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Abstract. The harmonic polytope and the bipermutahedron are two related polytopes that
arose in the Lagrangian geometry of matroids. We study the bipermutahedron. We show
that it is a simple polytope whose faces are in bijection with the vertex-labeled and edge-
labeled multigraphs with no isolated vertices; the generating function for its f-vector is a
simple evaluation of the three variable Rogers—Ramanujan function.

We introduce the biEulerian polynomial, which counts bipermutations according to their
number of descents, and equals the h-polynomial of the bipermutahedral fan. We construct
a unimodular triangulation of the product A X --- x A of triangles that is combinatorially
equivalent to (the triple cone over) the bipermutahedral fan. Ehrhart theory then gives us a
formula for the biEulerian polynomial, which we use to show that this polynomial is real-
rooted and that the h-vector of the bipermutahedral fan is log-concave and unimodal.

We describe all the deformations of the bipermutahedron; that is, the ample cone of the
bipermutahedral toric variety. We prove that among all polytopes in this family, the biper-
mutahedron has the largest possible symmetry group. Finally, we show that the Minkowski
quotient of the bipermutahedron and the harmonic polytope equals 2.

Keywords. Polytope, bipermutahedron, bipermutations, descents, f-vector, h-vector, uni-
modular triangulation, Ehrhart polynomial, real-rooted polynomial, deformation cone

Mathematics Subject Classifications. 52B20, 52B05, 05A15

1. Introduction

Motivated by the Lagrangian geometry of conormal varieties, the paper [ADH22] introduced the
conormal fan Y\, 1 of amatroid M —a Lagrangian counterpart of the Bergman fan Y [AKO06].
The authors of [ADH22] used the conormal fan Xy . to give new geometric interpretations of
the Chern—Schwartz—MacPherson cycle of a matroid M [LdMRS20] and of the h-vectors of
the broken circuit complex BC' (M) and independence complex /(M) of M. Combined with
tools from combinatorial Hodge theory, they used this geometric framework to prove that these
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h-vectors are log-concave, as conjectured by Brylawski and Dawson [Bry82, Daw84] in the
early 1980s.

In their construction of the conormal fan Xy y., the authors of [ADH22] encountered two
related polytopes associated to a positive integer n: the harmonic polytope H,, ,, and the biper-
mutahedron I1,, ,,. In particular, the conormal fans Xy \+ of all matroids M on [n] live inside a
fan called the bipermutahedral fan ¥, ,,, and the fact that this fan is projective — that is, the ex-
istence of the bipermutahedron — is a fundamental step in the proof of Brylawski and Dawson’s
log-concavity conjectures in [ADH22].

The harmonic polytope H,, ,, is studied in [AE21]. The bipermutahedron II,, ,, is the main
object of study of this paper. Its name derives from the fact that its vertices are in bijection with
the bipermutations of [n], which are the sequences of length 2n — 1 containing one element of [n]
exactly once and every other element of [n] exactly twice.

Our main results are the following:

* Proposition 3.1 shows that the (d — 2)-faces of the nth bipermutahedron II,, ,, are in bijec-
tion with the multigraphs on vertex set [d] and edge set [n] with no isolated vertices.

* Theorem 3.2 shows that the generating function for the face numbers of bipermutahedra
is a simple evaluation of the three variable Rogers—Ramanujan function.

* Theorem 4.3 shows that the h-polynomial of the bipermutahedral fan >,, ,,, which we call
the nth biEulerian polynomial, enumerates bipermutations according to their number of
descents.

* Theorem 5.1 constructs a unimodular triangulation of the product A™ of n standard trian-
gles that is combinatorially isomorphic to (a triple cone over) the bipermutahedral
fan >, ,,.

* Theorem 6.2 uses the Ehrhart theory of A™ to express the nth biEulerian polynomial B,,(z)

as the numerator of the generating function of the sequence (£)".

* Theorem 6.3 shows that the biEulerian polynomial B, (z) is real-rooted, and hence that
the h-vector of the bipermutahedral fan is log-concave and unimodal.

* Proposition 7.2 shows that among the polytopes whose normal fan is the bipermutahedral
fan Y, ,,, the bipermutahedron IT,, ,, has the largest possible symmetry group.

* Proposition 8.2 describes all the polytopes whose normal fan is the bipermutahedral
fan X, ,,. This is the ample cone of the bipermutahedral toric variety Xy, .

* Theorem 9.4 shows that the Minkowski quotient of the bipermutahedron and the harmonic
polytope is I1,, .,/ H,,,, = 2 in any dimension. This is the largest A for which AH,, ,, is a
Minkowski summand of IT,, ,,.
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2. The bipermutahedral fan and the bipermutahedron

In this section we recall the definition of the bipermutahedron and its (inner) normal fan, as
introduced in [ADH22]. Throughout the paper we fix a positive integer n > 2, and write
E={1,...,n}.

Definition 2.1. A bipermutation on F is a sequence B = by| ... |by,_1 of elements of F, such
that

1. one element k(B) = k of E appears exactly once in B, and
2. every other element ¢ # k of E appears exactly twice in B,

We will sometimes write the barred word for B by writing the non-repeated element k in
bold, and writing i for the second occurrence of i for each i # k. For example, we rewrite the
bipermutation 2|3|2|1|3 as 2|3|2|1|3. We will use these two notations interchangeably.

There is a bijection between the bipermutations on [n] and the permutations of
{1,1,2,2,...,n,n}: given a bipermutation B on [n] whose non-repeated element is k(B) = £,
simply add another k at the end of B. Therefore there are (2n)! /2" bipermutations on [n].

We consider two copies of R™ with standard bases {e; : ¢ € [n|} and {f; : i € [n]},
respectively. We also consider their dual spaces, we call their dual bases {e; : ¢ € [n]} and
{fi : i € [n]} as well. For any subset S of [n], we write

€s = E €, fS = E fi7
€S s

and similarly for eg and fg. We also consider the pair of dual (n — 1)-dimensional vector space

M, ={z eR" : le =0}, N,, ;== R"/Reg.

The bipermutahedron and its normal fan live in M,, x M,, and in N,, x N,,, respectively. We begin
by introducing the latter, which we call the bipermutahedral fan. This fan plays an important
role in the Lagrangian geometry of matroids, because it is the most elegant simplicial fan that
we know which contains the conormal fan of every matroid on [n] [ADH22].

2.1. The bipermutahedral fan

Let p = (p1,...,pn) be an E-tuple of points in R?. The supporting line of p, denoted ¢(p), is
the lowest line of slope —1 containing a point in p. For each point p;, the vertical and horizontal
projections of p; onto ¢(p) will be labelled i. The bisequence of p, denoted B(p), is obtained by
reading the labels on ¢(p) from right to left. See Figure 2.1 for an illustration.

Definition 2.2. The bipermutohedral fan ¥, i, is the configuration space of £-tuples of points
in the real plane modulo simultaneous translation, stratified according to their bisequence.
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—  34]2/35|1]24

Figure 2.1: An E-tuple of points p = (pi,...,ps) in the plane, their vertical and horizontal
projections onto the supporting line ¢(p). The corresponding bisequence is B(p) = 34|2|35|1|24.

By letting the ith point in p = (py, ..., p,) have coordinates p; = (z;, w;), we may regard
p as a point in N,, x N,,. Then it is proved in [ADH22] that the bipermutahedral fan can be
described alternatively as follows.

Proposition 2.3. The bipermutahedral fan is the complete simplicial fan in N,, x N, whose
maximal cones are

og :={(z,w) € N,, x N,, : the numbers z1 — zg, ..., 2y, — 2k, Wg — W1, . .., W — Wy, are
weakly in the opposite order of the letters 1,...,n,1,... 7 in B}

for each bipermutation B of [n], where k = k(B) is the element appearing once in B.

For example, the maximal cone of the bipermutahedral fan >, 4 corresponding to the biper-
mutation 2|3|4|2|4|1|1 — which we rewrite as 2|3|4|2|4|1|1 —is given by the following inequalities

T9|3]4j204/1]1 29— 2320224 — 23 2 w3 —wy 2 w3 —wy 2 21 — 23 2 W3 — Wi.

2.2. Constructing the bipermutahedron

We now recall the construction of the bipermutahedron II,, ,, from [ADH22]. For each bipermu-
tation B, we construct a vertex vg in M,, x M,, as follows.

First, let & = k(B) be the element appearing only once in B, and consider the word ob-
tained by replacing the first and second occurrences of each i # k with i and ¢ respectively, and
replacing k with kk. Then identify this word with a bijection 7 = 7(B):

m(B): EUE — {—(2n—1),—(2n—3),...,-3,-1,1,3,...,(2n — 3),(2n — 1)}

that sends the letters of the word to —(2n —1),...,—1,1,...,(2n — 1) in increasing order. For
example, the bipermutation 2|3|4|2|4|1|1 is sent to the bijection

2|3|4|2’4|1|1l—>23§4ﬂ1Tl—>ﬂ:( 2 3 3 4 3 1 1 1)

-7 -5 -3 -1 1 3 5 7

with 7(2) = -7, 7(3) = —5,...,7(1) = 7.
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Next, to the bijection m we associate a vector u, = (z,y) € R¥ x R with coordinates
x; = m(i) and y; = —7 (i) fori € E. Notice that u, is on the hyperplane Y, ;—> ;cp yi = 0,
so we may define the number s, = >, o x; = >, ¥;. Writing vectors (z,y) € R" x R" ina
2 x n table whose top and bottom rows are x and y respectively, we have, for example,

5 =7 =5 -1

U9334241T = 7 1 3 _3) Sr = —8.

Finally define the vertex
UB = Ug(B) — SW(B)(ek + fk)

For example,

Va[3j4[214[1)1 = Ung3asmT — So3343m7(€3 + f3)
. 5 =7 =5 -1 48 0010
=7 =1 3 -3 001 0|

5 =7 3 -1
-7 -1 11 -3

The row sums of vg equal 0, so vg € M,, x M,,.

Definition 2.4. The bipermutahedron on [n] is
I, := conv{vg : B is abipermutation on [n]} C M,, x M,,.

Recall that the (inner) normal fan N'(P) of a polytope P in a vector space V' is the complete
fan in the dual space V* whose maximal cones are

o, ={we V" :wk) <w(r)forallz € P}
for the vertices v of P. The face poset of A/ (P) is anti-isomorphic to the face poset of P.

Theorem 2.5. [ADH22] The bipermutahedral fan is the normal fan of the bipermutahedron.

2.3. The face structure of the bipermutahedron.

Definition 2.6. A bisequence on E is a sequence B = By| - - - | B, of nonempty subsets of F,
called the parts of B, such that

1. every element of F appears in at least one part of B,
2. every element of F appears in at most two parts of B, and
3. some element of £ appears in exactly one part of B.

A bisubset of I is a bisequence of length 2. A bipermutation of E is a bisequence of length
2n — 1. The poset of bisequences B, consists of the bisequences on [n| ordered by adjacent
refinement, so B < B’ if B can be obtained from B’ by merging adjacent parts.
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For example 23|124 < 23|24|1 < 2|3|4/2|4/|1|1 in the poset By. The poset of bisequences
on F is a graded poset. Its k-th level consists of the bisequences of k£ + 1 nonempty subsets of £,
and the top level consists of the bipermutations of F.

Proposition 2.7. [ADH22] The face poset of the bipermutahedron 11,, ,, is anti-isomorphic to
the poset of bisequences B,,; that is:

1. The faces of the bipermutahedron are in bijection with the bisequences on [n)|.
2. The dimension of the face labeled by B is one less than the number of parts of B.

3. Two faces F and F' of the bipermutahedron satisfy ' O F' if and only if their bisequences
satisfy B < B in B,,.

Figure 2.2 shows the bipermutahedron 11, » and the bipermutahedral fan >, 5, with its faces
labeled by the bisequences on {1, 2}.

3 =3
3 =3
1]12
3 =3 -1 1
—1 1 3 =3
12
1 -1 -3 3
-3 3 1 —1
12[2
-3 3
-3 3

Figure 2.2: The bipermutahedron IIs » and its normal fan, the bipermutahedral fan X5 5.

The bipermutahedral fan is simplicial; that is, every d-dimensional face F' is spanned by d
rays rq, ..., 7q. It is also unimodular; that is, the lattice F' N (Z™/Z x Z"/7Z) is spanned by the
primitive lattice vectors along 71, ..., [ADH22].

Dually, then, the bipermutahedron is a simple polytope; that is, every vertex is on exactly
2n — 2 edges. It is also a smooth or Delzant polytope; that is, the primitive rays along those
2n — 2 edges span the underlying lattice (M,, x M,,) N (Z" x Z").
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Proposition 2.8. The bipermutahedron 11,,,, is given by the following minimal inequality de-
scription in R™ x R":

cefn]

>y =0,

celn]
sz + Zyt >—(|S|+1S—=T)- (|IT|+|T"—S|) foreach bisubset S|T of n].
ses teT

Proof. The first two equations hold, and determine a codimension two subspace perpendicular to
the lineality space R{eg, fz} of N'(Il,, ,). The minimal inequality description is then determined
by the rays eg + fr for the bisubsets S|T', and each inequality is essential since the facets of the
bipermutahedron are in bijection with the bisubsets of [n].

Consider a bisubset S|7". The linear functional eg + fr is minimized for the facet of II,, ,,
labeled by the bisequence S|T’, and hence for any vertex vg indexed by a subsequence B refin-
ing S|T. Consider such a bisequence B and let k be its non-repeated element. Since k appears
only once in B, it only appears once in S|T, so (es + fr)(ex + fx) = 1. Thus

(es + fT) (UB) = (es + fT)(uW(B) — sﬂ(B)(ek + fk))

=Y 7(s)+ Y (=) = Y _(=n(#)

seS teT ten)

= Zﬂ'(s) + Z (t)

ses te[n]-T

= wls)+ Y =()

seS teS-T

is the sum of the values of the function 7 on S and S — 7. To compute this sum, notice that
SIT=[(S-T)u(SNT)]|[(SNT)U(T — 95)], so for any bipermutation B refining S|T,
the word 7(B) must contain the numbers (S —T)U (S —T)U(SNT) =SU(S—T) in the
first r positions and the numbers (SNT)U (T —S)U(T — S) = (T — S) UT in the last 2n — r
positions, where r = |S| + |S — T'| and 2n — r = |T'| + |T" — S]|. It follows that

s+ Y B =-2n-1)—2n—-3)—---— (2n—2r +1)

ses teS-T
=r(—2n+r).

This completes the proof. ]

The original construction of the bipermutahedron II,, ,,, given in Section 2.2, may seem
overly complicated at first sight. However, its inequality description is remarkably simple, and
reminiscent of that of the standard permutahedron when translated to pass through the origin
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in R™:

er:(J,

e€n]

st>—|5\-|E—S| for each subset @ C S C [n].

ses

This makes one suspect that this might be one of the nicest polytopes whose normal fan is the
bipermutahedral fan >, ,,. We prove a precise statement to this effect in Proposition 7.2: the
bipermutahedron has the largest possible symmetry group.

Readers familiar with deformations of permutahedra, as studied by Postnikov [Pos09], may
wonder whether bipermutahedra belong to this family of polytopes; on the surface, they bear
many similarities. However, the bipermutahedron is not a deformation of a permutahedron.
One way to see this is to observe that the bipermutahedral fan has walls spanning hyperplanes
of the form z; + y; = x; + y;, which are not in the braid arrangement.

We know that deformations of permutahedra are in bijection with submodular functions
[Edm70, Fuj05]. In Section 8 we give an analogous description of the cone of deformations
of bipermutahedra.

3. The f-vector

In this section we compute the f-vector of the bipermutahedron. The formulas are slightly
simpler for the reverse sequence, the f-vector of the bipermutahedral fan. Recall that the f-
vector of a d-dimensional fan A is fao = (fo, ..., fa) where f; is the number of i-dimensional
faces of A. A multigraph is a graph with possibly repeated edges and no loops; thus, a multigraph
on vertex set [d] and edge set [r] is a function from [n] to (I%)).

Proposition 3.1. The f-vector of the bipermutahedral fan X, ,, is given by

fa—o(Enn) = # of multigraphs on vertex set [d] and edge set [n] and no isolated vertices

(1))

1=

for2 < d < 2n.

Proof. Each (d — 2)-dimensional face of ¥,,,, is indexed by a bisequence B of [n] with d — 1
parts. We can use it to construct a multigraph G(B) on vertex set [d] and edge set [n] as follows.
If e appears twice, in the ith and jth parts of B, let edge e connect vertices ¢ and j. If e only
appears once, in the ith part of B, let edge e connect vertices ¢ and d. The multigraphs that arise
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are those with no isolated vertices. An example for a 4-dimensional face of Y5 5 is shown below.

6 1
2/ 3\l
B=1/14/353512 +—  G(B)= 5 2
3
453

It is straightforward to recover the bisequence B from its associated multigraph G(B). This
proves the first claim.
We can then use the inclusion-exclusion formula to compute

fa—2(2n,n) = (multigraphs on vertex set [d] and edge set [n] and no isolated vertices)

= Z (—1)!*I(multigraphs on V = [d], E = [n] where each vertex in S is isolated)
SCld]

= Z (—1)!*l(multigraphs on V = [d] — S, E = [n])
SCld]

et

SCld]
giving the desired result. ]
We can give a more concise expression in terms of Sokal’s deformed exponential function

a” (g)
Pla,p) =3 X2

n!
n=0

which is an evaluation of the three variable Rogers—Ramanujan function [Sok12]. This function
has been widely studied in complex analysis [Lan00, Liu98, MFB72] and statistical mechanics
[SS11, SS05, Sokl12]. It also arises naturally in the computation of the Tutte polynomial and
arithmetic Tutte polynomials of the classical root systems [Ard07, ACH15].

Theorem 3.2. The double exponential generating function for the face numbers of the bipermu-

tahedral fans is
rdy" F(x,eY)
2D Jaa(Sn) e = —2

n=>0 d>2

Proof. Let

gan = # of multigraphs on V' = [d], E = [n],

Can, = # of multigraphs on V' = [d], E' = [n] that are connected,

iq, = # of multigraphs on V' = [d], E

[n] that have no isolated vertices,
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and
Id yn ZEd yn
T,y) = Z Ydn r 1 Clz,y) = Z Cdn gy o1 Z Zdnd| ol
d,n>0 d,n=0 d,n>0

be their double exponential generating functions. The Exponential Formula for exponential gen-
erating functions [Sta99, Corollary 5.1.6] gives

Glz,y) =@, I(x,y) =0,
since x is the generating function for the graph with one isolated vertex. It follows that

Glz,y)

€$

I(z,y) =

It remains to compute

implying the desired result. 0

Using Proposition 3.1 or 3.2 one easily computes the f-vector of the first few bipermutahedra:

f(Ma) = (1,1),

f(Ila2) = (1,6,6,1),

F(I35) = (1,90,180, 114, 24, 1),

F(ILy) = (1, 2520, 7560, 8460, 4320, 978, 78, 1).

4. The h-vector and the biEulerian polynomial
Recall that the h-vector of a d-dimensional simplicial fan A is ha = (h, ..., hy) where
holz + 1)+ + hg(z +1)° = foa" + -+ + faa,

where fao = (fo, ..., fq) is the f-vector of the fan A. This is a more economical encoding of the
f-vector, because the Dehn—Somerville relations guarantee that h; = h,_; for all ¢. The h-vector
is also geometrically significant: if A is a rational, simplicial, complete fan, then the Poincaré
polynomial of the corresponding toric variety X4 is the h-polynomial hgx? + - - - + hoz® [Ful93,
Section 4.5] We now give a combinatorial interpretation of the h-vector of the bipermutahedral
fan.
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Definition 4.1. Let B be a bipermutation on [n] whose non-repeated element is k£(B) = k. The
descents of B are the ordinary descents of the barred word for B with respect to the linear order

<2< - <k—-1l<k< nm<n—-1<---<2<1 <k+1<---<n—-1<n,

where we interpret the non-repeated element k of B as being k (resp. k) when it is compared
with an element of [n] (resp. of [n]).
More explicitly, two consecutive elements i|j of B form a descent if one of the following
a)i,7 € Fandi > j, c)reEF—k,je F—Fkandi > k,
conditions holds:

b)i,j€ Fandi<j, dicFE—k,jeFE—kandj<Hk,
Otherwise, i|j form an ascent of B. Let des(B) and asc(B) denote the number of descents and
ascents of B, respectively.

For example the bipermutation B = 5[4|5|2|3|1]4|1|2 = 5|4|5|2|3|1]|4|1|2, where k = 3, has
five descents: 5|4 (of type a), 4|5 (of type ¢), 5|2 (of type d), 3|1 (of type a), and 1|2 (of type b).
These are computed relative tothe order 1 < 2 < 3 <5 <4 <3 <2< 1< 4<5. The
corresponding region og of the bipermutahedral fan is given by the inequalities.

Z5— 23 22— 232 W3 — Wy 22— 23 20221 — 23 2 w3 —wy 2 w3 — wy = w3 — Wa.
2n—2
Definition 4.2. The nth biEulerian polynomial B, (z) = b(n,i)x" is given by
=0

b(n,1) = number of bipermutations of [r] with i descents, for 0 < i < 2n — 2.

The first few biEulerian polynomials are the following.

Bi(z) =1,

By(z) = 1+ 4x + 27,

Bs(x) = 14 20w + 482” + 202 + 2%,

By(z) = 14 727 + 6032* + 1168z° + 603z + 722° + 2°.

The biEulerian polynomial is analogous to the Eulerian polynomial A, (x), which enumerates
the permutations of [n] according to their number of descents. The following result is analogous
to the fact that the h-polynomial of the permutahedral fan is the Eulerian polynomial.

Theorem 4.3. The h-polynomial of the bipermutahedral fan ¥, ,, is the nth biEulerian polyno-
mial.

Proof. 1f A is a simplicial fan, then the h-vector of its normal fan can be computed in terms of
a line shelling [Zie95, Section 8], as follows. For a generic linear functional )\, we have

hm(A) = # of regions of A such that exactly m of their defining inequalities do not hold for \.
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Let us then choose a generic vector (z, w) such that
W1 > Wy > 2> Wy >> 21 2> 29 2> 0 >> 2y

and analyze these numbers using Proposition 2.3. For a bipermutation B, the region og is cut
out by 2n — 2 inequalities, corresponding to the pairs of adjacent entries of B. For such a pair
of consecutive entries of B; there are four cases:

a) Fori,j € [n], the inequality does not hold if z; — zj, < z; — 2; that s, z; < z;. This happens
precisely when ¢ > j.

b) Fori,j € [n], the inequality does not hold if and only if wy, — w; < wy —wy, thatis, w; < w;.
This happens precisely when ¢ < j.

¢) Fori € [n]—kand j € [n] — k, the inequality does not hold if and only if 2; — 2z, < wy — w.
The first term is much larger than the second in absolute value, so this inequality holds if and
only if z; — 2z, < 0, that s, if ¢ > k.

d) Fori € [n] — kand j € [n] — k, the inequality does not hold if and only if wy, —w; < zj — 2.
The second term is much larger than the first in absolute value, so this this inequality holds
if and only if 2; — 2, > 0, that is, if j < k.

We conclude that the inequalities of the region og that do not hold for (z,w) correspond
exactly to the descents of B. The desired result follows. U

The Dehn—Sommerville relations say that the h-vector of any simple polytope is symmetric
[Zie95]. For the bipermutahedron there is a simple combinatorial explanation for this equation,
in light of Theorem 4.3. If rev(B) is the reverse of the bipermutation B, then the descents of B
become ascents in rev(B) and viceversa. Therefore des(rev(B)) = 2n—2—des(B). This implies
that h;(I1,, ) = hop—o—i(IL,, ).

Let the bipermutahedral variety X,, ,, be the toric variety that corresponds to the bipermuta-
hedral fan X, ,,.

Corollary 4.4. The Poincaré polynomial of the bipermutahedral variety X,, ,, is the biEulerian
polynomial.

Proof. This follows from the fact that the h-polynomial of a rational, simplicial, complete fan
equals the Poincaré polynomial of the corresponding toric variety [Ful93, Section 4.5]. [

5. The bipermutahedral triangulation of the product of triangles

In this section we construct a unimodular triangulation of the product of n triangles that is inti-
mately tied to the bipermutahedron. This will be used in the next section to find a formula for
the biEulerian polynomial, using the Ehrhart theory of this triangulation.
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Let e, f, g be the standard basis of R3, and consider the standard equilateral triangle and its
n-fold product in R3*":

A = conv(e, f,g), A" =Ax---xA.
n times
We identify R3" with R" x R™ x R™ with standard bases {ey,...e,},{fi,..., .}, {g1,---,&n}>
respectively. We write vectors in R3*™ as 3 x n tables.
The polytope A™ has 3" vertices, namely, the 0 — 1 tables of shape 3 x n having exactly one
1 in each column. These vertices are in bijection with the 3" pairs (.5, T") of subsets of [rn] whose
union is [n] as follows:

€E-s
vs T = fe_r forg C S, T C[n], SUT = [n].
gsnr
For example
10010
vazszas = |0 1 0 0 0O
00101

Theorem 5.1. There is a unimodular triangulation of A™ that is combinatorially isomorphic to
a triple cone over the bipermutahedral fan X,, ,,.

Proof. Consider the composite map

T R3xn LN R2xn LN N,, x N,,
\L: N 1—u N 1—u
1—v 1—v

w

Notice that 7 maps the 3" — 3 vertices corresponding to the bisubsets S|T" of [n] to the 3" — 3
rays of the bipermutahedral fan:

T ™2
T vsr — es+fr — egr,

whereas 7(vg g) = T(Vpz) = m(ve g) = 0. Also, the polytope A" lives in the 2n-dimensional
affine plane

P={(uv,w) €ER¥™™ : uy + vy +wy =+ =u, +0, +w, =1} C R>"

and the restriction m; : P — R?*" is a unimodular bijective transformation, which induces a
bijection between {vgr : S|T is a bisubset of [n]} and {eg + fr : S|T is a bisubset of [n]}.
For each bipermutation B of [n], consider the (2n)-simplex 75 C A™ given by

TB = conv{v&E, VE.2,VE,E, VST S|T is a bisubset of B},
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where the 2n — 2 bisubsets of a bipermutation B = by | - - - |bg, 1 are by ... bg|bry1 ... ba, 1 for
1 < k < 2n — 2. For example,

T1|3\2|1|3 = COHV{V®,123, V123,25, V123,123, V1,123, V13,123, V123,13, V123,3}-

Notice that T is indeed a simplex because an affine dependence between these points would lead,
under the projection 7 to a linear dependence between the rays eg of the simplicial chamber og.

1. We claim that
T := {1 : Bis abipermutation of [n]}

is a triangulation of the product of triangles A™. To prove it, we need to show that these
simplices cover A", and that they intersect face-to-face; that is, any two of them intersect
in a common face.

a) T covers A™.

Given a point p € A", consider its image 7(p) in N,, X N,,. The image of the simplex A"
is m(A") = conv{egr : S|T is a bisubset of [n]}. Therefore, choosing B to be a bi-
permutation such that 7(p) is in the chamber og = cone{eg|y : S|T" is a bisubset of B}
of N,, x N,,, we must have

7(p) € conv{0, egr : S|T is a bisubset of B}.
This means that there are scalars Agr > 0 with > | S|T Agir < 1 such that
m(p) = Z As|T€s|T in N, X Ny,
S|TCB
using the symbol C for bisubsets. Therefore there are unique scalars A and 4 such that
mp) = > Asples+fr) + dep+pufp  inR¥™, (5.1
S|TCB
SO
mp) = > Asrles +fr) +ales +f) + blep +fo) + clep +f5)  inR>™.
S|TCB
for any scalars a, b, c with b + ¢ = X and a + ¢ = p. Recall 7 is a bijection from P to
R2><n’ SO
p= Z AsiTvs,r + AV g + bUp g + cUEE in R3*™,
S|TCB

This expresses p as a linear combination of the vertices of the simplex 7. To conclude
that p € T, we need the coeflicients of the right hand side to be non-negative and add
up to 1. The second condition is satisfied uniquely by the choices

a=1-> Agr—XA  b=1=> Agr—p, c=rtp+ Y Agr—1;

S|TCB S|TCB S|TCB
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b)

we need to show that they are non-negative. To do that, we analyze (5.1) more closely.
Let B =0y ... |bs,—1. Then by € S for any bisubset S

T of B, so the coeflicient of e,

in (5.1) is
Z Asir + A = [ep, |m1(p)
S|TCB
=1- [ebl]p
<1,

where the inequality follows from the fact that p € A", which lies in the positive
orthant. Similarly, the coefficient of f;, _, is

Z Asir + 1= [fo,,_,Jm1(p)

S|TCB

1- [ben—l]p
1,

N

Finally, if & = k(B) is the element that appears only once in B, then for any bisubset
S|T of B, the element & appears in .S or in 7" but not in both. Therefore the sum of the
coeflicients of e;, and f;, in (5.1) is

Z Asir + A+ = [ex]mi(p) + [fi]mi(p)

sS|TCcB

2 — [ex]p — [filp
1+ [gr]p
1.

WV

We conclude that a, b, ¢ > 0, and p is indeed covered by the simplex T, as desired.

The simplices in T intersect face-to-face.

Consider two simplices 1g,, 75, of T, and let p be any point in their intersection
T, N Tg,. Then its projection in N,, X N,, satisfies 7(p) € og, N o, = cone{egr :
S|T is a bisubset of By and By} since X, ,, is a triangulation. Then p € conv(vgr :
S|T is a bisubset of B; and By} analogously to the argument above. It follows that

Ts, NTg, = conv(vgr : S|T is a bisubset of By and B, },

which is a common face of 7y, and 75, .

2. Now we prove that T is unimodular. Consider a simplex 7g corresponding to a bipermuta-
tion B. We know [ADH22] that the cone o is unimodular, so {eg;r : S|T" C B} is a basis
for the lattice (Z"/Z) & (Z"/Z). 1t follows that {es +fr : S|T' C B}U{ey+fr,ep+1z}
is a basis for Z" @ Z™. Since 7 is a unimodular bijective transformation between Z3*™ N P
and Z" @ 7", it follows that the edges coming out of the vertex vg g of Tg are a basis for
73" N P, as desired.
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3. It remains to observe that the map 7g — o is a bijection between the facets of the tri-
angulation T and the facets of the fan X, ,,, and their patterns of intersection are identical
thanks to the observation 1b. above. Combinatorially, the only difference between them
is that triangulation T has the three cone points vz g, Vg o, VE E- O

The bipermutahedral triangulation of A" is an analog of what we might call the permuta-
hedral triangulation of the cube [J,, = [0, 1]", that we now describe. The braid arrangement
is given by the hyperplanes x; = z; in R", and defines the braid or permutahedral fan. This
fan has n! full-dimensional chambers corresponding to the possible total linear orders of the
coordinates of a point in R". The braid fan induces a unimodular triangulation of the unit cube
O, = [0, 1]™ into n! simplices, which is combinatorially isomorphic to the cone over the permu-
tahedral fan. [DLRS10]

6. A formula for the biEulerian polynomial and real-rootedness.

Recall that the Ehrhart polynomial ehrp(k) of a d-dimensional lattice polytope P in R" is defined
by
ehrp(k) = |kP NZ"|

and the Ehrhart h*-polynomial h},(x) is defined by

Z ehrp(k)ak = _hpl@)

— \dt+l
= (1 —x)dt

If P has a unimodular triangulation, then its ~*-polynomial can be computed combinatorially as
follows.

Theorem 6.1. [BR15, Theorem 10.3] If T is a unimodular triangulation of a lattice polytope P,
then

hp(z) = ht(z).

Applying this to the bipermutahedral triangulation of the product of n triangles constructed
in Theorem 5.1, we get the following result.

Theorem 6.2. The biEulerian polynomial B, (x) is given by
By (x) k+2\" .
(1 — )20t _Z( 9 ) v
k=0

Proof. Consider the bipermutahedral triangulation of the product A™ of n triangles of Theorem
5.1, which is unimodular. The Ehrhart polynomial of A" is

ehese () = ehra () = (* 1)
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so the series in the right hand side of the statement is the Ehrhart series of A", and the numerator
of the left hand side is its A*-polynomial, which equals the A-polynomial of the unimodular
triangulation T by Theorem 6.1.

Now, the triangulation T is combinatorially isomorphic to a triple cone over the bipermu-
tahedral fan. Furthermore, since the f-polynomials of a simplicial complex A and its cone cA
are related by f.a(x) = (x + 1)fa(z), their h-polynomials are identical. ~Therefore
ht(x) = hx, ,(x) = By(x), as desired. O

Theorem 6.3. The biEulerian polynomial B, (x) is real-rooted. Consequently the h-vector of
the bipermutahedral fan is log-concave and unimodal.

Proof. Wagner [Wag92] defined a (non-linear) operator # : R[x] — R[z] by therule f — # f,

where Wf
(1 degf+1 Z f

k>0

He also showed [Wag92, Theorem 0.2] that if f and g are polynomials such that all the roots of
W f and # g are real and non-positive, then all the roots of #( f¢) are real and non-positive as

well. Since 5
WG;):&@:l

satisfies this condition vacuously, then

()

satisfies it as well. Finally we remark that the coeflicients of a real-rooted polynomial are log-
concave; and if they are positive, then they are unimodal. [Brdl5, Lemma 1.1] [

Since the biEulerian polynomial has non-negative coefficients, and it is symmetric and real-
rooted, it follows that it is y-positive [Brd06]. This means that there exist non-negative integers

v; such that
n—1
= Z gt (1 4 ) 222
i=0

We do not know a combinatorial interpretation of these coefficients.

The results in this section generalize known results for the Eulerian polynomial that we now
outline; more details can be found in [BS18, Sta99]. The permutahedral trianguilation of the
n-cube [],,, described at the end of Section 5 is unimodular. Since the Ehrhart polynomial of the
n-cube is ehrg, (k) = (k + 1)" and the h-polynomial of the permutahedral fan is the Eulerian
polynomial A, (x), we obtain

ZI?%%%%II::ZE:(k—%])”xk

The real-rootedness of A, () follows from this identity in the same way as above.



18 Federico Ardila
7. Symmetries

The simple inequality description of the bipermutahedron given in Proposition 2.8 makes us
suspect that II,, ,, is one of the most elegant polytopes whose normal fan is the bipermutahedral
fan X, ,,. In this section we make this suspicion precise, proving in Proposition 7.2 that II,, ,, is
maximally symmetric. Let S, be the symmetric group on [n].

Proposition 7.1. The automorphism group of the permutahedral fan 3, ,, is Sy, X Za X Ry,.
Proof. We will prove that the automorphisms of %, ,, are:

* the simultaneous action (21, ..., 2y, W1, ..., Wn) = (Zo(1); - - - Zo(n)> We(1), - - - » Wo(n)) OF
a permutation o € S,, on the two factors of N,, x N,,.

e the swap f(z,w) = (w, 2),
* the positive dilations f(z,w) = (rz,rw) for r > 0,

and their compositions. This will prove the desired result. The case n = 2 can be checked by
inspection of Figure 2.2, so we will assume hereon that n > 3.

Consider any automorphism g € GL(N,, X N,,) of the bipermutahedral fan. Rescaling g by
a positive constant does not affect the invariance of X, ,,, so we may assume that ¢ is unimod-
ular; that is, det ¢ = £1. Consider the hyperplanes spanned by the walls of the permutahedral
fan; the automorphism g must send each one of these spanned hyperplanes to another spanned
hyperplane. The codimension 1 faces of X, ,, lie on hyperplanes of four types:

L.z +w; = z; +wy, 2. z; = zj, 3. w; = wj, 4. 2z — 2, = wp — wj (7.1)

for i,j,k € [n]. Let us count the number of codimension 1 faces of ¥, ,, on each of these
hyperplanes.

1. The codimension 1 faces on hyperplane z;+w; = z;+w; are those indexed by bisequences
of the form by|...[i|...|j| ... |b2n—2. These are in bijection with the permutations of the
multiset ([n] — 4 — j) U ([n] —i — j) UiUj, so the number of them is (2n — 2)!/2"~2.

2. The codimension 1 faces on hyperplane z; = z; are indexed by bisequences of three types:

a) Bisequences of the form by ...[ij|...|by,_o where the first ¢ and the first j are in
the same block. To specify such a bisequence, we need to choose the element k that
appears only once, and then choose a permutation of the multiset ([n] — i — j — k) U
([n] —i—j—k)UkUijUiUj where ij precedes both i and j. There are (n — 2) -
[(2n — 2)!/2773] /3 such choices.

b) Bisequences of the form b1|...|ij| ... |bs,_o where the first 7 and j are in the same
block. These are in bijection with the permutations of the multiset ([n] — ¢ — j) U
([n] — i — j) Uij Ui where ij precedes i. There are [(2n — 2)!/2"~2]/2 such permu-
tations.
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¢) Bisequences of the form by|...|ij|...|b2,_o where i and the first j are in the same
block. Similarly, there are [(2n — 2)!/2"72] /2 of them.

Adding these together, we obtain that the total number of codimension 1 faces on this
hyperplane is (2n — 1)!/(3 - 2"72).

3. The number of codimension 1 faces on hyperplane w; = w is also (2n — 1)!/(3 - 2"72).

4. The codimension 1 faces on hyperplane z; — 2, = w;, — w; are those indexed by bise-
quences of the form by|...|ij|...|K]|...|bs,_o where the first i and the second j are in
the same block. They correspond to the permutations of the multiset ([n] —¢ — j — k) U
(n] —i—75—k)UkUijUiUj where ij comes after j but before i. Thus there are
[(2n — 2)!/2"73] /6 such faces.

The numbers (2n —2)!/2"72 (2n —1)!/(3-2""%) and [(2n — 2)!/2"73] /6 are different for
n > 3. Therefore, in the nomenclature of (7.1), the automorphism g must map hyperplanes of
type 1 to hyperplanes of type 1, it must map hyperplanes of type 4 to hyperplanes of type 4, and
it must map hyperplanes of types 2 and 3 to hyperplanes of types 2 and 3.

Let x; = z; + w; and consider the braid arrangement given by hyperplanes z; = x; fori # j.
These are the hyperplanes of type 1 above, so the automorphism g must leave this arrangement
invariant. The hyperplanes 1 = 29, x93 = z3,...,2,_1 = x, cut out precisely two chambers
of the braid arrangement, namely x; > x5 > --- > x, and 1 < 29 < --- < x,. Therefore
the images of these n — 1 hyperplanes under the automorphism g must also cut out two cham-
bers of the braid arrangement; thus they must be of the form z,(1) = Z5(2), To2) = To@3), - - -
To(n—1) = To(n), T€Spectively, for some permutation o € S,,.

The action of g on N,, x N,, is equivalent to the action of g on the dual space M,, x M,, where
if m € M,, x M,, then g - m is given by g - m(n) = m(g~' - n) forn € N,, x N,,. Consider the
normal vectors £(d; — d;) to hyperplane z; = x;, where d; := ¢, +f; € M,, x M,,. To preserve
lengths, g must send d; — d; to one of the vectors +(d,(;) — ds(i+1)). To preserve the angles
between these vectors — computed through their dot products — we must have one of two cases:

1) g-(dy—d3) = dy1)—do(2), 9:(d2—ds) = dy2)—do(z), -, 9 (dn1—dn) = dou_1)—do(m)
or
2) g-(dy—dg) = dy2)—do1), g-(d2—ds) =do@)—do2), ---, 9 (dno1—dpn) = dpn)y—do(n-1)

Let us assume that we are in the first case. Since g maps hyperplanes of types 2 and 3 to each
other, it maps its normal vectors +(e; — e;) and £(f; — f;) to each other. Therefore,

g-(ei+fi —eip1 — fir1) = eopi) + o) — €o(irn) — fo(it)
can only hold if
la) g- (& —eit1) = €s(i) — €o(i+1)s G- (fi —fiy1) = fa(z‘) — To(i+1) for all 7,
or

1b) qg- (ei — el-+1) = fg(i) — fa(i+1)7 qg- (fz — fi+1) = eg(i) — eg(iﬂ) fOI' all 7.
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In case 1a), g acts like the same permutation ¢ on the first and second factors of N,, x N,,.
In case 1b), g acts as above, followed by the swap map s(z,w) = (w, z). These are indeed
automorphisms of >, .

In cases 2), g acts as in la) or 1b), followed by the transformation r(z, w) = —(z, w). How-
ever, r is not an automorphism of the bipermutahedral fan. To see this, choose a bisubset S|T°
with S;T # [n] and S N'T # @&; this is possible for n > 3. Then r maps the ray eg + fr
of ¥, , to eg_gs + fg_p, which is not a ray of X, ,,. Therefore cases 2a) and 2b) do not lead to
automorphisms of X, ,. The desired result follows. O

Proposition 7.2. The automorphism group of the bipermutahedron 11,,,, is S,, X Zy. This is the
largest automorphism group among all polytopes whose normal fan is the bipermutahedral fan.

Proof. We begin by noting that the automorphism group of the bipermutahedron 11,, ,, is a sub-
group of the automorphism group of its normal fan ¥,, ,,, which is .S,, X Zy x Ry. It is clear
from the inequality description of Proposition 2.8 that the bipermutahedron 11, ,, is fixed by
the simultaneous action of a permutation on both factors of M,, x M,,, and by the swap map
s(z,w) = (w, z). On the other hand, dilations by positive constants other than 1 cannot pre-
serve a polytope. In view of Proposition 7.1, the result follows. [

8. The type and ample cones: deformations of the bipermutahedron

Our next goal is to describe all the polytopes whose normal fan equals (or coarsens) the biper-
mutahedral fan ¥, ,,. A priori it is not clear that there exists a polytope with a given normal fan.
In the case that interests us, namely the bipermutahedral fan >, ,,, we do know that the bipermu-
tahedron II,, ,, is one such polytope. The type cone of %, ,, — which corresponds to the nef cone
of the corresponding toric variety — is the set of polytopes whose normal fan equals or coarsens
Ynn. Itis a cone because it is closed under positive dilation and under Minkowski sums. The
polytopes in this family are the deformations of the bipermutahedron. The (non-empty) ample
cone consists of the polytopes whose normal fan equals ,, ,,.

We will show that the type cone of the bipermutahedral fan is cut out by two kinds of in-
equalities:

A) Supermodular inequalities: Let B = by| - - - |bp_1]7]bpy1| - - - |b2n—2 be a bisequence of length
2n — 2 consisting of 2n — 3 singletons and one pair, and let S = {by,...,b,_1} and
T = {bps1,...,ban—1}. The corresponding supermodular inequality is

Ig(h) == (h(S]ijT) + h(Sij|T)) — (h(Si|Tj) + h(Sj|Ti)) >0

B) Up-down inequalities: Let B = by|...[i|...[j|...|b2n—2 be a bisequence of length 2n — 2
consisting of 2n — 2 singletons, where the non-repeated elements are ¢ and j. Let
B = by|...lili|...|4lj|...|b2n_2, where as usual we write h and h for the first and sec-
ond occurrences of each number £ in B.

Consider the mth bisubset S|T of B where S = {b, ..., by} and T' = {byny1, .-, Do 2}
If b, is unbarred and b,,; is barred in B, we say S|7T is an up bisubset of B, and write



COMBINATORIAL THEORY 2 (3) (2022), #1 21

S|T % B. If b, is barred and by, is unbarred in B, we say S|T is a down bisubset of B,
and write S|T" < B. Then the up-down inequality associated to B is:

(ZhS|T> (ZhS|T>

S|T<B S|T<B

Example 8.1. The following are examples of supermodular and up-down inequalities for n = 7.
A) If B = 7|2|3|4]2|14|5|1|5|6]6]|7 then the corresponding supermodular inequality is
h(2347|14567) + h(12347|1567) > h(12347|14567) + h(2347|1567)
B) If B = 7|2|3|4/2|4|5|1|5|6|6|7 then B = 7|2|3/3|4/2|4|5|1/1|5|6/6|7 where we mark the up
switches (resp. down switches) from unbarred to barred (resp. from barred to unbarred)

elements in cyan (resp. magenta). Those switches determine the corresponding up-down
inequality:

h(237|124567) + h(2347|1567) + h(123457|67)
> h(2371234567) + h(2347|124567) + h(123457|1567) + h(1234567|67).

Proposition 8.2. The polytopes in M,, x M,, whose normal fan is the bipermutahedral fan %, ,,
are those of the form

Z z. =0,
e€n]
Z Ye =0,

Z Ts+ Z v = h(S|T)  for each bisubset S|T of [n]

seES teT

where the function h strictly satisfies the supermodular and up-down inequalities.

Proof. There is a general Wall-Crossing Criterion [CLS11, Theorems 6.1.5-6.1.7] that de-
scribes the type cone of a convex fan >.. Let us state it in the case of complete simplicial fans
¥ in a vector space N of dimension d. Let R(X) be a set of vectors that generate the rays of X,
with one vector for each ray. Let 7 be a codimension 1 face of X, or wall, that separates two
full-dimensional chambers o and o’ of 3. Consider the rays ry,...,rq_1,r,r' € R(X) such that

T =cone(ry,...,rg_1), o =cone(ry,...,rq_1,r), o =cone(ry,...,rg_1,r)

Up to scaling, there is a unique linear dependence of the form

c-r+c’-r’:Zc¢-ri (8.1
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with ¢, ¢ > 0. To the wall 7 we associate the wall-crossing inequality
d—1
Inz(h) == c-h(r)+ ¢ - h(t) = i h(r) > 0. (8.2)
i=1

Then the type cone of X consists of the polytopes in the dual space M = N* of the form
P(h)={x €M : r(xz) < h(r) forall rays r € R(X)}

for the functions h : R(X) — R that satisfy the wall-crossing inequalities (8.2).

Let us apply the Wall-Crossing Criterion (reversing all inequalities) to the bipermutahedral
fan X, ,,. It contains two kinds of walls, corresponding to the two possible kinds of bisequences
of length 2n — 2.

A) The wall 7 given by bisequence by |- - - |bp_1]ij|bp+1]| - - - |b2n—1, Which separates the cham-
bers o and ¢’ given by bipermutations

B=0bi| - |ilj| - [bonr and B =bi| - |jli| - [bons

for i # j.
The rays r € R(0) — R(7) and r' € R(0") — R(7) are r = eg;7; and r' = egjjr; for the sets
S ={by,...,bp_1}and T = {bp11,...,ban_1}. The equation (8.1) is

€sijTj + €sj|Ti = €s|ijT 1+ €sij|T
in this case, so the wall-crossing inequality is

h(StTj) + h(Sj|T1) < h(S|ijT) + h(Sij|T).

B) The wall 7 given by bisequence B, = by|---|i|---|j| - - - |ban_1, Which separates the cham-
bers o and ¢’ with bipermutations

B=bif--|ili[---|jl - [b2n—1 and B =by|---[i]--[j]5] - |ban1-

The wall-crossing inequality can be nicely understood in terms of a bipartite graph I'(B,),
defined as follows; see Figure 8.1 for an example.

e Vertices: The top vertices are the n distinct sets of the form {by,...,b;} for
1 < i < 2n—2 and the bottom vertices are the n distinct sets of the form {b;, . . . , by, 2}
forl << 2n—2.

o Edges: Let B, = by|...|i[i|...|j|j|-..|b2n—2. Each of the 2n — 1 bisubsets S|T" of B,
induces an edge connecting the top vertex S to the bottom vertex 7" in I'(B.). The two
special edges e and €’ corresponding to the two splits at i|i and at j|j are drawn with
thick lines.
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s The spine: Since the splits of B, are linearly ordered, the edges of I'(B.) are linearly
ordered from left-to-right, and cannot cross. Therefore I'(B. ) has no cycles; and since it
has 2n vertices and 2n—1 edges, itis a tree. Thus there is a unique path that connects the
bottom left vertex [n] to the top right vertex [n]: its edges correspond to the places where
the permutation 7 (B, ) switches between barred and unbarred elements. Therefore this
path contains the two special edges e and e’. We call this the spine of I', and mark it
with thick lines, alternating in color between cyan and magenta; the special edges e
and ¢’ are both cyan.

2347 23457 1234571234567

e | LU

1234567124567 14567 1567 7

Figure 8.1: The bipartite graph for
B, = 7|2|3]4]2|4|5|1|5/6|6]7 and B, = 7|2|3|3|42|4|5|1/1|5|6/6|7.

Theraysry, ..., ra, o of 7 correspond to the ordinary edges of I" and the rays r = R(0’)—R(7)
and r' = R(o’) — R(7) correspond to the two special magenta edges of I". Notice that the
alternating sum of the rays corresponding to the spine of I' equals eg + fz = 0in N,, X N,,.
In the example above this equality reads

€237]1234567 — €237|124567 T €2347]1234567 — €237|1567 T €123457(1567 — €123457|67 T €1234567|67 = 0.

in N; x N7. This must be the unique wall-crossing dependence (8.1), so the wall-crossing
inequality for the wall 7 is precisely the up-down inequality for the bisequence B, . [

It is not at all clear from Proposition 8.2 whether a bipermutahedron exists; that is, whether
the ample cone (the interior of the type cone) of the bipermutahedral fan is non-empty. We do
know that it is non-empty, because it contains the support function IT(S|7) = —(|S|+|S—T1) -
(|7 +|T — S|) of the bipermutahedron. However, even with such a simple, explicit description,
it is not so easy to see why this function satisfies the wall-crossing inequalities!

9. The Minkowski quotient of the bipermutahedron and the harmonic poly-
tope is 2

We have mentioned that the bipermutahedron is closely related to the harmonic polytope, de-
fined below and studied in detail in [AE21]. The harmonic fan is the coarsest fan with certain
properties required for a Lagrangian geometry of matroids in [ADH22]; but it is not simplicial,
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and that is another necessary property. The bipermutahedral fan is not canonical, but it is the
most elegant simplicial fan that we know refining the harmonic fan. For this reason, the conor-
mal fan of a matroid M on [n] was defined to be a subfan of the bipermutahedral fan %, ,,. For
a detailed discussion of this connection, see [AE21, Section 2.2] or [ADH22].

The bipermutahedron and the harmonic polytope are constructed so that their normal fans are
the bipermutahedral fan and the harmonic fan, respectively. Thus their support functions must
satisfy the wall-crossing inequalities of Section 8. It is instructive to verify these inequalities
directly, and we do so in this section. This computation has a stronger, unexpected consequence:
it implies that in any dimension, the Minkowski quotient of the bipermutahedron II,, ,, and the
harmonic polytope H,, ,, equals 2.

Proposition 9.1. The support function of the bipermutahedron 11,, ,,
I(S|IT)=—(|S|+|S="T|)- (IT|+|T" = S|)  foreach bisubset S|T of [n].
satisfies the strict wall-crossing inequalities of the bipermutahedral fan.

Proof. We already know this statement must be true because the normal fan of the bipermuta-
hedron II,, ,, is the bipermutahedral fan, so its support function 1I must be in the ample cone of
>n.n. However, we wish to give a direct proof that will allow us to derive a stronger result.

A) Supermodular inequalities: Let B = by| - - - |bp_1|2j|bpy1] - - - |b2n—2 be abisequence of length
2n — 2 consisting of 2n — 3 singletons and one pair. Let S = {by,...,by_1},
T = {bps1,.--,bon1}, s = |S]|,t = |T|,and u = |S N T|. Since i and j appear in the
hth part of B, each one appears at most once in the remaining entries of B, and at least one
of them must appear. Thus we have three cases, where the computations are straightforward:

(i) 7 and j appear on the same side of 1j in B; say i, j € S. In this case we have

|S] = s, |Tij| =t + 2, 1SN (Tij)| =u+
|Sij| = s, T =t, |(597) N T)| = w,
51| = s, Tjl =t +1, |(59) N (TH)] = u+
1551 = s, Tl =t +1, |(55) N (T9))] = u +

from which the corresponding supermodular inequality follows readily:

Ig(I) := (I(S]ijT) + 1(Sif|T)) — (IL(Si|T5) + IL(S5|T'0))

[s+(s—u—2)]-[(t+2)+ (t —u)]
—[s+(s—uw)]-[t+ (t — u)]
+s+(s—u—1]-[(t+1)+ (t —u)
+ls+(s—u—=1)]-[(t+1)+ (t —u)]

=2>0
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B)

(ii) ¢ and j appear on different sides of ij in B; say i € S and j € T. Similarly,

(D) = =[s+ (s —u—=D]- [t + 1) + (£ - u)]

“ls+ D)+ (s—w]-ft+—u—1)

+ls+ (s —w)]- [t + (t —u)]
+s+D)+(s—u—D]-[(t+1)+(t—u—1)]
=2>0.

(iii) Only one of i and j appears again in B; say i € S and j ¢ S,T. Similarly,

Ig)=—=[s+(s—u—1] - [(t+2)+ (t—u+1)]

—[(s+1)+(s—u+1)][t+(t—u)
+s+(s—uw)]-[(t+1)+ (t—u+1)]
+(s+ D)+ (s—w)]-[(t+1)+ (t —u)]
=4>0.

Up-down inequalities: Let B = by|...[i]...]j|...|b2n_2 be a bisequence of length 2n — 2
consisting of 2n — 2 singletons, where the non-repeated elements are ¢ and j. Let
= baf ... [dfd] .. |jld] - - [b2n-2.

Proving that /g(IT) > 0 is more interesting in this case; we do it by interpreting this quantity
as an area. Let us draw a 2n x 2n square board whose rows and columns are indexed by the
entries of B, and draw a vertical and horizontal lines where there are switches between barred
and unbarred labels. There is one intersection point along the main diagonal for each switch,
and thus for each term of the wall-crossing inequality /g(II) > 0. Figure 9.1 illustrates this
construction for B = 7|2|3|4/2]4|5|1|5|6|6]|7.

Let us analyze one of the terms II(S|T) = —(|S| + [S = T|) - (|T] + |T — S|) of the
inequality, corresponding to a switch between a barred and an unbarred element in B, and to
an intersection point p along the diagonal. Since the bisubset at that switch equals S|7" and i
precedes i for all 4, the rows above p are indexed by SU.S — T while the columns to the right
of p are indexed by (T — S) U T. Therefore —II(S|T) is precisely the area of the rectangle
going from p to the top right corner of the square. In the example of Figure 9.1, for the switch
from 4 to 2, we have —I1(2347|124567) = (|2347| + |3]) - (|124567| + |156|) =5 - 9 = 45.

Thus we may interpret the up-down inequality associated to B
Ig(ID) == ( 3 H(S|T)> - ( 3 H(S|T)> >0
S|T<B S|T<B

as an alternating sum of areas that should be positive. This is best understood
graphically, as shown in Figure 9.2. The figure verifies the up-down inequality for
B = 7|2|3|4|2|4|5/1|5|6/6|7, namely

[1(237|124567) + 11(2347|1567) + I1(123457|67)

[1(237]1234567) + 11(2347]124567) + [1(123457|1567) + I1(1234567|67),
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NI O =] =GR N W] W NN

Figure 9.1: The table for B = 7/|2|3|4|2|4|5/1|5|6/6|7
and the area interpretation of —II1(2347|124567).

but this graphical argument is entirely general.

The inequality in this graphical computation deserves an explanation. In the (2i + 1)th col-
umn, we are sliding up ¢ (negative) magenta rectangles, replacing them with < new magenta
rectangles of larger total area; this is because every row index j that appeared among the first
i rectangles, the row index j — which precedes 7 in B — must also appear among the second
1 rectangles. The same argument holds for the rows.

The last equality also deserves an explanation. The k& x k grid of cyan rectangles and the
k x k grid of magenta rectangles both have area n?, because their column labels and row
labels are either {1,...,n}or {1,... 7}

Finally, let us remark that the last step actually shows the stronger inequality

IB (H> 2 n,
since the smallest possible area of a set of squares whose side lengths are integers adding up
tonis1*+ .-+ 12 =n.

Though it is perhaps less enlightening, we may rewrite this argument algebraically as follows.
Let ar, az, ..., a1, agy be the lengths of the consecutive strings of barred and unbarred
subsequences of B; these are the lengths of the segments along the edges of the square. For
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+ = =
= + = +
= + + = >0

Figure 9.2: The up-down inequality /g(II) > 0 for B = 7|2|3|4|2|4|5|1|5|6|6|7. Positive areas
are shown in cyan and negative areas are shown in magenta.

B = 7|2|3|4|2|4|5|1|5]6]6|7 we have (a1, ...,as) = (3,1,1,2,2,2,1,2). Then Ig(II) equals

> (Z@j) (Z%‘) -> (Zaj) (Zaj) = Y anpian— Y anazn

iodd  j<i j>i ioven = j<i > 2i11<2j 2i<2j+1
= ( E a2i+1a2j) - 2( g a2ia2j+1) > ( E a2i+1a2j) - 2( E a2i+1a2j+1)
2i<2j+1 2i41<2j+1

- (ZG%H) (Za2j) - (Za2i+1)2 + (Zaim) = Za%iﬂ > 0,

where we are us_ing that for any j we have a; +ag+---+agj—1 = as +as+- - - + ag; since
1 precedes ¢ in B forall 7, and a; + a3+ -+ -+ ag—1 = as + a4+ - - - + ag, = n. O

As shown in [AE21], the harmonic polytope H,, ,, is given by the following minimal inequal-
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ity description:

1
2%2%4‘1:

e€n]
+1
Zyezm_i_l’
2
e€(n]
S|(]S]+1 TI(|T| + 1
Zx8+zyt>| A5+ )—{2—’ 7] + )—I—l for each bisubset S|T" of [n].
seS teT

We translate it by the vector —(*: + 2)(eg + fg) so that it lands on the subspace M,, x M,,

given by Zeew Te=Y, ] Ye = 0; we leave it to the reader to verify that the resulting support
function is the one described in the following proposition.

n 1

Proposition 9.2. Ler f(z) = « (% — —). The support function of the translated harmonic

polytope !
H(S|T)= f(IS])+ f(T])+1  foreach bisubset S|T of [n]

satisfies the weak wall-crossing inequalities of the bipermutahedral fan.
Proof. Again, we already know this statement must be true because the normal fan of the har-
monic polytope is a coarsening of the bipermutahedral fan [AE21], so its support function H

must be in the type cone of Y, ,,. However, giving a direct proof will allow us to derive a stronger
result.

A) Supermodular inequalities: Let B = by| - - - |bp_1|ij|bpy1] - - - |b2n—2 be abisequence of length
2n — 2 that consists of 2n — 3 singletons and one pair. Let S = {by,...,b, 1} and T =
{bni1y.-.,bon—1}. Lets = |S|,t = |T|, and uw = |S NT|. As in the proof of Proposition
9.1, we consider three cases:

(i) ¢ and j appear on the same side of 75 in B; say 7,7 € .S:

— (H(SJijT) + H(Sij|T)) — (H(SilTj) + H(Sj|Ti))
= (f(s)+ fE+2) + (f(s) + £(2))

—(f&) + ft+1) = (f(s) + f(t+1))
=1>0.

(ii) ¢ and j appear on different sides of 7j in B; say ¢ € Sand j € T"

Ig(H) = (f(s)+ f(t+ 1)) + (f(s +1) + £(1))

= (f(s) + f(1) = (f(s + 1) + f(t+1))
=0.
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(iii) Only one of 7 and j appears again in B; sayi € Sand j ¢ S, T"

Ig(H) = (f(s) + f(t+2)) + (f(s + 1) + f(1))

—(f(s)+ ft+1) = (f(s+ 1)+ f(t+1))
=1>0.

B) Up-down inequalities: Let B = b[...[i|...[j[...[b2,—2 be a bisequence of length 2n — 2
that consists of 2n — 2 singletons, where the non-repeated elements are ¢ and j. Let B =
byl .. lilz] ... |7]7] - - - |b2n—a-

If the spine of the bipartite graph I'(B) has vertex labels £ = Ty, Sy, T3, Ss, . .., Tk, Sr. = E,
then the up-down inequality reads

Ig(H) = H(S1|Tv) — H(S1|T2)+ H (52| T2) — H(S2|T3)+ - - - = H(Sk—1|Ti) +H (Sk|Tk)

= — (f(Si] + FUT) + 1) + (FUS ]+ F(TR)) + 1)
— (f(1Se] + fUT2) + 1) + (F(1S2] + F(IT3]) + 1)

+ (F(ISk=1] + FTl) + 1) = (F(ISK| + F(IT3)) + 1)

=—f(n)=fln)—1
=1>0.
We conclude that H satisfies all the wall-crossing inequalities. [

It is said that () is a weak Minkowski summand of P if the normal fan of () refines the normal
fan of P; this is equivalent to the existence of a scalar A such that A() is a Minkowski summand

of P; that is, there exists a polytope R such that P = AQ) + R. The following parameter makes
the situation more precise.

Definition 9.3. If P and () are polytopes in R?, we define their Minkowski quotient
P/@Q = max{\ > 0 : AQ is a Minkowski summand of P}.
Note that () is a weak Minkowski summand of P if and only if P/Q) > 0.
Theorem 9.4. The Minkowski quotient of the bipermutahedron and the harmonic polytope is
yn/Hpn =2
for all integers n > 2.

Proof. If AH,, ,, is a Minkowski summand of 1I,, ,,, we have 1I,,,, = AH,, ,, + R for a polytope
R. Since R is a Minkowski summand of II,, ,,, its normal fan coarsens the bipermutahedral fan,
so R is in the type cone of the bipermutahedral fan >, ,,. It follows that its support function

R:=11-)\H
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satisfies the wall-crossing inequalities. Conversely, if R = II — A\H satisfies the wall-crossing
inequalities, then it is the support function of a deformation I? of the bipermutahedron such that
II,,, = R+ AH,,, so AH,, ,, is a Minkowski summand of II,, ,,. We conclude that

P/@Q = max{\ > 0 : R =1I— \H satisfies the wall-crossing inequalities of ¥, ,, }
Looking back at the proofs of Propositions 9.1 and 9.2 we obtain the following.

A) Supermodular inequalities: In the three cases (i), (ii), (iii), we have

() Is(R)y=2— X, (i) Ig(R) =2,  (iii) Ig(R) =4 — A,

B) Up-down inequalities: We have
(1) Ig(R) = n — A

The largest A for which these numbers are non-negative is 2, as desired. O]

10. Future directions
We close with some open questions and future directions for the interested reader.

* The 1-skeleton of the permutahedron is the Hasse diagram of the symmetric group, which
has many elegant and useful properties. Is there an analogous poset or poset-like structure
on bipermutations?

* Find a combinatorial interpretation of the ~y-coefficients of the biEulerian polynomial.
* Compute the volume and Ehrhart polynomial of the bipermutahedron.

* Theorem 9.4 suggests studying the polytope 11,, , — 2H,, ,,, which is also a deformation of
the bipermutahedron. Does it have an interesting combinatorial structure?

* Is there a connection between the polytopes studied here and the generalized nested per-
mutahedra of Castillo and Liu [CL22]?

* Is there an analogous k-permutahedron for £ > 3 with elegant combinatorial properties?
The geometric motivation for this paper only required the construction and study of the
bipermutahedron.
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