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Abstract

Keypoint detection serves as the basis for many com-
puter vision and robotics applications. Despite the fact that
colored point clouds can be readily obtained, most existing
keypoint detectors extract only geometry-salient keypoints,
which can impede the overall performance of systems that
intend to (or have the potential to) leverage color informa-
tion. To promote advances in such systems, we propose an
efficient multi-modal keypoint detector that can extract both
geometry-salient and color-salient keypoints in colored
point clouds. The proposed CEntroid Distance (CED) key-
point detector comprises an intuitive and effective saliency
measure, the centroid distance, that can be used in both 3D
space and color space, and a multi-modal non-maximum
suppression algorithm that can select keypoints with high
saliency in two or more modalities. The proposed saliency
measure leverages directly the distribution of points in a
local neighborhood and does not require normal estima-
tion or eigenvalue decomposition. We evaluate the pro-
posed method in terms of repeatability and computational
efficiency (i.e. running time) against state-of-the-art key-
point detectors on both synthetic and real-world datasets.
Results demonstrate that our proposed CED keypoint de-
tector requires minimal computational time while attaining
high repeatability. To showcase one of the potential ap-
plications of the proposed method, we further investigate
the task of colored point cloud registration. Results sug-
gest that our proposed CED detector outperforms state-of-
the-art handcrafted and learning-based keypoint detectors
in the evaluated scenes. The C++ implementation of the
proposed method is made publicly available at https://
github.com/UCR-Robotics/CED_Detector.

1. Introduction
Keypoint detection serves as the basis across computer

vision and robotics applications such as 3D reconstruc-

tion [1,11], localization and mapping [8,12], and navigation

on point clouds [9, 17]. In such applications, colored point

clouds can be obtained from RGB-D cameras, where color

and depth images are aligned, or camera-LiDAR systems,

where they are collected after extrinsic calibration; this pro-

cess is often referred to as point cloud colorization or pho-

tometric reconstruction (e.g., [21]). However, most existing

keypoint detectors only consider geometric information and

fail to extract color-rich keypoints, which impedes the over-

all performance of systems that intend to (or have the poten-

tial to) leverage color information. Hence, there is need for

efficient keypoint detectors that can extract both geometric

and color information in the point cloud.

Keypoint detection aims to extract a subset of points

from the point cloud so that they can best represent the

original data in a compact form. Some successful key-

point detectors for 2D images, such as SIFT [19] and Har-

ris [10], have been extended to 3D space following the orig-

inal design ideas by the Point Cloud Library (PCL) com-

munity [28]. However, the data structures used in 2D im-

ages and 3D point clouds are fundamentally different. This

may limit deployment of such methods and has led to stud-

ies that focus on intrinsic properties of point clouds. Re-

cent advances in deep learning has helped introduce sev-

eral learning-based keypoint detectors and feature descrip-

tors [6, 18, 37, 39]. In spite of their strong performance

within their training domains, learned detectors and features

may not transfer over in new scenes that are different from

those used in training. For example, it may be challenging

for a system trained with data collected in indoor environ-

ments to operate in diverse outdoor scenes [2].

In contrast, methods that leverage the inherent properties

of point clouds may help overcome this difficulty. Several

existing methods focusing on geometric properties of point

clouds, such as NARF [29] and ISS [40], require eigenvalue

decomposition and/or normal estimation. These operations

are computationally expensive, especially when performing

keypoint detection at a large scale. In a distinct line of re-

search, it has been shown that incorporating color modality

can improve accuracy for applications such as point cloud

registration [23].

The main hypothesis underlying this work is that in-



corporating color modality (in addition to a geometric

modality) can help improve the overall performance, as the

amount of information passed on to the following compo-

nents in the system has increased. Despite existing descrip-

tors that can incorporate color information (e.g., [32]), to

the best of the authors’ knowledge there currently exists no

effective keypoint detector that can extract color-rich key-

points to feed to the descriptor. For instance, geometric-

based keypoint detectors can fail to extract keypoints on a

flat surface with color texture. While some methods (e.g.,

SIFT-3D) can extract color-rich keypoints, they do so at ex-

pense of losing geometric information (i.e. they can only

respond to one modality). This limitation can be linked to

lack of an effective non-maximum suppression algorithm to

combine the two modalities; this is one of the key contribu-

tions of this work.

To this end, we propose an efficient multi-modal key-

point detector, named CEntroid Distance (CED) keypoint

detector, that utilizes both geometric and photometric in-

formation. The proposed CED detector comprises an intu-

itive and effective saliency measure, the centroid distance,

that can be used in both 3D space and color space, and

a multi-modal non-maximum suppression algorithm that

can select keypoints with high saliency in two or more

modalities. The proposed saliency measure leverages di-

rectly the distribution of points in a local neighborhood and

does not require normal estimation or eigenvalue decom-

position. The proposed CED detector is evaluated in terms

of repeatability and computational efficiency (running time)

against state-of-the-art keypoint detectors on both synthetic

and real-world datasets. Results demonstrate that our pro-

posed CED keypoint detector requires minimal computa-

tional time while attaining high repeatability. In addition,

to showcase one of the potential applications of the pro-

posed method, we further investigate the task of colored

point cloud registration. Results show that our CED detec-

tor outperforms state-of-the-art crafted and learning-based

keypoint detectors in the evaluated scenes.

Contributions. The paper’s contributions are fourfold:

• We propose an efficient multi-modal keypoint detector

that can extract both geometry-salient and color-salient

keypoints in a colored point cloud, with the potential to

be extended and applied to point clouds with multiple

modalities (e.g., colored by multi-spectrum images).

• We propose to use an intuitive and effective measure

for keypoint saliency, the distance to centroid, which

can leverage directly the distribution of points and does

not require normal estimation or eigenvalue decompo-

sition.

• We develop a multi-modal non-maximum suppression

algorithm that can select keypoints with high saliency

in two or more modalities.

• We demonstrate through experiments in four datasets

that the proposed keypoint detector can outperform the

state-of-the-art handcrafted and learning-based key-

point detectors.

2. Related Work
3D keypoint detectors can be categorized as those ex-

tending designs originally developed for 2D images [10,19],

and those native to 3D point clouds [4, 20, 31, 40] and 3D

meshes [3, 34, 38]. Following the design in 2D images,

Harris family [10] computes covariance matrices of surface

normal or intensity gradient in 3D space, and in 3D and

color space (herein referred to as 6D space). SIFT [19]

applies the difference of Gaussian operator in scale-space

to find keypoints with local maximal response. However,

for 3D point clouds, the amount and position of points

within the spherical region are uncertain, making it hard

to obtain gradients. In 3D space, Normal Aligned Ra-

dial Feature (NARF) [29] measures saliency from surface

normal and distance changes between neighboring points.

Intrinsic Shape Signature (ISS) [40] and KeyPoint Qual-

ity (KPQ) [20] perform eigenvalue decomposition of the

scatter matrix of neighbor points and threshold on the ra-

tio between eigenvalues. Heat Kernel Signature (HKS) [31]

and Laplace-Beltrami Scale-space (LBSS) [34] measure the

saliency from the response to the Laplace-Beltrami opera-

tor in the neighborhood. Local Surface Patches (LSP) [4]

leverages local principal curvatures to construct the Shape

Index (SI) [7] as the measure of saliency. As in SIFT,

MeshDoG [38] and Salient Points (SP) [3] apply the

difference-of-Gaussian operator to construct the scale space

for saliency measure. We refer readers to the comprehen-

sive evaluation in [33] for more details.

In summary, the existing methods often apply an oper-

ator to obtain point normal, curvature and gradient in the

local region, and threshold on either a combination of the

obtained measures or the eigenvalues of the covariance ma-

trices. On the contrary, our proposed method leverages di-

rectly the point distribution and statistics in 3D space and

color space, without the need of normal estimation or eigen-

value decomposition.

Learning-based approaches, such as USIP [18] and

3DFeat-Net [37], have also been studied. 3DFeat-Net [37]

learns a 3D feature detector and descriptor for point cloud

matching using weak supervision, whereas USIP [18] trains

a feature proposal network with probabilistic Chamfer loss

in an unsupervised manner.

Due to the constraint on quantization in neural networks,

the extracted keypoints may be non-deterministic given the

same point cloud input (e.g., USIP [18]). Despite the re-

laxation of the requirement of ground truth, generalization

capability may be challenged when deploying the system

in practice. These approaches are often trained with data







Dataset Redwood Synthetic Redwood Scan TUM SUN3D

Type synthetic real real real

Scene RGB-D frame stitched fragment RGB-D frame reconstruction

Ave. # Points 101164 63841 63211 56497

Resolution (m) 0.01 0.01 0.01 0.1

Noise added (m) 0.005 0.005 0.005 0.05

in Eq. 3 (m) 0.02 0.02 0.02 0.2

Table 1. Dataset Characteristics and Parameters

Recall that the goal is to extract geometry-salient (blue

ellipse in Figure 3) and/or color-salient (red ellipse in Fig-

ure 3) keypoints, which means we cannot simply remove

those points that underperform in one modality, since points

located at the center of a flat surface might contain rich tex-

ture and points with neighbors in same color might be lo-

cated at corners. Therefore, lines 5-7 in Algorithm 1 are

used to filter those points that are neither geometry-salient

nor color-salient by the AND logic. After this step, points

outside the red and blue ellipses, which might affect the fol-

lowing contour optimization, are discarded.

The next step, lines 8-13 in Algorithm 1, is to select the

point that has the best performance considering both geo-

metric and color modalities. This is achieved by optimizing

the contour, constructed from the multiplication of the two

saliency measures. The intuition is that in the case of a flat

surface, for example, the saliency measures in 3D space are

of the same magnitude, hence the points with higher color

response will be selected as keypoints (multiplying with a

same value does not change the order of color response). In

the cases when the colors of all points are similar (e.g., ta-

ble corner), the comparison becomes to mainly consider the

geometric response.

Though what we illustrate in Algorithm 1 in its current

form is for two modalities, the algorithm by itself is de-

signed for multiple modalities (e.g., in the case of multi-

spectrum perception). The multi-modal form can be ob-

tained by extending line 5 and line 10 in Algorithm 1 with

more saliency measures.

4. Evaluation and Results

We present the qualitative results of the proposed method

against others in Section 4.2, followed by quantitative eval-

uation in terms of repeatability (Section 4.3) and compu-

tational efficiency (Section 4.4). To showcase one of the

potential applications of the proposed CED detector, we

present the results of colored point cloud registration in Sec-

tion 4.5. The ablation study of the proposed method is dis-

cussed in Section 4.6.

4.1. Experiment Setup

In experiments, we consider both CED and CED-3D,

which is a variant of CED that considers only geomet-

ric information for non-colored point clouds. We evalu-

ate the performance of CED and CED-3D detectors against

ISS [40], SIFT-3D [19], Harris-3D and Harris-6D [10] de-

tectors 2 as well as a state-of-the-art learning-based key-

point detector USIP [18]. 3 A random keypoint selector

is also included as baseline for comparison. Experiments

are conducted with an i7 8th-gen CPU and Ubuntu 18.04

operating system. An additional Quadro P1000 GPU with

CUDA 10.2 support is provided for the USIP detector only.

The evaluation of computational efficiency is performed

consistently using one thread.

We use four datasets, Redwood Synthetic [5], Redwood

Scan [23], TUM [30] and SUN3D [35] for evaluation. The

selected datasets span various scenarios including different

type, scale, environment, and number of points. During

pre-processing, point clouds are downsampled to their min-

imum resolution and NaN points are removed. Features and

key parameters for each dataset are shown in Table 1. Pa-

rameters with respect to each method are tuned to their best

performance or selected as recommended by the authors of

the respective works. (We provide more details in the pa-

rameter tuning process for each method in the supplemen-

tary materials.)

4.2. Qualitative Evaluation

We select an arbitrary frame in the Redwood Scan [23]

dataset for qualitative evaluation. (The supplementary ma-

terials contain qualitative analysis for a few more randomly-

picked frames across datasets.) Comparative results are

shown in Figure 4. Three main observations can be made.

• The random keypoint detector produces keypoints

without using any geometric or color information in

the point cloud. The USIP detector takes in non-

colored point clouds and proposes candidate interest

2The implementation of these methods is available in PCL 1.8, where

SIFT-3D, Harris-3D and Harris-6D are implemented according to their

original ideas in 2D space.
3The source code and pre-trained network models are provided by the

authors at https://github.com/lijx10/USIP.



Figure 4. Qualitative evaluation of the proposed CED and CED-3D (its geometry-only variant) keypoint detectors against other methods on

Redwood Scan [23] dataset. (a-f) Methods able to extract geometry-salient keypoints only. (g-h) Methods able to extract both geometry-

and color-salient keypoints. Two key observations can be made in this comparison. 1) Out of all methods, only ISS, CED-3D and CED can

extract keypoints on four stove knobs. 2) CED can capture color changes between floor tiles and extract keypoints with high regularity,

whereas ISS and USIP extract keypoints in a somehow uniform manner, and other methods are not capable of extracting meaningful

keypoints on the floor.

positions in 3D space (instead of selecting existing

points on point clouds). The keypoints proposed by

both detectors lack physical meaning and are non-

deterministic given the same input cloud.

• SIFT-3D, ISS, Harris-3D and CED-3D make use of

only geometric information, and can capture corners

and edges in the scene. Note that only ISS and CED-

3D can produce stable, regular keypoints at geometry-

salient places such as the four stove knobs. However,

ISS produces many meaningless keypoints on the floor

due to its sensitivity to the noise on planar surfaces. As

opposed to other methods, CED-3D provides mean-

ingful keypoints with high regularity and is shown to

be stable at planar surfaces.

• Harris-6D and CED can further leverage color infor-

mation in the colored point cloud. Harris-6D computes

color-salient keypoints using intensity gradient, but in

a somehow random pattern (note that some Harris-6D

keypoints are located out of the frame). In contrast,

CED produces highly regular geometry- and color-

salient keypoints using directly the distribution in 3D

space and color space, and can clearly capture color

changes between floor tiles. These regular keypoints

can even serve as edge features in geometric tasks

when needed. This is the key to improve the overall

performance of systems that intend to leverage color

information.

4.3. Repeatability

Repeatability refers to the capability to extract same key-

points under various disturbances. A stable keypoint detec-

tor is expected to be invariant to translation, rotation and

noise.

We evaluate the repeatability of the proposed methods

following [33]. Given a point cloud , we obtain point

cloud by applying an arbitrary transformation matrix

to . After this step, Gaussian noise can be

added to if needed in the evaluation. We then extract

keypoints in and to obtain keypoint sets and

respectively. A keypoint is said to be repeatable
if the L2 distance between the geometric components of the

transformed and its nearest neighbor is less





present herein results of colored point cloud registration on

the Redwood Synthetic [5] dataset.

We follow a typical registration pipeline consisting of

the following four steps. 1) For each pair of point clouds

that describe the same scene from different view point, we

apply the aforementioned eight keypoint detectors (in Sec-

tions 4.3 and 4.4) to extract keypoints. 4 2) The feature de-

scriptor PFHRGB [27] (the color counterpart of the popular

FPFH [26] descriptor) is used to describe the keypoints. 3)

Correspondences are established by nearest neighbor search

in feature vector space using k-D tree. 4) Given the estab-

lished correspondences, TEASER [36] is used to estimate

a transformation that can best align the two point clouds.

Registration is successful if the translation error between

the estimated transformation and the ground truth is less

than a threshold of m and the rotation error is less than a

threshold of deg; thresholds were selected based on values

used in relevant literature, e.g., [18].

Results of registration success rates for the Redwood

Synthetic dataset are shown in Table 2. We observe that

CED outperforms other methods in all scenes, and CED-

3D achieves competitive performance by using only the ge-

ometric information in the environments. The performance

improvement indicates that our CED detector is capable of

capturing a few more scenes where other methods fail to

extract meaningful keypoints. Note that USIP proposes in-

terest positions in 3D space as keypoints, as oppose to se-

lecting points on the point cloud. This behavior is non-

deterministic for the same point cloud and it can severely

impede the performance of point cloud registration. Re-

ported results are the best among all trained network mod-

els. (Additional details on the USIP’s performance with

sub-performing network models are provided in the supple-

mentary materials.)

Method \ Sequence liv rm1 liv rm2 office1 office2

Random 3.57 15.22 11.54 16.33

SIFT-3D 32.14 23.91 57.69 59.18

ISS 46.43 56.52 59.62 75.51

Harris-3D 67.86 78.26 80.77 81.63

Harris-6D 71.43 78.26 84.62 79.59

USIP 37.50 52.17 57.69 73.47

CED-3D (Ours) 60.71 56.52 80.77 79.59

CED (Ours) 76.79 80.43 86.54 83.67

Table 2. Success Rates (%) of Colored Point Cloud Registration

4.6. Ablation Study

Our CED keypoint detector depends on two thresholding

parameters, one for the distance to geometric centroid and

4For USIP, the keypoints are selected as the closest points to its pro-

posed candidate positions in 3D space.

one for the distance to photometric centroid. (See g and

c at the line 5 in Algorithm 1.) The geometric threshold

ranges from 0 to 1, representing the ratio of the L2 distance

to centroid over the radius of the spherical neighborhood

region. The photometric threshold ranges from 0 to 3, rep-

resenting the L1 distance variation in color space.

We evaluate on Redwood Synthetic [5] dataset for geo-

metric threshold ranging from 0.1 to 0.5 when photomet-

ric threshold is fixed at 0.1 (Table 3), and for photometric

threshold ranging from 0.1 to 0.5 when geometric thresh-

old is fixed at 0.2 (Table 4). We observe that the number

of keypoints extracted decreases as the threshold increase.

The repeatability achieves the highest when g and

c . The running time is shown to be less dependent

on the two thresholds.

tg 0.1 0.2 0.3 0.4 0.5

# Keypoints 669.70 616.20 584.18 529.32 488.65

Rep. (%) 60.44 62.21 61.77 60.00 59.67

Runtime (s) 0.74 0.79 0.72 0.69 0.74

Table 3. Ablation Study on Geometric Centroid Threshold tg

tc 0.1 0.2 0.3 0.4 0.5

# Keypoint 616.20 565.67 524.31 495.34 477.46

Rep. (%) 61.94 64.30 66.05 67.58 68.37

Runtime (s) 0.70 0.74 0.68 0.71 0.66

Table 4. Ablation Study on Photometric Centroid Threshold tc

5. Conclusion

In this work we propose the CEntroid Distance (CED)

keypoint detector that can utilize both geometric and color

information in colored point clouds for keypoint detection.

We evaluate the proposed method against state-of-the-art

handcrafted and learning-based keypoint detection methods

on four synthetic and real-world datasets. Our method is

demonstrated to be effective, stable and computationally ef-

ficient. We further demonstrate our method’s potential to be

used in applications such as colored point cloud registration.

We anticipate that the proposed CED detector can ben-

efit systems that are capable of leveraging color informa-

tion to improve performance, and that the centroid distance

used herein can also serve as a stable measure to be used

in other modalities. Future work also includes extension to

multi-spectrum perception, and deployment of CED for au-

tonomous robot navigation (e.g., [15, 16]) in mixed indoor

and outdoor environments.
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