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Asymptotic behavior of stochastic currents
under large deviation scaling
with mean field interaction and vanishing noise

AMARIJIT BUDHIRAJA AND MICHAEL CONROY

Abstract. We study the large deviation behavior of a system of diffusing par-
ticles with a mean field interaction, described through a collection of stochastic
differential equations, in which each particle is driven by a vanishing indepen-
dent Brownian noise. An important object in the description of the asymptotic
behavior, as the number of particles approaches infinity and the noise intensity
approaches zero, is the stochastic current associated with the interacting particle
system in the sense of Flandoli ez al. (2005). We establish a joint large deviation
principle (LDP) for the path empirical measure for the particle system and the
associated stochastic currents in the simultaneous large particle and small noise
limit. Our work extends recent results of Orrieri (2018), in which the diffusion
coefficient is taken to be the identity, to a setting of a state dependent and pos-
sibly degenerate noise with the mean field interaction influencing both the drift
and diffusion coefficients, and allowing for a stronger topology on the space of
stochastic currents in the LDP. Proof techniques differ from those used by Orrieri
(2018) and rely on methods from stochastic control, theory of weak convergence,
and representation formulas for Laplace functionals of Brownian motions.
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1. Introduction

Consider the interacting particle system described through a collection of stochastic
differential equations (SDEs) on R¢ given as

dXN (1) =b (XN (1), VN()) dr

1.1
+envo (XN@),VN(0) dW;(t), 1<j<N, NEeN, (-D
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on some finite time horizon 0 < ¢t < T,whereey | 0as N — ooand {W;, j € N}
are independent m-dimentional Brownian motions on [0, 7]. Here V¥ (¢) is the
empirical measure of the particle states at time ¢, namely

N
1
VN(I)ZNZSXJ’.VU)’ 0<t<T,
j=1

and thus the interaction among the particles is of the mean field type and influences
both the drift and diffusion coefficients of each particle. The law of large num-
bers (LLN) and fluctuation results for such mean field systems have been widely
studied, see for instance [4,9,22,25-27,31]. In particular, when N — oo, under
conditions on the coefficients and the initial data, {VN (),0 <t < T} converges
to the solution of the Vlasov equation

9
SV VbV =0,

which can be formally written as

0

—V+V.-J=0, (1.2)
ot

where J = b(-, V)V is the nonlinear current given as the limit of the stochastic
currents

IV () = Z/ XN(z) odX ™ (1), (1.3)

defined for arbitrary smooth and compactly supported ¢ : (0,7) x RY - RY,
where o denotes the Stratonovich integral. Currents and their stochastic counter-
parts are key objects in geometric measure theory and play an important role in the
theory of rough paths (cf. [14, 17, 18, 23]). In the current context they provide a
convenient way to describe the asymptotics of the empirical measure process V'V
In this work we are interested in studying the asymptotics of probabilities of
significant deviations of the empirical measure V', for the N -particle microscopic
stochastic evolution described by (1.1), from its macroscopic hydrodynamic limit
described by the first order Vlasov equation in (1.2). A common approach to such a
study is to establish a general large deviation principle (LDP) on an appropriate ab-
stract space from which the information on probabilities of deviations for specific
events involving the N -particle system (1.1) can be obtained by a suitable applica-
tion of the contraction principle. In view of the representation of the hydrodynamic
limit of V¥ in terms of the nonlinear current functional 7, a natural candidate for
an LDP are the pairs (VV, JV) regarded as random elements of an appropriate
space. Under the conditions on the coefficients considered in this work (see Con-
dition 2.1), VN will take values in V = C([0, T], P;(R%)), namely, the space of
continuous functions from [0, 7] to the space P; (R?) of probability measures on
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R with finite first moment, equipped with the Wasserstein-1 distance (see Sec-
tion 2 for precise definitions). The identification of an appropriate space for J~
requires a bit more work (cf. [13,29]). In particular, note that (1.3) describes an
uncountably infinite collection of identities in which the right-hand side is defined
in an almost sure sense for each fixed ¢. Thus a basic problem is to provide a
pathwise representation for the collection

1 & (T
WWZ/O o (1. X () 0 dX] (1) ¢ (1.4)
ji=1

which defines a continuous, linear map on a suitable function space. This problem
was studied in [13] (see also [29]) where it was shown that there is a random vari-
able 7V with values in a certain negative Sobolev space H™* of distributions (see
Subsection 2.2), which gives a pathwise representation for the collection in (1.4) in
the sense that

N 1 al T N N
(TN, ¢) = NZ/O go(t,Xj (z)) odxN(@)  as,
j=1

for every smooth ¢ with compact support. Thus the stochastic currents 7% can
be viewed as random elements of the Hilbert space H™®, and the basic problem of
interest is then to establish a large deviation principle for (VY , 7¥)in V x H™S.

This large deviation problem in the setting where m = d and 0 = Id was stud-
ied in [29] by direct change of measure arguments. Specifically, [29] treats the large
deviation upper bound by first establishing an estimate for compact sets by consid-
ering an explicit tilt of the measure and then extends the estimate to all closed sets
by establishing certain exponential tightness estimates. The lower bound is proved
by exploiting connections between large deviations and I'-convergence from [24],
in particular the key idea is to construct a suitable ‘recovery sequence’ using results
from [16]. One important aspect of the results and proof methods in [29] is that
the LDP is established with the weak topology on the Hilbert space H™®. Indeed,
both the proofs of the upper and lower bounds rely on the use of the weak topol-
ogy in important ways; e.g., since bounded sets are relatively compact under the
weak topology in H™®, in proving exponential tightness it suffices to estimate the
probability that 7 takes values in the complement of a bounded ball.

In the current work we take a different approach to the study of the large devi-
ation principle that is based on methods from stochastic control, the theory of weak
convergence of probability measures, and Laplace asymptotics. This approach al-
lows us to avoid establishing exponential tightness estimates of the form in [29]
and enables us to treat diffusion coefficients that are state dependent and possibly
degenerate (see Subsection 2.1). In addition, since in this approach one needs to es-
tablish ordinary tightness rather than exponential tightness, by appealing to certain
compact embedding results for Sobolev spaces, we are able to establish an LDP
with the norm topology on H™® instead of the weak topology considered in [29].
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In fact, we establish a somewhat more general large deviation principle than the
one considered in [29] from which the LDP for (V, 7V) can be deduced by
the contraction principle. Specifically, we consider path empirical measures
associated with the interacting particle system in (1.1) defined as

1 N
N _
S PIL
J:

Under the conditions of this work it follows that uV is a random variable with
values in P; (C([0, T'], R¥)), namely the space of probability measures, on the Ba-
nach space of R?-valued continuous trajectories on [0, 7], with integrable norm
(equipped with the Wasserstein-1 metric). Our main result, Theorem 2.10, gives an
LDP for (u™, V) in P1(C([0, T], R%)) x H™S. Using the continuity of the map
v > {t > vor; 1} from Py (C([0, T, R?)) into V, where 7; is the projection map
on C([0, T], R?) giving the evaluation at time ¢, we then deduce an LDP for the se-
quence (VN ,7V)in ¥V x H® in Corollary 2.11. The rate function, in the general
setting of a state dependent diffusion coefficient, is given as a value function of a
certain deterministic mean field control problem with a quadratic cost (see (2.11)
and (2.16)). In Proposition 2.12 we show that in the special case where o = 1d, this
representation of the rate function simplifies to a more explicit form given in terms
of certain controlled Vlasov equations (see (2.17)) which was obtained in [29].

As noted previously, proof techniques here are quite different from [29]. The
starting point of our analysis is a certain variational representation for exponential
functionals of finite dimensional Brownian motions (see [2, 6]), using which the
proof of the large deviation principle reduces to a study of tightness and conver-
gence properties of certain controls and controlled analogues of the state processes
{X jN ,1 < j < N}, state empirical measures V", path occupation measures u?,

and stochastic currents 7%, denoted as {)ZJN, 1 <j <N} VN, ﬁN, and JN,
respectively. For the upper bound proof we introduce certain joint empirical mea-
sures, denoted as O (see (3.7)), of particle trajectories and associated control pro-
cesses. The main step in the proof of the upper bound is to establish the tightness
of the sequence {(iz"V, OV, V), N € N} and to provide a suitable characteriza-
tion of the weak limit points of this sequence. In particular, the tightness of the
controlled stochastic currents {7V} is established with the norm topology on H™*
and relies on approximations of {7} by distributions with compact support as
well as certain compact embedding results for Sobolev spaces (see Lemma 4.5).
The lower bound proof is constructive in that, given a near optimal measure p on
C([0, T],R?) and a near optimal current 7 in a certain variational problem asso-
ciated with the rate function, we construct a sequence of controls and controlled
variables (i, ) that converge to (i, 7) in a suitable manner. The key ingre-
dients in the proof here are a weak uniqueness (i.e., uniqueness in probability laws)
property of certain equations associated with the controlled versions of the Vlasov
equation (1.2) (see Lemma 3.5) and certain infinite product space constructions.
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Large deviation principles for weakly interacting diffusions as in (1.1) with
non-vanishing noise (i.e., ey = 1) have been studied in [10]. A different approach,
based on weak convergence methods of the form used in the current work, was
taken in [8]. The latter paper, in contrast to [10], allowed for degenerate diffusion
coefficients and for a mean field interaction in the diffusion coefficient. There
have also been several works (in addition to the paper [29] discussed above) that
have studied large deviation problems for weakly interacting diffusions with small
noise. In particular, see [19,30], and references therein, for large deviations results
for McKean-Vlasov equations in the small noise limit; and see [20] for an analysis
of interchanging of mean field limit with the small noise limit at the level of rate
function convergence. In a related direction, the paper [5] studied large deviation
properties of a system of interacting diffusions in which each particle is driven by
an independent individual source of noise and also by a vanishing amount of noise
that is common to all particles. Different levels of intensity of the small common
noise lead to different types of large deviation behavior, and the paper [5] provided
precise characterization of the various regimes.

1.1. Organization

The paper is organized as follows. In Section 2, we specify our model, describe the
space on which the large deviation principle will hold, define the rate function, and
present our main large deviation result. Section 3 provides the proof of this result,
with the proofs of its key lemmas given in Section 4. The proofs of some auxiliary
results are given in the Appendix.

1.2. Notation

The following notation will be used throughout. We use C(R, S), C.(R, S), and
C*(R, S), k € NU {00}, to denote the spaces of continuous, continuous and com-
pactly supported, and k-times continuously differentiable functions from R into S,
respectively. Also, Cf(R, S) =C.(R,S)NC*(R, S) fork € NU{oo}. We denote
by L2(, R, S) the space of ji-square integrable functions from R into S. When p
is the Lebesgue measure, we will occasionally suppress it in the notation and write
L%(u, R,S) as L?(R, S). The evaluation of a distribution F on a test function ¢
will be denoted by (F, ¢), and integration of a function f with respect to a mea-
sure u will be denoted by (i, f). B(S) denotes the collection of all Borel sets on
S. For a Polish space (S, ds), P(S) denotes the space of probability measures on
S, endowed with the topology of weak convergence. A convenient metric on this
space is the bounded Lipschitz metric given as

dy(p,v) = sup |(u, f)— (v, f)
fern(s)

, w,v e P(S), where

Ly(S) =4/ €C(S.R) : sup M

<1, sup|f(x)| =1¢.
x#y ds(x,y) x
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When 6 € P(S), the notation Ey will be used to denote expectation on the prob-
ability space (S, B(S), 0). For two spaces S; and S, and 6 € P(S; x S3), 01
and 6() will denote the marginal distributions on S; and S, respectively. Similar
notation will be used when more than two spaces are involved. Euclidean norms
will be denoted by | - |. For a Polish space (S, ds), the space C([0, T], S) will be
equipped with the metric

d(x,y) = sup ds(x(1),y(r)),

0<t<T

under which it is a Polish space as well. On C([0, T],R¢), we define the norm
[xlloo = supg<,;<7 [x(?)|, and the metric above becomes d(x,y) = [x — y|loo-

We will use = to denote convergence in distribution, and 5) to denote convergence
in P-probability. Infimum over an empty set, by convention, is taken to be +oo.
For a metric space S, a function / : § — [0, o0] is called a rate function if {x €
S : I(x) <[} is a compact set for every [ < oo.

2. Preliminaries and main result

Let (2, F, P,{F(t),0 <t < T}) be a filtered probability space where the filtra-
tion satisfies the usual conditions (see [21, Definition 21.22]). Fix m € N, and let
{W;. ] € N} be a sequence of independent m-dimensional {F(¢)}-Brownian mo-
tions on the time horizon 0 < ¢t < T. For each N € N, we consider the following
system of stochastic differential equations in R?:

t

XN =X;V(0)+/O b (XN (s). VN(s)) ds

2.1)
t
—|—8N/ O(X]N(S),VN(S)) dWi(s), 1<j =N,
0
where V¥ (¢) denotes the P(R?)-valued empirical measure
| N
V@) = ~ ZSXJNU)’ 0<t<T, (2.2)
i=1

and {ey, N € N} is some sequence in Ry such thatey | 0 as N — oo. Without
loss of generality, we will assume that supy ey < 1 throughout. Denote X =
C([0, T],R?), and define P(X)-valued random variables, given as the empirical
measure of(XN,...,XJIVV),by

1 N
N -
noo= ﬁ E l(SXj_v. 2.3)
J=
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Note that the marginal of /¥ at time ¢ is V' (¢), that is, defining 7, : C([0,T],R¢) —
R? as the projection map 7;(x) = x(¢), we have

uNon b = VN, 0<t<T.

We will view each u as a random variable taking values in the Wasserstein-1
space which is defined as follows. For a Polish space (S, ds), define the space
P1(S) by

Pu(S) = {ueP(S): /S ds (x. xo) j(dx) < oo§,

for some choice of xo € S (the space does not depend on the choice of x¢). Then
P1(S) is a Polish space under the Wassertstein-1 distance given by

di(u,v) = sup [{u, f) = (v, )],
feL(s)

_ 2.4)
L) =) f eC(s.R): sup LSO
xzy ds(x,y)

For further details on Wassertstein spaces, we refer to [32]. The particular cases of
interest here are the spaces P;(R%) and P; (X)), and the notation d; will be used
for the metric on both spaces, with the distinction being clear from the context.
Noting that (under Condition 2.1 given below)

N N 1 a N
/de(x,O),u (dx):/XHxHOO;L (dx)zﬁjzz‘iﬂxj Hoo<oo as.,

we see that indeed pu? is a P;(X)-valued random variable. Similarly, it can be
checked that VN is a C([0, T, P; (R?))-valued random variable. Throughout, we
will denote V = C([0, T], P1 (R?)).

2.1. Main conditions

The following is our main assumption on the coefficients.

Condition 2.1. There is some L < oo such that for all x,y € R? and pu,v €
7)1 (Rd)a

b(x, 1) =b(y, )|+ lo(x, u) —o(y,v)| = L (Ix — y[ + di(p, v))
and |o(x, n)| < L.

Note that the above condition implies in particular that for all x € R? and
€ Pr(RY),

b)) < L (1 el + /R Iylu(dy)), @5)
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with possibly a larger choice of L than in Condition 2.1. By standard arguments,
Condition 2.1 implies that there exists a unique pathwise solution to (2.1) for each
N eN.

Remark 2.2. The boundedness of ¢ is used in an important way at several places
in the proof. It is a key ingredient in the proof of Lemma 4.1 which in turn is
key to Lemmas 4.6 and 3.3. The last two lemmas are used in both the upper and
lower bound proofs. For the upper bound proof one can relax the assumption on
the boundedness of o by using localization arguments of the form used in [6] (see,
e.g., [7, Theorem 8.4]), however these localization arguments do not work in a
simple manner for the proof of the lower bound. Relaxing the condition on the
boundedness of o remains an interesting open problem.

We assume the following on the initial conditions of (2.1).

Condition 2.3. Foreach N € Nand 1 < j < N, X]N(O) = x}v e RY is
deterministic. The collection of initial conditions satisfies the following:

(i) There exists some /19 € P(R%) such that dy, (VN(O), ,uo) — 0;
1

N 2
(i) sup — ‘xN’ < co.
szl N ; J

Note that (i) and (ii) above imply that [, |x|? o(dx) < oo from the obser-
vation

N N
1 2 1
/ (|x|2 A K) wo(dx) = lim — Z ()xﬂ A K) < sup — Z ‘xjv
R4 N—>oo N = =

‘2
N>1 N

for any K € (0, 00), and applying Fatou’s lemma. The above condition also gives
that, as N — oo,
dy (VY (0), pro) — 0.

In order to prove the Laplace lower bound, we will make a stronger assumption
given below on the diffusion coefficient o which says that it depends on the state
of the system only through the empirical measure. We will also require the conver-
gence of the initial data in a somewhat stronger sense.

Condition 2.4.

(i) Foreach x € R? and u € Py (R?), o(x, pn) = o(n);
(ii) For all po-integrable f : R — R,

(V¥(0), f) = (0. f)  as N — oo.
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Remark 2.5. Part (i) of Condition 2.4 is used in the proof of the weak uniqueness
result in Lemma 3.5. Relaxing this condition is a challenging open problem. The
second part of Condition 2.4 is used in obtaining the convergence stated in (3.11).

We are interested in the large deviations behavior of v and V'V as well as a
collection of random linear functionals, referred to as stochastic currents, associ-
ated with the sequence of processes { X ]N (t)}. We now introduce these objects. For

each N and ¢ € C°([0, T] x R, R¥) define

N . 1 a T N N
7= 53 [T xyo)eaxyo, 26)
j=1

where the above is a Stratanovich stochastic integral. The relationship between
Stratanovich and Itd integrals gives the following formula for J ¥ (¢):

N

T
IV (p) = %Z ([0 o(t.XN@0)-dxN@) + %((p (. XN0) ,X]N(.))T) ,

Jj=1

where (Y, Z); denotes the quadratic variation at time ¢ of two continuous semi-
martingales Y and Z. From results in [13], J N can be viewed as a random linear
functional on a suitable Sobolev space. We now briefly describe these results and
make precise the space in which these random linear functionals take values.

2.2. Stochastic currents

Recall that for k€N, H* (R, R¢) is the Hilbert space of functions f € L?(R?,R?)
such that the distributional derivatives D® f are also L? functions for all |a| < k,
where ¢ = (ay,...,ay) denotes a multi-index. More generally, for any s € R,
H* (R, R?) is defined as the space of functions f € L?(R?, R?) such that

118 = [ 17 @F (1 +16R) dt <o )

where f &) = [e™ 18X f£(x) dx is the Fourier transform on R¢. We refer the
reader to [1,15,28] for details on these spaces.

In order to describe the linear space associated with the map ¢ — J% (@),
we will need to consider a suitable Sobolev space of functions of time and space.
Following [3,13,29], a natural choice in this regard is the space

HS ((0, T), H* (Rd, Rd)) ,

where s = (s1,52) € (%, 1) x (62—1 + 1, 00) (see [29] for a precise description of the
space). However in order to apply certain compact embedding results (see, e.g., the
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proof of Lemma 3.3) we will consider a slight modification of these spaces defined
as follows.

Fix a,b € Rsuchthata < 0 < T < b and define U = (a,b) and O, =
(%, 1) x (% + 1, 00). Then define

B =g (U2 (RDRY)),  seO,
as the space of functions f : U x R4 — R4 satisfying
||f||52 = ”inZ(U HSZ(R“',R‘Z)) + [f]z

16— £, )
= s aes [ S < oo,

where | - |5, is as in (2.7). The norm || - [s is usually referred to as a Gagliardo
norm, and in fact corresponds to an inner product which makes H® a separable
Hilbert space (see [28, Section 3]). The topological dual of the Hilbert space H®
will be denoted as H™5, namely

H® = (H) .
The norm on this space is given as

I(F, 9)]
p
©eC2® (U xR4 ,R4) lells

[ £]l-s =
For ¢ € C°(U x R?,R?), abusing notation, we let

IV (@) = Z / (t. XN (@) odX ().

1—1

Note that if ¢,., denotes the restriction of ¢ to [0, T] x R¢, then JV (¢) = JV (<pres)
Also, any ¢ € C°([0, T'] x R, ]Rd) can be extended to a ¢, € C°(U x R? RY)
where once more JV (¢) = JV (gam) By a pathwise realization of the collectlon
{o — JN(p)} on C*([0, T] x R?,R?)}, we mean a random variable 7V with
values in H™® such that for any ¢ € Cfo([O, T] x R4, R?) and any extension ¢,,, of
¢ inCX(U xR, RY), (TN, gu) = TV (9) as.

The following result, giving the existence of a pathwise realization, goes along
the lines of [29] . The proof is an immediate consequence of Lemma 3.1 below (on
taking uﬁv = 0 in the lemma), the proof of which is given in the Appendix.

Theorem 2.6. Suppose Conditions 2.1 and 2.3 hold. Then, for each N € N and
s € Oy, there is an H %-valued random variable [ N on (2, F, P) such that, for
every ¢ € C®(U xR, R?), (TN (0), ¢) = [JV (p)|(w) for a.e. w € Q. Namely,
TN is a pathwise realization of {¢ — JV (¢)}.
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Note that the pathwise realizations {7 } are a.s. compactly supported in the first
coordinate. Namely, if Uy C U is an open set such that Uy N [0, T'] = @, then for
all ¢ with compact support in Uy x R?, (7N, ¢) = 0 a.s. In particular, 7V is a
distribution a.s. supported in [0, T'] x R¥.

In this work we will prove a large deviation principle for the pair (1, 7V) in
the space P; (X)) xH™ for each s € Oy, from which an LDP describing the asymp-
totics of V'V will follow by the contraction principle. We begin by introducing the
rate function that will govern the large deviation behavior.

2.3. Rate function
Let R denote the set of positive measures r on B([0, T'] x R™) such that r ([0, 7] x
R™) =t forall0 <t < T, and define
Rli{reR: |y|r(dt,dy) < ooy .
[0,T]xR™

The space R; is a Polish space under the Wasserstein-1 metric (defined as in (2.4)
with § = [0, T]xR™). Each r € R can be decomposed as r(dt, dy) = r;(dy) dt,
where r; € P(R™). For an R;-valued random variable p, consider the McKean-
Vlasov equation

dX(t) = bX(1). V(1)) di + /R (X, V) pi(dy) di,
Viey=PoX(®)h.  V(0) = uo,

2.9)

where X is a stochastic process with sample paths in X', p(dt, dy) = p;(dy) dt is
the disintegration of p, and p¢ is the measure in Condition 2.3(i). The distribution
of a pair (X, p) that solves (2.9), which is a probability measure on Z = X x R,
is called a weak solution of (2.9). Let S(Z) C P(Z) denote the set of all such
weak solutions. With an abuse of notation, we will denote the canonical coordinate
maps on (Z, B(Z)) by (X, p) once more. That is,

XEnr=¢§  pér)=r.  (r)ez

Note that, if ® € S(Z2), then (X, p) satisfies (2.9) ®-a.s. For each ® € P(Z) and
0 <t < T, define the measure

ve(t) = 0o X()™ !,

which is an element of P(R¢). When ® € S(Z), it is easy to check that Condi-
tion 2.1 and Gronwall’s lemma imply that Eg [|X(¢)|] < oo, and hence vg(t) €
P1(RY) for each 0 < t < T. Letting ve denote the map ¢ — ve(?), in fact we
have that ve € V. Foreach ¢ € C°(U xR?,R¥), define the map G,, : S(Z) — R
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by
T
Gy(®) = Eg [/o o (t, X(1)) - dX(t)]
T
= Lo [/O @, X)) b(X(), m(t))dz} (2.10)

+ Ee [/ @, X)) -0(X(1),ve(t))y p(dt, dy)} .
[0,T]xR™
Now let

Pr(Z) = %@eP(Z) . Eo [/0

[0,T]xR™

|y|2p(dr,dy>] < oo} |
and for J € H™S, define
PHT) = {@eS(Z) NPAZ) 1 (T.¢) =Gy (©) forall 9 €C (Ux RY, Rd)} .

Define I : P;(X) x H™® — [0, o0] as

I(p, J)=inf >

1
Eg |:—[ |y|2p(dt,dy)]:®(1):M,®EP*(.,7)}, (2.11)
[0,T]xR™

where we recall that ©(;) denotes the marginal of ® on X',

Remark 2.7. Note that the domain of the function / depends ons € O;. How-
ever, it turns out (see Lemma 4.8) that if /(u, J) < oo for some s € Oy and
(n, J) € Pi(X) x H™S, then 7 € H™¥ foralls’ € Oy, and the value of I(u, J)
is independent of s.

2.4. Main results

In this subsection we present the main results. For each N € N, let ,uN , VN and
JIN be as in (2.3), (2.2), and Theorem 2.6 respectively. Our first main result is a
law of large numbers for (MN, VN, jN).

By using the Lipschitz property of b it can be checked that for 11 as in Condi-
tion 2.3 and any R4 valued random variable & on (2, F, P) with distribution p,
there is an a.s. unique solution &, with sample paths in X', to the equation

t

E@) = Eo+/0 b (£(s). V*(s)) ds, V*(t) = Pot(t)™', 0<t < T (2.12)

Let
u*=Pof L (2.13)
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Using the linear growth of b and Condition 2.3(ii) it can be checked that u* €
Pi1(X).

The following theorem gives the law of large numbers. Its proof is given in
Subsection 3.6.

Theorem 2.8 (LLN). Assume Conditions 2.1 and 2.3 hold and let s € O,. Then,
P
(/J/N,VN,jN)%(IJ/*,V*,j*)
inPi(X)yxVxH ™ as N — oo, where V* and u* are as in (2.12) and (2.13)
and J* is characterized as

T
(T* ) = /0 (V=@0). 0, - b (- V*1))) dt (2.14)

for g € C(U x R4 RY).

Remark 2.9. The pair (V*, J*) can alternatively be characterized as the unique
solution of the equation

%V—FV-IJ(-,V)V:O, T =b(- V)V,  V(0)= o. (2.15)

in the distributional sense on (0, 7) x R, by which we mean that for all ¢ €

C2((0,T) x R4, R)

T 8 T
/ <V(r>,5<p<z,->> di 4 / V(1) Volt, ) - b, V() di =0,
0 0

and for all ¢ € C°((0, T) x RYR?)

T
(T.p) = /0 (V). o(t,)-b(-, V(1)) dt.

Recall the function / defined in (2.11), and for each N € Nletay = N/ 8%\,.
Our main large deviation result is as follows.

Theorem 2.10 (LDP). Assume Conditions 2.1 and 2.3 hold. For eachs € Oy, 1
is a rate function on P1(X) x H™5. Furthermore, the following holds:

() The sequence {(u™,TN), N € N} satisfies the large deviation upper bound
on P1(X) x H™® with speed ay and rate function 1. Namely, for all closed
sets F in Py (X) x HS,

1
limsup — log P (¥, IN) e F) < — inf I(u,J):
N—>oop an g ((M ) ) (w,J)eF (PL )
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(ii) Ifin addition Condition 2.4 holds, then {(u™, JN), N € N} satisfies the large
deviation lower bound on P1(X) x H™® with speed ay and rate function 1.
Namely, for all open sets G in P1(X) x H™S,

llmlnf—logP((pL jN) € G) >— inf I(w,J).
N—oo ay (u,J)eG

The proof of Theorem 2.10(i) is in Subsection 3.3, and the proof of Theorem 2.10(ii)
is in Subsection 3.4. The rate function property of [ is proved in Subsection 3.5.
The proof of Theorem 2.8 is saved for Subsection 3.6, since it goes along the lines
of the proof of the large deviation upper bound.

It is easy to verify that the map v > {f + v o 7r; !} is a continuous map from
P1(X) into V, and recall from above that each ® € S(Z) induces vg € V. From
this and the contraction principle we immediately have a large deviation principle
for {(u™, VN, 7N)}. In particular, we have the following corollary. Define / :
YV xH™ — [0, 0] as

i(V,j)iinf%E@ |:% f[o _— |y|2p(dt,dy)i| ve=V,0eP*(J);. (2.16)

Corollary 2.11. Assume Conditions 2.1 and 2.3 hold. For each's € Oy, [isa
rate function on )V x H™S. Furthermore:

() The sequence {(VN,JN), N e N} satisfies the large deviation upper bound
onV x H™® with speed ay and rate function I ;

(ii) If in addition Condition 2.4 holds, then {(VN,JN),N € N} satisfies the
large deviation lower bound on V x H™® with speed ay and rate function I .

When m = d and o () is invertible, one can give a more explicit representation
for the rate function I as follows. (A similar representation can be found in [29]
for the case 0 = Id.) For ® € S(Z) N Pr(Z) and V € V with V' = vg, define

© = @0 (X(1).o(V)v(t) + b(X(1). V(1)

where v(f) = [za ¥ pr(dy) and p; is obtained from the disintegration of p as
p(dt,dy) = pt(dy) dt. Note that, since V = vg, nt® can be disintegrated as
n®(dx,dy) = 7°(x,dy) V(t, dx) for some /2. Define Ip : V x H™* — [0, 00] as

T
fo(V,J)iinf§% [{vorf |o—1(V(z))<y—b<-,V(z>)|2ﬁ?(-,dy)>dt}, 1)
0 R4

where the infimum is taken over all ® € S(Z) N P2(2) such that V = vg and
with h(f,X) = [ga ¥ 79 (x, dy), (V,J) is a distributional-sense solution of the
equation

9
SV AVRV =00 T =hV. V(0 =po (2.18)
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on (0, T) x R¥. Namely, for all ¢ € C°((0,T) x R?,R)

T P T
/ <V(t), a—w(l,-)> dt +/ (V(), Ve(t,-) - h(z,-)) dt =0,
0 t 0

and for all ¢ € C°((0, T) x RY,R¥)

T
(T.0) = /0 V(0). g(t.) - h(t.) dr. 2.19)

The following result shows that I = Iy. The proof is given in Subsection 3.7.

Proposition 2.12. Suppose that m = d, Conditions 2.1 and 2.4(i) are satisfied,
and o () is invertible for every ju € P (]Rd ). Then I = I,.

3. Laplace asymptotics and variational representation

Using the well-known equivalence (cf. [7, 11]) between the large deviation upper
bound (respectively lower bound) and the Laplace upper bound (respectively lower
bound), we will prove Theorem 2.10 by establishing a Laplace principle on the
space P1(X) x H™®. Specifically, Theorem 2.10(i) will follow from the upper
bound

11m1nf—L log E [ _"NF(”“NJN)]

N—oco dapn

> inf (F(u, I) + I, J)) »

(w,J)EP(X)xH™*

(3.1)

and Theorem 2.10(ii) will follow from the lower bound

1
limsup——1log E [e_“NF(“N’JN)]
N—oo AN (3.2)

< inf (F(u, J) + I, J)),

T (U, T)EP (X)xHTS

where F is any bounded, continuous function on Py (X) x H™5.

The inequality (3.1) will be proved in Subsection 3.3 (under Conditions 2.1
and 2.3), and the inequality (3.2) will be proved in Subsection 3.4 (under Condi-
tions 2.1, 2.3, and 2.4). The rate function property of / is shown in Subsection 3.5.
The starting point for both upper and lower bounds is the following variational
representation.

3.1. Variational representation

Let Ay denote the class of R¥™-valued F(t)-progressively measurable processes
u such that E [fOT lu(t)|? dt] < oo. Forul = u¥,..., u%) € Ap, with each
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u]]V () taking values in R, consider the controlled version of (2.1) given as

dXY@0)=b(XJ (). V¥ () dt +eno (X} ). VY () dW; (1)

+o (XY, VNO)ul @) dt, G-3)
where X ]N 0) = xj-v and
. 1 Y
1% (z):N;(S&NO), 0<t<T.
Analogous to (2.3), /IN will denote the empirical measure of (X N e, X ]1\}’ ), so

that gV o ;71 = VN () for each 0 < ¢t < T. We will also need a controlled

analogue of the stochastic current in Theorem 2.6. For ¢ € C°(U x R4 RY),
define

) T _ ) ) 1 N
= [eexo)dtio. Mo g Y. 6a
j=1

The proof of the following result, which is given in the Appendix, is similar to that
of Theorem 2.6.

Lemma 3.1. Suppose that Conditions 2.1 and 2.3 hold. Then, for each N € N,
1 <j < N,ands € Oy, there is a nonnegative square-integrable random variable
C}?; such that for all ¢ € C°(U x RY,RY)

PV < cllgls as

In particular, the collection {p + JN ()} has a pathwise realization TN on
(2, F, P), namely TN is an H™S-valued random variable such that (T (»), ¢) =
TN (@))(w) for a.e. € Qand all p € C(U x R4, R?). Furthermore, if

1 &L T 2
;u>pl E N Z/o ’uﬁ-v(t)’ dt | < oo, (3.5
= j=1

then supy 1 E[ 5 Z;v:l (C,NS)Z] < oo. In particular, if CY¥ = & Z;V:l CJA;
then sup 4 E[(CSN)Z] < 00.

The following variational representation follows from [2, 6] (see also [8]). Specifi-
cally, the case where {JF(¢)} is the filtration generated by the m-dimensional Brow-

nian motions {W;} is covered in [2], while the setting of a general filtration is
treated in [6]. Recall that ay = N/e3,.
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Theorem 3.2 (Variational Representation). Suppose that Conditions 2.1 and 2.3
hold. Lets € Oy and let F be a real-valued, bounded, continuous function on
P1(X) x H™S. Then for each N € N,

— LlogE I:e_aNF(MN’JN)]

an
1 N T N 2 N AN (36)
:uNngNE W;/o ‘uj (t)‘ dt + F(p"",J")

3.2. Tightness properties

The following lemma gives a key tightness property that will be needed in the
proofs of both upper and lower Laplace bounds. The proof is given in Subsec-
tion 4.1.

Lemma 3.3. Suppose Conditions 2.1 and 2.3 hold. Fixs € Oy, and let {u™¥ ,N €
N} withuy € Ap for each N be such that

1S (T w2
sup E | — / ‘u-(t)’ dt | < oo.
N>1 Nj; o I/

Let X ]N , N, and TN be the controlled sequences corresponding to sequence of

controls {u™} as defined in Subsection 3.1. For each j and N, let pj.v be the
R1-valued random variable given as

Py (dt.dy) = 8,n(dy) dt.

and consider the sequence of P(Z)-valued random variables defined as

N
1
N - * )
oM =+ ;5(@,[}” N eN. 3.7

Then:

(i) The sequence {(a™, OV, jN)_, N e N} is tightin P1(X) x P(Z2) x H™S;
Gi) If @V, QN, IN) = (1,0, T) as N — oo in P1(X) x P(2) x HS, then
Qqy = ftand Q € P*(J) a.s.

3.3. Proof of the upper bound

In this subsection we prove part (i) of Theorem 2.10 by showing that (3.1) holds.
Assume Conditions 2.1 and 2.3. Fix s = (s1,52) € Oy, and a real-valued,
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bounded, continuous function F on P;(X) x H™S. Let ¢ € (0, 1), and using Theo-
rem 3.2 choose {u", N € N} withuy € Ay for each N such that

_ b log E [e—aNF(MNJN)]
an

L& T o (3.8)
>E W;/o ‘uj(l‘)‘ dt + F(iV, JV) | —e,

where (2, JN) are controlled variables corresponding to the control u™¥ as de-
fined in Subsection 3.1. From the boundedness of F it follows that

N .7
1 2
sup £ —Z[ )uﬁv(t)‘ dt | <2 sup |F(u, )|+ 1 < oo.
vzt | 2N = o (14, 7)EP1 (X) xH

By Lemma 3.3, (¥, OV, JN)is tight in P, (X)xP(Z)xH™5. Thus the sequence
(@™, 0N, JV) has a weak limit point (ji, Q, ) along some subsequence, and
once again by Lemma 3.3, Q € P*(J) and Q1) = ji a.s. Assume without loss of

generality that (2™, OV, JN) = (i1, 0, J) along the full sequence. Noting that
0(1) = 1", we have, by (3.8),

1 log E [e—aNF(//«N,jN)]
an

1 ) N .
£ [5 »/Rl /[O,T]XR”’ yFPridt.dy) Q)(dr) + F (Q(l)’ J >:| e

By Fatou’s lemma and lower semicontinuity of the map r +— f[o T]xEm [y|? r(dt,dy)
onR1,

1
liminf —— log E [e—“NF(MNJN)]
N—oco dadpn

1 -
>E [5 /m /[O,T]XRm ly|? r(dt,dy) Quy(dr) + F (Q(l),j)] e

1 _
=E [EQ [5/ Iylzp(dt,dy)} + F (/IL,J)] —¢
[0, T]xR™

> inf (1, J) + F(, 7)) — e,
(1, T)EPI(X)xH™S

where the last line follows on recalling the definition of / and the facts that Q €
P*(J) and Q1) = ft a.s. Since € € (0, 1) is arbitrary, this completes the proof of
the upper bound in (3.1) and thus that of Theorem 2.10(i).
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3.4. Proof of the lower bound

In this subsection we prove part (ii) of Theorem 2.10 by showing (3.2). Fix s =
(s1,52) € Og4. We assume that Conditions 2.1, 2.3, and 2.4 hold. Let ¢ € (0, 1)
and choose (0¢, Jo) € P(Z) x H™® such that ®y € P*(Jp) and

1
Boo |5 [ Potdr.ds)| + F (o). o)
[0, T]xR™

< inf (I, J) + F(u, ) +e.
(14, 7)€Py (X)xH

3.9)

To prove the lower bound we will construct a sequence {u” } of controls on some
filtered probability space such that u¥ € Ay for each N and

N—>o0

. 1O (T oy N AN
limsup E WZ/O ‘uj (t)) dt+F(;,L T )
j=1 (3.10)

1
<Ee, [— f |y|2p(dt,dy):| + F ((®0)1). Jo) -
2 Jio,T]xr™

where iV and TN are the controlled processes corresponding to {u™ }. It will then
follow by Theorem 3.2 and (3.9) that

1
limsup ——— log E [e_“NF(“N’JN)]
N—oco 4N

N T
1 2 -
<limsup E WZ/O (uy(t)) dt + F (@, FV)
j=1

N—>o0

< inf (e, T) + F(u, J)) +e.
(14, 7)€Py (X)xH—S

Since ¢ > 0 is arbitrary, the lower bound follows.
The construction of a sequence {u”} such that the inequality in (3.10) holds
will need the following uniqueness property.

Definition 3.4. Let 6 : Z — R% x R denote the map 0(£, r) = (£(0), r). We say
that weak uniqueness of solutions of (2.9) holds if ®,®, € S(2) N P2(2) and
©1007! =000 imply that ©; = ©,.

The following lemma is key to the proof of the lower bound. The proof is
provided in Subsection 4.3. Recall that in this subsection we assume that Condi-
tions 2.1, 2.3 and 2.4 hold.

Lemma 3.5. Weak uniqueness of solutions holds for (2.9).
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We now construct the sequence {u”V} that satisfies (3.10). Because ®y € S(2),
we can disintegrate

Op 0 0 N dx dr) = po(dx) Ao(x,dr)
for some measurable map Ay : R? — P(R;). Let W = C([0, T],R™), and let
y be the standard Wiener measure on W. Define a measurable map A : R —
P(R1x W) as
A(x,dr,dw) = Ao(x,dr) ® y(dw),  x € R?.
Define the measurable space (£2, F ) by
Q=R xW)>®, F=B(Q),
where an element (r,w) €  has the coordinates r = (r1,72,...) and w =
(wy,wa,...) with r; € Ry and w; € W for each j. Consider the canonical
filtration {F(¢)} on (2, ) defined as
F@) =0 (w(s),rj([0,5]x 4), j €N, A€ BR™), s <t), 0<t<T,
and define the sequence { P, N € N} of probability measures on (€2, F) by

PN(dr.dw) = ) A(xj.v,drj,dwj) (0 ((®o)<z> ® V)(drﬁdwj),
j>N

J=N

where {x}v } are as in Condition 2.3. Next define the sequence {A"Y, N € N} of
P(R? x Ry)-valued random variables on (£, f) by

TN = (e

where for each j € N, p; is the /R-valued random variable on (Q, f) defined as
pj(r,w) = r;j. Using Condition 2.4(ii), we see by a standard argument that

PV o (AN) ! 5 S0t (3.11)

in P(P(R? x Ry)) as N — oo.
Now, for each j € N, disintegrating p; as p;(dt,dy) = (p;):(dy) dt, define

w0 = [ v osisT.
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and define u = (uy,...,uy) for each N € N. Furthermore, for each j and
(r,w) € 2, let

Wiz, (r,w)) = w; (1), 0<t=T.
Then, for each N, Wy,..., Wy are mutually independent {.7:" (t)}-Brownian mo-

tions on (2, F, PV). Recall that in this subsection we are assuming Condition 2.4,
and so o(x,v) = o(v) for (x,v) € R? x Py(R?). Let (XN,... XN) be the
unique pathwise solution (which is guaranteed due to Conditions 2.1 and 2.3) on
(Q, F, PN) of the system

t

XN@) =xy +/ b (XN (5). VN (s)) ds+gN/ o (VN (s)) dW;(s)
0 0
+/ o (VN (s))u;(s)ds,
0
- 1 N
VN(f)=ﬁ;5;z,N(z)’ 0<i<T, 1<j<N

Also let iV = % Z?’Zl dgn~. Now define the sequence {ON} of P(Z)-valued
J
random variables as
N

N -
0 _Nz‘g(ﬁiﬁv,m)’ N eN.

J=1

Letting £ N denote expectation on (Q, F , PN ), we note that for a measurable f :
Rl —> R+

f(r) (©g)(2)(dr) < oo

R1
(3.12)

N
implies EN %;f(pj) —>[Rl f(r) (©o)2)(dr).

Indeed, if g(x) = [, f(r) Ao(x,dr) for x € R?, then

N N
rONIDIEES ) WIONEREES S 3E]
j=1

Jj=1

and

[ srm@a=[ | o totx.dr ot

:/ f(r)®go O_I(dx,dr) :/ f(r) (®o)y(dr) < oo.
R xR R1
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Thus, from Condition 2.4(ii),

N
1 1
. N AN T N
Jm BV 2 (e) | = Jim D s ()
j=1 j=1 (3.13)
~ [, ermatan=] 1¢) @ncyan.
R4 R1
which proves (3.12). Now, we have
_1 - 2
limsup EN | — / u;i(t)|” dt
N—o0 N]; 0 ‘ ! ’
N
1
<limsup EV —Z/ y1? pj(dt. dy) G149
N—oo Nj=1 [0,T]xR™

=FEe, U Iylzp(dt,dy)] < oo,
[0,T]xR™

where the convergence on the second line follows from (3.12) on observing that,
since ©g € P2 (2),

1) = / DPRrdLdy).  reR
[0,T]xR™
satisfies

£(7) @0y (dr) = Eo, [ f
R1 0

|y|2p<dr,dy>] < 0.
[0,T]xRrR™

Next, for each ¢ € C°(U x RY,R?) define
_ 1 LT _ _
TN (g) = ~ Z/O o (. XN®)odXN ), N eN.
j=1

From Lemma 3.1, the collection {¢ — J~ (¢)} has a pathwise realization JN
in H™®. Using Lemma 3.3 and the moment bound in (3.14), we now see that
{(@N, 0N, JN),N € N} is tight in P;(X) x P(Z) x H™. Suppose, without
loss of generality, that (2", QN , JV) = (1, 0, J) in P1(X) x P(Z) x H™S. By
Lemma 3.3 again, Q € P*(J) and Q1) = jt a.s. Since QY 0071 = AN, (3.11)
implies that Q00! = ®g00~! a.s., and hence by the weak uniqueness established
in Lemma 3.5, Q = ®g a.s. Furthermore, from the definition of P*(7),

(T,9) = Go(Q) = Go(®0) = (o, 9)
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for every ¢, a.s., and hence J = Jp a.s. by separability of CX®(U x R?,R¥) and
its denseness in H™. _
It follows that (O, 7V) = (©q, Jo). Finally,

N T
. 1 2 _ -
limsup EN —E / wi|” de + F(@V, TV
5V—>(l>lop 2N i=1 0 } J()| (/’L )

N T
=limsup EV %Z/O ’Mj(t)|2 dt+F(Q£\1’),jN>
I

N—>oo

1
<Fo, |+ / WP (e dy) | + F (®o)ay. Jo)
2 [0, T]xR™

where the last inequality is from (3.14) and since F is a bounded continuous func-
tion. This shows (3.10) and completes the proof of the lower bound in (3.2), and
part (ii) of Theorem 2.10 follows.

3.5. Rate function property

In this subsection we show that the function / : P;(X) x H™ — [0, co] defined
in (2.11) has compact sublevel sets for every s € O . Fix s, and for each [ < oo
consider the level set I'; = {(, J) € Pi(X) xH™® : I(n, J) < 1}. The proof of
the following lemma is given in Subsection 4.2.

Lemma 3.6. Suppose Conditions 2.1 and 2.3 hold. Let s € Oj and let
{(U, O, Tx). k € N} be a sequence in P1(X) x P(Z) x H™S such that, for
each k, @k € P*(jk), (®k)(1) = Uk, and

1
sup Eg, [5/ Iy? p(dt,dy)] < o0. (3.15)
k>1 [0,T]xR™

Then the sequence {(ir, O, Jx), k € N} is relatively compact in P (X)xP(Z) x
HS.

Now we prove the compactness of I';. Let {(ux, Jx), k € N} be a sequence in
I';. From the definition of I, for each k € N there is a O € P*(J;) with
(®x)) = Mk such that

1 1
Ee, [—/ Iylzp(dt,dy)} <+ —. (3.16)
2 Jio,T1xrm k

FromLemma 3.6, {(ug, O, Jx )} isrelatively compactin Py (X)) x P(Z)xH 5. Itis
easily checked thatif (11, ®, J) is alimit point along some subsequence, then © ;) =
w and along the same subsequence G, () — G4(®) and (Jk,¢) — (T, ¢) for
everyp € CP(U x R?,R¥). This shows that ® € P*(J). Sendingk — ooin
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(3.16) and using lower semicontinuity of the map r f[O,T]me |y|? r(dt,dy) on

R 1, we obtain
1
Boly [ Wistdnan) =t
[0, T]xR™

and hence (u, J) lies in I';. Compactness of I'; follows.

3.6. Law of large numbers

Here we prove Theorem 2.8. The model (2.1) can be viewed as the controlled
equation (3.3) with the controls taken to be uﬁv =0foralll <j <Nand N € N.
From Lemma 3.3 it then follows that (v, OV, ) is tight in P (X) x P(Z) x
H~S. Suppose that along some subsequence (1™, OV, V) = (1, 0, J). Then,
once again from Lemma 3.3, Q1) = pu and Q € P*(J) a.s. Furthermore, since
uﬁv =0foralll <j < N and N € N, we see that the second coordinate variable

on Z satisfies Q(p = 0) = 1 a.s., and thus, under Q, the first coordinate variable
on Z satisfies

X(r) = X(0) +/0 b(X(s). V() ds.  V)=QoX®)™'. V() =po

forall 0 < ¢t < T. Then, from the unique solvability of (2.12), it follows that
W = ¥ as., and hence we have that 4 converges in probability in P; (X) (along
the full sequence) to u*. Since V¥ (1) = pu o ;! and V*(¢) = p* o 7, ! for
each 0 <t < T, we also have that V¥ — V* in probability in V. Finally, since

0 e P*(J) as.,
Gw(Q) =(J.¢)

forall ¢ € C°(U x R4, Rd), a.s., and note that

T
Go(0) = Eo [ /0 0 (1. X(1)- dX(t)}
T
~ Eg [ [0 0 (1. X(D)) - BX (). V2 (1)) dz}

T
- /0 (V*@), 0@, )-b (- V(1)) dr.

Thus (7, ) is (a.s.) uniquely characterized for all ¢ € C°(U x R4, R%). From
the separability of C2°(U x R?,R?) and its denseness in H™* we now see that 7V
converges (along the full sequence) in probability, in H™%, to the nonrandom limit
J* characterized as

T
(T*.0) = /0 (V). 0(t.) - b (- V*(0)) dr.

The result follows.
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3.7. Equivalent formulation of the rate function

In this subsection we glve the proof of Proposition 2.12. Let m = d, and suppose
that, for every u € P;(R%), o (i) is invertible. We first argue that Io < I. Fix
(V,J) € V xH™® such that I(V, J) < oo. Fix § > 0 and let ® € P*(J) with
ve = V be §-optimal for 7 (V, J), namely

1

Eo [5/ |y|2p(dt,dy)] <I(V,J)+38. (3.17)
[0,T1xR4

Disintegrate p(dt, dy) = p;(dy) dt and define
v(t) = / y pe(dy), ae.t €[0,T]. (3.18)
R4
Alsolet n® = @ o (X(¢), 0 (V(t))v(t) +b(X(t) V(t))) ' e P(R?4). Then, since

@ =V, 77§9 can be disintegrated as n°(dx, dy) = 72 (x,dy) V(t, dx) for some
: R4 — P(R?). Define the function / on [0, T] x R? by

non = [ i) (3.19)

and note that Condition 2.1 ensures that this is well-defined. Under ®, V(0) = uo
and

X(Z):X(O)+/Ob(X(s),V(s))ds+/ da(V(s))y,os(dy)ds, a.s., (3.20)

[0,¢]1xR:
for each ¢, and so for ¢ € C°((0,T) x R? R)
0=¢(T, X(T)) — ¢(0, X(0))

Trd
=/0 (Efp(t,x(l))+V¢(I,X(t))~b(X(t),V(t))+V¢(I,X(t))~0(V(t))v(t)) dt

where v is as in (3.18). Taking expectations with respect to ©,
r 0
o= [ [, [grete-0+ o0y | afxan ar
0 R2d
r ad
= [ {ror o+ vow [ yiecan)a can

T d
_ /0 <V(r) D 0.9 + Vo) - h. )>

Similarly, since (7, @) = G,(®), it is seen that for ¢ € C°((0, T) x R?,R¥)

T
(T.0) = /0 V(). plt.) - ht.)) di
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Since V = vg, we now see from the above two identities that
7 LT -1 2 .0
W) =5 [V, [ on v —be Vo ifedy) dr
0

L -
_2[) /de |0 (V(t))(y b(x,V(t)))| Ny (dx,dy)dt

I 1
—5 | Eonwr] ar<3Ea| [ psnay)]
0 [0,T1xR4
<I(V.J)+8.
where the last inequality is from (3.17). Since § > 0 is arbitrary, the inequality
Io(V,J) < I1(V,J) follows. B ~
We now prove the reverse inequality, namely /(V,J) < Io(V,J). Once

more fix § > 0 and (V,J) € V. x H™® such that Io(V,J) < oo, and let ® €
S(2) N'Py(2) be §-optimal for Io(V, J), namely

T
) <V(r>,/ o V) — b V) ﬁ?(-,dy)>dzsio(v,J>+5, (3.22)
0 R4

V = ve, and (V, J) solves (2.18) with h(t,X) = [pa ¥ f]?(x, dy). In particular,
for all ¢ € C°((0, T) x R4, R?), (2.19) holds.
Now define an R-valued random variable p on (Z, B(Z)) as

p(dt,dy) = 8y (dy) dt,

where v is defined in terms of the coordinate variable p as in (3.18). Defining Qe
P(Z)as © = O o (X,p)"!, we have that vg = ve = V, and it can be seen from
(3.20) that © € S(Z). Also, since (2.19) holds for any ¢ € C((0,T) x R4, RY),

T
(T.0) = fo V(). p(t.) - h(.1)) di

T

- <v<z>,¢<z,->- / yﬁ,@(-,dy)}dz
0 R4
T

- / / o(t. )y n®(dx. dy) di
0 RZd

— Fo [ / o (6. XO)o (V1)) + bX (), V()] pldr, dy)]

[0,T1xR4

_ £, [ [ e Xl +bxo. Vo s dy)]
[0,T1xR4

= Gw(@)),
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where the last line uses the fact that [y p,(dy) = v(t) = [y8ye(dy) =
[ v pe(dy). Thus, O € P*(J). Finally,

- 1 1 T
TV < Eg —[ P pldr.dy) | = Eo —/ () di
2 [0,T1xR4 2 Jo

T
= Fo E / |o—‘(V(z))[o(V(t))v(t)+b(X<r),V(z)>—b(X(zw(r»]|2dz]

T
N %/0 /de o~ (V) = b, V)| me(dx, dy) d

1 (T _ 2 4
-5/ <V(r), [l oy - se vl . dy>> dr
0 R4
< L(V.J) +3,
where we used (3.22). Since § > 0 is arbitrary, the inequality 7 (V, ) < Io(V, J)
follows and completes the proof of the lemma.

4. Proofs of key lemmas

In this section we provide proofs of the results used in showing the Laplace upper
and lower bounds. First we establish two estimates that will be used in subsequent
subsections.

Lemma 4.1. Suppose Conditions2.1 and?2 .3 are satisfied. Letu™ = (u{v, cee, u%) €
Ay and let XV be as defined in (3.3). Then, for each N € N,

1Y 2
o N
v |
e
! 4.1
<c 1+N2‘xj)
Jj=1

A VT
Y E N;/o )uj(z)‘ dar | |,

and for any ¢ > 0 and any {F (t)}-stopping time t taking values in [0, T — ¢]
1 < >N SN |
NZE ‘Xj (t+e)—X; (7:)’
j=1

1 Y N2 1 Y r N 2
<ce 1+Nj§‘xj( +E N;fo Yo ar ||

where ¢ < 00 does not depend on N, uN, or &.
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Proof. Condition 2.1 (see (2.5)) implies
SN TN (| 2 NI AT IVT.
)b(xj ),V (r))‘ <321+ ‘Xj (r)( +NZ)XJ. (z)’ ,
i=1

and so from (3.3) and since |o| < L and ey < 1, we have

<ol

54‘xﬂ2 +4‘/tb()?;v(s), 7N (5)) ds i
0

2

+ 4 aN/ o (XN (). VN (s)) dW;(s)
0

‘ 2
+4'/Oo (X ). V¥ @) ul (5) ds

2 ! - 2
54‘)6}\,) +12L2T 1+/ sup le-v(r)‘ ds

0 0<r<s

BNERE AR
X; (r)‘ ds—i—N;/O sup

0o<r<s

+ 4 sup

o<r<t

i + 4L2TfT )uy(s)(z ds.
0

/O ' o (XN (). VN(s)) dW;(s)

Hence by the Burkholder-Davis-Gundy inequality, and using boundedness of o
once more,

4 Y 2 r N VNG
SNZ|X§V‘ +24L%T 1+/ NZE sup | X; (r)‘ ds
j=1 0 i=1 0o<r<s

N T
1 2
+16L°T +4L°TE | - / )ujy(s)( ds
j=170

The first statement in the lemma then follows by Gronwall’s inequality (see [12,
Theorem A.5.11) with ¢ = 24(L2T + 1)e?4L°T?,
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Next, for any ¢ € [0, T — ¢], the linear growth of b, boundedness of ¢, and the
Cauchy-Schwarz inequality give

2
v N v N
XN+ - XN )
2
+4

2

<4 /t+8b ()Z]N(s), VN (s)) ds eN /t+80 ()?]N(s), VN (s)) dW;(s)

2

cal [To g e s e as
t ! ’ ’

N
_ 2 1 _ 2
<12TL%¢ |1+ sup ‘X;v(s)‘ +—E sup ‘XJN(S)‘
0<s<T Nj=105SST

: + 4L28[T ‘uﬁ-v(s)‘z ds.
0

t+e = N — .
+4/t o (XN (). VN () dW;(s)

Since 7 is a bounded stopping time, the optional sampling theorem gives

T+e 2
E / o ()?]N(s), VN(s)) dW;(s)| < L2,
and so
1 & 5N SN |2
NZEUXJ. (t +6) — X! (r)‘ }
j=1

2
o0

1 N 1 N T 2
2 v N N
<24(T+1)L% |1+ E _N],EIHXJ' H +E —N; 1:/0 )u,. (s)‘ ds

The second estimate in the lemma now follows (with a possibly larger choice
of ¢). O

4.1. Proof of Lemma 3.3

The following general lemma will be useful in proving the tightness of {7V}. The
proof is standard (see, e.g., [12, Exercise 3.11.18]) and is therefore omitted.

Lemma 4.2. Let {Z},k € N} be a sequence of random variables taking values
in a separable Banach space with norm || - ||. Suppose that for each ¢ > 0 we
can write Zx = Z; + Ry, for each k € N, where {Z},k € N} is tight and
supesy E [||RE||] < & Then {Zy} is tight.

To prove tightness for the controlled stochastic currents, we will make use of a
collection of test functions {gar, M < oo} defined as follows.
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Definition 4.3. Let {gp, M < oo} be a collection of functions in C2° (R?, R) that
satisfy 0 < gp(x) < 1forall M < oo and x € R?, and have the following
properties:

(1) Foreach M, gp(x) = 1on |x| < M;
(ii) Foreach M, gp(x) =0on |x| > M + 1;
(iii) Forevery k € N, there is a constant B(k) < oo such that |D%gps(x)| < B(k)
forall x € R%, all M < oo, and all lo| < k.

Note that if {gas, M < oo} is a collection as in Definition 4.3 then for every
k € N there is a constant L(k) < oo such that

|D“gm(x) — D¥gm (y)| = L(k)|x — y| (4.2)

for all x,y € RY, all M < oo, and all || < k. We will need the following
property of the collection {gas, M < oco}. A proof of the lemma is given in the
Appendix.

Lemma 4.4. For any s > 0O there is a constant K = K(s) < oo such that for any
f € H (R?,RY)

sup [lga flly = KILfIls-

M <oo

The following is a simple extension of the well-known compact embedding result
for Sobolev spaces on R4 known as Rellich’s Theorem (see [15, Theorem 9.22]).
Although the proof is standard, we provide details in the Appendix. Fors € Oy,
F e H®, and open Uy C U, wesay F = 0on U ifforall ¢ € C°(U x ]Rd,Rd)
with support in Uy, (F, ¢) = 0. The support of F is the complement of the union
of all open sets in U on which F = 0.

Lemma 4.5. Let s = (s1,52) and s’ = (s1,55) in Og4 be such that s| < s and
sy < 8. Suppose A C H™ is such that for some compact K C U x R%, every
F € A has support contained in K. Suppose also that suppc 4 || F || -¢ < 0o. Then
A is relatively compact in H™®.

Finally, the lemma below establishes the required tightness for the controlled cur-
rents.

Lemma 4.6. Suppose Conditions 2.1 and 2.3 are satisfied. Let {gp, M < oo} be
the collection of functions in C2° (R4, R) as in Definition 4.3. For each N € N,
M < oo, and ¢ € C(U x R4, R?), define

TVMg)y = TN (gmep).  T¥M(p) = TN () — TV M (g).

Then, the collections {¢ + INM (o) and {¢ +— ch’M(<p)} have pathwise real-
izations JN-M jCN’M in H™S for all s € Oy4. Furthermore, if

LS (T oy 2
sup E | — [ ‘u-(t)‘ dt | < oo,
N>1 N; o I/
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then for all s € Oy

sup sup E [HjNM‘
M<oco N>1

] <oo
—S

_S] =0.

In particular, {TV N € N} is tight in H™S for all s € Oy.

and

lim sup E [HjCNM

Proof. Fixs = (s1,52) € Oy, and foreach N and 1 < j < N, let CJ.JYS be the
square-integrable random variable from Lemma 3.1, so that |/ ¥ (¢)| < CN||¢|ls
a.s. for all p € CP(U x R4, R?), where CN = % Z;V:l CJNS As a consequence
of Lemma 4.4, for some constant K = K(s,) < oo we have, for all ¢ € C2°(U x
R, R?) and M < oo,

learoll? = /U ot )2, du

, 4.3)
+/U [ ||gM(‘P|l(4”:)v|_lf2(;j"))”” dudv < K?||g|2.

Hence,
7M@) < N lgmols < KCN lglls as.

and

T2 )| =77 (1 = gan)e)| =V 10 = ol = (1 + KICN gl as.

From [13, Lemma 5] it then follows that, for every M < oo, there are H™®-valued
random variables 7™ and ch’M such that, for every ¢ € C°(U x RY, Rd) and
M < oo,

(TVM (@), ¢) = [IVM()] (@)  and
(TNM(w),0) = [INM(p)] (w) ae.we.

Then, from Lemma 3.1,

sup sup E [HjNM
M<oco N>1

2
] = K2 sup E[(CN)] < . (4.4)
-s N>1

Let J_]N be as in (3.4) and define the stopping times r]N’M =inf{t > 0: |XJN )] >
M}. Then,

N

_ 1 Mo 1 _
JEMe) = ; TN —gme) =+ ; s ) I (1= ga)e).
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and by Lemma 3.1,

T = gme)| = €N,

gm)els < (1 + K)C),

Thus,

N
1+ K o
N Zl{rw }C/Ns lells = CN lglls. (4.5)
; J

Also, by the Cauchy-Schwarz inequality,

AN E % Se(<r) 5 E[ed]

j=1 Jj=1

By Lemma 4.1, Condition 2.3, and the assumption that

1 & (T 2
sup E NZ/O ‘u;v(t)) dt | < oo,
j=1

NeN

there is a constant K < oo such that

sup—ZP( NM<T)< sup—ZP(HXJNHOOEM)fMi;.

N>1 N>1
Thus,
2 vl Ka+k? 1Y N2
A MY ]ET;‘;%N;E[(CH) ]
and therefore, from Lemma 3.1,
_ 2
lim sup E U } —0. (4.6)
M —o00 N>1 —s

Note that (4.4) and (4.6) are satisfied for every s € O;. Now for an arbitrary
s € Og4 choose s’ = (s,55) € Oy such that s; < 51 and 55 < s,. Then applying
(4.4) for s’ and observing that { 7Y N e N} are compactly supported on [0, T] x
{|x] < M + 1} C U x R, we see from Lemma 4.5 and Markov’s inequality that
for each fixed M {JV¥M N € N} is a tight collection of H™*-valued random
variables. Finally, observing that TN = JNM 4 ch M for each M and applying
(4.6) and Lemma 4.2, we obtain that {jN, N € N} is tight in H™S. O
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The following general lemma will be useful in proving tightness of {i% }.
Lemma 4.7. Let (S, ds) be a Polish space. If {yr,k € N} is a tight sequence of
‘P(S)-valued random variables and for some xo € S

sup E |:/ ds(x, x0)> yk(dx):| < 00, 4.7
keN S

then {yx } is tight as a sequence of P1(S)-valued random variables.

Proof. Suppose that y; converges in distribution, along a subsequence, in P(.S) to
some y, and denote the convergent subsequence once more as {yx}. From (4.7) it
follows that each yg is in P;(S) a.s. Furthermore, by lower semicontinuity of the
map p = [ ds(x, x0)? i(dx) on P(S) and Fatou’s lemma, we see that

E[ /S ds(x,xo)zy(dm] < E[lggiogf fS ds (x. xo)? yk(dx)}

< sup E [ [ stz yk(dx)} < o,
S

k>1

and so in particular y € P;(S) a.s. By appealing to Skorohod’s representation
theorem we can assume that y — v a.s. in P(S). Recalling from Subsection 1.2
the metric dy, on the space P(S), we have that d,,(yx,y) — 0 a.s.
It suffices now to show that y; converges in probability in P;(S) to y. Take
f € L(S) such that f(x¢) = 0. Fix 1 < M < oo and define
(S x)
fM(X)—( v v 1))/\1,

which is a function bounded by 1 in absolute value whose Lipschitz constant is also
bounded by 1. Then,

‘ / £(0) yeldx) — / £(x) y(dx)
S S

M ‘ /S it () 7 (dx) — fg it () 7(d)

+ / M far () — £ (o)
S
4 / M far () — £ 7(d)
S
< Mdy(vieoy) + f 21 F ety Vi () + [ 2110 Lyt ooty ().
S S

Since the Lipschitz constant of f is bounded by 1 and f(xo) = 0, we have that
| f(x)] < ds(x,x0),and so

1
J @0 vt = 57 [ st veca),
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and the equivalent inequality holds for y. Now, since (i, f) — (v, f) = (u, f —
f(x0)) — (v, f — f(x0)) forany p,v € P1(S) and f € L(S), the supremum in
the definition of d; can be restricted to f such that f(xo) = 0. Thus,

/ £) ye(dx) — / £() y(dx)

Eldi(yk, V)] = E sup
feL(S), f(x0)=0

< ME [du(vi. 7)) + —supE [ [ dst.x? n(dx)}
+ ME [/S ds(x,xo)zy(dx)].

Sending first k — oo and then M — oo, we have that limg o0 E [d1(yx,y)] =0
which completes the proof. O

We can now complete the proof of Lemma 3.3.

Proof of Lemma 3.3(i). We begin by arguing that {ii™} is a tight sequence of
P (X)-valued random variables. For this it suffices to show (see [7, Theorem 2.11])
that {yV, N € N} is a relatively compact set in P(X), where

N
) _ 1 >
=B[N = 5 P (R

j=1
Note that
2 N 1 = v N 2
[ iy (dw)zﬁ;E[ij ]

and so by Lemma 4.1 and the assumption on the controls in Lemma 3.3, we see
that

1 Y 2
Isvuzplfx 1w lIZ, ™ (dy) = ;UZPIN;E [HXJNHOJ < 00. (4.8)

Next, for ¢ > 0 let T, denote the collection of all {o(X(s) : s < t)}-stopping times
on (X, B(X)) taking values in [0, T — ¢] where {X(¢)} is the canonical coordinate
process on X. Then for each N € N there are {o (X JN (s) : s < t)}-stopping times

{‘L']N, 1 <j < N}on (2, F) with values in [0, T — ¢] such that

N

/XW(I +o—v@P PNy = £ Y E [P?}-V (e +¢) = X7 (f}V)\z]
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Applying Lemma 4.1, we then have

/XIW(r Lo —y@P YV @)

<ce| 1+ sup Li ’xN)z—l— sup E |:L i/T ‘uN(t)‘z dt:|
B vz N ! Nzt [N o T ’
and hence
tim sup s [ 1y(c )= p Py @y =0 49)

The relative compactness of {yV, N € N} in P(X) is immediate from (4.8) and
(4.9) (see [7, Theorem D.4]), which as noted previously shows that {i"} is a tight
sequence of P(X)-valued random variables. The tightness of {1} as a sequence
of P; (X)-valued random variables now follows from Lemma 4.7 and the uniform
moment estimate in (4.8). Note also that since iV = Q?{) we have the tightness

of the first marginals of {Q™} (as a sequence of P(X)-valued random variables).
That the second marginals {Q g)} is a tight sequence of P(R;)-valued random

variables follows by an argument similar to [8, Lemma 5.1], however we provide
the details. Note that the function

h(r) = [ 2 r(dr, dy)
[0,T]xR™

has compact level sets on R; (recall that R; is equipped with the Wasserstein-1
metric). It then follows that

H(G)z/R h(r)6(dr)

has relatively compact level sets on P(R1) (see [7, Lemma 2.10]). It now suffices
to show that supy - E[H(Qé\z'))] < oo (see [7, Lemmas 2.9]). However this is
immediate as

N

1
su E[H( N)]zsuE—E:/ 25N (dt, dy)
sz1 %) szl N =1 Jio,T1xmm yFe; Y

(4.10)

_1 - o
=sup E | — / ’u~(t)‘ dt | < oo.
VEE|W 2 M

Thus we have shown that the second marginals of {Q} are also tight, which in
turn shows that {1, O™} is a tight sequence of P;(X) x P(Z)-valued random
variables. Together with Lemma 4.6, this finishes the proof of Lemma 3.3(i). [
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Proof of Lemma 3.3(ii). Supp(_)se now that (iV,0N, V)= (1.0, J) in Py (X) x
P(Z) x H™®, where (i1, Q,J) is defined on some probability space By appeal-
ing to Skorokhod s representation theorem, we can assume that {(/L QN NASY!
and (i1, Q, j ) are defined on a common probability space (Q.,F. P) and that
(i, oV, TN ) = (X, O, J ) a.s. Let E denote expectation on this space. The
property Q) = ft is immediate from the identity Qg) = ¥ forevery N € N.
We will complete the remainder of the proof in three steps: step 1 will establish
that Q € P»(2), step 2 that Q € S(Z), and step 3 that Q € P*(J), from which
the result will follow.

Step 1. By Fatou’s lemma,

E [EQ U lyI2p(dy dt)ﬂ
RMx[0,T]
2
st 2o [ [P o]
1S (T oy
:lb“l‘&fE N;/(; ‘uj(t)‘ dt | < oo,

and hence Q € P»(Z2) a.s.

Step 2. We now show that a.s. Q € S(Z), namely it is a weak solution to (2.9).
Define the generator A as follows. For each f € C2(R?,R), let

A, x,y)=(bx,v) + o(x,0)y) - V(x), Wx,y)eP (Rd> x RY x R™.

Now fix an f € Cz(]Rd R) and define, for each V' € V, the R-valued process
{MV(t),0 <t < T} on the measurable space (Z, B(Z)) by

MY (1, (€)= fEW) — f(0))

(4.12)
[ AP V.60 sy, ez

[0,]xR™
Let V = vg. Since f is arbitrary, to establish that Q € S(Z) a.s. it suffices to
show that for each fixed 0 <t < T and a.e. w € 2

M7@ (&, r)) =0, O(w)-ae. (§,r) € Z. (4.13)

We will supress w from the notation for the remainder of the proof.

Foreach 1 < B < oo, let ¥p € C.(R™,R™) be such that ¥5(y) = y on
{ly]| < B} and |¥g(y)| < |y| + 1 everywhere. Note that since B > 1, this
definition implies that

@Iyl + 1) 3|y
V=Wl = —F——lwppn = —5—

(4.14)



LDP FOR MEAN FIELD SYSTEMS WITH VANISHING NOISE 1785

Also let ng € C.(R?,R%) be such that ng(x) = x on {|x| < B} and |np(x)| <
|x| + 1 everywhere. As with ¥ g, we have that

|x|?

B

[x —np(x)| < (4.15)

Now define the “truncated generator” Ap
Apf(v.x,y) = (ne(b(x,v)) + o (x,v)¥B(y)) -V f(x),
v, x,y) e Py (Rd) x R? x R™,

and foreach V € V let {M }3/ (t)} be the corresponding process defined as in (4.12)
with Ap in place of A. Let

K = sup (If(0)] + V()| +[D?f(x)]) < oo,

x€R4

and note that forall V € V,0 <s <t,and (x,y) € RY x R™

[AS(V(5).x,5) = Ap f(V(s). x.7)]
. (3 b V)P 3L|y|2)
B B
_12K(L + 1)2
- B

(4.16)
(1 + 3+ / WP Vs.dx) + |y|2) .

R
Now fix ¢, and define the maps ® and ®g on P(Z) x V by

(O, V) = Eg UMV(z)

], ch(@,V):E@HM;’(z)H.

Note that VV = VoN, Were V¥ is as in Subsection 3.1. We proceed by showing
that:

(a) ®p is bounded and continuous on P(Z) x V;

(b) supy s, E [|@(QN.VN) — dp(QN.VN)|]—>0and |2(Q.V) — @5(Q.V)| 5
0Oas B — oo;

(c) CID(QN,VN)iOasN—>oo.

The convergence (QV,VN) — (Q, V) then yields that ®(Q, V) = 0 a.s., from
which the statement in (4.13) is immediate.

We first show (a). Boundedness of ®p follows from the boundedness of 73,
¥p,0, f,and V f. The continuity of ®p follows from the continuity of the map
V,z) > M};(z,z) on) x Z.
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For (b), note from (4.16) that
E Ud)(QN, V) —dg (OV, VN)HSE[EQN HM?N(;)—MBVN@)H]

12K(L + 1) - r a
S%E[EQN[[O (1 + |X(s)|2+[Rd x> VN (s, dx)

+ [ |y|2ps<dy)) dﬂ “.17)
R’n

N N T

12K(L+1) 2T R Nt

<o BT+ j”x. H = f ‘u (s)‘ ds
B N>1 Nj=1 7 oo o J

From Lemma 4.1 and the assumption on the controls in Lemma 3.3, we see that the
last term in the above chain of inequalities converges to 0 as B — oo. Similarly,
since Q € P,(Z2) a.s., the estimate

[©(0.7)— ®5(0.V)| = Eo [|M7 () - M (0)]

<M ! 25 ) |: ) ]
< 3 (/0 (1+2[Rd|X| V(s.dx))ds+Eg [[O,T]me|y| o(ds, dy)

implies that
|®(0.V)—®(Q.V)]—>0 as. asB— oo (4.18)

This completes the proof of (b).
We now turn to (c). Note that

@ (QN.VN)=Eqgw [1MV”<r>H - > M7 (1 (XY o))
j=1

FEN@)- / AL (7Y (). XY (5).0Y (5)) ds

By It6’s lemma, foreach 1 < j < N,
FXN0) - f () =/O Af (VN XV (5),ul (s)) ds
+ sN/O VE(XN) 0 (XN (5), VN (s)) dW;(s)

N %/Ot,n [sz (XN (s) (ooT) (XY (). I7N(S))] ds
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Hence,

® (Y, V") =

'MZ

gN/ VF(XN©) 0 (XY (). V() dWj(s)

N3
+87N/0 Tr [sz()fjf,v(s))(oaT) (XN (). I71\’(5))] ds

From the boundedness of V f, D? f, and o, it follows that

2 2
E[@ (oY 7Y)] = (KLT'?) ey + %

This completes (c), which as noted previously proves the statement in (4.13) which
in turn shows that Q is a.s. a weak solution to (2.9).

—0 as N — oo.

Step 3. To complete the proof of Lemma 3.3, it only remains to establish that
G,(0)=(TJ.¢) forall ¢eCPU xRYR?), P-as.  (4.19)

By considering a countable, dense subset of C°(U x R4, R9), it suffices to show

that for each fixed ¢ € C2°(U x R?,R?) we have G,(Q) = T (@) as.
Fix ¢, and let

3<0k

K, = sup lo(t, x)| + Z (t )| | < oo.
(t,x)€[0,TIxR4 ki=1
Then, a.s.,
(7 )—ii/T (L. XN 0)od X} (1)
Q)= szl o pLA; J
1 Y r v N N Y v N v N
= N;/o <p(t,X‘,- (t)) dX (t)+ﬁ]2;(¢ (',X,- (-)),Xj (,))T
1 & T _ _
— 2 [ e xY0)-axio
j=1"0
S%V al rd a‘pk >SN T >N - N
+ ﬁ;/o k,12=:171 (. XV 0) (oo (XN @). VN (1)) dt
Define
N — —
NZ/ (t. XN () -d XV @).
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Since |o| < L,
\(J‘N,so)—c;f (QN)\
Z/ Z a‘”" (6, XN (1)) (0o (XN (1), VN (1)) d <w,

Okll

and hence |(JN, ¢) — G;(QN)| — 0in L' as N — oo. Also, by the dominated
convergence theorem,

lim E[|(7.0) = (TV.¢)| a1] =0.

N—o0

Next, writing
(7. 0) = Go(@| A1 = (.0~ (T™. )| A1+ |(TV.0) - G5 (V)]
+ (G2 (2V) - Go(0)].

we see that to prove (4.19) and thus to complete the proof it suffices to argue that
the third term on the right-hand side converges to 0 in probability.
To this end, define the maps G, and G(f on {® € Pr(2) : vg € V} x V by

T
Gy(©.V) = E@[ /0 p(t. X(0) - b(X ()., V(1)) di
+ / o (6. X(1)) - 0 (X(1). V(D) p(d1. dy)},
[0,T]xR™
5 T
GE©.V) = Eo [ /0 o(t. X(0)) - 05 (B(X (1), V(1)) dr]

+ Feo [ / o (6. X(0) - o (X(O). V)5 () pldr. dy)}
[0,T]xR™

for each 1 < B < oo. Note by (2.10) that G 0(0,v9) = G,(O®) whenever © €

S(Z), and hence since V = vg and Q € S(2) ass., we have that Gw(Q V) =
G,(0Q) as. Also, since

N T
G, (QN,vN) :NZ/ €. XN®) b (XN 0. VN @) dt

1 & _ _ _
+ N;/O o (1. XN @) -0 (X)), VN@©)ul (@) dt
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- _ P
and ey — 0, we see that |G,(QN, V) — G;‘(QN)| — 0as N — oo. Thus it
remains to argue that

‘Gw (QN’VN)—Gw (Q,V)‘ —13>0 as N — oco. (4.20)

Now, since

T

N
GE(oN.VN) = : Z/O o (. XN 0) ns (b (XN@).VN())) dt
]=1

1 T _ _
+ NZ/O (. XY 0) o (XY @).VN@®) s (Y @) di
j=1
and the map

T
Er V) [0 0 (1) - na(BED), V(1)) di
4 f 0 (1.E)) - 0 €W, VO)Y5() r(dt. dy)
[0, T]xR™

is bounded and continuous on Z x V, the a.s. convergence (O, V¥) — (Q,V)
in P(2) x V implies that

G(f (QN, VN) — G~(f (0, 17) a.s. as N — oo 4.21)
for each B. Also, using (4.14) and (4.15), as in the proof of (4.17), we see

GE (V. 7M) =Gy (0. 7Y)|

N
18K, L2T 1 v P 3KeL
=" g Ty

) N(z)‘ dt,

which in view of Lemma 4.1 and the assumption on the controls in Lemma 3.3
shows that

sup E H B (N 7N)— G, (0N, I7N)H 50  asB—oo (422
N=>1
Finally, along the same lines as in the proof of (4.18),
‘Gf (0.V)-G, (Q,V)‘—)O a.s. as B — oo.
Combining the above convergence with (4.21) and (4.22) shows (4.20), which as

noted previously establishes that O € P*(7) a.s. and thus completes the proof of
the lemma. O
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4.2. Proof of Lemma 3.6

We first prove an estimate similar to that in Lemma 4.1 for the coordinate process
X(t) on the space (Z, B(Z), ©) for each ©® € P»(Z) NS(Z). By the definition of
S(Z2), the coordinate maps (X, p) satisfy

dX(t) =b(X(t),ve(t)) dt +/ o (X(t),ve(t))yp:/(dy)dt ©O-as., (4.23)
Rm
with X(0) ~ pg. By Condition 2.1,

b (X(1).ve ()P < 3L (1 HXOP + [P v@a,dx))
Rd
=3L*(1+|X(0)* + Ee [IX®)I?]) -

(4.24)

Applying the above bound in (4.23), taking expectation, using |o| < L, and apply-
ing Gronwall’s inequality, we have

Ee [IX2]

<é (1 + [ IPaotn) + Eo [ | |y|2p(dz,dy)]) < o0,
R4 [0,T]xR™

for some ¢ = ¢(L,T) < oo.
Now fixs € Oy and let {(ug, Ok, Jr)} be a sequence in P (X)xP(Z)xH™S
that satisfies the hypotheses of the lemma. Note that, by (4.25),

(4.25)

sup / 11, i (d)
k>1JX

= sup [ W1 @) = sup Eo, [IX 1] 426)

k>1

55(1 +/ |x|? o(dx) + sup Ee, U K p(dt,dy)D < oo.
R4 k>1 [0,T1xR™

If 7 is a {o(X(s),s < t)}-stopping time on (Z, B(Z)) taking values in [0, T — ¢],
then for any ¢ > 0

1X(t + &) — X(0)?
2

Tte 2 T+e
<2/ [ bxove nar) 2| [ [ et e @y ) dr

T T
< 6L28/ (141X + Ee, [IX(0)*]) dt + 2L28/ / 1y1? p: (dy) dt,
0 0 R
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®g-a.s. for each k. Hence, using the bound in (4.25),

Eo, [IX(t +) = X0’

< 12L2(1+5)e<1 +[d|x|2m(dx)+sup Ee, U |y|2p(dt,dy)]> .
R k>1 [

0,T]xR™

If T, denotes the collection of all such stopping times 7, it follows that

sup sup /X W+ —y@F mdy)

k>17t€Te

— sup sup /X W + &) — Y OF @) dy)

k>17t€Te
=sup sup Eg, [|X(r +¢)— X(t)|2]
k>17t€Te

—0

as ¢ — 0. This and (4.26) prove relative compactness of {u} (and hence of
{(®r)1)}) in P(X). By Lemma 4.7 and (4.26), we in fact get relative compactness
of {ir} in P1(X) .

For the second marginals {(®)(2)}, we recall from the proof of Lemma 3.3
that

H — 2
o= [ [ Prnasan

has relatively compact level sets on P(R1). Hence, we have relative compactness
of {(Ok)2)} in P(R1) on observing that

sup H ((©x)(2)) = sup Ee, [/ |y|2p(dt,dJ/)} < oo.
k>1 k>1 [0, T]xR™

This establishes that {®} is relatively compact in P(Z).
For {J }, we employ the following lemma, the proof of which is saved for the
Appendix.

Lemma 4.8. Suppose Conditions 2.1 and 2.3 are satisfied. Also suppose that, for
somes € Og and (u, J) € P1(X) xH™S, I(u, J) < oo. Then, for eachs' € Oy,
there is a constant Cy < 00 such that for any © € P*(J) with ©) = u and for

all € CP(U x R4, RY)
2

T
/0 o(t. X(1)) - dX(0)

e (1 + Ee [ / |y|2p(dz,dy)D lol2.
[0, T]xR™

where Cy does not depend on J, ¢, or ©. In particular, J € HY foralls' € Oy.

HT.e)> < Ee
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Recall the collection of test functions {gas, M < oo} from Definition 4.3, which
by Lemma 4.4 (see (4.3)) satisfy

lgmells < Kllels (4.27)

forall g € C°(U x RY,R¥) and s € Oy, with K < oo depending only on s. For
eachk > 1 and M < oo, define jkM, jkM’c € H™S by

(T @)= (Tk. gmo) . <~7kM’c,¢>ﬁ(\7k,¢)—(JkM,tp), 9 eC®(U xR, RY).

Fix some s’ € Oy such that s7 < s1 and 55, < s5. Since O € P*(Jx) for each
k and (3.15) holds, I(ux. Jx) < oo for each k, so, by Lemma 4.8, J; € H™ for

each k. Then for each k and M, in view of (4.27), jkM and jkM “ are in H™ as
well, and furthermore

(7o) < (1 1 Eo U[

0,T]xR™M

< K2 (1 T Eo, [ | |y|2p<dz,dy>]) lol2.
[0,T]xR™

|y|2p<dz,dy)D leaol2

and hence

sup
M<o0,k>1

<CyK? (1 + sup Eg, [/ ly|? p(dt,dy):|) < 00.
k>1 [0,T]xR™

Noting that, for each M, {jkM } are all supported on [0, T] x {|x| < M + 1} C
U x R4, by Lemma 4.5 {jkM ,k > 1} is relatively compact in H™S. Now define
the collection of stopping times {T™, M < oo} on (Z,B(Z2)) by t™ = inf{r >
0:]X()| > M}. Note that

2

2

s/

(4.28)

T
(7.0 = Eo, /0 (1—gM(X(z»)so(r,X(z))-dX(r)}

T
= Ee, | 1pmr) /0 (1—gM<X<t)>)<p(z,X(r))-dxo)],
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and so by Lemma 4.8 and (4.27)

.ol

T 2
<O (M < T) Eg, '/O (I —gm (X))o, X (1)) - dX(1)

§®k(rM<T)CS(1+E@k U
[

0,T]xR™M

<20 (M < T) G (1 + K?) (1 + Eg, U
[0,T]xR™

|y|2p<dr,dy>]) 10 = gan)el?

|y|2p(dz,dy>D lol2.

and hence )

) jkM,c

sup
k>1

<2sup O (rM < T) Cs (1 + K2)
k>1

x (1 + sup Eg, [/ 1y I? p(dt, dy)])
k=1 [0,T]xR™ (4.29)

2
<+ zg Ee, [IX12]Cs (1 + K?)

x (1 + sup Eg, [/ Iy p(dt,dy)])
k>1 [0,T]xR™

—0

—S

as M — oo, by (4.25). Then by Lemma 4.2 (applied to the constant random
variables J; = jkM + jkM’c on (Z,B(Z))), we obtain from (4.28) and (4.29)
that {Jx} is relatively compact in H™®. Lemma 3.6 now follows on combining
the above with the relative compactness of {(ux, ®x)} in P1(X) x P(Z) shown
previously. O

4.3. Proof of Lemma 3.5

Recall that we assume that Conditions 2.1, 2.3 and 2.4 hold. In particular, o (x, u) =
o(p). Let ©1,0, € S(Z) N P2(Z) be such that O 0 §7! = @, 0§71, and let
A = ©1 007! Then for j € {1,2}, we can disintegrate ©; as

©,(dx.dr) = ©;(xo.r,dx) A(dxo. dr)

for some measurable map @j : R4 xR — P(X). Define the probability measure
E on the space R x Ry x X x X as

E(dxo,dr,dx1,dx;) = O1(xo, r,dx1) O2(xo. r,dx2) A(dxo. dr),
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and let (&9, p, X1, X») denote the coordinate maps on this space. Then, X;(0) =

X5(0) = &, and to prove the lemma it suffices to show that X; = X, E-a.s.
Letting u(t) = [gm y pi(dy) and V;(tr) = E o (X;(1))"', we have that
Egl/y [u(t)]?d1] < oo and

t

b (Xj(s), Vj(s)) ds —l—/(; o (Vj(s))u(s) ds, j €{l,2}.

t

Xj(1) =§0+/(;

By the Lipschitz property of the coefficients and the fact that

0<r<s

dy (Vi(), V2(9))* < (Eg [ X1(5) = X2(5)|)* < Ez [ sup [X1(r) — Xz(r)lz] ;

it follows from Condition 2.1 that forevery 0 <¢ < T,
X1 (1) = X2(0)?

<or /0 Ib (X1(5). Vi(s)) — b (Xa(s). Va(s))[* ds
T T
+2(f0 |u(s)|2ds) /0 o (Vi(s)) — o (Va(s)? ds
<2127 /0 (X1(5) = Xa(s)| + di (Vi(s). Va(s)))? ds

t T
+2L2 (/0 lu(s)|? ds)/o di (Vi (s), Va(s))* ds

t
§4L2T/ sup | X1(r) — Xa(r)|? ds
0

0<r<s

T t
+2L2 <2T+/ |u(t)|2dz)/ Ez [ sup |X1(r)—X2(V)|2:| ds.
0 0

0<r<s

Then, taking expectation with respectto &, forall0 <¢ < T

O<s<t

T t
<212 <4T + Ex [/ |u(s)|2ds:|)/ Ez [ sup | X1(r) —Xz(r)|2:| ds.
0 0 0<r<s

Gronwall’s inequality now shows that Ez[||X; — X2||§o] = 0, which completes
the proof.

Ez [ sup |X1(S)—X2(S)|2}
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Appendix A.

In this section we provide proofs of some Sobolev space results that are used in our
work. It will be convenient to introduce an alternate norm on H® equivalent to (2.8),
and which is similar to norms used in [3] and [29]. Let {e;,...,e;} denote the
canonical basis in R?, recall that U = (a,b) D[0,T],1etL = ZxR4 x{1,...,d},
and define the functions e,’f’g :U x R4 — R4 for (n, &,k) € T by

2nint/(b—a)62nié'x

1
e,’f’g(t,x) = b—e ex.

—d

Consider the Fourier coefficients of ¢ € C2°(U x R?, R%) given by
¢(n.§) = (@1(n.§).....94(n.8)),

P k (A.1)
Ok (n,§) 2/ / et _¢(t,x) - @(t,x)dxdt.
U JRY ’

Then an equivalent norm on H%, s = (51, 52) € Ri, is given by

el =2 /R e (L+n)" (1+62)7 de. (A2)

nez

A.1. Proof of Lemma 3.1

From the equivalence of the norms, it suffices to prove the statement in the lemma
with || - ||s replaced with || - ||«s. In what follows, we will abuse notation and
denote || - ||«,s once more as | - ||s. Recall that for N € N, 1 < j < N, and
@ € CX(U x R4 RY),

- T - -
TV (p) = /0 o (. XN@)odXN@).

Any such ¢ can be written in terms of its Fourier coefficients as

d
0t =33 [ o g1ek ) s

k=1nez

As in [13, Lemma 8] it follows that

d
F0=3% [ anozlosde
k=1nezZ

where
T

VAMUNS) 5/0 ek (XN (1) 0d X (1)
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Note that

T
en (XY @) -dXY () + %<e5’$ (. XN, ;z;v(.)>T

ZV,(n,6) = /0
T
= /0 ex  (LXN(@0)-b (XN (0).VNQ)) dt
T
+ /O eh (1.XY @) o (XN ). VN@)ul (1) dt
T
+ &N / ek (XN (W) 0 (XN (). VN(0) dW;(1)
0

+ miek & /(;T (e,’f,g)k (. XY () (o’o’T>kk (XN ). VN (1)) dr,

since the kth component (eﬁ S)k is the only nonzero component of e}’f ¢ By the
Cauchy-Schwarz inequality, for all ¢ € C°(U x R? RY),

2
o d ZY,.9) )
TV @)| <lle)? o de=|pl2 (CY)”, A3
Ml <0B 2 [ s gy eIl (€ @)
where
1/2
S F Y
e ;%/R (EEDRN O

Since |e§ el = T~!and |o| < L, the Burkholder-Davis-Gundy inequality gives

E [‘ka(n,é)‘z] <4F [/OT ‘b ()?J’.V(z), VN(t))‘z dz}

412 d 2 4% L2

—EFE ‘ N t ‘ dt N7 (A4)
+ T |:/o uj (1) i| + T

4712£;‘VL4§,3

T

By the linear growth property of b from Condition 2.1,

(b (XN ), 17N(z)))2 <312 (1 + ‘X;V(t)‘z + % i )X,N(z)f) ,
=1
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and from Lemma 4.1 E [||XJNII?,O] <ooforeach N € Nand 1 < j < N. Using
the last two estimates and (A.4), we see that

sup E“Z (1, E)‘ :| < 00.

(n.§,k)ez

Thus, foreach N € Nand 1 < j < N, E[|CN|] < oo forany s € Oy.
Following [13], we now have from (A.3) the ex1stence of a pathwise realization
TN of {9 — JN(p)}in H™® for every N € N and any s € O,4. This proves the
first part of the lemma.

For the second part, note that by Lemma 4.1

E Ub (XN, VN(I))H
<4L%(c+1) (1 SviRR: [/OT o] d’} * %i ll

vz h o))

Thus, for some constant K < oo depending only on d, T, and L,

J
2 lN N2 lN T N 2
<Kk |1+ +ﬁi2=1)xj‘ Y E N;/o ‘uj(z)( dt

Letting cN = N ZN CJA;, we have from (A.3) that, for all ¢ € CX(U x

)| = %é T8 @) = Vgl

Finally,
1 ¥ K
E[(c)] < P> G %/R A+ n2 (1 [EP)°
x 1+|S|2+§]u>p1NZ‘ —|—supE —Z[ ( N(r))dz dEg,

which is finite by Condition 2.3 and (3.5) since s € 0.
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A.2. Proof of Lemma 4.8

As in the proof of Lemma 3.1, it suffices to prove the statement in the lemma with
| - lls replaced by || - || «.s, and once again, abusing notation, we will denote || - | «s as
I |ls- Suppose thats € Oy and (u, J) € P1(X)xH™5 are such that I(u, J) < oo.
Then there is some ® € P*(J) such that ©(;y = p and

T
(T.0) = Go(©) = Eo [ /0 ot X(1)) - dX(r)}

forall ¢ € C°(U x R?,R?). Furthermore, the estimate (4.25) holds for this ©.
By an argument as in the proof of Lemma 3.1,

T d
| euxoraxo =% [ awozinods s,

k=1nez

where @y is defined in (A.1) and

T
Zu6) = [ ek x0)-axw
T
= /0 e ¢ (1.X(1) - b (X(1).ve(t)) dt

+/ ex ¢ (1, X(1) -0 (X(1),ve(1)) y p(dt, dy)
[0, T]xR™

®-a.s. Since |e,’f§| < T7!, using (4.24) we have

2 T
e &P < 2 [ (14 IXOF + o [IXP)) di

212
+ ly1? p(dt, dy),
[0,T]xR™

and then the bound in (4.25) gives

sup  Eo [|Zi(n.§))
(n,t,k)eT

< (1 + [ 1P ot + o [ | |y|2p(d,,dy)])
R4 [0,T]1xR™
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for some ¢’ < co. Thus, by the Cauchy-Schwarz inequality, for any s’ = (s], 55) €
Og and ¢ € CX(U x R?,RY),

T .
(T o) < Ee '/ @(r. X(1)) - dX(1)
0

2
< Fo ZZ/ Zer ds] lol?

| k—1nez d(1—+n2f1(1-+léP)

<02/

n%dGH%U+Wﬁ

« (1 + [l o) + Fo [ [ |y|2p(dz,dy)]) ol
R4 [0,T]xR™

<c? (1 + Eo [ / |y|2p<dz,dy>]) ol
[0,T]xR™

where

Cl=¢ (1+/ |x|2M°(dx))Z/ (14 n2)% (1+I§|2)s2<oo’

nez

since 8’ = (s7,55) € Ogz. The result follows.

A.3. Proof of Lemma 4.4

We will only consider the case where s is not an integer, the proof for the case when
s is an integer is a simpler version of the proof given below. An equivalent norm to
I - ||s in (2.7) can be given as follows (see [28, page 527]): write s = k + r where
k e Nandr € (0,1). Then, for h € HS(R?,R¢), define

R11Z = IlRl; + Y 1D,

la|=k
where || - || is the usual integer Sobolev norm
2 2
Iz =S D%,
0<l|a|<k

and || - || is the fractional Gagliardo-type Sobolev norm

()~ h)P?
I = i+ = [ peoPaxs [ [ SRSy s
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The norm || - ||« is equivalent to the norm || - || in (2.7) and thus it suffices to
prove Lemma 4.4 by | - ||s replaced by || - ||«,s- Henceforth, abusing notation, we
will denote this new norm once more as || - ||s. Now let f and gas be as in the

statement of the lemma. With B(k) as in Definition 4.3(iii), the Leibniz product
formula gives, for a multi-index o with || < k,

D% (gm (6) £ ()| = Z(;)D“—ﬂgM(xwﬁf(x) =By (‘;) D# f)|

Bz« Bz«

and hence for all M < oo

e S = 32 [ 1D%euf0IP dx

0<|a|<k

(A.6)
o ¥ [prrw] ax =i

0<\ﬁ\<k

for some ¢; = c1(k) < oco. For the r term we follow the proof of [28, Lemma 5.3].
Ify e C?"(Rd,R) issuchthat0 < < By <ocandh € H” (R4, R%) for some
0 <r < 1,then ||wh||L2 < B2 ||h||i2 If Ly denotes the Lipschitz constant of ,
then

h(x) — h(y)I?
i = [, [ WO IR0

|x—y|d+2’

[¥ (X)h(x) — ¥ (X)h(y)]?
< 2/1R<d /Rd dx dy

|x—y|d+2r

[ ()h(y) — v (»)h(y)|?
+ 2/Rd /Rd dx dy

|x _y|d+2r

|h(x) — h(y)?
<ZB'/’/R¢1/Rd e dx dy

IW(X) W(y)lzlh(y)l2
+ Z/Rd /]Rd dx dy

|d+2r

h(y)|?
< 2B2[h]? 2L2/ / | dxd
= 2Bulklr + 2Ly (x—yl<1y X — y|dF20=D T

|h(»)?
+ 8B / / dxd
V Jpa Jieeyiony [x — yar2r Y

<2B2[h)? +2 (L3, + 4B2) co|h]|2>.
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for ¢c; = c3(r) < oo. In the last line, we used the fact that, for some ¢3,c4 < 00
depending on r,

|h(y)|?
dxd
/Rd /lx yl<1y Jx — p[d+20-D Y

1 5 ,
= /Rd (/“lel} WW) (M) dy < esl|h]?,

sinced +2(r —1) < d, and

h()I? / (/ 1 ) i ,
dxdy < ———dz||h(y)|" dy <cq4|lh
Ad/lx y‘>1}|x y|d+2r -y Rd {‘Z|>1}|Z|d+2r | y I y 4” ||L2

since d + 2r > d. Thus we have that
lWhl? < 8(BJ + L3) (c2 + DI}

Then, with B(k) as in Definition 4.3 and L(k) as in (4.2), we obtain that for
la| =k

2

D% fI2= {3 (;)Da-ﬂgwﬁf

r

<2 Y (g)z HDa—ﬂgMDﬂfo

B<a

< 2%'8 (B(k)* + L(k) )(£2+1)Z( ) H

Next, for |8] < k and some constant c5 = c¢5(r) < 0o, we have that

2 2 2
 zes|prr] = es[DPr ] 4es 3 o0
la|=1

2
2
e Y 1D

la|=|B1+1

=c¢s ”

and hence for some cg = cg(k,r) < ooandall M < oo

Y UID%em fIIF <c6 D IDfI7 +cell f1}- (A7)

lee|=k lee|=k
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Finally, from (A.6) and (A.7), for all M < oo,

lgn f1I7 = lgm fI7 + Z ID%gm f 17
|lx|=k

<1+l fI+cs S IDFI2 < KIfII2.

lee|=k

where K = ¢1 + cs¢.

A.4. Proof of Lemma 4.5

Lets, s, A and K be as in the statement of the lemma. In particular A ¢ H™ is
such that
B = sup |[F-¢ < oo, (A.8)
FeA

and every F € A has support contained in K. Recall the functions e,’f £ for

(n,&.k) € T introduced above (A.1). Let {F'};en be a sequence in A, and for
I eNand (n,£) € Z xR? let

Flog = (Flog)..... Fin.).
Bln.g) = <Fl,ek S), | <k <d.

—n,—

(A9)

Since F! has compact support, the evaluation on the right-hand side of the second
equality above is indeed meaningful (see, e.g., [15, Theorem 9.8]), and for each
/l eNandn € Z, & — ﬁl(n,S) is in C®°(R?,R?). Also, using (A.8) and the
compact support property, one can verify (see [15, Theorem 9.22]) that for each
nez

sup sup
[>1 geRrd

ﬁl(n,é)) <00 and sup sup Dgﬁl(n,é)‘ < 00.

I>1 geRrd

Thus, for each n € Z, {F!(n,-),l € N} is relatively compact in C(R¢, R?). By
a standard diagonalization procedure, we can pick a subsequence {/;} such that
{ﬁ i(n,),j € N} converges in C(R¢,R%) for every n to a limit. We will now
show that FJ is Cauchy in H™S, which will complete the proof.

By an argument similar to [15, Proposition 9.16], there are constants c; (t, K),
ca(t, K) < oo for t = s, such that, for any F € H™¥ < H™* supported on the
compact set K and both t = (¢1,1,) = s, ¢/,

) ’ - ~ 2 2\~ 2\ "2
a(t,K)|F|IZ < n;Z/Rd ’F(n,f;‘)‘ (] o ) (1 Il ) as (A.10)

<ot K) | F2,,
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where F (n,£) is defined as in (A.9). In particular, for j,m € N,

2
c1(s, K) HFU _ Flm

—S

S%/Rd )~ Frn ] (12)™ (14 16R) d

Fix M € N. Then, using (1 4 |£[2)752 < (1 + |£|?)~*2, we have

2
c1(s, K) H Fli — Flm

= ¥ [ o -fesf (e a2 a

—M<n<M

+ X [ e - )] (1 n?) 7 (1 1) s

In|>M

= ¥ e -] () 0 1) a
—M<n<M
1

(1 (M + 1)2)°
> /)Fl .60 = F o) (1427 (14 16P) 7 ag

—M<n<M
B?c,y(s', K)

(1+ (M + 1)2)"175

+ er(s, K) ”Fl _

Next, for each |n] < M and R < oo, there is a C(R) < oo such that

L7706 = o] ()™ (104 167 a
Z/ ‘ﬁu (n,£) — ﬁlm(n’g)‘z (142 (14 18P)° d
{l¢1=R}

e = P (1) (1 )

{I€1>R}

n Cz(S/,K)
(1 + R2)*>™%2

A A 2 4B2 'K
<C(R) swp |6 — Fingnp)|” + 22
l€|<R (1+ R2)27%2

<C(R) sup [PV n. &)~ P, 6)[°

2
-
|EI<R

s/
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Combining the above estimates and sending j,m — oo, since {}3’ Lin,-)} con-
verges for every n, we get

lim sup H Fli — Flm

Jj,m—>00

2_4B2QM + Ders. K) | 4B%c(s', K)
T K HR)TE (s, K) (1 (M+ 1)

The result now follows on first sending R — oo and then M — oo.
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