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Abstract—Moving object detection and its associated
background-foreground separation have been widely used in
a lot of applications, including computer vision, transportation
and surveillance. Due to the presence of the static background, a
video can be naturally decomposed into a low-rank background
and a sparse foreground. Many regularization techniques,
such as matrix nuclear norm, can therefore be imposed on
the background. In the meanwhile, sparsity or smoothness
based regularizations, such as total variation and /;, can be
imposed on the foreground. Moreover, graph Laplacians are
further used to capture the complicated geometry of back-
ground images. Recently, weighted regularization techniques
including the weighted nuclear norm regularization have been
proposed in the image processing community to promote
adaptive sparsity while achieving efficient performance. In this
paper, we propose a robust dual-graph regularized moving
object detection model based on a new weighted nuclear norm
regularization and spatiotemporal graph Laplacians, which
is solved by the alternating direction method of multipliers
(ADMM). Numerical experiments on realistic body movement
data sets have demonstrated the effectiveness of this method
in separating moving objects from background, and the great
potential in robotic applications.

Index Terms— Moving object detection, sparsity, graph
Laplacian, weighted nuclear norm, alternating direction method
of multipliers

I. INTRODUCTION

The development of advanced robotic technologies has
released traditional robots isolated by fences or other pro-
tective barriers to environments with human beings [1].
Such kinds of robots that are safe and intelligent enough to
work alongside or directly interact with humans are called
collaborative robots, including lightweight industrial robots,
social robots, and service robots [2]. Human motion detection
plays a significant role in the motion planning and control
of collaborative robots to improve the safety and efficiency
of human-robot interaction. On the one hand, the detected
human motion will be used as the input information of
various real-time motion planning algorithms to prevent the
potential collision between a robot and a human subject and
guarantee the safety of human-robot interaction [3]. On the
other hand, the detected human motion can be further used
for human motion analysis and prediction to enable robots to
comprehend human intention and enhance the efficiency of
human-robot interaction [4]. In this paper, we aim to develop
an effective human motion detection algorithm with excellent
accuracy and efficiency.

978-1-6654-0853-0/22/$31.00 ©2022 IEEE

487

Ruilong Shen, Ruihan Zhu and Biyun Xie

Department of Electrical and Computer Engineering

University of Kentucky
Lexington, KY 40506, USA

{Ruilong.Shen, Ruihan.Zhu, Biyun.Xie} @uky.edu

Detection of moving objects in a video with static back-
ground is usually done by separating foreground from back-
ground, and the moving objects are typically considered as
the foreground. Background modeling is crucial in designing
a moving object detection algorithm. Many subspace learning
methods such as principal component analysis (PCA) have
been developed to model background [5] by reducing the
dimensionality and learning the intrinsic low-dimensional
subspaces. In practice, a background matrix can be generated
by concatenating the vectorized versions of background
images of a video, which naturally possesses the low-rank
structure. Thus sparsity of singular values is expected for a
background matrix. In one of the most popular methods -
robust PCA (RPCA) [6], nuclear-norm regularization is used
to enforce the matrix low-rankness as a convex relaxation
of the matrix rank. Numerous variants of RPCA have been
proposed [7], [8] and a comprehensive review can be found
[9]. Recently, adaptive regularization techniques have been
developed to promote sparsity and achieve fast convergence
of the regularized algorithms. For example, the weighted
nuclear norm (WNN) regularization has shown effectiveness
in various image and data processing applications [10], which
can be considered as a natural extension of reweighted L1
[11] and a more general error function based regularization
(ERF) [12].

In this paper, we use the ERF-weighted nuclear norm
regularization (ERF-WNN) imposed on the matrix singular
values to enforce the adaptive low-rankness. In addition, a
video usually has complicated geometry and varying smooth-
ness in either the spatial domain or the temporal domain. To
preserve those geometrical structures in the background, we
create a spatial graph and a temporal graph, which are then
embedded in the graph regularizations of the background
matrix. Generation of the spatial graph is implemented by
comparing the patchwise similarity to exploit the nonlocal
similarity. To reduce the computational cost, we only con-
sider the k-nearest neighboring pixels in terms of similarity
when calculating the pairwise similarity. On the other hand,
the /¢;-regularization is imposed on the foreground due to
its sparsity. Thus far, we propose a spatiotemporal dual-
graph regularized moving object detection model, which is
solved by the alternating direction method of multipliers
(ADMM). After introducing a few auxiliary variables and
splitting regularizers, we obtain a sequence of subproblems.
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One quadratic subproblem is solved by gradient descent, and
the other subproblems all have closed-form solutions which
can be implemented efficiently. Furthermore, we test our
algorithm on the two real RGB videos containing a whole-
body motion and an arm motion under a static background,
respectively. Performance is compared with other related
methods in terms of background recovery and foreground
detection accuracy.

The rest of this paper is organized as follows. In Section II,
we provide a brief introduction of moving object detection
and low-rank based models. In Section III, we propose a
novel spatiotemporal dual graph regularized moving object
detection method based on the ERF-WNN regularization.
Numerical experiments on two realistic videos with moving
objects and the results are reported in Section IV. Finally,
conclusions of this research and future work are presented
in Section V.

II. Low-RANK MODELS

Throughout the paper, we use boldface lowercase letters
to denote vectors and uppercase letters to denote matrices.
For p > 1, the £,-norm of a vector x € R" is given by
x|, = (31, |#:]P)'/P. The entry-wise ¢1-norm of a matrix
X € R™™ is defined as [|X||1 = >, ;[vi;| where z;; is
the (4, j)-th entry of X. The Frobenious norm of X, denoted
by || X||p, is defined as

X, denoted by || X]||«, is defined as the sum of all singular
values of X. We use the symbol diag(x) to denote a diagonal
matrix whose diagonal entries form the vector x, and I, as
the n-by-n identity matrix.

Consider a video with a static background consisting of m
frames of gray-scale images with size n; X ng. By reshaping
each image as a vector, we convert a video to a matrix D
of size n X m where n = njing is the number of total
spatial pixels. Assume that D can be decomposed into the
background component L and the foreground component
S, where L, S € R"*™, Here we let S correspond to the
moving object. That is, we have D = L+ S in the noise-free
case. In order to retrieve L and S from D simultaneously,
we apply regularization techniques on both variables. Since
the background is static, the matrix L typically has low-rank
structures. In the meanwhile, the object occupies a small
portion of each frame and thereby S is sparse. Thus we
consider the problem

I{liélrank(L) + A|S|y st D=L+S.

>_i; |zij[?. The nuclear norm of

Here A > 0 is a regularization parameter and rank(L)
equals the number of nonzero singular values of L. Since this
problem is NP-hard, matrix rank is replaced by the nuclear
norm which leads to the RPCA model [6]

min|[ L. + AIS]y st D=L+8.

In some RPCA variants [13], [7], the matrix max-norm based
regularizer has been used to replace the nuclear norm
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Here the max-norm of L is given by ||L|max =
ming—yv ||U||2= 00|V ]|2—s00 Where V' is the transpose of
Voand [|Ul]l2500 = max)x|,=1/|UX][|oc. See [14] for the
connections between the matrix nuclear norm and the max-
norm. They both are convex and can be used to describe the
low-rankness of the background matrix. Recently, weighted
nuclear norm minimization (WNNM) has been proposed and
shown outstanding performance in a lot of image process-
ing applications [10]. Specifically, weighted nuclear norm
(WNN) is defined as

Ll == ZwiUi(L%

(D

where o;(L) is the i-th singular value of L in the decreasing
order and w; > 0 is the i-th weight. The selection of weights
is related to adaptive sparsity regularizers such as iteratively
reweighted L1 (IRL1) [11]. More recently, ERF generalizes
IRL1 with improved sparsity and convergence speed [12].
Both can be naturally extended to the singular values in the
WNN framework to promote the low-rankness. In this paper,
we adopt a novel ERF-WNN as the regularizer that will be
detailed in the next section.

III. PROPOSED METHOD

Moving object detection (MOD) is one fundamental task
in robotic applications. The problem can be cast as the
foreground and the background separation. In addition to the
low-rankness assumption of the background matrix, we can
use spatial and temporal graph regularizations to preserve the
sophisticated geometry. To split multiple regularization terms
in the proposed MOD model, we apply ADMM to derive an
efficient algorithm.

A. Spatial and Temporal Graph Laplacians

In what follows, we will describe the generation of spatial
and temporal graph Laplacians and their corresponding graph
regularizers on the background.

For a reshaped video D € R™*™, rows and columns
of D correspond to the spatial and the temporal samples,
respectively. Consider a weighted temporal graph G; =
(Vi, By, Ay) where V, {vi}m, is a set of temporal
samples, E; is an edge set and A; € R™*™ is the adjacency
matrix which defines the weights. First, we generate an

adjacency matrix A; whose (¢, j)-th entry is given by

(At)i,j = exp (

where h; > 0 is a temporal filtering parameter. Let IW; be the
degree matrix of G; where (W,);; = ZT=1(At)i,j- Next we
define a symmetrically normalized temporal graph Laplacian
®, € R™*™ given by

&, = I, — W, AW, 2

Note that Wt_l/ °
entry is (T/I/,g);il/2
Likewise, we consider a weighted spatial graph G5 =

(Vs, Es, As) where V, = {v$}™_, is a set of spatial samples,

vt A

7 > ije{l,...,m}

is a diagonal matrix whose i-th diagonal
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E; is the edge set and A, € R™ ™ is a spatial adjacency
matrix. Slightly different from the construction of A;, we
consider the patchwise similarity in the spatial domain for
As. Specifically, the (i, j)-th entry of Ay is given by

IN(vi) - N(v
h?

2
F

S

)l

J

(As)ij = exp <— ),i,je{l,...,n}

where N(vS) € RP"*™ is a reshaped version of the video
patch centered at the i-th pixel and hy > 0 is the spatial
filtering parameter. To reduce the computational cost, we
consider the k-nearest neighbors in terms of location for
calculating Ag. Specifically, we use the four-nearest neigh-
boring spatial pixels to compute the patch-based similarity
for generating the spatial adjacency matrix A,. Likewise we
use the four-nearest neighboring temporal pixels to compute
At. Moreover, it is worth noting that Gaussian smoothing
could be embedded to the calculation of patchwise similarity
in the presence of noise. Now we define the symmetrically
normalized graph Laplacian in the spatial domain as

O, =1, - WA W Y2,

Similar to Wy, W is the degree matrix corresponding to G
which can be obtained using A,. Furthermore, we save all
graph Laplacians as sparse matrices to circumvent the out-
of-memory issue.

B. Robust Dual-Graph Regularized Method

Let D € R™ ™ be the reshaped video with n spatial
pixels and m temporal frames. Assume that &, € R"*"
and &, € R™*™ are the respective spatial and temporal
graph Laplacians, which are obtained from Section III-A. We
propose a robust foreground-background separation model of
the form

min
L,SeRnxm

+ % tr(L7®,L) + % tr(L®,L7).

ID =L — S|+ M| Lllws + A2llS]h

Here we adopt the L;-norm in the first data fidelity term
to enforce the robustness of the method and suppress the
outliers for recovering the low-rank component, and ||-||w,+
is the WNN defined in (1) with weights generated by
ERF. The last two graph regularization terms are used to
enforce the spatiotemporal smoothness for the background.
By introducing an auxiliary variables U and V, we rewrite
the above problem

min IIVH1+)\1HUIIW*+A2HSII1+ tr(L7®,L)

L,S,UV

+5tr(Lq>LT) st U=L, D—-L—-S=V.

Define the augmented Lagrangian

=Vl + >‘1||UHW* + Aol Sl + *tr(LT‘I’ L)

+5tr(L<I>tLT) Bo- L+U||F+

|1D—L— S+V+V||F
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Based on the ADMM framework, we obtain the algorithm
L+ argj{nin % tr(LT®,L) + % tr(LOLT)

+%HU—L+I7||%+%||D—L—S+V+17||%
 « argmin Xa||S] + 31D~ L - S|

U%mgmmﬁUW%+%WU—L+m@
U

A 1 ~
= argmin ~H|Ulw,. + S |U - L+ U|%
U Pl 2
V < argmin||V||; + pZ—ZHD —L—-S+V+ 17||%
1%

U«U-+(U-L)
VeV4+(D-L-S+V)

The first L-subproblem can be solved by gradient descent.
Specifically, the gradient of the objective function is

V(L) =n®sL +~2L® + py(L—U - U)

+p2(L=D+S-V-V).

Note that & tr(XTAX) = (A+ AT)X = 24X if Aisa
symmetric matrix.Then at each step, we update L with fixed
S, U, U,V,V via

L+ L—dt-Vf(L), 2

where dt > 0 is a step size. It can be empirically shown that
only a few steps of gradient descent are sufficient. Next, the
S-subproblem has the closed-form solution

S < shrink(D — L, A2). 3)

Here the shrinkage operator is defined as (shrink(A, p1));; =
sign(a;;) - max{|a;;| — p, 0} where a;; is the (4, j)-th entry
of A. One can show that the U-subproblem has the closed-
form solution via a weighted version of the singular value
thresholding operator (SVT)

U« ASB, ¥ = diag(shrink(o(L), w;A\1/p1))  (4)

where AYB is the singular value decomposition (SVD) form
of the matrix L := (L—=U), (L) is the vector containing all
the singular values of L with o;(L) as its i-th component.
Here the weights are constructed iteratively based on the
singular values of the matrix L from the previous iteration
based on ERF [12]:

—o(L)/o?). )

Finally, the V-subproblem is similar to the S-subproblem
with the closed-form solution and thereby V' is updated via

(6)

As one crucial preprocessing step, we remove motionless
frames in the data set if two consecutive frames have small
overall changes, i.e., the ¢1-norm of the difference vector
of the two adjacent columns of D is below a threshold.
The stopping criteria are based on the relative changes in

w; = exp(

V ¢ shrink(L + 5 — D — ‘7,,02).
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. Litl_pi i+l qi
L and S, ie., M < tol and M < tol
[P [ERIE

where L? and S? are the obtained background and foreground
matrices at the i-th iteration and tol is tolerance. Notice that
the parameters - A2, p2 - in the shrinkage operator can be
adaptively updated. The entire algorithm is summarized in
Algorithm 1, which can be extended to handle RGB data sets
channelwise. In this work, we focus on gray scale videos by
converting all RGB data to gray scale ones.

Algorithm 1 Robust Dual-Graph Regularized Moving Object
Detection
Inputs: reshaped test video D € R™*™, graph filtering
parameters hg, hy > 0, parameters A1, A2, v1, 72, P1, P2 >
0, maximum outer loops T,,;, maximum inner loops T},
tolerance tol
Outputs: background L and foreground S
Generate graph Laplacians ®; and @,
Initialize L and S
fori=1,2,...,T,, do

for j =1,2,...,T;, do
Update L via (2)
end for

Update S via (3) R

Update U via (4) and singular values o;(L)

Update W via (5)

Update V' via (6)

U«~U+(U-1L)

Ve«—V+D-L-5S+YV)

Exit the loop if the stopping criteria are met.
end for

IV. NUMERICAL EXPERIMENTS

In this section, we will test the proposed Algorithm 1
on two simulated moving object images. For compari-
son, we include three closely related algorithms based
on the fast robust principal component analysis (RPCA)
[6]: (1) Largangian optimization method for unconstrained
RPCA (LAGO) (2) stable principal component pursuit
(SPCP) [15] and (3) SPGL1 [16] for solving the problem
miny, s max{||L||«, A||S]|1} subject to ||[D — L — S||r < e.
Their source codes can be found in fastRPCA https://
github.com/stephenbeckr/fastRPCA [17]. There
are two groups of metrics for comparing the performance,
i.e., comparing the foreground and the background. First,
the static background image is extracted from the low-rank
component of the given video. We take the mean column
of the low-rank matrix L and then reshape it as a matrix.
We use the following metrics to evaluate the background
recovery quality:

_ IL=L||F.

o relative error (RE): RE(E7 L)= ST
o peak signal-to-noise ratio (PSNR): PSNR(L, L)
2010g(Inax/+/ IZ — L2/ (n1n2)).

Here L is the estimate of the ground truth L € R™*n"2,
and I,.x is the maximum image intensity set as 1. In our
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experiments, all of the videos to be processed are scaled to
the range [0, 1].

For the foreground assessment, we apply the hard thresh-
olding to extract the foreground masks and then compute the
following metrics. Here ground truth foreground masks are
manually made. Let TP be the true positive counting the
foreground pixels correctly labeled as foreground, F'P be
the false positive counting the background pixels incorrectly
labeled as foreground, and F'N be the false negative counting
the foreground pixels incorrectly labeled as background. The
three metrics are defined as follows.

e Precision (Pr): Pr=TP/(TP + FP)
e Recall (Re): Re =TP(TP+ FN)
o F-measure (Fm): Fm = 2Re/Pr

All the three metrics are between 0 and 1. The higher the
value is, the more accurate the result is. We also find that
various hard thresholding strategies may cause different one
or two metrics high while the remaining ones are low.

A Microsoft Azure Kinect Sensor was used to record
human motion, including one 1-MP depth sensor, one 7-
microphone array, one 12-MP RGB video camera, and one
accelerometer and gyroscope (IMU) sensor. Designed to
pull together multiple Al sensors in a single device, Azure
Kinect sensors have been employed for various applications,
such as building telerehabilitation solutions, democratizing
home fitness, etc. In this study, only the RGB video camera
was used to record human motion and test the proposed
algorithm. All numerical experiments were run in Matlab
R2021a on a desktop computer with Intel CPU i9-9960X
RAM 64GB and GPU Dual Nvidia Quadro RTX5000 with
Windows 10 Pro.

A. Experiment 1: Whole Body Movement Video

For the first experiment, we consider a video capturing
whole-body movement, which was recorded when one stu-
dent volunteer was walking naturally at an average speed in
a lab room. The video of interest consists of 60 frames where
each frame has 150 x 200 pixels. Due to the limited lighting
conditions, there are inevitable shadows of the person and
brightness variations in the foreground. In Fig. 1, we compare
the recovered background from the various methods. For
each method, we take the mean column of the recovered
L followed by reshaping it as a matrix, i.e., we use the
mean of the obtained backgrounds over 60 frames. There are
some white spots in the blackboard mistakenly recognized
as foreground in the LAGO result and quite a few still
exist in the SPCP result. Both SPGL1 and our results can
recover the background well except the light shadow on the
ground. In Fig. 2, we show the recovered foregrounds at the
first and the last frame. The LAGO result has blurry edges
for the human body, and both SPGL1 and our results can
detect the shadow motion. The quantitative comparison of
the recovered foreground and background for all methods is
reported in Table I. Our method performs best in terms of
all the comparison metrics for this video data.
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Ground truth LAGO SPCP SPGL1 Alg.1
Fig. 1. Recovered backgrounds of the walking video via various methods.
Original frame LAGO SPCP SPGL1 Alg.1

Fig. 2.

TABLE I
QUANTITATIVE COMPARISON FOR THE WALKING VIDEO

RE PSNR Pr Re Fm
LAGO | 0.0377 33.67 | 09796 0.4673  0.6328
SPCP | 0.0182 39.99 | 09777 0.6354 0.7703
SPGL1 | 0.0148 41.81 | 0.9682 0.7180  0.8246
Alg. 1 | 0.0145 4195 | 09688 0.7187  0.8252

B. Experiment 2: Arm Movement Video

In the second experiment, an arm movement video was
recorded when the student volunteer rotated her forearm
and hand around the elbow joint slowly. The tested video
is generated by removing motionless frames and cropping
the region of interest, which consists of 32 frames and
each frame has 180 x 180 pixels. The visual comparison
of foreground and background for all results are shown in
Fig. 3 and Fig. 2, respectively. In Table II, we compare the
qualities of the recovered background and foreground. Notice
that there is movement still left on the left of the LAGO
background and foreground results while some speckle noise
exist in the SPCP foreground. Both SPGL1 and our approach
can separate the foreground and the background clearly.

In terms of running time, SPCP takes the minimum run-
ning time ( 0.1 s) while SPGL1 based on Newton’s iteration
takes about 50 seconds. Both LAGO and our algorithm
run about 5 seconds and the graph Laplacian construction
can be fast using a small number of neighbors. Overall,
our method can keep a good balance in running time and
detection accuracy. This phenomenon also applies to the first
experiment.
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Detected objects for the walking video via various methods. The two rows correspond to the first and the last video frames, respectively.

TABLE I
QUANTITATIVE COMPARISON FOR THE ARM MOTION VIDEO

RE PSNR Pr Re Fm
LAGO | 0.0151 20.36 | 09617 0.8305 0.8913
SPCP | 0.0132  20.44 | 0.9666 0.8471  0.9029
SPGL1 | 0.0132  35.65 | 0.9665 0.8610 0.9107
Alg. 1 | 0.0104 35.67 | 09704 0.8234 0.8909

V. CONCLUSIONS AND FUTURE WORK

Moving object detection is one of the most fundamental
tasks in video processing with a wide spectrum of ap-
plications, particularly in human-robot interaction. In the
case of limited lightening conditions and/or time-varying
illuminations, it becomes extremely challenging to separate
a moving foreground with shadow from a static background.
One classical type of methods is to segment each single
frame into foreground and background. However, it usually
loses the temporal smoothness and suffers from the inten-
sive computation. In this work, we propose a novel dual-
graph regularized motion detection approach. Specifically,
we exploit the spatiotemporal geometry of the foreground by
constructing the spatial and the temporal graph Laplacians,
and adopt a weighted nuclear norm regularizer based on
the error function to utilize adaptive low-rankness of the
background. The proposed algorithm is derived by applying
the ADMM framework. Numerical results have shown our
method outperforms the other related ones on realistic data
sets. In the future, we will develop fast methods based
on the low-rank tensor decompositions and separate the
shadow from the detected moving object under sophisticated
lightening environments.
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Ground truth LAGO SPCP SPGL1 Alg.1
Fig. 3. Recovered backgrounds of the arm motion video via various methods.
Original frame LAGO SPCP SPGL1 Alg.1

Fig. 4. Detected objects for the arm motion video. The two rows correspond to the first and the last video frames, respectively.
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