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ABSTRACT

Query Optimization remains an open problem for Big Data Man-
agement Systems. Traditional optimizers are cost-based and use
statistical estimates of intermediate result cardinalities to assign
costs and pick the best plan. However, such estimates tend to
become less accurate because of filtering conditions caused ei-
ther by undetected correlations between multiple predicates local
to a single dataset, predicates with query parameters, or pred-
icates involving user-defined functions (UDFs). Consequently,
traditional query optimizers tend to ignore or miscalculate those
settings, thus leading to suboptimal execution plans. Given the
volume of today’s data, a suboptimal plan can quickly become
very inefficient.

In this work, we revisit the old idea of runtime dynamic opti-
mization and adapt it to a shared-nothing distributed database sys-
tem, AsterixDB. The optimization runs in stages (re-optimization
points), starting by first executing all predicates local to a sin-
gle dataset. The intermediate result created from each stage is
used to re-optimize the remaining query. This re-optimization
approach avoids inaccurate intermediate result cardinality es-
timations, thus leading to much better execution plans. While
it introduces the overhead for materializing these intermediate
results, our experiments show that this overhead is relatively
small and it is an acceptable price to pay given the optimization
benefits. In fact, our experimental evaluation shows that runtime
dynamic optimization leads to much better execution plans as
compared to plans produced by static cost-based optimization (i.e.
based on the initial dataset statistics) and other state-of-the-art
approaches.

1 INTRODUCTION

Query optimization is a core component in traditional database
systems, as it facilitates the order of execution decisions between
query operators along with each operator’s physical implementa-
tion algorithm. One of the most demanding operators is the Join,
as it can be implemented in many different ways depending on
the sizes of its inputs and outputs. To tackle the join optimization
problem, two different approaches have been introduced.

The first approach (introduced in System R [8]) is cost-based
query optimization; it performs an exhaustive search (through
dynamic programming) among all different join orderings until
the one with the smallest cost is found and eventually executed
in a pipelined mode. The second approach (introduced around
the same time in INGRES [37]) uses instead a runtime dynamic
query optimization method (later known as Adaptive Query Pro-
cessing (AQP)), where the original query is decomposed into
single-variable (i.e., single dataset) subqueries which are exe-
cuted separately. This decomposition takes place by: (1) breaking
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off components of the query which participate with a single vari-
able (e.g selections), (2) implementing joins by substituting one
of the join variables with a tuple-at-a-time value. Each subquery
result is stored as a new relation that is then considered by the
optimizer so as to optimize the remaining query. The choice of
the “next" subquery to be executed is based on the cardinality of
the participating datasets.

The INGRES approach was a greedy cardinality-based tech-
nique, with runtime overhead due to creating indexed (for joins)
intermediate results, and the more comprehensive, cost-based,
compile-time approach of System-R became the field’s preferred
approach for many years [18, 20, 27, 33]. To assign a cost for each
plan (and thus find the best join ordering and implementation
algorithms among the search space) the cost-based approach
depends heavily on statistical information. The accuracy of such
statistics is greatly affected by the existence of multiple selection
predicates (on a single dataset), complex selection predicates (i.e.,
with parameterized values or UDFs) and join conditions that are
not based on key-foreign key relationships. In such cases, statis-
tics can be very misleading, resulting in inaccurate join result
estimations. As the number of joins increases, the error can get
worse as it gets propagated to future join stages [23]. These issues
are exacerbated in today’s big data management systems (BDMS)
by the sheer volume of data.

In this work, we revisit the runtime dynamic optimization
introduced by INGRES [37] and adapt it (with modifications) to a
shared-nothing distributed BDMS. In particular, we fully imple-
mented it on Apache AsterixDB and experimented (using TPC
datasets) under various workloads so as to evaluate its perfor-
mance in a real BDMS system. With the increase in the volume
of data, even small errors in the join order can generate very ex-
pensive execution plans. A characteristic of the original dynamic
optimization approach is that the choice of the "next" subquery
to be executed is based only on dataset cardinality. However, the
alternative cost-based optimization approach has shown that, for
better join result estimation, one needs better statistics. Thus,
we take advantage here of the materialization stages to collect
all needed statistics. This combination of re-optimization and
statistics collection leads to superior execution plans.

Specifically, when a query is executed, all predicates local to
a table are pushed down and they are executed first to gather
updated accurate statistics. The intermediate results along with
the updated statistics are fed back to the optimizer to choose
the cheapest initial join to be executed. This process is repeated
until only two joins are left in the query (three datasets). At
that point, dynamic optimization will pick one of the two joins
(based on least cardinality) as the best, leaving only one join to
be processed. For the remaining join there is no reason to collect
any more statistics. We integrated our techniques in AsterixDB
[1, 7] which, like many relational database systems, is optimized
for executing queries in a pipelined manner. Although with our
modified dynamic optimization approach the query execution
goes through blocking re-optimization points, this extra overhead
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is relatively minimal and is thus worthwhile since very expensive
query plans are avoided.

Various works have been proposed in literature that use dy-
namic optimization techniques to alleviate the problems intro-
duced by static cost-based optimization [9, 10, 17, 24, 34]. In this
context, new statistics are estimated after mid-query execution
(with information gathered from intermediate results) and they
are used to re-calibrate the query plan. This is similar to our
approach; however, such works tend to ignore information com-
ing from correlated selectivities, predicates with parameterized
values and UDFs. Instead, by executing the local predicates first,
we gain accurate cardinality estimations early that lead to im-
proved query performance (despite the overhead of materializing
those filters). Dynamic optimization has also been introduced in
multi-node environments [6, 25, 26, 28]. These works either intro-
duce unnecessary additional overheads by running extra queries
to acquire statistical data for the datasets [25] or they need to
re-partition data because of lazily picking an inaccurate initial
query plan [28]. Runtime dynamic optimization has been used in
[26] but multi-join queries were not considered. Re-optimization
points are used in [6] in a different way, as a place where an
execution plan can be stopped if its execution is not as expected.

As we show in the experimental evaluation, for a variety of
workloads, our modified runtime dynamic optimization will gen-
erate query plans that are better than even the best plans formed
by (i) a user-specified order of the datasets in the FROM clause of
a submitted query, or (ii) traditional static cost-based optimizers.
In particular, our methods prevent the execution of expensive
plans and promote more efficient ones. Re-optimizing the query
in the middle of its execution and not focusing only on the initial
plan can be very beneficial, as in many cases, the first (static)
plan is changed dramatically by our optimizer.

In summary, this paper makes the following contributions:

e We adapt an INGRES-like dynamic optimization scheme
in a shared-nothing BDMS (Apache AsterixDB). This in-
cludes a predicate pre-processing step that accurately esti-
mates initial selectivities by executing all predicates local
to a dataset early on. We insert multiple re-optimization
points during query execution to receive feedback (up-
dated statistics for join results) and refine the remaining
query execution plan. At each stage (i.e. re-optimization
point), we only consider the next cheapest join, thus avoid-
ing forming the whole plan and searching among all the
possible join ordering variations.

We assess the proposed dynamic optimization approach
via detailed experiments that showcase its superiority
against traditional optimizers. We also evaluate the over-
head introduced by the multiple re-optimization points
and the materialization of intermediate results.

The rest of the paper is organized as follows: Section 2 dis-
cusses existing work on runtime dynamic optimization, while
Sections 3 and 4 outline the architecture of AsterixDB and the
statistics collection framework respectively. Section 5 describes
the details of the dynamic optimization approach including the
use of statistics, while Section 6 showcases how the approach
has been integrated into the current version of AsterixDB. The
experimental evaluation appears in Section 7. Section 8 concludes
the paper and presents directions for future research.

2 RELATED WORK

Traditional query optimization focuses on cost models derived
from statistics on base datasets (cost-based optimization) as in-
troduced in System R [8]. Typically, there are two steps in this
process: first, there is a rewrite phase that transforms the speci-
fied query into a collection of alternate plans (created by applying
a collection of rules), and second, cost models based on cardi-
nality estimation are used to pick the plan with the least cost
[16, 18, 19]. A cost-based optimization approach adapted for par-
allel shared-nothing architectures is described in [35]; here the
master node sends the query to all worker nodes along with
statistics. Then, each worker decides the best plan based on its re-
strictions and sends its decision to the master. Finally, the master
decides the globally optimal plan. This way, all the nodes in the
cluster are working in parallel to find the best plan, each node
working with a smaller set of plans. Our work also considers
the shared-nothing environment, however, we concentrate on
runtime dynamic optimization.

Runtime dynamic optimization was introduced in INGRES
[37], where a query is decomposed into single-variable queries
(one dataset in the FROM clause) which are executed separately.
Based on the updated intermediate data cardinalities, the next
best query is chosen for execution. In our work, we wanted to
revisit this approach and see whether big data processing systems
can benefit from it. Hence we execute part of the query to obtain
statistics from the intermediate results and refine the remaining
query. Opposite to INGRES, we do not depend only on cardinal-
ities to build our cost model, but we collect more information
regarding base and intermediate data based on statistics. Since
INGRES, there have been various works using runtime dynamic
optimization in a single-server context. Specifically, LEO [34] cal-
ibrates the original statistics according to the feedback acquired
from historical queries and uses them to optimize future queries.
In Eddies [9] the selectivity of each query operator is calculated
while records are being processed. Eventually, the more selective
operators are prioritized in the evaluation order.

Dynamic optimization is more challenging in a shared-nothing
environment, as data is kept and processed across multiple nodes.
Optimus [26] leverages runtime statistics to rewrite its execution
plans. Although it performs a number of optimizations, it does
not address multi-way joins, which as [26] points out, can be
“tricky” because the data may need to be partitioned in multi-
ple ways. RoPE [6] leverages historical statistics from prior plan
executions in order to tune future executions, e.g. the number
of reduce tasks to schedule, choosing appropriate operations,
including order. Follow-up work [14] extends the RoPE design to
support general query workloads in Scope [39]. Their strategy
generates a (complete) initial query plan from historical statistics,
and it collects fresh statistics (specifically, partitioned histograms)
during execution that can be used to make optimized adjustments
to the remaining operators in the plan. However, in order not
to throw away work, reoptimization takes place after a certain
threshold and the initial plan is configured only based on the
base datasets, which can potentially lead to suboptimal plans.
In contrast, in our approach we block the query after each join
stage has been completed and we use the result to optimize the
subsequent stages; hence no join work is wasted. Furthermore,
we estimate the selectivity of predicates by pushing down their
execution; hence we avoid initial possibly misleading calcula-
tions. Nevertheless, learning from past query executions is an



orthogonal approach that could be used to further optimize our
approach and it is part of our future work.

Another approach belonging to the runtime dynamic optimiza-
tion category uses pilot runs, as introduced in [25]. In an effort
to alleviate the need for historical statistics, pilot runs of the
query are used on sample data. There are two main differences
between this approach and our work. First, statistics obtained
by pilot runs are not very accurate for joins that do not have a
primary/foreign key condition as sampling can be skewed under
those settings. In contrast, our work gathers statistics on the base
datasets which leads to more accurate join result estimations for
those joins. Secondly, in our work we exploit AsterixDB’s LSM
ingestion process to get initial statistics for base datasets along
with materialization of intermediate results to get more accurate
estimations - thereby we avoid the extra overhead of pilot runs.
ROX [4] is another work that gathers statistics (only) on samples
instead of the base datasets. In contrast to pilot runs, they gather
statistics on samples even for intermediate results and they adapt
runtime dynamic optimization for the XQuery language. In our
work we gather statistics on the base datasets which leads to
more accurate join result estimations. Finally, Monsoon [32] uses
a probabilistic model to decide if preprocessing is needed for
cardinality estimation. This technique could be used to further
optimize our approach once we focus on more costly predicates.

Finally, RIOS [28] is another system that promotes runtime
incremental optimization. In contrast to Optimus, RIOS assumes
that the potential re-partitioning overhead is amortized by the
efficiency of their approach. Particularly, statistics are collected
during a pre-partitioning stage in which all the datasets par-
ticipating in the query are partitioned according to an initial
lazy plan formed based on raw byte size. A disadvantage of the
prepartitioning phase is that if statistics collected during it in-
dicate that this is not the correct plan, RIOS re-partitions the
data. This is done if and only if the difference between the lazy
plan and the better one is larger than a certain threshold. In that
case, the remaining query is optimized according to the feedback
acquired by intermediate results. In contrast to RIOS, our method
alleviates the need for potential expensive re-partitioning since
accurate statistics are collected before the query is processed by
the optimizer. That way, we can pick the right join order from
the beginning and thereby the right partitioning scheme. Hence,
we avoid the overhead of faulty partitioning, which for large
volumes can be very significant.

Among the aforementioned works that focus on parallel RDBMS,
the closest to our technique are RIOS [28] and pilot runs [25]
since they do not require the use of historical statistics. (The
others either do not concentrate on joins [26, 32] or they pro-
cess very different query languages [4].) For our experimental
comparisons we implemented the pilot runs approach [25] in
AsterixDB (see Section 7). We did not implement RIOS [28] since
its prepartition phase is quite different than the query workflow
in AsterixDB, where each dataset is already stored partitioned
and then repartitioned if needed at the first join stage that it is
involved in.

3 ASTERIXDB BACKGROUND

Apache AsterixDB is a parallel, shared-nothing platform that
provides the ability to ingest, store, index, query, and analyze
mass quantities of semistructured data. To process a submitted
query, AsterixDB compiles it into an Algebricks [12] program
also known as the logical plan. This plan is then optimized via

rewrite rules that reorder the Algebricks operators and introduce
partitioned parallelism for scalable execution. After this (rule-
based) optimization step, a code generation step translates the
resulting physical query plan into a corresponding Hyracks Job
[13] that will use the Hyracks engine to compute the requested
query results. Finally, the runtime plan is distributed accross the
system and executed locally on every slave of the cluster. For
query execution, AsterixDB employs a dataflow-based approach,
as is commonly found in parallel RDBMSs and in the current
runtimes for Big Data platforms including Pig, Hive, Impala,
Apache Tez, and Spark [11]. Given these architectural similarities
(from a query processing perspective) between AsterixDB and
other big data platforms, it should be noted that the work reported
here should be applicable to other such systems as well.

Although all AsterixDB layers will participate in the integra-
tion of our work, the query optimizer, which is mainly in the
Algebricks layer, will be our core focus. Currently, the AsterixDB
optimizer takes into consideration many data properties, such
as the data partitioning and ordering, and decides according to
a set of heuristic rules (which are the core of Algebricks) how
the query should be executed. These heuristic rules are applied
without any information gathered from statistics. For multi-join
queries, the join order in AsterixDB currently depends on the or-
der of the datasets in the FROM clause of the query (i.e., datasets
are picked in the order they appear in it). Generally, the com-
piler will produce right-deep joins; if the user wants to generate
bushy-joins, it is feasible by grouping the datasets together us-
ing parentheses. However, in our experience this option can be
complicated for naive users.

Another aspect in join query optimization is the choice of join
algorithm. AsterixDB supports multiple algorithms like Hash,
Broadcast and Nested Loop Join. Below, we describe the imple-
mentation of each algorithm in AsterixDB.

Hash Join: Assuming the join’s input data is not partitioned
in a useful way, the algorithm redistributes the data by hashing
both inputs on the join key(s) — thereby ensuring that objects
that should be joined will be routed to the same partition for
processing — and then effects the join using dynamic hash join.
In more detail, the “build” side of the join is first re-partitioned
and fed over the network into the build step of a local hash join;
each partition will then have some portion (perhaps all) of the
to-be-joined build input data in memory, with the rest (if any) in
overflow partitions on disk. The “probe” side of the join is then
re-partitioned similarly, thus creating a pipelined parallel orches-
tration of a dynamic hash join. In the event that one of the inputs
is already partitioned on the join key(s), e.g., because the join is
a key/foreign key join, re-partitioning is skipped (unnecessary)
for that input and communication is saved.

Broadcast Join: This strategy employs a local dynamic hash
join where one of the join inputs (ideally a small one) is broadcast
— replicated, that is — to all partitions of the other input. The
broadcast input is used as the build input to the join, and once
the build phase is done the participating partitions can each probe
their local portion of the other larger input in order to effect the
join.

Indexed Nested Loop Join: Here, one of the inputs is broad-
cast (replicated) to all of the partitions of the other input, which
for this strategy must be a base dataset with an index on the
join key(s); as broadcast objects arrive at each partition they are
used to immediately probe the index of the other (called “inner”)
dataset.



Currently, in AsterixDB, the hash join is picked by default
unless there are query hints that make the optimizer pick one of
the other two algorithms. However, when a broadcast join can
be applied, joins can complete much faster as expensive shuffling
of the large dataset is avoided.

Optimizer Limitations: The current rule-based optimizer in
AsterixDB has several limitations:

e There is no selectivity estimation for predicates. Conse-
quently, opportunities are missed for choosing the right
join orders and join algorithms. Broadcast joins, in particu-
lar, will not be considered without a hint, even in the case
when a dataset becomes small enough to fit in memory
after the application of a selective filter.

e There is no cost-based join enumeration. Thus, a query’s
performance relies largely on the way it has been written
by the user (i.e., the dataset ordering in the FROM clause).

Although the work here targets the Apache AsterixDB code
base, any query processing platform targeting large-scale data
that supports a typical join operator would be able to incorporate
our techniques with the following changes:

(1) Instrument the system’s query runtime to collect dynamic
statistics over attributes.

(2) Incorporate a cost model analogous to ours into the sys-
tem’s query optimizer.

(3) Create (if needed, else utilize) new operators that mate-
rialize intermediate results and scan them to re-optimize
the remainder of a query.

(4) Identify potential re-optimization points in the plan.

4 STATISTICS COLLECTION

At each re-optimization point, we collect statistical information
about the base and intermediate datasets that will help the opti-
mizer decide the best join order and join algorithm. These statis-
tics are later used to estimate the actual join result size by using
the following formula, as described in [31]:

As< B=S(A) % S(B)/max(U(Ak), U(B.k)) 1)

where S(x) is the size of dataset x and U(x.k) is the number of
unique elements for attribute k of dataset x. The size of a dataset
is the number of qualified records in the dataset immediately
before the join operation. If a dataset has local predicates, the
traditional way to calculate result cardinality is to multiply all the
individual selectivities [31]. However, as it will be described in
section 5.1, we use a more effective approach for this calculation.

Statistics Types: To measure the selectivity of a dataset for
specific values, we use quantile sketches. Following the Greenwald-
Khanna algorithm [36], we extract quantiles which represent the
right border of a bucket in an equi-height histogram. The buckets
help us identify estimates for different ranges which are very
useful in the case that filters exist in the base datasets. To find
the number of unique values needed for formula 1, we use Hy-
perloglog [29] sketches. The HLL algorithm can identify with
great precision the unique elements in a stream of data. We col-
lect these types of statistics for every field of a dataset that may
participate in any query. It should be noted that the gathering of
these two statistical types happens in parallel.

5 RUNTIME DYNAMIC OPTIMIZATION

The main focus of our dynamic optimization approach is to uti-
lize the collected statistics from intermediate results in order to

refine the plan on each subsequent stage of a multi join query.
To achieve this aim, there are several stages that need to be
considered.

As described in Algorithm 1lines 6-9, the first step is to identify
all the datasets with predicates. If the number of predicates is
more than one, or, there is at least one complex predicate (with a
UDF or parameterized values), we execute them as described in
Section 5.1. Afterwards, while the updated query execution starts
as it would normally do, we introduce a loop which will complete
only when there are only two joins left in the query. In that case,
there is no reason to re-optimize the query as there is only one
possible remaining join order. This loop can be summarized in
the following steps:

e A query string, along with statistics, are given to the Plan-
ner (line 12) which is responsible for figuring out the next
best join to be executed (the one that results in the least
cardinality) based on the initial or online statistics. As a re-
sult, the Planner does not need to form the complete plan,
but only to find the cheapest next join for each iteration.
The output plan is given as input to the Job Construction
phase (line 14) which actually converts it to a job (i.e.
creation of query operators along with their connections).
This job is executed and the materialized results will be
rewired as input whenever they are needed by subsequent
join stages.

Finally, if the remaining number of datasets is more than
three, we return to the Planner phase with the new query
as formatted in the Query Reconstruction phase (line
13); otherwise the result is returned.

5.1 Selective Predicates

Filtering can be introduced in the WHERE clause of a query in
several forms; here we are focusing on selection predicates. In
the case that a dataset has only one local selection predicate
with fixed value, we exploit the equi-height histogram’s benefits.
Particularly, depending on the number of buckets that we have
predefined for the histogram, the range cardinality estimation
can reach high accuracy.

However, for multiple selection predicates or complex pred-
icate(s), the prediction can be very misleading. In the case of
multiple (fixed value) predicates, traditional optimizers assume
predicate independence and thus the total selectivity is computed
by multiplying the individual ones. This approach can easily lead
to inaccurate estimations [22]. In the absence of values for pa-
rameters, and given non-uniformly distributed data (which is
the norm in real life), an optimizer cannot make any sort of in-
telligent prediction of selectivity, thus default values are used
as described in [31] (e.g. 1/10 for equalities and 1/3 for inequali-
ties). The same approach is taken for predicates with UDFs [21].
Most works dealing with complex predicates [15, 21] focus on
placing such predicates in the right order and position within
the plan, given that the selectivity of the predicate is provided.
In our work, we exploit the INGRES [37] approach and we push
down the execution of predicates (lines 20-23 of Algorithm 1) to
acquire accurate cardinalities of the influenced datasets.

As a complex predicate example consider the following query
Q1, where we have four datasets, two of which are filtered with
UDFs and then joined with the remaining two. (For simplicity in
this example we use UDFs but the same procedure is followed
for predicates with parameterized values.)

select A.a



Algorithm 1 Dynamic Optimization

1: J « joins participating in the original query

2: D « collection of base datasets (d) in the query

3: Statistics « quantile and hyperloglog sketches for each field of D
that is a join key

4: Q(0,D,]J) « original query as submitted by user
projection list

> o is the

5:
6: fordin D do

7: P « set of selective predicates local to d

8 if |[P| > 1 then

9 D — {d} | JPusHDOWNPREDICATES(d, P)

11: while |J| > 2 do

12: J < PLANNER(], Statistics)

13: Q(o,D,]) « QUERYRECONSTRUCTION(j, Q(0, D, J))

14: intermediateResults, Statistics —
ConstructAndExecute(j) > collect statistical sketches on
intermediate data and integrate them on the statistics collection
framework

15: J « joins in Q(D)

17: j < PLANNER(/, Statistics)
18: return ConstructAndExecute(j)

20: function PUsHDOWNPREDICATES(d, P)

21: Q(o, {d}, 0) < query consists only of d with its local predicates
> o is filled by fields participating in joins

22: d’, Statistics < Execute(Q(c, {d}, 0)) > update original
Statistics with the sketches collected for the new d

23: return d’

24:

25: function PLANNER(], Statistics)

26: minjoin « 0, finalJoin « 0

27: for jin J do

28: minJoin«— min(minJoin, JoinCardinality(j, Statistics))

29: if |J| = 2 then

30: finaljoin — BestAlgorithm(minjoin) =
BestAlgorithm((J — {minJoin}))

31: else

32: finalJoin « BestAlgorithm(minjoin)

33: return finalJoin

34:

35: function QUERYRECONSTRUCTION(j (d1, d2), Q(o, D, J))
36: d' « CreateDataset(j(dy,dy))

57 De (DUL)) - {didy)

38 JeJ-{j(didz)}

39: return Q(o, D, J)

from A, B, C, D

where udf(A) and A.b = B.b
and udf(C) and B.c = C.c
and B.d = D.d;

As indicated in line 21 of Algorithm 1, we isolate the datasets
enhanced with local filters and we create queries for each one of
those similarly to the decomposition technique used in INGRES
to create single variable queries. In Q1, datasets A and C will be
wrapped around the following single variable queries (Q and
Q3 accordingly):
select A.a, A.b
from A
where udf (A);

select C.c
from C
where udf (C);

Note that in both queries the SELECT clause is defined by
attributes that participate in the remaining query (i.e in the pro-
jection list, in join predicates, or in any other clause of the main
query). Once the query construction is completed, we execute
them and we save the intermediate results for future processing
from the remaining query. At the same time, we also update
the statistics (hyperloglog and quantile sketches) attached to the
base unfiltered datasets to depict the new cardinalities. Once
this process is finished, we need to update Q; with the filtered
datasets (line 9 in Algorithm 1), meaning removing the UDFs
and changing the FROM clause. The final query which will be
the input to the looping part of our algorithm (lines 11-18) is
illustrated below as Q1.

select A'.a

from A', B, C', D

where A'.b = B.b and B.c = C'.c
and B.d = D.d;

5.2 Planner

Next is the Planner stage (lines 25-30), where the input is the non-
optimized query (in our case Q;), along with the most updated
statistics. The goal of this stage is to output the best plan (since
we focus on joins, this is the plan containing the best join order
and join algorithm).

The first step in the Planner phase is to identify the join with
the least result cardinality, along with its algorithm (lines 27-28).
After that, we need to construct the join which will be output.
If there are more than two joins in the input, then the cheapest
join is the output and we are done (lines 31-32). However, in
the case that there are only two joins, the Planner will pick the
most suitable algorithm for both joins. Then, it will combine the
two joins by ordering them according to their result cardinality
estimation (lines 29-30 of Algorithm 1).

In Q7 there are three joins, which means that the first case
is applied and it suffices to find the cheapest join according to
statistics. Assuming that according to formula 1, A" and B lead to
the smallest result cardinality, and A’ (after the UDF application)
is small enough to be broadcast, the plan output is a broadcast
algorithm between A" and B (Ja/).

5.3 Job Construction

Next, we construct a job for the plan (in our example, J4’g) output
by the previous stage (lines 14 and 18 of Algorithm 1). The details
of how we construct a job in AsterixDB are described in section
6.3. The way a job is executed depends on the number of joins
in the plan. If there is only one join, it means that we are still
inside the looping part of the algorithm (line 14). To that end, we
need to materialize the intermediate results of the job and at the
same time gather statistics for them. In our example, plan J4’ g
has only one join - thereby the aforementioned procedure will
be followed and the joined results of A" and B will be saved for
future processing along with their statistics.

On the other hand, if the plan consists of two joins, it means
that the dynamic optimization algorithm has been completed and
the results of the job executed are returned back to the user (line
18 of Algorithm 1).

Online Statistics: For the statistics acquired by intermediate
results, we use the same type of statistics as described in sec-
tion 4. We only gather statistics on attributes that participate on
subsequent join stages (and thus avoid collecting unnecessary
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Figure 1: AsterixDB workflow without and with the integration of Dynamic Optimization

information). The online statistics framework is enabled in all the
iterations except for the last one (i.e. the number of remaining
datasets is three) since we know that we are not going to further
re-optimize.

5.4 Query Reconstruction

The final step of the iterative approach is the reconstruction of the
remaining query (line 13 of Algorithm 1). Given that there will
be more re-optimization points (more than two joins remaining),
we need to reformulate the remaining query since the part that
participates in the job to be executed needs to be removed. The
following issues need to be considered in this stage:

e The datasets participating in the output plan need to be
removed (as they are not going to participate in the query
anymore) and replaced by the intermediate joined result
(lines 36-37).

e The join output by Planner needs to be removed (line 38).

e Any other clause of the original query influenced by the re-
sults of the job just constructed, needs to be reconstructed.

Following our example, the Planner has picked as optimal the
join between A' and B datasets. Consequently this join is exe-
cuted first; then, the joined result is stored for further processing
and is represented by a new dataset that we call I4p. In terms of
the initial query, this will trigger changes in all its clauses. Par-
ticularly, in the select clause the projected column derives from
one of the datasets participated in the subjob (A). Hence, after its
execution, the projected column will now derive from the newly
created dataset I4g. In the FROM clause both A and B should be
removed and replaced by I4p. Finally, in the WHERE clause, the
join executed has to be removed and if its result participates in
any of the subsequent joins, a suitable adjustment has to be made.
To this end, in our example B is joined with C in its c attribute.
However, the ¢ column is now part of I4p. As a result, I4p will
now be joined with C. After these changes the reformatted query

will look like this (Q4):
select Iyp.a

from I4g, C', D

where Iyg.c = C'.c and Iug.d = D.d;
Q4 has only two joins, which means that the looping part of

our algorithm has been completed and that once the Planner
picks the optimal join order and algorithm the final job will be
constructed and executed with its results returned to the user.

5.5 Discussion
By integrating multiple re-optimization points during mid-query
execution and allowing complex predicate pre-processing, our

dynamic optimization approach can lead to much more accurate
statistics and efficient query plans. Nevertheless, stopping the
query before each re-optimization point and gathering online
statistics to refine the remaining plan introduces some overhead.
As we will see in the experimental section, this overhead is not
significant and the benefits brought by the dynamic approach
(i.e., avoiding a bad plan) exceed it by far. Note that here we focus
on simple UDF predicates applied on the base datasets. For more
expensive UDF predicates, plans that pull up their evaluation
need to be considered [21]. Another interesting point unlocked
by dynamic optimization is the forming of bushy join plans.
Although they are considered to be expensive as both inputs of
the join need to be constructed before the join begins in a parallel
environment, they tend to be very efficient as they can open
opportunities for smaller intermediate join results.

6 INTEGRATION INTO ASTERIXDB

As AsterixDB is supported by two other frameworks (Algebricks
and Hyracks), there were multiple changes needed so as to inte-
grate the dynamic optimization approach. The left side of Figure
1 represents the current query processing workflow of the Aster-
ixDB framework, while the right side summarizes our changes.
In particular, in the beginning the workflow behaves in the same
way as always, with the exception of few additional rules inte-
grated into the rule-based (JoinReOrderRule, PushDownPred-
icateRule) and physical-based (JoinAlgorithmRule) optimizer
(Planner). Afterwards, depending on the number of joins partici-
pating in the query currently being processed, we either construct
and execute the Hyracks job and output the result to the user
as usual (only two joins) or we perform the following two steps
(more than two joins):

e We introduce the Query Reconstruction phase where
we reformulate the query currently being processed and
we redirect it as new input to the SQL++ parser and the
whole query process starts from the beginning once again.

e We construct a Hyracks job (Job Construction) by using
various new operators introduced to allow materialization
of the results of the query currently being processed along
with connection of previously (if any) executed jobs.

6.1 Planner

If a dataset has more than one filter, the PushDownPredicateRule
is triggered. This rule will push the filters down to their data-
source and will remove the rest of the operators from the plan,
leading to a modified plan of a simple select-project query (like
Q2 and Q3 in section 5.1) . On the other hand, if there is only



one filter, we estimate the filtered dataset cardinality based on
histograms built on the base dataset.

Afterwards, the Planner stage will decide the optimal join
order and algorithm. In order for the Planner to pick the join
with the least cardinality, we enhanced the rule-based logical
Optimizer (part of the Algebricks framework) with the JoinRe-
OrderRule (see Figure 1). To further improve the efficiency of the
execution plan, we integrated a rule in the rule-based physical
Optimizer (Figure 1) that picks the most suitable join algorithm.

6.1.1  Join Ordering.
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Figure 2: Planning Phase with Dynamic Optimization

The main goal of the join order rule is to figure out the join with
the least cardinality. To that end, we identify all the individual
joins along with the datasources (post-predicate execution) of
their predicates. In this work, we focus only on joins as formed
in the WHERE clause of the query. In the future, we plan to
infer more possible joins according to correlations between join
predicates. Afterwards, we apply formula 1 based on statistics (see
Section 4) collected for the datasets and predicates involved in the
join. Traditional optimizers that are based on static cost-based
optimization need to form the complete plan from the beginning,
meaning that we need to search among all different possible
combinations of joins which can be very expensive depending on
the number of base datasets. However, in the case of incremental
optimization, it suffices to search for the cheapest join because
the rest will be taken into consideration in the next iterations of
our algorithm. In our example in Figure 2, in Q; the join between
post-predicate A (A') and B will be estimated as the cheapest one
and will be output from the Planner stage.

The second feature of this rule is triggered when there are
only two joins left in the query and hence the statistics obtained
up to that point suffice to figure out the best join order between
them. Specifically as depicted in Plan 2 of Figure 2, in this case
a two-way join (between three datasets) is constructed whose
inputs are (1) the join (between two of the three datasets) with
the least result size (estimated as described above) and (2) the
remaining dataset.

It is worth noticing that in the first iteration of the approach
the datasets that are joined are always among the base datasets.
However, in the rest of the iterations, one or both of the joined
datasets may be among the results from previous iterations. An
example of that is shown in Plan 2 of Figure 2, where the right
dataset of the final join is the result of the first iteration (J1) of
our algorithm.

6.1.2  Join Algorithm.

While hash join is the default algorithm, by having accurate
information about the datasets participating in the corresponding
join, the optimizer can make more efficient decisions. If one of
the datasets is small enough, like A" and C' in our example (see

Figure 2), then it can be faster to broadcast the whole dataset and
avoid potential reshuffling of a large dataset over the network.
Knowing that the cardinality of one of the datasets is small
enough to be broadcast also opens opportunities for performing
the indexed nested loop join algorithm as well. However, two
more conditions are necessary to trigger this join algorithm. The
first one is the presence of a secondary index on the join predicate
of the "probe" side. The second condition refers to the case of
primary/foreign key join and dictates that the dataset that gets
broadcast must be filtered - thereby during the index lookup of a
large dataset there will be no need for all the pages to be accessed.

6.2 Query Reconstruction

This stage is entered in one of the following cases: (1) the Planner
has output a simple projection plan (predicate push down) or (2)
the Planner output is a select-project-join plan (cheapest join).
In both cases, we follow the process described in section 5.4
to reformulate the clauses of the input query and output the
new query that will be given as input to the optimizer for the
remaining iterations of our algorithm.

6.3 Job Construction
There are three different settings when creating a job:

(1) When there are still re-optimizations to be scheduled
(more than 2 joins), the output of the job has to be materi-
alized for future use.

(2) If one or both inputs of a job is a previously materialized
job output, we need to form a connection between the
jobs.

(3) When the iterations are completed, the result of the last
job will be returned to the user.
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Figure 3: Original Hyracks job split into smaller jobs

We use the example in Figure 3 to illustrate the process we
followed to satisfy the aforementioned cases. The left side of the
figure depicts the usual job for the three-way join query (Q1),
where the final result is returned to the user via the DistributeRe-
sult operator. Instead, on the right side of the Figure (Phase 1),
two subjobs are created which push down the UDF predicates ap-
plied to datasources A and C. Their results are the post-predicate
versions of A and C (Sink(A’) and Sink(C’) accordingly). The Sink
operator is responsible for materializing intermediate data while
also gathering statistics on them.

In Phase 2, the subjob formed wraps the join between datasets
A’ and B, as this is the plan output by the Planner. Note that



the new operator introduced in this phase (Reader A’) indicates
that a datasource is not a base dataset. Instead, it is intermediate
data created by a previous subjob. In our example, Reader A’
represents the materialized data created in the previous phase by
Sink(A’). Since the original query has not finished yet (remaining
joins), the Sink operator will be triggered once again and it will
store in a temporary file the joined results (I4p), while at the
same time it will collect the corresponding statistics.

Finally, the goal of Phase 3 is to wrap the output of the Planner
which is a two-way join. The existence of two joins indicates that
we are at the final iteration of the dynamic approach - thereby
this job is the final one and its result should be returned to the
user. Consequently, the DistributeResult operator re-appears in
the job, as depicted in Figure 3.

6.4 Discussion

To integrate the dynamic optimization approach in the AsterixDB
framework, we had to create an iterative workflow which gave
us the opportunity to trigger multiple re-optimization points that
result in more efficient query plans. In this work, we concentrate
on multi-join queries which may also contain multiple and/or
complex selection predicates. Although other types of operators
may exist in the query, for now they are evaluated after all the
joins and selections have been completed and traditional opti-
mization has been applied. In the future, we plan to investigate
more costly UDF predicates along with more complex queries
(i.e. nested queries).

7 EXPERIMENTAL EVALUATION

We proceed with the performance evaluation of our proposed
strategies and discuss the related trade-offs. The goals of our
experiments are to: (1) evaluate the overheads associated with
the materialize and aggregate statistics steps; (2) show that good
join orders and methods can be accurately determined, and (3)
exhibit the superior performance and accuracy over traditional
optimizations. In particular, in the following experiments we
compare the performance of our dynamic approach with: (i) As-
terixDB with the worst-order, (ii) AsterixDB with the best-order
(as submitted by the user), (iii) AsterixDB with static cost-based
optimization, (iv) the pilot-run [25] approach, and (v) an INGRES-
like approach [37]. Section 7.2 contains detailed explanations of
each optimization approach.

Experimental Configuration: All experiments were carried
out on a cluster of 10 AWS nodes, each with an Intel(R) Xeon(R)
E5-2686 v4 @ 2.30GHz CPU (4cores), 16GB of RAM and 2TB SSD.
The operating system is 64-bit Red-Hat 8.2.0. Every experiment
was carried out five times and we calculated the average of the
results.

Queries: We have explored the performance of our approach
using multiple TPC-DS [2] and TPC-H [3] join queries. Here we
present four representative queries from TPC-DS (Query 17 and
Query 50) and TPC-H (Query 8 and Query 9). The actual queries
are shown in Figure 4. Due to lack of space, the query SQL ver-
sions and the plans produced for all experiments are available in
[30]. We chose these queries due to (1) their complexity (from a
number of joins perspective) and (2) their variety in join condi-
tions (primary/foreign key vs. fact-to-fact joins). The rest of the
multi-way join queries in those benchmarks have similar join
structures as these four queries. Moreover, several related works
([25, 28]) that also focused on dynamic join query execution used
these same four queries in their experimental evaluations.

To better assess the effect of selection predicates on our run-
time dynamic approach, we used modified versions of Queries 8,
9 and 50. Specifically, to consider multiple fixed value predicates,
in Query 8 we added two (and correlated [38]) predicates on the
orders table. We use Query 9 to examine the effect of UDFs (by
adding various UDFs on top of the part and orders tables). Finally,
in Query 50, we added two selections with parameterized values
on top of one of the dimension tables.

For all of the scenarios we generate 3 TPC-DS and 3 TPC-H
datasets with scale factors 10, 100, 1000. A scale factor of 1000
means that the cumulative size for the datasets involved in the
specific query is 1TB. A small scale factor, like 10, was chosen
for the purpose of emphasizing any overhead introduced by our
approach for very small datasets. All the data is directly generated
and then loaded into AsterixDB. It is also worth noting that we
gain upfront statistics for the forming of the initial plan during
the loading of the datasets in AsterixDB. This is only performed
once and it is not part of the query execution process; thus the
performance numbers reported in our results do not include that
part. The loading times can vary from 10 minutes to 8 hours
depending on the size of the datasets. However, as was shown in
[5], the statistics collection overhead is minimal with respect to
the loading time.

7.1 Overhead Considerations

In this section, we evaluate the overhead introduced to the Aster-
ixDB execution time due to our dynamic optimization techniques,
namely (1) introduction of re-optimization points, (2) gathering
of statistics during runtime, and (3) separate execution of mul-
tiple/complex predicates. To this end, we report the execution
times for the above four representative queries for scale factors
100 and 1000.

For the first two settings we perform the following three ex-
ecutions for each query. In the first execution we acquired all
the statistics needed for forming the optimal execution plan by
running our runtime dynamic optimization technique. Then, we
re-executed the query by having the updated statistics for each
dataset so that the optimal plan is found from the beginning. In
the final execution, we enabled the re-optimization points but
we removed the online statistics collection. That helped us as-
sess the overhead coming from writing and reading materialized
data. Finally, to evaluate the cost of online statistics gathering
we simply deducted the third execution time (re-optimization)
from the first one (whole dynamic optimization technique).

As seen in the left side of figure 5, for scale factor 100, the
total re-optimization time is around 10% of the execution time
for most queries, with the exception of Q50 which has only four
joins leading to an overhead of 2%. Particularly, the four joins
introduce two re-optimization points before the remaining query
has only two joins and there is no need for further re-optimization.
There is also a re-optimization in the beginning of this query
introduced by the execution of the filtered dataset. However, this
is insignificant as will be discussed later. For the scale factor of
1000, the overhead of re-optimization increases up to 15% for
most queries, as the intermediate data produced are larger and
thus the I/O cost introduced by reading and writing intermediate
data is increased.

The online statistics collection brings a small overhead of 1%
to 3% (scale factor 100) to the total execution time, as it is masked
from the time we need to store and scan the intermediate data.
Moreover, the extra time for statistics depends on the number
of attributes for which we need to keep statistics for. Following



Query 17: (o,,, (date_dim)) g qq Store_returns ;. ._. store_sales &i,_, store ™ g4 _4q(0,,, (date_dim)) »a,_; item 2,
catalog_sales ™44 (0, (date_dim))
Query 50: (o, (date_dim)) b g qq Store_returns ®;_; .., . store_sales M,  date_dim x_ store,
with y=rand(1998,200), m=rand(8,10)
Query 9: (o, (part)),—y ™ lineitem bty g, supplier &4, nation Mg part_sup Mg (o4, (order)),
with o, =(mysub(b)="#3"), 6,= (myyear(d)=1998)
Query 8: lineitem o4, _, (o, (part)) Mgy supplier ™., _, (o4, (order)) 04, _, customer &, _, nation <, _, (o, (region)) &, nation

Figure 4: Queries used for the experimental comparisons.
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Figure 5: Overhead imposed by the multiple re-optimization points and the online statistics.

the example of Q50 as above, the statistics collection overhead is
only 1% because it has the smallest number of join conditions. In
scale factor 1000 the overhead of gathering statistics is increased,
as the data upon which we collect statistics are larger in size, but
it remains insignificant (up to 5%). Overall, we observe a total
of 7-13% overhead for scale factor 100 and up to 20% for scale
factor 1000. We believe that this is acceptable given the benefits
brought by our approach, as will be shown in Section 7.2.

Finally, we assess the overhead of applying the incremental
optimization approach to estimate the influences of multiple/-
complex predicates. For the base setup, we deactivated the mul-
tiple re-optimization points and executed the plan formed as if
the right statistical data is available from the beginning. Then,
the experiment was repeated by enabling the dynamic optimiza-
tion only for materializing the intermediate results coming from
pushing down and executing multiple predicates. The remaining
query was executed based on the refined statistics coming from
the latter step. As the results show (right side of figure 5), even
in the case of Q17, where there are multiple filters present, the
overhead does not exceed 3% of the total execution time, even
for scale factor 1000. On the other hand, Q50 once again has the
smallest overhead as there is only one dataset filtered.

7.2 Comparison of Execution Times

We proceed to evaluate our dynamic approach techniques against:
(i) the join worst-order, (ii) the join best-order, (iii) a traditional
cost-based optimization and (iv) the pilot-run method [25]. For
the worst-order plan, we enforce a right-deep tree plan that
schedules the joins in decreasing order of join result sizes(the
size of the join results was computed during our optimization).
The best-order plan assumes that the user knows the optimal
order generated by our approach and uses that order in the FROM
clause when writing the query. We also put some broadcast hints
so the default optimizer can choose the broadcast algorithm.
These two settings represent the least and the most gain, accord-
ingly, that we can achieve with our approach against the default
approaches of AsterixDB.

To compare with a traditional cost-based optimization ap-
proach, we collected statistics on the base datasets during the
ingestion phase and we formed the complete execution plan at
the beginning based on the collected statistics. When UDFs or
parameters are present in a query we use the default selectiv-
ity factors as described in [31]. For the pilot-run method, we

gathered the initial statistics by running select-project queries
(pilot-runs) on a sample of each of the base datasets participating
in the submitted query. If there are predicates local to the datasets,
they are included in the pilot-runs. In the sampling technique
used in [25] during pilot runs, after k tuples have been output
the job stops. To simulate that technique we enhanced our "pilot
runs" with a LIMIT clause. Based on those statistics, an initial
(complete) plan is formed and the execution of the original query
begins until the next re-optimization point where the plan will
be adjusted according to feedback acquired by online statistics.

Finally, for the INGRES-like approach we use the same ap-
proach as ours to decompose the initial query to single variable
queries. However, the choice of the next best subquery to be
executed is only based on dataset cardinalities (without other
statistical information). Furthermore, in the original INGRES ap-
proach intermediate data are stored into a new relation; in our
case we store it in a temporary file for simplicity. The experimen-
tal results are shown in Figure 6.

7.2.1 TPC-DS.

Query 17: This query has a total of 8 base tables (Figure 4).
Three of those (i.e. dimension tables) are attached to selective fil-
ters and are used to prune down the three large fact tables, while
item and store (i.e. smaller tables) are used for the construction
of the final result. Our dynamic optimization approach will find
that the optimal plan is a bushy tree, as dimension tables should
be joined with the fact tables to prune down as much as possible
the intermediate data. Then, they will be joined with each other
to form the result. It is also worth noting that our approach will
find that the dimension tables and store will be broadcast in all
scale factors along with item in factors 10 and 100.

Given that there are no complex predicates, all other approaches
(apart from the worst-order) will form similar bushy trees along
with the suitable join algorithm in the appropriate cases. Hence,
our dynamic optimization approach does not bring any further
benefit (in fact there is a slight degradation, around 1.15-1.20x
depending on the scale factor, against best-order due to the over-
head introduced by re-optimization). Finally, the worst-order
will join the fact tables first, resulting in very large intermediate
results and a 5x slower performance.

Query 50: This query contains two dimension tables (date_dim)
only one of which is filtered (with parameterized expressions),
two large tables and Store that helps pruning down the final
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order vs worst-order), Pilot-run and Ingres-like

result. The optimal plan found by our dynamic approach first
prunes down one of the fact tables by joining it with the filtered
dimension table and then joins it with the other large table. Our
approach is also able to choose the broadcast algorithm whenever
appropriate (see Figure 8a). With the enhancement of broadcast
hints, best-order will pick exactly the same execution plan, lead-
ing to slightly better performance than our dynamic approach
(1.05, 1.1x for scale factors 100 and 1000).

Cost-based optimization results in a different plan because of
the inaccurate cardinality estimates on the post-filtered dimen-
sion table and on the joined result between the fact tables. As a
result, although it finds most of the broadcast joins, it leads to
a 1.5x worse performance than our approach for scale factors
100 and 1000. A bushy tree will be formed by the INGRES-like
approach due to its naive cost-model approach (considering only
dataset cardinalities), resulting in an even worse performance.
The worst-order of AsterixDB will trigger hash joins by default.
On top of that, it will schedule the join between the fact tables in
the beginning; thus it has the worst performance. Lastly, pilot-run
makes the wrong decision concerning the join ordering between
the large tables because of inaccurate statistics and thereby is

around 1.8x slower than our approach.
7.2.2 TPC-H.

Query 9: The lineitem table is joined on foreign/primary key
with four smaller tables and on foreign key with part_sup. Once
again, our approach will find the optimal plan, which in this case
is a bushy tree. Apart from the correct join-order, our techniques
will pick the broadcast algorithm in the case of the part table
for scale factors 10 and 100, as well as in the case of the joined
result of nation and supplier tables (see Figure 8b). Cost-based
optimization will find a similar bushy tree; however, due to wrong
cardinality estimation, it will not broadcast the part table and the
intermediate data produced by joining nation and supplier will
only be broadcast for scale factor 10. As a result, our approach has
a slightly better performance than the cost-based one. Similarly,
the best-order will form the optimal execution plan leading to
the best performance once again.

As with all the other queries, the worst-order will schedule
the largest result producing joins in the beginning along with
the hash algorithm, which will result in an execution time more
than 5 hours. Hence, almost all techniques were 7x better than
the worst-order. In the pilot-run case, once again, a suboptimal
plan is chosen due to inaccurate unique cardinalities estimated
by initial sampling. Finally, once again the INGRES-like approach
will form a less efficient bushy tree since it focuses only on dataset
cardinalities.

Query 8: This query has eight datasets in total. The lineitem
table is a large fact table while all the others are smaller (three
of them are filtered with multiple predicates). All the joins be-
tween the tables are between foreign/primary keys. Again our

10

approach manages to find the optimal plan (bushy join) as it uses
the dynamic optimization techniques described above to calcu-
late the sizes of base datasets after multiple-predicate filters are
applied. The dynamic approach also gives the opportunity to the
optimizer to choose the broadcast algorithm when appropriate,
mainly for scale factors 10 and 100. Best-order will form the same
execution plan (both in terms of join order and algorithm) as the
dynamic approach and it will be more efficient since there is no
re-optimization.

In the cost-based case, due to inaccurately estimated cardinal-
ities on the post-filtered orders table, a different bushy plan is
chosen. Although for scale factor 1000, the benefit of broadcast
opportunities picked by the dynamic approach is not as notice-
able as in the rest of the scale factors, it is still 1.3x faster than the
cost-based one since it forms a better plan. Furthermore, pilot-
run forms the same optimal plan as our approach, but because
of the overhead introduced by pilot runs is slightly slower. The
INGRES-like approach will focus only on dataset cardinalities
and not on statistical information and thus it will find a subopti-
mal plan. Finally, the worst-order leads to a right-deep join with
hash joins that can be up to 2.5x worse than our approach.

7.3 Considering Indexed Nested Loop Join

The last set of experiments examine the behavior of our approach
when the Indexed Nested loop Join (INL]) is added as another
possible join algorithm choice. We thus enhanced the TPC-H and
TPC-DS datasets with a few secondary indexes on the attributes
that participate in queries as join predicates and are not the
primary keys of a dataset. The worst-order is excluded from
these experiments since in the absence of hints, it will not choose
INL; hence its execution time will not change. The results of these
experiments are shown in Figure 7.

7.3.1 TPC-DS.

Query 17: In this particular query, there are 3 cases where the
INL join will be picked by the dynamic approach for all scale
factors. All of these cases are for the foreign/primary key joins
between the large fact tables and the post-filtered dimension
tables. In these particular cases the dimension tables are small
enough to be broadcast but at the same time they have been
filtered; hence not all pages of the large fact tables satisfy the
join and need to be accessed. The same will happen with all the
other approaches - thereby the execution time will be better in
all cases. To that end, our dynamic approach will not bring any
further benefit in this particular case.

Query 50: In this query, the dynamic approach will pick the INL
join algorithm only in the case of the join between the filtered di-
mension table and the store_returns table. However, store_returns
is not a very large table, and thus scanning it instead of per-
forming an index lookup does not make a big difference; this
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Figure 8: Plans Generated for: (a) Query 50 and (b) Query
9, of Figure 6 with scale factor 100.

results in a smaller improvement compared to the performance
in the previous section. The INGRES-like approach similar to the
dynamic one, will pick the INL join for store_returnsdate_dim
because date_dim is small enough to be broadcast (after it has
been filtered) and store_returns has a secondary index on its join
predicate. Finally, pilot-run and cost-based will miss the oppor-
tunity for choosing INL since the store_returns joined with the
dimension table and derives from intermediate data; thus the
needed secondary index does not exist anymore. Consequently,
the difference in the performance against the dynamic approach
is even bigger.

7.32  TPC-H.

Query 9: Dynamic optimization leads to the choice of INL for
the join between lineitem and part. Thus, the query executes
much faster than in the previous section. The same happens with
all other approaches apart from the pilot-run in which, similarly
to the previous query, lineitem does not have a secondary index
anymore, thus leading to a performance degradation compared
to the dynamic approach.

Query 8: This is a case where the INL cannot be triggered for
any of the approaches. For example, in the cost-based approach,
when lineitem and part are joined, although there is a secondary
index on the lineitem predicate and part is filtered, the latter is not
small enough to be broadcast. In the other approaches, in supplier
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> nation the nation does not have a filter on it; hence, although
all the other requirements are met, a simple broadcast will be
better because scanning the whole dataset once is preferred to
performing too many index lookups.

7.4 Discussion

The results of our evaluation showcase the superiority of our
dynamic optimization approach against traditional optimization
and state-of-the-art techniques, especially for joins that do not
have key/foreign-key predicates. The real distribution of their
results can be very different than the ones predicted by statistics
collected only on base datasets. In such cases, collecting statistics
on the intermediate results is necessary to calculate an accurate
cost that will refine the remaining join ordering. It is worth men-
tioning that the best improvement is observed for the 100GB
dataset size. When the base dataset is large enough, a wrong
execution plan chosen by traditional optimizers is noticeable and
at the same time the broadcast join has a higher possibility of
being picked by our approach due to accurate selectivity estima-
tions (post execution of predicates). For the 1000GB dataset size,
we observed less improvement with our approach, as broadcast
joins are limited, and the intermediate results are larger leading
to a larger I/O cost. Nevertheless, we were still better than all
the other approaches. For the 10GB size, we have the least im-
provement because the base datasets are very small in size and
the overhead imposed by the intermediate data materialization is
noticeable. A further interesting observation is that most of the
optimal plans are bushy joins, meaning that even if both inputs
have to be constructed before the join is performed, forming
the smaller intermediate join results brings more benefits to the
query execution.

With respect to the overhead derived by our dynamic optimiza-
tion techniques, we note that although in the worst case (scale
factor 1000) the cost can be expensive, in most cases our plans
are still faster than the plans produced by traditional optimizers.

8 CONCLUSIONS

In this paper we have investigated the benefits of using dynamic
query optimization in big data management systems. We de-
scribed how we decompose a submitted query into several sub-
queries with the ultimate goal of integrating re-optimization
points to gather statistics on intermediate data and refine the
plan for the remaining query. Although our work concentrates on
complex join queries, we also treat multiple selective predicates
and predicates with parameterized values and UDFs, as part of
the re-optimization process. That way, in addition to the benefit
of gathering information about the cardinality of intermediate
data, we also get more accurate estimations about the sizes of
filtered base datasets. We chose AsterixDB to implement our
techniques as it is a scalable BDMS optimized to execute joins



in a pipeline. We were able to show that, even though it blocks
the pipelining feature and introduces intermediate results, our
approach still almost always gives the best performance.

We evaluated our work by measuring the execution time of
different queries and comparing our techniques against tradi-
tional static cost-based optimization and the default AsterixDB
query execution approach and we proved its superiority. When
querying big data, it pays to get good statistics by allowing re-
optimization points since a small error in estimating the size
of a big dataset can have much more drastic consequences on
query performance than the overhead introduced. Nevertheless,
our approach performs at its best when complex predicates are
applied to the base datasets of a query or the join conditions are
between fact tables (leading to skewness in selectivity and join
result estimation accordingly).

In future research we will explore ways to address more com-
plex UDFs in our dynamic optimization approach. Further, we
want to exploit the benefits of dynamic optimization when other
operators (i.e group-by, order by, etc.) are included in the query,
or when subqueries are present, which is itself a challenging re-
search problem. Although more re-optimization points make our
technique more accurate and robust, they also increase its over-
head. Consequently, it would be interesting to explore (through
a cost model) the trade-off of facilitating dynamic optimization
but with fewer re-optimizations while still obtaining sufficiently
accurate results. Finally, another future direction is to use the
re-optimization points as a way to achieve fault-tolerance, by
treating them as points to fall back in case that a long-running
query crashes.
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