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Asymptotic behavior of stochastic currents
under large deviation scaling

with mean field interaction and vanishing noise

AMARJIT BUDHIRAJA AND MICHAEL CONROY

Abstract. We study the large deviation behavior of a system of diffusing par-
ticles with a mean field interaction, described through a collection of stochastic
differential equations, in which each particle is driven by a vanishing indepen-
dent Brownian noise. An important object in the description of the asymptotic
behavior, as the number of particles approaches infinity and the noise intensity
approaches zero, is the stochastic current associated with the interacting particle
system in the sense of Flandoli et al. (2005). We establish a joint large deviation
principle (LDP) for the path empirical measure for the particle system and the
associated stochastic currents in the simultaneous large particle and small noise
limit. Our work extends recent results of Orrieri (2018), in which the diffusion
coefficient is taken to be the identity, to a setting of a state dependent and pos-
sibly degenerate noise with the mean field interaction influencing both the drift
and diffusion coefficients, and allowing for a stronger topology on the space of
stochastic currents in the LDP. Proof techniques differ from those used by Orrieri
(2018) and rely on methods from stochastic control, theory of weak convergence,
and representation formulas for Laplace functionals of Brownian motions.

Mathematics Subject Classification (2020): 60F10 (primary); 60K35, 60B10,
60H05, 60H10, 93E20 (secondary).

1. Introduction

Consider the interacting particle system described through a collection of stochastic
differential equations (SDEs) on Rd given as
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on some finite time horizon 0  t  T , where "N # 0 asN ! 1 and fWj ; j 2 Ng
are independent m-dimentional Brownian motions on Œ0; T ç. Here V N .t/ is the
empirical measure of the particle states at time t , namely

V
N
.t/ D

1

N

NX
jD1

ı
X

N
j
.t/
; 0  t  T;

and thus the interaction among the particles is of the mean field type and influences
both the drift and diffusion coefficients of each particle. The law of large num-
bers (LLN) and fluctuation results for such mean field systems have been widely
studied, see for instance [4, 9, 22, 25–27, 31]. In particular, when N ! 1, under
conditions on the coefficients and the initial data, fV N .t/; 0  t  T g converges
to the solution of the Vlasov equation

@

@t
V Cr � b.�; V /V D 0;

which can be formally written as

@

@t
V Cr � J D 0; (1.2)

where J :
D b.�; V /V is the nonlinear current given as the limit of the stochastic

currents
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defined for arbitrary smooth and compactly supported ' W .0; T / ⇥ Rd ! Rd ,
where ı denotes the Stratonovich integral. Currents and their stochastic counter-
parts are key objects in geometric measure theory and play an important role in the
theory of rough paths (cf. [14, 17, 18, 23]). In the current context they provide a
convenient way to describe the asymptotics of the empirical measure process V N .

In this work we are interested in studying the asymptotics of probabilities of
significant deviations of the empirical measure V N , for theN -particle microscopic
stochastic evolution described by (1.1), from its macroscopic hydrodynamic limit
described by the first order Vlasov equation in (1.2). A common approach to such a
study is to establish a general large deviation principle (LDP) on an appropriate ab-
stract space from which the information on probabilities of deviations for specific
events involving the N -particle system (1.1) can be obtained by a suitable applica-
tion of the contraction principle. In view of the representation of the hydrodynamic
limit of V N in terms of the nonlinear current functional J , a natural candidate for
an LDP are the pairs .V N ; JN / regarded as random elements of an appropriate
space. Under the conditions on the coefficients considered in this work (see Con-
dition 2.1), V N will take values in V

:
D C.Œ0; T ç;P1.Rd //, namely, the space of

continuous functions from Œ0; T ç to the space P1.Rd / of probability measures on



LDP FOR MEAN FIELD SYSTEMS WITH VANISHING NOISE 1751

Rd with finite first moment, equipped with the Wasserstein-1 distance (see Sec-
tion 2 for precise definitions). The identification of an appropriate space for JN
requires a bit more work (cf. [13, 29]). In particular, note that (1.3) describes an
uncountably infinite collection of identities in which the right-hand side is defined
in an almost sure sense for each fixed '. Thus a basic problem is to provide a
pathwise representation for the collection
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which defines a continuous, linear map on a suitable function space. This problem
was studied in [13] (see also [29]) where it was shown that there is a random vari-
able J N with values in a certain negative Sobolev space H�s of distributions (see
Subsection 2.2), which gives a pathwise representation for the collection in (1.4) in
the sense that
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for every smooth ' with compact support. Thus the stochastic currents J N can
be viewed as random elements of the Hilbert space H�s, and the basic problem of
interest is then to establish a large deviation principle for .V N ;J N

/ in V ⇥H�s.
This large deviation problem in the setting wherem D d and � D Id was stud-

ied in [29] by direct change of measure arguments. Specifically, [29] treats the large
deviation upper bound by first establishing an estimate for compact sets by consid-
ering an explicit tilt of the measure and then extends the estimate to all closed sets
by establishing certain exponential tightness estimates. The lower bound is proved
by exploiting connections between large deviations and Ä-convergence from [24],
in particular the key idea is to construct a suitable ‘recovery sequence’ using results
from [16]. One important aspect of the results and proof methods in [29] is that
the LDP is established with the weak topology on the Hilbert space H�s. Indeed,
both the proofs of the upper and lower bounds rely on the use of the weak topol-
ogy in important ways; e.g., since bounded sets are relatively compact under the
weak topology in H�s, in proving exponential tightness it suffices to estimate the
probability that J N takes values in the complement of a bounded ball.

In the current work we take a different approach to the study of the large devi-
ation principle that is based on methods from stochastic control, the theory of weak
convergence of probability measures, and Laplace asymptotics. This approach al-
lows us to avoid establishing exponential tightness estimates of the form in [29]
and enables us to treat diffusion coefficients that are state dependent and possibly
degenerate (see Subsection 2.1). In addition, since in this approach one needs to es-
tablish ordinary tightness rather than exponential tightness, by appealing to certain
compact embedding results for Sobolev spaces, we are able to establish an LDP
with the norm topology on H�s instead of the weak topology considered in [29].
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In fact, we establish a somewhat more general large deviation principle than the
one considered in [29] from which the LDP for .V N ;J N

/ can be deduced by
the contraction principle. Specifically, we consider path empirical measures �N
associated with the interacting particle system in (1.1) defined as

�
N
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N

NX
jD1

ı
X

N
j
:

Under the conditions of this work it follows that �N is a random variable with
values in P1.C.Œ0; T ç;Rd //, namely the space of probability measures, on the Ba-
nach space of Rd -valued continuous trajectories on Œ0; T ç, with integrable norm
(equipped with the Wasserstein-1 metric). Our main result, Theorem 2.10, gives an
LDP for .�N ;J N

/ in P1.C.Œ0; T ç;Rd // ⇥ H�s. Using the continuity of the map
⌫ 7! ft 7! ⌫ ı⇡�1

t
g from P1.C.Œ0; T ç;Rd // into V , where ⇡t is the projection map

on C.Œ0; T ç;Rd / giving the evaluation at time t , we then deduce an LDP for the se-
quence .V N ;J N

/ in V ⇥H�s in Corollary 2.11. The rate function, in the general
setting of a state dependent diffusion coefficient, is given as a value function of a
certain deterministic mean field control problem with a quadratic cost (see (2.11)
and (2.16)). In Proposition 2.12 we show that in the special case where � D Id, this
representation of the rate function simplifies to a more explicit form given in terms
of certain controlled Vlasov equations (see (2.17)) which was obtained in [29].

As noted previously, proof techniques here are quite different from [29]. The
starting point of our analysis is a certain variational representation for exponential
functionals of finite dimensional Brownian motions (see [2, 6]), using which the
proof of the large deviation principle reduces to a study of tightness and conver-
gence properties of certain controls and controlled analogues of the state processes
fX

N

j
; 1  j  N g, state empirical measures V N , path occupation measures �N ,

and stochastic currents J N , denoted as f NXN
j
; 1  j  N g, NV N , N�N , and NJ N ,

respectively. For the upper bound proof we introduce certain joint empirical mea-
sures, denoted asQN (see (3.7)), of particle trajectories and associated control pro-
cesses. The main step in the proof of the upper bound is to establish the tightness
of the sequence f. N�N ;QN

; NJ N
/; N 2 Ng and to provide a suitable characteriza-

tion of the weak limit points of this sequence. In particular, the tightness of the
controlled stochastic currents f NJ N g is established with the norm topology on H�s

and relies on approximations of f NJ N g by distributions with compact support as
well as certain compact embedding results for Sobolev spaces (see Lemma 4.5).
The lower bound proof is constructive in that, given a near optimal measure � on
C.Œ0; T ç;Rd / and a near optimal current J in a certain variational problem asso-
ciated with the rate function, we construct a sequence of controls and controlled
variables . N�N ; NJ N

/ that converge to .�;J / in a suitable manner. The key ingre-
dients in the proof here are a weak uniqueness (i.e., uniqueness in probability laws)
property of certain equations associated with the controlled versions of the Vlasov
equation (1.2) (see Lemma 3.5) and certain infinite product space constructions.
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Large deviation principles for weakly interacting diffusions as in (1.1) with
non-vanishing noise (i.e., "N D 1) have been studied in [10]. A different approach,
based on weak convergence methods of the form used in the current work, was
taken in [8]. The latter paper, in contrast to [10], allowed for degenerate diffusion
coefficients and for a mean field interaction in the diffusion coefficient. There
have also been several works (in addition to the paper [29] discussed above) that
have studied large deviation problems for weakly interacting diffusions with small
noise. In particular, see [19,30], and references therein, for large deviations results
for McKean-Vlasov equations in the small noise limit; and see [20] for an analysis
of interchanging of mean field limit with the small noise limit at the level of rate
function convergence. In a related direction, the paper [5] studied large deviation
properties of a system of interacting diffusions in which each particle is driven by
an independent individual source of noise and also by a vanishing amount of noise
that is common to all particles. Different levels of intensity of the small common
noise lead to different types of large deviation behavior, and the paper [5] provided
precise characterization of the various regimes.

1.1. Organization

The paper is organized as follows. In Section 2, we specify our model, describe the
space on which the large deviation principle will hold, define the rate function, and
present our main large deviation result. Section 3 provides the proof of this result,
with the proofs of its key lemmas given in Section 4. The proofs of some auxiliary
results are given in the Appendix.

1.2. Notation

The following notation will be used throughout. We use C.R; S/, Cc.R; S/, and
Ck.R; S/, k 2 N [ f1g, to denote the spaces of continuous, continuous and com-
pactly supported, and k-times continuously differentiable functions from R into S ,
respectively. Also, Ck

c
.R; S/ D Cc.R; S/\Ck.R; S/ for k 2 N[f1g. We denote

by L2.�; R; S/ the space of �-square integrable functions from R into S . When �
is the Lebesgue measure, we will occasionally suppress it in the notation and write
L
2
.�; R; S/ as L2.R; S/. The evaluation of a distribution F on a test function '

will be denoted by hF; 'i, and integration of a function f with respect to a mea-
sure � will be denoted by h�; f i. B.S/ denotes the collection of all Borel sets on
S . For a Polish space .S; dS /, P.S/ denotes the space of probability measures on
S , endowed with the topology of weak convergence. A convenient metric on this
space is the bounded Lipschitz metric given as

dbl.�; ⌫/
:
D sup
f 2Lb.S/

ˇ̌
h�; f i � h⌫; f i

ˇ̌
; �; ⌫ 2 P.S/; where

Lb.S/
:
D

(
f 2 C.S;R/ W sup

x¤y

jf .x/ � f .y/j

dS .x; y/
 1; sup

x

jf .x/j  1

)
:
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When ✓ 2 P.S/, the notation E✓ will be used to denote expectation on the prob-
ability space .S;B.S/; ✓/. For two spaces S1 and S2 and ✓ 2 P.S1 ⇥ S2/, ✓.1/
and ✓.2/ will denote the marginal distributions on S1 and S2, respectively. Similar
notation will be used when more than two spaces are involved. Euclidean norms
will be denoted by j � j. For a Polish space .S; dS /, the space C.Œ0; T ç; S/ will be
equipped with the metric

d.x; y/ D sup
0tT

dS .x.t/; y.t//;

under which it is a Polish space as well. On C.Œ0; T ç;Rd /, we define the norm
kxk1

:
D sup0tT jx.t/j, and the metric above becomes d.x; y/ D kx � yk1.

We will use) to denote convergence in distribution, and
P

! to denote convergence
in P -probability. Infimum over an empty set, by convention, is taken to be C1.
For a metric space S , a function I W S ! Œ0;1ç is called a rate function if fx 2

S W I.x/  lg is a compact set for every l <1.

2. Preliminaries and main result

Let .�;F ; P; fF.t/; 0  t  T g/ be a filtered probability space where the filtra-
tion satisfies the usual conditions (see [21, Definition 21.22]). Fix m 2 N, and let
fWj ; j 2 Ng be a sequence of independent m-dimensional fF.t/g-Brownian mo-
tions on the time horizon 0  t  T . For each N 2 N, we consider the following
system of stochastic differential equations in Rd :
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(2.1)

where V N .t/ denotes the P.Rd /-valued empirical measure
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; 0  t  T; (2.2)

and f"N ; N 2 Ng is some sequence in RC such that "N # 0 as N ! 1. Without
loss of generality, we will assume that supN "N  1 throughout. Denote X

:
D

C.Œ0; T ç;Rd /, and define P.X /-valued random variables, given as the empirical
measure of .XN

1
; : : : ; X
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Note that the marginal of�N at time t is V N .t/, that is, defining ⇡t WC.Œ0;T ç;Rd /!
Rd as the projection map ⇡t .x/ D x.t/, we have

�
N
ı ⇡

�1
t

D V
N
.t/; 0  t  T:

We will view each �
N as a random variable taking values in the Wasserstein-1

space which is defined as follows. For a Polish space .S; dS /, define the space
P1.S/ by

P1.S/
:
D

⇢
� 2 P.S/ W

Z
S

dS .x; x0/�.dx/ <1

�
;

for some choice of x0 2 S (the space does not depend on the choice of x0). Then
P1.S/ is a Polish space under the Wassertstein-1 distance given by

d1.�; ⌫/
:
D sup
f 2L.S/

ˇ̌
h�; f i � h⌫; f i

ˇ̌
;

L.S/
:
D

(
f 2 C.S;R/ W sup

x¤y

jf .x/ � f .y/j

dS .x; y/
 1

)
:

(2.4)

For further details on Wassertstein spaces, we refer to [32]. The particular cases of
interest here are the spaces P1.Rd / and P1.X /, and the notation d1 will be used
for the metric on both spaces, with the distinction being clear from the context.
Noting that (under Condition 2.1 given below)

Z
X
dX .x; 0/�

N
.dx/ D

Z
X
kxk1 �

N
.dx/ D

1

N

NX
jD1

���XNj
���
1
<1 a.s.,

we see that indeed �
N is a P1.X /-valued random variable. Similarly, it can be

checked that V N is a C.Œ0; T ç;P1.Rd //-valued random variable. Throughout, we
will denote V :

D C.Œ0; T ç;P1.Rd //.

2.1. Main conditions

The following is our main assumption on the coefficients.

Condition 2.1. There is some L < 1 such that for all x; y 2 Rd and �; ⌫ 2

P1.Rd /,

jb.x;�/ � b.y; ⌫/j C j�.x;�/ � �.y; ⌫/j  L .jx � yj C d1.�; ⌫//

and j�.x;�/j  L.

Note that the above condition implies in particular that for all x 2 Rd and
� 2 P1.Rd /,

jb.x;�/j  L

✓
1C jxj C

Z
Rd

jyj�.dy/

◆
; (2.5)
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with possibly a larger choice of L than in Condition 2.1. By standard arguments,
Condition 2.1 implies that there exists a unique pathwise solution to (2.1) for each
N 2 N.

Remark 2.2. The boundedness of � is used in an important way at several places
in the proof. It is a key ingredient in the proof of Lemma 4.1 which in turn is
key to Lemmas 4.6 and 3.3. The last two lemmas are used in both the upper and
lower bound proofs. For the upper bound proof one can relax the assumption on
the boundedness of � by using localization arguments of the form used in [6] (see,
e.g., [7, Theorem 8.4]), however these localization arguments do not work in a
simple manner for the proof of the lower bound. Relaxing the condition on the
boundedness of � remains an interesting open problem.

We assume the following on the initial conditions of (2.1).

Condition 2.3. For each N 2 N and 1  j  N , XN
j
.0/ D x

N

j
2 Rd is

deterministic. The collection of initial conditions satisfies the following:

(i) There exists some �0 2 P.Rd / such that dbl

�
V
N
.0/;�0

�
! 0;

(ii) sup
N�1

1

N

NX
jD1

ˇ̌
ˇxNj

ˇ̌
ˇ2 <1.

Note that (i) and (ii) above imply that
R
Rd jxj2 �0.dx/ < 1 from the obser-

vation

Z
Rd

�
jxj

2
^K

�
�0.dx/ D lim

N!1
1

N

NX
jD1

✓ˇ̌
ˇxNj

ˇ̌
ˇ2 ^K

◆
 sup
N�1

1

N

NX
jD1

ˇ̌
ˇxNj

ˇ̌
ˇ2

for any K 2 .0;1/, and applying Fatou’s lemma. The above condition also gives
that, as N ! 1,

d1

�
V
N
.0/;�0

�
! 0:

In order to prove the Laplace lower bound, we will make a stronger assumption
given below on the diffusion coefficient � which says that it depends on the state
of the system only through the empirical measure. We will also require the conver-
gence of the initial data in a somewhat stronger sense.

Condition 2.4.

(i) For each x 2 Rd and � 2 P1.Rd /, �.x;�/ D �.�/;
(ii) For all �0-integrable f W Rd ! R,

˝
V
N
.0/; f

˛
! h�0; f i as N ! 1:
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Remark 2.5. Part (i) of Condition 2.4 is used in the proof of the weak uniqueness
result in Lemma 3.5. Relaxing this condition is a challenging open problem. The
second part of Condition 2.4 is used in obtaining the convergence stated in (3.11).

We are interested in the large deviations behavior of �N and V N as well as a
collection of random linear functionals, referred to as stochastic currents, associ-
ated with the sequence of processes fXN

j
.t/g. We now introduce these objects. For

each N and ' 2 C1
c
.Œ0; T ç ⇥ Rd ;Rd / define

J
N
.'/

:
D

1

N

NX
jD1

Z
T

0

'
�
t; X

N

j
.t/

�
ı dX

N

j
.t/; (2.6)

where the above is a Stratanovich stochastic integral. The relationship between
Stratanovich and Itô integrals gives the following formula for JN .'/:

J
N
.'/ D

1

N

NX
jD1

 Z
T

0

'
�
t; X

N

j
.t/

�
� dX

N

j
.t/C

1

2

˝
'
�
�; X

N

j
.�/
�
; X

N

j
.�/
˛
T

!
;

where hY;Zit denotes the quadratic variation at time t of two continuous semi-
martingales Y and Z. From results in [13], JN can be viewed as a random linear
functional on a suitable Sobolev space. We now briefly describe these results and
make precise the space in which these random linear functionals take values.

2.2. Stochastic currents

Recall that for k2N,H k
.Rd ;Rd / is the Hilbert space of functions f 2L2.Rd ;Rd /

such that the distributional derivatives D˛
f are also L2 functions for all j˛j  k,

where ˛ D .˛1; : : : ; ˛d / denotes a multi-index. More generally, for any s 2 RC,
H
s
.Rd ;Rd / is defined as the space of functions f 2 L2.Rd ;Rd / such that

kf k
2

s

:
D

Z
Rd

ˇ̌
Of .⇠/

ˇ̌
2�
1C j⇠j

2
�s
d⇠ <1; (2.7)

where Of .⇠/ D
R
e
�2⇡ i⇠�x

f .x/ dx is the Fourier transform on Rd . We refer the
reader to [1, 15, 28] for details on these spaces.

In order to describe the linear space associated with the map ' 7! J
N
.'/,

we will need to consider a suitable Sobolev space of functions of time and space.
Following [3, 13, 29], a natural choice in this regard is the space

H
s1

⇣
.0; T /;H

s2

⇣
Rd ;Rd

⌘⌘
;

where s D .s1; s2/ 2 .
1

2
; 1/ ⇥ .

d

2
C 1;1/ (see [29] for a precise description of the

space). However in order to apply certain compact embedding results (see, e.g., the
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proof of Lemma 3.3) we will consider a slight modification of these spaces defined
as follows.

Fix a; b 2 R such that a < 0 < T < b and define U :
D .a; b/ and Od

:
D

.
1

2
; 1/ ⇥ .

d

2
C 1;1/. Then define

Hs :
D H

s1

⇣
U;H

s2

⇣
Rd ;Rd

⌘⌘
; s 2 Od ;

as the space of functions f W U ⇥ Rd ! Rd satisfying

kf k
2

s
:
D kf k

2

L2.U;H
s2 .Rd ;Rd //

C Œf ç
2

s

:
D

Z
U

kf .u; �/k
2

s2
duC

Z
U

Z
U

kf .u; �/ � f .v; �/k2
s2

ju � vj1C2s1
dudv <1;

(2.8)

where k � ks2 is as in (2.7). The norm k � ks is usually referred to as a Gagliardo

norm, and in fact corresponds to an inner product which makes Hs a separable
Hilbert space (see [28, Section 3]). The topological dual of the Hilbert space Hs

will be denoted as H�s, namely

H�s :
D .Hs

/
0
:

The norm on this space is given as

kF k�s
:
D sup
'2C1

c .U⇥Rd ;Rd /

jhF; 'ij

k'ks
:

For ' 2 C1
c
.U ⇥ Rd ;Rd /, abusing notation, we let

J
N
.'/

:
D

1

N

NX
jD1

Z
T

0

'
�
t; X

N

j
.t/

�
ı dX

N

j
.t/:

Note that if 'res denotes the restriction of ' to Œ0; T ç⇥Rd , then JN .'/ D J
N
.'res/.

Also, any ' 2 C1
c
.Œ0; T ç ⇥ Rd ;Rd / can be extended to a 'ext 2 C1

c
.U ⇥ Rd ;Rd /

where once more JN .'/ D J
N
.'ext/. By a pathwise realization of the collection

f' 7! J
N
.'/g on C1

c
.Œ0; T ç ⇥ Rd ;Rd /g, we mean a random variable J N with

values in H�s such that for any ' 2 C1
c
.Œ0; T ç⇥Rd ;Rd / and any extension 'ext of

' in C1
c
.U ⇥ Rd ;Rd /, hJ N

; 'exti D J
N
.'/ a.s.

The following result, giving the existence of a pathwise realization, goes along
the lines of [29] . The proof is an immediate consequence of Lemma 3.1 below (on
taking uN

j
D 0 in the lemma), the proof of which is given in the Appendix.

Theorem 2.6. Suppose Conditions 2:1 and 2:3 hold. Then, for each N 2 N and

s 2 Od , there is an H�s
-valued random variable J N

on .�;F ; P / such that, for

every ' 2 C1
c
.U ⇥Rd ;Rd /, hJ N

.!/; 'i D ŒJ
N
.'/ç.!/ for a.e. ! 2 �. Namely,

J N
is a pathwise realization of f' 7! J

N
.'/g.
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Note that the pathwise realizations fJ N g are a.s. compactly supported in the first
coordinate. Namely, if U0 ⇢ U is an open set such that U0 \ Œ0; T ç D ;, then for
all ' with compact support in U0 ⇥ Rd , hJ N

; 'i D 0 a.s. In particular, J N is a
distribution a.s. supported in Œ0; T ç ⇥ Rd .

In this work we will prove a large deviation principle for the pair .�N ;J N
/ in

the spaceP1.X /⇥H�s for each s 2 Od , from which an LDP describing the asymp-
totics of V N will follow by the contraction principle. We begin by introducing the
rate function that will govern the large deviation behavior.

2.3. Rate function

LetR denote the set of positive measures r on B.Œ0; T ç ⇥ Rm/ such that r.Œ0; t ç ⇥
Rm/ D t for all 0  t  T , and define

R1

:
D

⇢
r 2 R W

Z
Œ0;T ç⇥Rm

jyj r.dt; dy/ <1

�
:

The spaceR1 is a Polish space under the Wasserstein-1 metric (defined as in (2.4)
with S D Œ0; T ç⇥Rm). Each r 2 R1 can be decomposed as r.dt; dy/ D rt .dy/ dt ,
where rt 2 P.Rm/. For an R1-valued random variable ⇢, consider the McKean-
Vlasov equation

dX.t/ D b.X.t/; V .t// dt C

Z
Rm

�.X.t/; V .t//y ⇢t .dy/ dt;

V .t/ D P ıX.t/
�1
; V .0/ D �0;

(2.9)

where X is a stochastic process with sample paths in X , ⇢.dt; dy/ D ⇢t .dy/ dt is
the disintegration of ⇢, and �0 is the measure in Condition 2.3(i). The distribution
of a pair .X; ⇢/ that solves (2.9), which is a probability measure on Z :

D X ⇥R1,
is called a weak solution of (2.9). Let S.Z/ ⇢ P.Z/ denote the set of all such
weak solutions. With an abuse of notation, we will denote the canonical coordinate
maps on .Z;B.Z// by .X; ⇢/ once more. That is,

X.⇠; r/ D ⇠; ⇢.⇠; r/ D r; .⇠; r/ 2 Z :

Note that, if ‚ 2 S.Z/, then .X; ⇢/ satisfies (2.9) ‚-a.s. For each ‚ 2 P.Z/ and
0  t  T , define the measure

⌫‚.t/
:
D ‚ ıX.t/

�1
;

which is an element of P.Rd /. When ‚ 2 S.Z/, it is easy to check that Condi-
tion 2.1 and Gronwall’s lemma imply that E‚ ŒjX.t/jç < 1, and hence ⌫‚.t/ 2

P1.Rd / for each 0  t  T . Letting ⌫‚ denote the map t 7! ⌫‚.t/, in fact we
have that ⌫‚ 2 V . For each ' 2 C1

c
.U ⇥Rd ;Rd /, define the mapG' W S.Z/! R
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by

G'.‚/
:
D E‚

"Z
T

0

' .t; X.t// � dX.t/

#

D E‚

"Z
T

0

' .t; X.t// � b.X.t/; ⌫‚.t//dt

#

CE‚

Z
Œ0;T ç⇥Rm

' .t; X.t// � �.X.t/; ⌫‚.t//y ⇢.dt; dy/

�
:

(2.10)

Now let

P2.Z/
:
D

⇢
‚ 2 P.Z/ W E‚

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�
<1

�
;

and for J 2 H�s, define

P
⇤
.J /

:
D

n
‚2S.Z/ \ P2.Z/ W hJ ; 'iDG'.‚/ for all '2C1

c

⇣
U ⇥ Rd ;Rd

⌘o
:

Define I W P1.X / ⇥H�s ! Œ0;1ç as

I.�;J /
:
D inf

⇢
E‚


1

2

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�
W‚.1/D�; ‚2P

⇤
.J /

�
; (2.11)

where we recall that ‚.1/ denotes the marginal of ‚ on X .

Remark 2.7. Note that the domain of the function I depends on s 2 Od . How-
ever, it turns out (see Lemma 4.8) that if I.�;J / < 1 for some s 2 Od and
.�;J / 2 P1.X / ⇥H�s, then J 2 H�s0 for all s0 2 Od , and the value of I.�;J /
is independent of s.

2.4. Main results

In this subsection we present the main results. For each N 2 N, let �N , V N and
J N be as in (2.3) , (2.2), and Theorem 2.6 respectively. Our first main result is a
law of large numbers for .�N ; V N ;J N

/.
By using the Lipschitz property of b it can be checked that for �0 as in Condi-

tion 2.3 and any Rd valued random variable ⇠0 on .�;F ; P / with distribution �0,
there is an a.s. unique solution ⇠, with sample paths in X , to the equation

⇠.t/ D ⇠0C

Z
t

0

b
�
⇠.s/; V

⇤
.s/

�
ds; V

⇤
.t/ D P ı⇠.t/

�1
; 0  t  T: (2.12)

Let
�
⇤
D P ı ⇠

�1
: (2.13)
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Using the linear growth of b and Condition 2.3(ii) it can be checked that �⇤ 2

P1.X /.
The following theorem gives the law of large numbers. Its proof is given in

Subsection 3.6.

Theorem 2.8 (LLN). Assume Conditions 2:1 and 2:3 hold and let s 2 Od . Then,

�
�
N
; V

N
;J

N
� P

!
�
�
⇤
; V

⇤
;J

⇤�

in P1.X / ⇥ V ⇥ H�s
as N ! 1;, where V

⇤
and �

⇤
are as in (2.12) and (2.13)

and J ⇤
is characterized as

hJ
⇤
; 'i D

Z
T

0

˝
V

⇤
.t/; '.t; �/ � b

�
�; V

⇤
.t/

�˛
dt (2.14)

for ' 2 C1
c
.U ⇥ Rd ;Rd /.

Remark 2.9. The pair .V ⇤
;J ⇤

/ can alternatively be characterized as the unique
solution of the equation

@

@t
V Cr � b.�; V /V D 0; J D b.�; V /V; V .0/ D �0; (2.15)

in the distributional sense on .0; T / ⇥ Rd , by which we mean that for all ' 2

C1
c
..0; T / ⇥ Rd ;R/

Z
T

0

⌧
V.t/;

@

@t
'.t; �/

�
dt C

Z
T

0

hV.t/;r'.t; �/ � b.�; V .t//i dt D 0;

and for all ' 2 C1
c
..0; T / ⇥ RdRd /

hJ ; 'i D

Z
T

0

˝
V.t/; '.t; �/ � b.�; V .t//

˛
dt:

Recall the function I defined in (2.11), and for each N 2 N let aN
:
D N="

2

N
.

Our main large deviation result is as follows.

Theorem 2.10 (LDP). Assume Conditions 2:1 and 2:3 hold. For each s 2 Od , I

is a rate function on P1.X / ⇥H�s
. Furthermore, the following holds:

(i) The sequence f.�N ;J N
/; N 2 Ng satisfies the large deviation upper bound

on P1.X / ⇥ H�s
with speed aN and rate function I . Namely, for all closed

sets F in P1.X / ⇥H�s
,

lim sup
N!1

1

aN

logP
��
�
N
;J

N
�
2 F

�
 � inf

.�;J /2F
I.�;J /I
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(ii) If in addition Condition 2:4 holds, then f.�N ;J N
/; N 2 Ng satisfies the large

deviation lower bound on P1.X / ⇥ H�s
with speed aN and rate function I .

Namely, for all open sets G in P1.X / ⇥H�s
,

lim inf
N!1

1

aN

logP
⇣�
�
N
;J

N
�
2 G

⌘
� � inf

.�;J /2G
I.�;J /:

The proof of Theorem2.10(i) is in Subsection3.3, and the proof of Theorem2.10(ii)
is in Subsection 3.4. The rate function property of I is proved in Subsection 3.5.
The proof of Theorem 2.8 is saved for Subsection 3.6, since it goes along the lines
of the proof of the large deviation upper bound.

It is easy to verify that the map ⌫ 7! ft 7! ⌫ ı ⇡�1
t

g is a continuous map from
P1.X / into V , and recall from above that each ‚ 2 S.Z/ induces ⌫‚ 2 V . From
this and the contraction principle we immediately have a large deviation principle
for f.�N ; V N ;J N

/g. In particular, we have the following corollary. Define QI W

V ⇥H�s ! Œ0;1ç as

QI .V;J /
:
D inf

⇢
E‚


1

2

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�
W ⌫‚DV;‚2P

⇤
.J /

�
: (2.16)

Corollary 2.11. Assume Conditions 2:1 and 2:3 hold. For each s 2 Od ,
QI is a

rate function on V ⇥H�s
. Furthermore:

(i) The sequence f.V N ;J N
/; N 2 Ng satisfies the large deviation upper bound

on V ⇥H�s
with speed aN and rate function QI ;

(ii) If in addition Condition 2:4 holds, then f.V N ;J N
/; N 2 Ng satisfies the

large deviation lower bound on V ⇥H�s
with speed aN and rate function QI .

When m D d and �.�/ is invertible, one can give a more explicit representation
for the rate function QI as follows. (A similar representation can be found in [29]
for the case � D Id.) For ‚ 2 S.Z/ \ P2.Z/ and V 2 V with V D ⌫‚, define

⌘
‚

t

:
D ‚ ı .X.t/; �.V .t//v.t/C b.X.t/; V .t///

�1
;

where v.t/ D
R
Rd y ⇢t .dy/ and ⇢t is obtained from the disintegration of ⇢ as

⇢.dt; dy/ D ⇢t .dy/ dt . Note that, since V D ⌫‚, ⌘‚t can be disintegrated as
⌘
‚

t
.dx; dy/ D O⌘‚

t
.x; dy/ V .t; dx/ for some O⌘‚

t
. Define QI0 W V ⇥H�s ! Œ0;1ç as

QI0.V;J /
:
D inf

(
1

2

Z
T

0

⌧
V.t/;

Z
Rd

ˇ̌
�
�1
.V .t//.y�b.�;V .t//

ˇ̌2
O⌘
‚

t
.�;dy/

�
dt

)
; (2.17)

where the infimum is taken over all ‚ 2 S.Z/ \ P2.Z/ such that V D ⌫‚ and
with h.t; x/ D

R
Rd y O⌘‚

t
.x; dy/; .V;J / is a distributional-sense solution of the

equation
@

@t
V Cr � hV D 0; J D hV; V .0/ D �0 (2.18)
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on .0; T / ⇥ Rd . Namely, for all ' 2 C1
c
..0; T / ⇥ Rd ;R/

Z
T

0

⌧
V.t/;

@

@t
'.t; �/

�
dt C

Z
T

0

hV.t/;r'.t; �/ � h.t; �/i dt D 0;

and for all ' 2 C1
c
..0; T / ⇥ Rd ;Rd /

hJ ; 'i D

Z
T

0

hV.t/; '.t; �/ � h.t; �/i dt: (2.19)

The following result shows that QI D QI0. The proof is given in Subsection 3.7.

Proposition 2.12. Suppose that m D d , Conditions 2:1 and 2:4(i) are satisfied,

and �.�/ is invertible for every � 2 P1.Rd /. Then QI D QI0.

3. Laplace asymptotics and variational representation

Using the well-known equivalence (cf. [7, 11]) between the large deviation upper
bound (respectively lower bound) and the Laplace upper bound (respectively lower
bound), we will prove Theorem 2.10 by establishing a Laplace principle on the
space P1.X / ⇥ H�s. Specifically, Theorem 2.10(i) will follow from the upper
bound

lim inf
N!1

�
1

aN

logE
h
e
�aNF .�N

;JN /
i

� inf
.�;J /2P1.X /⇥H�s

.F.�;J /C I.�;J // ;

(3.1)

and Theorem 2.10(ii) will follow from the lower bound

lim sup
N!1

�
1

aN

logE
h
e
�aNF .�N

;JN /
i

 inf
.�;J /2P1.X /⇥H�s

.F.�;J /C I.�;J // ;

(3.2)

where F is any bounded, continuous function on P1.X / ⇥H�s.
The inequality (3.1) will be proved in Subsection 3.3 (under Conditions 2.1

and 2.3), and the inequality (3.2) will be proved in Subsection 3.4 (under Condi-
tions 2.1, 2.3, and 2.4). The rate function property of I is shown in Subsection 3.5.
The starting point for both upper and lower bounds is the following variational
representation.

3.1. Variational representation

LetAN denote the class of RNm-valued F.t/-progressively measurable processes
u such that E

hR
T

0
ju.t/j2 dt

i
< 1. For uN D .u

N

1
; : : : ; u

N

N
/ 2 AN , with each
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u
N

j
.t/ taking values in Rm, consider the controlled version of (2.1) given as

d NX
N

j
.t/ D b

�
NX
N

j
.t/; NV

N
.t/

�
dt C "N�

�
NX
N

j
.t/; NV

N
.t/

�
dWj .t/

C �
�
NX
N

j
.t/; NV

N
.t/

�
u
N

j
.t/ dt;

(3.3)

where NXN
j
.0/ D x

N

j
and

NV
N
.t/

:
D

1

N

NX
jD1

ı NXN
j
.t/
; 0  t  T:

Analogous to (2.3), N�N will denote the empirical measure of . NXN
1
; : : : ; NXN

N
/, so

that N�N ı ⇡
�1
t

D NV N .t/ for each 0  t  T . We will also need a controlled
analogue of the stochastic current in Theorem 2.6. For ' 2 C1

c
.U ⇥ Rd ;Rd /,

define

NJ
N

j
.'/

:
D

Z
T

0

'
�
t; NX

N

j
.t/

�
ı d NX

N

j
.t/; NJ

N
.'/

:
D

1

N

NX
jD1

NJ
N

j
.'/: (3.4)

The proof of the following result, which is given in the Appendix, is similar to that
of Theorem 2.6.

Lemma 3.1. Suppose that Conditions 2:1 and 2:3 hold. Then, for each N 2 N,
1  j  N , and s 2 Od , there is a nonnegative square-integrable random variable

C
N

j;s such that for all ' 2 C1
c
.U ⇥ Rd ;Rd /

ˇ̌
ˇ NJNj .'/

ˇ̌
ˇ  C

N

j;sk'ks a.s.

In particular, the collection f' 7! NJN .'/g has a pathwise realization NJ N
on

.�;F ; P /, namely NJ N
is anH�s

-valued random variable such that h NJ N
.!/; 'iD

Œ NJN .'/ç.!/ for a.e. ! 2 � and all ' 2 C1
c
.U ⇥ Rd ;Rd /. Furthermore, if

sup
N�1

E

2
4 1
N

NX
jD1

Z
T

0

ˇ̌
ˇuNj .t/

ˇ̌
ˇ2 dt

3
5 <1; (3.5)

then supN�1E
⇥
1

N

P
N

jD1
�
C
N

j;s
�2⇤

< 1: In particular, if C
N

s
:
D

1

N

P
N

jD1 C
N

j;s,

then supN�1E
⇥�
C
N

s
�2⇤

<1.

The following variational representation follows from [2,6] (see also [8]). Specifi-
cally, the case where fF.t/g is the filtration generated by them-dimensional Brow-
nian motions fWj g is covered in [2], while the setting of a general filtration is
treated in [6]. Recall that aN D N="

2

N
.
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Theorem 3.2 (Variational Representation). Suppose that Conditions 2:1 and 2:3
hold. Let s 2 Od and let F be a real-valued, bounded, continuous function on

P1.X / ⇥H�s
. Then for each N 2 N,

�
1

aN

logE
h
e
�aNF .�N

;JN /
i

D inf
uN2AN

E

2
4 1

2N

NX
jD1

Z
T

0

ˇ̌
ˇuNj .t/

ˇ̌
ˇ2 dt C F

�
N�
N
; NJ

N
�
3
5 :

(3.6)

3.2. Tightness properties

The following lemma gives a key tightness property that will be needed in the
proofs of both upper and lower Laplace bounds. The proof is given in Subsec-
tion 4.1.

Lemma 3.3. Suppose Conditions 2:1 and 2:3 hold. Fix s 2 Od , and let fu
N
; N 2

Ng with uN 2 AN for each N be such that

sup
N�1

E

2
4 1
N

NX
jD1

Z
T

0

ˇ̌
ˇuNj .t/

ˇ̌
ˇ2 dt

3
5 <1:

Let NXN
j
, N�N , and NJ N

be the controlled sequences corresponding to sequence of

controls fuN g as defined in Subsection 3:1. For each j and N , let ⇢
N

j
be the

R1-valued random variable given as

⇢
N

j
.dt; dy/

:
D ı

u
N
j
.t/
.dy/ dt;

and consider the sequence of P.Z/-valued random variables defined as

Q
N :

D
1

N

NX
jD1

ı⇣ NXN
j
;⇢

N
j

⌘; N 2 N: (3.7)

Then:

(i) The sequence f. N�N ;QN
; NJ N

/; N 2 Ng is tight in P1.X / ⇥ P.Z/ ⇥H�s
;

(ii) If . N�N ;QN
; NJ N

/ ) . N�;Q; NJ / as N ! 1 in P1.X / ⇥ P.Z/ ⇥ H�s
, then

Q.1/ D N� andQ 2 P⇤
. NJ / a.s.

3.3. Proof of the upper bound

In this subsection we prove part (i) of Theorem 2.10 by showing that (3.1) holds.
Assume Conditions 2.1 and 2.3. Fix s D .s1; s2/ 2 Od , and a real-valued,
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bounded, continuous function F on P1.X /⇥H�s. Let " 2 .0; 1/, and using Theo-
rem 3.2 choose fuN ; N 2 Ng with uN 2 AN for each N such that

�
1

aN

logE
h
e
�aNF .�N

;JN /
i

�E

2
4 1

2N

NX
jD1

Z
T

0

ˇ̌
ˇuNj .t/

ˇ̌
ˇ2 dt C F

�
N�
N
; NJ

N
�
3
5 � ";

(3.8)

where . N�N ; NJ N
/ are controlled variables corresponding to the control uN as de-

fined in Subsection 3.1. From the boundedness of F it follows that

sup
N�1

E

2
4 1

2N

NX
jD1

Z
T

0

ˇ̌
ˇuNj .t/

ˇ̌
ˇ2 dt

3
5  2 sup

.�;J /2P1.X /⇥H�s
jF.�;J /j C 1 <1:

By Lemma 3.3, . N�N ;QN
; NJ N

/ is tight inP1.X /⇥P.Z/⇥H�s. Thus the sequence
. N�N ;QN

; NJ N
/ has a weak limit point . N�;Q; NJ / along some subsequence, and

once again by Lemma 3.3,Q 2 P⇤
.J / andQ.1/ D N� a.s. Assume without loss of

generality that . N�N ;QN
; NJ N

/ ) . N�;Q; NJ / along the full sequence. Noting that
Q
N

.1/
D N�N , we have, by (3.8),

�
1

aN

logE
h
e
�aNF .�N

;JN /
i

�E


1

2

Z
R1

Z
Œ0;T ç⇥Rm

jyj
2
r.dt; dy/Q

N

.2/
.dr/C F

⇣
Q
N

.1/
; NJ

N

⌘�
� ":

ByFatou’s lemmaand lower semicontinuity of themap r 7!
R
Œ0;T ç⇥Rm jyj2 r.dt; dy/

onR1,

lim inf
N!1

�
1

aN

logE
h
e
�aNF .�N

;JN /
i

�E


1

2

Z
R1

Z
Œ0;T ç⇥Rm

jyj
2
r.dt; dy/Q.2/.dr/C F

�
Q.1/;

NJ
��

� "

DE


EQ


1

2

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�
C F

�
N�; NJ

��
� "

� inf
.�;J /2P1.X /⇥H�s

.I.�;J /C F.�;J // � ";

where the last line follows on recalling the definition of I and the facts that Q 2

P⇤
.J / andQ.1/ D N� a.s. Since " 2 .0; 1/ is arbitrary, this completes the proof of

the upper bound in (3.1) and thus that of Theorem 2.10(i).
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3.4. Proof of the lower bound

In this subsection we prove part (ii) of Theorem 2.10 by showing (3.2). Fix s D

.s1; s2/ 2 Od . We assume that Conditions 2.1, 2.3, and 2.4 hold. Let " 2 .0; 1/

and choose .‚0;J0/ 2 P.Z/ ⇥H�s such that ‚0 2 P⇤
.J0/ and

E‚0


1

2

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�
C F

�
.‚0/.1/;J0

�

 inf
.�;J /2P1.X /⇥H�s

.I.�;J /C F.�;J //C ":

(3.9)

To prove the lower bound we will construct a sequence fuN g of controls on some
filtered probability space such that uN 2 AN for each N and

lim sup
N!1

E

2
4 1

2N

NX
jD1

Z
T

0

ˇ̌
ˇuNj .t/

ˇ̌
ˇ2 dt C F

�
N�
N
; NJ

N
�
3
5

E‚0


1

2

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�
C F

�
.‚0/.1/;J0

�
;

(3.10)

where N�N and NJ N are the controlled processes corresponding to fuN g. It will then
follow by Theorem 3.2 and (3.9) that

lim sup
N!1

�
1

aN

logE
h
e
�aNF .�N

;JN /
i

 lim sup
N!1

E

2
4 1

2N

NX
jD1

Z
T

0

ˇ̌
ˇuNj .t/

ˇ̌
ˇ2 dt C F

�
N�
N
; NJ

N
�
3
5

 inf
.�;J /2P1.X /⇥H�s

.I.�;J /C F.�;J //C ":

Since " > 0 is arbitrary, the lower bound follows.
The construction of a sequence fuN g such that the inequality in (3.10) holds

will need the following uniqueness property.

Definition 3.4. Let ✓ W Z ! Rd ⇥R1 denote the map ✓.⇠; r/ D .⇠.0/; r/. We say
that weak uniqueness of solutions of (2.9) holds if ‚1; ‚2 2 S.Z/ \ P2.Z/ and
‚1 ı ✓

�1 D ‚2 ı ✓
�1 imply that ‚1 D ‚2.

The following lemma is key to the proof of the lower bound. The proof is
provided in Subsection 4.3. Recall that in this subsection we assume that Condi-
tions 2.1, 2.3 and 2.4 hold.

Lemma 3.5. Weak uniqueness of solutions holds for (2.9).
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We now construct the sequence fuN g that satisfies (3.10). Because ‚0 2 S.Z/,
we can disintegrate

‚0 ı ✓
�1
.dx dr/ D �0.dx/ƒ0.x; dr/

for some measurable map ƒ0 W Rd ! P.R1/. Let W
:
D C.Œ0; T ç;Rm/, and let

� be the standard Wiener measure on W . Define a measurable map ƒ W Rd !

P.R1 ⇥W/ as

ƒ.x; dr; dw/
:
D ƒ0.x; dr/˝ �.dw/; x 2 Rd :

Define the measurable space . Q�; QF/ by

Q� D .R1 ⇥W/
1
; QF D B

�
Q�
�
;

where an element .r; w/ 2 Q� has the coordinates r D .r1; r2; : : :/ and w D

.w1; w2; : : :/ with rj 2 R1 and wj 2 W for each j . Consider the canonical
filtration f QF.t/g on . Q�; QF/ defined as

QF.t/
:
D �

�
wj .s/; rj .Œ0; sç ⇥ A/; j 2 N; A 2 B.Rm/; s  t

�
; 0  t  T;

and define the sequence fPN ; N 2 Ng of probability measures on . Q�; QF/ by

P
N
.dr; dw/ D

O
jN

ƒ

⇣
x
N

j
; drj ; dwj

⌘ O
j>N

⇣
.‚0/.2/ ˝ �

⌘
.drj ; dwj /;

where fxN
j
g are as in Condition 2.3. Next define the sequence fƒN ; N 2 Ng of

P.Rd ⇥R1/-valued random variables on . Q�; QF/ by

ƒ
N :

D
1

N

NX
jD1

ı⇣
x
N
j
;⇢j

⌘;

where for each j 2 N, ⇢j is the R1-valued random variable on . Q�; QF/ defined as
⇢j .r; w/ D rj . Using Condition 2.4(ii), we see by a standard argument that

P
N
ı
�
ƒ
N
��1

! ı‚0ı✓�1 (3.11)

in P.P.Rd ⇥R1// as N ! 1.
Now, for each j 2 N, disintegrating ⇢j as ⇢j .dt; dy/ D .⇢j /t .dy/ dt , define

uj .t/
:
D

Z
Rm

y .⇢j /t .dy/; 0  t  T;
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and define uN :
D .u1; : : : ; uN / for each N 2 N. Furthermore, for each j and

.r; w/ 2 Q�, let
Wj .t; .r; w//

:
D wj .t/; 0  t  T:

Then, for each N , W1; : : : ; WN are mutually independent f QF.t/g-Brownian mo-
tions on . Q�; QF ; PN /. Recall that in this subsection we are assuming Condition 2.4,
and so �.x; ⌫/ D �.⌫/ for .x; ⌫/ 2 Rd ⇥ P1.Rd /. Let . NXN

1
; : : : ; NXN

N
/ be the

unique pathwise solution (which is guaranteed due to Conditions 2.1 and 2.3) on
. Q�; QF ; PN / of the system

NX
N

j
.t/ D x

N

j
C

Z
t

0

b
�
NX
N

j
.s/; NV

N
.s/

�
ds C "N

Z
t

0

�
�
NV
N
.s/

�
dWj .s/

C

Z
t

0

�
�
NV
N
.s/

�
uj .s/ ds;

NV
N
.t/ D

1

N

NX
jD1

ı NXN
j
.t/
; 0  t  T; 1  j  N:

Also let N�N D
1

N

P
N

jD1 ı NXN
j
. Now define the sequence fQN g of P.Z/-valued

random variables as

Q
N :

D
1

N

NX
jD1

ı⇣ NXN
j
;⇢j

⌘; N 2 N:

Letting EN denote expectation on . Q�; QF ; PN /, we note that for a measurable f W

R1 ! RC Z
R1

f .r/ .‚0/.2/.dr/ <1

implies E
N

2
4 1
N

NX
jD1

f
�
⇢j

�
3
5!

Z
R1

f .r/ .‚0/.2/.dr/:

(3.12)

Indeed, if g.x/ D
R
R1
f .r/ƒ0.x; dr/ for x 2 Rd , then

E
N

2
4 1
N

NX
jD1

f
�
⇢j

�
3
5 D

1

N

NX
jD1

Z
R1

f .r/ƒ0

�
x
N

j
; dr

�
D

1

N

NX
jD1

g
�
x
N

j

�
;

andZ
Rd

g.x/�0.dx/D

Z
Rd

Z
R1

f .r/ƒ0.x; dr/�0.dx/

D

Z
Rd⇥R1

f .r/‚0 ı ✓
�1
.dx; dr/D

Z
R1

f .r/ .‚0/.2/.dr/ <1:
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Thus, from Condition 2.4(ii),

lim
N!1

E
N

2
4 1
N

NX
jD1

f
�
⇢j

�
3
5D lim

N!1
1

N

NX
jD1

g
�
x
N

j

�

D

Z
Rd

g.x/�0.dx/D

Z
R1

f .r/ .‚0/.2/.dr/;

(3.13)

which proves (3.12). Now, we have

lim sup
N!1

E
N

2
4 1
N

NX
jD1

Z
T

0

ˇ̌
uj .t/

ˇ̌
2
dt

3
5

 lim sup
N!1

E
N

2
4 1
N

NX
jD1

Z
Œ0;T ç⇥Rm

jyj
2
⇢j .dt; dy/

3
5

DE‚0

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�
<1;

(3.14)

where the convergence on the second line follows from (3.12) on observing that,
since ‚0 2 P2.Z/,

f .r/ D

Z
Œ0;T ç⇥Rm

jyj
2
r.dt; dy/; r 2 R1

satisfies
Z
R1

f .r/ .‚0/.2/.dr/ D E‚0

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�
<1:

Next, for each ' 2 C1
c
.U ⇥ Rd ;Rd / define

NJ
N
.'/

:
D

1

N

NX
jD1

Z
T

0

'
�
t; NX

N

j
.t/

�
ı d NX

N

j
.t/; N 2 N:

From Lemma 3.1, the collection f' 7! NJN .'/g has a pathwise realization NJ N

in H�s. Using Lemma 3.3 and the moment bound in (3.14), we now see that
f. N�N ;QN

; NJ N
/; N 2 Ng is tight in P1.X / ⇥ P.Z/ ⇥ H�s. Suppose, without

loss of generality, that . N�N ;QN
; NJ N

/) . N�;Q; NJ / in P1.X /⇥P.Z/⇥H�s. By
Lemma 3.3 again,Q 2 P⇤

. NJ / andQ.1/ D N� a.s. SinceQN ı ✓�1 D ƒ
N , (3.11)

implies thatQı✓�1 D ‚0ı✓
�1 a.s., and hence by the weak uniqueness established

in Lemma 3.5,Q D ‚0 a.s. Furthermore, from the definition of P⇤
. NJ /,

˝
NJ ; '

˛
D G'.Q/ D G'.‚0/ D hJ0; 'i
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for every ', a.s., and hence NJ D J0 a.s. by separability of C1
c
.U ⇥ Rd ;Rd / and

its denseness in H�s.
It follows that .QN

; NJ N
/) .‚0;J0/. Finally,

lim sup
N!1

E
N

2
4 1

2N

NX
jD1

Z
T

0

ˇ̌
uj .t/

ˇ̌
2
dt C F

�
N�
N
; NJ

N
�
3
5

D lim sup
N!1

E
N

2
4 1

2N

NX
jD1

Z
T

0

ˇ̌
uj .t/

ˇ̌
2
dt C F

⇣
Q
N

.1/
; NJ

N

⌘35

E‚0


1

2

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�
C F

�
.‚0/.1/;J0

�
;

where the last inequality is from (3.14) and since F is a bounded continuous func-
tion. This shows (3.10) and completes the proof of the lower bound in (3.2), and
part (ii) of Theorem 2.10 follows.

3.5. Rate function property

In this subsection we show that the function I W P1.X / ⇥ H�s ! Œ0;1ç defined
in (2.11) has compact sublevel sets for every s 2 Od . Fix s, and for each l < 1

consider the level set Äl
:
D f.�;J / 2 P1.X / ⇥H�s W I.�;J /  lg. The proof of

the following lemma is given in Subsection 4.2.

Lemma 3.6. Suppose Conditions 2:1 and 2:3 hold. Let s 2 Od and let

f.�k; ‚k;Jk/; k 2 Ng be a sequence in P1.X / ⇥ P.Z/ ⇥ H�s
such that, for

each k, ‚k 2 P⇤
.Jk/, .‚k/.1/ D �k , and

sup
k�1

E‚k


1

2

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�
<1: (3.15)

Then the sequence f.�k; ‚k;Jk/; k 2 Ng is relatively compact inP1.X /⇥P.Z/⇥
H�s

.

Now we prove the compactness of Äl . Let f.�k;Jk/; k 2 Ng be a sequence in
Äl . From the definition of I , for each k 2 N there is a ‚k 2 P⇤

.Jk/ with
.‚k/.1/ D �k such that

E‚k


1

2

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�
 l C

1

k
: (3.16)

FromLemma3.6, f.�k; ‚k;Jk/g is relatively compact inP1.X /⇥P.Z/⇥H�s. It is
easily checked that if .�; ‚;J / is a limit point along somesubsequence, then‚.1/ D
� and along the same subsequenceG'.‚k/ ! G'.‚/ and hJk; 'i ! hJ ; 'i for
every ' 2 C1

c
.U ⇥ Rd ;Rd /. This shows that‚ 2 P⇤

.J /. Sending k ! 1 in
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(3.16) and using lower semicontinuity of the map r 7!
R
Œ0;T ç⇥Rm jyj2 r.dt; dy/ on

R1, we obtain

E‚


1

2

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�
 l;

and hence .�;J / lies in Äl . Compactness of Äl follows.

3.6. Law of large numbers

Here we prove Theorem 2.8. The model (2.1) can be viewed as the controlled
equation (3.3) with the controls taken to be uN

j
⌘ 0 for all 1  j  N andN 2 N.

From Lemma 3.3 it then follows that .�N ;QN
;J N

/ is tight in P1.X / ⇥ P.Z/ ⇥

H�s. Suppose that along some subsequence .�N ;QN
;J N

/) .�;Q;J /. Then,
once again from Lemma 3.3, Q.1/ D � and Q 2 P⇤

.J / a.s. Furthermore, since
u
N

j
⌘ 0 for all 1  j  N and N 2 N, we see that the second coordinate variable

on Z satisfies Q.⇢ D 0/ D 1 a.s., and thus, under Q, the first coordinate variable
on Z satisfies

X.t/ D X.0/C

Z
t

0

b.X.s/; V .s// ds; V .t/ D Q ıX.t/
�1
; V .0/ D �0

for all 0  t  T . Then, from the unique solvability of (2.12), it follows that
� D �

⇤ a.s., and hence we have that �N converges in probability in P1.X / (along
the full sequence) to �

⇤. Since V N .t/ D �
N ı ⇡

�1
t

and V ⇤
.t/ D �

⇤ ı ⇡
�1
t

for
each 0  t  T , we also have that V N ! V

⇤ in probability in V . Finally, since
Q 2 P⇤

.J / a.s.,
G'.Q/ D hJ ; 'i

for all ' 2 C1
c
.U ⇥ Rd ;Rd /, a.s., and note that

G'.Q/ D EQ

"Z
T

0

' .t; X.t// � dX.t/

#

D EQ

"Z
T

0

' .t; X.t// � b.X.t/; V
⇤
.t// dt

#

D

Z
T

0

˝
V

⇤
.t/; '.t; �/ � b

�
�; V

⇤
.t/

�˛
dt:

Thus hJ ; 'i is (a.s.) uniquely characterized for all ' 2 C1
c
.U ⇥ Rd ;Rd /. From

the separability of C1
c
.U ⇥Rd ;Rd / and its denseness inH�s we now see that J N

converges (along the full sequence) in probability, in H�s, to the nonrandom limit
J ⇤ characterized as

hJ
⇤
; 'i D

Z
T

0

˝
V

⇤
.t/; '.t; �/ � b

�
�; V

⇤
.t/

�˛
dt:

The result follows.
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3.7. Equivalent formulation of the rate function

In this subsection we give the proof of Proposition 2.12. Let m D d , and suppose
that, for every � 2 P1.Rd /, �.�/ is invertible. We first argue that QI0  QI . Fix
.V;J / 2 V ⇥ H�s such that QI .V;J / < 1. Fix ı > 0 and let ‚ 2 P⇤

.J / with
⌫‚ D V be ı-optimal for QI .V;J /, namely

E‚


1

2

Z
Œ0;T ç⇥Rd

jyj
2
⇢.dt; dy/

�
 QI .V;J /C ı: (3.17)

Disintegrate ⇢.dt; dy/ D ⇢t .dy/ dt and define

v.t/
:
D

Z
Rd

y ⇢t .dy/; a.e. t 2 Œ0; T ç: (3.18)

Also let ⌘‚
t

:
D ‚ ı .X.t/; �.V .t//v.t/C b.X.t/; V .t///

�1 2 P.R2d /. Then, since
⌫‚ D V , ⌘‚

t
can be disintegrated as ⌘‚

t
.dx; dy/ D O⌘‚

t
.x; dy/ V .t; dx/ for some

O⌘‚
t
W Rd ! P.Rd /. Define the function h on Œ0; T ç ⇥ Rd by

h.t; x/
:
D

Z
Rd

y O⌘
‚

t
.x; dy/; (3.19)

and note that Condition 2.1 ensures that this is well-defined. Under ‚, V.0/ D �0

and

X.t/DX.0/C

Z
t

0

b.X.s/; V .s// dsC

Z
Œ0;tç⇥Rd

�.V .s//y ⇢s.dy/ ds; a.s.; (3.20)

for each t , and so for ' 2 C1
c
..0; T / ⇥ Rd ;R/

0D'.T;X.T // � '.0;X.0//

D

Z
T

0

✓
@

@t
'.t;X.t//Cr'.t;X.t//�b.X.t/;V .t//Cr'.t;X.t//��.V .t//v.t/

◆
dt;

where v is as in (3.18). Taking expectations with respect to ‚,

0 D

Z
T

0

Z
R2d


@

@t
'.t; x/Cr'.t; x/ � y

�
⌘
‚

t
.dx; dy/ dt

D

Z
T

0

⌧
V.t/;

@

@t
'.t; �/Cr'.t; �/

Z
Rd

y O⌘
‚

t
.�; dy/

�
dt (3.21)

D

Z
T

0

⌧
V.t/;

@

@t
'.t; �/Cr'.t; �/ � h.t; �/

�
dt:

Similarly, since hJ ; 'i D G'.‚/, it is seen that for ' 2 C1
c
..0; T / ⇥ Rd ;Rd /

hJ ; 'i D

Z
T

0

hV.t/; '.t; �/ � h.t; �/i dt:
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Since V D ⌫‚, we now see from the above two identities that

QI0.V;J / 
1

2

Z
T

0

⌧
V.t/;

Z
Rd

ˇ̌
�
�1
.V .t//.y � b.�; V .t//

ˇ̌2
O⌘
‚

t
.�; dy/

�
dt

D
1

2

Z
T

0

Z
R2d

ˇ̌
�
�1
.V .t//.y � b.x; V .t///

ˇ̌2
⌘
‚

t
.dx; dy/ dt

D
1

2

Z
T

0

E‚

h
jv.t/j

2

i
dt 

1

2
E‚

Z
Œ0;T ç⇥Rd

jyj
2
⇢.dt; dy/

�

 QI .V;J /C ı;

where the last inequality is from (3.17). Since ı > 0 is arbitrary, the inequality
QI0.V;J /  QI .V;J / follows.

We now prove the reverse inequality, namely QI .V;J /  QI0.V;J /. Once
more fix ı > 0 and .V;J / 2 V ⇥ H�s such that QI0.V;J / < 1, and let ‚ 2

S.Z/ \ P2.Z/ be ı-optimal for QI0.V;J /, namely

1

2

Z
T

0

⌧
V.t/;

Z
Rd

ˇ̌
�
�1
.V .t//.y � b.�; V .t//

ˇ̌2
O⌘
‚

t
.�; dy/

�
dt QI0.V;J /Cı; (3.22)

V D ⌫‚, and .V;J / solves (2.18) with h.t; x/ D
R
Rd y O⌘‚

t
.x; dy/. In particular,

for all ' 2 C1
c
..0; T / ⇥ Rd ;Rd /, (2.19) holds.

Now define anR1-valued random variable Q⇢ on .Z;B.Z// as

Q⇢.dt; dy/ D ıv.t/.dy/ dt;

where v is defined in terms of the coordinate variable ⇢ as in (3.18). Defining Q‚ 2

P.Z/ as Q‚
:
D ‚ ı .X; Q⇢/�1, we have that ⌫ Q‚ D ⌫‚ D V , and it can be seen from

(3.20) that Q‚ 2 S.Z/. Also, since (2.19) holds for any ' 2 C1
c
..0; T / ⇥Rd ;Rd /,

hJ ; 'i D

Z
T

0

hV.t/; '.t; �/ � h.�; t /i dt

D

Z
T

0

⌧
V.t/; '.t; �/ �

Z
Rd

y O⌘
‚

t
.�; dy/

�
dt

D

Z
T

0

Z
R2d

'.t; x/y ⌘
‚

t
.dx; dy/ dt

D E‚

Z
Œ0;T ç⇥Rd

'.t; X.t//Œ�.V .t//y C b.X.t/; V .t//ç ⇢.dt; dy/

�

D E Q‚

Z
Œ0;T ç⇥Rd

'.t; X.t//Œ�.V .t//y C b.X.t/; V .t//ç ⇢.dt; dy/

�

D G'.
Q‚/;
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where the last line uses the fact that
R
y ⇢t .dy/ D v.t/ D

R
y ıv.t/.dy/ DR

y Q⇢t .dy/. Thus, Q‚ 2 P⇤
.J /. Finally,

QI .V;J /  E Q‚


1

2

Z
Œ0;T ç⇥Rd

jyj
2
⇢.dt; dy/

�
D E‚

"
1

2

Z
T

0

jv.t/j
2
dt

#

DE‚

"
1

2

Z
T

0

ˇ̌
�
�1
.V .t//Œ�.V .t//v.t/Cb.X.t/;V .t//�b.X.t/;V .t//ç

ˇ̌2
dt

#

D
1

2

Z
T

0

Z
R2d

ˇ̌
�
�1
.V .t//Œy � b.x; V .t//ç

ˇ̌2
⌘t .dx; dy/ dt

D
1

2

Z
T

0

⌧
V.t/;

Z
Rd

ˇ̌
�
�1
.V .t//.y � b.�; V .t//

ˇ̌2
O⌘
‚

t
.�; dy/

�
dt

 QI0.V;J /C ı;

where we used (3.22). Since ı > 0 is arbitrary, the inequality QI .V;J /  QI0.V;J /

follows and completes the proof of the lemma.

4. Proofs of key lemmas

In this section we provide proofs of the results used in showing the Laplace upper
and lower bounds. First we establish two estimates that will be used in subsequent
subsections.

Lemma 4.1. SupposeConditions2:1and2:3are satisfied. LetuND.uN
1
; : : : ; u

N

N
/2

AN and let NXN be as defined in (3.3). Then, for eachN 2 N,

1

N

NX
jD1

E

��� NX
N

j

���2
1

�

 c

0
@1C 1

N

NX
jD1

ˇ̌
ˇxNj

ˇ̌
ˇ2 CE

2
4 1
N

NX
jD1

Z
T

0

ˇ̌
ˇuNj .t/

ˇ̌
ˇ2 dt

3
5
1
A ;

(4.1)

and for any " > 0 and any fF.t/g-stopping time ⌧ taking values in Œ0; T � "ç

1

N

NX
jD1

E

ˇ̌
ˇ NXNj .⌧ C "/ � NX

N

j
.⌧/

ˇ̌
ˇ2
�

 c"

0
@1C 1

N

NX
jD1

ˇ̌
ˇxNj

ˇ̌
ˇ2 CE

2
4 1
N

NX
jD1

Z
T

0

ˇ̌
ˇuNj .t/

ˇ̌
ˇ2 dt

3
5
1
A ;

where c <1 does not depend on N , u
N
, or ".



1776 AMARJIT BUDHIRAJA AND MICHAEL CONROY

Proof. Condition 2.1 (see (2.5)) implies

ˇ̌
ˇb � NX

N

j
.t/; NV

N
.t/

�ˇ̌ˇ2  3L
2

0
@1C

ˇ̌
ˇ NXNj .t/

ˇ̌
ˇ2 C 1

N

NX
jD1

ˇ̌
ˇ NXNj .t/

ˇ̌
ˇ2
1
A ;

and so from (3.3) and since j� j  L and "N  1, we have

ˇ̌
ˇ NXNj .t/

ˇ̌
ˇ2

 4

ˇ̌
ˇxNj

ˇ̌
ˇ2 C 4

ˇ̌
ˇ̌
Z
t

0

b
�
NX
N

j
.s/; NV

N
.s/

�
ds

ˇ̌
ˇ̌
2

C 4

ˇ̌
ˇ̌"N

Z
t

0

�
�
NX
N

j
.s/; NV

N
.s/

�
dWj .s/

ˇ̌
ˇ̌
2

C4

ˇ̌
ˇ̌
Z
t

0

�
�
NX
N

j
.s/; NV

N
.s/

�
u
N

j
.s/ ds

ˇ̌
ˇ̌
2

 4

ˇ̌
ˇxNj

ˇ̌
ˇ2C12L2T

0
@1C

Z
t

0

sup
0rs

ˇ̌
ˇ NXNj .r/

ˇ̌
ˇ2dsC 1

N

NX
jD1

Z
t

0

sup
0rs

ˇ̌
ˇ NXNj .r/

ˇ̌
ˇ2 ds

1
A

C 4 sup
0rt

ˇ̌
ˇ̌
Z
r

0

�
�
NX
N

j
.s/; NV

N
.s/

�
dWj .s/

ˇ̌
ˇ̌2 C 4L

2
T

Z
T

0

ˇ̌
ˇuNj .s/

ˇ̌
ˇ2 ds:

Hence by the Burkholder-Davis-Gundy inequality, and using boundedness of �
once more,

1

N

NX
jD1

E

"
sup
0st

ˇ̌
ˇ NXNj .s/

ˇ̌
ˇ2
#


4

N

NX
jD1

ˇ̌
ˇxNj

ˇ̌
ˇ2 C 24L

2
T

0
@1C

Z
t

0

1

N

NX
jD1

E

"
sup
0rs

ˇ̌
ˇ NXNj .r/

ˇ̌
ˇ2
#
ds

1
A

C 16L
2
T C 4L

2
TE

2
4 1
N

NX
jD1

Z
T

0

ˇ̌
ˇuNj .s/

ˇ̌
ˇ2 ds

3
5 :

The first statement in the lemma then follows by Gronwall’s inequality (see [12,
Theorem A.5.1] ) with c D 24.L

2
T C 1/e

24L
2
T

2
.
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Next, for any t 2 Œ0; T � "ç, the linear growth of b, boundedness of � , and the
Cauchy-Schwarz inequality give
ˇ̌
ˇ NXNj .t C "/ � NX

N

j
.t/

ˇ̌
ˇ2

 4

ˇ̌
ˇ̌
Z
tC"

t

b
�
NX
N

j
.s/; NV

N
.s/

�
ds

ˇ̌
ˇ̌
2

C 4

ˇ̌
ˇ̌"N

Z
tC"

t

�
�
NX
N

j
.s/; NV

N
.s/

�
dWj .s/

ˇ̌
ˇ̌
2

C 4

ˇ̌
ˇ̌
Z
tC"

t

�
�
NX
N

j
.s/; NV

N
.s/

�
u
N

j
.s/ ds

ˇ̌
ˇ̌
2

 12TL
2
"

0
@1C sup

0sT

ˇ̌
ˇ NXNj .s/

ˇ̌
ˇ2 C 1

N

NX
jD1

sup
0sT

ˇ̌
ˇ NXNj .s/

ˇ̌
ˇ2
1
A

C 4

ˇ̌
ˇ̌
Z
tC"

t

�
�
NX
N

j
.s/; NV

N
.s/

�
dWj .s/

ˇ̌
ˇ̌
2

C 4L
2
"

Z
T

0

ˇ̌
ˇuNj .s/

ˇ̌
ˇ2 ds:

Since ⌧ is a bounded stopping time, the optional sampling theorem gives

E

ˇ̌
ˇ̌
Z

⌧C"

⌧

�
�
NX
N

j
.s/; NV

N
.s/

�
dWj .s/

ˇ̌
ˇ̌
2

 L
2
";

and so

1

N

NX
jD1

E

ˇ̌
ˇ NXNj .⌧ C "/ � NX

N

j
.⌧/

ˇ̌
ˇ2
�

 24.TC1/L
2
"

0
@1CE

2
4 1
N

NX
jD1

��� NX
N

j

���2
1

3
5CE

2
4 1
N

NX
jD1

Z
T

0

ˇ̌
ˇuNj .s/

ˇ̌
ˇ2 ds

3
5
1
A :

The second estimate in the lemma now follows (with a possibly larger choice
of c).

4.1. Proof of Lemma 3.3

The following general lemma will be useful in proving the tightness of f NJ N g. The
proof is standard (see, e.g., [12, Exercise 3.11.18]) and is therefore omitted.

Lemma 4.2. Let fZk; k 2 Ng be a sequence of random variables taking values

in a separable Banach space with norm k � k. Suppose that for each " > 0 we

can write Zk D Z
"

k
C R

"

k
for each k 2 N, where fZ"

k
; k 2 Ng is tight and

supk�1E
⇥��R"

k

��⇤  ": Then fZkg is tight.

To prove tightness for the controlled stochastic currents, we will make use of a
collection of test functions fgM ;M <1g defined as follows.
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Definition 4.3. Let fgM ;M <1g be a collection of functions in C1
c
.Rd ;R/ that

satisfy 0  gM .x/  1 for all M < 1 and x 2 Rd , and have the following
properties:

(i) For eachM , gM .x/ D 1 on jxj M ;
(ii) For eachM , gM .x/ D 0 on jxj �M C 1;
(iii) For every k 2 N, there is a constant B.k/ <1 such that jD˛

gM .x/j  B.k/

for all x 2 Rd , allM <1, and all j˛j  k.

Note that if fgM ;M < 1g is a collection as in Definition 4.3 then for every
k 2 N there is a constant L.k/ <1 such that

jD
˛
gM .x/ �D

˛
gM .y/j  L.k/jx � yj (4.2)

for all x; y 2 Rd , all M < 1, and all j˛j  k. We will need the following
property of the collection fgM ;M < 1g. A proof of the lemma is given in the
Appendix.

Lemma 4.4. For any s > 0 there is a constant K D K.s/ < 1 such that for any

f 2 H s
.Rd ;Rd /

sup
M<1

kgMf ks  Kkf ks:

The following is a simple extension of the well-known compact embedding result
for Sobolev spaces on Rd known as Rellich’s Theorem (see [15, Theorem 9.22]).
Although the proof is standard, we provide details in the Appendix. For s 2 Od ,
F 2 H�s, and open U0 ⇢ U , we say F D 0 on U0 if for all ' 2 C1

c
.U ⇥Rd ;Rd /

with support in U0, hF; 'i D 0. The support of F is the complement of the union
of all open sets in U on which F D 0.

Lemma 4.5. Let s D .s1; s2/ and s0 D .s
0
1
; s

0
2
/ in Od be such that s

0
1
< s1 and

s
0
2
< s2. Suppose A ⇢ H�s0

is such that for some compact K ⇢ U ⇥ Rd , every
F 2 A has support contained inK. Suppose also that supF 2A kF k�s0 <1. Then

A is relatively compact in H�s
.

Finally, the lemma below establishes the required tightness for the controlled cur-
rents.

Lemma 4.6. Suppose Conditions 2:1 and 2:3 are satisfied. Let fgM ;M <1g be

the collection of functions in C1
c
.Rd ;R/ as in Definition 4:3. For each N 2 N,

M <1, and ' 2 C1
c
.U ⇥ Rd ;Rd /, define

NJ
N;M

.'/
:
D NJ

N
.gM'/;

NJ
N;M

c
.'/

:
D NJ

N
.'/ � NJ

N;M
.'/:

Then, the collections f' 7! NJN;M .'/g and f' 7! NJ
N;M

c .'/g have pathwise real-

izations NJ N;M
; NJ

N;M

c in H�s
for all s 2 Od . Furthermore, if

sup
N�1

E

2
4 1
N

NX
jD1

Z
T

0

ˇ̌
ˇuNj .t/

ˇ̌
ˇ2 dt

3
5 <1;
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then for all s 2 Od

sup
M<1

sup
N�1

E

h��� NJ
N;M

���
�s

i
<1

and

lim
M!1

sup
N�1

E

h��� NJ
N;M

c

���
�s

i
D 0:

In particular, f NJ N
; N 2 Ng is tight in H�s

for all s 2 Od .

Proof. Fix s D .s1; s2/ 2 Od , and for each N and 1  j  N , let CN
j;s be the

square-integrable random variable from Lemma 3.1, so that j NJN .'/j  C
N

s k'ks

a.s. for all ' 2 C1
c
.U ⇥ Rd ;Rd /, where CNs D

1

N

P
N

jD1 C
N

j;s. As a consequence
of Lemma 4.4, for some constant K D K.s2/ < 1 we have, for all ' 2 C1

c
.U ⇥

Rd ;Rd / andM <1,

kgM'k
2

s D

Z
U

kgM'.u; �/k
2

s2
du

C

Z
U

Z
U

kgM .'.u; �/ � '.v; �//k
2

s2

ju � vj1C2s1
dudv  K

2
k'k

2

s :

(4.3)

Hence, ˇ̌
ˇ NJN;M .'/

ˇ̌
ˇ  C

N

s kgM'ks  KC
N

s k'ks a.s.;

and
ˇ̌
ˇ NJN;Mc

.'/

ˇ̌
ˇD
ˇ̌
ˇ NJN ..1 � gM /'/

ˇ̌
ˇCNs k.1 � gM /'ks.1CK/C

N

s k'ks a.s.

From [13, Lemma 5] it then follows that, for everyM <1, there are H�s-valued
random variables NJ N;M and NJ

N;M

c such that, for every ' 2 C1
c
.U ⇥Rd ;Rd / and

M <1,
˝
NJ
N;M

.!/; '
˛
D

⇥
J
N;M

.'/
⇤
.!/ and˝

NJ
N;M

c
.!/; '

˛
D

⇥
J
N;M

c
.'/

⇤
.!/ a.e. ! 2 �:

Then, from Lemma 3.1,

sup
M<1

sup
N�1

E

��� NJ
N;M

���2
�s

�
 K

2 sup
N�1

E

h�
C
N

s
�2i

<1: (4.4)

Let NJN
j

be as in (3.4) and define the stopping times ⌧N;M
j

D infft > 0 W j NXN
j
.t/j �

M g. Then,

NJ
N;M

c
.'/ D

1

N

NX
jD1

NJ
N

j
..1 � gM /'/ D

1

N

NX
jD1

1n
⌧
N;M
j

<T

o NJN
j
..1 � gM /'/;
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and by Lemma 3.1,
ˇ̌
ˇ NJNj ..1 � gM /'/

ˇ̌
ˇ  C

N

j;sk.1 � gM /'ks  .1CK/C
N

j;sk'ks:

Thus,

ˇ̌
ˇ NJN;Mc

.'/

ˇ̌
ˇ 

0
@1CK

N

NX
jD1

1n
⌧
N;M
j

<T

oCN
j;s

1
A k'ks

:
D QC

N

s k'ks: (4.5)

Also, by the Cauchy-Schwarz inequality,

E

h�
QC
N

s
�2i


.1CK/

2

N

0
@

NX
jD1

P

⇣
⌧
N;M

j
< T

⌘1A
0
@ 1

N

NX
jD1

E

h�
C
N

j;s
�2i
1
A :

By Lemma 4.1, Condition 2.3, and the assumption that

sup
N2N

E

2
4 1
N

NX
jD1

Z
T

0

ˇ̌
ˇuNj .t/

ˇ̌
ˇ2 dt

3
5 <1;

there is a constant QK <1 such that

sup
N�1

1

N

NX
jD1

P

⇣
⌧
N;M

j
< T

⌘
 sup
N�1

1

N

NX
jD1

P

⇣��� NX
N

j

���
1

�M

⌘


QK

M 2
:

Thus,

E

��� NJ
N;M

c

���2
�s

�
 E

h�
QC
N

s
�2i


QK.1CK/

2

M 2
sup
N�1

1

N

NX
jD1

E

h�
C
N

j;s
�2i

;

and therefore, from Lemma 3.1,

lim
M!1

sup
N�1

E

��� NJ
N;M

c

���2
�s

�
D 0: (4.6)

Note that (4.4) and (4.6) are satisfied for every s 2 Od . Now for an arbitrary
s 2 Od choose s0 D .s

0
1
; s

0
2
/ 2 Od such that s0

1
< s1 and s02 < s2. Then applying

(4.4) for s0 and observing that f NJ N;M
; N 2 Ng are compactly supported on Œ0; T ç⇥

fjxj  M C 1g ⇢ U ⇥ Rd , we see from Lemma 4.5 and Markov’s inequality that
for each fixed M f NJ N;M

; N 2 Ng is a tight collection of H�s-valued random
variables. Finally, observing that NJ N D NJ N;M C NJ

N;M

c for eachM and applying
(4.6) and Lemma 4.2, we obtain that f NJ N

; N 2 Ng is tight in H�s.
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The following general lemma will be useful in proving tightness of f N�N g.

Lemma 4.7. Let .S; dS / be a Polish space. If f�k; k 2 Ng is a tight sequence of

P.S/-valued random variables and for some x0 2 S

sup
k2N

E

Z
S

dS .x; x0/
2
�k.dx/

�
<1; (4.7)

then f�kg is tight as a sequence of P1.S/-valued random variables.

Proof. Suppose that �k converges in distribution, along a subsequence, in P.S/ to
some � , and denote the convergent subsequence once more as f�kg. From (4.7) it
follows that each �k is in P1.S/ a.s. Furthermore, by lower semicontinuity of the
map � 7!

R
S
dS .x; x0/

2
�.dx/ on P.S/ and Fatou’s lemma, we see that

E

Z
S

dS .x; x0/
2
�.dx/

�
 E


lim inf
k!1

Z
S

dS .x; x0/
2
�k.dx/

�

 sup
k�1

E

Z
S

dS .x; x0/
2
�k.dx/

�
<1;

and so in particular � 2 P1.S/ a.s. By appealing to Skorohod’s representation
theorem we can assume that �k ! � a.s. in P.S/. Recalling from Subsection 1.2
the metric dbl on the space P.S/, we have that dbl.�k; �/! 0 a.s.

It suffices now to show that �k converges in probability in P1.S/ to � . Take
f 2 L.S/ such that f .x0/ D 0. Fix 1 < M <1 and define

fM .x/
:
D

✓
f .x/

M
_ .�1/

◆
^ 1;

which is a function bounded by 1 in absolute value whose Lipschitz constant is also
bounded by 1. Then,
ˇ̌
ˇ̌
Z
S

f .x/ �k.dx/ �

Z
S

f .x/ �.dx/

ˇ̌
ˇ̌

M

ˇ̌
ˇ̌
Z
S

fM .x/ �k.dx/ �

Z
S

fM .x/ �.dx/

ˇ̌
ˇ̌C

Z
S

jMfM .x/ � f .x/j �k.dx/

C

Z
S

jMfM .x/ � f .x/j �.dx/

Mdbl.�k; �/C

Z
S

2jf .x/j1fjf .x/j>M g �k.dx/C
Z
S

2jf .x/j1fjf .x/j>M g �.dx/:

Since the Lipschitz constant of f is bounded by 1 and f .x0/ D 0, we have that
jf .x/j  dS .x; x0/, and so

Z
S

jf .x/j1fjf .x/j>M g �k.dx/ 
1

M

Z
S

dS .x; x0/
2
�k.dx/;
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and the equivalent inequality holds for � . Now, since h�; f i � h⌫; f i D h�; f �

f .x0/i � h⌫; f � f .x0/i for any �; ⌫ 2 P1.S/ and f 2 L.S/, the supremum in
the definition of d1 can be restricted to f such that f .x0/ D 0. Thus,

E Œd1.�k; �/ç D E

"
sup

f 2L.S/;f .x0/D0

ˇ̌
ˇ̌
Z
S

f .x/ �k.dx/ �

Z
S

f .x/ �.dx/

ˇ̌
ˇ̌
#

ME Œdbl.�k; �/çC
2

M
sup
l2N

E

Z
S

dS .x; x0/
2
�l.dx/

�

C
2

M
E

Z
S

dS .x; x0/
2
�.dx/

�
:

Sending first k ! 1 and thenM ! 1, we have that limk!1E Œd1.�k; �/ç D 0,
which completes the proof.

We can now complete the proof of Lemma 3.3.

Proof of Lemma 3:3(i). We begin by arguing that f N�N g is a tight sequence of
P.X /-valued random variables. For this it suffices to show (see [7, Theorem 2.11])
that f�N ; N 2 Ng is a relatively compact set in P.X /, where

�
N :

D E
⇥
N�
N
⇤
D

1

N

NX
jD1

P
�
NX
N

j
2 �

�
:

Note that Z
X
k k

2

1 �
N
.d / D

1

N

NX
jD1

E

��� NX
N

j

���2
1

�
;

and so by Lemma 4.1 and the assumption on the controls in Lemma 3.3, we see
that

sup
N�1

Z
X
k k

2

1 �
N
.d / D sup

N�1

1

N

NX
jD1

E

��� NX
N

j

���2
1

�
<1: (4.8)

Next, for " > 0 let T" denote the collection of all f�.X.s/ W s  t /g-stopping times
on .X ;B.X // taking values in Œ0; T � "ç where fX.t/g is the canonical coordinate
process on X . Then for each N 2 N there are f�. NXN

j
.s/ W s  t /g-stopping times

f⌧N
j
; 1  j  N g on .�;F/ with values in Œ0; T � "ç such that

Z
X
j .⌧ C "/ �  .⌧/j

2
�
N
.d / D

1

N

NX
jD1

E

ˇ̌
ˇ NXNj

�
⌧
N

j
C "

�
� NX

N

j

�
⌧
N

j

�ˇ̌ˇ2
�
:
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Applying Lemma 4.1, we then have
Z
X
j .⌧ C "/ �  .⌧/j

2
�
N
.d /

 c"

0
@1C sup

N�1

1

N

NX
jD1

ˇ̌
ˇxNj

ˇ̌
ˇ2 C sup

N�1
E

"
1

N

NX
JD1

Z
T

0

ˇ̌
ˇuNj .t/

ˇ̌
ˇ2 dt

#1
A ;

and hence

lim
"!0

sup
N�1

sup
⌧2T"

Z
X
j .⌧ C "/ �  .⌧/j

2
�
N
.d / D 0: (4.9)

The relative compactness of f�N ; N 2 Ng in P.X / is immediate from (4.8) and
(4.9) (see [7, Theorem D.4]), which as noted previously shows that f N�N g is a tight
sequence of P.X /-valued random variables. The tightness of f N�N g as a sequence
of P1.X /-valued random variables now follows from Lemma 4.7 and the uniform
moment estimate in (4.8). Note also that since N�N D Q

N

.1/
we have the tightness

of the first marginals of fQN g (as a sequence of P.X /-valued random variables).
That the second marginals fQN

.2/
g is a tight sequence ofP.R1/-valued random

variables follows by an argument similar to [8, Lemma 5.1], however we provide
the details. Note that the function

h.r/ D

Z
Œ0;T ç⇥Rm

jyj
2
r.dt; dy/

has compact level sets on R1 (recall that R1 is equipped with the Wasserstein-1
metric). It then follows that

H.✓/ D

Z
R1

h.r/ ✓.dr/

has relatively compact level sets on P.R1/ (see [7, Lemma 2.10]). It now suffices
to show that supN�1EŒH.Q

N

.2/
/ç < 1 (see [7, Lemmas 2.9]). However this is

immediate as

sup
N�1

E

h
H

⇣
Q
N

.2/

⌘i
D sup
N�1

E

2
4 1
N

NX
jD1

Z
Œ0;T ç⇥Rm

jyj
2
⇢
N

j
.dt; dy/

3
5

D sup
N�1

E

2
4 1
N

NX
jD1

Z
T

0

ˇ̌
ˇuNj .t/

ˇ̌
ˇ2 dt

3
5 <1:

(4.10)

Thus we have shown that the second marginals of fQN g are also tight, which in
turn shows that f N�N ;QN g is a tight sequence of P1.X / ⇥ P.Z/-valued random
variables. Together with Lemma 4.6, this finishes the proof of Lemma 3.3(i).
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Proof of Lemma 3:3(ii). Suppose now that . N�N;QN
; NJ N

/). N�;Q; NJ / inP1.X /⇥
P.Z/ ⇥ H�s, where . N�;Q; NJ / is defined on some probability space. By appeal-
ing to Skorokhod’s representation theorem, we can assume that f. N�N ;QN

; NJ N
/g

and . N�;Q; NJ / are defined on a common probability space . Q�; QF ; QP / and that
. N�N ;QN

; NJ N
/ ! . N�;Q; NJ / a.s. Let QE denote expectation on this space. The

property Q.1/ D N� is immediate from the identity QN

.1/
D N�N for every N 2 N.

We will complete the remainder of the proof in three steps: step 1 will establish
that Q 2 P2.Z/, step 2 that Q 2 S.Z/, and step 3 that Q 2 P⇤

. NJ /, from which
the result will follow.

Step 1. By Fatou’s lemma,

QE


EQ

Z
Rm⇥Œ0;T ç

jyj
2
⇢.dy dt/

��

 lim inf
N!1

QE


EQN

Z
Rm⇥Œ0;T ç

jyj
2
⇢.dy dt/

��

D lim inf
N!1

E

2
4 1
N

NX
jD1

Z
T

0

ˇ̌
ˇuNj .t/

ˇ̌
ˇ2 dt

3
5 <1;

(4.11)

and henceQ 2 P2.Z/ a.s.

Step 2. We now show that a.s. Q 2 S.Z/, namely it is a weak solution to (2.9).
Define the generator A as follows. For each f 2 C2

c
.Rd ;R/, let

Af .⌫; x; y/D.b.x; ⌫/C �.x; ⌫/y/ � rf .x/; .⌫; x; y/2P1

⇣
Rd

⌘
⇥ Rd ⇥ Rm:

Now fix an f 2 C2
c
.Rd ;R/ and define, for each V 2 V , the R-valued process

fMV
.t/; 0  t  T g on the measurable space .Z;B.Z// by

M
V
.t; .⇠; r//Df .⇠.t// �f .⇠.0//

�

Z
Œ0;tç⇥Rm

Af .V .s/; ⇠.s/; y/ r.ds; dy/; .⇠; r/ 2 Z :
(4.12)

Let NV
:
D ⌫Q. Since f is arbitrary, to establish that Q 2 S.Z/ a.s. it suffices to

show that for each fixed 0  t  T and a.e. ! 2 Q�

M
NV .!/

.t; .⇠; r// D 0; Q.!/-a.e. .⇠; r/ 2 Z : (4.13)

We will supress ! from the notation for the remainder of the proof.
For each 1  B < 1, let  B 2 Cc.Rm;Rm/ be such that  B.y/ D y on

fjyj  Bg and j B.y/j  jyj C 1 everywhere. Note that since B � 1, this
definition implies that

jy �  B.y/j 
jyj.2jyj C 1/

B
1fjyj>Bg 

3jyj2

B
: (4.14)
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Also let ⌘B 2 Cc.Rd ;Rd / be such that ⌘B.x/ D x on fjxj  Bg and j⌘B.x/j 

jxj C 1 everywhere. As with  B , we have that

jx � ⌘B.x/j 
3jxj2

B
: (4.15)

Now define the “truncated generator” AB

ABf .⌫; x; y/ D .⌘B.b.x; ⌫//C �.x; ⌫/ B.y// � rf .x/;

.⌫; x; y/ 2 P1

⇣
Rd

⌘
⇥ Rd ⇥ Rm;

and for each V 2 V let fMV

B
.t/g be the corresponding process defined as in (4.12)

with AB in place of A. Let

K
:
D sup
x2Rd

�
jf .x/j C jrf .x/j C jD

2
f .x/j

�
<1;

and note that for all V 2 V , 0  s  t , and .x; y/ 2 Rd ⇥ Rm

jAf .V .s/; x; y/ �ABf .V .s/; x; y/j

K

 
3 jb.x; V .s//j

2

B
C
3Ljyj2

B

!


12K.LC 1/

2

B

✓
1C jxj

2
C

Z
Rd

ˇ̌
x
0ˇ̌2
V.s; dx

0
/C jyj

2

◆
:

(4.16)

Now fix t , and define the maps ˆ and ˆB on P.Z/ ⇥ V by

ˆ.‚; V / D E‚

hˇ̌
ˇMV

.t/

ˇ̌
ˇ
i
; ˆB.‚; V / D E‚

hˇ̌
ˇMV

B
.t/

ˇ̌
ˇ
i
:

Note that NV N D ⌫QN , were NV N is as in Subsection 3.1. We proceed by showing
that:

(a) ˆB is bounded and continuous on P.Z/ ⇥ V ;

(b) supN�1 QE
⇥ˇ̌
ˆ.Q

N
; NV N / �ˆB.Q

N
; NV N /

ˇ̌⇤
!0 and

ˇ̌
ˆ.Q; NV / �ˆB.Q; NV /

ˇ̌ QP
!

0 as B ! 1;

(c) ˆ.QN
; NV N /

QP
! 0 as N ! 1.

The convergence .QN
; NV N / ! .Q; NV / then yields that ˆ.Q; NV / D 0 a.s., from

which the statement in (4.13) is immediate.
We first show (a). Boundedness of ˆB follows from the boundedness of ⌘B ,

 B , � , f , and rf . The continuity of ˆB follows from the continuity of the map
.V; z/ 7!M

V

B
.t; z/ on V ⇥Z .
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For (b), note from (4.16) that

QE

hˇ̌
ˇˆ �

Q
N
; NV

N
�
�ˆB

�
Q
N
; NV

N
�ˇ̌ˇ
i
 QE

h
EQN

hˇ̌
ˇM NVN

.t/�M
NVN

B
.t/

ˇ̌
ˇ
ii


12K.LC 1/

2

B

QE

"
EQN

"Z
T

0

✓
1C jX.s/j

2
C

Z
Rd

jxj
2 NV

N
.s; dx/

C

Z
Rm

jyj
2
⇢s.dy/

◆
ds

##
(4.17)


12K.LC1/2

B
sup
N�1

E

2
4TC

2T

N

NX
jD1

��� NX
N

j

���2
1
C
1

N

NX
jD1

Z
T

0

ˇ̌
ˇuNj .s/

ˇ̌
ˇ2 ds

3
5 :

From Lemma 4.1 and the assumption on the controls in Lemma 3.3, we see that the
last term in the above chain of inequalities converges to 0 as B ! 1. Similarly,
sinceQ 2 P2.Z/ a.s., the estimate

ˇ̌
ˆ.Q; NV / �ˆB.Q; NV /

ˇ̌
 EQ

hˇ̌
ˇM NV

.t/ �M
NV
B
.t/

ˇ̌
ˇ
i


12K.LC1/2

B

 Z
T

0

✓
1C2

Z
Rd

jxj
2 NV .s;dx/

◆
dsCEQ

Z
Œ0;T ç⇥Rm

jyj
2
⇢.ds; dy/

�!

implies that
ˇ̌
ˆ
�
Q; NV

�
�ˆB

�
Q; NV

�ˇ̌
! 0 a.s. as B ! 1: (4.18)

This completes the proof of (b).
We now turn to (c). Note that

ˆ
�
Q
N
; NV

N
�
DEQN

hˇ̌
ˇM NVN

.t/

ˇ̌
ˇ
i
D

1

N

NX
jD1

ˇ̌
ˇM NVN �

t;
�
NX
N

j
; ⇢
N

j

��ˇ̌ˇ

D
1

N

NX
jD1

ˇ̌
ˇ̌f � NX

N

j
.t/

�
�f

�
x
N

j

�
�

Z
t

0

Af
�
NV
N
.s/; NX

N

j
.s/; u

N

j
.s/

�
ds

ˇ̌
ˇ̌ :

By Itô’s lemma, for each 1  j  N ,

f
�
NX
N

j
.t/

�
� f

�
x
N

j

�
D

Z
t

0

Af
�
NV
N
; NX

N

j
.s/; u

N

j
.s/

�
ds

C "N

Z
t

0

rf
�
NX
N

j
.s/

�
� �

�
NX
N

j
.s/; NV

N
.s/

�
dWj .s/

C
"
2

N

2

Z
t

0

Tr
h
D
2
f
�
NX
N

j
.s/

� ⇣
��

T
⌘ �

NX
N

j
.s/; NV

N
.s/

�i
ds:
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Hence,

ˆ
�
Q
N
; NV

N
�
D

1

N

NX
jD1

ˇ̌
ˇ̌"N

Z
t

0

rf
�
NX
N

j
.s/

�
� �

�
NX
N

j
.s/; NV

N
.s/

�
dWj .s/

C
"
2

N

2

Z
t

0

Tr
h
D
2
f
�
NX
N

j
.s/

�⇣
��

T
⌘ �

NX
N

j
.s/; NV

N
.s/

�i
ds

ˇ̌
ˇ̌ :

From the boundedness of rf ,D2
f , and � , it follows that

QE
⇥
ˆ
�
Q
N
; NV

N
�⇤



⇣
KLT

1=2

⌘
"N C

KL
2
T"

2

N

2
! 0 as N ! 1:

This completes (c), which as noted previously proves the statement in (4.13) which
in turn shows thatQ is a.s. a weak solution to (2.9).

Step 3. To complete the proof of Lemma 3.3, it only remains to establish that

G'.Q/ D h NJ ; 'i for all ' 2 C
1
c
.U ⇥ Rd ;Rd /; QP -a.s. (4.19)

By considering a countable, dense subset of C1
c
.U ⇥ Rd ;Rd /, it suffices to show

that for each fixed ' 2 C1
c
.U ⇥ Rd ;Rd / we have G'.Q/ D NJ .'/ a.s.

Fix ', and let

K'
:
D sup
.t;x/2Œ0;T ç⇥Rd

0
@j'.t; x/j C

dX
k;lD1

ˇ̌
ˇ̌@'k
@xl

.t; x/

ˇ̌
ˇ̌
1
A <1:

Then, a.s.,

˝
NJ
N
; '
˛
D

1

N

NX
jD1

Z
T

0

'
�
t; NX

N

j
.t/

�
ı d NX

N

j
.t/

D
1

N

NX
jD1

Z
T

0

'
�
t; NX

N

j
.t/

�
� d NX

N

j
.t/C

1

2N

NX
jD1

˝
'
�
�; NX

N

j
.�/
�
; NX

N

j
.�/
˛
T

D
1

N

NX
jD1

Z
T

0

'
�
t; NX

N

j
.t/

�
� d NX

N

j
.t/

C
"
2

N

2N

NX
jD1

Z
T

0

dX
k;lD1

@'k

@xl

�
t; NX

N

j
.t/

�
.��

T
/lk

�
NX
N

j
.t/; NV

N
.t/

�
dt:

Define

G
⇤
'

�
Q
N
� :
D

1

N

NX
jD1

Z
T

0

'
�
t; NX

N

j
.t/

�
� d NX

N

j
.t/:
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Since j� j  L,
ˇ̌
ˇ˝ NJ N

; '
˛
�G

⇤
'

�
Q
N
�ˇ̌ˇ

D

ˇ̌
ˇ̌
ˇ̌
"
2

N

2N

NX
jD1

Z
T

0

dX
k;lD1

@'k

@xl

�
t; NX

N

j
.t/

�
.��

T
/lk

�
NX
N

j
.t/; NV

N
.t/

�
dt

ˇ̌
ˇ̌
ˇ̌

K'L
2
T"

2

N

2
;

and hence jh NJ N
; 'i � G⇤

'
.Q

N
/j ! 0 in L1 as N ! 1. Also, by the dominated

convergence theorem,

lim
N!1

E

hˇ̌
ˇ˝ NJ ; '˛ � ˝ NJ N

; '
˛ˇ̌ˇ ^ 1

i
D 0:

Next, writing
ˇ̌˝

NJ ; '
˛
�G'.Q/

ˇ̌
^ 1 

ˇ̌
ˇ˝ NJ ; '˛ � ˝ NJ N

; '
˛ˇ̌ˇ ^ 1C

ˇ̌
ˇ˝ NJ N

; '
˛
�G

⇤
'

�
Q
N
�ˇ̌ˇ

C

ˇ̌
ˇG⇤
'

�
Q
N
�
�G'.Q/

ˇ̌
ˇ ;

we see that to prove (4.19) and thus to complete the proof it suffices to argue that
the third term on the right-hand side converges to 0 in probability.

To this end, define the maps QG' and QGB
'
on f‚ 2 P2.Z/ W ⌫‚ 2 Vg ⇥ V by

QG'.‚; V /
:
D E‚

"Z
T

0

'.t; X.t// � b.X.t/; V .t// dt

C

Z
Œ0;T ç⇥Rm

'.t; X.t// � �.X.t/; V .t//y ⇢.dt; dy/

#
;

QG
B

'
.‚; V /

:
D E‚

"Z
T

0

'.t; X.t// � ⌘B .b.X.t/; V .t/// dt

#

CE‚

Z
Œ0;T ç⇥Rm

'.t; X.t// � �.X.t/; V .t// B.y/ ⇢.dt; dy/

�

for each 1  B < 1. Note by (2.10) that QG'.‚; ⌫‚/ D G'.‚/ whenever ‚ 2

S.Z/, and hence since NV D ⌫Q and Q 2 S.Z/ a.s., we have that QG'.Q;
NV / D

G'.Q/ a.s. Also, since

QG'

�
Q
N
; NV

N
�
D

1

N

NX
jD1

Z
T

0

'
�
t; NX

N

j
.t/

�
� b

�
NX
N

j
.t/; NV

N
.t/

�
dt

C
1

N

NX
jD1

Z
T

0

'
�
t; NX

N

j
.t/

�
� �

�
NX
N

j
.t/; NV

N
.t/

�
u
N

j
.t/ dt
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and "N ! 0, we see that j QG'.QN
; NV N / � G⇤

'
.Q

N
/j

QP
! 0 as N ! 1. Thus it

remains to argue that
ˇ̌
ˇ QG' �QN

; NV
N
�
� QG'

�
Q; NV

�ˇ̌ˇ QP
! 0 as N ! 1: (4.20)

Now, since

QG
B

'

�
Q
N
; NV

N
�
D

1

N

NX
jD1

Z
T

0

'
�
t; NX

N

j
.t/

�
� ⌘B

�
b
�
NX
N

j
.t/; NV

N
.t/

��
dt

C
1

N

NX
jD1

Z
T

0

'
�
t; NX

N

j
.t/

�
� �

�
NX
N

j
.t/; NV

N
.t/

�
 B

�
u
N

j
.t/

�
dt;

and the map

.⇠; r; V / 7!

Z
T

0

' .t; ⇠.t// � ⌘B.b.⇠.t/; V .t/// dt

C

Z
Œ0;T ç⇥Rm

' .t; ⇠.t// � �.⇠.t/; V .t// B.y/ r.dt; dy/

is bounded and continuous on Z ⇥ V , the a.s. convergence .QN
; NV N / ! .Q; NV /

in P.Z/ ⇥ V implies that

QG
B

'

�
Q
N
; NV

N
�
! QG

B

'

�
Q; NV

�
a.s. as N ! 1 (4.21)

for each B . Also, using (4.14) and (4.15), as in the proof of (4.17), we see
ˇ̌
ˇ QGB'

�
Q
N
; NV

N
�
� QG'

�
Q
N
; NV

N
�ˇ̌ˇ


18K'L

2
T

B

0
@1C 1

N

NX
jD1

��� NX
N

j

���2
1

1
AC

3K'L

BN

NX
jD1

Z
T

0

ˇ̌
ˇuNj .t/

ˇ̌
ˇ2 dt;

which in view of Lemma 4.1 and the assumption on the controls in Lemma 3.3
shows that

sup
N�1

QE

hˇ̌
ˇ QGB'

�
Q
N
; NV

N
�
� QG'

�
Q
N
; NV

N
�ˇ̌ˇ
i
! 0 as B ! 1: (4.22)

Finally, along the same lines as in the proof of (4.18),
ˇ̌
ˇ QGB'

�
Q; NV

�
� QG'

�
Q; NV

�ˇ̌ˇ! 0 a.s. as B ! 1:

Combining the above convergence with (4.21) and (4.22) shows (4.20), which as
noted previously establishes that Q 2 P⇤

. NJ / a.s. and thus completes the proof of
the lemma.
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4.2. Proof of Lemma 3.6

We first prove an estimate similar to that in Lemma 4.1 for the coordinate process
X.t/ on the space .Z;B.Z/;‚/ for each‚ 2 P2.Z/\S.Z/. By the definition of
S.Z/, the coordinate maps .X; ⇢/ satisfy

dX.t/ D b .X.t/; ⌫‚.t// dtC

Z
Rm

� .X.t/; ⌫‚.t// y ⇢t .dy/ dt ‚-a.s.; (4.23)

with X.0/ ⇠ �0. By Condition 2.1,

jb .X.t/; ⌫‚.t//j
2
 3L

2

✓
1C jX.t/j

2
C

Z
Rd

jxj
2
⌫‚.t; dx/

◆

D 3L
2
�
1C jX.t/j

2
CE‚

⇥
jX.t/j

2
⇤�
:

(4.24)

Applying the above bound in (4.23), taking expectation, using j� j  L, and apply-
ing Gronwall’s inequality, we have

E‚

⇥
kXk

2

1
⇤

 Qc

✓
1C

Z
Rd

jxj
2
�0.dx/CE‚

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�◆
<1;

(4.25)

for some Qc D Qc.L; T / <1.
Now fix s 2 Od and let f.�k; ‚k;Jk/g be a sequence inP1.X /⇥P.Z/⇥H�s

that satisfies the hypotheses of the lemma. Note that, by (4.25),

sup
k�1

Z
X
k k

2

1 �k.d /

D sup
k�1

Z
X
k k

2

1 .‚k/.1/.d / D sup
k�1

E‚k

⇥
kXk

2

1
⇤

 Qc

 
1C

Z
Rd

jxj
2
�0.dx/C sup

k�1
E‚k

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�!
<1:

(4.26)

If ⌧ is a f�.X.s/; s  t /g-stopping time on .Z;B.Z// taking values in Œ0; T � "ç,
then for any " > 0

jX.⌧ C "/ �X.⌧/j
2

 2

ˇ̌
ˇ̌
Z

⌧C"

⌧

b.X.t/; ⌫‚k
.t// dt

ˇ̌
ˇ̌
2

C 2

ˇ̌
ˇ̌
Z

⌧C"

⌧

Z
Rm

�.X.t/; ⌫‚k
.t//y ⇢t .dy/ dt

ˇ̌
ˇ̌
2

 6L
2
"

Z
T

0

�
1C jX.t/j

2
CE‚k

⇥
jX.t/j

2
⇤�
dt C 2L

2
"

Z
T

0

Z
Rm

jyj
2
⇢t .dy/ dt;
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‚k-a.s. for each k. Hence, using the bound in (4.25),

E‚k

h
jX.⌧ C "/ �X.⌧/j

2

i

 12L
2
.1C Qc/"

 
1C

Z
Rd

jxj
2
�0.dx/Csup

k�1
E‚k

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�!
:

If T" denotes the collection of all such stopping times ⌧ , it follows that

sup
k�1

sup
⌧2T"

Z
X
j .⌧ C "/ �  .⌧/j

2
�k.d /

D sup
k�1

sup
⌧2T"

Z
X
j .⌧ C "/ �  .⌧/j

2
.‚k/.1/.d /

D sup
k�1

sup
⌧2T"

E‚k

h
jX.⌧ C "/ �X.⌧/j

2

i

! 0

as " ! 0. This and (4.26) prove relative compactness of f�kg (and hence of
f.‚k/.1/g) in P.X /. By Lemma 4.7 and (4.26), we in fact get relative compactness
of f�kg in P1.X / .

For the second marginals f.‚k/.2/g, we recall from the proof of Lemma 3.3
that

H.✓/ D

Z
R1

Z
Œ0;T ç⇥Rm

jyj
2
r.dt; dy/ ✓.dr/

has relatively compact level sets on P.R1/. Hence, we have relative compactness
of f.‚k/.2/g in P.R1/ on observing that

sup
k�1

H
�
.‚k/.2/

�
D sup
k�1

E‚k

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�
<1:

This establishes that f‚kg is relatively compact in P.Z/.
For fJkg, we employ the following lemma, the proof of which is saved for the

Appendix.

Lemma 4.8. Suppose Conditions 2:1 and 2:3 are satisfied. Also suppose that, for

some s 2 Od and .�;J / 2 P1.X /⇥H�s
, I.�;J / <1. Then, for each s0 2 Od ,

there is a constant Cs0 < 1 such that for any ‚ 2 P⇤
.J / with ‚.1/ D � and for

all ' 2 C1
c
.U ⇥ Rd ;Rd /

jhJ ; 'ij
2
 E‚

2
4
ˇ̌
ˇ̌
ˇ
Z
T

0

'.t; X.t// � dX.t/

ˇ̌
ˇ̌
ˇ
2
3
5

 Cs0

✓
1CE‚

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�◆
k'k

2

s0 ;

where Cs0 does not depend on J , ', or‚. In particular, J 2 H�s0
for all s0 2 Od .
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Recall the collection of test functions fgM ;M < 1g from Definition 4.3, which
by Lemma 4.4 (see (4.3)) satisfy

kgM'ks  Kk'ks (4.27)

for all ' 2 C1
c
.U ⇥ Rd ;Rd / and s 2 Od , with K < 1 depending only on s. For

each k � 1 andM <1, define JM

k
;J

M;c

k
2 H�s by

˝
J
M

k
; '
˛ :
DhJk; gM'i ;

D
J
M;c

k
; '

E
:
DhJk; 'i �

˝
J
M

k
; '
˛
; '2C

1
c
.U ⇥ Rd ;Rd /:

Fix some s0 2 Od such that s0
1
< s1 and s02 < s2. Since ‚k 2 P⇤

.Jk/ for each
k and (3.15) holds, I.�k;Jk/ < 1 for each k, so, by Lemma 4.8, Jk 2 H�s0 for
each k. Then for each k and M , in view of (4.27), JM

k
and J

M;c

k
are in H�s0 as

well, and furthermore

ˇ̌
ˇ˝JM

k
; '
˛ˇ̌ˇ2  Cs0

✓
1CE‚

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�◆
kgM'k

2

s0

 Cs0K
2

✓
1CE‚k

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�◆
k'k

2

s0 ;

and hence

sup
M<1;k�1

���JM

k

���2
�s0

Cs0K
2

 
1C sup

k�1
E‚k

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�!
<1:

(4.28)

Noting that, for each M , fJM

k
g are all supported on Œ0; T ç ⇥ fjxj  M C 1g ⇢

U ⇥ Rd , by Lemma 4.5 fJM

k
; k � 1g is relatively compact in H�s. Now define

the collection of stopping times f⌧M ;M < 1g on .Z;B.Z// by ⌧
M :

D infft >
0 W jX.t/j �M g. Note that

D
J
M;c

k
; '

E
D E‚k

"Z
T

0

.1 � gM .X.t///'.t; X.t// � dX.t/

#

D E‚k

"
1f⌧M<T g

Z
T

0

.1 � gM .X.t///'.t; X.t// � dX.t/

#
;
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and so by Lemma 4.8 and (4.27)
ˇ̌
ˇ
D
J
M;c

k
; '

Eˇ̌
ˇ2

‚k

�
⌧
M
< T

�
E‚k

2
4
ˇ̌
ˇ̌
ˇ
Z
T

0

.1 � gM .X.t///'.t; X.t// � dX.t/

ˇ̌
ˇ̌
ˇ
2
3
5

‚k

�
⌧
M
< T

�
Cs

✓
1CE‚k

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�◆
k.1 � gM /'k

2

s

 2‚k

�
⌧
M
< T

�
Cs

�
1CK

2
� ✓
1CE‚k

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�◆
k'k

2

s ;

and hence
sup
k�1

���JM;c

k

���2
�s

 2 sup
k�1

‚k

�
⌧
M
< T

�
Cs

�
1CK

2
�

⇥

 
1C sup

k�1
E‚k

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�!


2

M 2
sup
k�1

E‚k

⇥
kXk

2

1
⇤
Cs

�
1CK

2
�

⇥

 
1C sup

k�1
E‚k

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�!

! 0

(4.29)

as M ! 1, by (4.25). Then by Lemma 4.2 (applied to the constant random
variables Jk D JM

k
C J

M;c

k
on .Z;B.Z//), we obtain from (4.28) and (4.29)

that fJkg is relatively compact in H�s. Lemma 3.6 now follows on combining
the above with the relative compactness of f.�k; ‚k/g in P1.X / ⇥ P.Z/ shown
previously.

4.3. Proof of Lemma 3.5

Recall that we assume that Conditions 2.1, 2.3 and 2.4 hold. In particular, �.x;�/D
�.�/. Let ‚1; ‚2 2 S.Z/ \ P2.Z/ be such that ‚1 ı ✓

�1 D ‚2 ı ✓
�1, and let

ƒ D ‚1 ı ✓
�1. Then for j 2 f1; 2g, we can disintegrate ‚j as

‚j .dx; dr/ D e‚j .x0; r; dx/ƒ.dx0; dr/
for some measurable map e‚j W Rd ⇥R1 ! P.X /. Define the probability measure
„ on the space Rd ⇥R1 ⇥ X ⇥ X as

„.dx0; dr; dx1; dx2/ D e‚1.x0; r; dx1/e‚2.x0; r; dx2/ƒ.dx0; dr/;
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and let .⇠0; ⇢; X1; X2/ denote the coordinate maps on this space. Then, X1.0/ D
X2.0/ D ⇠0, and to prove the lemma it suffices to show that X1 D X2 „-a.s.

Letting u.t/ D
R
Rm y ⇢t .dy/ and Vj .t/ D „ ı .Xj .t//

�1, we have that
E„Œ

R
T

0
ju.t/j2 dt ç <1 and

Xj .t/ D ⇠0 C

Z
t

0

b
�
Xj .s/; Vj .s/

�
ds C

Z
t

0

�
�
Vj .s/

�
u.s/ ds; j 2 f1; 2g:

By the Lipschitz property of the coefficients and the fact that

d1 .V1.s/; V2.s//
2
 .E„ ŒjX1.s/ �X2.s/jç/

2
 E„

"
sup
0rs

jX1.r/ �X2.r/j
2

#
;

it follows from Condition 2.1 that for every 0  t  T ,

jX1.t/ �X2.t/j
2

 2T

Z
t

0

jb .X1.s/; V1.s// � b .X2.s/; V2.s//j
2
ds

C 2

 Z
T

0

ju.s/j
2
ds

!Z
T

0

j� .V1.s// � � .V2.s//j
2
ds

 2L
2
T

Z
t

0

.jX1.s/ �X2.s/j C d1 .V1.s/; V2.s///
2
ds

C 2L
2

✓Z
t

0

ju.s/j
2
ds

◆ Z
T

0

d1 .V1.s/; V2.s//
2
ds

 4L
2
T

Z
t

0

sup
0rs

jX1.r/ �X2.r/j
2
ds

C 2L
2

 
2T C

Z
T

0

ju.t/j
2
dt

!Z
t

0

E„

"
sup
0rs

jX1.r/ �X2.r/j
2

#
ds:

Then, taking expectation with respect to „, for all 0  t  T

E„

"
sup
0st

jX1.s/ �X2.s/j
2

#

 2L
2

 
4T CE„

"Z
T

0

ju.s/j
2
ds

#!Z
t

0

E„

"
sup
0rs

jX1.r/ �X2.r/j
2

#
ds:

Gronwall’s inequality now shows that E„ŒkX1 �X2k
2

1ç D 0, which completes
the proof.
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Appendix A.

In this section we provide proofs of some Sobolev space results that are used in our
work. It will be convenient to introduce an alternate norm onHs equivalent to (2.8),
and which is similar to norms used in [3] and [29]. Let fe1; : : : ; ed g denote the
canonical basis inRd , recall thatU D .a; b/ � Œ0; T ç, let I :

D Z⇥Rd⇥f1; : : : ; dg,
and define the functions ek

n;⇠
W U ⇥ Rd ! Rd for .n; ⇠; k/ 2 I by

e
k

n;⇠
.t; x/ D

1

b � a
e
2⇡ int=.b�a/

e
2⇡ i⇠�x

ek :

Consider the Fourier coefficients of ' 2 C1
c
.U ⇥ Rd ;Rd / given by

O'.n; ⇠/ D . O'1.n; ⇠/; : : : ; O'd .n; ⇠// ;

O'k.n; ⇠/ D

Z
U

Z
Rd

e
k

�n;�⇠
.t; x/ � '.t; x/ dx dt:

(A.1)

Then an equivalent norm on Hs, s D .s1; s2/ 2 R2C, is given by

k'k
2

⇤;s D
X
n2Z

Z
Rd

j O'.n; ⇠/j
2
�
1C n

2
�s1 �

1C j⇠j
2
�s2

d⇠: (A.2)

A.1. Proof of Lemma 3.1

From the equivalence of the norms, it suffices to prove the statement in the lemma
with k � ks replaced with k � k⇤;s. In what follows, we will abuse notation and
denote k � k⇤;s once more as k � ks. Recall that for N 2 N, 1  j  N , and
' 2 C1

c
.U ⇥ Rd ;Rd /,

NJ
N

j
.'/ D

Z
T

0

'
�
t; NX

N

j
.t/

�
ı d NX

N

j
.t/:

Any such ' can be written in terms of its Fourier coefficients as

'.t; x/ D

dX
kD1

X
n2Z

Z
Rd

O'k.n; ⇠/e
k

n;⇠
.t; x/ d⇠:

As in [13, Lemma 8] it follows that

NJ
N

j
.'/ D

dX
kD1

X
n2Z

Z
Rd

O'k.n; ⇠/Z
N

j;k
.n; ⇠/ d⇠;

where

Z
N

j;k
.n; ⇠/

:
D

Z
T

0

e
k

n;⇠

�
t; NX

N

j
.t/

�
ı d NX

N

j
.t/:
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Note that

Z
N

j;k
.n; ⇠/ D

Z
T

0

e
k

n;⇠

�
t; NX

N

j
.t/

�
� d NX

N

j
.t/C

1

2

D
e
k

n;⇠

�
�; NX

N

j
.�/
�
; NX

N

j
.�/

E
T

D

Z
T

0

e
k

n;⇠

�
t; NX

N

j
.t/

�
� b

�
NX
N

j
.t/; NV

N
.t/

�
dt

C

Z
T

0

e
k

n;⇠

�
t; NX

N

j
.t/

�
� �

�
NX
N

j
.t/; NV

N
.t/

�
u
N

j
.t/ dt

C "N

Z
T

0

e
k

n;⇠

�
t; NX

N

j
.t/

�
� �

�
NX
N

j
.t/; NV

N
.t/

�
dWj .t/

C ⇡ i"
2

N
⇠k

Z
T

0

⇣
e
k

n;⇠

⌘
k

�
t; NX

N

j
.t/

� ⇣
��

T
⌘
kk

�
NX
N

j
.t/; NV

N
.t/

�
dt;

since the kth component .ek
n;⇠
/k is the only nonzero component of ek

n;⇠
. By the

Cauchy-Schwarz inequality, for all ' 2 C1
c
.U ⇥ Rd ;Rd /,

ˇ̌
ˇ NJNj .'/

ˇ̌
ˇ2k'k

2

s

dX
kD1

X
n2Z

Z
Rd

ˇ̌
ˇZN
j;k
.n; ⇠/

ˇ̌
ˇ2

.1C n2/
s1
.1C j⇠j2/

s2
d⇠Dk'k

2

s
�
C
N

j;s
�2
; (A.3)

where

C
N

j;s
:
D

0
B@

dX
kD1

X
n2Z

Z
Rd

ˇ̌
ˇZN
j;k
.n; ⇠/

ˇ̌
ˇ2

.1C n2/
s1
.1C j⇠j2/

s2
d⇠

1
CA
1=2

:

Since jek
n;⇠

j  T
�1 and j� j  L, the Burkholder-Davis-Gundy inequality gives

E

ˇ̌
ˇZN
j;k
.n; ⇠/

ˇ̌
ˇ2
�
 4E

"Z
T

0

ˇ̌
ˇb � NX

N

j
.t/; NV

N
.t/

�ˇ̌ˇ2 dt
#

C
4L

2

T
E

"Z
T

0

ˇ̌
ˇuNj .t/

ˇ̌
ˇ2 dt

#
C
4"
2

N
L
2

T

C
4⇡

2
"
4

N
L
4
⇠
2

k

T
:

(A.4)

By the linear growth property of b from Condition 2.1,

ˇ̌
ˇb � NX

N

j
.t/; NV

N
.t/

�ˇ̌ˇ2  3L
2

 
1C

ˇ̌
ˇ NXNj .t/

ˇ̌
ˇ2 C 1

N

NX
lD1

ˇ̌
ˇ NXN
l
.t/

ˇ̌
ˇ2
!
;
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and from Lemma 4.1 E
h
k NXN

j
k21
i
< 1 for each N 2 N and 1  j  N . Using

the last two estimates and (A.4), we see that

sup
.n;⇠;k/2I

E

ˇ̌
ˇZN
j;k
.n; ⇠/

ˇ̌
ˇ2
�
<1:

Thus, for each N 2 N and 1  j  N , EŒjCN
j;sj

2
ç < 1 for any s 2 Od .

Following [13], we now have from (A.3) the existence of a pathwise realization
NJ N of f' 7! NJN .'/g in H�s for every N 2 N and any s 2 Od . This proves the
first part of the lemma.

For the second part, note that by Lemma 4.1

E

ˇ̌
ˇb � NX

N

j
.t/; NV

N
.t/

�ˇ̌ˇ2
�

 4L
2
.c C 1/

 
1C

ˇ̌
ˇxNj

ˇ̌
ˇ2 CE

"Z
T

0

ˇ̌
ˇuNj .t/

ˇ̌
ˇ2 dt

#
C
1

N

NX
lD1

ˇ̌
ˇxN
l

ˇ̌
ˇ2

C E

"
1

N

NX
lD1

Z
T

0

ˇ̌
ˇuN
l
.t/

ˇ̌
ˇ2 dt

#!
:

Thus, for some constant K <1 depending only on d , T , and L,

1

N

NX
jD1

dX
kD1

E

ˇ̌
ˇZN
j;k
.n; ⇠/

ˇ̌
ˇ2
�

K

0
@1C j⇠j

2
C
1

N

NX
jD1

ˇ̌
ˇxNj

ˇ̌
ˇ2 CE

2
4 1
N

NX
jD1

Z
T

0

ˇ̌
ˇuNj .t/

ˇ̌
ˇ2 dt

3
5
1
A :

Letting CNs D
1

N

P
N

jD1 C
N

j;s, we have from (A.3) that, for all ' 2 C1
c
.U ⇥

Rd ;Rd /,
ˇ̌
ˇ NJN .'/

ˇ̌
ˇ  1

N

NX
jD1

ˇ̌
ˇ NJNj .'/

ˇ̌
ˇ  C

N

s k'ks:

Finally,

E

h�
C
N

s
�2i


1

N

NX
jD1

E

h�
C
N

j;s
�2i



X
n2Z

Z
Rd

K

.1C n2/
s1
.1C j⇠j2/

s2

⇥

0
@1Cj⇠j

2
C sup
N�1

1

N

NX
jD1

ˇ̌
ˇxNj

ˇ̌
ˇ2C sup

N�1
E

2
41
N

NX
jD1

Z
T

0

ˇ̌
ˇuNj .t/

ˇ̌
ˇ2dt

3
5
1
Ad⇠;

which is finite by Condition 2.3 and (3.5) since s 2 Od .
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A.2. Proof of Lemma 4.8

As in the proof of Lemma 3.1, it suffices to prove the statement in the lemma with
k �ks replaced by k �k⇤;s, and once again, abusing notation, we will denote k �k⇤;s as
k�ks. Suppose that s 2 Od and .�;J / 2 P1.X /⇥H�s are such that I.�;J / <1.
Then there is some ‚ 2 P⇤

.J / such that ‚.1/ D � and

hJ ; 'i D G'.‚/ D E‚

"Z
T

0

'.t; X.t// � dX.t/

#

for all ' 2 C1
c
.U ⇥ Rd ;Rd /. Furthermore, the estimate (4.25) holds for this ‚.

By an argument as in the proof of Lemma 3.1,

Z
T

0

'.t; X.t// � dX.t/ D

dX
kD1

X
n2Z

Z
Rd

O'k.n; ⇠/Zk.n; ⇠/ d⇠ ‚-a.s.;

where O'k is defined in (A.1) and

Zk.n; ⇠/
:
D

Z
T

0

e
k

n;⇠
.t; X.t// � dX.t/

D

Z
T

0

e
k

n;⇠
.t; X.t// � b .X.t/; ⌫‚.t// dt

C

Z
Œ0;T ç⇥Rm

e
k

n;⇠
.t; X.t// � � .X.t/; ⌫‚.t// y ⇢.dt; dy/

‚-a.s. Since jek
n;⇠

j  T
�1, using (4.24) we have

jZk.n; ⇠/j
2

6L

2

T

Z
T

0

�
1C jX.t/j

2
CE‚

⇥
jX.t/j

2
⇤�
dt

C
2L

2

T

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/;

and then the bound in (4.25) gives

sup
.n;⇠;k/2I

E‚

h
jZk.n; ⇠/j

2

i

 c
0
✓
1C

Z
Rd

jxj
2
�0.dx/CE‚

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�◆
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for some c0 <1. Thus, by the Cauchy-Schwarz inequality, for any s0 D .s
0
1
; s

0
2
/ 2

Od and ' 2 C1
c
.U ⇥ Rd ;Rd /,

jhJ ; 'ij
2
 E‚

2
4
ˇ̌
ˇ̌
ˇ
Z
T

0

'.t; X.t// � dX.t/

ˇ̌
ˇ̌
ˇ
2
3
5

 E‚

"
dX
kD1

X
n2Z

Z
Rd

jZk.n; ⇠/j
2

.1C n2/
s
0
1 .1C j⇠j2/

s
0
2

d⇠

#
k'k

2

s0

 c
0X
n2Z

Z
Rd

d⇠

.1C n2/
s
0
1 .1C j⇠j2/

s
0
2

⇥

✓
1C

Z
Rd

jxj
2
�0.dx/CE‚

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�◆
k'k

2

s0

 C
2

s0

✓
1CE‚

Z
Œ0;T ç⇥Rm

jyj
2
⇢.dt; dy/

�◆
k'k

2

s0

where

C
2

s0
:
D c

0
✓
1C

Z
Rd

jxj
2
�0.dx/

◆X
n2Z

Z
Rd

d⇠

.1C n2/
s
0
1 .1C j⇠j2/

s
0
2

<1;

since s0 D .s
0
1
; s

0
2
/ 2 Od . The result follows.

A.3. Proof of Lemma 4.4

Wewill only consider the case where s is not an integer, the proof for the case when
s is an integer is a simpler version of the proof given below. An equivalent norm to
k � ks in (2.7) can be given as follows (see [28, page 527]): write s D k C r where
k 2 N and r 2 .0; 1/. Then, for h 2 H s

.Rd ;Rd /, define

khk
2

⇤;s
:
D khk

2

k
C

X
j˛jDk

kD
˛
hk
2

r
;

where k � kk is the usual integer Sobolev norm

khk
2

k
D

X
0j˛jk

kD
˛
hk
2

L2 ;

and k � kr is the fractional Gagliardo-type Sobolev norm

khk
2

r
D khk

2

L2 C Œhç
2

r
D

Z
Rd

jh.x/j
2
dxC

Z
Rd

Z
Rd

jh.x/ � h.y/j2

jx � yjdC2r
dx dy: (A.5)
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The norm k � k⇤;s is equivalent to the norm k � ks in (2.7) and thus it suffices to
prove Lemma 4.4 by k � ks replaced by k � k⇤;s . Henceforth, abusing notation, we
will denote this new norm once more as k � ks . Now let f and gM be as in the
statement of the lemma. With B.k/ as in Definition 4.3(iii), the Leibniz product
formula gives, for a multi-index ˛ with j˛j  k,

jD
˛
.gM .x/f .x//jD

ˇ̌
ˇ̌
ˇ̌
X
ˇ˛

 
˛

ˇ

!
D
˛�ˇ

gM .x/D
ˇ
f .x/

ˇ̌
ˇ̌
ˇ̌B.k/

X
ˇ˛

 
˛

ˇ

!ˇ̌
ˇDˇ

f .x/

ˇ̌
ˇ

and hence for allM <1

kgMf k
2

k
D

X
0j˛jk

Z
Rd

jD
˛
gM .x/f .x/j

2
dx

 c1

X
0jˇ jk

Z
Rd

ˇ̌
ˇDˇ

f .x/

ˇ̌
ˇ2 dx D c1kf k

2

k

(A.6)

for some c1 D c1.k/ <1. For the r term we follow the proof of [28, Lemma 5.3].
If  2 C1

c
.Rd ;R/ is such that 0    B <1 and h 2 H r

.Rd ;Rd / for some
0 < r < 1, then k hk2

L2  B
2

 
khk2

L2 . If L denotes the Lipschitz constant of  ,
then

Œ hç
2

r
D

Z
Rd

Z
Rd

j .x/h.x/ �  .y/h.y/j2

jx � yjdC2r
dx dy

 2

Z
Rd

Z
Rd

j .x/h.x/ �  .x/h.y/j2

jx � yjdC2r
dx dy

C 2

Z
Rd

Z
Rd

j .x/h.y/ �  .y/h.y/j2

jx � yjdC2r
dx dy

 2B
2

 

Z
Rd

Z
Rd

jh.x/ � h.y/j2

jx � yjdC2r
dx dy

C 2

Z
Rd

Z
Rd

j .x/ �  .y/j2jh.y/j2

jx � yjdC2r
dx dy

 2B
2

 
Œhç

2

r
C 2L

2

 

Z
Rd

Z
fjx�yj1g

jh.y/j2

jx � yjdC2.r�1/
dx dy

C 8B
2

 

Z
Rd

Z
fjx�yj>1g

jh.y/j2

jx � yjdC2r
dx dy

 2B
2

 
Œhç

2

r
C 2

�
L
2

 
C 4B

2

 

�
c2khk

2

L2 ;
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for c2 D c2.r/ < 1. In the last line, we used the fact that, for some c3; c4 < 1

depending on r ,

Z
Rd

Z
fjx�yj1g

jh.y/j2

jx � yjdC2.r�1/
dx dy



Z
Rd

✓Z
fjzj1g

1

jzjdC2.r�1/
dz

◆
jh.y/j

2
dy  c3khk

2

L2

since d C 2.r � 1/ < d , and

Z
Rd

Z
fjx�yj>1g

jh.y/j2

jx�yjdC2r
dxdy

Z
Rd

✓Z
fjzj>1g

1

jzjdC2r
dz

◆
jh.y/j

2
dyc4khk

2

L2

since d C 2r > d . Thus we have that

k hk
2

r
 8

�
B
2

 
C L

2

 

�
.c2 C 1/khk

2

r
:

Then, with B.k/ as in Definition 4.3 and L.k/ as in (4.2), we obtain that for
j˛j D k

kD
˛
gMf k

2

r
D

������
X
ˇ˛

 
˛

ˇ

!
D
˛�ˇ

gMD
ˇ
f

������

2

r

 2
˛ä
X
ˇ˛

 
˛

ˇ

!2 ���D˛�ˇ
gMD

ˇ
f

���2
r

 2
˛ä
8
�
B.k/

2
C L.k/

2
�
.c2 C 1/

X
ˇ˛

 
˛

ˇ

!2 ���Dˇ
f

���2
r

:

Next, for jˇj < k and some constant c5 D c5.r/ <1, we have that

���Dˇ
f

���2
r

 c5

���Dˇ
f

���2
1

D c5

���Dˇ
f

���2
L2

C c5

X
j˛jD1

���D˛
D
ˇ
f

���2
L2

 c5

���Dˇ
f

���2
L2

C c5

X
j˛jDjˇ jC1

kD
˛
f k

2

L2 ;

and hence for some c6 D c6.k; r/ <1 and allM <1

X
j˛jDk

kD
˛
gMf k

2

r
 c6

X
j˛jDk

kD
˛
f k

2

r
C c6kf k

2

k
: (A.7)



1802 AMARJIT BUDHIRAJA AND MICHAEL CONROY

Finally, from (A.6) and (A.7), for allM <1,

kgMf k
2

s
D kgMf k

2

k
C

X
j˛jDk

kD
˛
gMf k

2

r

 .c1 C c6/kf k
2

k
C c6

X
j˛jDk

kD
˛
f k

2

r
 Kkf k

2

s
;

where K D c1 C c6.

A.4. Proof of Lemma 4.5

Let s, s0, A and K be as in the statement of the lemma. In particular A ⇢ H�s0 is
such that

B
:
D sup
F 2A

kF k�s0 <1; (A.8)

and every F 2 A has support contained in K. Recall the functions ek
n;⇠

for
.n; ⇠; k/ 2 I introduced above (A.1). Let fF lgl2N be a sequence in A, and for
l 2 N and .n; ⇠/ 2 Z ⇥ Rd let

OF
l
.n; ⇠/

:
D

⇣
OF
l

1
.n; ⇠/; : : : ; OF

l

d
.n; ⇠/

⌘
;

OF
l

k
.n; ⇠/

:
D

D
F
l
; e
k

�n;�⇠

E
; 1  k  d:

(A.9)

Since F l has compact support, the evaluation on the right-hand side of the second
equality above is indeed meaningful (see, e.g., [15, Theorem 9.8]), and for each
l 2 N and n 2 Z, ⇠ 7! OF l.n; ⇠/ is in C1

.Rd ;Rd /. Also, using (A.8) and the
compact support property, one can verify (see [15, Theorem 9.22]) that for each
n 2 Z

sup
l�1

sup
⇠2Rd

ˇ̌
ˇ OF l.n; ⇠/

ˇ̌
ˇ <1 and sup

l�1
sup
⇠2Rd

ˇ̌
ˇD⇠

OF
l
.n; ⇠/

ˇ̌
ˇ <1:

Thus, for each n 2 Z, f OF l.n; �/; l 2 Ng is relatively compact in C.Rd ;Rd /. By
a standard diagonalization procedure, we can pick a subsequence flj g such that
f OF lj .n; �/; j 2 Ng converges in C.Rd ;Rd / for every n to a limit. We will now
show that F lj is Cauchy in H�s, which will complete the proof.

By an argument similar to [15, Proposition 9.16], there are constants c1.t; K/,
c2.t; K/ < 1 for t D s; s0 such that, for any F 2 H�s0 ⇢ H�s supported on the
compact set K and both t D .t1; t2/ D s; s0,

c1.t; K/ kF k
2

�t 
X
n2Z

Z
Rd

ˇ̌
ˇ OF .n; ⇠/

ˇ̌
ˇ2 �1C n

2
��t1 �

1C j⇠j
2
��t2

d⇠

 c2.t; K/ kF k
2

�t ;

(A.10)
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where OF .n; ⇠/ is defined as in (A.9). In particular, for j;m 2 N,

c1.s; K/
���F lj � F

lm

���2
�s



X
n2Z

Z
Rd

ˇ̌
ˇ OF lj .n; ⇠/ � OF

lm.n; ⇠/

ˇ̌
ˇ2 �1C n

2
��s1 �

1C j⇠j
2
��s2

d⇠:

FixM 2 N. Then, using .1C j⇠j2/�s2  .1C j⇠j2/
�s0

2 , we have

c1.s; K/
���F lj � F

lm

���2
�s



X
�MnM

Z
Rd

ˇ̌
ˇ OF lj .n; ⇠/ � OF

lm.n; ⇠/

ˇ̌
ˇ2 �1C n

2
��s1

.1C j⇠j
2
/
�s2 d⇠

C

X
jnj>M

Z
Rd

ˇ̌
ˇ OF lj .n; ⇠/ � OF

lm.n; ⇠/

ˇ̌
ˇ2 �1C n

2
��s1 �

1C j⇠j
2
��s2

d⇠



X
�MnM

Z
Rd

ˇ̌
ˇ OF lj .n; ⇠/ � OF

lm.n; ⇠/

ˇ̌
ˇ2 �1C n

2
��s1 �

1C j⇠j
2
��s2

d⇠

C c2.s0; K/
���F lj � F

lm

���2
s0

1

.1C .M C 1/2/
s1�s01



X
�MnM

Z
Rd

ˇ̌
ˇ OF lj .n; ⇠/ � OF

lm.n; ⇠/

ˇ̌
ˇ2 �1C n

2
��s1 �

1C j⇠j
2
��s2

d⇠

C
4B

2
c2.s0; K/

.1C .M C 1/2/
s1�s01

:

Next, for each jnj M and R <1, there is a C.R/ <1 such that

Z
Rd

ˇ̌
ˇ OF lj .n; ⇠/ � OF

lm.n; ⇠/

ˇ̌
ˇ2 �1C n

2
��s1 �

1C j⇠j
2
��s2

d⇠

D

Z
fj⇠jRg

ˇ̌
ˇ OF lj .n; ⇠/ � OF

lm.n; ⇠/

ˇ̌
ˇ2 �1C n

2
��s1 �

1C j⇠j
2
��s2

d⇠

C

Z
fj⇠j>Rg

ˇ̌
ˇ OF lj .n; ⇠/ � OF

lm.n; ⇠/

ˇ̌
ˇ2 �1C n

2
��s1 �

1C j⇠j
2
��s2

d⇠

C.R/ sup
j⇠jR

ˇ̌
ˇ OF lj .n; ⇠/ � OF

lm.n; ⇠/

ˇ̌
ˇ2 C c2.s0; K/

.1CR2/
s2�s02

���F lj � F
lm

���2
s0

C.R/ sup
j⇠jR

ˇ̌
ˇ OF lj .n; ⇠/ � OF

lm.n; ⇠/

ˇ̌
ˇ2 C 4B

2
c2.s0; K/

.1CR2/
s2�s02

:
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Combining the above estimates and sending j;m ! 1, since f OF lj .n; �/g con-
verges for every n, we get

lim sup
j;m!1

���F lj �F lm
���2
s

4B

2
.2M C 1/c2.s0; K/

c1.s; K/ .1CR2/s2�s
0
2

C
4B

2
c2.s0; K/

c1.s; K/ .1C.MC1/2/
s1�s01

:

The result now follows on first sending R! 1 and thenM ! 1.
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[2] M. BOUÉ and P. DUPUIS, A variational representation for certain functionals of Brownian

motion, Ann. Probab. 26 (1998), 1641–1659.
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