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Abstract

The eco-toll estimation problem quantifies the expected en-
vironmental cost (e.g., energy consumption, exhaust emis-
sions) for a vehicle to travel along a path. This problem
is important for societal applications such as eco-routing,
which aims to find paths with the lowest exhaust emissions
or energy need. The challenges of this problem are three-
fold: (1) the dependence of a vehicle’s eco-toll on its phys-
ical parameters; (2) the lack of access to data with eco-toll
information; and (3) the influence of contextual information
(i.e. the connections of adjacent segments in the path) on
the eco-toll of road segments. Prior work on eco-toll es-
timation has mostly relied on pure data-driven approaches
and has high estimation errors given the limited training
data. To address these limitations, we propose a novel Eco-
toll estimation Physics-informed Neural Network framework
(Eco-PiNN) using three novel ideas, namely, (1) a physics-
informed decoder that integrates the physical laws governing
vehicle dynamics into the network, (2) an attention-based
contextual information encoder, and (3) a physics-informed
regularization to reduce overfitting. Experiments on real-
world heavy-duty truck data show that the proposed method
can greatly improve the accuracy of eco-toll estimation com-
pared with state-of-the-art methods.

Keywords: eco-toll estimation, physics-informed
machine learning, spatiotemporal data mining

1 Introduction

The development of on-board diagnostics (OBD) sys-
tems, which provide vehicle self-diagnosis and report-
ing capabilities, offers a transformative way to monitor
the real-world functionality of vehicles. Using histori-
cal OBD attributes as training data, the eco-toll esti-
mation (ETE) problem aims to quantify the expected
environmental cost (e.g., energy consumption, fuel con-
sumption, exhaust emissions, etc.) for a vehicle given a
query path and a user-specified departure time. Figure
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Example training data (on path|_4) and an ETE query (on paths).
Figure 1: An example of the ETE problem with training
vehicle OBD data attributes and an ETE query.

1 shows an example of the ETE problem with histori-
cal OBD data on four paths (path;_,) and one query
composed of pathy, departure time, and the mass of
a vehicle. This problem is of significant societal im-
portance because it is an indispensable function of eco-
routing, which aims to identify the most environmen-
tally friendly travel route between two locations on a
road network. Solving the ETE problem contributes to
saving energy and mitigating transportation’s impact
on the environment and public health.

The challenges of this problem are three-fold. First,
unlike common metrics of path selection such as dis-
tance and travel time, a vehicle’s eco-toll is affected by
the vehicle’s physical parameters (e.g., vehicle weight,
size, powertrain and power). Second, the paucity of
available eco-toll data makes it challenging to develop
accurate eco-toll estimation models. Most studies on
eco-toll estimation models [11,12] are conducted on data
generated from vehicle simulators. These simulators re-
quire second-by-second vehicle velocity profiles as a key
input. Due to high cost, however, most large scaled mo-
bile sensors have low sampling rates in practice, which
greatly limits the availability of data for testing and
training [17]. Finally, the eco-toll on one road segment
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is influenced by the contextual information (i.e. the
connections of adjacent segments) of the path. For ex-
ample, a vehicle on a highway will incur an extra eco-toll
for acceleration if it just enters from an entrance ramp.

Most related work on eco-toll estimation is based
on purely data-driven methods. For example, Huang
and Peng proposed a Gaussian mixture regression model
to predict energy consumption on individual road seg-
ments [12]. The U.S. National Renewable Energy Labo-
ratory (NREL) proposed a lookup-table-based method,
which lists energy consumption rate by category of road
segments [11]. However, travel eco-toll is influenced by
many physical vehicle parameters (e.g. mass, shape,
drive cycle, velocity profile, etc.). Thus, these purely
data-driven methods have met with limited success due
to their large eco-toll data requirements and have high
estimation errors given the limited training data. To
produce physically consistent results, Li et al. intro-
duced a physics-guided K-means model [15], however it
only provides results on paths with historical OBD data.

Much research has been conducted on other travel
metrics (e.g., travel time). For example, Fang et al.
proposed a contextual spatial-temporal graph attention
network (ConSTGAT) [5], which contains a graph at-
tention mechanism to extract the joint relations of spa-
tial and temporal information and uses convolutions
over local windows to encode contextual information of
road segments. However, they do not consider the in-
fluence of a vehicle’s physical parameters on its eco-toll,
and also require large amounts of training data. More
details about the related work are in the full version of
this paper [16].

In this work, we propose an eco-toll estimation
physics-informed neural network (Eco-PiNN) frame-
work to address the ETE problem. Our main con-
tributions are as follows: (1) We propose a physics-
informed decoder that integrates physical laws govern-
ing vehicle dynamics into Eco-PiNN. (2) We propose
an attention-based contextual information encoder to
capture a path’s contextual information. (3) We intro-
duce a physics-informed regularization (specifically, a
jerk penalty) to guide the training of Eco-PiNN. (4) We
conduct extensive experiments on real-world heavy-duty
truck datasets, showing that Eco-PiNN outperforms the
state-of-the-art models.

Purely data-driven machine learning (ML) models
often suffer from limited success in scientific domains
because of their large data requirements, and inability
to produce physically consistent results [20]. Thus,
research communities have begun to explore integrating
scientific knowledge with ML in a synergistic manner.
This kind of work is being pursued in diverse disciplines,
such as climate science [4], biological sciences [1], etc.

Table 1: Use cases of proposed model.

Application Area Example Use Cases

Transportation Eco-toll estimation
Electricity Electricity grid loss estimation
Environment River flow estimation

Computer Network Internet traffic estimation

Our work represents the first effort to propose a model
that leverages the physical laws of vehicle dynamics
with neural networks to address the challenges in the
ETE problem. As summarized in Table 1, the proposed
model can also be generalized to estimation tasks on
other application areas where spatial graphs are defined,
such as predicting electric power losses on transmission
lines in electricity grids.

In this paper, we only consider variables contained
in existing OBD data. Other components which can
influence the eco-toll but are either difficult to extract
or are not typically found in OBD data (e.g., driver be-
havior, weather conditions, auxiliary power from HVAC
system,, etc.) are not considered here. Computational
complexity analysis is also outside the scope of this pa-
per.

2 Preliminaries

2.1 Notations and Definitions

DEFINITION 1. A road network refers to a weighted
directed graph (G = (S,N')) modeling a road system in
a study area, where S is a road segment set and N is a
node set. Fach s; € S represents a road segment (e.g.,
s1 in Figure 1), and a node n; € N represents a road
intersection shared by segments (e.g., nq in Figure 1).

DEFINITION 2. A path is a sequence of road segments
(e.g., in Figure 1, paths = [s10,57,53]). The ith seg-
ment of the path is denoted by path(i) (e.g. paths(1l) =
s10). A path length is defined as the number of road
segments in a path (e.g. length(paths) = 3). A sub-
path is a path that makes up a larger path in the graph
(e.g., [$10, 7] is a subpath of paths ).

DEFINITION 3. An eco-toll estimation (ETE) query
is represented by a three-element tuple qry =
(path;, to,vp), where path; is the query path, ty is the
departure time, and vp is the vehicle’s physical parame-
ters (e.g., Figure 1 shows a query on paths of a 16-ton
vehicle with departure time at 11am on Wednesday).

DEFINITION 4. On-board diagnostics (OBD) At-
tributes. Raw OBD data contain a collection of multi-
attribute trajectories and the physical parameters of the
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corresponding vehicles. In this paper, each trajectory
is map-matched to a path in the road network asso-
ciated with a few OBD attributes to train the model,
namely, the departure time, vehicle mass, travel eco-toll
and travel time on each road segment (e.g., Figure 1
shows OBD training data on four paths).

2.2 Problem Definition The eco-toll estimation
problem is defined as follows:

e Input: An ETE query ¢gry composed of a query
path in a road network, a departure time tg, and a
vehicle’s physical parameters vp.

e Output: The estimated eco-toll of the query gry.
e Objective: Minimize the estimation error.

e Constraints: In both training and testing
datasets, the OBD data, including trajectories and
physical parameters of vehicles, are drawn from the
same distribution.

In this work, we use energy consumption as a
proxy for eco-toll. Other measures of eco-toll (e.g.
fuel consumption, exhaustion emissions, etc.) can also
be calculated from the energy consumption given the
vehicle physical parameters (e.g. fuel type) [3]. We only
consider the variables within existing OBD data, so we
assume there is no distribution shift between training
and testing datasets.

3 Proposed Approach

Figure 2 illustrates the overall framework architecture
of the proposed solution. First, a data preprocessing
module processes features extracted from an ETE query
and a road network, and represents the query path as
a sequence of subpaths. Then we propose a novel Eco-
PiNN framework to estimate the eco-toll on a segment
given the representation of the corresponding sub-path.
Finally, in the postprocessing stage, the eco-toll esti-
mation of segments of the path are aggregated together
to generate the ETE of the query. In this paper, we use
the sum operation to do the aggregation.

3.1 Preprocessing The preprocessing module ex-
tracts and aggregates three different types of features
from the ETE query.

Road segment spatial proximity feature. The
relative geographic locations of road segments affect
the traffic conditions on them, and hence the eco-toll.
For example, vehicles on downtown road segments may
consume more energy than those on rural road segments
because of frequent stops and starts caused by traffic.
Thus, we extract this spatial autocorrelation using a

Input: A query containing a path, a departure
time and vehicle's physical parameters

Preprocessing: Feature extraction

& Subpath representation
e

. N
Representation Representation Representation
of subpath| of subpathy oo of subpathy,
Eco-PiNN Eco-PiNN Eco-PiNN

[

—
% Postprocessing: ETE aggregation

‘ Output: ETE of the query ‘

Figure 2: Overall framework for estimating a vehicle’s
eco-toll on a query path.

road segment spatial proximity extraction module. We
first generate an edge-to-vertex dual graph £(G) (also
known as a line graph) of the original road network G,
where a vertex of £(G) represents a road segment and an
edge of L(G) represents a road intersection. Then we use
a pre-trained NODE2VEC [9] model to represent each
segment in a d-dimensional embedding space (denoted
by Figure 3). After that, the nearby road segments in
the road network are given similar representations.

Categorical features. We also extract seven cate-
gorical features, including five road network attributes:
road type, lane number, bridge or not, and the start-
ing and ending endpoint types; as well as two temporal
features: departure day and departure time slot. Each
categorical feature of a road segment is embedded [6]
into a vector with a pre-defined size (i.e., embedding
dimension), and these seven vectors are concatenated
together as a cg-dimensional representation of the cate-
gorical features, where cg represents the sum of the em-
bedding dimensions. All these embedding representa-
tions are initialized randomly and learned in the model
training stage.

Numerical features. Six numerical features are
extracted, namely, vehicle mass, speed limit, road
length, turning angle to the next road segment in a path,
direction angle, and elevation change. These numerical
features are normalized and organized together as a vec-
tor of size num = 6. By concatenating all the features
together, each road segment of the query path can be
represented by a vector in (d + cg + num) dimension.

ETE query representation. To address the chal-
lenge that the eco-toll on a segment is influenced by its
adjacent segments in the path, the last preprocessing
step represents the query path as a sequence of sub-
paths to capture the contextual information for each
segment using a sliding window. Figure 3 shows an
example that pathy is represented by four subpaths
(subpathy_4). Specifically, given the contextual window
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Figure 3: Preprocessing with road segment spatial
proximity extraction and subpath representation using
pathy as an example (subpath length [ = 3).

size w, the subpath containing the contextual informa-
tion for the ith road segment in a query path is repre-
sented by: [path(i — w), ..., path(i), ..., path(i + w)] (i.e.
subpath length | = 2w + 1). For example, in Figure
3, the contextual information for sg is represented by
subpaths = [S9, Se, S2], given w = 1. We also implement
subpath padding (using zero vectors) to ensure every
subpath has the same length. For example, a padding
will be added before sg in subpath; in Figure 3. Finally,
we can represent the features of each subpath using a
two-dimensional matrix, and each row of the matrix rep-
resents the features associated with a road segment, as
shown by Figure 3.

3.2 Eco-PiNN Architecture As shown in Figure
4, the proposed Eco-PiNN architecture is composed
of a contextual information encoder to encode
the matrix representation of a subpath to a ”pseudo”
velocity profile of the middle road segment of the
subpath, and a physics-informed decoder to decode
the "pseudo” velocity profile into the ETE of that road

segment. We also propose a novel physics-informed
jerk penalty regularization to guide the training.

3.2.1 Contextual Information Encoder To cap-
ture the contextual information in Eco-PiNN, we esti-
mate the eco-toll of a road segment by employing infor-
mation about its adjacent segments in the given sub-
path. Attention mechanisms have been widely used
to capture interdependence [19]. Thus, we design an
attention-based encoder to learn the local dependency
(i.e. how much attention should be given to different
road segments in the subpath). Specifically, the archi-
tecture of this encoder is inspired by the encoder mod-
ule of the Transformer model [19], which is composed of
a multi-head self-attention mechanism and a fully con-
nected feed-forward network. In detail, the input of the
contextual information encoder is a subpath represented
by X e REwtlx(dtegtnum) that contains the contex-
tual information for its middle road segment (i.e. the
(w + 1)th segment): x = row(, X € R(dtegtnum),
Then, the feature vector of the segment (i.e. x) is taken
as the query of the attention mechanism, and the fea-
ture matrix in the corresponding subpath (i.e. X) is
taken as the packed keys and values. The attention
mechanism is formulated as',

3.1 =X , = 5 = )
Q=xM? K=XMEV=XxM"
T

Vi

where M@, MK MY M© € R%**% are parameter
matrices, and dr = d + cg + num denotes the hidden
size of the attention mechanism. Then, the contextual
information of the middle road segment can be encoded
as Attention by Equation 3.2. The encoded contextual
information is then fed into a multi-layer perceptron
with residual connections and layer-norm to estimate
a ”"pseudo” velocity profile of the middle road segment
of the subpath. Note that we use Softplus [7] as the
activation function of the last layer of the encoder to
avoid zero velocity estimation: softplus(z) = log(1+e¢*).

(3.2) Attention = (softmax( WHMO,

3.2.2 Physics-informed Decoder Next, we decode
the ”pseudo” velocity profile into an eco-toll estimation
using a series of eco-toll consumption equations. This
physics-informed decoder thus integrates extra human
knowledge (e.g. ETE equations) into the neural net-
work, which enables the model to generate more accu-
rate estimation when the training data are limited.
Equation (3.3) shows an example ETE equation
which assumes the energy consumption of a vehicle has

TIn this paper, the head number is set to 1.
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(e.g. Equation 3.3)

Figure 4: Eco-PiNN architecture. Specifically, softplus(x) = log(1 + €*). The loss function is detailed in Sec 3.3.

four parts, namely, the energy used for acceleration,
and that needed to overcome the gravitational potential
energy change, the rolling resistance at the tires, and the
air resistance [2].

(3.3) W= %/(av + gh + cprgu)dt + / %ca”pv?’dt,
where the energy consumption W is determined by the
vehicle’s motion properties (i.e., time (¢), acceleration
(a), velocity (v), and elevation change (h)) as well as
its physical parameters (i.e., mass (m), front surface
area (A), air resistance coefficient (cq;,-), and powertrain
system efficiency (n)). Other symbols in the equation
are constants, including gravitational constant g, rolling
friction coefficient ¢,.., and air density p.

We begin by defining the ”pseudo” velocity profile
vector (denoted by v) estimated by the contextual
information encoder as a velocity profile on a road
segment that is uniformly sampled over time. Then,
under the assumption that the acceleration between
velocity samples is uniform (which is reasonable when
the length of a velocity profile vector (i.e. |v]|) is large
and the travel time between every two velocity samples
(denoted by At) is small), we can calculate At using v
and the length of the road segment length as follows,

[vl—1

; w x At = length
[v|—1
(34) = At =2=xlength/ Z (v(i)+v( +1)).

For example, if v = [1,2,3,2] (mn/s) and the length of
the road segment is 6.5 meters, then Z‘jvzlfl(v(j)qtv(jJr
1)) =13, and At = 1s.

Then, the acceleration profile can be represented by
a vector a € RVl and the jth acceleration a(j) can be

calculated as,

Then, the power profile is represented by a vector
p € RV where p(j), the power at the jth velocity
reading in the velocity profile, can be calculated by

(3.6)
A

p(j) =" (@(@)V() +gh+ crgv(i)) + %cairpvf‘(ﬁ-
Thus, if At is small, we can represent the integral in
Equation (3.3) by the sum of the energy on each time
interval which can be calculated by the average power
of this time interval times At:

v|-1 . .
. p(j) +p(+1)
(3.7) W= ;:1 At s i,

Postprocessing. The estimated energy consumption
of the whole query path can be calculated by summing
all the energy estimations of the road segments in the
path together.

3.3 Training Eco-PiNN with Jerk Penalty
Regularization and Physics-informed Multitask
Learning In the training stage, we introduce a jerk
penalty as a regularization to make the estimated
”pseudo” velocity profiles more similar to real-world ve-
locity profiles using physics knowledge. We also use
a physics-informed multitask learning mechanism to
leverages travel time data to guide the training of the
Eco-PiNN and to prevent over-fitting. In a multitask
learning mechanism, information is shared across tasks,
so the labeled data in all the tasks is aggregated to ob-
tain a more accurate predictor for each task [21].

Equation (3.8) is the loss function we use to train
the proposed framework. It is a weighted sum of three
parts, namely the prediction errors of eco-toll L., that
of travel time L;, and a physics-informed jerk penalty
Ljerk-

(3.8) L =wele +wiLi + wjerk Ljerk-
Inspired by [5], we define the prediction errors of

eco-toll L., and travel time L; as a combination of
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the errors on each road segment and those on the
whole path. Specifically, we use the Huber loss [13] to
represent the error on each road segment, since this loss
can help to alleviate the impact of the outliers. Given
the predicted and true eco-toll W and W on a road
segment, the prediction error of the eco-toll on the road
segment L4 . is calculated as follows.

- LV —w)?
(3.9) Lsege = { S(|W — W| — 35)

where § is a hyperparameter to define prediction out-
liers. Then we use the mean absolute percentage er-
ror (MAPE) to represent the error on the whole path.
Given the predicted and true eco-toll Wpath and Wyaen
on each path, the prediction error of the eco-toll on a
group of paths Lpan.e is calculated as follows.

W —W|<é
otherwise

k
|W1§a2h W(ath|
(k) )

path

(3.10) Lyath,e = average(

Thus, the prediction error of eco-toll L. is the sum of
Lseg,e and Lpath,e:

n(F)

Nseg

1 .
(311) L@ = Lpath e Z '(9];792,)6)’

p‘”h k=1 nseg i=1

where npq:p, is the number of paths, ngléz, is the number

of segments in the kth path, and Lglé’gi,)e is the prediction
error on the ith road segment on the kth path.

The estimated travel time on a road segment ¢ is
calculated by ¢ = (|v|—1)-At. We can get the prediction
error of travel time L; by replacing the predicted and
true eco-toll with predicted and true travel time in
Equations (3.9) to (3.11). The travel time estimation for
a path is the sum of the time estimation of the segments
in the path.

Jerk penalty. In addition to prediction errors, we
introduce a jerk penalty to minimize the jerk of the pre-
dicted velocity profiles. Jerk is defined as the first time
derivative of acceleration. Jerk minimization has been
widely used to model driving behavior, with the goal of
avoiding high jerk rates that can be uncomfortable to
vehicle occupants [10,18]. The jerk penalty also serves
as a regularization of Eco-PiNN to reduce overfitting.
We define the jerk penalty Lje,; as the mean of the
square of the jerk on each road segment:

Npath n‘(se?} ‘Vl

TR S0 B B!

1”8691 1j=1

(312) Ljeri =

where jerk(k’i) (j) is the jerk at the jth velocity reading
in the velocity profile on the ith road segment of the

& fuel only
20% validation 20% testing
] 95% [ ] 95% L 100% ]
5%

60% training

/o 5%

OBD data
Figure 5: Description of how the datasets were split

kth path, and it is calculated as the derivative of the
acceleration:

a(j+1)—ai—1).

(3.13) jerk(j) = SAL

4 Evaluation

Experiment Goals: We validated Eco-PiNN with (i)
a comparative analysis to compare the prediction
accuracy against several strong baseline methods, (ii)
ablation studies to evaluate the contributions of the
physics-informed decoder, jerk penalty, contextual in-
formation and multitask learning, and (iii) a sensitiv-
ity analysis to evaluate the impact of key parameters
(e.g. the weight of jerk penalty).

4.1 Experiment Design

4.1.1 Data The historical OBD dataset was collected
by the Murphy Engine Research Laboratory of the
University of Minnesota. It recorded 1343 trips for four
diesel trucks in Minnesota operating from Aug. 10th
2020 to Feb. 13th, 2021. The statistical information
of these data are detailed in the full version of this
paper [16]. We divided one day equally into six time
slots, and represented the timestamp of entering the
road segment by the corresponding time slot.

We generated the testing data for our experiments
by randomly selecting 20% of the 1343 vehicle trips.
Testing data never changed throughout the experi-
ments, and it contained both travel time and fuel con-
sumption data. To ensure a robust evaluation, the re-
maining 80% of the trip data was randomly divided ten
different times in ratios of 60% training and 20% vali-
dation data. Since fuel consumption data is often lim-
ited in real world settings, we simulated this challenge
by assuming that only a small percentage (e.g., 5%)
of trips (randomly sampled) in any training or valida-
tion dataset contained the corresponding ground truth
fuel consumption data. As noted earlier, the testing
data always contained both travel time and fuel infor-
mation, as shown in Figure 5. Then, we generated
datasets containing pairs of eco-toll-estimation (ETE)
queries and corresponding travel time and fuel consump-
tion (fuel consumption may have no value). Specifically,
each query of all configurations of training/validation
datasets corresponded to a sub-trip whose path length
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was 20, and the step between two sub-trips was set
to 5. From the same testing data, different testing
datasets were generated based on different settings of
the query’s path length (from 1 to 200). For each of
the ten configurations of our training and validation
datasets, we trained the model and tested it using the
testing datasets. Finally, we calculated the mean and
standard deviation of the estimation error on each test-
ing dataset.

4.1.2 Hyperparameter Settings The embedding
size of the NODE2VEC representation of each road
segment (d) was 32. The walk length was 20. The
context size was 10. The number of walks to sample
for each node was 10. The p and q parameters in
NODE2VEC were set to 1. The number of negative
samples used for each positive sample in NODE2VEC
was also 1. The embedding size of the road type and
the endpoints type was 4. The embedding size of other
categorical features, including starting time, the day
of the week, lane number, and bridges, was 2. Thus,
the dimension of the aggregated features was 58 (i.e.
d + cg + num = 58). The context window size was
w = 1. The output size of the first fully-connected
(FC) layer after the attention mechanism was 32. The
output size of the second layer was 58, which equaled
the dimension of the aggregated features for the residual
connection and layer normalization. After that, the
output size of the final linear layer in the encoder was
60 (i.e., |[v] = 60), and the weights for different loss
functions were: w. = 0.2, w; = 0.8 and Wjerr =
le=%. We used the Adam optimization algorithm [14]
to train the parameters with learning rate: le~* and
batch size 512. The parameters were set through a
grid search. We used an early stopping mechanism to
avoid over-fitting: training was terminated if the model
performance stopped improving on the validation set
for ten training epochs, after which the best performing
model was saved.

4.1.3 Approaches for Comparison Using mean
absolute percentage error (MAPE) as the metric,
we compared the prediction accuracy of Eco-PiNN 2
against three baseline methods

(1) The National Renewable Energy Laboratory
(NREL) lookup-table method [11]. Google Maps
claimed that they used the energy estimation models de-
veloped by NREL in their recently launched eco-routing
function [8], so we treated this method as a state-of-
the-art energy consumption estimation model. It ag-
gregates road segments based on their features and cre-
ates a look-up table using the average fuel consumption

20ur code: https://github.com/yang-mingzhou/Eco-PiNN

rate on the aggregated road segments. We used the
numerical and categorical features described in Section
3.1 to generate the look-up table, and the bin widths for
the numerical features were as follows: mass: 10000kg;
speed limit: 10 km/h; road length: 100m; turning angle
to the next road segment in a path: 45 degree; direction
angle: 45 degree; and elevation change: 10 m. The fuel
consumption rate on unseen road segments was repre-
sented by the average fuel rate of its nearest neighbour
bin measured by the Euclidean distance.

(2) ConSTGAT [5]. We needed to learn whether
the state-of-the-art travel time estimation models will
work in an ETE task if physical features are added into
the training data. Thus, we implemented ConSTGAT
using the same features described in Section 3.1. We
treated it as a state-of-the-art travel time eatimation
method because it had been deployed in production at
Baidu Maps, and successfully served real-world requests
[5]. For those parameters that were not mentioned in [5],
we used the similar parameter settings as used by Eco-
PiNN, as well as the same early stopping method.

(3) CI Encoder+FC. To verify whether integrat-
ing the physics laws with the neural network improves
the performance of Eco-PiNN, we developed a model
named Contextual Information Encoder + FC (CI En-
coder+FC) to conduct an ablation test. This model
first encodes the contextual information using the same
encoder as Eco-PiNN, and decodes the velocity profile
to ETE using a fully-connect layer.

4.2 Comparative Analysis To show how well the
methods perform with different amounts of eco-toll
information, we tested two settings. In the first setting,
5% of the queries in the training and validation datasets
had corresponding energy consumption data. The
results are shown in Table 2. As can be seen, Eco-
PiNN significantly outperformed the baseline methods
with all path lengths, especially when the path length
was small. For example, when the path length was 1,
the Eco-PiINN model was about 20% more accurate than
the state-of-the-art eco-toll estimation model (NREL).
When the path length was 200, the Eco-PiNN model
was still 3% more accurate than the baseline methods.
In the second setting, in Table 3, the percentage of
queries in the training/validation datasets that had
corresponding energy consumption data was 20%. In
this case, given more training data, the accuracy of all
methods improved, and Eco-PiNN still outperformed
than all baseline methods. In conclusion, it is reasonable
to say that Eco-PiNN significantly outperforms the
state-of-the-art methods.
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Table 2: Prediction accuracy when 5% of training/validation data contained energy consumption.

MAPE: Mean (Standard deviation)

Path length 1 10 20 50 100 200
NREL 96.45(6.31)  28.68(3.07)  24.03(2.92) 20.41(3.30)  19.39(3.65)  18.83(3.93)
ConSTGAT 136.45(8.04)  27.51(1.44)  23.39(0.90)  20.55(0.89)  19.94(1.74)  20.01(2.81)
CI Encoder+FC  91.34(6.99)  25.30(0.86)  21.95(0.80)  19.67(0.93)  19.06(1.31)  18.81(2.31)
Eco-PINN 73.70(2.37) 21.74(1.26) 18.50(1.36) 15.83(1.72) 15.13(1.68) 15.78(1.79)

Table 3: Prediction accuracy when 20% of training/validation data contained energy consumption.

MAPE: Mean (Standard deviation)

Path length 1 10 20 50 100 200
NREL 92.20(3.14)  26.80(0.93)  22.38(0.89)  18.87(0.96)  18.35(1.08)  18.43(1.56)
ConSTGAT 110.01(6.76)  23.37(0.55)  19.85(0.56)  17.47(0.90)  17.22(1.21)  18.07(1.41)
CI Encoder+FC  77.27(2.60)  21.18(0.55)  18.22(0.71)  15.89(1.14)  15.20(1.62)  15.23(1.82)
Eco-PiNN 70.29(0.89) 20.56(0.18) 17.34(0.19) 14.68(0.22) 14.12(0.30) 14.86(0.64)

4.3 Ablation Studies and Sensitivity Analysis
In this section, we evaluate the contribution of the pro-
posed neural network components on accuracy improve-
ment. In sensitiviy analysis, 5% of queries in the train-
ing and validation datasets had corresponding energy
consumption information.

Physics-informed decoder The contribution of
the physics-informed decoder can be analyzed by com-
paring the performance of Eco-PiNN with that of CI
Encoder+FC in both tables. In the first setting shown
in Table 2, Eco-PiNN significantly outperformed CI En-
coder+FC (e.g. 18% more accurate when path length
was 1) because of the integration of physics laws. In the
second setting in Table 3, given more training data, the
accuracy of CI Encoder+FC also improved, and Eco-
PiNN still outperformed it even though the accuracy
difference between them decreased. Nevertheless, the
standard deviation of Eco-PiNN under this setting was
significantly less than that of CI Encoder+FC, which
shows that incorporating the physics laws also improves
the stability of the model. In conclusion, it is reasonable
to say that the integration of physics laws in Eco-PiNN
improves the performance and stability.

Jerk penalty To analyze the effect of the proposed
jerk penalty, we fixed w. = 0.2 and w = 1 and varied
the weight of the jerk penalty in the loss function wjerk
from 0 to 10™*. When wj,r = 0, the penalty does not
affect model training, so the contribution of the penalty
can be revealed by comparing the prediction accuracy of
the model with wjer > 0 and that with wje,.r = 0. The
results are shown in Figure 6. The comparison between
the MAPE with wje,,, = 1076 and that with wje, = 0
indicates that the jerk penalty component helps improve
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Figure 6: Effect of jerk penalty.

the estimation accuracy, and the improvement increases
with longer paths.

Multitask learning To analyze the effect of
the proposed multitask learning component, we fixed
Wjerk = le — 6 and w = 1 and varied the multitask
learning weights (i.e., we and w;), where w; = 1 — w..
We varied w, from 0 to 1. When w, = 1, the multitask
learning component degenerates to an eco-toll estima-
tion task, so the effect of the multitask learning compo-
nent can be evaluated by comparing the accuracy when
we < 1 against that when w, = 1. The results are shown
in Figure 7. The comparison between the MAPE with
we = 0.2 and that with w, = 1 indicates that the mul-
titask learning component helps to improve Eco-PiNN
performance, and the improvement increases with in-
creasing path length.

Window size. We also analyzed the effect of the
contextual window size by setting w as 0, 1, and 2
and fixed we = 0.2 and wjer;, = 1. When w = 0,
no contextual information is considered. The results
are shown in Figure 8. By comparing the MAPE when
w = 0 with that when w = 1, we can see that leveraging
the contextual information helped improve the accuracy.
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5 Conclusion
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The eco-toll estimation problem quantifies the environ-
mental cost for a vehicle to travel along a path. This
problem is of significant importance to society and the
environment. In this work, we propose a novel Eco-
toll estimation Physics-informed Neural Network (Eco-
PiNN) framework that integrates the physical laws gov-
erning vehicle dynamics with a deep neural network.
Our experiments on real-world vehicle data show that
Eco-PiNN yields significantly more accurate eco-toll es-
timation than state-of-the-art methods. In the future,
we plan to generate synthetic datasets to analyze the
generalization, computational complexity, and sample
complexity of Eco-PiNN. We also plan to model the in-
fluence of other components (e.g., weather conditions)
on eco-toll to further improve its estimation accuracy.
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