade-off between statistical

accuracy and practical considerations.

4.5 Effects of model misspecification

In the previous subsections, BDLM-AR and other methods use a working mean model with L = 7 and an AR(1) model

for autoregressive errors. These working models correctly specify (or include) the data generation model in the previous

simulation study. In this subsection, we investigate the robustness of BDLM-AR under model mis-specifications. Specifi-

cally, we will consider (1) the working mean model with L = 0, 1, … , 6, 7, 15; (2) the stochastic components that assume

autoregressive error order of p = 0, 1, 7. That is, we consider a total of 27 BDLM-AR models.

In data generation, we use LC1 as the truemeanmodel, where 𝛽l > 0 for l = 0, 1, 2, 3, 4, andwe consider true scenarios

for the errors:

E1. AR(1) with 𝜙 = 0.5;

E2. Autoregressive model with 𝜙1 = 0.5, 𝜙2 = 0, 𝜙3 = 0, 𝜙4 = 0.3, 𝜙5 = 0, 𝜙6 = 0.2.

Note that, under the scenario LC1/E1, a working model with L < 4 or p = 0 under-specifies the true model. Likewise,

under LC1/E2, a working model with L < 4 or p = 0, 1 under-specifies the true model.

Table 3 summarizes the RMSE of these 27 models under the two scenarios (LC1/E1 and LC1/E2) with 𝜎 = 10

under x(1)t . It can be seen that misspecified lag length has little influence on estimating total effect, total carryover
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TABLE 1 Summary of evaluation metrics (best values in bold) of total effect, total carryover effect and immediate effect (𝛽0) under five

lag curves, treatment sequence x(1)t , 𝜎 = 10 and 𝜙 = 0.5. Monte Carlo standard errors are in brackets.

Truth BDLM-AR Koyck DLM BDLagM BR-DLM NB-DLM

Bias Total effect

LC1. Exponential decay 10 −1.82 (0.31) 0.41 (0.39) 0.65 (0.40) 0.21 (0.42) 0.02 (0.40)

LC2. Exponential decay (Oscillated) 5.94 −1.24 (0.27) 0.61 (0.39) 0.61 (0.40) 0.20 (0.41) −0.79 (0.39)

LC3. Slow absorption 10 −2.04 (0.32) 0.12 (0.39) 0.71 (0.40) 0.30 (0.42) −0.42 (0.44)

LC4. Slow absorption (Oscillated) −0.79 0.73 (0.22) 0.73 (0.39) 0.59 (0.40) 0.46 (0.40) −0.15 (0.40)

LC5. No carryover 10 −1.60 (0.32) 0.65 (0.39) 0.58 (0.40) 0.14 (0.42) 0.25 (0.39)

Total carryover effect

LC1. Exponential decay 4.69 −1.57 (0.26) 0.10 (0.20) 0.01 (0.66) 1.13 (0.47) −0.44 (0.76)

LC2. Exponential decay (Oscillated) 0.94 0.31 (0.22) 2.14 (0.19) −0.15 (0.66) 1.50 (0.46) −0.17 (0.63)

LC3. Slow absorption 8.48 −4.19 (0.30) −3.61 (0.21) −0.11 (0.66) −0.31 (0.47) 0.40 (0.70)

LC4. Slow absorption (Oscillated) −2.30 1.78 (0.24) 2.23 (0.19) −0.70 (0.66) 0.71 (0.44) 0.06 (0.64)

LC5. No carryover 0 2.05 (0.27) 4.98 (0.20) 0.94 (0.66) 3.25 (0.51) 0.23 (0.66)

Immediate effect

LC1. Exponential decay 5 −0.25 (0.27) 0.30 (0.22) 0.64 (0.60) −0.92 (0.38) 0.46 (0.72)

LC2. Exponential decay (Oscillated) 5 −1.55 (0.26) −1.53 (0.21) 0.76 (0.60) −1.30 (0.36) −0.62 (0.67)

LC3. Slow absorption 1.51 2.15 (0.27) 3.73 (0.22) 0.81 (0.60) 0.61 (0.36) −0.82 (0.66)

LC4. Slow absorption (Oscillated) 1.51 −1.05 (0.24) −1.51 (0.20) 1.29 (0.60) −0.25 (0.32) −0.21 (0.65)

LC5. No carryover 10 −3.65 (0.31) −4.33 (0.23) −0.35 (0.60) −3.11 (0.44) 0.02 (0.59)

RMSE Total effect

LC1. Exponential decay 10 3.61 (0.21) 3.87 (0.24) 4.05 (0.25) 4.17 (0.26) 3.96 (0.24)

LC2. Exponential decay (Oscillated) 5.94 2.95 (0.17) 3.90 (0.25) 4.05 (0.25) 4.11 (0.26) 3.93 (0.25)

LC3. Slow absorption 10 3.81 (0.22) 3.85 (0.24) 4.06 (0.26) 4.16 (0.26) 4.40 (0.27)

LC4. Slow absorption (Oscillated) −0.79 2.28 (0.14) 3.93 (0.25) 4.04 (0.25) 4.01 (0.26) 3.99 (0.24)

LC5. No carryover 10 3.54 (0.21) 3.91 (0.25) 4.04 (0.25) 4.18 (0.26) 3.93 (0.24)

Total Carryover Effect

LC1. Exponential decay 4.69 3.03 (0.19) 2.01 (0.13) 6.57 (0.36) 4.83 (0.28) 7.61 (0.44)

LC2. Exponential decay (Oscillated) 0.94 2.25 (0.19) 2.87 (0.17) 6.56 (0.36) 4.83 (0.28) 6.31 (0.42)

LC3. Slow absorption 8.48 5.13 (0.25) 4.15 (0.19) 6.58 (0.36) 4.64 (0.27) 6.94 (0.38)

LC4. Slow absorption (Oscillated) −2.30 2.96 (0.19) 2.94 (0.16) 6.62 (0.38) 4.44 (0.27) 6.39 (0.39)

LC5. No carryover 0 3.39 (0.23) 5.36 (0.20) 6.65 (0.36) 6.06 (0.35) 6.56 (0.39)

Immediate effect

LC1. Exponential decay 5 2.71 (0.16) 2.23 (0.14) 6.00 (0.36) 3.85 (0.21) 7.21 (0.44)

LC2. Exponential decay (Oscillated) 5 2.99 (0.17) 2.62 (0.16) 6.01 (0.36) 3.85 (0.20) 6.72 (0.43)

LC3. Slow absorption 1.51 3.42 (0.22) 4.30 (0.21) 6.03 (0.36) 3.61 (0.24) 6.67 (0.38)

LC4. Slow absorption (Oscillated) 1.51 2.62 (0.18) 2.52 (0.15) 6.12 (0.37) 3.18 (0.21) 6.49 (0.39)

LC5. No carryover 10 4.77 (0.26) 4.90 (0.22) 5.99 (0.35) 5.39 (0.29) 5.87 (0.37)
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TABLE 2 Summary of evaluation metrics of total effect, total carryover effect, DL coefficients and autoregressive coefficient under

scenarios when different time trends exist: (1) Linear time trend and (2) Effect of weekend. Other simulation parameters are fixed as:

treatment sequence = x(1)t , 𝜎 = 10 and 𝜙 = 0.5. Monte Carlo standard errors are in brackets.

Linear time trend

Bias RMSE

Truth

Exclude time

varying covariate

Include time

varying covariate

Exclude time

varying covariate

Include time

varying covariate

b1 0.3 - 0.01 (0.005) - 0.05 (0.004)

Total effect 9.69 −3.81 (0.34) −1.85 (0.38) 5.06 (0.25) 4.20 (0.25)

Total carryover effect 4.69 −3.04 (0.19) −1.61 (0.27) 3.56 (0.16) 3.15 (0.18)

Immediate effect (𝛽0) 5 −0.77 (0.31) −0.24 (0.28) 3.18 (0.20) 2.83 (0.18)

𝛽1 2.5 −1.47 (0.15) −0.79 (0.15) 2.10 (0.12) 1.69 (0.11)

𝛽2 1.25 −0.85 (0.08) −0.48 (0.10) 1.14 (0.06) 1.10 (0.07)

𝛽3 0.62 −0.47 (0.05) −0.25 (0.07) 0.69 (0.04) 0.71 (0.05)

𝛽4 0.31 −0.23 (0.03) −0.14 (0.04) 0.37 (0.02) 0.43 (0.03)

𝛽5 0 0.00 (0.02) 0.05 (0.04) 0.20 (0.02) 0.36 (0.03)

𝛽6 0 0.00 (0.01) 0.01 (0.03) 0.14 (0.01) 0.25 (0.02)

𝛽7 0 −0.01 (0.01) −0.01 (0.02) 0.12 (0.01) 0.22 (0.02)

Effect of weekend

Bias RMSE

Truth

Exclude time

varying covariate

Include time

varying covariate

Exclude time

varying covariate

Include time

varying covariate

b1 3 - 0.09 (0.21) - 4.56 (0.13)

Total effect 9.69 −1.88 (0.38) −1.79 (0.38) 4.19 (0.25) 4.17 (0.25)

Total carryover effect 4.69 −1.83 (0.27) −1.60 (0.28) 3.25 (0.18) 3.18 (0.18)

Immediate effect (𝛽0) 5 −0.05 (0.28) −0.20 (0.28) 2.81 (0.18) 2.80 (0.17)

𝛽1 2.5 −1.01 (0.15) −0.78 (0.15) 1.78 (0.11) 1.68 (0.10)

𝛽2 1.25 −0.54 (0.10) −0.47 (0.10) 1.10 (0.07) 1.11 (0.07)

𝛽3 0.62 −0.31 (0.06) −0.25 (0.07) 0.70 (0.05) 0.72 (0.05)

𝛽4 0.31 −0.11 (0.04) −0.14 (0.04) 0.41 (0.03) 0.42 (0.03)

𝛽5 0 0.12 (0.04) 0.04 (0.03) 0.38 (0.03) 0.35 (0.03)

𝛽6 0 0.04 (0.02) 0.00 (0.03) 0.25 (0.02) 0.26 (0.02)

𝛽7 0 −0.01 (0.02) −0.01 (0.02) 0.21 (0.02) 0.22 (0.02)

effect and immediate effect, while under-specified error AR order will increase RMSE of parameters to a higher

level than over-specified error AR order. Note that when choosing a small lag length value, we can hardly

acquire estimation about the whole DL curve, as well as the information on the duration of carryover effect.

Therefore, when the lag length is unknown, we suggest to fit data with a reasonably long lag length. For

example, one can use pharmacokinetic parameters such as the half-life of some drugs. For error autoregres-

sive order, when the true orders are unknown, it is also suggested to fit a model with high autoregressive

order.

Finally, sensitivity analyses are implemented to understand the model’s performance under other error assumptions.

ARMA(1,1) and ARMA(1,2) errors are considered as true scenarios. The results are consistent with the previous findings.

Detailed comparison results on estimating total effect, total carryover effect and immediate effect can be found in TableA2

in the online Supporting Information.
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F IGURE 4 Euclidean distance to true lag curves under different repeated treatment lengths.

5 APPLICATION TO LIGHT THERAPY STUDY

The data set we used is from the light therapy study,4 which studies the effectiveness of bright white light therapy for

depressive symptomswithin cancer survivors. Besides bright white intervention (10 000 lux), dim red (50 lux) was used as

a control intervention, which lacks sufficient light intensity to affect cells from retina. Patients were instructed to use one

of two portable lightboxes eachmorning for 30minutes per day. For each patient, the whole study duration was 12 weeks.

One intervention was assigned on the first three weeks and last three weeks and the other intervention was assigned

between the fourth week and the ninth week. The initial intervention was randomized, either bright white lightbox or

dim red lightbox. The collected outcomes were depressive symptom and fatigue symptom, which were tracked using a

smartphone application. The outcomes were measured by patient’s self-reported standard single-item visual analog scale

from 0-not at all depressed/tired to 10-extremely depressed/tired. Some occasional missing outcomes were imputed using

Bayesianmultiple imputation suggested by Gelman et al19 To be specific, 20 imputed data sets were generated by drawing

missing values from the posterior predictive distribution. Each of the 20 imputed data sets is analyzed separately, and the

results are combined together by mixing together the posterior samples from the separate inferences.

We fit the data with the proposed BDLM-ARmodel with L = 7. Two autoregressive orders of BDLM-ARmodel AR(1)

and AR(7) were used. Weekend effect was also added to the model as a time varying covariate. Convergence of all

the MCMC were checked using the same method mentioned in the previous section. In addition to the comparison of

Bayesian distributed lag models, we also fit the frequentist autoregressive regression models (RegAR) with p = 1 and 7.

RegAR model with p = 1 was originally used as the analysis method in the light therapy study.

Table 4 shows the posterior means of the coefficients by the proposed BDLM-ARmodel and the maximum likelihood

estimates by RegAR using depressive symptom outcome. For patient 7706, the RegAR indicates a weak insignificant total

effect of bright white intervention in relieving depressive symptom. However, BDLM-AR(7) model with weekend effect

identifies a significant strong effect of bright white intervention as−0.37 (90%CI:−1.04, 0.12). To check the fitness of each
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TABLE 3 Summary of RMSE of total effect, total carryover effect and immediate effect (𝛽0) fitted using BDLM-AR model with

different lag length and error autoregressive order. LC1. Exponential decay curve, treatment sequence x(1)t , 𝜎 = 10, E1. AR(1) with 𝜙 = 0.5

and E2. Autoregressive model with 𝜙1 = 0.5, 𝜙2 = 0, 𝜙3 = 0, 𝜙4 = 0.3, 𝜙5 = 0, 𝜙6 = 0.2 are used to generate simulated data. Monte Carlo

standard errors are in brackets.

Truth for errors: E1 Truth for errors: E2

Lag AR(7) AR(1) AR(0) AR(7) AR(1) AR(0)

Total effect 15 4.13 (0.27) 3.69 (0.23) 4.12 (0.25) 6.13 (0.35) 9.01 (0.62) 11.39 (0.76)

7 4.32 (0.26) 3.85 (0.24) 3.95 (0.25) 5.85 (0.31) 8.32 (0.53) 10.72 (0.72)

6 4.37 (0.27) 3.88 (0.24) 3.92 (0.25) 5.92 (0.32) 8.25 (0.52) 10.62 (0.71)

5 4.44 (0.26) 3.91 (0.24) 3.93 (0.24) 5.89 (0.32) 8.21 (0.50) 10.55 (0.70)

4 4.49 (0.27) 3.98 (0.24) 3.94 (0.24) 6.01 (0.31) 8.06 (0.47) 10.48 (0.69)

3 4.59 (0.27) 4.02 (0.24) 3.93 (0.24) 6.02 (0.31) 7.81 (0.45) 10.40 (0.68)

2 4.63 (0.26) 4.07 (0.24) 3.91 (0.24) 6.08 (0.29) 7.68 (0.41) 10.34 (0.67)

1 4.75 (0.26) 4.15 (0.24) 3.87 (0.24) 6.12 (0.29) 7.43 (0.38) 10.26 (0.66)

0 4.01 (0.25) 3.71 (0.23) 3.77 (0.23) 5.82 (0.32) 8.58 (0.51) 10.52 (0.67)

Total carryover effect 15 3.97 (0.26) 3.63 (0.24) 4.48 (0.25) 4.12 (0.24) 6.77 (0.52) 8.25 (0.56)

7 3.56 (0.22) 3.18 (0.20) 3.85 (0.23) 3.55 (0.19) 5.24 (0.35) 6.69 (0.45)

6 3.51 (0.22) 3.17 (0.19) 3.73 (0.22) 3.60 (0.18) 5.15 (0.34) 6.38 (0.43)

5 3.42 (0.20) 3.15 (0.19) 3.61 (0.21) 3.60 (0.19) 4.95 (0.31) 6.08 (0.40)

4 3.41 (0.20) 3.12 (0.18) 3.49 (0.21) 3.73 (0.19) 4.67 (0.28) 5.68 (0.38)

3 3.41 (0.20) 3.12 (0.19) 3.36 (0.20) 3.70 (0.18) 4.29 (0.23) 5.33 (0.35)

2 3.38 (0.18) 3.10 (0.18) 3.15 (0.18) 3.73 (0.16) 4.00 (0.21) 4.62 (0.29)

1 3.58 (0.17) 3.33 (0.17) 2.92 (0.16) 3.86 (0.13) 3.88 (0.19) 3.54 (0.20)

0 - - - - - -

Immediate effect 15 3.53 (0.21) 3.40 (0.21) 4.00 (0.24) 3.96 (0.23) 4.91 (0.28) 8.91 (0.58)

7 3.09 (0.18) 2.91 (0.18) 3.54 (0.22) 3.61 (0.21) 4.54 (0.27) 8.52 (0.56)

6 3.02 (0.17) 2.91 (0.18) 3.47 (0.22) 3.56 (0.20) 4.50 (0.27) 8.46 (0.56)

5 3.03 (0.17) 2.87 (0.18) 3.38 (0.21) 3.58 (0.19) 4.52 (0.27) 8.40 (0.56)

4 3.04 (0.17) 2.85 (0.18) 3.31 (0.21) 3.57 (0.19) 4.54 (0.27) 8.29 (0.56)

3 3.03 (0.17) 2.88 (0.18) 3.28 (0.21) 3.54 (0.19) 4.66 (0.28) 8.25 (0.56)

2 3.09 (0.17) 2.97 (0.19) 3.29 (0.22) 3.64 (0.19) 4.91 (0.30) 8.28 (0.57)

1 3.15 (0.19) 3.15 (0.21) 3.49 (0.23) 3.71 (0.21) 5.21 (0.33) 8.48 (0.58)

0 5.39 (0.34) 5.62 (0.34) 6.00 (0.35) 6.35 (0.43) 9.02 (0.60) 11.75 (0.79)

model, we used Ljung–Box test to examine autocorrelation of the residuals,20 and the correspondingP-values of𝜒2-test are

also shown in Table 4. No statistically significant autocorrelation is found in residuals of BDLM-ARmodels.We also found

a second peak of treatment effect within patient 7706 two days after the immediate effect. For patient 7708, we observe a

similar estimation between different models in terms of total effect. Treatment total effect estimated from BDLM-AR(7)

model with weekend effect is −1.41 (90% CI: −3.58, 0.27). Extra information obtained from BDLM-AR model is that the

majority of treatment effect lasts for around 2 days. The results are similar when weekend effect was added to the model.

For RegAR(1) model, statistically significant autocorrelation is found in residuals, indicating an inadequacy of model

fitting. Analysis results using fatigue symptom outcome can be found in Table A3 in the online Supporting Information.
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6 DISCUSSION

In this paper, we introduce a novel method to analyze data from N-of-1 trials. The method handles temporal correlation

between measurements and carryover effects via distributed lag structure and parameters are estimated using Bayesian

approach with (fused) ridge type regularization. From the design perspective, N-of-1 trial can be viewed as a multi-period

crossover trial in an individual. Traditional crossover trial requires physical washout period to eliminate carryover effects,

resulting in pauses of study intervention and potentially lengthening study duration. Instead of using physical washout

period, our proposed method provides an alternative to address the carryover effects analytically, which can be applied

to N-of-1 trial even without washout period. This is specifically suited to applications where outcomes are measured

continuously over the study period. Our simulation studies show that the proposed BDLM-AR model generally outper-

forms Koyck DLM, BDLagM, BR-DLM and NB-DLM in estimating carryover effects while comparable in estimating the

total effects. Furthermore, we showed that BDLM-AR can simultaneously estimate autoregressive error. The advantage

of BDLM-AR model increases when strong serial correlation exists.

We adopt a Bayesian estimation framework, which facilitates modeling and inference of N-of-1 trial data in several

ways. First, a key in modeling carryover effects in N-of-1 trial data is to address multicollinearity in the lag treatment

effects. Under a Bayesian framework, we achieve this by postulating a prior precision matrix on the lag coefficients to

provide the appropriate constraints on the lag coefficients. Specifically, the designed form of this prior precision matrix is

motivated by and connected to a fused ridge penalized estimation procedure (9), which imposes shrinkage and smooth-

ness of the lag coefficients. Second, while cross validation is often a method of choice in tuning the penalty terms (𝜆i and

𝜆∗
i
via 𝛾1 and 𝛾2) in penalized estimation, it is not feasible to split the sample at random time points because of the tempo-

ral order in N-of-1 trial data. Bayesian formulation provides a natural way to tune the penalties in a data-driven manner

via posterior inference. Third, we have applied our model to a real application of using white light therapy for depressive

symptoms, along with other Bayesian approaches (BDLagM, BR-DLM, NB-DLM). These approaches allow for using pos-

terior credible intervals of individual lag coefficients as inferential tools. The posterior intervals offer additional insights

on the whole time course of treatment effect.
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