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1. Introduction

1.1. Geometry of matroids. A matroid M on a finite set E is a nonempty col-
lection of subsets of E, called flats of M, that satisfies the following properties:

(1) The intersection of any two flats is a flat.
(2) For any flat F , any element in E − F is contained in exactly one flat that

is minimal among the flats strictly containing F .

The set L(M) of all flats of M is a geometric lattice, and all geometric lattices arise
in this way from a matroid [Wel76, Chapter 3]. The theory of matroids captures the
combinatorial essence shared by natural notions of independence in linear algebra,
graph theory, matching theory, the theory of field extensions, and the theory of
routings, among others.

Gian-Carlo Rota, who helped lay down the foundations of the field, was one of
its most energetic ambassadors. He rejected the “ineffably cacophonous” name of
matroids, preferring to call them combinatorial geometries instead [CR70]. This
alternative name never really caught on, but the geometric roots of the field have
since grown much deeper, bearing many new fruits. The geometric approach to
matroid theory has recently led to solutions of long-standing conjectures, and to
the development of fascinating mathematics at the intersection of combinatorics,
algebra, and geometry.

There are at least three useful polyhedral models of a matroid M. For a short sur-
vey, see [Ard18]. The first one is the basis polytope of M introduced by Edmonds in
optimization and Gelfand–Goresky-MacPherson-Serganova in algebraic geometry.
It reveals an intricate relationship of matroids with the Grassmannian variety and
the special linear group. The second model is the Bergman fan of M, introduced
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by Sturmfels and Ardila–Klivans in tropical geometry. It was used by Adiprasito–
Huh–Katz to prove the log-concavity of the f -vectors of the independence complex
and the broken circuit complex of M. The third model, which we call the conormal
fan of M, is the main character of this paper. We use its intersection-theoretic
and Hodge-theoretic properties to prove conjectures of Brylawski [Bry82], Dawson
[Daw84], and Swartz [Swa03] on the h-vectors of the independence complex and
the broken circuit complex of M.

1.2. Conormal fans and their geometry. Throughout the paper, we write r+1
for the rank of M, write n + 1 for the cardinality of E, and suppose that n is
positive.1 Following [MS15], we define the tropical projective torus of E to be the
n-dimensional vector space

NE = RE/ReE , eE =
∑
i∈E

ei.

The tropical projective torus is equipped with the functions

αj(z) = max
i∈E

(zj − zi), one for each element j of E.

These functions are equal to each other modulo global linear functions on NE ,
and we write α for the common equivalence class of αj . The Bergman fan of M,
denoted ΣM, is an r-dimensional fan in the n-dimensional vector space NE whose
underlying set is the tropical linear space

trop(M) =
{
z |min

i∈C
(zi) is achieved at least twice for every circuit C of M

}
⊆ NE .

It is a subfan of the permutohedral fan ΣE cut out by the hyperplanes xi = xj

for each pair of distinct elements i and j in E. This is the normal fan of the
permutohedron ΠE . The functions αj are piecewise linear on the permutohedral
fan, and hence piecewise linear on the Bergman fan of M.2

Tropical linear spaces are central objects in tropical geometry: For any linear
subspace V of CE , the tropicalization of the intersection of P(V ) with the torus
of P(CE) is the tropical linear space of the linear matroid on E represented by
V [Stu02]. Furthermore, tropical linear spaces are precisely the tropical fans of
degree one with respect to α, that is, the tropical analogs of linear spaces [Fin13].
Tropical manifolds are thus defined to be spaces that locally look like Bergman fans
of matroids [IKMZ19].

Adiprasito, Huh, and Katz showed that the Chow ring of the Bergman fan of
M satisfies Poincaré duality, the hard Lefschetz theorem, and the Hodge–Riemann
relations [AHK18]. Furthermore, they interpreted the entries of the f -vector of the
reduced broken circuit complex of M – an invariant of the matroid generalizing the
chromatic polynomial for graphs – as intersection numbers in the Chow ring of ΣM.
The geometric interpretation then implied the log-concavity of the coefficients of
the characteristic polynomial and the reduced characteristic polynomial

χM(q) :=
∑

F∈L(M)

μ(∅, F )qcorank(F ), χM(q) := χM(q)/(q − 1),

1There are exactly two matroids on a single element ground set, the loop and the coloop, which
are dual to each other. These matroids will play exceptional roles in our inductive arguments.

2A continuous function f is said to be piecewise linear on a fan Σ if the restriction of f to any
cone in Σ is linear. In this case, we say that the fan Σ supports the piecewise linear function f .
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where μ is the Möbius function on the geometric lattice L(M) for a loopless matroid
M.3

The conormal fan ΣM,M⊥ is an alternative polyhedral model for M. Its construc-

tion uses the dual matroid M⊥, the matroid on E whose bases are the complements
of bases of M. We refer to [Oxl11] for background on matroid duality and other
general facts on matroids. A central role is played by the addition map

NE,E := NE ⊕NE −→ NE , (z, w) �−→ z + w.

The function αj on NE pulls back to a function δj on NE,E under the addition
map. Explicitly,

δj(z, w) = max
i∈E

(zj + wj − zi − wi).

The function δj is piecewise linear on a fan that we construct, called the bipermu-
tohedral fan ΣE,E (Section 2.3). This is the normal fan of a convex polytope ΠE,E

that we call the bipermutohedron. The functions δj for j in E are equal to each
other modulo global linear functions on NE,E , and we write δ for their common
equivalence class.

The cotangent fan ΩE is the subfan of the bipermutohedral fan ΣE,E whose
underlying set is the tropical hypersurface

trop(δ) =
{
(z, w) | min

i∈E
{zi + wi} is achieved at least twice

}
⊆ NE,E .

We show in Section 3.4 that, for any matroid M on E, we have

trop(M)× trop(M⊥) ⊆ trop(δ).

The conormal fan ΣM,M⊥ is defined to be the subfan of the cotangent fan ΩE that

subdivides the product trop(M) × trop(M⊥). For our purposes, it is necessary to
work with the conormal fan of M instead of the product of the Bergman fans of M
and M⊥, because the function δj need not be piecewise linear on the product of the
Bergman fans.

The projections to the summands of NE,E define morphisms of fans4

π : ΣM,M⊥ −→ ΣM and π : ΣM,M⊥ −→ ΣM⊥ .

Thus, in addition to the functions δj , the conormal fan of M supports the pullbacks
of αj on ΣM and αj on ΣM⊥ , which are the piecewise linear functions

γj(z, w) = max
i∈E

(zj − zi) and γj(z, w) = max
i∈E

(wj − wi).

These define the equivalence classes γ and γ of functions on NE,E .
The conormal fan is a tropical analog of the incidence variety appearing in the

classical theory of projective duality. For a subvariety X of a projective space
P(V ), the incidence variety IX is a subvariety of the product of P(V ) with the
dual projective space P(V ∨) that projects onto X and its dual X∨. Over the
smooth locus of X, the incidence variety IX is the total space of the projectivized
conormal bundle of X and, over the smooth locus of X∨, it is the total space of

3If M has a loop, by definition, the characteristic polynomial and the reduced characteristic
polynomial of M are zero.

4A morphism from a fan Σ1 in N1 = R ⊗ N1,Z to a fan Σ2 in N2 = R ⊗ N2,Z is an integral
linear map from N1 to N2 such that the image of any cone in Σ1 is a subset of a cone in Σ2. In
the context of toric geometry, a morphism from Σ1 to Σ2 can be identified with a toric morphism
from the toric variety of Σ1 to the toric variety of Σ2 [CLS11, Chapter 3].
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the projectivized conormal bundle of X∨.5 It is the projectivization of a conic
Lagrangian subvariety of V × V ∨, and any conic Lagrangian subvariety of V × V ∨

arises in this way. We refer to [GKZ94, Chapter 1] for a modern exposition of the
theory of projective duality.

We use the conormal fan of M to give a geometric interpretation of the polynomial
χM(q+ 1), whose coefficients form the h-vector of the broken circuit complex of M
with alternating signs. In particular, we give a geometric formula for Crapo’s beta
invariant

βM := (−1)r χM(1).

This new tropical geometry is inspired by the Lagrangian geometry of conormal
varieties in classical algebraic geometry, as we now explain.

Consider the category of complex algebraic varieties with proper morphisms.
According to a conjecture of Deligne and Grothendieck, there is a unique natural
transformation “csm” from the functor of constructible functions on complex al-
gebraic varieties to the homology of complex algebraic varieties such that, for any
smooth and complete variety X,

csm(1X) = c(TX) ∩ [X]

= (the total homology Chern class of the tangent bundle of X).

The conjecture was proved by MacPherson [Mac74], and it was recognized later
in [BS81] that the class csm(1X), for possibly singular X, coincides with a class
constructed earlier by Schwartz [Sch65]. For any constructible subset X of Y , the
k-th Chern–Schwartz–MacPherson class of X in Y is the homology class

csmk(1X) ∈ H2k(Y ).

Aiming to introduce a tropical analog of this theory, López de Medrano, Rincón, and
Shaw introduced the Chern–Schwartz–MacPherson cycle of the Bergman fan of M
in [LdMRS20]: The k-th Chern–Schwartz–MacPherson cycle of M is, by definition,
the weighted fan csmk(M) supported on the k-dimensional skeleton of ΣM with the
weights

w(σF) = (−1)r−k
k∏

i=0

βM(i),

where σF is the k-dimensional cone corresponding to a flag of flats F of M and
M(i) is the minor of M corresponding to the i-th interval in F. This weighted
fan behaves well combinatorially and geometrically. First, the weights satisfy the
balancing condition in tropical geometry [LdMRS20, Theorem 1.1], so that we may
view the Chern–Schwartz–MacPherson cycle as a Minkowski weight

csmk(M) ∈ MWk(ΣM).

Second, when trop(M) is the tropicalization of the intersection P(V ) ∩ (C∗)E/C∗,
the Minkowski weight can be identified with the k-th Chern–Schwartz–MacPherson
class of P(V )∩ (C∗)E/C∗ in the toric variety of the permutohedron ΠE [LdMRS20,
Theorem 1.2]. Third, the Chern-Schwartz-MacPherson cycles of M satisfy a

5Thus, to be precise, the conormal fan is a tropical analog of the projectivized conormal variety
and the cotangent fan is a tropical analog of the projectivized cotangent space. We trust that the
omission of the term “projectivized” will cause no confusion.
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deletion-contraction formula, a matroid version of the inclusion-exclusion princi-
ple [LdMRS20, Proposition 5.2]. It follows that the degrees of these Minkowski
weights determine the reduced characteristic polynomial of M by the formula

χM(q + 1) =
r∑

k=0

deg(csmk(M))qk,

where the degrees are taken with respect to the class α [LdMRS20, Theorem 1.4].
Fourth, the Chern-Schwartz-MacPherson cycles of matroids can be used to define
Chern classes of smooth tropical varieties. In codimension 1, the class agrees with
the anticanonical divisor of a tropical variety defined by Mikhalkin in [Mik06]. For
smooth tropical surfaces, these classes agree with the Chern classes of tropical sur-
faces introduced in [Car15] and [Sha15] to formulate Noether’s formula for tropical
surfaces.

Schwartz’s and MacPherson’s constructions of csm for complex algebraic varieties
are rather subtle. Sabbah later observed that the Chern-Schwartz-MacPherson
classes can be interpreted more simply as “shadows” of the characteristic cycles
in the cotangent bundle. Sabbah summarizes the situation in the following quote
from [Sab85]:

la théorie des classes de Chern de [Mac74] se ramène à une théorie
de Chow sur T ∗X, qui ne fait intervenir que des classes fondamen-
tales.

The functor of constructible functions is replaced with a functor of Lagrangian
cycles of T ∗X, which are exactly the linear combinations of the conormal varieties of
the subvarieties ofX. In the Lagrangian framework, key operations on constructible
functions become more geometric.

Similarly, López de Medrano, Rincón, and Shaw’s original definition of the
Chern–Schwartz–MacPherson cycles of a matroid M is combinatorially intricate.
We prove that they are “shadows” of much simpler cycles under the pushforward
map

π∗ : MWk(ΣM,M⊥) −→ MWk(ΣM).

See Section 3.1 for a review of basic tropical intersection theory.

Theorem 1.1. When M has no loops and no coloops, we have

csmk(M) = (−1)r−kπ∗(δ
n−k−1 ∩ 1M,M⊥) for 0 ≤ k ≤ r,

where 1M,M⊥ is the top-dimensional constant Minkowski weight 1 on the conormal
fan of M.

It follows from Theorem 1.1 and the projection formula that the reduced char-
acteristic polynomial of M can be expressed in terms of the intersection theory of
the conormal fan as follows:

Theorem 1.2. When M has no loops and no coloops, we have

χM(q + 1) =
r∑

k=0

(−1)r−k deg(γk δn−k−1) qk,

where the degrees are taken with respect to the top-dimensional constant Minkowski
weight 1M,M⊥ on the conormal fan.
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When M is representable over C,6 the third author gave an algebro-geometric
version of Theorem 1.1 in [Huh13]. The complex geometric version of the identity
boils down to the general fact that the Chern–Schwartz–MacPherson class of a
smooth variety X in its normal crossings compactification Y is the total Chern
class of the logarithmic tangent bundle:

csm(1X) = c(Ω1
Y (log Y −X)∨) ∩ [Y ].

In fact, the logarithmic formula can be used to construct the natural transformation
csm [Alu06]. For precursors of the logarithmic viewpoint, see [Alu99] and [GP02].
The current paper demonstrates that a similar geometry exists for arbitrary tropical
linear spaces.

1.3. Inequalities for matroid invariants. Let a0, a1, . . . , an be a sequence of
nonnegative integers, and let d be the largest index with nonzero ad.

• The sequence is said to be unimodal if

a0 ≤ a1 ≤ · · · ≤ ak−1 ≤ ak ≥ ak+1 ≥ · · · ≥ an for some 0 ≤ k ≤ n.

• The sequence is said to be log-concave if

ak−1ak+1 ≤ a2k for all 0 < k < n.

• The sequence is said to be flawless if

ak ≤ ad−k for all 0 ≤ k ≤ d/2.

Many enumerative sequences are conjectured to have these properties, but proving
them often turns out to be difficult. Combinatorialists have been interested in
these conjectures because their solution typically requires a fundamentally new
construction or connection with a distant field, thus revealing hidden structural
information about the objects in question. For surveys of known results and open
problems, see [Bre94] and [Sta89,Sta00].

A simplicial complex Δ is a collection of subsets of a finite set, called faces of Δ,
that is downward closed. The face enumerator of Δ and the shelling polynomial of
Δ are the polynomials

fΔ(q) =
∑
S∈Δ

qd−|S|+1 =
∑
k≥0

fk(Δ)qd−k+1

and hΔ(q) = fΔ(q − 1) =
∑
k≥0

hk(Δ)qd−k+1,

where d is the dimension of Δ. The f -vector of a simplicial complex is the sequence
of coefficients of its face enumerator, and the h-vector of a simplicial complex is
the sequence of coefficients of its shelling polynomial. When Δ is shellable,7 the
shelling polynomial of Δ enumerates the facets used in shelling Δ, and hence the
h-vector of Δ is nonnegative.

6We say that M is representable over a field F if there exists a linear subspace V ⊆ FE such
that S ⊆ E is independent in M if and only if the projection from V to FS is surjective. Almost
all matroids are not representable over any field [Nel18].

7An r-dimensional pure simplicial complex is said to be shellable if there is an ordering of its
facets such that each facet intersects the simplicial complex generated by its predecessors in a
pure (r − 1)-dimensional complex.
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We study the f -vectors and h-vectors of the following shellable simplicial com-
plexes associated to M. For a gentle introduction, and for the proof of their shella-
bility, see [Bjö92].

• The independence complex IN(M), the collection of subsets of E that are
independent in M.

• The broken circuit complex BC(M), the collection of subsets of E which do
not contain any broken circuit of M.

Here a broken circuit is a subset obtained from a circuit of M by deleting the least
element relative to a fixed ordering of E. The notion was developed by Whitney
[Whi32], Rota [Rot64], Wilf [Wil76], and Brylawski [Bry77], for the “chromatic”
study of matroids. The f -vector and the h-vector of the broken circuit complex of
M are determined by the characteristic polynomial of M, and in particular they do
not depend on the chosen ordering of E:

χM(q) =
r+1∑
k=0

(−1)kfk(BC(M))qr−k+1, χM(q+1) =
r+1∑
k=0

(−1)khk(BC(M))qr−k+1.

Conjecture 1.3. The following hold for any matroid M.

(1) The f -vector of IN(M) is unimodal, log-concave, and flawless.
(2) The h-vector of IN(M) is unimodal, log-concave, and flawless.
(3) The f -vector of BC(M) is unimodal, log-concave, and flawless.
(4) The h-vector of BC(M) is unimodal, log-concave, and flawless.

Welsh [Wel71] and Mason [Mas72] conjectured the log-concavity of the f -vector
of the independence complex.8 Dawson conjectured the log-concavity of the h-
vector of the independence complex in [Daw84], and independently, Colbourn con-
jectured the same in [Col87] in the context of network reliability. Hibi conjectured
that the h-vector of the independence complex must be flawless [Hib92]. The uni-
modality and the log-concavity conjectures for the f -vector of the broken circuit
complex are due to Heron [Her72], Rota [Rot71], and Welsh [Wel76]. The same
conjectures for the chromatic polynomials of graphs were given earlier by Read
[Rea68] and Hoggar [Hog74]. We refer to [Whi87, Chapter 8] and [Oxl11, Chapter
15] for overviews and historical accounts. Brylawski [Bry82] conjectured the log-
concavity of the h-vector of the broken circuit complex.9 That the h-vector of the
broken circuit complex is flawless was stated as an open problem in [Swa03] and
reproduced in [JKL18] as a conjecture. We deduce all the above statements using
the geometry of conormal fans.

8In [Mas72], Mason proposed a stronger conjecture that the f -vector of the independence
complex of M satisfies

f2
k

(n+1
k

)2 ≥ fk−1(n+1
k−1

)
fk+1(n+1
k+1

) for all k.

In [Bry82], Brylawski conjectures the same set of inequalities for the f -vector of the broken circuit
complex of M. Mason’s stronger conjecture was recently proved in [ALOGV18] and [BH18,BH20].
An extension of the same result to matroid quotients was obtained in [EH20].

9In [Bry82], Brylawski proposed a stronger conjecture that the h-vector of the broken circuit
complex of M satisfies

h2
k

( n−k
n−r−1

)2 ≥ hk−1
(n−k+1
n−r−1

)
hk+1

(n−k−1
n−r−1

) for all k.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

734 FEDERICO ARDILA, GRAHAM DENHAM, AND JUNE HUH

Theorem 1.4. Conjecture 1.3 holds.

We prove the log-concavity of the h-vector of the broken circuit complex using
Theorem 1.1. This log-concavity implies all other statements in Conjecture 1.3,
thanks to the following known observations:

• For any simplicial complex Δ, the log-concavity of the h-vector implies the
log-concavity of the f -vector [Bre94, Corollary 8.4].

• For any pure simplicial complex Δ, the f -vector of Δ is flawless. More
generally, any pure O-sequence10 is flawless [Hib89, Theorem 1.1].

• For any shellable simplicial complex Δ, the h-vector of Δ has no internal
zeros, being an O-sequence [Sta77, Theorem 6]. Therefore, if the h-vector
of Δ is log-concave, then it is unimodal.

• The broken circuit complex of M is the cone over the reduced broken circuit
complex of M, and the two simplicial complexes share the same h-vector.
The independence complex of M is the reduced broken circuit complex of
another matroid, the free dual extension of M [Bry77, Theorem 4.2].

• If the h-vector of the broken circuit complex of M is unimodal for all M,
then the h-vector of the broken circuit complex of M is flawless for all M
[JKL18, Theorem 1.2].

Previous work. The log-concavity of the f -vector of the broken circuit complex
was proved in [Huh12] for matroids representable over a field of characteristic 0.
The result was extended to matroids representable over some field in [HK12] and
to all matroids in [AHK18]. An alternative proof of the same fact using the volume
polynomial of a matroid was obtained in [BES20]. It was observed in [Len13] that
the log-concavity of the f -vector of the broken circuit complex implies that of the
independence complex.

For matroids representable over a field of characteristic 0, the log-concavity of
the h-vector of the broken circuit complex was proved in [Huh15]. The algebraic ge-
ometry behind the log-concavity of the h-vector, which became a model for the La-
grangian geometry of conormal fans in the present paper, was explored in [DGS12]
and [Huh13]. In [JKL18], Juhnke-Kubitzke and Le used the result of [Huh15] to
deduce that the h-vector of the broken circuit complex is flawless for matroids rep-
resentable over a field of characteristic 0. The flawlessness of the h-vector of the
independence complex was first proved by Chari using a combinatorial decompo-
sition of the independence complex [Cha97]. The result was recovered by Swartz
[Swa03] and Hausel [Hau05], who obtained stronger algebraic results. The other
cases of Conjecture 1.3 remained open.

Our solution of Conjecture 1.3 was announced in [Ard18]. Shortly after this pa-
per appeared on arXiv:2004.13116, Berget, Spink, and Tseng [BST20] announced
an alternative proof of the log-concavity of the h-vector of the independence com-
plex (Conjecture 1.3(2)). The relationship between our approach and theirs is still
to be understood. The h-vector of the broken circuit complex (Conjecture 1.3(4))
is not currently accessible through the alternative method.

10A sequence of nonnegative integers h0, h1, . . . is an O-sequence if there is an order ideal of
monomials O such that hk is the number of degree k monomials in O. The sequence is a pure
O-sequence if the order ideal O can be chosen so that all the maximal monomials in O have the
same degree. See [BMMR+12] for a comprehensive survey of pure O-sequences.

https://arxiv.org/abs/2004.13116
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1.4. Tropical Hodge theory. Let us discuss in more detail the strategy of
[AHK18] that led to the log-concavity of the f -vector of the broken circuit complex
of M. For the moment, suppose that there is a linear subspace V ⊆ CE representing
M over C, and consider the variety

YV = the closure of P(V ) ∩ (C∗)E/C∗ in the toric variety

of the permutohedron X(ΣE).
11

If nonempty, YV is an r-dimensional smooth projective complex variety which is, in
fact, contained in the torus invariant open subset of X(ΣE) corresponding to the
Bergman fan of M:

YV ⊆ X(ΣM) ⊆ X(ΣE).

The work of Feichtner and Yuzvinsky [FY04], which builds upon the work of De
Concini and Procesi [DCP95], reveals that the inclusion maps induce isomorphisms
between integral cohomology and Chow rings:

H2•(YV ,Z) 
 A•(YV ,Z) 
 A•(X(ΣM),Z).

As a result, the Chow ring of the n-dimensional variety X(ΣM) has the structure of
the even part of the cohomology ring of an r-dimensional smooth projective variety.
Remarkably, this structure on the Chow ring of X(ΣM) persists for any matroid M,
even if M does not admit any representation over any field. In particular, the Chow
ring of X(ΣM) satisfies the Poincaré duality, the hard Lefschetz theorem, and the
Hodge–Riemann relations [AHK18]. For a simpler proof of the three properties of
the Chow ring, based on its semismall decomposition, see [BHM+20].

For any simplicial fan Σ, let A(Σ) be the ring of real-valued piecewise polynomial
functions on Σ modulo the ideal of the linear functions on Σ, and let K(Σ) be the
cone of strictly convex piecewise linear functions on Σ (Definition 5.1).

Definition 1.5. A d-dimensional simplicial fan Σ is Lefschetz if it satisfies the
following.

(1) (Fundamental weight) The group of d-dimensional Minkowski weights on
Σ is generated by a positive Minkowski weight w. We write deg for the
corresponding linear isomorphism

deg : Ad(Σ) −→ R, η �−→ η ∩ w.

(2) (Poincaré duality) For any 0 ≤ k ≤ d, the bilinear map of the multiplication

Ak(Σ)×Ad−k(Σ) Ad(Σ) R
deg

is nondegenerate.
(3) (Hard Lefschetz property) For any 0 ≤ k ≤ d

2 and any 
 ∈ K(Σ), the
multiplication map

Ak(Σ) −→ Ad−k(Σ), η �−→ 
d−2kη

is a linear isomorphism.
(4) (Hodge–Riemann relations) For any 0 ≤ k ≤ d

2 and any 
 ∈ K(Σ), the
bilinear form

Ak(Σ)× Ak(Σ) −→ R, (η1, η2) �−→ (−1)k deg(
d−2kη1η2)

is positive definite when restricted to the kernel of the multiplication map

d−2k+1.
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(5) (Hereditary property) For any 0 < k ≤ d and any k-dimensional cone σ in
Σ, the star of σ in Σ is a Lefschetz fan of dimension d− k.

The Hodge–Riemann relations give analogs of the Alexandrov–Fenchel inequality
among degrees of products of convex piecewise linear functions 
1, 
2, . . . , 
d on Σ:

deg(
1
2
3 · · · 
d)2 ≥ deg(
1
1
3 · · · 
d) deg(
2
2
3 · · · 
d).
The Bergman fan of a matroid M is Lefschetz, and the log-concavity of the f -vector
of the broken circuit complex of M follows from the Hodge–Riemann relations for
the Bergman fan of M [AHK18].

We establish the log-concavity of the h-vector of the broken circuit complex of
M in the same way, using the conormal fan of M in place of the Bergman fan of
M. Theorem 1.2 relates the intersection theory of the conormal fan of M to the
h-vector of the broken circuit complex of M via the Chern-Schwartz-MacPherson
cycles of M. In order to proceed, we need to show that the conormal fan of M is
Lefschetz. We obtain this from the following general result.

Theorem 1.6. Let Σ1 and Σ2 be simplicial fans that have the same support |Σ1| =
|Σ2|. If K(Σ1) and K(Σ2) are nonempty, then Σ1 is Lefschetz if and only if Σ2 is
Lefschetz.

Theorem 1.6 implies, for example, that the reduced normal fan of any simple
polytope is Lefschetz, because the reduced normal fan of the standard simplex is
Lefschetz.12 In the context of matroid theory, Theorem 1.6 implies that the conor-
mal fan of M is Lefschetz, because the Bergman fans of M and M⊥ are Lefschetz
and the product of Lefschetz fans is Lefschetz. When K(Σ) is empty, the hard
Lefschetz property and the Hodge–Riemann relations for Σ hold vacuously. The
proof of Theorem 1.6 shows that, if two simplicial fans Σ1 and Σ2 have the same
support |Σ1| = |Σ2|, then Σ1 satisfies Poincaré duality if and only if Σ2 satisfies
Poincaré duality.

2. The bipermutohedral fan

Let E be a finite set of cardinality n + 1. For notational convenience, we often
identify E with the set of nonnegative integers at most n. As before, we let NE be
the n-dimensional space

NE = RE/ReE , eE =
∑
i∈E

ei.

We write NE,E for the 2n-dimensional space NE ⊕NE , and μ for the addition map

μ : NE,E −→ NE , (z, w) �−→ z + w.

Throughout the paper, all fans in NE will be rational with respect to the lattice
ZE/ZeE, and all fans in NE,E will be rational with respect to the latticeZE/ZeE⊕
ZE/ZeE. We follow [CLS11] when using the terms fan and generalized fan: A
generalized fan is a fan if and only if each of its cones is strongly convex. The

12McMullen gave an elementary proof of this fact in [McM93]. See [Tim99] and [FK10] for
alternative presentations. Our proof of Theorem 1.6 is modeled on these arguments. Theorem 1.6
gives another proof of the necessity of McMullen’s bounds [McM93] on the face numbers of simpli-
cial polytopes. In the context of matroid theory, the authors of [GS21] used a similar argument to
show that any unimodular fan whose support is a tropical linear space satisfies Poincaré duality.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

LAGRANGIAN GEOMETRY OF MATROIDS 737

notion of morphism of fans is extended to morphism of generalized fans in the
obvious way. For any subset S of E, we write eS and fS for the vectors

eS =
∑
i∈S

ei, fS =
∑
i∈S

fi,

where ei are the standard basis vectors of RE defining the first summand of NE,E

and fi are the standard basis vectors of RE defining the second summand of NE,E .
In this section, we construct a complete simplicial fan ΣE,E in NE,E . We offer

five equivalent descriptions; each one of them will play a role for us. We call it the
bipermutohedral fan because it is the normal fan of a polytope which we call the
bipermutohedron. Before we begin defining the bipermutohedral fan ΣE,E in NE,E ,
we recall some basic facts on the permutohedral fan ΣE in NE .

2.1. The normal fan of the simplex. Consider the standard n-dimensional sim-
plex

conv{ei}i∈E ⊆ RE .

Its normal fan in RE has a lineality space spanned by eE . For any convex polytope,
we call the quotient of the normal fan by its lineality space the reduced normal fan
of the polytope.13 For example, the reduced normal fan of the standard simplex,
denoted ΓE , is the complete fan in NE with the cones

σS := cone{ei}i∈S ⊆ NE , for every proper subset S of E.

The cone σS consists of the points z ∈ NE such that mini∈E zi = zs for all s not in
S. For each element j of E, the function αj = maxi∈E{zj − zi} is piecewise linear
on the fan ΓE . These piecewise linear functions are equal to each other modulo
global linear functions on NE , and we write α for the common equivalence class of
αj .

2.2. The normal fan of the permutohedron. Let ΠE be the n-dimensional
permutohedron

conv
{
(x0, x1, . . . , xn) | x0, x1, . . . , xn is a permutation of 0, 1, . . . , n

}
⊆ RE .

The permutohedral fan ΣE , also known as the braid fan or the type A Coxeter
complex, is the reduced normal fan of the permutohedron ΠE. It is the complete
simplicial fan in NE whose chambers are separated by the n-dimensional braid
arrangement, the real hyperplane arrangement in NE consisting of the

(
n+1
2

)
hy-

perplanes

zi = zj , for distinct elements i and j of E.

The face of the permutohedral fan containing a given point z in its relative inte-
rior is determined by the relative order of its homogeneous coordinates (z0, . . . , zn).
Therefore, the faces of the permutohedral fan correspond to the ordered set parti-
tions

P = (E = P1 � · · · � Pk+1),

13The normal fan of a convex polytope in a real vector space is a generalized fan in the dual
space whose face poset is anti-isomorphic to the face poset of the polytope. Unlike the reduced
normal fan, the normal fan of a polytope need not be a fan. We trust that the use of the term
“normal fan” will cause no confusion.
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which are in bijection with the strictly increasing sequences of nonempty proper
subsets

S = (∅ � S1 � · · · � Sk � E), Sm =

m⋃
�=1

P�.

The collection of ordered set partitions of E forms a poset under adjacent refine-
ment, where P ≤ P ′ if P can be obtained from P ′ by merging adjacent parts.

Proposition 2.1. The face poset of the permutohedral fan ΣE is isomorphic to the
poset of ordered set partitions of E.

Thus the permutohedral fan has 2(2n − 1) rays corresponding to the nonempty
proper subsets of E and (n+1)! chambers corresponding to the permutations of E.

We now describe the permutohedral fan in terms of its rays. Two subsets S and
S′ of E are said to be comparable if

S ⊆ S′ or S ⊇ S′.

A flag in E is a set of pairwise comparable subsets of E. For any flag S of subsets
of E, we define

σS = cone{eS}S∈S ⊆ NE .

We identify a flag in E with the strictly increasing sequence obtained by ordering
the subsets in the flag.

Proposition 2.2. The permutohedral fan ΣE is the complete fan in NE with the
cones

σS = cone{eS}S∈S, where S is a flag of nonempty proper subsets of E.

For example, the cone corresponding to the ordered set partition 25|013|4 is

cone(e25, e01235) = {z ∈ NE | z2 = z5 ≥ z0 = z1 = z3 ≥ z4}.
Proposition 2.2 shows that the permutohedral fan is a unimodular fan: The set of
primitive ray generators in any cone in ΣE is a subset of a basis of the free abelian
group ZE/Z. It also shows that the permutohedral fan is a refinement of the fan
ΓE in Section 2.1.

It will be useful to view the permutohedral fan as a configuration space as follows.
Regard NE as the space of E-tuples of points (p0, . . . , pn) moving in the real line,
modulo simultaneous translation:

p = (p0, . . . , pn) = (p0 + λ, . . . , pn + λ) for any λ ∈ R.

The ordered set partition of p, denoted π(p), is obtained by reading the labels of
the points in the real line from right to left, as shown in Figure 1. This model gives
the permutohedral fan ΣE the following geometric interpretation.

569 7 1 04 28 3
�−→ 3|28|04|1|7|569

Figure 1. An E-tuple of points p and its ordered set partition
π(p) = 3|28|04|1|7|569



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

LAGRANGIAN GEOMETRY OF MATROIDS 739

Proposition 2.3. The permutohedral fan ΣE is the configuration space of E-tuples
of points in the real line modulo simultaneous translation, stratified according to
their ordered set partition.

In Section 2.4, we give an analogous description of the bipermutohedral fan ΣE,E

as a configuration space of E-tuples of points in the real plane.

2.3. The bipermutohedral fan as a subdivision. Denote a point in NE,E by
(z, w). We construct the bipermutohedral fan ΣE,E in NE,E as follows.

First, we subdivide NE,E into the charts C0, C1, . . . , Cn, where Ck is the cone

Ck =
{
(z, w) | min

i∈E
(zi + wi) = zk + wk

}
.

These form the chambers of a complete generalized fan in NE,E , denoted ΔE . The
chamber Ck is the inverse image of the cone σE−k under the addition map, and
hence ΔE is the coarsest complete generalized fan in NE,E for which the addition
map is a morphism to the fan ΓE in Section 2.1. To each chart Ck we associate the
linear functions

Zi = zi − zk, Wi = −wi + wk, for every i in E.

Omitting the zero function Zk = Wk, we obtain a coordinate system (Z,W ) for
NE,E such that

Ck =
{
(Z,W ) | Zi ≥ Wi for every i in E

}
.

This coordinate system depends on k, but we will drop k from the notation for
better readability.

Second, we consider the subdivision Σk of the cone Ck obtained from the braid
arrangement of

(
2n+1

2

)
hyperplanes

Za = Zb, Wa = Wb, Za = Wb, for all a and b in E.

Note that the arrangement contains the n hyperplanes that cut out Ck in NE,E .
One may view the subdivision Σk of Ck as a copy of 1/2n-th of the 2n-dimensional
permutohedral fan, namely, the part of the permutohedral fan in 2n + 1 variables
Z0, W0, . . . , Zk = Wk, . . . , Zn, Wn where Zi ≥ Wi for every i 
= k. Figure 4
illustrates Σ0 and Σ1 when n = 1.

Proposition 2.4. The union of the fans Σi for i ∈ E is a fan in NE,E . We call it
the bipermutohedral fan ΣE,E .

Proof. To check that ΣE,E is indeed a fan, we need to check that the fans Σi glue
compatibly along the boundaries of Ci. For this, we verify that Σi and Σj induce
the same subdivision on Ci ∩ Cj for all i 
= j.

Consider the system of linear functions (Z,W ) for Ci and the system of linear
functions (Z ′,W ′) for Cj . It is straightforward to check that, for any point in NE,E ,
we have

Za − Zb = Z ′
a − Z ′

b and Wa −Wb = W ′
a −W ′

b for all a and b in E.

Furthermore, on the intersection of Ci and Cj , where zi + wi = zj + wj , we have

Za −Wb = (za − zi)− (wi − wb) = (za − zj)− (wj − wb) = Z ′
a −W ′

b.

Thus the hyperplanes separating the chambers of Σi and Σj have the same inter-
sections with Ci ∩ Cj . �
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The following subfan of the bipermutohedral fan will serve as a guide toward
Theorem 1.1.

Definition 2.5. The cotangent fan ΩE is the union of the fans Σi∩Σj for i 
= j ∈ E.

In other words, ΩE is the subfan of ΣE,E whose support is the tropical hyper-
surface

trop(δ) =
{
(z, w) | min

i∈E
(zi + wi) is achieved at least twice

}
⊆ NE,E .

In Section 3.4, we show that the cotangent fan contains the conormal fan of any
matroid on E.

2.4. The bipermutohedral fan as a configuration space. It will be useful to
view the bipermutohedral fan ΣE,E as a configuration space as follows. Regard
NE,E as the space of E-tuples of points (p0, . . . , pn) moving in the real plane,
modulo simultaneous translation:

(p0, . . . , pn) = (p0 + λ, . . . , pn + λ) for any λ ∈ R2.

The point (z, w) in NE,E corresponds to the points pi = (zi, wi) in R2 for i in E.

Definition 2.6. A bisequence on E is a sequence B of nonempty subsets of E,
called the parts of B, such that

(1) every element of E appears in at least one part of B,
(2) every element of E appears in at most two parts of B, and
(3) some element of E appears in exactly one part of B.

The trivial bisequence on E is the bisequence with exactly one part E. A bisubset
of E is a nontrivial bisequence on E of minimal length 2. A bipermutation of E is
a bisequence on E of maximal length 2n+ 1.

We will write bisequences by listing the elements of its parts, separated by verti-
cal bars. For example, the bisequence {2}, {0, 1}, {1}, {2} on {0, 1, 2} will be written
2|01|1|2.

Definition 2.7. Let p = (p0, . . . , pn) be an E-tuple of points in R2.

(1) The supporting line of p, denoted 
(p), is the lowest line of slope −1 con-
taining a point in p.

(2) For each point pi, the vertical and horizontal projections of pi onto 
(p)
will be labeled i.

(3) The bisequence of p, denoted B(p), is obtained by reading the labels on 
(p)
from right to left.

See Figure 2 for an illustration of Definition 2.7.

Remark 2.8. One can recover any configuration p from their projections onto the
supporting line 
(p) and their labels. Therefore, modulo translations, we may also
consider p as a configuration of 2n + 2 points on the real line labeled 0, 0, 1, 1,
. . . , n, n such that at least one pair of points with the same label coincide. This is
illustrated at the bottom of Figure 2.

This model gives the bipermutohedral fan ΣE,E the following geometric inter-
pretation.
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0

24

1

p1

035

p5

2

34 
(p)

p4

p0

p2

p3 �−→ 34|2|035|1|24|0

0 24 1 035 2 34

Figure 2. An E-tuple of points p = (p0, . . . , p5) in the plane, their
vertical and horizontal projections onto the supporting line 
(p),
and the bisequence B(p)

Proposition 2.9. The bipermutohedral fan ΣE,E is the configuration space of E-
tuples of points in the real plane modulo simultaneous translation, stratified accord-
ing to their bisequence.

Proof. Consider a point (z, w) in NE,E and the associated configuration of points
pi in the plane. The chart Ck consists of configurations p where k appears exactly
once in the bisequence B(p). In other words, p is in Ck if and only if pk is on
the supporting line 
(p). We consider the system of linear functions (Z,W ) for Ck

discussed in Section 2.3. The cones in the subdivision Σk of Ck encode the relative
order of Z0, . . . , Zn, W0, . . . , Wn, where

Zk = Wk = 0 and Zi ≥ Wi for every i in E.

On the other hand, the bisequence B(p) keeps track of the relative order of the
vertical and horizontal projections of pi onto 
(p). As shown in Figure 3, after the
translation by (−zk,−wk), the vertical and horizontal projections of pi onto 
(p)
are

(zi, zk+wk−zi)−(zk, wk) = (Zi,−Zi) and (zk+wk−wi, wi)−(zk, wk) = (Wi,−Wi).

Their relative order along 
(p) is given by the relative order of Z0, . . . , Zn, W0,
. . . , Wn. �

The collection of bisequences on E forms a poset under adjacent refinement,
where B ≤ B′ if B can be obtained from B′ by merging adjacent parts. The poset
of bisequences on E is a graded poset. Its k-th level consists of the bisequences of
k+1 nonempty subsets of E, and the top level consists of the bipermutations of E.

Proposition 2.10. The face poset of the bipermutohedral fan ΣE,E is isomorphic
to the poset of bisequences on E.

Proof. Remark 2.8 shows that, given any bisequence B on E, there is a configuration
p with B(p) = B. Thus, by Proposition 2.9, the cones in ΣE,E are in bijection with



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

742 FEDERICO ARDILA, GRAHAM DENHAM, AND JUNE HUH

(Wi,−Wi) = (wk − wi, wi − wk) pk

(Zi,−Zi) = (zi − zk, zk − zi) 
(p)

pi

Figure 3. The vertical and horizontal projections of pi onto the
supporting line 
(p), after the translation by (−zk,−wk)

the bisequences on E. If a configuration p moves into more special position, then
some adjacent parts of B(p) merge. �

For a bisequence B on E, we write σB for the corresponding cone defined by

σB = closure
{
configurations p satisfying B(p) = B

}
⊆ NE,E .

In terms of the cones σB, the fan Σi subdividing the chart Ci can be described as
the subfan

Σi = {σB | i appears exactly once in the bisequence B} ⊆ ΣE,E .

See Figure 4 for an illustration of Proposition 2.10 when n = 1.

1|0|1

0|1|0

1|1|00|1|1

1|0|00|0|1

01

1|01

01|0

01|1

0|01

1|00|1
μ

Σ1

Σ0

01

0|1

1|0

Figure 4. The map μ : Σ{0,1},{0,1} → Σ{0,1} from the bipermu-
tohedral fan to the permutohedral fan, and the labeling of their
cones with bisequences on {0, 1} and ordered set partitions on
{0, 1}

2.5. The bipermutohedral fan as a common refinement. The importance
of the bipermutohedral fan ΣE,E stems from its relationship with the normal fan
ΓE of the standard simplex and the permutohedral fan ΣE described in Sections
2.1 and 2.2. Recall that a morphism from a fan Σ1 in N1 to a fan Σ2 in N2 is an
integral linear map from N1 to N2 that maps any cone in Σ1 into a cone in Σ2.

Proposition 2.11. The bipermutohedral fan ΣE,E has the following properties.

(1) The projections π(z, w) = z and π(z, w) = w are morphisms of fans from
ΣE,E to ΣE.
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(2) The addition map μ(z, w) = z+w is a morphism of fans from ΣE,E to ΓE.

Proof. That ΣE,E has the stated properties follows from the interpretation of ΣE

and ΣE,E as configuration spaces, as we now explain. Suppose (z, w) is a point
in NE,E and p is the corresponding E-tuple of points in R2 modulo simultaneous
translation, with corresponding bisequence B(p). Then the smallest cone of ΓE

containing z+w is given by the entries that appear twice in B(p). The ordered set
partition of z in NE is given by the first occurrence of each i in B(p). Similarly,
the ordered set partition of w in NE is given by the order of the last occurrence of
each i in B(p). For example, if a point (z, w) has the bisequence 34|2|035|1|24|0, as
in Figure 2, then the sum z + w is in the cone of 0234 in ΓE , the first projection
z is in the cone of 34|2|05|1 in ΣE , and the second projection w is in the cone of
0|24|1|35 in ΣE . �

We note, however, that the bipermutohedral fan is not the coarsest fan structure
for which projections and addition are morphisms: the reader is referred to the
discussion in Section 2.8.

2.6. The bipermutohedral fan in terms of its rays and cones. The rays of
the bipermutohedral fan ΣE,E correspond to the bisubsets of E. In other words,
the rays of ΣE,E correspond to the ordered pairs of nonempty subsets S|T of E
such that

S ∪ T = E and S ∩ T 
= E.

Proposition 2.12. The 3(3n − 1) rays of the bipermutohedral fan ΣE,E are gen-
erated by

eS|T := eS + fT , where S|T is a bisubset of E.

Proof. The configuration p corresponding to eS|T has points with labels in S ∩ T
located at (1, 1), the points with labels in S − T located at (1, 0), and the points
with labels in T −S located at (0, 1). The bisequence of p is indeed S|T , and hence
the conclusion follows from Proposition 2.9. �
Proposition 2.13. The bipermutohedral fan ΣE,E has (2n+ 2)!/2n+1 chambers.

Proof. By Proposition 2.10, the chambers correspond to the bipermutations. These
are obtained bijectively from the (2n + 2)!/2n+1 permutations of the multiset
{0, 0, . . . , n, n} by dropping the last letter in the one-line notation for permuta-
tions. For example, the bipermutation 1|0|1|2|3|0|3 corresponds to the permutation
10123032 of {0, 0, 1, 1, 2, 2, 3, 3}. �

It is worth understanding Proposition 2.13 in a different way. Recall that the
bipermutohedral fan is obtained by gluing copies of 1/2n-th of the 2n-dimensional
permutohedral fan. There are (n + 1) such copies, and each copy contains (2n +
1)!/2n chambers, producing the total of (2n+ 2)!/2n+1 chambers. This viewpoint
explains why Figure 4 deceivingly looks like a permutohedral fan: For n = 1, the
bipermutohedral fan consists of two glued copies of half of the permutohedral fan.

We now describe the cones in the bipermutohedral fan in terms of their generat-
ing rays. Let B = B0|B1| · · · |Bk be a bisequence on E. Propositions 2.10 and 2.12
show that the rays of the k-dimensional cone σB are generated by the vectors

eS1|T1
, . . . , eSk|Tk

, where Si =
i−1⋃
j=0

Bj and Ti =
k⋃

j=i

Bj .
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See Figure 5 for an illustration. We use the following table to record the rays of
σB:

∅ � S1 ⊆ S2 ⊆ · · · ⊆ Sk ⊆ E
E ⊇ T1 ⊇ T2 ⊇ · · · ⊇ Tk � ∅

For each index j such that Sj � Sj+1 and Tj � Tj+1, we mark those two strict
inclusions in bold. We write S(B)|T(B) for the collection of bisubsets Si|Ti con-
structed from B as above by merging adjacent parts. For convenience, we also refer
to the pairs nS0|T0 = ∅|E and Sk+1|Tk+1 = E|∅.

0 1 1 0 2
B = 2|0|1|1|0

0 102

012|0

01 102

012|01

01 02

02|01

01 2

2|01

∅ � 2 ⊆ 02 ⊆ 012 ⊆ 012 ⊆ E
E ⊇ 01 ⊇ 01 ⊇ 01 ⊇ 0 � ∅

Figure 5. The cone of 2|0|1|1|0 has the rays generated by
e2|01, e02|01, e012|01, e012|0

Conversely, we may ask which subsets of k rays in ΣE,E generate a k-dimensional
cone in ΣE,E . To answer this question, we introduce the notion of a flag of bisubsets.

Definition 2.14. We say that two bisubsets S|T and S′|T ′ of E are comparable if

(S ⊆ S′ and T ⊇ T ′) or (S ⊇ S′ and T ⊆ T ′).

A flag of bisubsets in E, or a biflag in E, is a set S|T of pairwise comparable
bisubsets of E satisfying ⋃

S|T∈S|T
S ∩ T 
= E.

The length of a biflag is the number of bisubsets in it.

We have the following useful alternative characterization of biflags in E.

Proposition 2.15. Let S be an increasing sequence of k nonempty subsets of E,
say

S = (∅ � S1 ⊆ · · · ⊆ Sk ⊆ E),

and let T be a decreasing sequence of k nonempty subsets of E, say

T = (E ⊇ T1 ⊇ · · · ⊇ Tk � ∅).

Then the set S|T consisting of the pairs S1|T1, . . . , Sk|Tk is a flag of bisubsets if
and only if

Sj ∪ Tj = E for every 1 ≤ j ≤ k and Sj ∪ Tj+1 
= E for some 0 ≤ j ≤ k.
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Proof. If S|T is a biflag in E, then each Sj |Tj is a bisubset of E, and hence Sj∪Tj =
E for all j. Now let e be an element not in the union of all Sj ∩ Tj , and consider
the largest index i for which e /∈ Si. Then e ∈ Si+1, which implies e /∈ Ti+1 by the
definition of e. Therefore, Si ∪ Ti+1 
= E.

Conversely, if S and T satisfy the stated conditions, then the pairs Sj |Tj form a
set of pairwise comparable bisubsets of E. If e is an element not in Sj ∪ Tj+1 for
some index j, then e is not in Sk for all indices k ≤ j and e is not in Tk for all
indices k > j. Therefore, e is not in the union of all Sk ∩ Tk, as desired. �

Since Sj ∪ Tj+1 
= E implies Sj � Sj+1 and Tj � Tj+1, Proposition 2.15 shows
that the table of any biflag has at least one pair of strict inclusions marked in bold.

For a biflag S|T of length k, we write S for the increasing sequence of k nonempty
subsets

S = (∅ � S1 ⊆ · · · ⊆ Sk ⊆ E), where Sj are the first parts of the bisubsets in S|T,
and write T for the decreasing sequence of k nonempty subsets

T=(E⊇T1⊇· · ·⊇Tk�∅), where Tj are the second parts of the bisubsets in S|T.
We use S and T to define B(S|T) as the sequence of k + 1 nonempty sets

B0|B1| · · · |Bk, where Bj = (Sj+1 − Sj) ∪ (Tj − Tj+1).

The above construction gives an isomorphism between the poset of bisequences
under adjacent refinement and the poset of biflags under inclusion.

Proposition 2.16. The bisequences on E are in bijection with the biflags in E.
More precisely,

(1) if B is a bisequence on E, then S(B)|T(B) is a biflag in E,
(2) if S|T is a biflag in E, then B(S|T) is a bisequence on E, and
(3) the constructions S(B)|T(B) and B(S|T) are inverses to each other.

Note that a bisubset S|T corresponds to the biflag {S|T} under the above bijec-
tion. For simplicity, we use the two symbols interchangeably.

Proof. Let B be a bisequence on E. Since every element of E appears at least once
in B, the increasing flag S(B) and the decreasing flag T(B) satisfy Sj ∪ Tj = E for
all j. In addition, since some element of E appears exactly once in B, say in Bj , we
have Sj ∪Tj+1 
= E for some j. Therefore, by Proposition 2.15, the pair S(B)|T(B)
is a biflag in E.

Conversely, let S|T be a biflag in E. Since S1|T1, . . . , Sk|Tk are pairwise distinct,
Bj must be nonempty for all j. Clearly, every element in E must appear in Bj for
some j. In addition, each element e in E can occur at most twice in B(S|T), namely,
in the parts Ba and Bb whose indices satisfy e ∈ Sa+1 − Sa and e ∈ Tb − Tb+1.
Furthermore, by Proposition 2.15, there is an element e not in Sc ∪ Tc+1 for some
index c, and in this case we must have a = b = c. That element e can occur only
in the part Ba of B(S|T), and hence B(S|T) indeed is a bisequence.

It is straightforward to check that the constructions S(B)|T(B) and B(S|T) are
inverses to each other. �

We identify a biflag S|T in E with the sequence of bisubsets of E obtained by
ordering the bisubsets in S|T as above. For any sequence S|T of bisubsets of E, we
define

σS|T = cone{eS|T }S|T∈S|T ⊆ NE,E .
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Thus, for any bisequence B on E, we have σB = σS(B)|T(B).

Corollary 2.17. The bipermutohedral fan ΣE,E is the complete fan in NE,E with
the cones

σS|T = cone{eS|T }S|T∈S|T , for flags of bisubsets S|T of E.

Proof. The statement is straightforward, given Propositions 2.10 and 2.16. �

Corollary 2.17 can be used to show that the bipermutohedral fan is a unimodular
fan.14

Proposition 2.18. The set of primitive ray generators of any chamber of ΣE,E

is a basis of the free abelian group ZE/ZeE ⊕ ZE/ZfE. In particular, ΣE,E is
simplicial.

Proof. Let S = S(B) and T = T(B) for a bipermutation B of E. If 0 is the unique
element of E that appears exactly once in B, then{

eSj+1|Tj+1
− eSj |Tj

| 0 is contained in Sj ∪ Tj+1

}
=

{
e1, . . . , en, f1, . . . , fn

}
.

Therefore, the set of 2n primitive ray generators of σB generates ZE/ZeE ⊕
ZE/ZfE . �

2.7. The bipermutohedral fan as the normal fan of the bipermutohedron.
We construct a polytope ΠE,E , called the bipermutohedron, whose reduced normal
fan is ΣE,E . The reader may skip this subsection without interrupting the main
logical flow of the paper (see Remark 5.30).

For each bipermutation B of E, we construct a vertex vB in RE ⊕RE as follows.
Let k = kB be the element appearing exactly once in B. Consider the word πB

obtained from B by replacing k with kk and replacing the first and the second
occurrences of each j 
= k with j and j. We identify this word with the bijection

πB : E ∪ E −→ {−2n− 1, . . . ,−3,−1, 1, 3, . . . , 2n+ 1}
that sends the letters of the word to the odd integers in increasing order. For
example,

π1|2|3|1|3|0|0 =

(
1 2 2 3 1 3 0 0
−7 −5 −3 −1 1 3 5 7

)
.

Let uB = (x, y) be the vector in RE ⊕ RE with xj = πB(j) and yj = −πB(j). We
define

vB = uB − sB(ek + fk), where sB =
∑
i∈E

xi =
∑
i∈E

yi.

For example, writing (x, y) as a matrix whose top and bottom rows are x and y
respectively,

v1|2|3|1|3|0|0 =

(
5 −7 −5 −1
−7 −1 3 −3

)
+ 8

(
0 0 1 0
0 0 1 0

)
.

The row sums of vB are both equal to 0, so vB is in ME ⊕ME , where ME is the
vector space dual to NE .

14Alternatively, one may appeal to the unimodularity of the 2n-dimensional braid arrangement
fan in (Z,W )-coordinates discussed in Section 2.3.
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Definition 2.19. The bipermutohedron of E is

ΠE,E := conv{vB |B is a bipermutation of E} ⊆ ME ⊕ME .

We refer to [Ard22] for a detailed study of this remarkable polytope. In [Ard22,
Proposition 2.8], it is shown that the bipermutohedron in ME ⊕ME is defined by
the inequalities∑

i∈S

xi +
∑
i∈T

yi ≥ −(|S|+ |S − T |) · (|T |+ |T − S|), for each bisubset S|T of E.

The inequality description is reminiscent of that of the permutohedron in ME ,
which reads∑

i∈S

xi ≥ −|S| · |E − S|, for each nonempty proper subset S of E.

The automorphism group of the permutohedron is the symmetric group SE , and
the automorphism group of the bipermutohedron is the productSE×Z/2Z [Ard22,
Proposition 7.2].

Proposition 2.20. The bipermutohedral fan ΣE,E is the normal fan of ΠE,E .

Proof. Let B be a bipermutation on E. We claim that the cone of the normal fan of
ΠE,E corresponding to vB is precisely the maximal cone σB of the bipermutohedral
fan ΣE,E :

NΠE,E
(vB) = σB.

This will also show that each vB is indeed a vertex of the bipermutohedron ΠE,E .
It is enough to show that the left-hand side is contained in the right-hand side,

as the two fans we are comparing have the same support. Let ϕ = (z, w) be a
linear functional such that the ϕ-minimal face of ΠE,E contains vB, and let k be
the letter that is not repeated in B. We use the description of ΣE,E in Section 2.3.
We need to show that (z, w) is in the chart Ck, and that when we rewrite (z, w) in
the coordinate system

Zi = zi − zk, Wi = −wi + wk,

the relative order of Z0, . . . , Zn, W0, . . . , Wn agrees with the order of 0, . . . , n, 0,
. . . , n in πB.

Let i and j be any two adjacent letters in B appearing in that order. When
i 
= j, we write B′ for the bipermutation obtained from B by swapping i and j:

B = · · · |i|j| · · · , B′ = · · · |j|i| · · · .

When i = j, we write B′ for the bipermutation obtained from B by making i occur
only once and k occur twice consecutively, as follows:

B = · · · |i|i| · · · |k| · · · , B′ = · · · |i| · · · |k|k| · · · .

We use the inequality ϕ(vB) ≤ ϕ(vB′) to determine the relative order of Z0, . . . ,
Zn, W0, . . . , Wn. In what follows, we consider vB and vB′ as matrices with two
rows whose columns are labeled by E. Since vB and vB′ can only differ in columns
labeled by i, j, or k, we only display those columns in the computations below.

First, we consider the case i 
= j and i, j 
= k. There are four subcases.
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(1-1) Suppose both i and j are their first occurrences in B. In this case, we have
sB = sB′ , and

πB(i) = a− 1, πB(j) = a+ 1, πB′(i) = a+ 1, πB′(j) = a− 1 for some a.

Therefore, the condition that the ϕ-minimal face of ΠE,E contains vB implies

ϕ

(
a− 1 a+ 1 −s
b c −s

)
≤ ϕ

(
a+ 1 a− 1 −s
b c −s

)
for some b and c.

We thus have (a− 1)zi + (a+ 1)zj ≤ (a+ 1)zi + (a− 1)zj , and hence Zj ≤ Zi.
(1-2) Suppose both i and j are their second occurrences in B. Similarly to the

previous case,

ϕ

(
b c −s

−a+ 1 −a− 1 −s

)
≤ ϕ

(
b c −s

−a− 1 −a+ 1 −s

)
for some b and c.

We thus have −(a−1)wi−(a+1)wj ≤ −(a+1)wi−(a−1)wj, and hence Wj ≤ Wi.
(1-3) Suppose i is its first occurrence in B and j is its second occurrence in B.

We have

πB(i) = a− 1, πB(j) = a+ 1, πB′(i) = a+ 1, πB′(j) = a− 1 for some a,

and hence sB′ = sB + 2. The condition that the ϕ-minimal face of ΠE,E contains
vB implies

ϕ

(
a− 1 b −s
c −a− 1 −s

)
≤ ϕ

(
a+ 1 b −s− 2
c −a+ 1 −s− 2

)
for some b and c.

We thus have (a− 1)zi − (a+ 1)wj ≤ (a+ 1)zi − (a− 1)wj − 2zk − 2wk, and hence
Wj ≤ Zi.

(1-4) Suppose i is its second occurrence in B and j is its first occurrence in B.
Computing as in the previous case, we get Zj ≤ Wi.

Second, we consider the case i 
= j and i = k. There are two subcases.

(2-1) Suppose j is its first occurrence in B. In this case, for some a, we have

πB(k) = a− 2, πB(k) = a, πB(j) = a+ 2, πB′(k) = a,

πB′(k) = a+ 2, πB′(j) = a− 2,

and hence sB′ = sB − 2. The condition that the ϕ-minimal face of ΠE,E contains
vB implies

ϕ

(
a− s− 2 a+ 2
−a− s b

)
≤ ϕ

(
a− s+ 2 a− 2
−a− s b

)
for some b.

We thus have (a−s−2)zi+(a+2)zj ≤ (a−s+2)zi+(a−2)zj , and hence Zj ≤ Zi.
(2-2) Suppose j is its second occurrence in B. Computing as above, we get

Wj ≤ Wi.

Third, we consider the case i 
= j and j = k. There are two subcases.

(3-1) Suppose i is its first occurrence in B. Computing as in (2-1), we get
Zj ≤ Zi.

(3-2) Suppose i is its second occurrence in B. Computing as in (2-1), we get
Wj ≤ Wi.
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Last, we consider the case i = j. In this case, we have πB = πB′ , and hence

uB = uB′ and sB = sB′ .

Notice that, since 
 precedes 
 in πB for all 
, we have

sB ≤ −(2n− 1)− (2n− 5)− · · ·+ (2n− 7) + (2n− 3) < 0.

Therefore, ϕ
(
uB − sB(ek + fk)

)
≤ ϕ

(
uB − sB(ei + fi)

)
implies Wi ≤ Zi.

Applying the above analysis to each pair of adjacent letters of B, we conclude
that, given k, the relative order of Z0, . . . , Zn, W0, . . . , Wn is determined by πB.
In particular, since i precedes i in πB for all i, we have that Zi ≥ Wi for all i, that
is, ϕ belongs to the chart Ck. �

2.8. The bipermutohedral fan: An origin story. The bipermutohedral fan
can be approached from several different points of view, and it has many favorable
properties, as the previous sections show. However, it may not yet be clear where
this fan comes from, or why it is a good setting for the Lagrangian geometry of
matroids. In this section we explain the geometric motivation for its construction,
and the role its various properties play in the theory.

When M is the matroid of a subspace V of CE , the conormal fan ΣM,M⊥ is a

tropical model of the projectivized conormal bundle of V . Since M⊥ is the matroid
of the orthogonal complement of V , we expect the conormal fan to be supported
on trop(M) × trop(M⊥). A desirable fan structure Σ on this support should have
the following properties:

(1) The classes γ and δ can be defined in its Chow ring, so we can state Theo-
rems 1.1 and 1.2.

(2) The Chow ring is tractable for computations, so we can prove Theorems
1.1 and 1.2.

(3) The fan is a subfan of the normal fan of a polytope, so its ample cone is
nonempty.

(4) The fan is Lefschetz, so we can derive Conjecture 1.3 in Theorem 1.4.

We resolve requirement (4) by showing in Theorem 1.6 that being Lefschetz only

depends on the support trop(M)× trop(M⊥) – which is the support of a Lefschetz
fan by [AHK18] – and not on the fan structure that we choose. Thus we can focus
on the first three.

Requirement (2) is stated imprecisely, but a very desirable initial property is
that our fan Σ is simplicial. When this is the case, the Chow ring A(Σ) of the
toric variety X(Σ) has an algebraic combinatorial presentation due to Brion, and
an interpretation in terms of piecewise polynomial functions due to Billera; see
Section 3.1. This will allow us to carry out intersection-theoretic computations in
this Chow ring. Thus the first fan structure on trop(M)× trop(M⊥) that one might
try is the product of Bergman fans ΣM × ΣM⊥ , which is simplicial and does have
a nice combinatorial structure. It is also a subfan of the normal fan of the product
of permutohedra ΠE ×ΠE .

To address requirement (1), we rely on the geometry of the representable case, as
studied in [DGS12,Huh13], which tells us what the classes γ and δ of Theorems 1.1
and 1.2 should be. If α is the piecewise linear function on the tropical projective
torus defined in Section 1, then γ and δ should be the pullbacks of α along the
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following maps from NE ×NE to NE :

π : Σ −→ ΓE , (z, w) �−→ z and μ : Σ −→ ΓE , (z, w) �−→ z + w,

where ΓE is the reduced normal fan of the standard simplex. If Σ = ΣM × ΣM⊥

or any refinement of it, the first map is a map of fans, and γ is well-defined.
However, the second map is not a map of fans for Σ = ΣM×ΣM⊥ , as we will see in
Example 3.8. Thus the product fan structure will not serve our purposes; we need
to subdivide it further. How might we do this simultaneously for all M?

At this point, it is instructive to return to the case of tropical linear spaces,
as used by Adiprasito, Huh, and Katz in [AHK18]. In that case, one wants a
similarly convenient fan structure for the tropical linear space trop(M). Fortunately,
one can do this for all matroids on E at once, by intersecting trop(M) with the
permutohedral fan ΣE . The result is the Bergman fan ΣM of M introduced by
Ardila and Klivans in [AK06], where it is called the fine subdivision.

Similarly, we might try to find a suitable fan structure of trop(M) × trop(M⊥)
for all matroids M on E simultaneously, by intersecting them with an appropriate
complete fan. There is a natural candidate: the coarsest common refinement of the
product of permutohedral fans ΣE×ΣE , which induces the fan structure ΣM×ΣM⊥ ,
and μ−1(ΓE), the coarsest fan that guarantees that the class δ is well-defined. This
is the reduced normal fan of a polytope

HE,E := (ΠE ×ΠE) +DE ,

the Minkowski sum of the product of two permutohedra and the diagonal simplex
DE = conv{ei + fi}i∈E . The polytope HE,E does have an elegant combinatorial
structure, as shown in [AE21]. They call it the harmonic polytope because its
number of vertices is

|E|! · |E|! ·
(
1 +

1

2
+ · · ·+ 1

|E|

)
.

However, this polytope has a drawback for our purposes: it is not simple, so the
resulting fan structure on trop(M) × trop(M⊥) is not simplicial. Thus we need to
find a simplicial refinement of the corresponding harmonic fan, with simple enough
combinatorial structure that we can carry out computations.

The bipermutohedral fan ΣE,E is our answer to those requirements. It refines
the harmonic fan by Proposition 2.11, so γ and δ are well-defined. It is simplicial by
Proposition 2.18, and it has an elegant combinatorial structure that makes explicit
computations possible. It is the normal fan of the bipermutohedron, thanks to
Proposition 2.20.

For the above reasons, we define the conormal fan ΣM,M⊥ to be the fan on

trop(M)× trop(M)⊥ obtained by intersecting with the bipermutohedral fan ΣE,E .
The construction of ΣM,M⊥ is a Lagrangian analog of the construction of ΣM in
[AK06]. What remains is to understand the resulting combinatorial structure and
carry out the necessary intersection-theoretic computations to prove Theorems 1.1
and 1.2 – which is the goal of Sections 3 and 4 – and to prove Theorem 1.6 – which
we do in Section 5. We believe that the bipermutohedral fan will have applications
beyond those presented in this paper. For example, the bipermutohedral perspec-
tive could be a guide in finding useful tropical models for Lagrangian matroids
studied in [BGW03], of which the conormal fan of a matroid will be a particular
case.
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3. The conormal intersection theory of a matroid

In this section, we construct the conormal fan of a matroid M on E, and describe
its Chow ring. Our running example will be the graphic matroid M(G) of the graph
G of the square pyramid, whose dual is the graphic matroid of the dual graph G⊥

shown in Figure 6.
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3
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67

Figure 6. The graph G of the square pyramid and its dual graph G⊥

3.1. Homology and cohomology. Throughout this section, we fix a simplicial
rational fan Σ in N = R ⊗ NZ. For each ray ρ in Σ, we write eρ for the primitive
generator of ρ in NZ, and introduce a variable xρ.

• Let S(Σ) be the polynomial ring with real coefficients that has xρ as its
variables, one for each ray ρ of Σ.

• Let I(Σ) be the Stanley-Reisner ideal of S(Σ), generated by the square-free
monomials indexing the subsets of rays of Σ which do not generate a cone
in Σ.

• Let J(Σ) be the ideal of S(Σ) generated by the linear forms
∑

ρ 
(eρ)xρ,
where 
 is any linear function on N and the sum is over all the rays in Σ.

Definition 3.1. The Chow ring of Σ, denoted A(Σ), is the graded algebra
S(Σ)/(I(Σ) + J(Σ)).

Billera [Bil89] constructed an isomorphism from the monomial quotient
S(Σ)/I(Σ) to the algebra of continuous piecewise polynomial functions on Σ by
identifying the variable xρ with the piecewise linear Courant function on Σ deter-
mined by the condition

xρ(eρ′) =

{
1, if ρ is equal to ρ′,

0, if ρ is not equal to ρ′.

Thus, under this isomorphism, a piecewise linear function 
 on Σ is identified with
the linear form


 =
∑
ρ


(eρ)xρ.

We regard the elements of A(Σ) as equivalence classes of piecewise polynomial
functions on Σ, modulo the restrictions of global linear functions to Σ.

Brion [Bri97, Theorem 6.7] showed that the Chow ring of the toric variety X(Σ)
of Σ with real coefficients is isomorphic to A(Σ).15

15In [Bri97], Brion identifies A(Σ) with the Chow group of X(Σ) with real coefficients. For
the existence of the ring structure and the pullback, see [Vis89].
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Under this isomorphism, the class of the torus orbit closure of a cone σ in Σ is
identified with mult(σ) xσ, where xσ is the monomial

∏
ρ⊆σ xρ and mult(σ) is the

index of the subgroup (∑
ρ⊆σ

Zeρ

)
⊆ NZ ∩

(∑
ρ⊆σ

Reρ

)
.

All the fans appearing in this section will be unimodular, so mult(σ) = 1 for every
σ in Σ.

We write Σ(k) for the set of k-dimensional cones in Σ.
A k-dimensional Minkowski weight on Σ is a real-valued function ω on Σ(k) that

satisfies the balancing condition: For every (k − 1)-dimensional cone τ in Σ,∑
τ⊂σ

ω(σ)eσ/τ = 0 in the quotient space N / span(τ ),

where eσ/τ is the primitive generator of the ray (σ + span(τ ))/ span(τ ). We say
that w is positive if w(σ) is positive for every σ in Σ(k). We write MWk(Σ) for the
space of k-dimensional Minkowski weights on Σ, and set

MW(Σ) =
⊕
k≥0

MWk(Σ).

We will make use of the basic fact that the Chow group of a toric variety is generated
by the classes of torus orbit closures [CLS11, Lemma 12.5.1].

Thus, there is an injective linear map from the dual of Ak(Σ) to the space of
k-dimensional weights on Σ, whose image turns out to be MWk(Σ), as noted in
[AHK18, Section 5].16 Explicitly, the inverse isomorphism from the image is

MWk(Σ) −→ Hom(Ak(Σ),R), w �−→ (mult(σ)xσ �−→ w(σ)).

Following [AHK18], we define the cap product, denoted η∩w, using the composition

A�(Σ) −→ Hom(Ak−�(Σ), Ak(Σ)) −→ Hom(MWk(Σ),MWk−�(Σ)),

η �−→ (w �−→ η ∩ w),

where the first map is given by the multiplication in the Chow ring of Σ. In short,
MW(Σ) has the structure of a graded A(Σ)-module given by the isomorphism
MW(Σ) 
 Hom(A(Σ),R).

Let f : Σ → Σ′ be a morphism of simplicial fans. The pullback of functions
defines the pullback homomorphism between the Chow rings

f∗ : A(Σ′) −→ A(Σ),

whose dual is the pushforward homomorphism between the space of Minkowski
weights

f∗ : MW(Σ) −→ MW(Σ′).

Since f∗ is a homomorphism of graded rings, f∗ is a homomorphism of graded
modules.17 In other words, the pullback and the pushforward homomorphisms

16In [AHK18, Proposition 5.6], all fans are unimodular and their Chow rings have integral
coefficients. The same argument works for simplicial fans and their Chow rings with real or
rational coefficients.

17To see that the pullback between the Chow rings is determined by the pullback of piecewise
linear functions, note that every divisor on simplicial toric variety is Q-Cartier [CLS11, Proposition
4.2.7] and that the pullback of Chern classes of line bundles corresponds to the pullback of piecewise
linear functions [CLS11, Proposition 6.2.7].
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satisfy the projection formula

η ∩ f∗w = f∗(f
∗η ∩ w).

3.2. The Bergman fan of a matroid. The Bergman fan of a matroid M on E,
denoted ΣM, is the r-dimensional subfan of the n-dimensional permutohedral fan
ΣE whose underlying set is the tropical linear space

trop(M) =
{
z |min

i∈C
(zi) is achieved at least twice for every circuit C of M

}
⊆ NE .

The Bergman fan of M is equipped with the piecewise linear functions

αj = max
i∈E

(zj − zi),

and the space of linear functions on the Bergman fan is spanned by the differences

αi − αj = zi − zj .

Note that trop(M) is nonempty if and only if M is loopless. In the remainder of
this section, we suppose that M has no loops. In this case, the Bergman fan of M
is the induced subfan of ΣE generated by the rays corresponding to the nonempty
proper flats of M [AK06].

Proposition 3.2. The Bergman fan of M is the unimodular fan in NE with the
cones

σF = cone{eF }F∈F, for flags of flats F of M.

The most important geometric property of ΣM is the following description of
its top-dimensional Minkowski weights. For a proof, see, for example, [AHK18,
Proposition 5.2].

Proposition 3.3. An r-dimensional weight on ΣM is balanced if and only if it is
constant.

We write 1M for the fundamental weight on ΣM, the r-dimensional Minkowski
weight on the Bergman fan that has the constant value 1.

3.3. The Chow ring of the Bergman fan. In the context of matroids, for sim-
plicity, we set

SM = S(ΣM), IM = I(ΣM), JM = J(ΣM), AM = A(ΣM).

We identify the elements of SM/IM with the piecewise linear functions on ΣM as
before.

Let xF be the variable of the polynomial ring corresponding to the ray generated
by eF in the Bergman fan. For any set F of nonempty proper flats of M, we write
xF for the monomial

xF =
∏
F∈F

xF .

The variable xF , viewed as a piecewise linear function on the Bergman fan, is given
by

xF (eF ′) =

{
1, if F is equal to F ′,

0, if F is not equal to F ′,

and hence the piecewise linear function αj on the Bergman fan satisfies the identity

αj =
∑
F

αj(eF )xF =
∑
j∈F

xF .
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Thus, in the above notation,

• SM is the ring of polynomials in the variables xF , where F is a nonempty
proper flat of M,

• IM is the ideal generated by the monomials xF, where F is not a flag, and
• JM is the ideal generated by the linear forms αi −αj , for any i and j in E.

We write α for the common equivalence class of αj in the Chow ring of the Bergman
fan.

Definition 3.4. The fundamental weight 1M defines the degree map

deg : Ar
M −→ R, xF �−→ xF ∩ 1M =

{
1 if F is a flag,

0 if F is not a flag.

By Proposition 3.3, the degree map is an isomorphism. In other words, for any
maximal flag F of nonempty proper flats of M, the class of the monomial xF in the
Chow ring of the Bergman fan of M is nonzero and does not depend on F.

3.4. The conormal fan of a matroid. The conormal fan of a matroid M on E,
denoted ΣM,M⊥ , is the (n− 1)-dimensional subfan of the 2n-dimensional bipermu-
tohedral fan ΣE,E whose support is the product of tropical linear spaces

|ΣM,M⊥ | = trop(M)× trop(M⊥).

Equivalently, the conormal fan is the largest subfan of the bipermutohedral fan for
which the projections to the factors are morphisms of fans

π : ΣM,M⊥ −→ ΣM and π : ΣM,M⊥ −→ ΣM⊥ .

The addition map (z, w) �→ z + w is also a morphism of fans ΣM,M⊥ → ΓE .
The conormal fan of M is equipped with the piecewise linear functions

γj = max
i∈E

(zj − zi), γj = max
i∈E

(wj − wi), δj = max
i∈E

(zj + wj − zi − wi),

which are the pullbacks of αj under the projections π and π′ and the addition map,
respectively. The space of linear functions on the conormal fan is spanned by the
differences

γi − γj = zi − zj and γi − γj = wi − wj .

Note that the support of the conormal fan of M is nonempty if and only if M is
loopless and coloopless. In the remainder of this section, we suppose that M has no
loops and no coloops.

Definition 3.5. A biflat F |G of M consists of a flat F of M and a flat G of M⊥

that form a bisubset; that is, they are nonempty, they are not both equal to E, and
their union is E. A biflag of M is a flag of biflats.

We give an analog of Proposition 3.2 for conormal fans in terms of biflats.

Proposition 3.6. The conormal fan of M is the unimodular fan in NE,E with the
cones

σF|G = cone{eF |G}F |G∈F|G, for flags of biflats F|G of M.

Proof. The proof is straightforward, given Corollary 2.17 and Proposition 3.2: If
F|G is a flag of biflats of M, then F is an increasing sequence of flats of M and G is

a decreasing sequence of flats of M⊥, and hence

σF|G ⊆ σF × σG ∈ ΣM × ΣM⊥ .
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Therefore, the conormal fan of M contains the induced subfan of ΣE,E generated
by the rays corresponding to the biflats of M. The other inclusion follows from the
easy implication

eF |G is in the support of the conormal fan of M =⇒ F |G is a biflat of M. �

We also have the following analog of Proposition 3.3 for conormal fans.

Proposition 3.7. An (n−1)-dimensional weight on ΣM,M⊥ is balanced if and only
if it is constant.

We write 1M,M⊥ for the fundamental weight on ΣM,M⊥ , the top-dimensional
Minkowski weight on the conormal fan that has the constant value 1.

Proof. Proposition 3.3 applied to M and M⊥ shows that a top-dimensional weight
on ΣM × ΣM⊥ satisfies the balancing condition if and only if it is constant. This
property of the fan remains invariant under any subdivision of its support, as shown
in [GKM09, Section 2]. �

For our purposes, the product of the Bergman fans of M and M⊥ has a short-
coming: The addition map need not be a morphism from the product to the fan
ΓE . Thus, in general, we cannot define the class of δj in the Chow ring of the
product. This is our motivation for subdividing it further, to obtain the conormal
fan ΣM,M⊥ .

Example 3.8. Let M and M⊥ be the graphic matroids of the graphs in Figure 6.
Consider the cone σF × σG in the product of Bergman fans of M and M⊥, where

F = (∅ � 1 � 015 � 01345 � E) and G = (∅ � 2 � 267 � 12567 � E).

This cone is subdivided into the chambers of ΣM,M⊥ corresponding to the biflags

∅ � 1 ⊆ 015 ⊆ 01345 ⊆ 01345 ⊆ 01345 ⊆ E ⊆ E
E ⊇ E ⊇ E ⊇ E ⊇ 12567 ⊇ 267 ⊇ 2 � ∅

,

∅ � 1 ⊆ 015 ⊆ 01345 ⊆ 01345 ⊆ E ⊆ E ⊆ E
E ⊇ E ⊇ E ⊇ 12567 ⊇ 267 ⊇ 267 ⊇ 2 � ∅

,

∅ � 1 ⊆ 015 ⊆ 01345 ⊆ E ⊆ E ⊆ E ⊆ E
E ⊇ E ⊇ E ⊇ 12567 ⊇ 12567 ⊇ 267 ⊇ 2 � ∅

.

If (z, w) is inside the first chamber, then the minimum of zi + wi is attained by
z6+w6 = z7+w7, and hence z+w is in the cone σ012345. If (z, w) is inside the second
or the third chamber, then the minimum of zi+wi is attained by z3+w3 = z4+w4,
and hence z + w is in the cone σ012567. Thus, the product cone does not map into
a cone in ΓE under the addition map.

Recall from Definition 2.5 that the cotangent fan ΩE is the subfan of ΣE,E with
support

trop(δ) =
{
(z, w) | min

i∈E
(zi + wi) is achieved at least twice

}
⊆ NE,E .

In other words, the cotangent fan is the collection of cones σB for bisequences B

on E, where at least two elements of E appear exactly once in B. We show that
the cotangent fan contains all the conormal fans of matroids on E.

Proposition 3.9. For any matroid M on E, we have trop(M) × trop(M⊥) ⊆
trop(δ).
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In other words, if the minimum of (zi)i∈C is achieved at least twice for every
circuit C of M and the minimum of (wi)i∈C⊥ is achieved at least twice for every

circuit C⊥ of M⊥, then the minimum of (zi+wi)i∈E is achieved at least twice. We
deduce Proposition 3.9 from Proposition 3.15, a stronger statement on the flags of
biflats of M. The notion of gaps introduced here for Proposition 3.15 will be useful
in Section 4.

Let F|G be a flag of biflats of M. As before, we write F and G for the sequences

F =(∅ � F1 ⊆· · ·⊆ Fk ⊆ E), where Fj are the first parts of the biflats in F|G,
G =(E ⊇ G1 ⊇· · ·⊇ Gk � ∅), where Gj are the second parts of the biflats in F|G,

where k is the length of F|G. Thus, the bisequence B(F|G) from Proposition 2.16
can be written

B0|B1| · · · |Bk, where Bj = (Fj+1 − Fj) ∪ (Gj −Gj+1).

Definition 3.10. The gap sequence of F|G, denoted D(F|G), is the sequence of
gaps

D0|D1| · · · |Dk, where Dj = (Fj+1 − Fj) ∩ (Gj −Gj+1).

Note that Dj consists of the elements of Bj that appear exactly once in the
bisequence B(F|G).

Example 3.11. The three maximal flags of biflats shown in Example 3.8 have the
gap sequences

∅|∅|∅|∅|∅|67|∅, ∅|∅|34|∅|∅|∅|∅, ∅|∅|34|∅|∅|∅|∅.

We show in Proposition 3.17 that any maximal flag of biflats has a unique nonempty
gap.

Lemma 3.12. The complement of the gap Dj in E is the union of Fj and Gj+1.

Therefore, by Proposition 2.15, at least one of the gaps of F|G must be nonempty.

Proof. Since Fj |Gj and Fj+1|Gj+1 are bisubsets, we have Gc
j ⊆ Fj and F c

j+1 ⊆
Gj+1. Thus,

Dc
j = (Fj+1 ∩ F c

j ∩Gj ∩Gc
j+1)

c = F c
j+1 ∪ Fj ∪Gc

j ∪Gj+1 = Fj ∪Gj+1. �

Lemma 3.13. Let e ∈ E. There exists an index i for which e ∈ Fi∩Gi if and only
if e is not in any gap. In symbols, the union of the gaps of F|G is

k⊔
j=0

Dj = E −
k⋃

i=1

(Fi ∩Gi) .

Proof. First suppose e ∈ Fi ∩ Gi. Then e ∈ Fj for all j ≥ i, which means e 
∈ Dj

for i ≤ j ≤ k. Dually, e ∈ Gj for all j ≤ i, so e 
∈ Dj for all 0 ≤ i ≤ j − 1.
Now suppose e is not in any gap, and consider the index 1 ≤ i ≤ k+1 for which

e ∈ Fi−Fi−1. Since e ∈ Fi−1∪Gi, we must have e ∈ Gi and hence e ∈ Fi∩Gi. �

We will often use the following basic result. Recall that |E| = n+ 1.

Lemma 3.14. The union of a flat and a coflat cannot have exactly n elements.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

LAGRANGIAN GEOMETRY OF MATROIDS 757

Proof. Let F be a flat and G be a coflat. Recall that, for any matroid, the comple-
ment of any hyperplane is a cocircuit [Oxl11, Proposition 2.1.6] and that any flat
is an intersection of hyperplanes [Oxl11, Proposition 1.7.8]. So we may write the
complement of F ∪G as ( ⋃

C∈C

C
)
∩
( ⋃

C⊥∈C⊥

C⊥
)
,

where C is a collection of circuits and C⊥ is a collection of cocircuits. Thus, if the
complement is nonempty, there are C ∈ C and C⊥ ∈ C⊥ that intersect nontrivially.
Now the conclusion follows from the classical fact that the intersection of a circuit
and a cocircuit is either empty or contains at least two elements [Oxl11, Proposition
2.11]. �
Proposition 3.15. Every nonempty gap of a biflag F|G of M has at least two
distinct elements.

Proof. Since the complement of a gap of F|G is the union of a flat and a coflat by
Lemma 3.12, the claim follows from Lemma 3.14. �

For any biflag F|G, there are at least two elements of E that appear exactly once
in the bisequence B(F|G); therefore

trop(M)× trop(M⊥) ⊆ trop(δ),

proving Proposition 3.9.
For later use, we record here another elementary property of the flags of biflats

of a matroid.

Definition 3.16. The jump sets of F and G are the sets of indices

J(F) = {j | 0 ≤ j ≤ k and Fj 
= Fj+1}
J(G) = {j | 0 ≤ j ≤ k and Gj 
= Gj+1}.

The elements of J(F) ∩ J(G) are called the double jumps of F|G.

The double jumps are colored bold in the table of F|G, as shown in Example 3.8.
Clearly, j is a double jump whenever the corresponding gap Dj is nonempty. We
show that the converse holds when F|G is maximal.

Proposition 3.17. Every maximal flag of biflats F|G of M has a unique double
jump. Ignoring repetitions, F and G are complete flags of nonempty flats in M and
M⊥, respectively.

In particular, every maximal flag of biflats F|G of M has a unique nonempty gap.

Proof. Recall that at least one of the gaps of F|G is nonempty. In addition, since
tropical linear spaces are pure-dimensional, the length of any maximal flag of biflats
must be n− 1. Thus,

|J(F) ∩ J(G)| ≥ 1 and |J(F) ∪ J(G)| = n.

On the other hand, writing r + 1 for the rank of M as before, we have

|J(F)| ≤ r + 1 and |J(G)| ≤ n− r.

Therefore, n+1 ≤ |J(F)∪ J(G)|+ |J(F)∩ J(G)| = |J(F)|+ |J(G)| ≤ n+1, and hence

|J(F)| = r + 1, |J(G)| = n− r and |J(F) ∩ J(G)| = 1
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which imply the desired results. �

By way of contrast, nonmaximal biflags have several double jumps, and they can
have a double jump whose corresponding gap is empty:

Example 3.18. For the graphic matroids of Figure 6 again, consider the biflag

F|G :=
∅ � 1 ⊆ 01345 ⊆ E ⊆ E
E ⊇ E ⊇ 12567 ⊇ 267 � ∅

.

We see that F|G has two double jumps, with gaps 034 and ∅, respectively. In view
of Proposition 3.17, any maximal biflag containing F|G would necessarily contain
another biflat F |G satisfying 01345 ⊆ F ⊆ E and 12567 ⊇ G ⊇ 267.

3.5. The Chow ring of the conormal fan. For notational simplicity, we set

SM,M⊥ = S(ΣM,M⊥), IM,M⊥ = I(ΣM,M⊥),

JM,M⊥ = J(ΣM,M⊥), AM,M⊥ = A(ΣM,M⊥).

We identify the elements of SM,M⊥/IM,M⊥ with the piecewise linear functions on
the conormal fan.

Let xF |G be the variable of the polynomial ring corresponding to the ray gener-
ated by eF |G in the conormal fan. For any set F|G of biflats of M, we write xF|G
for the monomial

xF|G =
∏

F |G∈F|G
xF |G.

We note that the piecewise linear function δj on the conormal fan satisfies the
identity

δj =
∑
F |G

δj(eF |G)xF |G =
∑

j∈F∩G

xF |G.

Similarly, the piecewise linear functions γj and γj satisfy the identities

γj =
∑

j∈F �=E

xF |G and γj =
∑

j∈G�=E

xF |G.

Thus, in the above notation,

• SM,M⊥ is the ring of polynomials in the variables xF |G, where F |G is a
biflat of M,

• IM,M⊥ is the ideal generated by the monomials xF|G, where F|G is not a
biflag, and

• JM,M⊥ is the ideal generated by the linear forms γi − γj and γi − γj , for
any i and j in E.

We write γ, γ, and δ, respectively, for the equivalence classes of γj , γj , and δj in
the Chow ring of the conormal fan.

Definition 3.19. The fundamental weight 1M,M⊥ of the conormal fan defines the
degree map

deg : An−1
M,M⊥ −→ R, xF|G �−→ xF|G ∩ 1M,M⊥ =

{
1 if F|G is a biflag,

0 if F|G is not a biflag.
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By Proposition 3.7, the degree map is a linear isomorphism. In other words, for
maximal flag of biflats F|G of M, the class of the monomial xF|G in the Chow ring
of the conormal fan of M is nonzero and does not depend on F|G.

Recall that the projection π is a morphism from the conormal fan of M to the
Bergman fan of M. The projection has the special property that the image of a
cone in the conormal fan is a cone in the Bergman fan (and not just contained
in one). This property leads to the following simple description of the pullback
π∗ : AM → AM,M⊥ .

Proposition 3.20. For any flag of nonempty proper flats F of M,

π∗(xF) =
∑
G

xF|G,

where the sum is over all decreasing sequences G such that F|G is a flag of biflats
of M.

Dually, the pushforward of any Minkowski weight w on the conormal fan is given
by

π∗(w)(σF) =
∑
G

w(σF|G),

where the sum is over all decreasing sequences G such that F|G is a flag of biflats
of M.

Proof. Since π(eF |G) = eF , the pullback of the piecewise linear function xF satisfies

π∗(xF ) =
∑
G

xF |G,

where the sum is over all G such that F |G is a biflat of M. Thus, for any given F,

π∗(xF) =
∏
F∈F

π∗(xF ) =
∑
G

xF|G,

where the sum is over all decreasing sequences G such that F|G is a flag of biflats
of M. �

4. Degree computations in the conormal fan

Throughout this section, we fix a matroid M of rank r + 1 on the ground set
E = {0, 1, . . . , n}. We fix the usual ordering on the ground set

0 < 1 < · · · < n.

We aim to evaluate various elements of A(ΣM,M⊥) under the degree map (Definition
3.19).

Let F = (F1 � · · · � Fk) be a flag of nonempty proper flats of M. The beta
invariant of F is

βM[F] =
k∏

i=0

βM[Fi,Fi+1],

where βM[Fi−1,Fi] is the beta invariant of the minor M[Fi−1, Fi] = M |Fi/Fi−1.
18

The main goal of this section is to prove Proposition 4.19 in Section 4.4, which
states the identity

deg(π∗(xF)δ
n−k−1) = βM[F].

18We continue to use the convention that F0 = ∅ and Fk+1 = E.
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In particular, the degree of the conormal fan with respect to δ is the beta invariant:

deg(δn−1) = βM.

The result will be used in Section 4.5 to prove Theorems 1.1 and 1.2 stated in
Section 1.

Since π∗(xF) =
∑

xF|G by Proposition 3.20, it is enough to compute the degree

of xF|G δn−k−1 for all possible G. We will show in Lemma 4.15 that, in fact, the
degree is nonzero for at most one G.

The degree computation will require us to study more closely the combinato-
rial structure of conormal fans, and develop algebraic combinatorial techniques for
computing in their Chow rings.

4.1. Canonical expansions in the conormal fan. In order to compute the
degree of xF|G δn−k−1, we seek to express it as a sum of square-free monomials,
each of which has degree one. One fundamental feature of this computation, which
is simultaneously an advantage and a difficulty, is that there are many ways to
carry it out. We may choose any one of the different expressions for δ to compute,
namely δ = δi for each i in E. To have control over the computation, we require
some structure amidst that freedom.

For every nonnegative integer m, we prescribe a canonical way of expressing
xF|G δm as a sum of square-free monomials. Let e = e(F|G) be the largest gap
element of F|G, which exists by Lemma 3.13. In the notation of that lemma, we
have

e = max
( k⊔

j=0

Dj

)
= max

(
E −

k⋃
i=1

(Fi ∩Gi)
)
,

where D0, . . . , Dk is the gap sequence of F|G defined in Definition 3.10.

Definition 4.1. The canonical expansion of xF|G δ is the expression

xF|G δ = xF|G δe =
∑

e∈F∩G

xF|GxF |G,

where the sum is over all biflats F |G such that e ∈ F ∩G.
We recursively obtain the canonical expansion of xF|G δm by multiplying each

monomial in the canonical expansion of xF|G δm−1 by δ, again using the canonical
expansion.

The canonical expansions are sums of square-free monomials in AM,M⊥ . Note
that some or all of its summands may be zero in the Chow ring. Lemma 4.2
describes the nonzero terms.

Lemma 4.2. If a summand xF|GxF |G of the canonical expansion of xF|G δ is
nonzero and e is in Dj , then Fj ⊆ F ⊆ Fj+1 and Gj ⊇ G ⊇ Gj+1.

Proof. If σF∪F |G∪G is a cone in the conormal fan with e ∈ F ∩G, then e /∈ Fj and
e /∈ Gj+1. Thus, the biflat F |G must be added to F|G in between the indices j and
j + 1. �

We may think of the canonical expansion of δm as a recursive procedure to
produce a list of m-dimensional cones in the conormal fan ΣM,M⊥ , where each cone
is built up one ray at a time according to the rules prescribed in Lemma 4.2.
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Example 4.3. For the graph G of the square pyramid in Figure 6, the canonical
expansion of the highest nonzero power of δ in AM,M⊥ is

δ6 =x6|E x56|E x4567|E xE|23467 xE|347 xE|7

+ x7|E x67|E x4567|E xE|235 xE|35 xE|5

+ x7|E x57|E x4567|E xE|23467 xE|36 xE|6.

This expression is deceivingly short. Carrying out this seemingly simple compu-
tation by hand is very tedious; if one were to do it by brute force, one would find
that the number of terms of the canonical expansions of δ0, . . . , δ6 is the following:

δ0 δ1 δ2 δ3 δ4 δ5 δ6

number of monomials counted with multiplicities 1 29 352 658 383 69 3

number of distinct monomials 1 29 333 621 370 68 3

Example 4.3 shows typical behavior: for small k the number of cones in the
expansion of δk increases with k, but as k approaches n − 1, increasingly many
products xF|G δ are zero, and the canonical expansions become shorter.

We record an explicit description of the canonical expansion of powers of δ in
Proposition 4.4.

Proposition 4.4. For each m, the canonical expansion of δm is given by

δm =
∑

(F|G,e)
xF|G,

where the sum is over all pairs F|G = (F1|G1, . . . , Fm|Gm) and e = (e1, . . . , em)
satisfying

ei ∈ Fi ∩Gi and ei = max
(
E −

⋃
ej>ei

(Fj ∩Gj)
)

for all 1 ≤ i ≤ m.

Proof. The displayed formula for δm is an immediate consequence of the construc-
tion of the canonical decomposition. �

It will be convenient to encode each summand of the canonical expansion in a
table:

∅ � F1 ⊆ · · · ⊆ Fi ⊆ · · · ⊆ Fm ⊆ E
E ⊇ G1 ⊇ · · · ⊇ Gi ⊇ · · · ⊇ Gm � ∅

e1 · · · ei · · · em

The canonical expansion of δm may contain repeated terms xF|G coming from tables
that have the same biflag F|G but different sequences e, as the numerics for the
canonical expansions of δ2, δ3, δ4, δ5 in Example 4.3 show. On the other hand, we
will see in Proposition 4.9 that the canonical expansion of δn−1 does not contain
repeated terms.

Example 4.5. We revisit the canonical expansion of δ6 in Example 4.3. The first
monomial arises from the following table:

∅ ⊂ 6 � 56 � 4567 � E = E = E = E
E = E = E = E � 23467 � 347 � 7 ⊃ ∅

6 5 4 2 3 7

The variables xFi|Gi
arrive at the monomial in the order

xE|7x6|Ex56|Ex4567|ExE|347xE|23467,
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in decreasing order of the eis. The two other monomials are

x7|E x67|E xE|5 x4567|E xE|35 xE|235

and

x7|E xE|6 x57|E x4567|E xE|36 xE|23467,

where the terms are again listed in their order of arrival.

4.2. The degree of the conormal fan. We now prove Proposition 4.9, which
shows that the degree of δn−1 in the Chow ring of the conormal fan of M is the
beta invariant of M. Proposition 4.9 will be used later to obtain the more general
Proposition 4.19.

We write cl and cl⊥ for the closure operators of M and M⊥. For each basis B of
M, denote the corresponding basis of M⊥ by B⊥ := E −B.

Definition 4.6. A broken circuit of M is a set of the form C −minC where C is
a circuit of M.

(1) An nbc-basis of M is a basis of M that contains no broken circuits of M.
(2) A β-nbc-basis of M is an nbc-basis B of M such that B⊥ ∪ {0} − {1} is an

nbc-basis of M⊥.

The number of nbc-bases of M is the Möbius number |μM|, whereas the number
of β-nbc-bases of M is the beta invariant βM. The independence complex IN(M) and
the reduced broken circuit complex BC(M) of M are shellable, and hence homotopy
equivalent to wedges of spheres. The nbc-bases and β-nbc-bases of M naturally index
the spheres in the lexicographic shellings of IN(M) and BC(M), respectively. For
the nbc and β-nbc facts stated in this paragraph, we refer to [Bjö92] and [Zie92].

Definition 4.7. For a β-nbc-basis B of M, we define a sequence e1, . . . , en−1 by
setting

B − 0 = {e1 > · · · > er} and B⊥ − 1 = {er+1 < · · · < en−1}.
We write β-cone(B) for the maximal cone in ΣM,M⊥ corresponding to the table

cl(e1) � · · · � cl(e1, . . . , er) � E = · · · = E

E = · · · = E � cl⊥(er+1, . . . , en−1) � · · · � cl⊥(en−1)

The unique double jump of the displayed biflag is r, one less than the rank of M.

To see that the displayed table indeed defines a biflag, we verify

cl(B − 0) ∪ cl⊥(B⊥ − 1) 
= E.

Since B⊥ is a basis of M⊥, we have 1 /∈ cl⊥(B⊥ − 1); and if we had 1 ∈ cl(B − 0),
then B − 0 ∪ 1 would contain a circuit C whose minimum element is 1, and hence
B would contain the broken circuit C − 1, contradicting that B is nbc.

Example 4.8. The matroid of Figure 6 has three β-nbc-bases, namely

B1 = 0456, B2 = 0457, B3 = 0467.

The corresponding maximal biflags are precisely the ones in the expansion of Ex-
ample 4.3.

We show that this is a general phenomenon.
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Proposition 4.9. Let M be a loopless and coloopless matroid on E. Then, in the
Chow ring of the conormal fan of M, we have the canonical expansion

δn−1 =
∑

B∈β-nbc(M)

xβ-cone(B),

where the sum is over the β-nbc-bases of M.
Thus, the degree of δn−1 in the Chow ring of the conormal fan of M is the

β-invariant of M.

We proceed with a series of elementary lemmas. Proposition 4.4 describes the
canonical expansion of δn−1 in terms of pairs (F|G, e) of the form

∅ � F1 ⊆ · · · ⊆ Fd � Fd+1 ⊆ · · · ⊆ Fn−1 ⊆ E
E ⊇ G1 ⊇ · · · ⊇ Gd � Gd+1 ⊇ · · · ⊇ Gn−1 � ∅

e1 · · · ed ed+1 · · · en−1

,

which have a unique double jump d by Proposition 3.17. A priori, the double jump
could occur at any d. We will show that, in fact, the double jump must occur at
d = r. In the remainder of this section, we fix a pair (F|G, e) that gives a nonzero
summand of the canonical expansion of δn−1, and write en and en+1 for the two
elements of E missing from the sequence e.

Lemma 4.10. We consider the jump sets of F and G in Definition 3.16.

(1) If i is in the jump set of F but not in the jump set of G, then ei > ei+1.
(2) If i is in the jump set of G but not in the jump set of F, then ei < ei+1.
(3) If i < j and ei < ej, then ei 
∈ Gj.
(4) If i < j and ei > ej, then ej 
∈ Fi.

Proof. We prove the first statement. By way of contradiction, suppose i is in the
jump set of F, not in the jump set of G, and ei < ei+1.

Then, in the canonical expansion of δn−1, the variable xFi|Gi
arrives after the

variable xFi+1|Gi+1
to the monomial of (F|G, e). It follows that ei is not in the

intersection Fi+1∩Gi+1, and this contradicts ei ∈ Fi∩Gi ⊆ Fi+1∩Gi = Fi+1∩Gi+1.
We prove the third statement. Suppose that i < j and ei < ej . Then, in the

canonical expansion of δn−1, the variable xFi|Gi
arrives after the variable xFj |Gj

to
the monomial of (F|G, e). It follows that ei /∈ Fj ∩Gj . Since ei ∈ Fi ⊆ Fj , we have
ei /∈ Gj . �

Lemma 4.11. The unique double jump is at d = r, and the table of (F|G, e) is of
the form

∅ � F1 � · · · � Fr � E = · · · = E = E
E = E = · · · = E � Gr+1 � · · · � Gn−1 � ∅

e1 > · · · > er er+1 < · · · < en−1

.

Proof. Since {e1, . . . , ed} ⊆ Fd and {ed+1, . . . , en−1} ⊆ Gd+1, Lemma 3.14 gives
Fd ∪Gd+1 = {e1, . . . , en−1}. Therefore, the unique nonempty gap Dd = E − (Fd ∪
Gd+1) is equal to {en, en+1}.

We next show e1 > e2 > · · · > ed and ed+1 < · · · < en−2 < en−1.
By symmetry, it suffices to show the first set of inequalities. For contradiction,

suppose ej < ej+1 for a minimal choice of j < d. If j > 1, then ej−1 > ej implies
ej /∈ Fj−1 by Lemma 4.10(4); if j = 1 this holds trivially. On the other hand,
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ej < ej+1 implies ej /∈ Gj+1 by Lemma 4.10(3). However, we have

{e1, . . . , ej−1} ⊆ Fj−1, {ej+1, . . . , en−1} ⊆ Gj+1,

and {en, en+1} ⊆ Gd ⊆ Gj+1.

It follows that Fj−1 ∪Gj+1 = E − ej , contradicting Lemma 3.14.
For 1 ≤ j < d, the inequality ej > ej+1 implies ej+1 ∈ Fj+1 −Fj , and hence j is

in the jump set of F. It follows that the jump set of F is {0, . . . , d}, and similarly,
the jump set of G is {d, . . . , n− 1}. �
Lemma 4.12. We have {e1, . . . , en−1} = {2, 3, . . . , n} and {en, en+1} = {0, 1}.
Moreover,

ei = minFi and Fi = cl(e1, . . . , ei), for 1 ≤ i ≤ r,

ei = minGi and Gi = cl⊥(ei, . . . , en−1) for r < i < n.

In particular, the biflag F|G and the sequence e determine each other.

Proof. We may assume without loss of generality that er < er+1, so that the
variable xFr,Gr

is the last term to arrive in the monomial corresponding to (F|G, e).
By definition, we have

er = max
(
E −

⋃
1≤j≤n−1

j �=r

(Fj ∩Gj)
)
= max

(
E − (Fr−1 ∪Gr+1)

)
.

If we had er ≤ 1, then |Fr−1 ∪Gr+1| ≥ n− 1, which would imply |Fr ∪Gr+1| = n,
contradicting Lemma 3.14. Thus er = 2 and Fr ∪Gr+1 = E − {0, 1}.

We now show that ei = minFi for 1 ≤ i ≤ r. If this was not the case, then
we would have minFi = ej < ei for some j 
= i, because 0 and 1 are not in Fi.
Since e1 > · · · > ei, this would imply i < j, and Lemma 4.10(4) would tell us that
ej /∈ Fi, contradicting ej = minFi. Similarly, we have ei = minGi for r < i < n.

Finally, since Fi has rank i and ei ∈ Fi −Fi−1 for 1 ≤ i ≤ r by Lemma 4.11, the
list e1, . . . , ei must be a basis of Fi for 1 ≤ i ≤ r. The analogous statement holds
for Gi as well. �
Lemma 4.13. The set {0, e1, . . . , er} is a β-nbc-basis of M.

Proof. Since er = minFr by Lemma 4.12, we have 0 /∈ Fr, and hence B =
{0, e1, . . . , er} indeed is a basis of M. We prove by contradiction that B is nbc.
Assume that B contains a broken circuit C −minC. Since minC is not in B, one
of the following must hold:

(i) minC = 1. Let C = {1, ea(1), . . . , ea(k)} where 1 ≤ a(1) < . . . < a(k) ≤ r.
Then

1 ∈ cl(ea(1), . . . , ea(k)) ⊆ Fa(k) ⊆ Fr.

This contradicts Lemma 4.12, which shows that the unique nonempty gap
is Dr = {0, 1}.

(ii) minC = es for s ≥ r + 1. Let C = {es, ea(1), . . . , ea(k)} where 1 ≤ a(1) <
. . . < a(k) ≤ r. Then

es ∈ cl(ea(1), . . . , ea(k)) ⊆ Fa(k).

This contradicts Lemma 4.10(4), since a(k) ≤ r < s and ea(k) > es.

The same argument for M⊥ shows that B⊥ − {0} ∪ {1} is an nbc-basis of M⊥.
We conclude that B is a β-nbc basis of M, as desired. �
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We now have all the ingredients to complete the proof of Proposition 4.9.

Proof of Proposition 4.9. Lemma 4.12 tells us that each monomial xF|G that ap-

pears in the canonical expansion of δn−1 has coefficient 1. Combined with Lemma
4.13, it also tells us that every term that appears is of the form xβ-cone(B) for a
β-nbc-basis B.

Conversely, if F|G is the biflag corresponding to the β-cone of a β-nbc-basis B,
and if we define e by setting

B = {e1 > · · · > er > 0}
and

E −B = {en−1 > · · · > er+1 > 1} ,
then (F|G, e) satisfies the conditions of Proposition 4.4, so it does arise in the
canonical expansion of δn−1. �
4.3. A vanishing lemma for the conormal fan. Throughout the remainder of
this section, we fix a flag of k nonempty proper flats

F = {F1 � · · · � Fk}, keeping the convention that F0 = ∅ and Fk+1 = E.

The interval M(i) = [Fi, Fi+1] is said to be short if |Fi+1 − Fi| = 1 and long if
|Fi+1 − Fi| > 1.

Definition 4.14. We define the orthogonal flag F⊥ of F to be the flag of coflats

F⊥ = {F⊥
1 ⊇ · · · ⊇ F⊥

k }, where F⊥
i = cl⊥(E − Fi) for 1 ≤ i ≤ k.

The orthogonal flag may contain repeated coflats, and it may contain the trivial
coflat E.19

Our goal this section is to prove Lemma 4.15, which shows that many monomials
in the Chow ring of the conormal fan vanish when multiplied by the highest possible
power of δ.

Lemma 4.15 (Vanishing lemma). Suppose F|G is a biflag of length k satisfying
the condition

xF|G δn−k−1 is nonzero in the Chow ring of the conormal fan of M.

Then G must be the orthogonal flag F⊥. Furthermore, the interval M(i) is either
short or loopless and coloopless for all 0 ≤ i ≤ k.

Let xF+|G+ be a nonzero summand of the canonical expansion of xF|G δn−k−1,
and let

F|G = Fk|Gk, Fk+1|Gk+1, . . . , Fn−1|Gn−1 = F+|G+

be some sequence of biflags obtained by recursively applying Lemma 4.2 in the
expansion. We write Di,0| · · · |Di,i for the gap sequence of Fi|Gi in Definition 3.10.
With Lemma 3.13 in mind, we set

(4.3.1) Yi =

i⊔
j=0

Di,j = E −
⋃

F |G∈Fi|Gi

(F ∩G).

We write D0| · · · |Dk and Y for the gap sequence and the union of the gaps of the
initial flag F|G. To prove the Vanishing Lemma 4.15, we need a preliminary result.

19Strictly speaking, the notation F⊥ conflicts with the notation B⊥ used in Section 4.2 for
the dual basis of a basis B. We trust that no confusion will arise within a given context.
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Lemma 4.16. Suppose that the assumption of Lemma 4.15 holds for F|G.
(1) If F|G has m empty gaps, then the union of its gaps has size |Y | = n+1−m.
(2) For each empty gap Dj , we have Fj+1 − Fj = {ej} for some ej ∈ E.

Furthermore,

Y = E − {ej | Dj = ∅}.
(3) For all 0 ≤ i ≤ k, setting ri = rankM(Fi) and r⊥i = rankM⊥(Gi), we have

|Fi+1 − Fi| = (ri+1 − ri) + (r⊥i − r⊥i+1).

Proof of Lemma 4.16. Let m be the number of empty gaps of F|G. We first prove
the inequality

(4.3.2) |Y | ≤ n+ 1−m.

For each empty gap Dj , choose an element ej ∈ Fj+1 − Fj . Since ej 
∈ Dj =
E − (Fj ∪Gj+1), we must have ej ∈ Gj+1. This implies that ej ∈ Fj+1 ∩Gj+1, so
the second equality in (4.3.1) gives ej /∈ Y . There are m such elements ej , which
are all distinct by construction; this implies (4.3.2).

To prove the first statement, it remains to show the opposite inequality

(4.3.3) |Y | ≥ n+ 1−m.

We obtained Fi+1|Gi+1 from Fi|Gi by choosing the largest gap element e = maxYi,
finding the unique gap Di,j of Fi|Gi containing e, and inserting a new pair F |G
with e ∈ F ∩G between the j-th and (j + 1)-th biflats of Fi|Gi:

Fi+1|Gi+1 =
· · · ⊆ Fi,j ⊆ F ⊆ Fi,j+1 ⊆ · · ·
· · · ⊇ Gi,j ⊇ G ⊇ Gi,j+1 ⊇ · · ·

Thus the only difference between the gaps of Fi|Gi and the gaps of Fi+1|Gi+1 is that
we are replacing the gap Di,j with two smaller disjoint gaps Di+1,j and Di+1,j+1

that do not contain e:

(4.3.4) Di,j ⊇ Di+1,j �Di+1,j+1 � e.

It is helpful to visualize this data as a graded forest of levels from k to n− 1. The
vertices of the bottom level k are the gaps D0, . . . , Dk of the original biflag F|G;
they are the roots of the trees in the forest. The vertices of the i-th level are the
gaps of Fi|Gi. To go from level i to level i + 1, we connect the split gap Di,j with
the gaps Di+1,j and Di+1,j+1 that replace it. Every other gap Di,k is connected to
the gap in the next level that is equal to it; this is Di+1,k if k < j and Di+1,k+1

if k > j. The final biflag F+|G+ has n gaps, of which n − 1 are empty and one
of them, say D, has size at least 2. Each gap of F+|G+ originates from one of the
original gaps of F|G through successive gap replacements. For each 0 ≤ i ≤ k, we
set

di = number of gaps of F+|G+ that descend from the initial gap Di of F|G.
We give an upper bound of di in terms of |Di|, in each of the following three cases:

Case 1 (Di = ∅). In this case, the gap Di eventually becomes a single empty gap
in F+|G+, so di = 1.

Case 2 (Di 
= ∅ is the progenitor of the unique nonempty gap D of F+|G+).
Consider the gaps that descend from Di throughout the process. By (4.3.4), every
time one such gap gets replaced by two smaller ones, the size of the union of the
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gaps strictly decreases. In the end, this union has size |D| ≥ 2. Therefore these
gaps were split at most |Di| − 2 times, so di ≤ |Di| − 1.

Case 3 (Di 
= ∅ is not the progenitor of the unique nonempty gap D of F+|G+).
Again, every time a descendant of Di gets replaced by two smaller ones, the size
of their union decreases. Furthermore, their union can never have size 1 by Propo-
sition 3.15. Thus di ≤ |Di|. Since the final number of gaps is n, we conclude
that

n =

k∑
i=0

di ≤ m+

⎛⎝ ∑
i:Di �=∅

|Di|

⎞⎠− 1 = m+ |Y | − 1.

This proves the opposite inequality (4.3.3), and hence the first statement of the
lemma. Furthermore, every inequality we applied along the way must in fact have
been an equality. We record these facts:

(a) For (4.3.2) to be an equality, we must have Fj+1−Fj = {ej} for each empty
gap Dj , and

Y = E − {ej | Dj = ∅}.
This proves the second statement of the lemma.

(b) For (4.3.3) to be an equality, we must have

di = 1 in Case 1, di = |Di| − 1 in Case 2, and di = |Di| in Case 3.

We use (a) and (b) to prove the third statement of the lemma, in two steps.
First, we show

(4.3.5) di =

{
|Fi+1 − Fi| in Case 1 and Case 3,

|Fi+1 − Fi| − 1 in Case 2.

If Di is empty, then di = 1 and |Fi+1 −Fi| = 1 by (a). If Di is nonempty, we claim
that

Di = Fi+1 − Fi.

The forward inclusion holds by definition. For the backward inclusion, let e be an
element of Fi+1 − Fi. By (a), we must have e ∈ Y , and since Di is the only gap
intersecting Fi+1 − Fi, we must have e ∈ Di. Thus (b) implies (4.3.5). Second, we
show

(4.3.6) di =

{
(ri+1 − ri) + (r⊥i − r⊥i+1) in Case 1 and Case 3,

(ri+1 − ri) + (r⊥i − r⊥i+1)− 1 in Case 2.

If Di is not the progenitor of D, then the part of F+|G+ between Fi|Gi and
Fi+1|Gi+1 contains no double jumps. In each of the di single jumps, either the
rank increases by 1 or the corank decreases by 1, but not both. Therefore di must
equal the sum of the rank increase ri+1 − ri and the corank decrease r⊥i − r⊥i+1. If
Di is the progenitor of D, then the part of F+|G+ between Fi|Gi and Fi+1|Gi+1

contains one double jump. In each of the di − 1 single jumps, either the rank in-
creases by 1 or the corank decreases by 1, but not both. In the double jump, both
changes occur. Therefore di + 1 must equal the sum of the rank increase ri+1 − ri
and the corank decrease r⊥i − r⊥i+1. Combining (4.3.5) and (4.3.6), we get the third
statement of the lemma. �
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Proof of the Vanishing Lemma 4.15. First, we prove that G must be the orthogonal
flag F⊥. We write rk and rk⊥ for the rank functions of M and M⊥. One readily
verifies that

(rk(Fi+1)−rk(Fi))+(rk⊥(E−Fi)−rk⊥(E−Fi+1)) = |Fi+1−Fi| for 0 ≤ i ≤ k.

By the third statement of Lemma 4.16, the sequences rk⊥(E − Fi) and rk⊥(Gi)
satisfy the same recurrence; they also have the same initial value, so

rk⊥(E − Fi) = rk⊥(Gi) for 0 ≤ i ≤ k.

Now Fi ∪ Gi = E implies Gi ⊇ E − Fi. Since Gi is a coflat, we have Gi ⊇
cl⊥(E − Fi) = F⊥

i . It follows that Gi ⊇ F⊥
i are flats of M⊥ of the same rank, and

hence Gi = F⊥
i for all i.

Next, we prove that every long interval M(i) must be loopless and coloopless.
We argue by contradiction.

First assume that M(i) = (M /Fi)|(Fi+1−Fi) has a loop l. Since restriction can-
not create new loops, the element l must also be a loop of M /Fi. This contradicts
the fact that Fi is a flat.

Now assume that M(i) = (M |Fi+1)/Fi has a coloop c. Since contraction cannot
create new coloops, the element c must also be a coloop of M |Fi+1. Thus rk(Fi+1−
c) = rk(Fi+1)− 1, which implies that rk⊥((E − Fi+1) ∪ c) = rk⊥(E − Fi+1). This

means that c ∈ cl⊥(E−Fi+1) = F⊥
i+1. Now, since M(i) is long, the second statement

of Lemma 4.16 implies that Di+1 is nonempty and that c ∈ Y . But then we must
have c ∈ Di+1 = (Fi+1 − Fi) ∩ (F⊥

i − F⊥
i+1), contradicting that c ∈ F⊥

i+1. �

4.4. The beta invariant of a flag and the conormal intersection theory. In
this section, we complete the proof that the degree of π∗(xF)δ

n−k−1 is equal to the
β-invariant βM[F]. To prove by induction, we need a lemma relating the conormal
fan of M with that of the contraction M /i, where i is any fixed element of E that
has no parallel elements in M.

We may assume that M has no loops and no coloops. Thus, we have i⊥ is the
ground set E and i|E is a biflat of M. We consider the simplicial fan

sti|E ΣM,M⊥ ⊆ (NE /ei)⊕ NE .

We write eS for the image of eS in NE /ei, and xF |G for the variable in the Chow
ring of the star corresponding to a biflat F |G; we set it equal to 0 if F |G does not
correspond to a ray in this star.

Lemma 4.17. Consider the natural projection ψ : (NE /ei)⊕NE −→ NE−i ⊕NE−i.

(1) The projection ψ induces a morphism of fans

ψ : sti|E ΣM,M⊥ −→ ΣM /i,(M /i)⊥ .

(2) The pullback ψ∗ between the Chow rings is given by

ψ∗(xP |Q) = x(P∪i)|Q + x(P∪i)|(Q∪i),

where at least one of the terms on the right-hand side is nonzero.
(3) For any element j of E, the pullback ψ∗ maps the class δ to the class

δ = δj :=
∑

i∈F, j∈F∩G

xF |G.
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(4) The pullback ψ∗ commutes with the degree maps of the star and the conor-
mal fan ΣM /i,(M /i)⊥ :

degM /i xP|Q = degM(xi|E ψ∗(xP|Q)).

Proof. Let F |G be a biflat of M with i ∈ F . The image of a ray corresponding to
F |G in the star is

ψ(eF + fG) = eF−i + fG−i,

which is a ray of the conormal fan ΣM /i,(M /i)⊥ because (F − i)|(G− i) is a biflat
of M /i:

clM /i(F − i) = clM(F )− i = F − i, and

clM⊥ −i(G− i) = clM⊥(G− i)− i ⊆ clM⊥(G)− i = G− i.

Furthermore, if i|E ∪ F|G is a biflag of M, its gaps occur to the right of i|E, and
there will also be gaps in the corresponding positions of the biflag

(F − i)|(G− i) :=
{
(F − i)|(G− i)

}
F |G∈F|G

of M /i.

Therefore, the projection ψ maps cones to cones. This proves the first statement.
The value of the piecewise linear function ψ∗xP |Q on a ray eF + fG of the star is

ψ∗xP |Q(eF + fG) = xP |Q(eF−i + fG−i)) =

{
1 if F = P ∪ i and G ∈ {Q,Q ∪ i},
0 if otherwise.

Since Q is a flat of M /i, at least one of Q and Q ∪ i is a flat of M, and we
have the second statement. Given the second statement, the third statement is a
straightforward computation

ψ∗(δj) =
∑

j∈P∩Q

(
x(P∪i)|Q + x(P∪i)|(Q∪i)

)
=

∑
i∈F, j∈F∩G

xF |G = δj ,

where the first sum is over the biflats P |Q of M /i and the second sum over the
biflats F |G of M.

For the last statement, we need to verify that, for any maximal biflag P|Q of
M /i,

degM /i xP|Q = degM(xi|E ψ∗(xP|Q)).

Applying the second statement to each P |Q in P|Q, we may express xi|E ψ∗(xP|Q) as
a sum of square-free monomials. One of the terms in this expression is
xi|E x(P∪i)| cl⊥(Q), where

(P ∪ i)| cl⊥(Q) :=
{
(P ∪ i)| cl⊥(Q)

}
P |Q∈P|Q

.

We need to prove that this is the only nonzero term.
Consider any term xi|ExF|G that arises in the expression for xi|E ψ∗(xP|Q). We

automatically have Fj = Pj∪i for all j, so it remains to prove that Gj is the closure

of Qj in M⊥ for all j. Let k be the largest index satisfying i ∈ cl⊥(Qk), so that

cl⊥(Qj) = Qj ∪ i for j ≤ k and cl⊥(Qj) = Qj for j > k.

For j ≤ k, the set Qj is not a flat in M⊥, and hence Gj = Qj ∪ i = cl⊥(Qj).

Since Qk and Qk+1 are flats of consecutive ranks in (M /i)⊥ = M⊥ −i, the flats

Qk ∪ i = cl⊥(Qk) and Qk+1 = cl⊥(Qk+1) of M
⊥ also have consecutive ranks. Since

Qk+1 ∪ i is strictly between the two, it cannot be a flat of M⊥. Thus, we must
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have Gk+1 = Qk+1, and hence Gj = Qj = cl⊥(Qj) for j > k. We conclude that

F|G = (P ∪ i)| cl⊥(Q) as desired. �

We can now give an intersection-theoretic interpretation of the beta invari-
ant of a flag. Together with the Vanishing Lemma 4.15, it gives the identity
deg(π∗(xF) δ

n−k−1) = βM[F].

Proposition 4.18. For any strictly increasing flag F of k nonempty proper flats
of M, we have

deg(xF|F⊥ δn−k−1) = βM[F].

Proof. We proceed by induction on k. The base case k = 0 follows from Proposition
4.9:

deg(δn−1) = deg
( ∑

B∈β-nbc(M)

xβ-cone(B)

)
= βM.

When k is positive, write F |F⊥ for the first biflat in F|F⊥, and write F|F⊥ as the
disjoint union F |F⊥ � G|G⊥. We consider the contraction M /F , its flag of flats
G− F := {G− F}G∈G, and the corresponding biflag

(G− F )|(G− F )⊥ :=
{
(G− F )|(G⊥ − F )

}
G∈G

.

The displayed description is justified by G⊥ − F = cl(M /F )⊥((E − F )− (G− F )).
Clearly,

βM[F] = βM |F · β(M /F )[G−F ].

We separately consider two cases, depending on the shortness of the first interval
[∅, F ]:

Case 1. The flat F contains exactly one element i ∈ E.
Recall that the beta invariant of [∅, i] is equal to 1. Therefore, βM[F] is equal to

β(M /i)[G−i]

= degM /i

(
xG−i|(G−i)⊥ δ

(n−1)−(k−1)−1
M /i

)
by the inductive hypothesis,

= degM
(
xi|E ψ∗(xG−i|(G−i)⊥) δ

n−k−1
M )

)
by Lemma 4.17(3) and 4.17(4),

= degM
(
xi|E

∏
G∈G

(xG|(G⊥−i)+xG|G⊥) δn−k−1
M

)
by Lemma 4.17(2).

By the Vanishing Lemma 4.15, the right-hand side simplifies to

degM
(
xi|E xG|G⊥ δn−k−1

M

)
= degM

(
xF|F⊥ δn−k−1

M

)
.

Case 2. The flat F contains more than one element.
We may assume the interval [∅, F ] is coloopless by Lemma 4.15. This means

that the flat F is cyclic, that is, F⊥ = E −F . We then have the natural bijections

φ1 :
{
biflats of M |F

}
−→

{
biflats F ′|G′ of M with F ′⊆F and G′⊇E − F

}
and

φ2 :
{
biflats of M /F

}
−→

{
biflats F ′|G′ of M with F ′⊇F and G′⊆E − F

}
,

where φ1(A|B) = A|(B ∪ (E − F )) and φ2(A|B) = (A ∪ F )|B. The bijection
φ1 extends to the bijection between the biflags of M |F and the biflags of M that
are supported on the corresponding set of biflats, and have a gap to the left of
F |(E − F ). Similarly, the bijection φ2 extends to the bijection between the biflags
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of M /F and the biflags of M that are supported on the corresponding set of biflats,
and have a gap to the right of F |(E − F ).

We now compute the degree of xF|F⊥ δn−k−1 using the following variant of the
canonical expansion of Definition 4.1, which proceeds in two stages:

Stage 1. At each step, choose e to be the largest gap element that is in F , if there
is one.

Stage 2. At each step, choose e to be the largest gap element in E − F .

The first |F |−2 steps of this computation will give xF|F⊥ times the image under

φ1 of the canonical expansion of δ
|F |−2
M |F . By Proposition 4.9, there will be βM |F

square-free monomials.
Each such monomial will have a unique nonempty gap before F ; say it is Dj ,

between biflats Fj |Gj and Fj+1|Gj+1 of M. The flats Fj and Fj+1 have consecutive
ranks, and the coflats Gj and Gj+1 have consecutive coranks. In step |F | − 1 of
the computation, this gap Dj will be filled in a unique way by the biflat Fj+1|Gj .
There will no longer be gap elements in F .

In step |F |, the computation will enter Stage 2 for each of the resulting βM |F
monomials. The following (|E −F | − 1)− (k− 1)− 1 steps will compute the image

under φ2 of the canonical expansion of x(G−F )|(G−F )⊥δ
|F |−2
M/F . This expansion has

β(M /F )[G−F ] square-free monomials, by the inductive hypothesis.

This concludes the computation of xF|F⊥δn−k−1. The result will be the sum of
βM[F] square-free monomials, as we wished to prove. �

Proposition 4.19. Let F = {F1 � · · · � Fk} be a strictly increasing flag of flats of
M. We have

deg(π∗(xF) δ
n−k−1) = βM[F].

Proof. Since π∗(xF) =
∑

F|G biflag xF|G, this follows from Lemma 4.15 and Propo-
sition 4.18. �

4.5. A conormal interpretation of the Chern–Schwartz–MacPherson cy-
cles. Recall that the k-dimensional Chern–Schwartz–MacPherson cycle of M is the
Minkowski weight csmk(M) on the Bergman fan of M defined by the formula

csmk(M)(σF) = (−1)r−kβM[F],

where σF is the k-dimensional cone corresponding to a flag of flats F of M.

Theorem 1.1. When M has no loops and no coloops, we have

csmk(M) = (−1)r−kπ∗(δ
n−k−1 ∩ 1M,M⊥) for 0 ≤ k ≤ r.

Proof. By Proposition 4.19, Definition 3.4, and the projection formula, we have

βM[F] = deg(π∗(xF)δ
n−k−1) = π∗(xF)δ

n−k−1 ∩ 1M,M⊥ = π∗(δ
n−k−1 ∩ 1M,M⊥)(σF).

The result then follows from the definition of the Chern–Schwartz-MacPherson
cycle of M. �

Theorem 1.2. When M has no loops and no coloops, we have

χM(q + 1) =
r∑

k=0

(−1)r−k deg(γk δn−k−1) qk.
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Proof. We use [LdMRS20, Theorem 1.4], which states that

χM(q + 1) =

r∑
k=0

αk ∩ csmk(M) qk.

The authors of [AB20] give a nonrecursive proof of the identity using tropical in-
tersection theory. For representable matroids, the identity was given earlier in
[Alu13, Theorem 1.2]. By Theorem 1.1 and the projection formula, the k-th coef-
ficient of the displayed polynomial is

αk∩π∗(δ
n−k−1∩1M,M⊥) = π∗

(
π∗αk∩(δn−k−1∩1M,M⊥)

)
= π∗

(
γkδn−k−1∩1M,M⊥

)
.

This proves the desired formula for the reduced characteristic polynomial. �

5. Tropical Hodge theory

Throughout this section, we fix a rational simplicial fan Σ in N = R ⊗NZ. Our
goal is to prove Theorem 1.6, which says that the property of Σ being Lefschetz
only depends on the support of Σ. We deduce the Lefschetz property of ΣM,M⊥

from the Lefschetz property of ΣM × ΣM⊥ , and use it to prove Theorem 1.4.

5.1. Convexity of piecewise linear functions. A piecewise linear function φ :
Σ → R is said to be positive on Σ if φ(x) is positive for all nonzero x ∈ |Σ|. A
class in A1(Σ) is said to be positive if it has a positive representative. We write
Eff◦(Σ) ⊆ A1(Σ) for the open cone of positive classes.

For each cone σ of Σ, the projection N → N / span(σ) defines a morphism from
the closed star

πσ : stΣ(σ) −→ stΣ(σ).

It is straightforward to check that the associated pullback map π∗
σ between their

Chow rings is an isomorphism, and that for a ray ν of stΣ(σ), we have

π∗
σ(xν) =

mult(σ ∪ {ν})
mult(σ)

xν .

Thus, the inclusion of fans iσ : stΣ(σ) → Σ defines a ring homomorphism

i∗σ : A(Σ) −→ A(stΣ(σ)) 
 A(stΣ(σ)),

where the first factor is given by the restriction of piecewise linear functions and
the second factor is the inverse of π∗

σ.
We use the pullback homomorphism i∗σ to define strict convexity of piecewise

linear functions on Σ. The notion agrees with the one used in [AHK18, Section 4].

Definition 5.1. The cone K(Σ) ⊆ A1(Σ) is defined by the following conditions:

(1) If Σ is at most 1-dimensional, K(Σ) = Eff◦(Σ).
(2) If otherwise,

K(Σ) = {
 ∈ A1(Σ): 
 ∈ Eff◦(Σ) and i∗σ(
) ∈ K(stΣ(σ)) for all nonzero σ ∈ Σ}.

The piecewise linear functions on Σ whose classes are in K(Σ) are said to be strictly
convex.
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Clearly, 
 belongs to K(Σ) if and only if i∗σ(
) belongs to Eff◦(stΣ(σ)) for all
σ ∈ Σ.20 Geometrically, 
 belongs to K(Σ) if and only if, for each cone σ, the
class 
 has a piecewise linear representative which is zero on σ and positive on
the cones containing σ. When Σ has convex support of full dimension, the notion
coincides with the usual notion of strict convexity of piecewise linear functions
[CLS11, Section 6.1]. In general, K(Σ) is an open polyhedral cone, and i∗σ K(Σ) ⊆
K(stΣ(σ)) for all σ ∈ Σ.

Remark 5.2. A fan Σ is quasiprojective if it is a subfan of the normal fan of a
convex polytope. When Σ is quasiprojective, the cone K(Σ) is nonempty. More
generally, for simplicial fans Σ1 ⊆ Σ2, the restriction of piecewise linear functions
maps K(Σ2) to K(Σ1).

A map of fans f : Σ → Σ′ is said to be projective if the induced map of toric
varieties XΣ → XΣ′ is projective in the sense of Grothendieck [Gro61, Définition
5.5.2]. According to [CLS11, Theorem 7.2.12], the map f is projective if and only if
f is proper and there exists a piecewise linear function η on Σ for which η is strictly
convex on

∣∣f−1(σ′)
∣∣ for each cone σ′ of Σ′, where f−1(σ′) denotes the subfan of Σ

consisting of cones mapping into σ′ under f . If f is induced by the identity map
N → N, then f is proper if and only if Σ subdivides Σ′. In this case, we will call Σ
a projective refinement of Σ′ if f is moreover projective.

Proposition 5.3. Let f : Σ → Σ′ be a projective map of simplicial fans. If K(Σ′)
is nonempty, then K(Σ) is nonempty.

Proof. We proceed by induction on the dimension of Σ. If dimΣ = 1, then K(Σ) 
=
∅. Otherwise, we choose any 
 ∈ K(Σ′), and let η be a piecewise linear function
given by the projectivity of f .

First, since 
 is strictly convex, 
 has a representative which is positive on |Σ′| −
{0}. Thus f∗
 is nonnegative on |Σ|, and positive outside of

∣∣f−1(0)
∣∣. Modulo a

global linear function, we may choose η to be positive on
∣∣f−1(0)

∣∣−{0}. It follows
that f∗
+ ε0 · η is positive on |Σ| − {0} for sufficiently small ε0 > 0.

For a nonzero cone σ, let σ′ be the smallest cone of Σ′ containing f(σ). A
fortiori, the restriction f : stΣ(σ) → stΣ′(σ′) is projective, and dim stΣ(σ) < dimΣ.
Since 
 is strictly convex, we have i∗σ′
 ∈ K(stΣ′(σ′)). Therefore the restriction of
f∗
 + εσ · η is in K(stΣ(σ)) for sufficiently small εσ, by the induction hypothesis.
We conclude that f∗
+ ε · η ∈ K(Σ) for all positive ε ≤ min {εσ}. �

We now focus on how subdividing a cone by adding a ray affects the Chow ring.
For σ ∈ Σ, let ρ denote a new ray spanned by a primitive vector

eρ :=
∑

ν∈σ(1)

aνeν ,

for some positive rational coefficients {aν}. The stellar subdivision of Σ by ρ,
denoted stellarρ Σ, is obtained from Σ by setting

stellarρ Σ :=
(
Σ− {τ ∈ Σ: τ ⊇ σ}

)
∪
(
ρ+ ∂σ + linkΣ(σ)

)
,

20When K(Σ) is nonempty, its closure in A1(Σ) is the cone L(Σ) introduced in [GM12, Defi-
nition 2.5]. The cone L(Σ) consists of divisor classes on the toric variety XΣ of Σ whose pullback
to any torus orbit closure is effective. When Σ is complete, K(Σ) is the ample cone of XΣ

[CLS11, Theorem 6.1.14].
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where the right-hand + is an internal direct sum of fans.21 In the special case
when XΣ is smooth and each aν = 1, the toric variety of the stellar subdivision is
the blowup of XΣ along the torus orbit closure V (σ) [CLS11, Section 3.3]. In the

remainder of this section, we write Σ̃ for the stellar subdivision of Σ by ρ, and write

p : Σ̃ → Σ for the map of fans given by the identity map of N.
Any stellar subdivision is projective. In fact, the function η = −xρ is strictly

convex on the preimage of each cone of Σ [CLS11, Proposition 11.1.6]. The proof
of Proposition 5.3 then shows the following.

Proposition 5.4. If 
 ∈ p∗(K(Σ)), then 
 − ε · xρ ∈ K(Σ̃) for sufficiently small
ε > 0.

We will distinguish two cases of stellar subdivisions. The first is the case when
every closed orbit in XΣ meets V (σ). In terms of fans, this means that Σ is the

closed star of σ and Σ̃ is the closed star of the new ray ρ. In this case, we have

A(Σ) 
 A(stΣ(σ)) and A(Σ̃) 
 A(st
˜Σ(ρ)),

which are Chow rings of fans of dimensions dim(Σ)−dim(σ) and dim(Σ)−1. We will
call this a star-shaped subdivision. If otherwise, we will call the stellar subdivision
ordinary.

Remark 5.5. In general, the quotient map N / span(ρ) → N / span(σ) induces a map
between the stars st

˜Σ(ρ) → stΣ(σ), and the corresponding map of toric varieties is

a projective bundle. If the stellar subdivision is star-shaped, then Σ and Σ̃ cannot
be Lefschetz, as their Chow rings vanish in degree dimΣ. However, the smaller-
dimensional fans stΣ(σ) and st

˜Σ(ρ), whose Chow rings are isomorphic to the Chow

rings of Σ and Σ̃ respectively, can be Lefschetz.

In the star-shaped case, we will freely use the isomorphisms A(Σ) 
 A(stΣ(σ))

and A(Σ̃) 
 A(st
˜Σ(ρ)) in the arguments that follow. This allows us to think of the

bundle map st
˜Σ(ρ) → stΣ(σ) as the stellar subdivision Σ̃ → Σ.

5.2. Lefschetz fans. Recall from Definition 1.5 that a d-dimensional Lefschetz
fan Σ has a d-dimensional fundamental weight w which induces Poincaré duality.
We shall abbreviate this statement by PD(Σ). A Lefschetz fan also satisfies the
hard Lefschetz property and Hodge–Riemann relations in Definition 1.5. We will
call these statements HLk(Σ, 
) and HRk(Σ, 
), respectively, for 0 ≤ k ≤ d

2 and


 ∈ K(Σ). We say that HLk(Σ) holds if HLk(Σ, 
) holds for all 
 ∈ K(Σ), and

that HL(Σ) holds if HLk(Σ) holds for all k. We will use the symbols HRk(Σ) and

HRk(Σ, 
) analogously.

Definition 5.6. Let Σ be a rational simplicial fan.

(1) The fan Σ satisfies the mixed hard Lefschetz property if, for 0 ≤ k ≤ d
2 and

all 
1, . . . , 
d−2k ∈ K(Σ), the multiplication map

Ak(Σ) −→ Ad−k(Σ), η �−→
(

d−2k∏
i=1


i

)
η

is a linear isomorphism.

21If Σ ⊆ N and Σ′ ⊆ N′ are fans for which N∩N′ = {0}, the internal direct sum, by definition,
consists of cones σ + σ′ for all σ ∈ Σ and σ′ ∈ Σ′, where + denotes Minkowski sum.
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(2) The fan Σ satisfies the mixed Hodge–Riemann relations if, for all 0 ≤ k ≤ d
2

and 
0, 
1, . . . , 
d−2k ∈ K(Σ), the bilinear form

Ak(Σ)×Ak(Σ) −→ R, (η1, η2) �−→ (−1)k deg

(
d−2k∏
i=1


i

)
η1η2

is positive definite when restricted to the kernel of the multiplication map∏d−2k
i=0 
i.

Clearly, the mixed properties imply the ordinary ones. Using results from
[CKS87], Cattani showed that the converse is true as well [Cat08]. Since the mixed
HR property is particularly convenient for applications such as Theorem 1.4, we in-
clude a self-contained proof that Lefschetz fans also possess the “mixed” properties;
see Theorem 5.20.

Example 5.7. We remark that any complete simplicial fan Σ is Lefschetz. In this
case, K(Σ) is the cone of Kähler classes on the compact complex variety XΣ, and
there are isomorphisms

Ak(Σ) 
 H2k(XΣ,R) 
 IH 2k(XΣ,R).

The Lefschetz property of Σ follows from Poincaré duality, the hard Lefschetz the-
orem, and the Hodge–Riemann relations for the intersection cohomology of XΣ

[CLS11, Section 12.5]. Alternatively, one may use Theorem 1.6 to deduce the Lef-
schetz property of Σ.

5.3. The weak factorization theorem. Alexander proved that any subdivision
of a simplicial complex can be expressed as a sequence of stellar subdivisions of edges
and their inverses [Ale30]. We will use a refined version of his result for simplicial

fans. We continue to write Σ̃ for the stellar subdivision of Σ by ρ. For brevity, we

adopt the language of simplicial complexes and call Σ̃ an edge subdivision of Σ if
the cone σ containing ρ in its relative interior is two-dimensional.

Lemma 5.8. There exists a sequence of simplicial fans (Σ0,Σ1, . . . ,Σn) such that

(1) the initial entry is the fan Σ̃, the final entry is the fan Σ, and,
(2) for each i, either Σi is an edge subdivision of Σi+1 or Σi+1 is an edge

subdivision of Σi.

Moreover, if Σ is a projective refinement of some fan Δ, then so is Σi for every i.

Proof. We use induction on the dimension of σ. The composition of projective

maps Σ̃ → Σ → Δ is projective, so the statement when dimσ = 2 is trivial.
Suppose dimσ > 2 and ρ is a ray in the relative interior of σ. Let σ′ be any

maximal cone of the boundary ∂σ, and let μ be the unique ray in σ(1)−σ′(1). The
span of {ρ, μ} intersects σ′ along a ray which we call ρ′, and we let Σ′ = stellarρ′ Σ.
Let σ′′ be the 2-dimensional cone spanned by μ and ρ′. The ray ρ lies in σ′′, and

we let Σ′′ = stellarρ Σ
′. We claim that Σ′′ = stellarρ′ Σ̃.

By construction, the fans have the same rays. To compare the remaining cones,
it is sufficient to characterize those subsets of rays Σ′′(1) which fail to span a cone.
We recall notation from Section 3: If Δ is a simplicial fan, I(Δ) is the Stanley-
Reisner ideal of Δ in a polynomial ring S(Δ), generated by square-free monomials
xA, where A ⊆ Δ(1) runs over subsets of rays that do not span a cone. For cones
σ ∈ Δ, we will continue to write xσ for the monomial indexed by the rays of σ. If
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we subdivide a cone τ of a fan Δ by a ray ρ, some cones of Δ are unchanged. We
denote that set by

U(Δ, τ ) := Δ− stΔ(τ ).

By definition of the stellar subdivision, in the polynomial ring S(stellarτ (Δ)), we
have

I(stellarρ(Δ)) = I(Δ) + (xτ ) + (xρxυ : υ ∈ U(Δ, τ )).

Thus, it follows that

I(Σ′′) = I(Σ′) + (xσ′′) + (xρxυ : υ ∈ U(Σ′, σ′′))

= I(Σ) + (xσ′ , xρ′xμ) + (xρ′xυ : υ ∈ U(Σ, σ′)) + (xρxυ : υ ∈ U(Σ′, σ′′)).

On the other hand, we have

I(stellarρ′ Σ̃) = I(Σ̃) + (xσ′) + (xρ′xυ : υ ∈ U(Σ̃, σ′))

= I(Σ) + (xσ′ , xσ) + (xρxυ : υ ∈ U(Σ, σ)) + (xρ′xυ : υ ∈ U(Σ̃, σ′))

= I(Σ) + (xσ′) + (xρ′xυ : υ ∈ U(Σ̃, σ′)) + (xρxυ : υ ∈ U(Σ, σ)),

noting that xσ = xμxσ′ . To conclude that Σ′′ = stellarρ′(Σ̃), we check that their
ideals have the same generators, using two observations:

• There is a bijection stΣ(σ) 
 stΣ′(σ′′): if τ ∈ stΣ(σ), we can write τ =
τ ′ + σ′ +μ for some cone τ ′: then τ ′ + ρ′ +μ is a cone of stΣ′(σ′′) (because
σ′′ = ρ′ + μ). This map is easily seen to be invertible. It follows that
U(Σ′, σ′′) = U(Σ, σ).

• There is a bijection stΣ(σ
′) 
 st

˜Σ(σ
′): suppose a cone τ ∈ Σ contains σ′.

If τ 
⊇ μ, then τ ∈ Σ̃. Otherwise, τ = τ ′ +μ for some τ ′, and τ ′ + ρ is in Σ̃.
It follows that

U(Σ̃, σ′) = U(Σ, σ′) ∪
{
τ ∈ Σ̃ : τ ⊇ μ

}
.

This gives a commuting diagram of refinements of Δ, as illustrated in Figure 7.

Σ̃ Σ

Σ′′

Σ′

Δ

d

d−1
2

d−1

Since stellar subdivisions are projective, so are the refinements Σ′ → Δ and Σ′′ →
Δ. The stellar subdivisions Σ̃ ← Σ′′ → Σ′ → Σ take place over cones of dimension

< d, so by induction there are sequences of fans from Σ̃ to Σ′′ and from Σ′ to Σ
so that each step is an edge subdivision, and each fan is a projective refinement of
Δ. �

Theorem 5.9. If Σ and Σ′ are simplicial fans with the same support, there exists
a sequence of simplicial fans Σ0, Σ1, . . . , Σn such that

(1) the initial entry is the fan Σ, the final entry is the fan Σ′, and,
(2) for each i, either Σi is an edge subdivision of Σi+1 or Σi+1 is an edge

subdivision of Σi.
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a

b

d

c

ab

[ab]c ab

[abc]d

ab
[ab]c

ab

abc

abc

abcd

Figure 7. Factoring a codimension-4 subdivision into edge subdivisions

Furthermore, the entries can be chosen in such a way that there is an index i0
for which Σi is a projective refinement of Σ for all i ≤ i0, and Σi is a projective
refinement of Σ′ for all i ≥ i0.

Proof. By [CLS11, Theorem 11.1.9], there exists a sequence of stellar subdivisions
of both Σ and Σ′ that refine those fans, respectively, to unimodular fans. Thus,
by Proposition 5.4 and Lemma 5.8, we can reduce to the case where Σ and Σ′ are
both unimodular fans.

By [W	lo97, Theorem A], there is a sequence of simplicial fans for which Σi and
Σi−1 differ by a stellar subdivision, for each i. The assertion that these can be
chosen to have the second property follows from [AKMW02, Theorem 2.7.1]. As
stated, [AKMW02, Theorem 2.7.1] applies to the more general setting of toroidal
embeddings and polyhedral complexes, and the proof given in [AKMW02] special-
izes to the case of toric varieties and fans.22

Suppose now that i ≤ i0 and Σi = stellarρ(Σi−1). Since Σi−1 is a projective
refinement of Σ, we use Lemma 5.8 to obtain a sequence of fans between Σi and
Σi−1 in which consecutive fans differ by edge subdivisions, and which are also
projective refinements of Σ. The remaining cases are treated by exchanging i with
i− 1, and Σ with Σ′. �

In terms of toric varieties, edge subdivisions correspond to morphisms that are
semismall in the sense of Goresky–MacPherson. In projective geometry, the semis-
mallness is particularly convenient for transferring the Lefschetz property, as pull-
backs of ample line bundles by semismall maps satisfy the hard Lefschetz property
and the Hodge–Riemann bilinear relations [dCM02]. We will use Theorem 5.9 to
prove Theorem 1.6 by establishing an analogous property in the context of Lefschetz
fans.

5.4. Chow rings of stellar subdivisions. We continue to write Σ̃ for the stellar
subdivision of Σ by ρ, a ray in the relative interior of σ. The primitive ray generator

22The birational cobordism used in the proof can be chosen to be toric, using a toric resolution
of singularities.
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of ρ is given by

eρ :=
∑

ν∈σ(1)

aνeν ,

for some positive rational coefficients {aν}. We relate the Chow rings of Σ and

Σ̃. For economy of notation, we abbreviate E := st
˜Σ(ρ) and Z := stΣ(σ). We let

j : E → Σ̃ denote the inclusion of fans, and let q : E → Z denote the restriction of

p : Σ̃ → Σ. We will write i in place of iσ through the rest of this section:

E Σ̃

Z Σ

q

j

p

i

A straightforward calculation shows that the pullback homomorphism p∗ : A(Σ)

→ A(Σ̃) is determined by the formula

p∗(xν) =

{
xν if ν 
∈ σ(1),

xν + aνxρ if ν ∈ σ(1).

Since p is a proper map of fans [CLS11, Theorem 3.4.11], there is a pushforward

p∗ : A(Σ̃) → A(Σ), which is a homomorphism of A(Σ)-modules. By definition

[Ful98, Section 1.4], for any τ̃ ∈ Σ̃, we have

p∗(xτ̃ ) =

{
xτ if p(τ̃) ⊆ τ and dim τ̃ = dim τ ,

0 if otherwise.

Proposition 5.10. If σ is two-dimensional, then the map

p∗ ⊕ q∗j
∗ : A(Σ̃) → A(Σ)⊕A(stΣ(σ))[−1]

is an isomorphism of graded A(Σ)-modules.

The proof, given below, uses some preliminary calculations. Let ν1, ν2 be the
rays of σ and e1, e2 the primitive ray generators. Then eρ = a1e1 + a2e2 for some
positive rational coefficients a1, a2. For i, j ∈ {1, 2, ρ}, we let mi,j denote the index
of Z {ei, ej} inside R {ei, ej} ∩NZ. Computing determinants, we see that

a1 = m2,ρ/m1,2 and a2 = m1,ρ/m1,2.

Lemma 5.11. We have
q∗j

∗j∗q
∗ = − m1,2

m1,ρm2,ρ
.

Proof. Consider an element v ∈ A(Z). Since j∗ is surjective, we have q∗(v) = j∗(u)

for some u ∈ A(Σ̃). Then, by the projection formula,

q∗j
∗j∗q

∗(v) = q∗j
∗j∗q

∗(1Z · v)
= q∗j

∗j∗
(
q∗(1Z) · q∗(v)

)
= q∗j

∗j∗
(
q∗(1Z) · j∗(u)

)
= q∗j

∗(j∗q∗(1Z) · u)
= q∗

(
j∗j∗q

∗(1Z) · j∗(u)
)

= q∗
(
j∗j∗q

∗(v)
)

= q∗j
∗j∗q

∗(1Z) · v,
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so it is enough to verify the claim on the fundamental class 1Z .
Let h = j∗(xρ) ∈ A1(E). By definition, we have

(q∗j
∗j∗q

∗)(1Z) = q∗j
∗j∗(1E) = q∗j

∗(xρ) = q∗(h).

We extend {e1, e2} to a basis for N, and write {e∗1, e∗2, . . .} for the dual basis. The
piecewise-linear function xρ − a−1

1 e∗1 is equivalent to xρ, and its values on e1, e2,

and eρ are −a−1
1 , 0, and 0, respectively. This is to say that h = j∗(−a−1

1 x1+ g) for

some piecewise linear function g on Σ̃ which is zero on e1, e2, and eρ, and hence

h = −a−1
1 m−1

1,ρx1 + j∗(g).

As j∗(g) is a linear combination of Courant functions xν for rays ν in st
˜Σ(ρ) not

contained in the support of σ, we have q∗j
∗(g) = 0. On the other hand, q∗(x1) = 1Z ,

so
q∗(h) = −a−1

1 m−1
1,ρ1Z = −m1,2/(m1,ρm2,ρ)1Z . �

Proof of Proposition 5.10. Let ψ(u) = (p∗(u), q∗j
∗(u)) for u ∈ A(Σ̃), and let φ(u, v)

= p∗(u) + j∗q
∗(v) for (u, v) ∈ A(Σ) ⊕ A(Z)[−1]. We first check that ψ ◦ φ is an

isomorphism.
Observe that p∗p

∗ = 1, because p is birational, and q∗q
∗ = 0, because q has

positive relative dimension. Therefore, we have

ψ ◦ φ(u, v) = p∗
(
p∗(u) + j∗q

∗(v)
)
+ q∗j

∗(p∗(u) + j∗q
∗(v)

)
= p∗p

∗(u) + p∗j∗q
∗(v) + q∗j

∗p∗(u) + q∗j
∗j∗q

∗(v)

= p∗p
∗(u) + i∗q∗q

∗(v) + q∗q
∗i∗(u) + q∗j

∗j∗q
∗(v)

= u+ q∗j
∗j∗q

∗(v),

which is invertible by Lemma 5.11. It follows that φ is injective, and we now argue
that it is also surjective.

Since squarefree monomials span A(Σ̃), it is enough to show that each monomial
xτ is of the form p∗(u)+ j∗q

∗(v) for suitable u ∈ A(Σ) and v ∈ A(Z). If none of ν1,

ν2 or ρ is contained in τ , clearly xτ = p∗(xτ ). Noting that no cone of Σ̃ contains
both ν1 and ν2, it remains to consider the following three cases.

Case 1. Suppose {ν1, ν2, ρ} ∩ τ (1) = {ρ}. If we set τ ′ = τ − {ρ}, then
j∗q

∗(xτ ′) = j∗(xτ ′) = xρxτ ′ ,

so we may take u = 0 and v = xτ ′ .

Case 2. Suppose {ν1, ν2, ρ} ∩ τ (1) = {ν1}. If we set τ ′ = τ − {ν1}, then
x1xτ ′ = (x1 + a1xρ)xτ ′ − a1xρxτ ′ .

The first summand equals p∗(x1xτ ′), and the second summand is in the image of
φ in view of Case 1.

Case 3. Suppose {ν1, ν2, ρ} ∩ τ (1) = {ν1, ρ}. We set τ ′ = τ − {ν1, ρ}, and extend
the vectors e1, e2 to a basis for N . Then the linear function e∗2 may be written

e∗2 = x2 + a2xρ + g,

where g is a piecewise linear function vanishing on the rays {ν1, ν2, ρ}. Since the

class of e∗2 is zero in the Chow ring of Σ̃, multiplying it by x1xτ ′ gives

0 = 0 · x1xτ ′ = 0 + a2x1xρxτ ′ + gx1xτ ′ ,
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because x1x2 = 0. Thus a2xτ = −gx1xτ ′ , which is in the image of φ by Case 2.

This completes the proof of Proposition 5.10. �

Corollary 5.12. The pullback homomorphism p∗ is injective, and it restricts to an
isomorphism in degree d = dimΣ.

Proof. The isomorphism φ restricts to p∗ on A(Σ), so p∗ is injective. Since stΣ(σ)
is (d−2)-dimensional, Ad−1(stΣ(σ)) = 0, and hence the isomorphism φ agrees with
p∗ in degree d. �

5.5. Hodge–Riemann forms and their signatures. Our goal in the next few
pages is to understand how the Lefschetz property behaves under edge subdivisions.
In this subsection, we fix a d-dimensional simplicial fan Σ that satisfies Poincaré du-
ality (Definition 1.5) and k ≤ d

2 . Suppose that the multiplication by L ∈ Ad−2k(Σ)
is an isomorphism in degree k. Using Poincaré duality, one can check directly that
the multiplication by L ∈ Ad−2k(Σ) is an isomorphism in degree k if and only if
the corresponding Hodge–Riemann form

hrk(Σ, L) : Ak(Σ)×Ak(Σ) −→ R, (η1, η2) �−→ (−1)k deg(Lη1η2)

is nondegenerate. Thus, in this case, hrk(Σ, L) has b+k positive eigenvalues and b−k
negative eigenvalues, where b+k +b−k is the dimension of Ak(Σ). We use its signature

b+k −b−k can be used to characterize the HR property. This characterization appears

as [AHK18, Proposition 7.6] and [McM93, Theorem 8.6] in the case when L = 
d−2k

for 
 ∈ A1(Σ).
In what follows, we write bk(Σ) for the dimension of Ak(Σ). Given L ∈ Ad−2k(Σ)

and 
0 ∈ A1(Σ), we define the primitive part of Ak(Σ) to be the subspace

PAk(Σ, 
0, L) :=
{
η ∈ Ak(Σ) | 
0 · L · η = 0

}
.

For simplicity, when L = 
d−2k
0 and there is no possibility of confusion, we write

hrk(Σ, 
0) for hr
k(Σ, L) and PAk(Σ, 
0) for PA

k(Σ, 
0, L).

Proposition 5.13. If U ⊆ Ad−2k(Σ) is a connected subset in the Euclidean topol-

ogy and if the Hodge–Riemann form hrk(Σ, L) is nondegenerate for all L ∈ U , then

the signature of hrk(Σ, L) is constant for all L ∈ U .

Proof. The eigenvalues of hrk(Σ, L) are real, and they vary continuously with L.
By hypothesis, they are all nonzero for L ∈ U , so their signs are constant on U ,
because U is connected. �

We write Symd−2k K(Σ) ⊆ Ad−2k(Σ) for the subset of products of elements of
K(Σ) ⊆ A1(Σ).

Proposition 5.14 (HR signature test). Suppose that Σ satisfies the conditions

(1) hri(Σ, L) is nondegenerate for all 0 ≤ i ≤ k and all L ∈ Symd−2i K(Σ),
and

(2) hri(Σ, L) is positive definite on the kernel of the multiplication by 
0L for

all 
0 ∈ K(Σ), all L ∈ Symd−2i K(Σ), and all i < k.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

LAGRANGIAN GEOMETRY OF MATROIDS 781

Then hrk(Σ, L) is positive definite on the kernel of the multiplication by 
0L for all


0 ∈ K(Σ) and all L ∈ Symd−2k K(Σ) if and only if its signature equals

k∑
i=0

(−1)k−i
(
bi(Σ)− bi−1(Σ)

)
.

Proof. The proof is the same as the one given in [AHK18, Proposition 7.6] for the

special case L = 
d−2k
0 . The result follows from the induction on k and the Lefschetz

decomposition

Ak(Σ) = PAk(Σ, 
0, L)⊕ 
0A
k−1(Σ),

which is orthogonal for the Hodge–Riemann form hrk(Σ, L). �

Corollary 5.15. If Σ satisfies mixed HRi for all i < k, mixed HLk, as well as
HRk(L′) for some L′ ∈ Symd−2k K(Σ), then Σ satisfies HRk.

Proof. Let L ∈ Symd−2k K(Σ) be any element. By the hypothesis mixed HLk, the

Hodge–Riemann form hrk(Σ, L) is nondegenerate. By Proposition 5.13, it has the

same signature as hrk(Σ, L′). Since Σ satisfies mixed HRi for i < k, Proposition

5.14 shows that HRk(L) and HRk(L′) are equivalent. �

Let Δ̃ = st
˜Σ(ρ) and Δ = stΣ(σ). In the case of a star-shaped blowup, the

signature test simplifies slightly. In this case, by Propositions 5.10 and 5.14, the

signature of hrk(Δ̃, L) satisfying the Hodge–Riemann relations is bk(Δ)− bk−1(Δ)
for k < d

2 .

5.6. The Lefschetz property and edge subdivisions. With these preparations,
we now set out to show that the Lefschetz property of a fan is unaffected by edge
subdivisions and their inverses. The precise statements and their proofs appear in
Section 5.7 as Theorems 5.25 and 5.26. Here, we first consider Poincaré duality,
and we first do so for star-shaped subdivisions.

Let Σ̃ be the stellar subdivision of a d-dimensional simplicial fan Σ by a ray ρ

in a two-dimensional cone σ. As before, we set Δ̃ = st
˜Σ(ρ) and Δ = stΣ(σ).

Proposition 5.16. Poincaré duality holds for Δ̃ if and only if it holds for Δ.

Proof. Assume that PD holds for at least one of Δ̃ and Δ. By Proposition 5.10,
for all positive i,

Ai(Δ̃) 
 Ai(Δ)⊕ xρA
i−1(Δ).

We see that Ad−2(Δ) 
 Ad−1(Δ̃), so if one of Δ or Δ̃ has a fundamental weight, they

both do. By inspection, bi(Δ) = bd−2−i(Δ) for all i if and only if bi(Δ̃) = bd−1−i(Δ̃)
for all i. So we may assume both sets of equalities hold.

For any u ∈ Ai(Δ̃) and v ∈ Ad−1−i(Δ̃), we write u = u0+u1xρ and v = v0+v1xρ

where u0, u1, v0, v1 are elements of A(Δ) of degrees i, i−1, d−1− i, and d−2− i,
respectively. Then u0v0 ∈ Ad(Δ) = 0, and x2

ρ = c1 · xρ + c2 for some c1, c2 ∈ A(Δ).
With respect to the decomposition above, the matrix of the multiplication pairing
has the form

M i(Δ̃) =

(
0 −M i−1(Δ)

−M i(Δ) ∗

)
,
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where M i(Δ) denotes the matrix of the pairing Ai(Δ)× Ad−2−i(Δ) → R. Thus if

each matrix M i(Δ̃) is invertible, so is each matrix M i(Δ), and conversely. There-

fore, if either Δ or Δ̃ has PD, then they both do. �
Proposition 5.17. Suppose that Poincaré duality holds for Δ. Then Poincaré

duality holds for Σ̃ if and only if it holds for Σ.

Proof. Let us assume that at least one of Σ and Σ̃ has Poincaré duality, then show

that they both do. For dimensional reasons, Σ̃ must be an ordinary subdivision. By

Corollary 5.12, we have Ad(Σ̃) 
 Ad(Σ), and they have the common degree map.
By Proposition 5.10 and Poincaré duality for stΣ(σ), we have bi(Σ) = bd−i(Σ) and

bi(Σ̃) = bd−i(Σ̃) for all 0 ≤ i ≤ d. Since As(Σ)×At(stΣ(σ)) → As+t(stΣ(σ)) is the
zero map when s+ t > d− 2, ordering bases compatibly with the decomposition in
Proposition 5.10 gives a block-diagonal matrix:

M i(Σ̃) =

(
M i(Σ) 0

0 M i−1(Δ)

)
.

Clearly M i(Σ̃) has full rank if and only if M i(Σ) and M i−1(Δ) both do as well,
which completes the proof. �
Lemma 5.18. Suppose that Poincaré duality holds for Σ. If I ⊆ Σ(1) is a subset
of rays for which {xν}ν∈I spans A1(Σ), then ⊕ i∗ν : A

i(Σ) →
⊕

ν∈S Ai(stΣ(ν)) is
injective for all 0 ≤ i < d.

Proof. Suppose i∗ν(u) = 0 for each ray ν. Then iν∗i
∗
ν(u) = xνu = 0 for a set of

generators xν of A(Σ). Since A(Σ) has no nonzero socle in degree < d by Poincaré
duality, the element u must be zero. �
Proposition 5.19. Suppose that Poincaré duality holds for Σ. If stΣ(ν) satisfies
mixed HR for each ray ν ∈ Σ(1), then Σ satisfies mixed HL.

Proof. Let L := 
1 · · · 
d−2k be an element of Symd−2k K(Σ), and consider the
map L · : Ak(Σ) → Ad−k(Σ). By Poincaré duality, we know that the domain and
the target have the same dimension, so it is enough to show that L · is injective.
Suppose, then, that L · u = 0 for some u ∈ Ak(Σ).

Let L′ := 
2 · · · 
d−2k. Note that, for each index i and each ray ν in Σ, the
pullback i∗ν(
i) belongs to K(stΣ(ν)). Furthermore, since L · u = 0, the pullback of
u around ν is primitive:

i∗ν(u) ∈ PAk(stΣ(ν), i
∗
ν(
1), i

∗
ν(L

′)).

We may write 
1 =
∑

ν∈Σ(1) cνxν where each coefficient cν > 0, since we can

represent 
1 by a piecewise linear function which is strictly positive on each ray.
We have

0 = degΣ(L · u · u) = degΣ(
∑

ν∈Σ(1)

cνxνL
′ · u · u)

=
∑
ν

cν degstΣ(ν)(i
∗
ν(L

′) · i∗ν(u) · i∗ν(u))

= (−1)k−1
∑

ν∈Σ(1)

cν 〈i∗ν(u), i∗ν(u)〉i∗ν(L′) ,
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where the last summands are the Hodge–Riemann forms for i∗ν(L
′). Since the

cν ’s are strictly positive, each summand is zero, and the mixed HR property in
stΣ(ν) implies i∗ν(u) = 0, for each ν. By Lemma 5.18, we have u = 0, and L · is
injective. �

As an application, we see that the mixed Lefschetz properties in Definition 5.6
are actually no stronger than the pure ones. See [Cat08] for a discussion in a more
general context.

Theorem 5.20. If Σ is a Lefschetz fan, then it also has the mixed HL and mixed
HR properties.

Proof. We use induction on dimension. If dimΣ = 1, the mixed and pure properties
are identical, so let us suppose the claim is true for all Lefschetz fans of dimension
less than d, for some d > 1. Let Σ be a Lefschetz fan of dimension d. By induction,
stΣ(ν) satisfies mixed HR for all rays ν ∈ Σ(1). By Proposition 5.19, then Σ satisfies
mixed HL.

Now we establish mixed HR for Σ. For any 
 ∈ K(Σ) and 0 ≤ k ≤ d
2 , the “pure”

property HRk(L′) holds for L′ = 
d−2k. Corollary 5.15 states that mixed HL and

mixed HRi for i < k implies mixed HRk. Setting k = 0, we see Σ has the mixed
HR0 property. Arguing by induction on k, we obtain mixed HRk for all k ≤ d

2 . �

We now examine how the Hodge–Riemann forms fare under stellar subdivisions.

As before, we write p : Σ̃ → Σ for the map of fans given by the edge subdivision
under consideration, write xρ = a1x1 + a2x2 for some positive scalars a1, a2, and
consider the diagram

E Σ̃

Z Σ.

q

j

p

i

Lemma 5.21. We have p∗(xρ) = 0 and p∗(x
2
ρ) = −a1a2xσ.

Proof. The first identity follows from the definition pushforward p∗ between the
Chow groups. Now let x1, x2 be the Courant functions for the rays ν1, ν2 of the
cone σ, so xσ = x1x2. For i = 1, 2, we have

0 = p∗(xρ)xi = p∗
(
xρ(xi + aixρ)

)
,

so p∗(xρxi) = −aip∗(x
2
ρ). Since {ν1, ν2} is not contained in a cone of Σ̃, we have

xσ = p∗p
∗(x1x2) = p∗

(
(x1 + a1xρ)(x2 + a2xρ)

)
= (0− 2a1a2 + a1a2)p∗(x

2
ρ). �

Lemma 5.22. Suppose that Poincaré duality holds for Σ. If Σ̃ is an ordinary edge
subdivision of Σ, then, for all 0 ≤ k ≤ d

2 and all L ∈ Symd−2k K(Σ), we have the
orthogonal direct sum

hrk(Σ̃, p∗L) ∼= hrk(Σ, L)⊕ hrk−1(stΣ(σ), i
∗
σ(L)).

Proof. We consider hrk(Σ̃, p∗L) under the isomorphism φ : Ak(Σ)⊕Ak−1(stΣ(σ)) ∼=
Ak(Σ̃) from Proposition 5.10. Recall that φ(u, v) = p∗(u) + j∗q

∗(v). Let v̂ be any
preimage of v through the surjective map i∗σ: then j∗q

∗(v) = j∗j
∗p∗(v̂) = xρp

∗(v̂).
We use the notation 〈−,−〉 to pair elements under the various Hodge–Riemann

forms, and check first that the two summands are indeed orthogonal. We calculate:
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(−1)k 〈(u, 0), (0, v)〉 = deg
˜Σ

(
p∗(L) · p∗(u) · xρp

∗
σ(v̂)

)
= degΣ

(
L · uv̂ · p∗(xρ)

)
= 0,

using the projection formula and the fact that p∗(xρ) = 0.
If u, v ∈ Ak(Σ), the equality 〈(u, 0), (v, 0)〉p∗(L) = 〈u, v〉L is straightforward. If

u, v ∈ Ak−1(stΣ(σ)), as before write u = i∗σ(û) and v = i∗σ(v̂) for some û, v̂ ∈
Ak−1(Σ). Then, calculating as above,

〈(0, u), (0, v)〉 = (−1)k deg
˜Σ

(
p∗(L) · p∗(û)p∗(v̂) · x2

ρ

)
= (−1)k degΣ

(
L · ûv̂ · p∗(x2

ρ)
)

= −(−1)ka1a2 degΣ
(
L · ûv̂ · xσ

)
by Lemma 5.21;

= (−1)k−1a1a2 degstΣ(σ)

(
i∗σ(L) · i∗σ(û)i∗σ(v̂)

)
= a1a2 〈u, v〉i∗σ(L) .

The conclusion follows, since a1, a2 > 0. �
Next we address star-shaped subdivisions. Set e := dim stΣ(σ) = dimΣ− 2.

Lemma 5.23. Suppose P and Q are n×n matrices with real entries and Q = QT .
Let

M :=

(
0 P
PT Q

)
.

If P is nonsingular, then M has signature zero.

Proof. Assume first that Q is invertible, and let S = −PQ−1PT (the Schur com-
plement). Then it is easily seen that M is congruent to a block-diagonal matrix:

M =

(
In PQ−1

0 In

)(
S 0
0 Q

)(
In 0

Q−1PT In

)
,

and the signature of S is the negative of the signature of Q. It follows that M has
signature zero.

Now suppose Q is singular. We replace Q by Q(ε) to define M(ε) as above,
for some real, invertible symmetric matrices Q(ε) with limε→0 Q(ε) = Q. Then
det(M(ε)) = (−1)n det(P )2 
= 0, regardless of ε, so the argument above shows
M(ε) has n positive eigenvalues and n negative eigenvalues. By continuity, so does
M . �

The last result in this section relates HL and HR along an edge subdivision.

Proposition 5.24. Suppose that at least one of stΣ(σ) and st
˜Σ(ρ) satisfies Poincaré

duality, and that 
 ∈ K(stΣ(σ)) has the hard Lefschetz property. Then

(1) 
ε := 
− ε ·xρ ∈ K(st
˜Σ(ρ)) has the HL property for sufficiently small ε > 0,

and
(2) for such ε, the fan st

˜Σ(ρ) satisfies HR(
ε) if stΣ(σ) satisfies HR(
).

Proof. Let Δ = stΣ(σ) and Δ̃ = st
˜Σ(ρ). By Proposition 5.17, we may assume both

Δ and Δ̃ have Poincaré duality. By Proposition 5.4, we have 
ε ∈ K(Δ̃) for small
enough positive ε.

If k < (e + 1)/2, we use the HR property of 
 ∈ K(Δ) and Proposition 5.10 to
obtain a decomposition

Ak(Δ̃) = PAk(Δ, 
)⊕ 
Ak−1(Δ)⊕ xρA
k−1(Δ),
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with respect to which hrk(Δ̃, 
ε) is represented by a block matrix

hrk(Δ, 
ε) =

⎛⎝H11(ε) H12(ε) H13(ε)
H21(ε) H22(ε) H23(ε)
H31(ε) H32(ε) H33(ε)

⎞⎠ .

For any ε > 0, the matrix above is congruent to the matrix

hr
k
(ε) :=

⎛⎝ε−1H11(ε) ε−1H12(ε) H13(ε)
ε−1H21(ε) ε−1H22(ε) H23(ε)
H31(ε) H32(ε) εH33(ε)

⎞⎠ ,

the entries of which we will see are polynomial in ε. For elements p1, p2 ∈ PAk(Δ, 
),
we have

〈p1, p2〉�ε = (−1)k deg
˜Δ

(
(
− εxρ)

e+1−2kp1p2
)

= −(−1)k · ε · deg
˜Δ

(

e−2k(e+ 1− 2k)p1p2xρ

)
+O(ε2)

= (−1)kε(e+ 1− 2k) degΔ
(

e−2kp1p2

)
+O(ε2)

= (e+ 1− 2k)ε · 〈p1, p2〉� +O(ε2),

so the block H11(ε) represents a positive multiple of the pairing hrk(Δ, 
), modulo
ε2.

Similar computations show that the block H22(ε) is the matrix of the pairing

(e+1−2k)ε ·hrk−1(Δ, 
), modulo ε2, and H23(ε) = H32(ε) = − hrk−1(Δ, 
) modulo
ε. Along the same lines, we see H12(ε) = H21(ε) are divisible by ε2, and H13(ε) =

H31(ε) is divisible by ε. Returning to the matrix for hr
k
(ε), we have

hr
k
(ε)

=

⎛⎝(d+1−2k) hrk(Δ, 
) |PAk 0 0

0 −(d+1−2k) hrk−1(Δ, 
) − hrk−1(Δ, 
)

0 − hrk−1(Δ, 
) 0

⎞⎠+O(ε).

Given our assumption that k < (e+1)/2, the matrix hr
k
(0) is invertible, because

each nonzero block is nondegenerate (since 
 has the HL property). It follows that


ε has the HLk property for all 0 ≤ k < (e + 1)/2, for some sufficiently small

ε > 0. Using Lemma 5.23, we see the signature of hr
k
(ε) agrees with that of the

top-left block. By hypothesis, hrk(Δ, 
) is positive definite on PAk(Δ, 
). Now
dimPAk(Δ, 
) = bk(Δ) − bk−1(Δ), which by Propositions 5.10 and 5.14 is the

expected signature for hr
k
(ε); that is, HRk(
ε) holds for sufficiently small ε.

It remains to consider the case where e is odd and k = (e + 1)/2. In this case

we have Ak(Δ̃) = Ak−1(Δ)⊕ xρA
k−1(Δ), and, up to a sign, the pairing is equal to

the Poincaré pairing Mk(Δ̃). In the middle dimension, Mk(Δ) = Mk−1(Δ), so we
have a block decomposition

Mk(Δ̃) =

(
0 −Mk(Δ)

−Mk(Δ) Q

)
for some square matrix Q. The matrix Mk(Δ) is nonsingular, by HLk, so Mk(Δ̃)

has signature zero by Lemma 5.23, which shows 
ε has HRk for any ε by Propositions
5.10 and 5.14. �
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5.7. Proofs of the main results. We are now ready to prove the main result of
this section. We will treat the star-shaped and ordinary cases separately, beginning

with the former. As before, let Σ̃ be a subdivision of a d-dimensional simplicial

fan Σ by a ray ρ contained in a two-dimensional cone σ, and set Δ̃ = st
˜Σ(ρ) and

Δ = stΣ(σ).

Theorem 5.25. The fan Δ is Lefschetz if and only if the fan Δ̃ is Lefschetz.

Proof. First, suppose that Δ is Lefschetz, and let ν1, ν2 denote the two extreme

rays of σ. First, we check that the star of each cone τ ∈ Δ̃ is Lefschetz. This
is easy if τ does not contain ν1 or ν2, since then τ is a cone of Δ. Otherwise, τ
contains (exactly) one such ray, say ν1. The remaining rays of τ span a cone τ ′ of
Δ, and by inspection, st

˜Δ(τ ) = stΔ(τ
′), which is again Lefschetz by hypothesis.

Poincaré duality for Δ̃ follows from Proposition 5.17. To establish HL, we use
Proposition 5.19. For this, we need to know that the star of each ray satisfies mixed

HR, but the star of a ray of Δ̃ is also a star in Δ, so HL for Δ̃ follows. Finally, we

use Proposition 5.24: for any 
 ∈ K(Δ), there exists some 
ε ∈ K(Δ̃) with the HR

property. By Corollary 5.15, Δ̃ has HR.

Conversely, if Δ̃ is Lefschetz, then st
˜Δ(ν1) = Δ, so Δ is Lefschetz too. �

We note that K(Δ) is nonempty if and only if K(Δ̃) is nonempty. The forward
implication follows immediately from Proposition 5.4. The converse holds because

Δ is a star in Δ̃. However, K(Σ̃) can be nonempty while K(Σ) is empty.

Theorem 5.26. If Σ is a Lefschetz fan with nonempty K(Σ), then Σ̃ is a Lefschetz

fan. Conversely, if Σ̃ is a Lefschetz fan, then Σ is a Lefschetz fan.

Proof. We prove the first statement by induction on the dimension d. The state-
ment is vacuously true if d = 1, so let us assume it holds for all Lefschetz fans of
dimension less than d.

First we check that the star of every cone τ ∈ Σ̃ is Lefschetz, for which we
consider two cases. First suppose τ ∈ Σ. If σ 
∈ stΣ(τ ), then st

˜Σ(τ ) = stΣ(τ ), which
is Lefschetz. If, on the other hand, σ ∈ stΣ(τ ), then st

˜Σ(τ ) = stellarρ(stΣ(τ )),
which is a star-shaped subdivision. Since stΣ(τ ) is Lefschetz, so is st

˜Σ(τ ), by
Theorem 5.25.

Now suppose τ 
∈ Σ. Then ρ ∈ τ , so st
˜Σ(τ ) ⊆ st

˜Σ(ρ): in fact, st
˜Σ(τ ) = stΣ′(τ ),

where Σ′ = st
˜Σ(ρ). Since Σ′ = stellarρ(stΣ(σ)), a star-shaped subdivision, Σ′ is

Lefschetz by Theorem 5.25, and it follows that st
˜Σ(τ ) is Lefschetz too.

By Propositions 5.17 and 5.19, respectively, the fan Σ̃ satisfies PD and HL. It

remains to check that Σ̃ satisfies HR as well.
Consider any 0 ≤ k ≤ d/2 and 
 ∈ K(Σ). By Lemma 5.22, we have hrk(Σ̃, p∗
) =

hrk(Σ, 
)⊕ hrk−1(stΣ(σ), i
∗
σ(
)). The summands are nondegenerate, because Σ and

stΣ(σ) satisfy HL(
) and HL(i∗σ
), respectively, so hrk(Σ̃, p∗
) is nondegenerate as
well.
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By the HR signature test (Proposition 5.14) the signature of hrk(Σ̃, p∗
) equals

k∑
i=0

(−1)k−i
(
bi(Σ)− bi−1(Σ)

)
+

k−1∑
i=0

(−1)k−(i−1)
(
bi−1(stΣ(σ))− bi−2(stΣ(σ))

)
=

k∑
i=0

(−1)k−i
(
bi(Σ) + bi(stΣ(σ))− bi−1(Σ)− bi−1(stΣ(σ))

)
=

k∑
i=0

(−1)k−i
(
bi(Σ̃)− bi−1(Σ̃)

)
.

Proposition 5.4 states p∗
 is in the closure of K(Σ̃). Then there exists an open

ball U ⊆ A1(Σ̃) containing p∗
 on which hrk(Σ̃,−) is nondegenerate. Choosing any


′ ∈ U ∩K(Σ̃), we can use Corollary 5.15 to conclude that Σ̃ satisfies HRk.
The converse is similar in spirit. Again, we argue by induction on the dimension

d. The base case being trivial, we assume that, if Σ̃ is Lefschetz and has dimension

less than d, then Σ is Lefschetz as well. Now assume Σ̃ is a Lefschetz fan of
dimension d, and we show Σ is as well.

PD for Σ follows from Proposition 5.17. Next, consider a ray ν ∈ Σ(1). If
ν 
∈ stΣ(σ)(1), then stΣ(ν) = st

˜Σ(ν), which is Lefschetz. If, on the other hand,

ν ∈ stΣ(σ)(1), then σ ∈ stΣ(ν)(2), and st
˜Σ(ν) = stellarρ(stΣ(ν)). Since st

˜Σ(ν) is
Lefschetz, so is stΣ(ν), by Theorem 5.25. Either way, stΣ(ν) has the HR property
for each ray ν, so Σ has the HL property (by Proposition 5.19).

A similar argument shows that stΣ(τ ) is Lefschetz for all cones τ of Σ: if the star

remains a star in Σ̃, it is Lefschetz by hypothesis. Otherwise, a subdivision of it is

a star in Σ̃. If τ = σ, the subdivided edge, we invoke Theorem 5.25. Otherwise, we
note the dimension is less than d, so stΣ(τ ) is Lefschetz by induction.

It remains to establish HRk for Σ, for 0 ≤ k ≤ d/2. The condition is vacuous if
K(Σ) = ∅. Otherwise, choose any 
 ∈ K(Σ). By Lemma 5.22,

hrk(Σ̃, p∗
) = hrk(Σ, 
)⊕ hrk−1(stΣ(σ), i
∗
σ(
)).

Since the second factor is the blowdown of st
˜Σ(ρ), it is Lefschetz by Theorem 5.25,

and the first factor is Lefschetz by the argument above. So both summands are

nondegenerate, and so is hrk(Σ̃, p∗
).

By HR, the bilinear form hrk(Σ̃, 
̃) has the expected signature for all 
̃ ∈ K(Σ̃).

It follows by Proposition 5.13 that hrk(Σ̃, p∗
) also has that signature, since it is

nondegenerate and p∗
 lies in the boundary of K(Σ̃).

The HR property for stΣ(σ) determines the signature of hrk−1(stΣ(σ), i
∗
σ(
)),

and we obtain the signature of hrk(Σ, 
) by subtraction. By the HR signature test

again, we find that it equals
∑k

i=0(−1)k−i
(
bi(Σ)−bi−1(Σ)

)
, and we conclude Σ has

the HRk property. �

Putting the pieces together gives a proof that the Lefschetz property is an in-
variant of the support of a fan.

Theorem 1.6. Let Σ1 and Σ2 be simplicial fans that have the same support |Σ1| =
|Σ2|. If K(Σ1) and K(Σ2) are nonempty, then Σ1 is Lefschetz if and only if Σ2 is
Lefschetz.
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Proof of Theorem 1.6. Suppose |Σ| = |Σ′|. According to Theorem 5.9, there is a
sequence of fans (Σ0,Σ1, · · · ,ΣN ) with Σ = Σ0, ΣN = Σ′, and for which either
Σi → Σi+1 or Σi+1 → Σi is an edge subdivision, for each i. Furthermore, there is
some i0 for which Σi → Σ is a projective map of fans for each i ≤ i0, and Σi → Σ′

is a projective map of fans for each i ≥ i0. By Proposition 5.3, we see that the
cone K(Σi) is nonempty for each i. By Theorem 5.26, if any one of these fans is
Lefschetz, then they all are. �

In our terminology, the main result of [AHK18] says that the Bergman fan of M
is Lefschetz. We use the result to show that the conormal fan of M is Lefschetz.

Lemma 5.27. If Σ1 and Σ2 are Lefschetz fans, then so is Σ1 × Σ2.

Proof. It was shown in [AHK18, Section 7.2] that, if Σ1 and Σ2 have PD, HL,
and HR, then so does Σ1 × Σ2. Since stars of cones in a product are products of
stars in the factors, we conclude that Σ1 × Σ2 is a Lefschetz fan, by induction on
dimension. �

Theorem 5.28. For any matroid M, the conormal fan ΣM,M⊥ is Lefschetz.

Proof. We may assume that M is loopless and coloopless. Since the Bergman fan
is Lefschetz, from Lemma 5.27 we see the fan ΣM × ΣM⊥ is Lefschetz. Moreover,
its support is equal to that of ΣM,M⊥ . Bergman fans are quasiprojective, since
they are subfans of the permutohedral fan, so K(ΣM ×ΣM⊥) is nonempty. We saw
that the bipermutohedral fan ΣE,E is the normal fan of the bipermutohedron, so

the conormal fan is also quasiprojective, and K(ΣM,M⊥) is nonempty as well. By
Theorem 1.6, then, ΣM,M⊥ is Lefschetz. �

The extra structure present in the Chow rings of Lefschetz fans leads easily to
an Aleksandrov–Fenchel-type inequality.

Theorem 5.29. Let Σ be a Lefschetz fan of dimension d, and 
2, 
3, . . . , 
d
elements in the closure of K(Σ). Then for any 
1 ∈ A1(Σ),

deg(
1
2 · · · 
d)2 ≥ deg(
1
1
3 · · · 
d) · deg(
2
2
3 · · · 
d).

Proof. We first verify the inequality when 
i ∈ K(Σ) for each 2 ≤ i ≤ d. For this,
let L = 
3 · · · 
d, a Lefschetz element, and consider 〈−,−〉 := 〈−,−〉L on A1(Σ).

If 〈
2, 
2〉 
= 0, let 
′1 = 
1 − 〈�1,�2〉
〈�2,�2〉
2, so that 〈
′1, 
2〉 = 0. This means 
′1 ∈

PA1(Σ, 
2), so by HR,

0 ≤ 〈
′1, 
′1〉 = 〈
1, 
′1〉 = 〈
1, 
1〉 −
〈
1, 
2〉
〈
2, 
2〉

〈
1, 
2〉 .

By the signature test, 〈−,−〉 is negative-definite on the orthogonal complement of

′1. Therefore 〈
2, 
2〉 < 0, and we see that

〈
1, 
2〉2 ≥ 〈
1, 
1〉 · 〈
2, 
2〉 .
If, on the other hand, 〈
2, 
2〉 = 0, then the displayed inequality is obvious.

If we relax the hypothesis to consider 
2, . . . , 
d in the closure of K(Σ), then the
desired inequality continues to hold by continuity, as in [AHK18, Theorem 8.8]. �

Theorem 1.4. For any matroid M, the h-vector of the broken circuit complex of
M is log-concave.
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Proof. It suffices to assume that M is loopless and coloopless. The classes γ = γi
and δ = δi are pullbacks of the nef classes α = αi ∈ A1(ΣM) and α = αi ∈ A1(ΔE),
along the two maps π : ΣM,M⊥ → ΣM and μ : ΣM,M⊥ → ΔE , respectively. The
pullback of a convex function on a fan is convex, so both γ and δ are represented by
convex functions on the conormal fan. Since K(ΣM,M⊥) is nonempty by Proposition
2.20, we see that γ and δ are in the closure of K(ΣM,M⊥), following the discussion
at the end of Section 5.1. By Theorem 1.2, we have

hr−k(BC(M)) = degΣ
M,M⊥ (γkδn−k−1) = 〈γ, δ〉L ,

where L = γk−1δn−k−2. Since ΣM,M⊥ is Lefschetz by Theorem 5.28, the log-concave
inequalities follow from Theorem 5.29. �

Remark 5.30. In the above proof of Theorem 1.4, our use of the existence of
the bipermutohedron (Proposition 2.20) can be avoided. The toric Chow lemma
[CLS11, Theorem 6.1.18] guarantees that the conormal fan has a refinement that
is the normal fan of a polytope, and we may apply the same argument to that
refinement.
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