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Abstract. The harmonic polytope and the bipermutahedron are two related polytopes that

arose in the Lagrangian geometry of matroids. We study the bipermutahedron. We show

that it is a simple polytope whose faces are in bijection with the vertex-labeled and edge-

labeled multigraphs with no isolated vertices; the generating function for its f -vector is a

simple evaluation of the three variable RogersŰRamanujan function.

We introduce the biEulerian polynomial, which counts bipermutations according to their

number of descents, and equals the h-polynomial of the bipermutahedral fan. We construct

a unimodular triangulation of the product ∆× · · · ×∆ of triangles that is combinatorially

equivalent to (the triple cone over) the bipermutahedral fan. Ehrhart theory then gives us a

formula for the biEulerian polynomial, which we use to show that this polynomial is real-

rooted and that the h-vector of the bipermutahedral fan is log-concave and unimodal.

We describe all the deformations of the bipermutahedron; that is, the ample cone of the

bipermutahedral toric variety. We prove that among all polytopes in this family, the biper-

mutahedron has the largest possible symmetry group. Finally, we show that the Minkowski

quotient of the bipermutahedron and the harmonic polytope equals 2.

Keywords. Polytope, bipermutahedron, bipermutations, descents, f -vector, h-vector, uni-

modular triangulation, Ehrhart polynomial, real-rooted polynomial, deformation cone

Mathematics Subject Classifications. 52B20, 52B05, 05A15

1. Introduction

Motivated by the Lagrangian geometry of conormal varieties, the paper [ADH22] introduced the

conormal fanΣM,M⊥ of a matroidM Ű a Lagrangian counterpart of the Bergman fanΣM [AK06].

The authors of [ADH22] used the conormal fan ΣM,M⊥ to give new geometric interpretations of

the ChernŰSchwartzŰMacPherson cycle of a matroid M [LdMRS20] and of the h-vectors of

the broken circuit complex BC(M) and independence complex I(M) of M. Combined with

tools from combinatorial Hodge theory, they used this geometric framework to prove that these

∗Partially supported by National Science Foundation grant DMS-1855610 and Simons Fellowship 613384.
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h-vectors are log-concave, as conjectured by Brylawski and Dawson [Bry82, Daw84] in the

early 1980s.

In their construction of the conormal fan ΣM,M⊥ , the authors of [ADH22] encountered two

related polytopes associated to a positive integer n: the harmonic polytope Hn,n and the biper-

mutahedron Πn,n. In particular, the conormal fans ΣM,M⊥ of all matroids M on [n] live inside a

fan called the bipermutahedral fan Σn,n, and the fact that this fan is projective Ű that is, the ex-

istence of the bipermutahedron Ű is a fundamental step in the proof of Brylawski and DawsonŠs

log-concavity conjectures in [ADH22].

The harmonic polytope Hn,n is studied in [AE21]. The bipermutahedron Πn,n is the main

object of study of this paper. Its name derives from the fact that its vertices are in bijection with

the bipermutations of [n], which are the sequences of length 2n−1 containing one element of [n]
exactly once and every other element of [n] exactly twice.

Our main results are the following:

• Proposition 3.1 shows that the (d− 2)-faces of the nth bipermutahedron Πn,n are in bijec-

tion with the multigraphs on vertex set [d] and edge set [n] with no isolated vertices.

• Theorem 3.2 shows that the generating function for the face numbers of bipermutahedra

is a simple evaluation of the three variable RogersŰRamanujan function.

• Theorem 4.3 shows that the h-polynomial of the bipermutahedral fan Σn,n, which we call

the nth biEulerian polynomial, enumerates bipermutations according to their number of

descents.

• Theorem 5.1 constructs a unimodular triangulation of the product ∆n of n standard trian-

gles that is combinatorially isomorphic to (a triple cone over) the bipermutahedral

fan Σn,n.

• Theorem 6.2 uses the Ehrhart theory of∆n to express thenth biEulerian polynomialBn(x)
as the numerator of the generating function of the sequence

(
k

2

)n
.

• Theorem 6.3 shows that the biEulerian polynomial Bn(x) is real-rooted, and hence that

the h-vector of the bipermutahedral fan is log-concave and unimodal.

• Proposition 7.2 shows that among the polytopes whose normal fan is the bipermutahedral

fan Σn,n, the bipermutahedron Πn,n has the largest possible symmetry group.

• Proposition 8.2 describes all the polytopes whose normal fan is the bipermutahedral

fan Σn,n. This is the ample cone of the bipermutahedral toric variety XΣn,n
.

• Theorem 9.4 shows that the Minkowski quotient of the bipermutahedron and the harmonic

polytope is Πn,n/Hn,n = 2 in any dimension. This is the largest λ for which λHn,n is a

Minkowski summand of Πn,n.
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2. The bipermutahedral fan and the bipermutahedron

In this section we recall the deĄnition of the bipermutahedron and its (inner) normal fan, as

introduced in [ADH22]. Throughout the paper we Ąx a positive integer n ⩾ 2, and write

E = {1, . . . , n}.

Definition 2.1. A bipermutation on E is a sequence B = b1| . . . |b2n−1 of elements of E, such

that

1. one element k(B) = k of E appears exactly once in B, and

2. every other element i ̸= k of E appears exactly twice in B,

We will sometimes write the barred word for B by writing the non-repeated element k in

bold, and writing i for the second occurrence of i for each i ̸= k. For example, we rewrite the

bipermutation 2|3|2|1|3 as 2|3|2|1|3. We will use these two notations interchangeably.

There is a bijection between the bipermutations on [n] and the permutations of

{1, 1, 2, 2, . . . , n, n}: given a bipermutation B on [n] whose non-repeated element is k(B) = k,

simply add another k at the end of B. Therefore there are (2n)!/2n bipermutations on [n].
We consider two copies of Rn with standard bases {ei : i ∈ [n]} and {fi : i ∈ [n]},

respectively. We also consider their dual spaces, we call their dual bases {ei : i ∈ [n]} and

{fi : i ∈ [n]} as well. For any subset S of [n], we write

eS =
∑

i∈S

ei, fS =
∑

i∈S

fi,

and similarly for eS and fS . We also consider the pair of dual (n− 1)-dimensional vector space

Mn = {x ∈ Rn :
∑

i

xi = 0}, Nn := Rn/ReE.

The bipermutahedron and its normal fan live in Mn×Mn and in Nn×Nn, respectively. We begin

by introducing the latter, which we call the bipermutahedral fan. This fan plays an important

role in the Lagrangian geometry of matroids, because it is the most elegant simplicial fan that

we know which contains the conormal fan of every matroid on [n] [ADH22].

2.1. The bipermutahedral fan

Let p = (p1, . . . , pn) be an E-tuple of points in R2. The supporting line of p, denoted ℓ(p), is

the lowest line of slope −1 containing a point in p. For each point pi, the vertical and horizontal

projections of pi onto ℓ(p) will be labelled i. The bisequence of p, denoted B(p), is obtained by

reading the labels on ℓ(p) from right to left. See Figure 2.1 for an illustration.

Definition 2.2. The bipermutohedral fan ΣE,E is the conĄguration space of E-tuples of points

in the real plane modulo simultaneous translation, stratiĄed according to their bisequence.
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24

1

p1

35

p5

2

34 ℓ(p)

p4p2

p3

7−→ 34|2|35|1|24

Figure 2.1: An E-tuple of points p = (p1, . . . , p5) in the plane, their vertical and horizontal

projections onto the supporting line ℓ(p). The corresponding bisequence isB(p) = 34|2|35|1|24.

By letting the ith point in p = (p1, . . . , pn) have coordinates pi = (zi, wi), we may regard

p as a point in Nn × Nn. Then it is proved in [ADH22] that the bipermutahedral fan can be

described alternatively as follows.

Proposition 2.3. The bipermutahedral fan is the complete simplicial fan in Nn × Nn whose

maximal cones are

σB := {(z, w) ∈ Nn × Nn : the numbers z1 − zk, . . . , zn − zk, wk − w1, . . . , wk − wn are

weakly in the opposite order of the letters 1, . . . , n, 1, . . . , n in B}

for each bipermutation B of [n], where k = k(B) is the element appearing once in B.

For example, the maximal cone of the bipermutahedral fan Σ4,4 corresponding to the biper-

mutation 2|3|4|2|4|1|1 Ű which we rewrite as 2|3|4|2|4|1|1 Ű is given by the following inequalities

σ2|3|4|2|4|1|1 : z2 − z3 ⩾ 0 ⩾ z4 − z3 ⩾ w3 − w2 ⩾ w3 − w4 ⩾ z1 − z3 ⩾ w3 − w1.

2.2. Constructing the bipermutahedron

We now recall the construction of the bipermutahedron Πn,n from [ADH22]. For each bipermu-

tation B, we construct a vertex vB in Mn ×Mn as follows.

First, let k = k(B) be the element appearing only once in B, and consider the word ob-

tained by replacing the Ąrst and second occurrences of each i ̸= k with i and i respectively, and

replacing k with kk. Then identify this word with a bijection π = π(B):

π(B) : E ∪ E −→ {−(2n− 1),−(2n− 3), . . . ,−3,−1, 1, 3, . . . , (2n− 3), (2n− 1)}

that sends the letters of the word to −(2n− 1), . . . ,−1, 1, . . . , (2n− 1) in increasing order. For

example, the bipermutation 2|3|4|2|4|1|1 is sent to the bijection

2|3|4|2|4|1|1 7−→ 23342411 7−→ π =

(
2 3 3 4 2 4 1 1

−7 −5 −3 −1 1 3 5 7

)

with π(2) = −7, π(3) = −5, . . . , π(1) = 7.
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Next, to the bijection π we associate a vector uπ = (x, y) ∈ RE × RE with coordinates

xi = π(i) and yi = −π(i) for i ∈ E. Notice that uπ is on the hyperplane
∑

i∈E xi−
∑

i∈E yi = 0,

so we may deĄne the number sπ =
∑

i∈E xi =
∑

i∈E yi. Writing vectors (x, y) ∈ Rn ×Rn in a

2× n table whose top and bottom rows are x and y respectively, we have, for example,

u23342411 =
5 −7 −5 −1

−7 −1 3 −3
, sπ = −8.

Finally deĄne the vertex

vB = uπ(B) − sπ(B)(ek + fk).

For example,

v2|3|4|2|4|1|1 = u23342411 − s23342411(e3 + f3)

=
5 −7 −5 −1

−7 −1 3 −3
+ 8

0 0 1 0
0 0 1 0

=
5 −7 3 −1

−7 −1 11 −3

The row sums of vB equal 0, so vB ∈ Mn ×Mn.

Definition 2.4. The bipermutahedron on [n] is

Πn,n := conv{vB : B is a bipermutation on [n]} ⊂ Mn ×Mn.

Recall that the (inner) normal fan N (P ) of a polytope P in a vector space V is the complete

fan in the dual space V ∗ whose maximal cones are

σv = {w ∈ V ∗ : w(v) ⩽ w(x) for all x ∈ P}

for the vertices v of P . The face poset of N (P ) is anti-isomorphic to the face poset of P .

Theorem 2.5. [ADH22] The bipermutahedral fan is the normal fan of the bipermutahedron.

2.3. The face structure of the bipermutahedron.

Definition 2.6. A bisequence on E is a sequence B = B1| · · · |Bm of nonempty subsets of E,

called the parts of B, such that

1. every element of E appears in at least one part of B,

2. every element of E appears in at most two parts of B, and

3. some element of E appears in exactly one part of B.

A bisubset of E is a bisequence of length 2. A bipermutation of E is a bisequence of length

2n − 1. The poset of bisequences Bn consists of the bisequences on [n] ordered by adjacent

reĄnement, so B ⩽ B′ if B can be obtained from B′ by merging adjacent parts.
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For example 23|124 ⩽ 23|24|1 ⩽ 2|3|4|2|4|1|1 in the poset B4. The poset of bisequences

on E is a graded poset. Its k-th level consists of the bisequences of k+1 nonempty subsets of E,

and the top level consists of the bipermutations of E.

Proposition 2.7. [ADH22] The face poset of the bipermutahedron Πn,n is anti-isomorphic to

the poset of bisequences Bn; that is:

1. The faces of the bipermutahedron are in bijection with the bisequences on [n].

2. The dimension of the face labeled by B is one less than the number of parts of B.

3. Two faces F and F ′ of the bipermutahedron satisfy F ⊇ F ′ if and only if their bisequences

satisfy B ⩽ B′ in Bn.

Figure 2.2 shows the bipermutahedron Π2,2 and the bipermutahedral fan Σ2,2, with its faces

labeled by the bisequences on {1, 2}.

•
−3 3
−3 3

•
−3 3
1 −1

•
−1 1
3 −3

•

3 −3
3 −3

•
3 −3

−1 1

•
1 −1

−3 3 2|1|2

1|2|1

2|2|11|2|2

2|1|11|1|2

12

2|12

12|1

12|2

1|12

2|11|2

Figure 2.2: The bipermutahedron Π2,2 and its normal fan, the bipermutahedral fan Σ2,2.

The bipermutahedral fan is simplicial; that is, every d-dimensional face F is spanned by d
rays r1, . . . , rd. It is also unimodular; that is, the lattice F ∩ (Zn/Z× Zn/Z) is spanned by the

primitive lattice vectors along r1, . . . , rd [ADH22].

Dually, then, the bipermutahedron is a simple polytope; that is, every vertex is on exactly

2n − 2 edges. It is also a smooth or Delzant polytope; that is, the primitive rays along those

2n− 2 edges span the underlying lattice (Mn ×Mn) ∩ (Zn × Zn).
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Proposition 2.8. The bipermutahedron Πn,n is given by the following minimal inequality de-

scription in Rn × Rn:

∑

e∈[n]

xe = 0,

∑

e∈[n]

ye = 0,

∑

s∈S

xs +
∑

t∈T

yt ⩾ −
(
|S|+ |S − T |

)
·
(
|T |+ |T − S|

)
for each bisubset S|T of [n].

Proof. The Ąrst two equations hold, and determine a codimension two subspace perpendicular to

the lineality spaceR{eE, fE} ofN (Πn,n). The minimal inequality description is then determined

by the rays eS + fT for the bisubsets S|T , and each inequality is essential since the facets of the

bipermutahedron are in bijection with the bisubsets of [n].
Consider a bisubset S|T . The linear functional eS + fT is minimized for the facet of Πn,n

labeled by the bisequence S|T , and hence for any vertex vB indexed by a subsequence B reĄn-

ing S|T . Consider such a bisequence B and let k be its non-repeated element. Since k appears

only once in B, it only appears once in S|T , so (eS + fT )(ek + fk) = 1. Thus

(eS + fT )(vB) = (eS + fT )(uπ(B) − sπ(B)(ek + fk))

=
∑

s∈S

π(s) +
∑

t∈T

(−π(t̄))−
∑

t∈[n]

(−π(t̄))

=
∑

s∈S

π(s) +
∑

t∈[n]−T

π(t̄)

=
∑

s∈S

π(s) +
∑

t∈S−T

π(t̄)

is the sum of the values of the function π on S and S − T . To compute this sum, notice that

S|T = [(S − T ) ∪ (S ∩ T )] | [(S ∩ T ) ∪ (T − S)], so for any bipermutation B reĄning S|T ,

the word π(B) must contain the numbers (S − T ) ∪ (S − T ) ∪ (S ∩ T ) = S ∪ (S − T ) in the

Ąrst r positions and the numbers (S ∩ T )∪ (T −S)∪ (T − S) = (T −S)∪T in the last 2n− r
positions, where r = |S|+ |S − T | and 2n− r = |T |+ |T − S|. It follows that

∑

s∈S

π(s) +
∑

t∈S−T

π(t̄) = −(2n− 1)− (2n− 3)− · · · − (2n− 2r + 1)

= r(−2n+ r).

This completes the proof.

The original construction of the bipermutahedron Πn,n, given in Section 2.2, may seem

overly complicated at Ąrst sight. However, its inequality description is remarkably simple, and

reminiscent of that of the standard permutahedron when translated to pass through the origin
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in Rn:

∑

e∈[n]

xe = 0,

∑

s∈S

xs ⩾ − |S| · |E − S| for each subset ∅ ⊊ S ⊊ [n].

This makes one suspect that this might be one of the nicest polytopes whose normal fan is the

bipermutahedral fan Σn,n. We prove a precise statement to this effect in Proposition 7.2: the

bipermutahedron has the largest possible symmetry group.

Readers familiar with deformations of permutahedra, as studied by Postnikov [Pos09], may

wonder whether bipermutahedra belong to this family of polytopes; on the surface, they bear

many similarities. However, the bipermutahedron is not a deformation of a permutahedron.

One way to see this is to observe that the bipermutahedral fan has walls spanning hyperplanes

of the form xi + yi = xj + yj , which are not in the braid arrangement.

We know that deformations of permutahedra are in bijection with submodular functions

[Edm70, Fuj05]. In Section 8 we give an analogous description of the cone of deformations

of bipermutahedra.

3. The f -vector

In this section we compute the f -vector of the bipermutahedron. The formulas are slightly

simpler for the reverse sequence, the f -vector of the bipermutahedral fan. Recall that the f -

vector of a d-dimensional fan ∆ is f∆ = (f0, . . . , fd) where fi is the number of i-dimensional

faces of∆. A multigraph is a graph with possibly repeated edges and no loops; thus, a multigraph

on vertex set [d] and edge set [n] is a function from [n] to
(
[d]
2

)
.

Proposition 3.1. The f -vector of the bipermutahedral fan Σn,n is given by

fd−2(Σn,n) = # of multigraphs on vertex set [d] and edge set [n] and no isolated vertices

=
d∑

i=0

(−1)d−i

(
d

i

)(
i

2

)n

for 2 ⩽ d ⩽ 2n.

Proof. Each (d − 2)-dimensional face of Σn,n is indexed by a bisequence B of [n] with d − 1
parts. We can use it to construct a multigraph G(B) on vertex set [d] and edge set [n] as follows.

If e appears twice, in the ith and jth parts of B, let edge e connect vertices i and j. If e only

appears once, in the ith part of B, let edge e connect vertices i and d. The multigraphs that arise
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are those with no isolated vertices. An example for a 4-dimensional face of Σ5,5 is shown below.

B = 1|14|35|35|2 7−→ G(B) =

1

2

34

5

6

12

3

4

5

It is straightforward to recover the bisequence B from its associated multigraph G(B). This

proves the Ąrst claim.

We can then use the inclusion-exclusion formula to compute

fd−2(Σn,n) = (multigraphs on vertex set [d] and edge set [n] and no isolated vertices)

=
∑

S⊆[d]

(−1)|S|(multigraphs on V = [d], E = [n] where each vertex in S is isolated)

=
∑

S⊆[d]

(−1)|S|(multigraphs on V = [d]− S, E = [n])

=
∑

S⊆[d]

(−1)|S|
(
d− |S|

2

)n

,

giving the desired result.

We can give a more concise expression in terms of SokalŠs deformed exponential function

F (α, β) =
∑

n⩾0

αn β(
n

2
)

n!
,

which is an evaluation of the three variable RogersŰRamanujan function [Sok12]. This function

has been widely studied in complex analysis [Lan00, Liu98, MFB72] and statistical mechanics

[SS11, SS05, Sok12]. It also arises naturally in the computation of the Tutte polynomial and

arithmetic Tutte polynomials of the classical root systems [Ard07, ACH15].

Theorem 3.2. The double exponential generating function for the face numbers of the bipermu-

tahedral fans is
∑

n⩾0

∑

d⩾2

fd−2(Σn,n)
xd

d!

yn

n!
=

F (x, ey)

ex

Proof. Let

gd,n = # of multigraphs on V = [d], E = [n],

cd,n = # of multigraphs on V = [d], E = [n] that are connected,

id,n = # of multigraphs on V = [d], E = [n] that have no isolated vertices,
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and

G(x, y) =
∑

d,n⩾0

gd,n
xd

d!

yn

n!
, C(x, y) =

∑

d,n⩾0

cd,n
xd

d!

yn

n!
, I(x, y) =

∑

d,n⩾0

id,n
xd

d!

yn

n!

be their double exponential generating functions. The Exponential Formula for exponential gen-

erating functions [Sta99, Corollary 5.1.6] gives

G(x, y) = eC(x,y), I(x, y) = eC(x,y)−x,

since x is the generating function for the graph with one isolated vertex. It follows that

I(x, y) =
G(x, y)

ex
.

It remains to compute

G(x, y) =
∑

n,d⩾0

(
d

2

)n
xd

d!

yn

n!

=
∑

d⩾0

e(
d

2
)yx

d

d!

= F (x, ey),

implying the desired result.

Using Proposition 3.1 or 3.2 one easily computes the f -vector of the Ąrst few bipermutahedra:

f(Π1,1) = (1, 1),

f(Π2,2) = (1, 6, 6, 1),

f(Π3,3) = (1, 90, 180, 114, 24, 1),

f(Π4,4) = (1, 2520, 7560, 8460, 4320, 978, 78, 1).

4. The h-vector and the biEulerian polynomial

Recall that the h-vector of a d-dimensional simplicial fan ∆ is h∆ = (h0, . . . , hd) where

h0(x+ 1)d + · · ·+ hd(x+ 1)0 = f0x
d + · · ·+ fdx

0,

where f∆ = (f0, . . . , fd) is the f -vector of the fan ∆. This is a more economical encoding of the

f -vector, because the DehnŰSomerville relations guarantee that hi = hd−i for all i. The h-vector

is also geometrically signiĄcant: if ∆ is a rational, simplicial, complete fan, then the Poincaré

polynomial of the corresponding toric variety X∆ is the h-polynomial hdx
d+ · · ·+h0x

0 [Ful93,

Section 4.5] We now give a combinatorial interpretation of the h-vector of the bipermutahedral

fan.



combinatorial theory 2 (3) (2022), #1 11

Definition 4.1. Let B be a bipermutation on [n] whose non-repeated element is k(B) = k. The

descents of B are the ordinary descents of the barred word for B with respect to the linear order

1 < 2 < · · · < k − 1 < k < n < n− 1 < · · · < 2 < 1 < k + 1 < · · · < n− 1 < n,

where we interpret the non-repeated element k of B as being k (resp. k) when it is compared

with an element of [n] (resp. of [n]).
More explicitly, two consecutive elements i|j of B form a descent if one of the following

conditions holds:
a) i, j ∈ E and i > j, c) i ∈ E − k, j ∈ E − k and i > k,

b) i, j ∈ E and i < j, d) i ∈ E − k, j ∈ E − k and j < k,

Otherwise, i|j form an ascent of B. Let des(B) and asc(B) denote the number of descents and

ascents of B, respectively.

For example the bipermutation B = 5|4|5|2|3|1|4|1|2 = 5|4|5|2|3|1|4|1|2, where k = 3, has

Ąve descents: 5|4 (of type a), 4|5 (of type c), 5|2 (of type d), 3|1 (of type a), and 1|2 (of type b).

These are computed relative to the order 1 < 2 < 3 < 5 < 4 < 3 < 2 < 1 < 4 < 5. The

corresponding region σB of the bipermutahedral fan is given by the inequalities.

z5 − z3 ⩾ z4 − z3 ⩾ w3 − w5 ⩾ z2 − z3 ⩾ 0 ⩾ z1 − z3 ⩾ w3 − w4 ⩾ w3 − w1 ⩾ w3 − w2.

Definition 4.2. The nth biEulerian polynomial Bn(x) =
2n−2∑

i=0

b(n, i)xi is given by

b(n, i) = number of bipermutations of [n] with i descents, for 0 ⩽ i ⩽ 2n− 2.

The Ąrst few biEulerian polynomials are the following.

B1(x) = 1,

B2(x) = 1 + 4x+ x2,

B3(x) = 1 + 20x+ 48x2 + 20x3 + x4,

B4(x) = 1 + 72x+ 603x2 + 1168x3 + 603x4 + 72x5 + x6.

The biEulerian polynomial is analogous to the Eulerian polynomial An(x), which enumerates

the permutations of [n] according to their number of descents. The following result is analogous

to the fact that the h-polynomial of the permutahedral fan is the Eulerian polynomial.

Theorem 4.3. The h-polynomial of the bipermutahedral fan Σn,n is the nth biEulerian polyno-

mial.

Proof. If ∆ is a simplicial fan, then the h-vector of its normal fan can be computed in terms of

a line shelling [Zie95, Section 8], as follows. For a generic linear functional λ, we have

hm(∆) = # of regions of ∆ such that exactly m of their deĄning inequalities do not hold for λ.
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Let us then choose a generic vector (z, w) such that

w1 > w2 > · · · > wn >> z1 >> z2 >> · · · >> zn

and analyze these numbers using Proposition 2.3. For a bipermutation B, the region σB is cut

out by 2n − 2 inequalities, corresponding to the pairs of adjacent entries of B. For such a pair

of consecutive entries of B; there are four cases:

a) For i, j ∈ [n], the inequality does not hold if zi− zk < zj − zk; that is, zi < zj . This happens

precisely when i > j.

b) For i, j ∈ [n], the inequality does not hold if and only if wk−wi < wk−wj , that is, wj < wi.

This happens precisely when i < j.

c) For i ∈ [n]−k and j ∈ [n]− k, the inequality does not hold if and only if zi−zk < wk−wj .

The Ąrst term is much larger than the second in absolute value, so this inequality holds if and

only if zi − zk < 0, that is, if i > k.

d) For i ∈ [n]− k and j ∈ [n]−k, the inequality does not hold if and only if wk−wi < zj−zk.
The second term is much larger than the Ąrst in absolute value, so this this inequality holds

if and only if zj − zk > 0, that is, if j < k.

We conclude that the inequalities of the region σB that do not hold for (z, w) correspond

exactly to the descents of B. The desired result follows.

The DehnŰSommerville relations say that the h-vector of any simple polytope is symmetric

[Zie95]. For the bipermutahedron there is a simple combinatorial explanation for this equation,

in light of Theorem 4.3. If rev(B) is the reverse of the bipermutation B, then the descents of B

become ascents in rev(B) and viceversa. Therefore des(rev(B)) = 2n−2−des(B). This implies

that hi(Πn,n) = h2n−2−i(Πn,n).
Let the bipermutahedral variety Xn,n be the toric variety that corresponds to the bipermuta-

hedral fan Σn,n.

Corollary 4.4. The Poincaré polynomial of the bipermutahedral variety Xn,n is the biEulerian

polynomial.

Proof. This follows from the fact that the h-polynomial of a rational, simplicial, complete fan

equals the Poincaré polynomial of the corresponding toric variety [Ful93, Section 4.5].

5. The bipermutahedral triangulation of the product of triangles

In this section we construct a unimodular triangulation of the product of n triangles that is inti-

mately tied to the bipermutahedron. This will be used in the next section to Ąnd a formula for

the biEulerian polynomial, using the Ehrhart theory of this triangulation.
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Let e, f, g be the standard basis of R3, and consider the standard equilateral triangle and its

n-fold product in R3×n:

∆ := conv(e, f, g), ∆n := ∆× · · · ×∆
︸ ︷︷ ︸

n times

.

We identify R3n with Rn×Rn×Rn with standard bases {e1, . . . en}, {f1, . . . , fn}, {g1, . . . , gn},

respectively. We write vectors in R3×n as 3× n tables.

The polytope ∆n has 3n vertices, namely, the 0− 1 tables of shape 3×n having exactly one

1 in each column. These vertices are in bijection with the 3n pairs (S, T ) of subsets of [n] whose

union is [n] as follows:

vS,T :=





eE−S

fE−T

gS∩T



 for ∅ ⊆ S, T ⊆ [n], S ∪ T = [n].

For example

v235,1345 =





1 0 0 1 0
0 1 0 0 0
0 0 1 0 1



 .

Theorem 5.1. There is a unimodular triangulation of ∆n that is combinatorially isomorphic to

a triple cone over the bipermutahedral fan Σn,n.

Proof. Consider the composite map

π : R3×n π1−−→ R2×n π2−−→ Nn × Nn



u

v

w



 7−→

[
1− u

1− v

]

7−→

[
1− u

1− v

]

Notice that π maps the 3n − 3 vertices corresponding to the bisubsets S|T of [n] to the 3n − 3
rays of the bipermutahedral fan:

π : vS,T
π1−−→ eS + fT

π2−−→ eS|T ,

whereas π(v∅,E) = π(vE,∅) = π(vE,E) = 0. Also, the polytope ∆n lives in the 2n-dimensional

affine plane

P = {(u, v,w) ∈ R3×n : u1 + v1 + w1 = · · · = un + vn + wn = 1} ⊂ R3×n

and the restriction π1 : P → R2×n is a unimodular bijective transformation, which induces a

bijection between {vS|T : S|T is a bisubset of [n]} and {eS + fT : S|T is a bisubset of [n]}.

For each bipermutation B of [n], consider the (2n)-simplex TB ⊂ ∆n given by

TB := conv{v∅,E, vE,∅, vE,E, vS,T : S|T is a bisubset of B},
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where the 2n − 2 bisubsets of a bipermutation B = b1| · · · |b2n−1 are b1 . . . bk|bk+1 . . . b2n−1 for

1 ⩽ k ⩽ 2n− 2. For example,

T1|3|2|1|3 = conv{v∅,123, v123,∅, v123,123, v1,123, v13,123, v123,13, v123,3}.

Notice that TB is indeed a simplex because an affine dependence between these points would lead,

under the projection π to a linear dependence between the rays eS|T of the simplicial chamber σB.

1. We claim that

T := {TB : B is a bipermutation of [n]}

is a triangulation of the product of triangles ∆n. To prove it, we need to show that these

simplices cover ∆n, and that they intersect face-to-face; that is, any two of them intersect

in a common face.

a) T covers ∆n.

Given a point p ∈ ∆n, consider its image π(p) inNn×Nn. The image of the simplex∆n

is π(∆n) = conv{eS|T : S|T is a bisubset of [n]}. Therefore, choosing B to be a bi-

permutation such that π(p) is in the chamber σB = cone{eS|T : S|T is a bisubset of B}
of Nn × Nn, we must have

π(p) ∈ conv{0, eS|T : S|T is a bisubset of B}.

This means that there are scalars λS|T ⩾ 0 with
∑

S|T λS|T ⩽ 1 such that

π(p) =
∑

S|T⊆B

λS|T eS|T in Nn × Nn,

using the symbol ⊆ for bisubsets. Therefore there are unique scalars λ and µ such that

π1(p) =
∑

S|T⊆B

λS|T (eS + fT ) + λeE + µfE in R2×n. (5.1)

so

π1(p) =
∑

S|T⊆B

λS|T (eS + fT ) + a(e∅ + fE) + b(eE + f∅) + c(eE + fE) in R2×n.

for any scalars a, b, c with b+ c = λ and a+ c = µ. Recall π1 is a bijection from P to

R2×n, so

p =
∑

S|T⊆B

λS|TvS,T + a v∅,E + b vE,∅ + c vE,E in R3×n.

This expresses p as a linear combination of the vertices of the simplex TB. To conclude

that p ∈ TB, we need the coefficients of the right hand side to be non-negative and add

up to 1. The second condition is satisĄed uniquely by the choices

a = 1−
∑

S|T⊆B

λS|T −λ, b = 1−
∑

S|T⊆B

λS|T −µ, c = λ+µ+
∑

S|T⊆B

λS|T − 1;
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we need to show that they are non-negative. To do that, we analyze (5.1) more closely.

Let B = b1| . . . |b2n−1. Then b1 ∈ S for any bisubset S|T of B, so the coefficient of eb1
in (5.1) is

∑

S|T⊆B

λS|T + λ = [eb1 ]π1(p)

= 1− [eb1 ]p

⩽ 1,

where the inequality follows from the fact that p ∈ ∆n, which lies in the positive

orthant. Similarly, the coefficient of fb2n−1
is

∑

S|T⊆B

λS|T + µ = [fb2n−1
]π1(p)

= 1− [fb2n−1
]p

⩽ 1,

Finally, if k = k(B) is the element that appears only once in B, then for any bisubset

S|T of B, the element k appears in S or in T but not in both. Therefore the sum of the

coefficients of ek and fk in (5.1) is

∑

S|T⊆B

λS|T + λ+ µ = [ek]π1(p) + [fk]π1(p)

= 2− [ek]p− [fk]p

= 1 + [gk]p

⩾ 1.

We conclude that a, b, c ⩾ 0, and p is indeed covered by the simplex TB, as desired.

b) The simplices in T intersect face-to-face.

Consider two simplices TB1
, TB2

of T, and let p be any point in their intersection

TB1
∩ TB2

. Then its projection in Nn × Nn satisĄes π(p) ∈ σB1
∩ σB2

= cone{eS|T :
S|T is a bisubset of B1 and B2} since Σn,n is a triangulation. Then p ∈ conv(vS|T :
S|T is a bisubset of B1 and B2} analogously to the argument above. It follows that

TB1
∩ TB2

= conv(vS|T : S|T is a bisubset of B1 and B2},

which is a common face of TB1
and TB2

.

2. Now we prove that T is unimodular. Consider a simplex TB corresponding to a bipermuta-

tion B. We know [ADH22] that the cone σB is unimodular, so {eS|T : S|T ⊆ B} is a basis

for the lattice (Zn/Z)⊕ (Zn/Z). It follows that {eS + fT : S|T ⊆ B}∪{e∅+ fE, eE + f∅}
is a basis for Zn⊕Zn. Since π is a unimodular bijective transformation between Z3×n∩P
and Zn ⊕ Zn, it follows that the edges coming out of the vertex vE,E of TB are a basis for

Z3×n ∩ P , as desired.
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3. It remains to observe that the map TB 7→ σB is a bijection between the facets of the tri-

angulation T and the facets of the fan Σn,n, and their patterns of intersection are identical

thanks to the observation 1b. above. Combinatorially, the only difference between them

is that triangulation T has the three cone points v∅,E, vE,∅, vE,E .

The bipermutahedral triangulation of ∆n is an analog of what we might call the permuta-

hedral triangulation of the cube □n = [0, 1]n, that we now describe. The braid arrangement

is given by the hyperplanes xi = xj in Rn, and deĄnes the braid or permutahedral fan. This

fan has n! full-dimensional chambers corresponding to the possible total linear orders of the

coordinates of a point in Rn. The braid fan induces a unimodular triangulation of the unit cube

□n = [0, 1]n into n! simplices, which is combinatorially isomorphic to the cone over the permu-

tahedral fan. [DLRS10]

6. A formula for the biEulerian polynomial and real-rootedness.

Recall that the Ehrhart polynomial ehrP (k) of a d-dimensional lattice polytopeP inRn is deĄned

by

ehrP (k) = |kP ∩ Zn|

and the Ehrhart h∗-polynomial h∗
P (x) is deĄned by

∑

k⩾0

ehrP (k)x
k =

h∗
P (x)

(1− x)d+1
.

If P has a unimodular triangulation, then its h∗-polynomial can be computed combinatorially as

follows.

Theorem 6.1. [BR15, Theorem 10.3] If T is a unimodular triangulation of a lattice polytope P ,

then

h∗
P (x) = hT(x).

Applying this to the bipermutahedral triangulation of the product of n triangles constructed

in Theorem 5.1, we get the following result.

Theorem 6.2. The biEulerian polynomial Bn(x) is given by

Bn(x)

(1− x)2n+1
=

∑

k⩾0

(
k + 2

2

)n

xk

Proof. Consider the bipermutahedral triangulation of the product ∆n of n triangles of Theorem

5.1, which is unimodular. The Ehrhart polynomial of ∆n is

ehr∆n(k) = (ehr∆(k))
n =

(
k + 2

2

)n

,
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so the series in the right hand side of the statement is the Ehrhart series of ∆n, and the numerator

of the left hand side is its h∗-polynomial, which equals the h-polynomial of the unimodular

triangulation T by Theorem 6.1.

Now, the triangulation T is combinatorially isomorphic to a triple cone over the bipermu-

tahedral fan. Furthermore, since the f -polynomials of a simplicial complex ∆ and its cone c∆
are related by fc∆(x) = (x + 1)f∆(x), their h-polynomials are identical. Therefore

hT(x) = hΣn,n
(x) = Bn(x), as desired.

Theorem 6.3. The biEulerian polynomial Bn(x) is real-rooted. Consequently the h-vector of

the bipermutahedral fan is log-concave and unimodal.

Proof. Wagner [Wag92] deĄned a (non-linear) operator W : R[x] → R[x] by the rule f 7→ W f ,

where
W f(z)

(1− z)degf+1
=

∑

k⩾0

f(k)zk

He also showed [Wag92, Theorem 0.2] that if f and g are polynomials such that all the roots of

W f and W g are real and non-positive, then all the roots of W (fg) are real and non-positive as

well. Since

W

(
x+ 2

2

)

= B1(x) = 1

satisĄes this condition vacuously, then

W

((
x+ 2

2

)n)

= Bn(x)

satisĄes it as well. Finally we remark that the coefficients of a real-rooted polynomial are log-

concave; and if they are positive, then they are unimodal. [Brä15, Lemma 1.1]

Since the biEulerian polynomial has non-negative coefficients, and it is symmetric and real-

rooted, it follows that it is γ-positive [Brä06]. This means that there exist non-negative integers

γi such that

Bn(x) =
n−1∑

i=0

γix
i(1 + x)2n−2−2i

We do not know a combinatorial interpretation of these coefficients.

The results in this section generalize known results for the Eulerian polynomial that we now

outline; more details can be found in [BS18, Sta99]. The permutahedral trianguilation of the

n-cube □n, described at the end of Section 5 is unimodular. Since the Ehrhart polynomial of the

n-cube is ehr□n
(k) = (k + 1)n and the h-polynomial of the permutahedral fan is the Eulerian

polynomial An(x), we obtain

An(x)

(1− x)n+1
=

∑

k⩾0

(k + 1)nxk.

The real-rootedness of An(x) follows from this identity in the same way as above.
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7. Symmetries

The simple inequality description of the bipermutahedron given in Proposition 2.8 makes us

suspect that Πn,n is one of the most elegant polytopes whose normal fan is the bipermutahedral

fan Σn,n. In this section we make this suspicion precise, proving in Proposition 7.2 that Πn,n is

maximally symmetric. Let Sn be the symmetric group on [n].

Proposition 7.1. The automorphism group of the permutahedral fan Σn,n is Sn × Z2 × R>0.

Proof. We will prove that the automorphisms of Σn,n are:

• the simultaneous action σ(z1, . . . , zn, w1, . . . , wn) = (zσ(1), . . . zσ(n), wσ(1), . . . , wσ(n)) of

a permutation σ ∈ Sn on the two factors of Nn × Nn.

• the swap f(z, w) = (w, z),

• the positive dilations f(z, w) = (rz, rw) for r > 0,

and their compositions. This will prove the desired result. The case n = 2 can be checked by

inspection of Figure 2.2, so we will assume hereon that n ⩾ 3.

Consider any automorphism g ∈ GL(Nn × Nn) of the bipermutahedral fan. Rescaling g by

a positive constant does not affect the invariance of Σn,n, so we may assume that g is unimod-

ular; that is, det g = ±1. Consider the hyperplanes spanned by the walls of the permutahedral

fan; the automorphism g must send each one of these spanned hyperplanes to another spanned

hyperplane. The codimension 1 faces of Σn,n lie on hyperplanes of four types:

1. zi + wi = zj + wj, 2. zi = zj, 3. wi = wj, 4. zi − zk = wk − wj (7.1)

for i, j, k ∈ [n]. Let us count the number of codimension 1 faces of Σn,n on each of these

hyperplanes.

1. The codimension 1 faces on hyperplane zi+wi = zj+wj are those indexed by bisequences

of the form b1| . . . |i| . . . |j| . . . |b2n−2. These are in bijection with the permutations of the

multiset ([n]− i− j) ∪ ([n]− i− j) ∪ i ∪ j, so the number of them is (2n− 2)!/2n−2.

2. The codimension 1 faces on hyperplane zi = zj are indexed by bisequences of three types:

a) Bisequences of the form b1| . . . |ij| . . . |b2n−2 where the Ąrst i and the Ąrst j are in

the same block. To specify such a bisequence, we need to choose the element k that

appears only once, and then choose a permutation of the multiset ([n]− i− j − k) ∪
([n]− i− j − k) ∪ k ∪ ij ∪ i ∪ j where ij precedes both i and j. There are (n− 2) ·
[(2n− 2)!/2n−3]/3 such choices.

b) Bisequences of the form b1| . . . |ij| . . . |b2n−2 where the Ąrst i and j are in the same

block. These are in bijection with the permutations of the multiset ([n] − i − j) ∪
([n]− i− j) ∪ ij ∪ i where ij precedes i. There are [(2n − 2)!/2n−2]/2 such permu-

tations.
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c) Bisequences of the form b1| . . . |ij| . . . |b2n−2 where i and the Ąrst j are in the same

block. Similarly, there are [(2n− 2)!/2n−2]/2 of them.

Adding these together, we obtain that the total number of codimension 1 faces on this

hyperplane is (2n− 1)!/(3 · 2n−2).

3. The number of codimension 1 faces on hyperplane wi = wj is also (2n− 1)!/(3 · 2n−2).

4. The codimension 1 faces on hyperplane zi − zk = wk − wj are those indexed by bise-

quences of the form b1| . . . |ij| . . . |k| . . . |b2n−2 where the Ąrst i and the second j are in

the same block. They correspond to the permutations of the multiset ([n]− i− j − k) ∪
([n]− i− j − k) ∪ k ∪ ij ∪ i ∪ j where ij comes after j but before i. Thus there are

[(2n− 2)!/2n−3]/6 such faces.

The numbers (2n− 2)!/2n−2, (2n− 1)!/(3 · 2n−2) and [(2n− 2)!/2n−3]/6 are different for

n ⩾ 3. Therefore, in the nomenclature of (7.1), the automorphism g must map hyperplanes of

type 1 to hyperplanes of type 1, it must map hyperplanes of type 4 to hyperplanes of type 4, and

it must map hyperplanes of types 2 and 3 to hyperplanes of types 2 and 3.

Let xi = zi+wi and consider the braid arrangement given by hyperplanes xi = xj for i ̸= j.
These are the hyperplanes of type 1 above, so the automorphism g must leave this arrangement

invariant. The hyperplanes x1 = x2, x2 = x3, . . . , xn−1 = xn cut out precisely two chambers

of the braid arrangement, namely x1 > x2 > · · · > xn and x1 < x2 < · · · < xn. Therefore

the images of these n − 1 hyperplanes under the automorphism g must also cut out two cham-

bers of the braid arrangement; thus they must be of the form xσ(1) = xσ(2), xσ(2) = xσ(3), . . . ,
xσ(n−1) = xσ(n), respectively, for some permutation σ ∈ Sn.

The action of g on Nn×Nn is equivalent to the action of g on the dual space Mn×Mn where

if m ∈ Mn ×Mn then g ·m is given by g ·m(n) = m(g−1 · n) for n ∈ Nn × Nn. Consider the

normal vectors ±(di − dj) to hyperplane xi = xj , where di := ei + fi ∈ Mn ×Mn. To preserve

lengths, g must send di − di+1 to one of the vectors ±(dσ(i) − dσ(i+1)). To preserve the angles

between these vectors Ű computed through their dot products Ű we must have one of two cases:

1) g ·(d1−d2) = dσ(1)−dσ(2), g ·(d2−d3) = dσ(2)−dσ(3), . . . , g ·(dn−1−dn) = dσ(n−1)−dσ(n)

or

2) g ·(d1−d2) = dσ(2)−dσ(1), g ·(d2−d3) = dσ(3)−dσ(2), . . . , g ·(dn−1−dn) = dσ(n)−dσ(n−1)

Let us assume that we are in the Ąrst case. Since g maps hyperplanes of types 2 and 3 to each

other, it maps its normal vectors ±(ei − ej) and ±(fi − fj) to each other. Therefore,

g · (ei + fi − ei+1 − fi+1) = eσ(i) + fσ(i) − eσ(i+1) − fσ(i+1)

can only hold if

1a) g · (ei − ei+1) = eσ(i) − eσ(i+1), g · (fi − fi+1) = fσ(i) − fσ(i+1) for all i,

or

1b) g · (ei − ei+1) = fσ(i) − fσ(i+1), g · (fi − fi+1) = eσ(i) − eσ(i+1) for all i.
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In case 1a), g acts like the same permutation σ on the Ąrst and second factors of Nn × Nn.

In case 1b), g acts as above, followed by the swap map s(z, w) = (w, z). These are indeed

automorphisms of Σn,n.

In cases 2), g acts as in 1a) or 1b), followed by the transformation r(z, w) = −(z, w). How-

ever, r is not an automorphism of the bipermutahedral fan. To see this, choose a bisubset S|T
with S, T ̸= [n] and S ∩ T ̸= ∅; this is possible for n ⩾ 3. Then r maps the ray eS + fT
of Σn,n to eE−S + fE−T , which is not a ray of Σn,n. Therefore cases 2a) and 2b) do not lead to

automorphisms of Σn,n. The desired result follows.

Proposition 7.2. The automorphism group of the bipermutahedron Πn,n is Sn ×Z2. This is the

largest automorphism group among all polytopes whose normal fan is the bipermutahedral fan.

Proof. We begin by noting that the automorphism group of the bipermutahedron Πn,n is a sub-

group of the automorphism group of its normal fan Σn,n, which is Sn × Z2 × R>0. It is clear

from the inequality description of Proposition 2.8 that the bipermutahedron Πn,n is Ąxed by

the simultaneous action of a permutation on both factors of Mn × Mn, and by the swap map

s(z, w) = (w, z). On the other hand, dilations by positive constants other than 1 cannot pre-

serve a polytope. In view of Proposition 7.1, the result follows.

8. The type and ample cones: deformations of the bipermutahedron

Our next goal is to describe all the polytopes whose normal fan equals (or coarsens) the biper-

mutahedral fan Σn,n. A priori it is not clear that there exists a polytope with a given normal fan.

In the case that interests us, namely the bipermutahedral fan Σn,n, we do know that the bipermu-

tahedron Πn,n is one such polytope. The type cone of Σn,n Ű which corresponds to the nef cone

of the corresponding toric variety Ű is the set of polytopes whose normal fan equals or coarsens

Σn,n. It is a cone because it is closed under positive dilation and under Minkowski sums. The

polytopes in this family are the deformations of the bipermutahedron. The (non-empty) ample

cone consists of the polytopes whose normal fan equals Σn,n.

We will show that the type cone of the bipermutahedral fan is cut out by two kinds of in-

equalities:

A) Supermodular inequalities: LetB = b1| · · · |bh−1|ij|bh+1| · · · |b2n−2 be a bisequence of length

2n − 2 consisting of 2n − 3 singletons and one pair, and let S = {b1, . . . , bh−1} and

T = {bh+1, . . . , b2n−1}. The corresponding supermodular inequality is

IB(h) :=
(
h(S|ijT ) + h(Sij|T )

)
−

(
h(Si|Tj) + h(Sj|T i)

)
⩾ 0

B) Up-down inequalities: Let B = b1| . . . |i| . . . |j| . . . |b2n−2 be a bisequence of length 2n − 2
consisting of 2n − 2 singletons, where the non-repeated elements are i and j. Let

B = b1| . . . |i|i| . . . |j|j| . . . |b2n−2, where as usual we write h and h for the Ąrst and sec-

ond occurrences of each number h in B.

Consider the mth bisubset S|T of B where S = {b1, . . . , bm} and T = {bm+1, . . . , b2n−2}.

If bm is unbarred and bm+1 is barred in B, we say S|T is an up bisubset of B, and write
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S|T ⋞ B. If bm is barred and bm+1 is unbarred in B, we say S|T is a down bisubset of B,

and write S|T ≼ B. Then the up-down inequality associated to B is:

IB(h) :=
( ∑

S|T≼B

h(S|T )
)

−
( ∑

S|T⋞B

h(S|T )
)

⩾ 0.

Example 8.1. The following are examples of supermodular and up-down inequalities for n = 7.

A) If B = 7|2|3|4|2|14|5|1|5|6|6|7 then the corresponding supermodular inequality is

h(2347|14567) + h(12347|1567) ⩾ h(12347|14567) + h(2347|1567)

B) If B = 7|2|3|4|2|4|5|1|5|6|6|7 then B = 7|2|3|3|4|2|4|5|1|1|5|6|6|7 where we mark the up

switches (resp. down switches) from unbarred to barred (resp. from barred to unbarred)

elements in cyan (resp. magenta). Those switches determine the corresponding up-down

inequality:

h(237|124567) + h(2347|1567) + h(123457|67)

⩾ h(237|1234567) + h(2347|124567) + h(123457|1567) + h(1234567|67).

Proposition 8.2. The polytopes in Mn ×Mn whose normal fan is the bipermutahedral fan Σn,n

are those of the form

∑

e∈[n]

xe = 0,

∑

e∈[n]

ye = 0,

∑

s∈S

xs +
∑

t∈T

yt ⩾ h(S|T ) for each bisubset S|T of [n]

where the function h strictly satisĄes the supermodular and up-down inequalities.

Proof. There is a general Wall-Crossing Criterion [CLS11, Theorems 6.1.5Ű6.1.7] that de-

scribes the type cone of a convex fan Σ. Let us state it in the case of complete simplicial fans

Σ in a vector space N of dimension d. Let R(Σ) be a set of vectors that generate the rays of Σ,

with one vector for each ray. Let τ be a codimension 1 face of Σ, or wall, that separates two

full-dimensional chambers σ and σ′ of Σ. Consider the rays r1, . . . , rd−1, r, r
′ ∈ R(Σ) such that

τ = cone(r1, . . . , rd−1), σ = cone(r1, . . . , rd−1, r), σ′ = cone(r1, . . . , rd−1, r
′)

Up to scaling, there is a unique linear dependence of the form

c · r + c′ · r′ =
d−1∑

i=1

ci · ri (8.1)
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with c, c′ > 0. To the wall τ we associate the wall-crossing inequality

IΣ,τ (h) := c · h(r) + c′ · h(r′)−
d−1∑

i=1

ci · h(ri) ⩾ 0. (8.2)

Then the type cone of Σ consists of the polytopes in the dual space M = N∗ of the form

P (h) = {x ∈ M : r(x) ⩽ h(r) for all rays r ∈ R(Σ)}

for the functions h : R(Σ) → R that satisfy the wall-crossing inequalities (8.2).

Let us apply the Wall-Crossing Criterion (reversing all inequalities) to the bipermutahedral

fan Σn,n. It contains two kinds of walls, corresponding to the two possible kinds of bisequences

of length 2n− 2.

A) The wall τ given by bisequence b1| · · · |bh−1|ij|bh+1| · · · |b2n−1, which separates the cham-

bers σ and σ′ given by bipermutations

B = b1| · · · |i|j| · · · |b2n−1 and B′ = b1| · · · |j|i| · · · |b2n−1

for i ̸= j.

The rays r ∈ R(σ) − R(τ) and r′ ∈ R(σ′) − R(τ) are r = eSi|Tj and r′ = eSj|T i for the sets

S = {b1, . . . , bh−1} and T = {bh+1, . . . , b2n−1}. The equation (8.1) is

eSi|Tj + eSj|T i = eS|ijT + eSij|T

in this case, so the wall-crossing inequality is

h(Si|Tj) + h(Sj|T i) ⩽ h(S|ijT ) + h(Sij|T ).

B) The wall τ given by bisequence Bτ = b1| · · · |i| · · · |j| · · · |b2n−1, which separates the cham-

bers σ and σ′ with bipermutations

B = b1| · · · |i|i| · · · |j| · · · |b2n−1 and B′ = b1| · · · |i| · · · |j|j| · · · |b2n−1.

The wall-crossing inequality can be nicely understood in terms of a bipartite graph Γ(Bτ ),
deĄned as follows; see Figure 8.1 for an example.

• Vertices: The top vertices are the n distinct sets of the form {b1, . . . , bi} for

1 ⩽ i ⩽ 2n−2 and the bottom vertices are the n distinct sets of the form {bi, . . . , b2n−2}
for 1 ⩽ i ⩽ 2n− 2.

• Edges: Let Bτ = b1| . . . |i|i| . . . |j|j| . . . |b2n−2. Each of the 2n−1 bisubsets S|T of Bτ

induces an edge connecting the top vertex S to the bottom vertex T in Γ(Bτ ). The two

special edges e and e′ corresponding to the two splits at i|i and at j|j are drawn with

thick lines.
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• The spine: Since the splits of Bτ are linearly ordered, the edges of Γ(Bτ ) are linearly

ordered from left-to-right, and cannot cross. ThereforeΓ(Bτ ) has no cycles; and since it

has 2n vertices and 2n−1 edges, it is a tree. Thus there is a unique path that connects the

bottom left vertex [n] to the top right vertex [n]: its edges correspond to the places where

the permutation π(Bτ ) switches between barred and unbarred elements. Therefore this

path contains the two special edges e and e′. We call this the spine of Γ, and mark it

with thick lines, alternating in color between cyan and magenta; the special edges e
and e′ are both cyan.

Γ(7|2|3|4|2|4|5|1|5|6|6|7) =

1234567124567 14567 1567 567 67 7

7 27 237 2347 23457 1234571234567

Figure 8.1: The bipartite graph for

Bτ = 7|2|3|4|2|4|5|1|5|6|6|7 and Bτ = 7|2|3|3|4|2|4|5|1|1|5|6|6|7.

The rays r1, . . . , r2n−2 of τ correspond to the ordinary edges ofΓ and the rays r = R(σ)−R(τ)
and r′ = R(σ′) − R(τ) correspond to the two special magenta edges of Γ. Notice that the

alternating sum of the rays corresponding to the spine of Γ equals eE + fE = 0 in Nn × Nn.

In the example above this equality reads

e237|1234567 − e237|124567 + e2347|1234567 − e237|1567 + e123457|1567 − e123457|67 + e1234567|67 = 0.

in N7 × N7. This must be the unique wall-crossing dependence (8.1), so the wall-crossing

inequality for the wall τ is precisely the up-down inequality for the bisequence Bτ .

It is not at all clear from Proposition 8.2 whether a bipermutahedron exists; that is, whether

the ample cone (the interior of the type cone) of the bipermutahedral fan is non-empty. We do

know that it is non-empty, because it contains the support function Π(S|T ) = −
(
|S|+ |S−T |

)
·

(
|T |+ |T −S|

)
of the bipermutahedron. However, even with such a simple, explicit description,

it is not so easy to see why this function satisĄes the wall-crossing inequalities!

9. The Minkowski quotient of the bipermutahedron and the harmonic poly-

tope is 2

We have mentioned that the bipermutahedron is closely related to the harmonic polytope, de-

Ąned below and studied in detail in [AE21]. The harmonic fan is the coarsest fan with certain

properties required for a Lagrangian geometry of matroids in [ADH22]; but it is not simplicial,
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and that is another necessary property. The bipermutahedral fan is not canonical, but it is the

most elegant simplicial fan that we know reĄning the harmonic fan. For this reason, the conor-

mal fan of a matroid M on [n] was deĄned to be a subfan of the bipermutahedral fan Σn,n. For

a detailed discussion of this connection, see [AE21, Section 2.2] or [ADH22].

The bipermutahedron and the harmonic polytope are constructed so that their normal fans are

the bipermutahedral fan and the harmonic fan, respectively. Thus their support functions must

satisfy the wall-crossing inequalities of Section 8. It is instructive to verify these inequalities

directly, and we do so in this section. This computation has a stronger, unexpected consequence:

it implies that in any dimension, the Minkowski quotient of the bipermutahedron Πn,n and the

harmonic polytope Hn,n equals 2.

Proposition 9.1. The support function of the bipermutahedron Πn,n

Π(S|T ) = −
(
|S|+ |S − T |

)
·
(
|T |+ |T − S|

)
for each bisubset S|T of [n].

satisĄes the strict wall-crossing inequalities of the bipermutahedral fan.

Proof. We already know this statement must be true because the normal fan of the bipermuta-

hedron Πn,n is the bipermutahedral fan, so its support function Π must be in the ample cone of

Σn,n. However, we wish to give a direct proof that will allow us to derive a stronger result.

A) Supermodular inequalities: LetB = b1| · · · |bh−1|ij|bh+1| · · · |b2n−2 be a bisequence of length

2n − 2 consisting of 2n − 3 singletons and one pair. Let S = {b1, . . . , bh−1},

T = {bh+1, . . . , b2n−1}, s = |S|, t = |T |, and u = |S ∩ T |. Since i and j appear in the

hth part of B, each one appears at most once in the remaining entries of B, and at least one

of them must appear. Thus we have three cases, where the computations are straightforward:

(i) i and j appear on the same side of ij in B; say i, j ∈ S. In this case we have

|S| = s, |T ij| = t+ 2, |S ∩ (T ij)| = u+ 2,

|Sij| = s, |T | = t, |(Sij) ∩ T )| = u,

|Si| = s, |Tj| = t+ 1, |(Si) ∩ (Tj)| = u+ 1,

|Sj| = s, |T i| = t+ 1, |(Sj) ∩ (T i))| = u+ 1,

from which the corresponding supermodular inequality follows readily:

IB(Π) :=
(
Π(S|ijT ) + Π(Sij|T )

)
−

(
Π(Si|Tj) + Π(Sj|T i)

)

= − [s+ (s− u− 2)] · [(t+ 2) + (t− u)]

− [s+ (s− u)] · [t+ (t− u)]

+ [s+ (s− u− 1)] · [(t+ 1) + (t− u)]

+ [s+ (s− u− 1)] · [(t+ 1) + (t− u)]

= 2 > 0.
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(ii) i and j appear on different sides of ij in B; say i ∈ S and j ∈ T . Similarly,

IB(Π) = − [s+ (s− u− 1)] · [(t+ 1) + (t− u)]

− [(s+ 1) + (s− u)] · [t+ (t− u− 1)]

+ [s+ (s− u)] · [t+ (t− u)]

+ [(s+ 1) + (s− u− 1)] · [(t+ 1) + (t− u− 1)]

= 2 > 0.

(iii) Only one of i and j appears again in B; say i ∈ S and j /∈ S, T . Similarly,

IB(Π) = − [s+ (s− u− 1)] · [(t+ 2) + (t− u+ 1)]

− [(s+ 1) + (s− u+ 1)] · [t+ (t− u)]

+ [s+ (s− u)] · [(t+ 1) + (t− u+ 1)]

+ [(s+ 1) + (s− u)] · [(t+ 1) + (t− u)]

= 4 > 0.

B) Up-down inequalities: Let B = b1| . . . |i| . . . |j| . . . |b2n−2 be a bisequence of length 2n − 2
consisting of 2n − 2 singletons, where the non-repeated elements are i and j. Let

B = b1| . . . |i|i| . . . |j|j| . . . |b2n−2.

Proving that IB(Π) ⩾ 0 is more interesting in this case; we do it by interpreting this quantity

as an area. Let us draw a 2n× 2n square board whose rows and columns are indexed by the

entries ofB, and draw a vertical and horizontal lines where there are switches between barred

and unbarred labels. There is one intersection point along the main diagonal for each switch,

and thus for each term of the wall-crossing inequality IB(Π) ⩾ 0. Figure 9.1 illustrates this

construction for B = 7|2|3|4|2|4|5|1|5|6|6|7.

Let us analyze one of the terms Π(S|T ) = −
(
|S| + |S − T |

)
·
(
|T | + |T − S|

)
of the

inequality, corresponding to a switch between a barred and an unbarred element in B, and to

an intersection point p along the diagonal. Since the bisubset at that switch equals S|T and i
precedes i for all i, the rows above p are indexed by S∪S − T while the columns to the right

of p are indexed by (T − S) ∪ T . Therefore −Π(S|T ) is precisely the area of the rectangle

going from p to the top right corner of the square. In the example of Figure 9.1, for the switch

from 4 to 2, we have −Π(2347|124567) = (|2347|+ |3|) · (|124567|+ |156|) = 5 · 9 = 45.

Thus we may interpret the up-down inequality associated to B

IB(Π) :=
( ∑

S|T≼B

Π(S|T )
)

−
( ∑

S|T⋞B

Π(S|T )
)

⩾ 0.

as an alternating sum of areas that should be positive. This is best understood

graphically, as shown in Figure 9.2. The Ągure veriĄes the up-down inequality for

B = 7|2|3|4|2|4|5|1|5|6|6|7, namely

Π(237|124567) + Π(2347|1567) + Π(123457|67)

⩾ Π(237|1234567) + Π(2347|124567) + Π(123457|1567) + Π(1234567|67),
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Figure 9.1: The table for B = 7|2|3|4|2|4|5|1|5|6|6|7
and the area interpretation of −Π(2347|124567).

but this graphical argument is entirely general.

The inequality in this graphical computation deserves an explanation. In the (2i+ 1)th col-

umn, we are sliding up i (negative) magenta rectangles, replacing them with i new magenta

rectangles of larger total area; this is because every row index j that appeared among the Ąrst

i rectangles, the row index j Ű which precedes j in B Ű must also appear among the second

i rectangles. The same argument holds for the rows.

The last equality also deserves an explanation. The k × k grid of cyan rectangles and the

k × k grid of magenta rectangles both have area n2, because their column labels and row

labels are either {1, . . . , n} or {1, . . . , n}.

Finally, let us remark that the last step actually shows the stronger inequality

IB(Π) ⩾ n,

since the smallest possible area of a set of squares whose side lengths are integers adding up

to n is 12 + · · ·+ 12 = n.

Though it is perhaps less enlightening, we may rewrite this argument algebraically as follows.

Let a1, a2, . . . , a2k−1, a2k be the lengths of the consecutive strings of barred and unbarred

subsequences of B; these are the lengths of the segments along the edges of the square. For
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≥

 >��

Figure 9.2: The up-down inequality IB(Π) ⩾ 0 for B = 7|2|3|4|2|4|5|1|5|6|6|7. Positive areas

are shown in cyan and negative areas are shown in magenta.

B = 7|2|3|4|2|4|5|1|5|6|6|7we have (a1, . . . , a8) = (3, 1, 1, 2, 2, 2, 1, 2). Then IB(Π) equals

∑

i odd

(∑

j⩽i

aj

)(∑

j>i

aj

)

−
∑

i even

(∑

j⩽i

aj

)(∑

j>i

aj

)

=
∑

2i+1<2j

a2i+1a2j −
∑

2i<2j+1

a2ia2j+1

=
(∑

a2i+1a2j

)

− 2
( ∑

2i<2j+1

a2ia2j+1

)

⩾

(∑

a2i+1a2j

)

− 2
( ∑

2i+1<2j+1

a2i+1a2j+1

)

=
(∑

a2i+1

)(∑

a2j

)

−
(∑

a2i+1

)2

+
(∑

a22i+1

)

=
∑

a22i+1 > 0,

where we are using that for any j we have a1 + a3 + · · ·+ a2j−1 ⩾ a2 + a4 + · · ·+ a2j since

i precedes i in B for all i, and a1 + a3 + · · ·+ a2k−1 = a2 + a4 + · · ·+ a2k = n.

As shown in [AE21], the harmonic polytope Hn,n is given by the following minimal inequal-



28 Federico Ardila

ity description:

∑

e∈[n]

xe =
n(n+ 1)

2
+ 1,

∑

e∈[n]

ye =
n(n+ 1)

2
+ 1,

∑

s∈S

xs +
∑

t∈T

yt ⩾
|S|(|S|+ 1) + |T |(|T |+ 1)

2
+ 1 for each bisubset S|T of [n].

We translate it by the vector −(n+1
2

+ 1
n
)(eE + fE) so that it lands on the subspace Mn × Mn

given by
∑

e∈[n] xe =
∑

e∈[n] ye = 0; we leave it to the reader to verify that the resulting support

function is the one described in the following proposition.

Proposition 9.2. Let f(x) = x
(
x−n
2

− 1
n

)
. The support function of the translated harmonic

polytope

H(S|T ) = f(|S|) + f(|T |) + 1 for each bisubset S|T of [n]

satisĄes the weak wall-crossing inequalities of the bipermutahedral fan.

Proof. Again, we already know this statement must be true because the normal fan of the har-

monic polytope is a coarsening of the bipermutahedral fan [AE21], so its support function H
must be in the type cone ofΣn,n. However, giving a direct proof will allow us to derive a stronger

result.

A) Supermodular inequalities: LetB = b1| · · · |bh−1|ij|bh+1| · · · |b2n−2 be a bisequence of length

2n − 2 that consists of 2n − 3 singletons and one pair. Let S = {b1, . . . , bh−1} and T =
{bh+1, . . . , b2n−1}. Let s = |S|, t = |T |, and u = |S ∩ T |. As in the proof of Proposition

9.1, we consider three cases:

(i) i and j appear on the same side of ij in B; say i, j ∈ S:

IB(H) :=
(
H(S|ijT ) +H(Sij|T )

)
−
(
H(Si|Tj) +H(Sj|T i)

)

=
(
f(s) + f(t+ 2)

)
+
(
f(s) + f(t)

)

−
(
f(s) + f(t+ 1)

)
−

(
f(s) + f(t+ 1)

)

= 1 > 0.

(ii) i and j appear on different sides of ij in B; say i ∈ S and j ∈ T :

IB(H) =
(
f(s) + f(t+ 1)

)
+
(
f(s+ 1) + f(t)

)

−
(
f(s) + f(t)

)
−
(
f(s+ 1) + f(t+ 1)

)

= 0.
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(iii) Only one of i and j appears again in B; say i ∈ S and j /∈ S, T :

IB(H) =
(
f(s) + f(t+ 2)

)
+
(
f(s+ 1) + f(t)

)

−
(
f(s) + f(t+ 1)

)
−

(
f(s+ 1) + f(t+ 1)

)

= 1 > 0.

B) Up-down inequalities: Let B = b1| . . . |i| . . . |j| . . . |b2n−2 be a bisequence of length 2n − 2
that consists of 2n − 2 singletons, where the non-repeated elements are i and j. Let B =
b1| . . . |i|i| . . . |j|j| . . . |b2n−2.

If the spine of the bipartite graph Γ(B) has vertex labels E = T1, S1, T2, S2, . . . , Tk, Sk = E,

then the up-down inequality reads

IB(H) = H(S1|T1)−H(S1|T2)+H(S2|T2)−H(S2|T3)+ · · · −H(Sk−1|Tk)+H(Sk|Tk)

= −
(
f(|S1|+ f(|T1|) + 1

)
+
(
f(|S1|+ f(|T2|) + 1

)

−
(
f(|S2|+ f(|T2|) + 1

)
+
(
f(|S2|+ f(|T3|) + 1

)

− · · ·

+
(
f(|Sk−1|+ f(|Tk|) + 1

)
−

(
f(|Sk|+ f(|Tk|) + 1

)

= − f(n)− f(n)− 1

= 1 > 0.

We conclude that H satisĄes all the wall-crossing inequalities.

It is said that Q is a weak Minkowski summand of P if the normal fan of Q reĄnes the normal

fan of P ; this is equivalent to the existence of a scalar λ such that λQ is a Minkowski summand

of P ; that is, there exists a polytope R such that P = λQ+ R. The following parameter makes

the situation more precise.

Definition 9.3. If P and Q are polytopes in Rd, we deĄne their Minkowski quotient

P/Q = max{λ ⩾ 0 : λQ is a Minkowski summand of P}.

Note that Q is a weak Minkowski summand of P if and only if P/Q > 0.

Theorem 9.4. The Minkowski quotient of the bipermutahedron and the harmonic polytope is

Πn,n/Hn,n = 2

for all integers n ⩾ 2.

Proof. If λHn,n is a Minkowski summand of Πn,n, we have Πn,n = λHn,n + R for a polytope

R. Since R is a Minkowski summand of Πn,n, its normal fan coarsens the bipermutahedral fan,

so R is in the type cone of the bipermutahedral fan Σn,n. It follows that its support function

R := Π− λH
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satisĄes the wall-crossing inequalities. Conversely, if R = Π − λH satisĄes the wall-crossing

inequalities, then it is the support function of a deformation R of the bipermutahedron such that

Πn,n = R + λHn,n, so λHn,n is a Minkowski summand of Πn,n. We conclude that

P/Q = max{λ ⩾ 0 : R = Π− λH satisĄes the wall-crossing inequalities of Σn,n}

Looking back at the proofs of Propositions 9.1 and 9.2 we obtain the following.

A) Supermodular inequalities: In the three cases (i), (ii), (iii), we have

(i) IB(R) = 2− λ, (ii) IB(R) = 2, (iii) IB(R) = 4− λ,

B) Up-down inequalities: We have

(i) IB(R) ⩾ n− λ.

The largest λ for which these numbers are non-negative is 2, as desired.

10. Future directions

We close with some open questions and future directions for the interested reader.

• The 1-skeleton of the permutahedron is the Hasse diagram of the symmetric group, which

has many elegant and useful properties. Is there an analogous poset or poset-like structure

on bipermutations?

• Find a combinatorial interpretation of the γ-coefficients of the biEulerian polynomial.

• Compute the volume and Ehrhart polynomial of the bipermutahedron.

• Theorem 9.4 suggests studying the polytope Πn,n− 2Hn,n, which is also a deformation of

the bipermutahedron. Does it have an interesting combinatorial structure?

• Is there a connection between the polytopes studied here and the generalized nested per-

mutahedra of Castillo and Liu [CL22]?

• Is there an analogous k-permutahedron for k ⩾ 3 with elegant combinatorial properties?

The geometric motivation for this paper only required the construction and study of the

bipermutahedron.
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