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Abstract: There is a rich history of expressing the limiting free energy of mean-field
spin glasses as a variational formula over probability measures on [0, 1], where the
measure represents the similarity (or “overlap”) of two independently sampled spin
configurations. At high temperatures, the formula’s minimum is achieved at a measure
which is a point mass, meaning sample configurations are asymptotically orthogonal up
to a magnetic field correction. At low temperatures, though, a very different behavior
emerges known as replica symmetry breaking (RSB). The deep wells in the energy
landscape create more rigid structure, and the optimal overlap measure is no longer
a point mass. The exact size of its support remains in many cases an open problem.
Here we consider these themes for multi-species spherical spin glasses. Following a
companion work in which we establish the Parisi variational formula, here we present
this formula’s Crisanti–Sommers representation. In the process, we gain new access to
a problem unique to the multi-species setting. Namely, if RSB occurs for one species,
does it necessarily occur for other species as well? We provide sufficient conditions
for the answer to be yes. For instance, we show that if two species share any quadratic
interaction, then RSB for one implies RSB for the other.Moreover, the level of symmetry
breakingmust be identical, even in cases of full RSB. In the presence of an external field,
any type of interaction suffices.
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1. Introduction and Background

Mean-field spin glasses are meant to be mathematically tractable models of disordered
magnetism. A central advantage of mean-field models is the fact (or in certain cases, the
hope) that the free energy density can be expressed as an explicit variational formula.
Most famously, the limiting free energy of the Sherrington–Kirkpatrick (SK) model
[28] is given by the Parisi formula [26,27], a fact proved rigorously by Guerra [14] and
Talagrand [31]. This formula has since been generalized to mixed p-spin models [3,23].

Spherical spin glasses have the further advantage of admitting an alternative formu-
lation of their Parisi formulas, namely the Crisanti–Sommers (C–S) representation [12].
Indeed, because theC–S formula has a simpler objective function than the Parisi formula,
it allows for finer analysis of spherical models. In the mathematical literature, this began
with Talagrand [30], who showed that the critical points of the two formulas coincide.
Since the C–S functional is strictly convex, uniqueness of the minimizer followed as a
trivial corollary. For comparison, the analogous result for Ising spin glasses is highly
non-trivial [2].

Beyond the free energy itself, there is particular interest in Parisi measures, the
name given to minimizers of Parisi formulas. These measures give the distribution of
an overlap structure, which in turn describes the similarity of independently sampled
spin configurations [18,29]. In the context of spherical models, the C–S formula makes
possible certain explicit calculations involving the free energy, which can give additional
access to the Parisi measures. Numerous works have capitalized on this fact, for instance
[1,6,16,25].

In light of this critical role played by the C–S representation, its generalization has
been sought and indeed proved in a number of settings, including mixed p-spin models
[10], zero temperature models [11,15], and models with vector spins [17]. The first goal
of this paper is to add multi-species models to this list. This is enabled by our companion
work [9], in which we establish the Parisi formula for this setting. In terms of logical
dependence, the present paper relies on [9] but not conversely.

Our second goal is to investigate the nature of symmetry breaking for multi-species
models. In the single-species models mentioned thus far, the order parameter for the
Parisi and C–S formulas is a probability measure (typically on [0, 1]). A model can then
be classified bywhether the optimizingmeasure is a pointmass (called replica symmetry,
abbreviated RS) or instead supported on multiple points (called replica symmetry break-
ing, RSB). Moreover, as one varies the temperature from high to low, there is often a
phase transition fromRS to RSB.More intriguing than this transition is what lies beyond
it: if a model is RSB, then what level of symmetry breaking does it exhibit? Namely, is
the Parisi measure supported on exactly k points (called k-RSB, e.g. [25, Thm. 4], [11,
Prop. 3], [4, Thm. 5], [6, Thm. 1]) or possibly infinitely many points (∞-RSB, e.g. [5,
Thm. 1.1])? In the latter case, it is expected that the support must contain a nonempty
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interval (called full RSB, or FRSB, e.g. [11, Prop. 2], [4, Thm. 4]). For discussion of
this prediction, see [19–21].

In multi-species models, questions of symmetry breaking are further complicated for
several reasons. At a most basic level, formulas for the free energy are more elaborate,
and the analysis required for a rigorous study of Parisi measures is often already quite
delicate. In addition, it is not clear if or when multi-species formulas admit unique
minimizers. This speaks to the loss of certain tools (such as convexity), aswell as possible
complications in studying energy landscapes. Finally, and perhaps most fundamental,
there is no longer just one measure under consideration, but rather one measure for each
species. Therefore, a priori it may be that the level of symmetry breaking is not uniform
across species.

This possibilitywas raised by Panchenko in [24], where the Parisi formulawas proved
for the multi-species (Ising) SK model. Some related questions of symmetry breaking
have been addressed in [8,13], but to our knowledge, there has no been previous work—
nor any serious predictions—comparing levels of symmetry breaking across species. To
this end, we will prove that if two species share a quadratic interaction (or equivalent
thereof, see Example 2.8), then symmetry breaking occurs in one species only when
occurs in the other, a behaviorwe call simultaneous symmetry breaking. Furthermore, the
level of symmetry breaking must be the same. We stress that the hypothesis of quadratic
interaction can be weakened depending on which species have nonzero external fields
(see the last part of Example 2.8). Going beyond pairwise comparisons, we provide a
second result that in suitable circumstances allows one to conclude that a third species
(or fourth, and so on) will also exhibit simultaneity. The added value here is that it may
be otherwise not possible to conclude that the third species is simultaneous with one
of the other two individually; see Example 2.10. Our results hold for positive definite
covariance structures, at least for Parisi measures. One can also talk about “Crisanti–
Sommers measures”, and then this convexity assumption is no longer needed.

The paper is organized as follows.

• In Sect. 1.1, we define the multi-species spherical spin glass model. The exact setting
is not necessary for the rest of the paper, but at least provides a minimal amount
of physical context for the mathematics that follows. It was shown in [9] that the
limiting free energy of this model is given by a Parisi variational formula, which is
recalled in Sect. 1.2.

• In Sect. 2.1, we define the Crisanti–Sommers variational formula and state our first
main result, namely the equivalence of the Parisi and C–S formulas (Theorem 2.2).
The proof of this equivalence rests on two families of identities—one for the Parisi
formula and one for the C–S formula—which must be satisfied by any minimizer.
The two families are related to each other via integration by parts.

• In Sect. 2.2, we formally introduce the notions of symmetry breaking and simultane-
ity (Definition 2.5). Our second main result is the aforementioned statements about
simultaneous symmetry breaking (Theorems 2.7 and 2.9). We also include Exam-
ples 2.4, 2.8, 2.10, and 2.11 to illustrate applications of these theorems. As in the
previous bullet point, the proofs rely on the two families of minimizer identities.

• These identities are finally revealed in Sect. 2.3: Theorem 2.12 for Parisi minimizers,
and Theorem 2.13 for Crisanti–Sommers minimizers. The proof of Theorems 2.7
and 2.9 is remarkably brief given the identities, and so we write it immediately after.

• The remaining proofs are partitioned into three parts. First, continuity of the C–S
functional is shown in Sect. 3. Following this preliminary step, the identities satisfied
byminimizers are verified in Sect. 4, and then theC–S formula is confirmed in Sect. 5.
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While none of the arguments have appeared at this level of generality before, themost
novel work comes in Sect. 4.

Finally, for a broader review of related literature, we refer the reader to [9, Sect. 1.4],
and also to the inexhaustibly useful [22,32,33].

1.1. The setting: multi-species spherical spin glasses. Let S be a finite set, whose
elements index the various species. Suppose we write each positive integer N as a
sum of nonnegative integers, N = ∑

s∈S Ns . We then define the following product of
spheres:

TN :=
⊗

s∈S
SNs , where Sn := {σ ∈ R

n : ‖σ‖22 = n}.

We assume that

lim
N→∞

Ns

N
= λs ∈ (0, 1] for each s ∈ S . (H1)

An element of TN will be written σ = (σ (s))s∈S , where σ(s) ∈ SNs . The overlap
between two configurations σ 1, σ 2 ∈ TN is the following vector belonging to [−1, 1]S :

R(σ 1, σ 2) := (Rs(σ 1, σ 2))s∈S , where Rs(σ 1, σ 2) := 〈σ 1(s), σ 2(s)〉
Ns

,

and 〈·, ·〉 denotes the Euclidean inner product.
For each integer p ≥ 1, assume �2

p = (�2
s1,...,sp )s1,...,sp∈S is a symmetric p-

dimensional tensor with nonnegative entries. Let (βp)p≥1 be a sequence of nonnegative
numbers such that

∑

p≥1

βp‖�2
p‖∞(1 + ε)p < ∞ for some ε > 0, (H2)

so that the following function is well-defined and analytic on some open set containing
[−1, 1]S :

ξ(q) :=
∑

p≥1

βp

∑

s∈S p

�2
s1,...,spλ

s1 · · · λspqs1 · · · qsp , q = (qs)s∈S ∈ [−1, 1]S .

(1.1)

Let HN be a centered Gaussian processes on TN whose covariance function is

E[HN (σ 1)HN (σ 2)] = ξ(R(σ 1, σ 2)). (1.2)

The free energy associated to HN with an external field h = (hs)s∈S is the quantity

FN := 1

N
log

∫

TN

exp
(
HN (σ ) +

∑

s∈S
hs〈σ(s), 1〉

)
dσ, (1.3)

where dσ denotes the product measure under which σ(s) is uniformly distributed on
SNs , for each s ∈ S . In order for the upcoming Parisi formula to hold, it is necessary
to assume the Hessian of ξ is nonnegative definite on the nonnegative orthant:

∇2ξ(q) ≥ 0 for q ∈ [0, 1]S . (H3)
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For convenience, we also define the following functions involving derivatives of ξ :

ξ s(q) := 1

λs

∂ξ

∂qs
(q), θ(q) := q · ∇ξ(q) − ξ(q). (1.4)

Throughout the rest of the paper, we only consider the restriction of ξ to [0, 1]S . That
is, the reader should always assume qs ≥ 0 for all s ∈ S .

1.2. The Parisi formula. The Parisi functional has several inputs, one of which is an
element from the following space of functions.

Definition 1.1. Given λ = (λs)s∈S , a map 
 = (
s)s∈S : [0, 1] → [0, 1]S is said
to be λ-admissible if each coordinate 
s is non-decreasing and continuous, and jointly
they satisfy

∑

s∈S
λs
s(q) = q for all q ∈ [0, 1]. (1.5)

If ζ is a Borel probability measure on [0, 1], then (ζ,
) is called a λ-admissible pair.

Given any λ-admissible pair (ζ,
), for each s ∈ S we define the following function:

ds(q) :=
∫ 1

q
ζ
([0, u])(ξ s ◦ 
)′(u) du, q ∈ [0, 1]. (1.6)

Here we must point out because 
s is monotone, the derivatives appearing above (and
below) exist on a set of full Lebesgue measure. For any vector b = (bs)s∈S satisfying
the constraint

bs > ds(0) for each s ∈ S , (1.7)

we consider the quantity

A(ζ,
, b) :=
∑

s∈S

λs

2

[ h2s + ξ s(0)

bs − ds(0)
+ bs − 1 − log bs +

∫ 1

0

(ξ s ◦ 
)′(q)

bs − ds(q)
dq

]

− 1

2

∫ 1

0
ζ
([0, q])(θ ◦ 
)′(q) dq. (1.8)

Theorem A (Parisi formula, [9, Thm. 1.3 and Rmk. 1.4]). Assuming (H1), (H2), and
(H3), we have

lim
N→∞ FN = inf

ζ,
,b
A(ζ,
, b) a.s., (1.9)

where the infimum is over triples satisfying (1.7).

The proof of Theorem A requires separate verification of matching upper and lower
bounds, together with a standard concentration inequality to show FN concentrates
around its mean. The rest of this paper is mostly divorced from these arguments, as we
focus exclusively on the right-hand side of (1.9) (except for a brief moment in the proof
of Theorem 2.2).
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2. Main Results

2.1. The Crisanti–Sommers formula. The input to the C–S functional will be a λ-
admissible pair (ζ,
), but we restrict attention to those pairs for which there is some
q∗ ∈ [0, 1) such that

ζ
([0, q∗]

) = 1 and 
s(q∗) < 1 for all s ∈ S . (2.1)

Fixing such a pair, we define

�s(q) :=
∫ 1

q
ζ
([0, u])(
s)′(u) du, (2.2)

and then the Crisanti–Sommers functional is given by

B(ζ,
) :=
∑

s∈S

λs

2

[
h2s�

s(0) +
∫ q∗

0

(
s)′(q)

�s(q)
dq + log�s(q∗)

]

+
1

2

∫ 1

0
ζ
([0, q])(ξ ◦ 
)′(q) dq. (2.3)

Remark 2.1. Observe that if q ′ ∈ (q∗, 1) and 
s(q ′) < 1, then
∫ q ′

0

(
s)′(q)

�s(q)
dq −

∫ q∗

0

(
s)′(q)

�s(q∗)
dq =

∫ q ′

q∗

(
s)′(q)

1 − 
s(q)
dq = log

1 − 
s(q∗)
1 − 
s(q ′)

= log
�s(q∗)
�s(q ′)

.

Therefore, the exact choice of q∗ does not affect the value of B(ζ,
) so long as (2.1) is
satisfied. If no such q∗ exists, we can simply take B(ζ,
) = ∞.

Our first main result is the identification of Parisi minimizers with C–S minimizers.
Let us introduce a positive definite version of (H3):

∇2ξ(q) > 0 for all q ∈ [0, 1]S \ {0}. (H3′)

Theorem 2.2 Assume (H2) and (H3). Then

inf
ζ,
,b

A(ζ,
, b) = inf
ζ,


B(ζ,
).

If we further assume (H3′), then the set of minimizers for each side is the same, in the
sense that

A(ζ,
, b) = inf A for some b ⇐⇒ B(ζ,
) = inf B.

Because of Theorem A, we immediately obtain the following corollary.

Corollary 2.3 (Crisanti–Sommers formula) Assuming (H1), (H2), and (H3), we have

lim
N→∞ FN = inf

ζ,

B(ζ,
) a.s., (2.4)

where the infimum is over λ-admissible pairs satisfying (2.1) for some q∗ ∈ [0, 1).
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Theorem 2.2 is the central aim of the paper. The key observation is Lemma 5.1,
which gives a sufficient condition for A(ζ,
, b) to be equal to B(ζ,
). The rest of the
work is to show that minimizers satisfy this condition, precisely because of the identities
we will soon state as Theorems 2.12 and 2.13. This line of reasoning is carried out in
Sect. 5 and was inspired by Talagrand’s argument in the single-species case [30, Sect. 4].
What is different here—apart from the presence of multiple species—is that we work
with completely general measures ζ , not just those with finite support. This significantly
complicates the relevant calculations. On the other hand, Theorems 2.12 and 2.13 are
analogous to [30, Prop. 2.1 and Lem. 4.3]. For these results, the difficulty in generalizing
Talagrand’s arguments is less about the support of ζ , and more about the interactions
between species. As it turns out, what is necessary to overcome these complications is
intertwined with the issue of simultaneous symmetry breaking, which we discuss next.

2.2. Simultaneous symmetry breaking. In the single-species case (i.e. |S | = 1), the
formulas (1.9) and (2.4) reduce to those given in [10,30]. This is because the only map

 : [0, 1] → [0, 1] satisfying Definition 1.1 is the identity function, and so the input to
these formulas is just the one-dimensional measure ζ . Furthermore, in this case it is a
trivial matter to check that the Crisanti–Sommers formula is strictly convex in ζ , thus
leading to a uniqueminimizer. This measure, which wewill keep denoting by ζ , is called
the Parisi measure, and is the functional order parameter for classifying the spin glass
model into one of two phases. If ζ is a point mass, then the model is said to be replica
symmetric (RS); otherwise the model is replica symmetry breaking (RSB). In the latter
case, there is a further classification based on the ‘level’ of symmetry breaking. Namely,
if |Supp(ζ )| = k + 1, where k ∈ {1, 2, . . . ,∞}, then we say the model is k-RSB. If
the model is ∞-RSB, then one can ask the even subtler question of whether Supp(ζ )

contains a nonempty interval; this behavior is called full RSB.
In seeking to generalize this classification scheme tomulti-speciesmodels, one imme-

diately encounters a technical roadblock: the Crisanti–Sommers functional (2.3) is no
longer convex in 
. Therefore, uniqueness of the minimizer in Corollary 2.3 is not
known (and here wemean uniqueness up to a natural pseudometricD defined in Sect. 3).
Nevertheless, we can still speak about the symmetry breaking status of any particular
minimizer (ζ,
). But then we are faced with a second and more novel complication:
the analogous object to ζ from before is the pushforward measure ζ ◦ (
s)−1, whose
support very much depends on the species s. In particular, some species may be in the
RS phase (i.e. |Supp(ζ ◦ (
s)−1)| = 1) while others are RSB. Moreover, those in the
RSB phase need not have the same level of symmetry breaking.

Example 2.4. If the covariance function from (1.2) is of the form

ξ(q) =
∑

s∈S
ψ s(qs)

for some functions (ψ s)s∈S , then there are no interactions between species. That is,
the spin glass model is a product of independent single-species models. Of course, each
single-species model can be tuned separately to create different levels of symmetry
breaking.

We are interested in finding conditions under which the species must break symmetry
together (if they break symmetry at all).We thus define the following equivalence relation
on S .
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Definition 2.5. Given any pair of species s, t ∈ S , let us say that a λ-admissible pair
(ζ,
) is (s, t)-simultaneous if the following equivalence holds for all q0, q1 ∈ Supp(ζ ):


s(q0) < 
s(q1) ⇐⇒ 
t (q0) < 
t (q1). (2.5)

More generally, for any subset T ⊂ S , we say that (ζ,
) is T -simultaneous if it is
(s, t)-simultaneous for every s, t ∈ T .

A more physical interpretation of this definition is the following.

Lemma 2.6. If (ζ,
) is (s, t)-simultaneous, then there is a measure-preserving and
increasing bijection between Supp(ζ ◦ (
s)−1) and Supp(ζ ◦ (
t )−1).

The proof is a matter of chasing definitions, and so we postpone it until the end of
Sect. 2.3. Clearly (2.5) is a much more straightforward condition to check, but in light
of the discussion that opened this section, we really care about the interpretation offered
by Lemma 2.6. More specifically, we care about whether or not a minimizer to the
Crisanti–Sommers formula is (s, t)-simultaneous. In order to maintain the greatest pos-
sible generality, we will give all of our results in terms of Crisanti–Sommers minimizers.
If (H3′) holds, then these coincide with the Parisi minimizers thanks to Theorem 2.2.

To state our first theorem on simultaneous symmetry breaking, we define the set of
species which have nonzero external fields:

Sext := {s ∈ S : h2s > 0}. (2.6)

The reason we make this definition is that every s ∈ Sext necessarily has 0 /∈ Supp(ζ ◦
(
s)−1) for any minimizer (ζ,
) to (2.4), a fact which will become clear in Sect. 2.3.
Consequently, the presence of external fields only serves to strengthen our statements
regarding simultaneous symmetry breaking, as the following result demonstrates.

Theorem 2.7. Assume (H2). If a minimizer (ζ,
) to (2.4) satisfies

∂ξ s

∂qt
(
(q)) > 0 whenever q ∈ Supp(ζ ) and 
s(q) ∨ 
t (q) > 0, (2.7)

then (ζ,
) is (s, t)-simultaneous. In particular, if

∂ξ s

∂qt
(q) > 0 whenever qs ∨ qt > 0 and qr > 0 for all r ∈ Sext, (2.8)

then any minimizer to (2.4) is (s, t)-simultaneous.

Here is an application of Theorem 2.7.

Example 2.8. Notice from (1.1) that

∂ξ s

∂qt
≥ β2λ

t�2
s,t .

Hence (2.8) holds whenever β2�
2
s,t > 0. But this is not a necessary condition. For

instance, if

βp �2
s,t,...,t

︸ ︷︷ ︸
p−1 copies of t

> 0 for some p ≥ 2, and βp′ �2
t,s,...,s

︸ ︷︷ ︸
p′−1 copies of s

> 0 for some p′ ≥ 2,

then (2.8) again holds. If h2r > 0 for all r ∈ S , then (2.8) is implied by an even weaker
condition, namely that

βp�
2
s,t,r1,...,rp−2

> 0 for some p ≥ 2, r1, . . . , rp−2 ∈ S .
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Notice that anymodel can bemade to satisfy (2.8) via an arbitrarily small perturbation.
Namely, if ξ is replaced with ξ +εqsqt , where ε > 0, then (2.8) holds. Upon performing
this modification for every pair of species, we arrive at a model in which all species are
simultaneous. In this sense, simultaneous symmetry breaking might be regarded as a
“generic” feature of spherical spin glasses.

Of course, we also wish to address the coordination of more than just two species.
We thus state the following generalized form of Theorem 2.7. It allows one to “chain”
simultaneity relations.

Theorem 2.9. Assume (H2). Suppose (ζ,
) is a minimizer to (2.4) that is T -
simultaneous for some T ⊂ S . If

max
t∈T

∂ξ s

∂qt
(
(q)) > 0 whenever q ∈ Supp(ζ ),
s(q) ∨ min

t∈T

t (q) > 0,

and 
r (q) > 0∀r ∈ Sext, (2.9)

then (ζ,
) is (T ∪ {s})-simultaneous. In particular, if

max
t∈T

∂ξ s

∂qt
(q) > 0 whenever qs ∨ min

t∈T
qt > 0 and qr > 0 for all r ∈ Sext,

(2.10)

then every minimizer which is T -simultaneous is also (T ∪ {s})-simultaneous.
Here is an application which distinguishes Theorem 2.9 from Theorem 2.7.

Example 2.10. Suppose S = {r, s, t}, and that we have

β2�
2
r,t > 0, βp �2

r,s,...,s
︸ ︷︷ ︸

p−1 copies of s

> 0 for some p ≥ 2,

βp′ �2
s,t,...,t

︸ ︷︷ ︸
p′−1 copies of t

> 0 for some p′ ≥ 2.

By Theorem 2.7, the first of these inequalities ensures that any minimizer to (2.4) will
be (r, t)-simultaneous, as in Example 2.8. Then Theorem 2.9 comes into effect with
T = {r, t}, for the second inequality ensures that ∂rξ s(q) > 0 whenever qs > 0, while
the third inequality ensures ∂ tξ s(q) > 0 whenever qt > 0. Therefore, (2.10) is satisfied,
and so for any minimizer in any model fulfilling the three conditions displayed above,
all three species are simultaneous.

Let us also include a case for which we do not have a complete answer.

Example 2.11. Again supposeS = {r, s, t}, and that all we know about the covariance
function ξ is

β3�
2
r,s,t > 0. (2.11)

This is not enough to conclude (2.8) for any pair of species. Nevertheless, if species r is
the “first” to break symmetry for some minimizer (ζ,
), in the sense that


s(q) ∨ 
t (q) > 0 �⇒ 
r (q) > 0 for q ∈ Supp(ζ ), (2.12)
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then Theorem 2.7 forces (ζ,
) to at least be (s, t)-simultaneous. This is because

∂ξ s

∂qt
≥ β3�r,s,tλ

rλt qr ,

and so under (2.11) and (2.12), the hypothesis (2.7) holds even though (2.8) does not.
Note that (2.12) is trivially true if h2r > 0, since in this case (2.14) implies
r (q) > 0 for
all q ∈ Supp(ζ ). Consequently, h2r > 0 implies any minimizer is (s, t)-simultaneous.
If h2s is also positive, then any minimizer is also (r, t)-simultaneous, meaning all three
species are simultaneous.

It should be mentioned that we have not addressed the actual existence of symmetry
breaking. There are well-known arguments to prove symmetry breaking at sufficiently
low temperatures, e.g. [7, Prop. 4.2]. For the multi-species Ising SKmodel, a more quan-
titative condition for symmetry breaking is given in [8,13]. To go further and actually
determine the level of symmetry breaking is in general a famously challenging problem
already for single-species models. This is especially true for models at positive tempera-
ture, which is the setting considered here. We leave these important questions for future
work.

2.3. Identities satisfied byminimizers. Nowwe state the essential identitieswhich under-
lie all the results of Sects. 2.1 and 2.2. Proving these identities is the biggest challenge
of this paper. The arguments are perturbative and are carried out in Sect. 4. First we
consider Parisi minimizers.

Theorem 2.12. Assume (H2). There exists a triple (ζ,
, b)which achieves theminimum
in (1.9), and necessarily satisfies

1 − 1

bs
− h2s + ξ s(0)

(bs − ds(0))2
=

∫ 1

0

(ξ s ◦ 
)′(q)

(bs − ds(q))2
dq for all s ∈ S . (2.13a)

Furthermore, if (H3′) holds, then any minimizer must also satisfy


s(q) = h2s + ξ s(0)

(bs − ds(0))2
+
∫ q

0

(ξ s ◦ 
)′(u)

(bs − ds(u))2
du for all q ∈ Supp(ζ ), s ∈ S .

(2.13b)

One obvious consequence of (2.13b) is that 
s(q) can be no smaller than h2s/((b
s −

ds(0))2, for q ∈ Supp(ζ ). So the presence of a nonzero external field on species s forces
the corresponding overlap to be bounded away from 0.We will be able to make the same
observation from the following parallel result about Crisanti–Sommers minimizers. This
is why the setSext from (2.6) is given special attention in Theorems 2.7 and 2.9.

Theorem 2.13. Assume (H2). There exists a λ-admissible pair (ζ,
) which achieves
the infimum in (2.4). Furthermore, any minimizer must satisfy

ξ s(
(q)) + h2s =
∫ q

0

(
s)′(u)

(�s(u))2
du for all q ∈ Supp(ζ ), s ∈ S . (2.14)

To demonstrate just how useful this identity is, let us now prove Theorem 2.9. Note
that Theorem 2.7 is the special case when T = {t}.
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Proof of Theorem 2.9. From (2.9), choose t ∈ T such that

∂ξ s

∂qt
(
(q)) > 0 whenever q ∈ Supp(ζ ), min

r∈T

r (q) > 0,

and 
r (q) > 0∀r ∈ Sext. (2.15)

For ease of notation, let us say thatS = {1, . . . , n}, t = n− 1, and s = n. Given a < b
in [0, 1], consider the path from 
(a) to 
(b) which moves one coordinate at a time.
That is, the first coordinate is moved from 
1(a) to 
1(b), then the second coordinate
from
2(a) to
2(b), and so on. Let ϕr be the restriction ∂ξ s/∂qr to the r th line segment
in this path, which is just a function of the r th coordinate:

ϕs
r (q) := ∂ξ s

∂qr

∣
∣
∣{qr=q,q j=
 j (b) for j<r,q j=
 j (a) for j>r}, q ∈ [
r (a),
r (b)].

By the fundamental theorem of calculus, we have

ξ s(
(b)) − ξ s(
(a)) =
n∑

r=1

∫ 
r (b)


r (a)

ϕs
r (q) dq. (2.16)

Now suppose a < b and a, b ∈ Supp(ζ ). In particular, for any r ∈ Sext, the identity
(2.14) shows that 
r (b) > 0. If 
r (a) < 
r (b) for some r ∈ T , then by hypothesis
we have 
r (a) < 
r (b) for all r ∈ T . In particular, we have 
r (b) > 0 for all
r ∈ T ∪ Sext. Therefore, (2.15) tells us that the (n − 1)th summand in (2.16) is
strictly positive. Hence ξ s(
(a)) < ξ s(
(b)), and then it follows from (2.14) that

s(a) < 
s(b). We have thus argued that if 
r (a) < 
r (b) for some r ∈ T , then

s(a) < 
s(b).

To establish the reverse implication, we use (2.9) to identify t ∈ T such that

∂ξ t

∂qs
(
(q)) > 0 whenever q ∈ Supp(ζ ), 
s(q) > 0, and 
r (q) > 0∀r ∈ Sext.

(2.17)

Then replace (2.16) with

ξ t (
(b)) − ξ t (
(a)) =
n∑

r=1

∫ 
r (b)


r (a)

ϕt
r (q) dq.

If
s(a) < 
s(b), then thenth summand is strictly positive by (2.17).Hence ξ t (
(a)) <

ξ t (
(b)), which forces 
t (a) < 
t (b) thanks to (2.14). ��
As promised, we close this section by proving Lemma 2.6.

Proof of Lemma 2.6. Let us write ζ s = ζ ◦ (
s)−1. If we take the convention

(
s)−1(u) := inf{q ∈ Supp(ζ ) : 
s(q) ≥ u}, u ∈ [0, 1], (2.18)

then ζ s
([u, 1]) = ζ

([(
s)−1(u), 1]) for all u ∈ [0, 1]. Now, for any two points q0 ≤ q1
in Supp(ζ ), we have
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(
s)−1(
s(q1)) ≤ q0
(2.18)⇐⇒ 
s(q0) = 
s(q1)

(2.5)⇐⇒ 
t (q0) = 
t (q1)
(2.18)⇐⇒ (
t )−1(
t (q1)) ≤ q0.

We thus have (
s)−1 ◦ 
s = (
t )−1 ◦ 
t on Supp(ζ ), and so on the domain Supp(ζ s),
we have


s ◦ (
t )−1 ◦ 
t ◦ (
s)−1 = 
s ◦ (
s)−1 ◦ 
s ◦ (
s)−1 = Id.

By symmetry, the same statement holds with s and t exchanged, and so
t ◦ (
s)−1 and

s ◦ (
t )−1 are inverses of each other. To see that these maps are measure-preserving,
we simply use the definition of pushforward measures: For any u ∈ Supp(ζ s), we have

ζ t([(
t ◦ (
s)−1)(u), 1]) = ζ
([((
t )−1 ◦ 
t ◦ (
s)−1)(u), 1])

= ζ
([((
s)−1 ◦ 
s ◦ (
s)−1)(u), 1])

= ζ
([((
s)−1 ◦ Id)(u), 1]) = ζ s([u, 1]).

Indeed, 
t ◦ (
s)−1 : Supp(ζ s) → Supp(ζ t ) is measure-preserving. ��

3. Continuity of the Crisanti–Sommers Functional

The main goal of this section is to prove continuity of the functional (ζ,
) �→ B(ζ,
),
stated as Proposition 3.2 below. To make the discussion precise, we consider the same
metric space as in [9], which we now describe. Identify any λ-admissible pair (ζ,
)

with the pushforward measure ζ ◦
−1 on the unit hypercube [0, 1]S , which is equipped
with the �1 norm. Then the distance between (ζ1,
1) and (ζ2,
2) is taken to be the
Wasserstein-1 distance between ζ1◦
−1

1 and ζ2◦
−1
2 . Since each coordinate of
 is non-

decreasing, this distance has a convenient representation in terms of quantile functions.
Specifically, for a probabilitymeasure ζ on [0, 1], define the associated quantile function:

Qζ (z) := inf{q ∈ [0, 1] : ζ
([0, q]) ≥ z}, z ∈ [0, 1].

Then the Wasserstein distance we have just described is given by

D(
(ζ1,
1), (ζ2,
2)

) :=
∫ 1

0
‖
1(Qζ1(z)) − 
2(Qζ2(z))‖1 dz. (3.1)

Formally, D is a pseudometric on the space of λ-admissible pairs (ζ,
).

Remark 3.1. The fact that D is a pseudometric rather than a metric underlines the fact
that the condition of λ-admissibility in (1.5) is somewhat artificial. The “true” functional
order parameter is the S -tuple of measures (ζ ◦ (
s)−1)s∈S . The λ-admissible pair
(ζ,
) is amechanism for coupling thesemeasures together in a “synchronized”way; see
the discussion in [9, Sect. 1.3]. This couplingmechanism is canonical up tomodifications
of 
 off the support of ζ .
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For q̄ < 1, let A(q̄) denote the collection of λ-admissible pairs such that for some
q∗ ∈ [0, 1), we have ζ

([0, q∗]
) = 1 and 
s(q∗) ≤ q̄ for all s ∈ S . In pushforward

notation, this means

A(q̄) := {(ζ,
) : Supp(ζ ◦ (
s)−1) ⊂ [0, q̄] for each s ∈ S }, q̄ < 1. (3.2)

When we wish to refer to all pairs satisfying (2.1) for some q∗, we will simply write

A :=
⋃

q̄<1

A(q̄) = {(ζ,
) : Supp(ζ ◦ (
s)−1) ⊂ [0, 1) for each s ∈ S }. (3.3)

With these definitions, we can state our continuity result.

Proposition 3.2. Assume (H2) and q̄ < 1. On the setA(q̄), the map (ζ,
) �→ B(ζ,
)

is Lipschitz continuous with respect to D (with a Lipschitz constant depending on q̄).

A key consequence is the weaker statement that B(ζ,
) is invariant under different
representations of the measure ζ ◦
−1. In other words, the functional B is well-defined
on the quotient space ofA obtained by identifying elements (ζ1,
1) and (ζ2,
2) such
thatD(

(ζ1,
1), (ζ2,
2)
) = 0. This fact is crucially used in the proof of Theorem 2.13,

as it allows one to modify 
 anywhere not belonging to the support of ζ , without
changing the value of B(ζ,
).

Our strategy for proving Proposition 3.2 is to restrict to measures with finite support,
and then appeal to a density argument. Since calculations are easier in the finite-support
case, it will be advantageous for us to use this section as an opportunity to analyze how
close a minimizer’s support can be to 1. Indeed, since (2.1) is not maintained under
closure, it will be necessary for us to keep these supports separated from 1. This is
accomplished by Lemma 3.4.

Given any q̄ ∈ [0, 1), let us consider (ζ,
) ∈ A(q̄) such that ζ is supported on
finitely many points. Every such pair corresponds to a sequence of weights

0 = m0 < m1 < · · · < mk = 1, (3.4a)

together with sequences of points for each species:

0 = qs0 ≤ qs1 ≤ · · · ≤ qsk ≤ q̄ < qsk+1 = 1. (3.4b)

Namely, if we define the convex combination

qr :=
∑

s∈S
λsqsr , (3.4c)

then (3.4a) and (3.4b) collectively encode the measure

ζ =
k∑

r=1

mrδqr , (3.4d)

where δx denotes the Dirac delta measure at x . Furthermore, if qr = (qsr )s∈S , then

 can be any λ-admissible map such that 
(qr ) = qr for each r ∈ {1, . . . , k}. For
instance, 
 could be the piecewise linear map satisfying these constraints. Writing the
quantities (2.2) and (2.3) in terms of (3.4a) and (3.4b), we have

�s
r := �s(qr ) =

k∑

�=r

m�(q
s
�+1 − qs�), (3.5)
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B(ζ,
) =
∑

s∈S

λs

2

(

h2s�
s
1 +

qs1
�s

1
+

k−1∑

r=1

1

mr
log

�s
r

�s
r+1

+ log�s
k

)

+
1

2

k∑

r=1

mr (ξ(qr+1) − ξ(qr )). (3.6)

Let us define

δsr,� := ∂�s
r

∂qs�
= m�−11{�>r} − m�1{�≥r}, � ∈ {1, . . . , k}, (3.7)

so that differentiating (3.6) results in

∂B

∂qs�
= λs

2

(

h2s δ
s
1,� +

1{�=1}
�s

1
− qs1

(�s
1)

2 δs1,� +
k−1∑

r=1

1

mr

(δsr,�

�s
r

− δsr+1,�

�s
r+1

)
− 1{�=k}

�s
k

)

+
m�−1 − m�

2
λsξ s(q�).

Making appropriate substitutions using (3.7), we have

∂B

∂qs�
= λs

2
(m�−1 − m�)

(

h2s − qs1
(�s

1)
2 +

�−1∑

r=1

1

mr

( 1

�s
r

− 1

�s
r+1

)
+ ξ s(q�)

)

. (3.8)

Since �s
r ≥ �s

r+1 ≥ · · · ≥ �s
k = 1 − qsk ≥ 1 − q̄ , we have

∣
∣
∣ − qs1

(�s
1)

2 +
�−1∑

r=1

1

mr

( 1

�s
r

− 1

�s
r+1

)∣
∣
∣ = qs1

(�s
1)

2 +
�−1∑

r=1

qsr+1 − qsr
�s

r�
s
r+1

≤ 1

(1 − q̄)2

(
qs1 +

�−1∑

r=1

(qsr+1 − qsr )
)

≤ 1

(1 − q̄)2
.

Now (3.8) reads as

∂B

∂qs�
= λs

2
(m� − m�−1)D

s
�(q), where |Ds

�(q)| ≤ h2s +
1

(1 − q̄)2
+ ξ s(1). (3.9)

This identity results in the following precursor to Proposition 3.2.

Lemma 3.3. Having fixed (3.4a) and (3.4b), consider any sequences of the form

0 = ps0 ≤ ps1 ≤ · · · ≤ psk ≤ q̄ < psk+1 = 1, s ∈ S . (3.10a)

Let p� = (ps�)s∈S and p� = ∑
s∈S λs ps�, and then consider the measure

ζ2 =
k∑

�=1

m�δp�
. (3.10b)

Let 
2 be any λ-admissible map such that 
s
2(p�) = ps� for each � and s. We then have

|B(ζ,
) − B(ζ2,
2)| ≤ CD(
(ζ,
), (ζ2,
2)

)
, (3.11)

where C is a constant depending only on ξ , (hs)s∈S , and q̄.
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Proof. Let us begin by understanding the right-hand side of (3.11). Observe that

Qζ (z) = q� and Qζ2(z) = p� for z ∈ (m�−1,m�], 1 ≤ � ≤ k.

Since 
(q�) = q� and 
2(p�) = p�, we thus have

D(
(ζ,
), (ζ2,
2)

) (3.1)=
∫ 1

0
‖
(Qζ (z)) − 
2(Qζ2(z))‖1 dz

=
k∑

�=1

∫ m�

m�−1

‖q� − p�‖1 dz

=
k∑

�=1

(m� − m�−1)‖q� − p�‖1. (3.12)

This identity gives us a target as we next study the left-hand side of (3.11).
Consider the linear interpolation between (3.4) and (3.10):

qs�(t) := (1 − t)qs� + tps�, ζt := (1 − t)ζ + tζ2, 
t := (1 − t)
 + t
2, t ∈ [0, 1].
By differentiating with the chain rule, we have

|B(ζ,
) − B(ζ2,
2)| ≤ sup
t∈(0,1)

∣
∣
∣
dB(ζt ,
t )

dt

∣
∣
∣

(3.9)= sup
t∈(0,1)

∣
∣
∣
∑

s∈S

k∑

�=1

λs

2
(m� − m�−1)D

s
�(q(t))

dqs�(t)

dt

∣
∣
∣

= sup
t∈(0,1)

∣
∣
∣
∑

s∈S

k∑

�=1

λs

2
(m� − m�−1)D

s
�(q(t))(ps� − qs�)

∣
∣
∣

(3.9)≤
(
max
s∈S

λs

2

[
h2s +

1

(1 − q̄)2
+ ξ s(1)

]) k∑

�=1

(m� − m�−1)
∑

s∈S
|ps� − qs� |

(3.12)= CD(
(ζ,
), (ζ2,
2)

)
.

We have proved the desired Lipschitz inequality (3.11). ��
Let us pause to obtain another consequence of the derivative calculation (3.8). Let

Pk denote the set of probability measures on [0, 1] which are supported on at most k
points. Recall the set A(q̄) from (3.2). For q̄ < 1, consider the following subset:

Ak(q̄) := {(ζ,
) ∈ A(q̄) : ζ ∈ Pk}.
This is exactly the set of λ-admissible pairs of the form (3.4). Also define

Ak :=
⋃

q̄<1

Ak(q̄). (3.13)

We then have the following result, which will ultimately lead to the existence of a
minimizer claimed in Theorem 2.13.
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Lemma 3.4. There exists q̄ < 1 such that for any positive integer k, we have

inf
(ζ,
)∈Ak (q̄)

B(ζ,
) = inf
(ζ,
)∈Ak

B(ζ,
). (3.14)

More precisely, we can take

q̄ = max
s∈S

(1 − us)(h2s + ξ s(1)) + us

(1 − us)(h2s + ξ s(1)) + 1
, where (3.15)

us := 1 −
√
1 + 4(h2s + ξ s(1)) − 1

2(h2s + ξ s(1))
. (3.16)

Proof. For the sake of argument, let us temporarily fix the sequence (3.4a) and vary only
the elements of (3.4b). Moreover, we relex (3.4b) to

0 = qs0 ≤ qs1 ≤ · · · ≤ qsk ≤ qsk+1 = 1, s ∈ S . (3.17)

Consider the following summation by parts:

qs1
�s

1
+

k−1∑

r=1

1

mr
log

�s
r

�s
r+1

+ log�s
k = qs1

�s
1

− 1

m1
log

1

�s
1
+

k−1∑

r=1

( 1

mr
− 1

mr+1

)
log

1

�s
r+1

.

Since�s
1 ≤ 1−qs1, it is clear that the right-hand side diverges to∞ as qs1 ↗ 1, uniformly

in (qsr )r≥2. So in order to realize a minimal value for B, we may assume qs1 is at most
some fixed number us < 1. But then the expression displayed above is at least

( 1

mk−1
− 1

)
log

1

1 − qsk
− 1

m1
log

1

1 − us
.

Clearly this quantity diverges to ∞ as qsk ↗ 1, and so a minimal value is achieved only
when qsk is at most some fixed number q̄s < 1. Upon taking q̄ = maxs∈S q̄s , we have
argued that the minimum value of B over all sequences (3.17) must be obtained on some
collection of the form (3.4b).

What remains to be shown is that q̄ can be chosen independently of the sequence
(3.4a). Observe from (3.8) that

2

λs(mk − mk−1)

∂B

∂qsk
= −h2s +

qs1
(�s

1)
2 +

k−1∑

r=1

1

mr

( 1

�s
r+1

− 1

�s
r

)
− ξ s(qk).

Again because �s
r ≤ 1 − qsr , the right-hand side is at least

−h2s +
qs1

(1 − qs1)
2 − ξ s(1). (3.18)

If qs1 is sufficiently close to one, or more specifically qs1 exceeds the value us given in
(3.16), then (3.18) is positive, meaning we are not at a minimum of B. Therefore, any
minimum must have qs1 ≤ us , and so

k−1∑

r=1

1

mr

( 1

�s
r+1

− 1

�s
r

)
(3.5)=

k−1∑

r=1

qsr+1 − qsr
�s

r+1�
s
r

≥
k−1∑

r=1

(1 − qsr ) − (1 − qsr+1)

(1 − qsr+1)(1 − qsr )
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=
k−1∑

r=1

( 1

1 − qsr+1
− 1

1 − qsr

)

= 1

1 − qsk
− 1

1 − qs1
≥ 1

1 − qsk
− 1

1 − us
.

If qsk is larger than the value q̄ given in (3.15), then this quantity is larger than h2s +ξ s(1),
which in light of (3.8) would again rule out the possibility of a critical point. This
conclusion, combined with the earlier argument that every sequence (3.4a) admits a
minimizer, yields (3.14). ��

To obtain Proposition 3.2 from Lemma 3.3, we just need to approximate an arbitrary
ζ with measures supported on finitely many points. This is accomplished through the
following result.

Lemma 3.5. Fix q̄ ∈ [0, 1) and assume (ζ,
) ∈ A(q̄). Then for any ε1, ε2 > 0, there
is a measure ζ̃ of the form (3.4d), i.e. (̃ζ ,
) ∈ Ak(q̄) for some finite k, such that the
following inequalities hold:

D(
(ζ,
), (̃ζ ,
)

) ≤ ε1, (3.19)

|B(ζ,
) − B(̃ζ ,
)| ≤ ε2. (3.20)

During the proof of Lemma3.5,wewill use the following integration by parts identity.

Lemma 3.6. [9, Lem. 2.21] For any Borel probability measure ζ on [0, 1], any Lipschitz
continuous, non-decreasing function f : [0, 1] → [0,∞), and any q ∈ [0, 1], we have

∫ 1

q
ζ
([0, u]) f ′(u) du = f (1) − ζ

([0, q]) f (q) −
∫ 1

ζ([0,q])
f (Qζ (z)) dz. (3.21)

In particular,
∫ 1

0
ζ
([0, u]) f ′(u) du = f (1) −

∫ 1

0
f (Qζ (z)) dz. (3.22)

Proof of Lemma 3.5. The argument is virtually identical to that of [9, Prop. 2.17], but
we include it for the reader’s convenience. Let (ζ,
) ∈ A(q̄) be given. That is, there is
some q∗ ∈ [0, 1) such that ζ ([0, q∗]

) = 1 and 
s(q∗) ≤ q̄ for all s ∈ S . We fix q∗ and
q̄ for the remainder of the proof.

Given any ε1 > 0, let L be an integer so large that

1

L

∑

s∈S

1

λs
≤ ε1. (3.23)

The left-hand side is motivated by the fact that for any 
 satisfying Definition 1.1, we
have

|
s(q) − 
s(u)| ≤ |q − u|/λs for any q, u ∈ [0, 1]. (3.24)

Let J be the smallest integer such that J/L ≥ q∗. Based on ζ , we choose a sequence

0 = q0 ≤ q1 < · · · < qk ≤ q∗ < qk+1 = 1 (3.25)

in the following manner:
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• If ζ({0}) > 0, then set q1 = 0.
• For j ∈ {1, . . . , J − 1}, if ζ

(
(( j − 1)/L , j/L]) > 0, then include q = j/L as one

of the elements qr of (3.25).
• Finally, if ζ

(
((J − 1)/L , J/L]) > 0, then set qk = q∗ (otherwise, qk will be the

largest number obtained from the two previous steps).

Once (3.25) has been formed, define mr = ζ
([0, qr ]

)
for r ∈ {1, . . . , k}. The condition

that ζ assign positive mass to the interval (qr − 1/L , qr ] ensures that
0 = m0 < m1 < · · · < mk = 1.

Furthermore, since all zero-mass intervals are excluded, we have

qr − 1/L ≤ Qζ (z) ≤ qr whenever z ∈ (mr−1,mr ], 1 ≤ r ≤ k. (3.26)

Equivalently, the following implication is true:

qr ≤ u ≤ qr+1 − 1/L �⇒ ζ
([0, u]) = ζ

([0, qr ]) = mr . (3.27)

Now take the approximating measure to be

ζ̃ =
k∑

r=1

(mr − mr−1)qr .

As before, given 
 we will write qr = 
(qr ) so that for z ∈ (mr−1,mr ], we have

‖
(Qζ (z)) − qr‖
(3.24)≤ |Qζ (z) − qr |

∑

s∈S

1

λs

(3.26)≤ 1

L

∑

s∈S

1

λs

(3.23)≤ ε1. (3.28)

Since Q ζ̃ (z) = qr for z ∈ (mr−1,mr ], this inequality leads to

∫ 1

0
‖
(Qζ (z)) − 
(Q ζ̃ (z))‖1 dz =

k∑

r=1

∫ mr

mr−1

‖
(Qζ (z)) − qr‖1 dz
(3.28)≤ ε1.

(3.29)

Finally, note that

Supp(̃ζ ◦ (
s)−1) = {
s(q1), . . . , 

s(qk)} ⊂ [0,
s(q∗)] ⊂ [0, q̄] for all s ∈ S ,

and so (̃ζ ,
) ∈ Ak(q̄). This completes the proof of (3.19).
Now we turn our attention to showing (3.20). In order to distinguish between (2.2)

applied to (̃ζ ,
) as opposed to (ζ,
), we will write

�̃s
r :=

∫ 1

qr
ζ
([0, u])(
s)′(u) du =

k∑

�=r

m�(q
s
�+1 − qs�).

Note that because ζ
([0, qk]) = 1 = ζ̃

([0, qk]
)
, we have

�s(qk) = 1 − 
s(qk) = �̃s
k . (3.30)
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Set α = mins∈S (1 − 
s(qk)). Given ε2 > 0, let ε1 ∈ (0, α/7) be so small that

1

α − 7ε1
− 1

α
≤ ε2

maxs∈S 1/λs
. (3.31)

Given ε1, take L as above so that (3.29) holds and whenever |q − u| ≤ 1/L , we have

|
s(q) − 
s(u)| (3.24)≤ |q − u|
∑

s∈S

1

λs

(3.23)≤ ε1. (3.32)

Regardless of ε1, a simple calculus exercise shows

sup
y≥α,x∈[−7ε1,7ε1]

∣
∣
∣

1

y − x
− 1

y

∣
∣
∣ = sup

y≥α

( 1

y − 7ε1
− 1

y

)
= 1

α − 7ε1
− 1

α
.

Since �s(q) ≥ �s(qk) ≥ α for any q ∈ [0, qk] and s ∈ S , it thus follows from (3.31)
and (3.24) that

sup
x∈[−7ε1,7ε1]

∣
∣
∣

(
s)′(q)

�s(q) − x
− (
s)′(q)

�s(q)

∣
∣
∣ ≤ ε2 whenever q ∈ [0, q∗] and (
s)′(q) exists.

(3.33)

In light of (3.27), we have the following for q ∈ [qr , qr+1], 0 ≤ r ≤ k − 1:

�s(q) = �s(qr+1) +
∫ (qr+1− 1

L )∨q

q
ζ
([0, u])(
s)′(u) du

+
∫ qr+1

(qr+1− 1
L )∨q

ζ
([0, u])(
s)′(u) du

= �s(qr+1) + mr
(

s((qr+1 − 1/L) ∨ q) − 
s(q)

)

+
∫ qr+1

(qr+1− 1
L )∨q

ζ
([0, u])(
s)′(u) du.

Now, it is immediate from (3.32) that

|
s(qr+1) − 
s((qr+1 − 1/L) ∨ q)| ≤ ε1.

In addition, by using the trivial inequality 0 ≤ ζ
([0, u]) ≤ 1, we obtain

0 ≤
∫ qr+1

(qr+1− 1
L )∨q

ζ
([0, u])(
s)′(u) du ≤ 
s(qr+1) − 
s((qr+1 − 1/L) ∨ q) ≤ ε1.

Since we defined qsr+1 to be 
s(qr+1), the three previous displays together show
∣
∣�s(q) − �s(qr+1) − mr

(
qsr+1 − 
s(q)

)∣
∣ ≤ 2ε1 for q ∈ [qr , qr+1]. (3.34)

Next recall from (3.26) that qr+1 − 1/L ≤ Qζ (mr+1) ≤ qr+1. Therefore, by yet another
application of (3.32), we have

0 ≤ qsr+1 − 
s(Qζ (mr+1)) ≤ ε1. (3.35)
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Using Qζ (mr+1) as the value of q in (3.34), we now obtain the following special case:

|�s(Qζ (mr+1)) − �s(qr+1)| ≤ 3ε1, 0 ≤ r ≤ k − 1.

Since Q ζ̃ (mr+1) = qr+1, we can employ Lemma 3.6 to make the following comparison:

|�s(Qζ (mr+1)) − �̃s
r+1|

=
∣
∣
∣

∫ 1

Qζ (mr+1)

ζ
([0, u])(
s)′(u) du −

∫ 1

Q ζ̃ (mr+1)

ζ̃
([0, u])(
s)′(u) du

∣
∣
∣

(3.21)≤
∣
∣
∣

∫ 1

mr+1


s(Qζ (z)) dz −
∫ 1

mr+1


s(Q ζ̃ (z)) dz
∣
∣
∣ + mr+1

∣
∣
s(Qζ (mr+1)) − qsr+1

∣
∣

(3.35)≤
∫ 1

mr+1

‖
(Qζ (z)) − 
(Q ζ̃ (z))‖1 dz + ε1
(3.29)≤ 2ε1.

The two previous displays combine to show that

|�s(qr+1) − �̃s
r+1| ≤ 5ε1, 0 ≤ r ≤ k − 1. (3.36)

Putting together (3.34) and (3.36), we find
∣
∣�s(q) − �̃s

r+1 − mr
(
qsr+1 − 
s(q)

)∣
∣ ≤ 7ε1 for all q ∈ [qr , qr+1], 0 ≤ r ≤ k − 1.

It thus follows from (3.33) that whenever 
′(q) exists and q ∈ [qr , qr+1], we have
∣
∣
∣
∣
(
s)′(q)

�s(q)
− (
s)′(q)

�̃s
r+1 + mr

(
qsr+1 − 
s(q)

)

∣
∣
∣
∣ ≤ ε2. (3.37)

Upon integration, this inequality yields the following for r ∈ {1, . . . , k − 1}:
∣
∣
∣
∣

∫ qr+1

qr

(
s)′(q)

�s(q)
dq − 1

mr
log

�̃s
r

�̃s
r+1

∣
∣
∣
∣ ≤ ε2(qr+1 − qr ).

When r = 0, we have m0 = 0, and so our conclusion from (3.37) is instead
∣
∣
∣
∣

∫ q1

0

(
s)′(q)

�s(q)
dq − qs1

�̃s
1

∣
∣
∣
∣ ≤ ε2q1.

We conclude from the two previous displays, together with (3.30), that

∣
∣
∣
∣

∫ qk

0

(
s)′(q)

�s(q)
dq + log�s(qk) −

(
qs1
�̃s

1

+
k−1∑

r=1

1

mr
log

�̃s
r

�̃s
r+1

+ log �̃s
k

)∣
∣
∣
∣ ≤ qkε2 < ε2.

(3.38)

In addition, we can apply Lemma 3.6 once more, specifically (3.22), to see that

|�s(0) − �s
1| =

∣
∣
∣

∫ 1

0
ζ
([0, q])(
s)′(q) dq −

∫ 1

0
ζ̃
([0, q])(
s)′(q) dq

∣
∣
∣

=
∣
∣
∣

∫ 1

0

s(Qζ (z)) dz −

∫ 1

0

s(Q ζ̃ (z)) dz

∣
∣
∣
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≤
∫ 1

0
‖
(Qζ (z)) − 
(Q ζ̃ (z))‖1 dz

(3.29)≤ ε1. (3.39)

Finally, we use (3.22) again to determine that

∣
∣
∣

∫ 1

0
ζ
([0, q])(ξ ◦ 
)′(q) dq −

∫ 1

0
ζ̃
([0, q])(ξ ◦ 
)′(q) dq

∣
∣
∣

=
∣
∣
∣

∫ 1

0
ξ(
(Qζ (z))) dz −

∫ 1

0
ξ(
(Q ζ̃ (z))) dz

∣
∣
∣

≤ C
∫ 1

0
‖
(Qζ (z)) − 
(Q ζ̃ (z))‖1 dz

(3.29)≤ Cε1, (3.40)

where C depends only on ξ . Once we recall the definition (2.3) of B(ζ,
) and the value
of B(̃ζ ,
) from (3.6), it follows from (3.38)–(3.40) that

|B(ζ,
) − B(̃ζ ,
)| ≤ 1

2

(
ε2 +

∑

s∈S
λsh2s ε1 + Cε1

)
. (3.41)

By replacing ε1 with

min
{
ε1,

ε2

2

( ∑

s∈S
λsh2s

)−1
,

ε2

2C

}
,

we can ensure that the right-hand side of (3.41) is at most ε2, as needed for (3.20). ��
We are now ready to prove that (ζ,
) �→ B(ζ,
) is locally Lipschitz with respect

to D.

Proof of Proposition 3.2. Let (ζ1,
1), (ζ2,
2) ∈ A(q̄). Given any ε > 0, use
Lemma 3.5 to identify finitely supported measures ζ̃1 and ζ̃2 such that

D(
(ζi ,
i ), (̃ζi ,
i )

) ≤ ε and |B(ζi ,
i ) − B(̃ζi ,
i )| ≤ ε for i ∈ {1, 2},

and also (̃ζi ,
i ) ∈ A(q̄). We may assume that (̃ζ1,
1) and (̃ζ2,
2) are of the form
(3.4) and (3.10), respectively, by possibly adding duplicate q’s and p’s in (3.4b) and
(3.10a) so that the two representations use the same sequence (3.4a). Having reduced to
this case, we appeal to Lemma 3.3 to conclude that

|B(ζ1,
1) − B(ζ2,
2)| ≤ 2ε + C
(
D(

(ζ1,
), (ζ2,
2)) + 2ε
)
.

By sending ε → 0, we obtain the desired Lipschitz continuity. ��

4. Proof of Minimizer Identities

In this section, we prove Theorems 2.12 and 2.13.
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4.1. Identity satisfied by Parisi minimizers. Here we prove Theorem 2.12. First we show
that A admits a minimizer, assuming only (H2). The result [9, Cor. 1.6] says that there
exists a λ-admissible pair (ζ,
) such that

inf
b

A(ζ,
, b) = inf A. (4.1)

The task now is to prove that there is b achieving this infimum, for which the following
statement suffices. For any s ∈ S , the following inequalities hold uniformly in (bt )t �=s :

dA(ζ,
, b)
dbs

> 0 for all bs sufficiently large, and

dA(ζ,
, b)
dbs

< 0 for all bs sufficiently close to ds(0). (4.2)

To this end, we can differentiate both sides of (1.8) to obtain

2

λs

dA(ζ,
, b)
dbs

= − h2s + ξ s(0)

(bs − ds(0))2
+ 1 − 1

bs
−

∫ 1

0

(ξ s ◦ 
)′(q)

(bs − ds(q))2
dq. (4.3)

The right-hand side clearly tends to 1 as bs → ∞, and so the first line of (4.2) is true.
If ds(0) < 1, then the second line is also true, since in this case 1 − 1/bs < 0 for all bs

sufficiently close to ds(0). If instead ds(0) ≥ 1, then consider the point

q0 = sup{q ≥ 0 : ds(q) = ds(0)}.
As ds is non-increasing and continuous with ds(1) = 0, we must have q0 < 1 and
ds(q0) = ds(0). By maximality of q0, given any ε ∈ (0, 1], we can identify δ > 0 such
that ds(q0 + δ) = ds(q0) − ε. Therefore, if we choose bs = ds(q0) + ε, then

∫ q0+δ

q0

(ξ s ◦ 
)′(q)

(bs − ds(q))2
dq ≥ 1

(2ε)2

∫ q0+δ

q0
(ξ s ◦ 
)′(q) dq

≥ 1

(2ε)2

∫ q0+δ

q0
ζ
([0, q])(ξ s ◦ 
)′(q) dq = 1

4ε
.

Consequently, for any ε < 1/4, the right-hand side of (4.3) is negative. We have thus
demonstrated the second line of (4.2), and so a minimizing b exists. Furthermore, from
(4.3) it is clear that any such b satisfies (2.13a).

Now we assume (H3′) and look to prove that any minimizing triple (ζ,
, b) satisfies
(2.13b). That is, if we define

φs(q) := h2s + ξ s(0)

(bs − ds(0))2
+
∫ q

0

(ξ s ◦ 
)′(q)

(bs − ds(u))2
du, (4.4)

then we wish to show that φs(q) = 
s(q) for all q ∈ Supp(ζ ). So let us write φ =
(φs)s∈S and consider the following function (mapping [0, 1] into [0, 1]S ) for any
ε ∈ [0, 1):


̃ε := (1 − ε)
 + εφ. (4.5)
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Now, each coordinate map 
̃s
ε = (1 − ε)
s + εφs is non-decreasing, nonnegative, and

satisfies the inequality


̃s
ε(1) = (1 − ε) + ε

(
1 − 1

bs

)
< 1.

In particular, 
ε is not λ-admissible. To amend this, we define the scalar function

αε(q) :=
∑

s∈S
λs
̃s

ε(q), q ∈ [0, 1],

which is clearly continuous, and also strictly increasing in q because 
 is λ-admissible.
Therefore, we can reparameterize 
̃ε as


ε(q) := 
̃ε(α
−1
ε (q)) for q ∈ [αε(0), αε(1)].

On the intervals [0, αε(0)] and [αε(1), 1], simply perform a linear interpolation to the
endpoints 
ε(0) = 0 and 
ε(1) = 1. By definition of αε, this new map 
ε is λ-
admissible. Corresponding to this reparameterization, we also define a new probability
measure ζε by

ζε

([0, q]) :=

⎧
⎪⎨

⎪⎩

0 if q ∈ [0, αε(0)),
ζ
([0, α−1

ε (q)]) if q ∈ [αε(0), αε(1)),
1 if q ∈ [αε(1), 1].

(4.6)

The claimed identity (2.13b) will follow from the following claim.

Claim 4.1. We have the following right derivative:

dA(ζε,
ε, b)
dε

∣
∣
∣
ε=0+

= −1

2

∫

〈
(q) − φ(q), ∇2ξ(
(q))(
(q) − φ(q))〉 ζ(dq).

(4.7)

Before checkingClaim 4.1, let us explain how to complete the proof of Theorem 2.12.
Since (ζ,
, b) is a minimizer, the left-hand side of (4.7) is nonnegative. But in light of
(H3′), the only way the right-hand side can be nonnegative is if


(q) = φ(q) for ζ -a.e. q �= 0. (4.8)

In particular, if ζ({q}) > 0 and q �= 0, then 
(q) = φ(q). If q ∈ Supp(ζ ) but
ζ({q}) = 0, then (4.8) tells us that q is a limit point of the locations at which 
 and φ

coincide. Since 
 and φ are both continuous, this is enough to conclude 
(q) = φ(q).
Similarly, if Supp(ζ ) contains positive numbers arbitrarily close to 0, then
(0) = φ(0).

The only remaining scenario to consider is when Supp(ζ ) \ {0} ⊂ [q1, 1] for some
q1 > 0. Let us choose q1 maximally, so that q1 ∈ Supp(ζ ) ∪ {1}. Now consider any
s ∈ S . If hs = 0, then 
s(0) = 0 = φs(0), as desired. If instead h2s > 0, then the
following claim tells us that 0 /∈ Supp(ζ ), and so it is not even necessary to check (2.13b)
at q = 0.

Claim 4.2. Assuming Supp(ζ ) \ {0} ⊂ [q1, 1] and h2s > 0, we must have ζ({0}) = 0.
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Proof. First observe that 
s(q1) > 0. Indeed, if q1 ∈ Supp(ζ ), then we already know

s(q1) = φs(q1), and φs(q1) > 0 since h2s > 0. If instead q1 = 1, then we trivially
have 
s(q1) > 0 because 
s(1) = 1.

Suppose toward a contradiction that ζ({0}) > 0. We will argue that (ζ,
) cannot
satisfy (4.1). Thanks to [9, Thm. 1.5], we can modify 
 off the support of ζ without
changing the value of the left-hand side of (4.1). So let us fix some p ∈ (0, λs
s(q1) ∧
q1), and then assume that


s(q) =
⎧
⎨

⎩

q/λs if q ∈ [0, p],
q1 − q

q1 − p
(p/λs) +

q − p

q1 − p

s(q1) if q ∈ (p, q1].

Correspondingly, for t �= s, we assume that


t (q) =
⎧
⎨

⎩

0 if q ∈ [0, p],
q − p

q1 − p

t (q1) if q ∈ (p, q1].

It is easy to check that these assumptions preserve λ-admissibility. Now consider the
following perturbed measure for sufficiently small ε > 0:

ζ̃ε := ζ − εδ0 + εδp.

If we define

dtε(q) :=
∫ 1

q
ζ̃ε

([0, u])(ξ t ◦ 
)′(u) du,

then by construction we have

dtε(q) − dt (q) = −ε1{q<p}
∫ p

q
(ξ t ◦ 
)′(u) du = −ε1{q<p}

(
ξ t (
(p)) − ξ t (
(q))

)
.

This gives the derivative calculation

d

dε
dtε(q) = −1{q<p}

(
ξ t (
(p)) − ξ t (
(q))

)
. (4.9)

Very similarly, we have

d

dε

∫ 1

0
ζ̃ε

([0, q])(θ ◦ 
)′(q) dq = −
∫ p

0
(θ ◦ 
)′(q) dq = −θ(
(p)). (4.10)

Now choose b such that

A(ζ,
, b) = inf
b̃

A(ζ,
, b̃).

Referring to (1.8), (4.9), and (4.10), we have

dA(̃ζε,
, b)
dε

=
∑

t∈S

λt

2

[

− h2t + ξ t (0)

(bt − dt (0))2
(
ξ t (
(p)) − ξ t (0)

)
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−
∫ p

0

(ξ t ◦ 
)′(q)

(bt − dt (q))2

(
ξ t (
(p)) − ξ t (
(q))

)
dq

]

+
θ(
(p))

2
.

Ignoring all species but s and recalling the definition of θ from (1.4), we see from this
identity that

2

λs

dA(̃ζε,
, b)
dε

≤ − h2s + ξ s(0)

(bs − ds(0))2
(
ξ s(
(p)) − ξ s(0)

)
+

pξ s(
(p)) − ξ(
(p))

λs
.

Since 
t (p) = (p/λs)1{t=s}, the last term satisfies

−ξ(
(p))

λs
= −

∫ p/λs

0
ξ s

∣
∣{qs=q, qt=0 for all t �=s} dq ≤ − pξ s(0)

λs
.

In light of this inequality, the previous estimate becomes

2

λs

dA(̃ζε,
, b)
dε

≤
(

− h2s + ξ s(0)

(bs − ds(0))2
+

p

λs

)(
ξ s(
(p)) − ξ s(0)

)
. (4.11)

Once again, since 
t (p) = (p/λs)1{t=s}, we have

ξ s(
(p)) − ξ s(0) =
∫ p/λs

0

∂ξ s

∂qs

∣
∣
∣{qs=q, qt=0 for all t �=s} dq

(H3′)
> 0.

Consequently, the derivative in (4.11) is strictly negative whenever p satisfies p/λs <

(h2s + ξ s(0))/((bs − ds(0))2). In particular, A(ζ,
, b) cannot be equal to inf A. ��
Proof of Claim 4.1. First wemake two preliminary calculations that will be used several
times. First, for any C1 function f : [0, 1]S → R, by the chain rule together with the
definition (4.5) of 
̃ε, we have

( d

dε
( f ◦ 
̃ε)(q)

)∣
∣
∣
ε=0+

=
∑

t∈S

( ∂ f

∂qt
(
̃ε(q))

d
̃t
ε(q)

dε

)∣
∣
∣
ε=0+

=
∑

t∈S

(
(∂ t f ◦ 
) · (φt − 
t )

)
(q). (4.12)

Second, if f is also C2, then we include add an application of the product rule to obtain

( d

dε
( f ◦ 
̃ε)

′(q)
)∣
∣
∣
ε=0+

=
( d

dε

∑

r∈S

∂ f

∂qr
(
̃ε(q)) · (
̃r

ε)
′(q)

)∣
∣
∣
ε=0+

=
∑

r,t∈S

∂2 f

∂qt∂qr
(
̃ε(q))

d
̃t
ε(q)

dε
(
̃r

ε)
′(q)

∣
∣
∣
ε=0+

+
∑

r∈S

∂ f

∂qr
(
̃ε(q))

d(
̃r
ε)

′(q)

dε

∣
∣
∣
ε=0+

=
∑

r,t∈S

∂2 f

∂qt∂qr
(
(q))

(
φt (q) − 
t (q)

)
(
r )′(q)

+
∑

r∈S

∂ f

∂qr
(
(q))

(
(φr )′(q) − (
r )′(q)

)
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=
∑

t,r∈S

∂2 f

∂qr∂qt
(
(q))

(
φt (q) − 
t (q)

)
(
r )′(q)

+
∑

t∈S

∂ f

∂qt
(
(q))

(
(φt )′(q) − (
t )′(q)

)

=
∑

t∈S

(
(∂ t f ◦ 
) · (φt − 
t )

)′
(q). (4.13)

Let us note once and for all that in subsequent calculations, whenever we differentiate
an integral, the derivative of the integrand will be uniformly bounded. Therefore, there
is never any issue exchanging differentiation and integration.

In order to write down an expression for A(ζε,
ε, b), we define the following func-
tion:

d̃sε (q) :=
∫ 1

q
ζ
([0, u])(ξ s ◦ 
̃ε)

′(u) du, q ∈ [0, 1].

Note that from (4.13) we have

( d

dε
d̃sε (q)

)∣
∣
∣
ε=0+

=
∫ 1

q
ζ
([0, u])

∑

t∈S

(
(∂ tξ s ◦ 
) · (φt − 
t )

)′
(u) du. (4.14)

For convenience, we will write

Xs(q) :=
∑

t∈S

(
(∂ tξ s ◦ 
) · (φt − 
t )

)
(q), q ∈ [0, 1]. (4.15)

Now, by a change of variables v = α−1
ε (u), we obtain the following identity for all

q ∈ [αε(0), αε(1)]:

dsε (q) :=
∫ 1

q
ζε

([0, u])(ξ s ◦ 
ε)
′(u) du

=
∫ 1

α−1
ε (q)

ζ
([0, u])(ξ s ◦ 
̃ε)

′(v) dv +
∫ 1

αε(1)
(ξ s ◦ 
ε)

′(u) du

= d̃sε (α
−1
ε (q)) + ξ s(1) − (ξ s ◦ 
̃ε)(1). (4.16)

If q ∈ [0, αε(0)], then from the definition (4.6) of ζε, we trivially have

dsε (q) = dsε (αε(0)) = d̃sε (0) + ξ s(1) − (ξ s ◦ 
̃ε)(1). (4.17)

Let us assume henceforth that ε is small enough that when q = 0, this last expression
is sufficiently close to ds(0) so as to be less than bs . For the remaining values of q ∈
[αε(1), 1], we simply have

dsε (q) =
∫ 1

q
(ξ s ◦ 
ε)

′(u) du = ξ s(1) − (ξ s ◦ 
ε)(q). (4.18)

Putting together these observations, we obtain the desired expression:

A(ζε,
ε, b) =
∑

s∈S

λs

2

[
h2s + ξ s(0)

bs − dsε (0)
+
∫ αε(0)

0

(ξ s ◦ 
ε)
′(q)

bs − dsε (q)
dq
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+
∫ αε(1)

αε(0)

(ξ s ◦ 
ε)
′(q)

bs − dsε (q)
dq +

∫ 1

αε(1)

(ξ s ◦ 
ε)
′(q)

bs − dsε (q)
dq + bs − 1 − log bs

]

− 1

2

∫ 1

0
ζε

([0, u])(θ ◦ 
ε)
′(u) du. (4.19)

Now we differentiate each term on the right-hand side. First, by applying (4.12) and
(4.14) to the right-hand side (4.17), we have

d

dε

( h2s + ξ s(0)

bs − dsε (0)

)∣
∣
∣
ε=0+

= h2s + ξ s(0)

(bs − ds(0))2

( ∫ 1

0
ζ
([0, u])(Xs)′(u) du − Xs(1)

)
.

(4.20)

Next we consider the first integral on the right-hand side of (4.19). Recalling the constant
from (4.17), we trivially obtain

∫ αε(0)

0

(ξ s ◦ 
ε)
′(q)

bs − dsε (q)
dq = (ξ s ◦ 
̃ε)(0) − ξ s(0)

bs − d̃sε (0) − ξ s(1) + (ξ s ◦ 
̃ε)(1)
.

We now differentiate the right-hand side with respect to ε, and then evaluate at ε = 0+.
In light of (4.12)–(4.14), and the fact that (d̃sε , 
̃ε) → (ds,
) as ε → 0, the result of
this calculation is

( d

dε

∫ αε(0)

0

(ξ s ◦ 
ε)
′(q)

bs − dsε (q)
dq

)∣
∣
∣
ε=0+

= Xs(0)

bs − ds(0)
. (4.21)

Now consider the second integral on the right-hand side of (4.19). By using the same
change of variables α−1

ε (q) �→ q as before and recalling (4.16), we deduce that
∫ αε(1)

αε(0)

(ξ s ◦ 
ε)
′(q)

bs − dsε (q)
dq =

∫ 1

0

(ξ s ◦ 
̃ε)
′(q)

bs − d̃sε (q) − ξ s(1) + (ξ s ◦ 
̃ε)(1)
dq.

We now differentiate the right-hand side with respect to ε, using the formulas (4.12),
(4.13), and (4.14) to evaluate at ε = 0+. This results in

∫ 1

0

(Xs)′(q)

bs − ds(q)
dq +

∫ 1

0

(ξ s ◦ 
)′(q)

(bs − ds(q))2

( ∫ 1

q
ζ
([0, u])(Xs)′(u) du − Xs(1)

)
dq.

(4.22)

The first integral appearing here can be rewritten using integration by parts:
∫ 1

0

(Xs)′(q)

bs − ds(q)
dq = Xs(1)

bs − ds(1)
− Xs(0)

bs − ds(0)

+
∫ 1

0

Xs(q)

(bs − ds(q))2
ζ
([0, q])(ξ s ◦ 
)′(q) dq

= Xs(1)

bs
− Xs(0)

bs − ds(0)
+
∫ 1

0
(φs)′(q)Xs(q)ζ

([0, q]) dq.

Meanwhile, the second integral appearing in (4.22) can be rewritten using (4.4) as
∫ 1

0

(ξ s ◦ 
)′(q)

(bs − ds(q))2

∫ 1

q
ζ
([0, u])(Xs)′(u) du dq −

(
φs(1) − h2s + ξ s(0)

(bs − ds(0))2

)
Xs(1)
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=
∫ 1

0

(
φs(u) − h2s + ξ s(0)

(bs − ds(0))2

)
ζ
([0, u])(Xs)′(u) du

−
(
φs(1) − h2s + ξ s(0)

(bs − ds(0))2

)
Xs(1)

= − h2s + ξ s(0)

(bs − ds(0))2

∫ 1

0
ζ
([0, u])(Xs)′(u) du −

∫ 1

0
(φs)′(u)ζ

([0, u])Xs(u) du

−
∫

φs(u)Xs(u) ζ(du) +
h2s + ξ s(0)

(bs − ds(0))2
Xs(1).

The outcome of the four previous displays, together with (4.20) and (4.21), is

d

dε

( h2s + ξ s(0)

bs − dsε (0)
+
∫ αε(0)

0

(ξ s ◦ 
ε)
′(q)

bs − dsε (q)
dq +

∫ αε(1)

αε(0)

(ξ s ◦ 
ε)
′(q)

bs − dsε (q)
dq

)∣
∣
∣
ε=0+

= Xs(1)

bs
−

∫

φs(u)Xs(u) ζ(du). (4.23)

Next, because of (4.18), the third integral in (4.19) is
∫ 1

αε(1)

(ξ s ◦ 
ε)
′(q)

bs − dsε (q)
dq = log bs − log

(
bs − ξ s(1) + (ξ s ◦ 
̃ε)(1)

)
.

Performing the relevant differentiation on the right-hand side, and applying (4.12), we
obtain

( d

dε

∫ 1

αε(1)

(ξ s ◦ 
ε)
′(q)

bs − dsε (q)
dq

)∣
∣
∣
ε=0+

= −Xs(1)

bs
. (4.24)

Finally, by the same change of variables α−1
ε (q) �→ q as before, the fourth integral in

(4.19) is
∫ 1

0
ζε

([0, q])(θ ◦ 
ε)
′(q) dq =

∫ 1

0
ζ
([0, q])(θ ◦ 
̃ε)

′(q) dq + θ(1) − (θ ◦ 
̃ε)(1).

Thanks to (4.13), performing the relevant differentiation results in

( d

dε

∫ 1

0
ζε

([0, q])(θ ◦ 
ε)
′(q) dq

)∣
∣
∣
ε=0+

=
∫ 1

0
ζ
([0, q])Y ′(q) dq − Y (1),

where

Y (q) :=
∑

t∈S

(
(∂ tθ ◦ 
) · (φt − 
t )

)
(q)

(1.4)=
∑

t,s∈S
λs
s(q)(∂ tξ s ◦ 
)(q) · (φt − 
t )(q)

(4.15)=
∑

s∈S
λs
s(q)Xs(q).

Then integration by parts gives
∫ 1

0
ζ
([0, q])Y ′(q) dq − Y (1) = −

∫ 1

0
Y (q) ζ(dq).
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The outcome of the three previous displays is

( d

dε

∫ 1

0
ζε

([0, q])(θ ◦ 
ε)
′(q) dq

)∣
∣
∣
ε=0+

= −
∫ 1

0

∑

s∈S
λs
s(q)Xs(q) ζ(dq). (4.25)

Putting together (4.23), (4.24), and (4.25) results in

dA(ζε,
ε, b)
dε

∣
∣
∣
ε=0+

= −1

2

∫ ∑

s∈S
λs(φs(q) − 
s(q))Xs(q) ζ(dq)

(4.15)= −1

2

∫ ∑

s,t∈S
(φs(q) − 
s(q)) · (∂ t∂sξ ◦ 
)(q)

· (φt (q) − 
t (q)) ζ(dq).

Of course, the final line is simply the right-hand side of (4.7). �� (Claim and Theorem)

4.2. Identity satisfied by Crisanti–Sommers minimizers. The identity (2.14) is found
by making two types of perturbations to (ζ,
), which we call “up-perturbations”
and “down-perturbations”. We will initially consider just up-perturbations, as down-
perturbations will have a very similar treatment.

Fix (ζ,
) which satisfies (2.1) for some q∗ < 1. Fix s ∈ S , and consider a point
a ∈ (0, 1) such that


t (a) < 1 for all t ∈ S . (4.26a)

Fix any δ ≥ 0 small enough that

a − δ > 0. (4.26b)

We also assume that a+ is a point of increase for 
s :


s(a) < 
s(q) for all q ∈ (a, 1]. (4.26c)

For sufficiently small ε > 0 (this parameter we will ultimately send to 0), we can define

âε := inf{q ≥ a : 
s(q) = 
s(a) + ε + (q − a)ε2}. (4.27)

Then consider the new function


̂s
ε(q) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩


s(q) + (q − a + δ + ε) if q ∈ (a − δ − ε, a − δ],

s(q) + ε if q ∈ (a − δ, a],

s(a) + ε + (q − a)ε2 if q ∈ (a, âε],

s(q) otherwise.

(4.28)

See Fig. 1a for an illustration. Note that 
̂s retains the continuity and monotonicity of

s . For any t ∈ S \ {s}, we simply take 
̂t = 
t .

It is no longer the case that 
̂ = (
̂t )t∈S is λ-admissible. Therefore, we must
perform a reparameterization as follows. For q ∈ [0, 1], define

αε(q) :=
∑

t∈S
λt
̂t

ε(q)
(1.5)= q + λs(
̂s

ε(q) − 
s(q)). (4.29)
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(a) Up-perturbation at a, for species s

(b) Down-perturbation at a, for species s

Fig. 1. Perturbations considered in the proof of Theorem 2.13. In a, 
s must be strictly increasing to the right
of a. In b, 
s must be strictly increasing to the left of a. This is to ensure that âε or ǎε tends to a as ε → 0

From (4.28) we have


̂s
ε(q) − 
s(q) = 1{q∈(a−δ−ε,a−δ]}(q − a + δ + ε) + ε1{q∈(a−δ,a]}

+ 1{q∈(a,̂aε]}(
s(a) + ε + (q − a)ε2 − 
s(q)). (4.30)

In particular, for any q /∈ {a− δ − ε, a− δ, a, âε} at which 
s is differentiable, we have

(
̂s
ε)

′(q) − (
s)′(q) = 1{q∈(a−δ−ε,a−δ)} + ε21{q∈(a,̂aε)} − 1{q∈(a,̂aε)}(
s)′(q).

(4.31)

Notice that (1.5) forces (
s)′(q) ≤ 1/λs , and so

(
̂s
ε)

′(q) − (
s)′(q) > −1/λs .

Returning to (4.29), we now see that q �→ αε(q) is strictly increasing. Since this map
is also continuous, the inverse α−1

ε is well-defined, strictly increasing, and continuous.
Clearly αε(0) = 0, and so in order for the domain of α−1

ε to be all of [0, 1], we just need
that αε(1) = 1. Indeed, this follows from the simple observation that αε disagrees with
the identity function only on the interval (a−δ−ε, a+âε). The following lemma—which
also demonstrates the purpose of assuming (4.26c)—then suffices.
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Lemma 4.3. As ε ↘ 0, we have âε ↘ a.

Proof. By (4.26c), for any η > 0, there exists ε > 0 small enough that 
s(a + η) >


s(a) + 2ε. Whenever ε ≤ 1, we trivially have ε + ε2(q − a) ≤ 2ε. Hence 
s(a + η) >


s(a) + ε + ε2η, which means âε < a + η by definition (4.27). ��
Now that we know α−1

ε : [0, 1] → [0, 1] is an increasing bijection, we can define the
up-perturbation (ζε,
ε) by

ζε

([0, q]) := ζ
([0, α−1

ε (q)]), 
ε(q) := 
̂ε(α
−1
ε (q)). (4.32)

By definition (4.29) of αε, the map
ε : [0, 1] → [0, 1]S is λ-admissible. The principal
calculation needed to prove Theorem 2.13 is the following.

Proposition 4.4 (Up-perturbation). Assuming (4.26), let (ζε,
ε) be as in (4.32). We
then have the following right derivative:

dB(ζε,
ε)

dε

∣
∣
∣
ε=0+

= λs

2

[(
ζ
([0, a − δ)

) − ζ
([0, a])

)(
h2s −

∫ a−δ

0

(
s)′(q)

(�2(q))2
dq

)

−
∫ a

a−δ

(
ζ
([0, q]) − ζ

([0, a])
) (
s)′(q)

(�2(q))2
dq

+
∫ a

a−δ

ζ
([0, q])(ξ s ◦ 
)′(q) dq

+ ζ
([0, a − δ)

)
ξ s(
(a − δ)) − ζ

([0, a])ξ s(
(a))

]

. (4.33)

To streamline the proof of Proposition 4.4, we make one calculation beforehand.

Lemma 4.5. Suppose that ( fε)ε≥0 is a family of real-valued functions on [0, 1] such
that fε → f0 uniformly as ε ↘ 0. If f0 is right-continuous at a, then

lim
ε↘0

1

ε

∫ âε

a
fε(q)(
s)′(q) dq = f0(a). (4.34)

Proof. Fix any η > 0. By right-continuity of f0 and Lemma 4.3, for all ε sufficiently
small we have

f (a) − η ≤ f (q) ≤ f (a) + η for all q ∈ [a, âε].
By the hypothesis of uniform convergence, this can be upgraded to

f (a) − 2η ≤ fε(q) ≤ f (a) + 2η for all q ∈ [a, âε].
Therefore,

∫ âε

a
fε(q)(
s)′(q) dq ≤

∫ âε

a
( f (a) + 2η)(
s)′(q) dq

= ( f (a) + 2η)(
s (̂aε) − 
s(a))

(4.27)= ( f (a) + 2η)(ε + ε2(̂aε − a)),

and similarly
∫ âε

a
fε(q)(
s)′(q) dq ≥ ( f (a) − 2η)(ε + ε2(̂aε − a)).

Since η is arbitrary, (4.34) follows from the two previous displays. ��
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Proof of Proposition 4.4. By (4.26a), we can choose q∗ ∈ (a, 1) such that (2.1) is sat-
isfied. Then, thanks to Lemma 4.3, we can assume throughout the proof that âε < q∗.
Define

�t
ε(q) :=

∫ 1

q
ζε

([0, u])(
t
ε)

′(u) du, q ∈ [0, 1], t ∈ S ,

so that (2.3) reads as

B(ζε,
ε) =
∑

t∈S

λs

2

[
h2t �

t
ε(0) +

∫ q∗

0

(
t
ε)

′(q)

�t
ε(q)

dq + log�t
ε(q∗)

]

+
1

2

∫ 1

0
ζε

([0, q])(ξ ◦ 
ε)
′(q) dq. (4.35)

Observe that by the definition (4.32), we can execute a change of variables:

�t
ε(q) =

∫ 1

q
ζ
([0, α−1

ε (u)]) (
̂t
ε)

′(α−1
ε (u))

α′
ε(α

−1
ε (u))

du =
∫ 1

α−1
ε (q)

ζ
([0, u])(
̂t

ε)
′(u) du.

(4.36)

In particular, when t �= s we have 
̂t
ε = 
t , and so

�t
ε(q) = �t (α−1

ε (q)) for t �= s. (4.37)

When t = s, we will instead interpret (4.36) as

�s
ε(q) = �̂s

ε(α
−1
ε (q)), where �̂s

ε(q) :=
∫ 1

q
ζ
([0, u])(
̂s

ε)
′(u) du, (4.38)

which by (4.31) is equal to

�̂s
ε(q) =

∫ 1

q
ζ
([0, u])

[
(
s)′(u) + 1{u∈(a−δ−ε,a−δ)} + ε21{u∈(a,̂aε)}

− 1{q∈(a,̂aε)}(
s)′(u)
]
du. (4.39)

In any case, since α−1
ε (q∗) = q∗ and 
̂ε(q) = 
(q) for all q ∈ [q∗, 1], (4.36) shows

that �t
ε(q∗) = �t (q∗) for all t ∈ S . That is, the logarithm appearing in (4.35) does not

depend on ε. To understand the integral appearing before the logarithm, we will need
the following identity.

Claim 4.6. We have the following right derivative:

d�̂s
ε(q)

dε

∣
∣
∣
ε=0+

=
⎧
⎨

⎩

ζ
([0, a − δ)

) − ζ
([0, a]) if q ∈ [0, a − δ),

−ζ
([0, a]) if q ∈ [a − δ, a],

0 if q ∈ (a, 1].
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Proof. Note that �̂s
0 = �s , and we can read off from (4.39) that

�̂s
ε(q) − �s(q) =

∫ 1

q
ζ
([0, u])

[
1{u∈(a−δ−ε,a−δ)} + ε21{u∈(a,̂aε)}

− 1{q∈(a,̂aε)}(
s)′(u)
]
du. (4.40)

If q < a−δ, then all indicator functions appearing in (4.40) are equal to 1 for sufficiently
small ε. By the left-continuity of the map u �→ ζ

([0, u)
)
, we have

lim
ε↘0

1

ε

∫ a−δ

a−δ−ε

ζ
([0, u]) du = ζ

([0, a − δ)
)
.

Of course, we trivially have

lim
ε↘0

ε

∫ âε

a
ζ
([0, u]) du = 0.

Finally, by Lemma 4.5 we have

lim
ε↘0

1

ε

∫ âε

a
ζ
([0, u])(
s)′(u) du = ζ

([0, a]).

These three limits together yield the desired result in the case of q ∈ [0, a−δ). If instead
q ∈ [a − δ, a], then only the final two indicator functions in (4.40) are nonzero, and so
only the two previous displays apply. Finally, if q > a, then for all ε sufficiently small,
all indicators in (4.40) are equal to 0. Here we have again used Lemma 4.3. ��

We now return to analyzing B(ζε,
ε). Let us consider the first part of the right-hand
side of (4.35). For any t �= s, nothing has changed:

h2t �
t
ε(0) +

∫ q∗

0

(
t
ε)

′(q)

�t
ε(q)

dq

(4.37)= h2t �
t (0) +

∫ q∗

0

1

�t (α−1
ε (q))

· (
t
ε)

′(α−1
ε (q)))

α′
ε(α

−1
ε (q))

dq

= h2t �
t (0) +

∫ q∗

0

(
t )′(q)

�t (q)
dq.

If t = s, we instead have

h2s�
s
ε(0) +

∫ q∗

0

(
s
ε)

′(q)

�s
ε(q)

dq

(4.38)= h2s �̂
s
ε(0) +

∫ q∗

0

1

�̂s
ε(α

−1
ε (q))

(
̂s
ε)

′(α−1
ε (q)))

α′
ε(α

−1
ε (q))

dq

= h2s �̂
s
ε(0) +

∫ q∗

0

(
̂s
ε)

′(q)

�̂s
ε(q)

dq.

Of course, the first term in the final line is subject to Claim 4.6. For the second term, we
make the following calculation.
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Claim 4.7. We have the following right derivative:

d

dε

( ∫ q∗

0

(
̂s
ε)

′(q)

�̂s
ε(q)

dq
)∣
∣
∣
ε=0+

= −
(
ζ
([0, a − δ)

) − ζ
([0, a])

) ∫ a−δ

0

(
s)′(q)

(�2(q))2
dq

−
∫ a

a−δ

(
ζ
([0, q]) − ζ

([0, a])
) (
s)′(q)

(�2(q))2
dq. (4.41)

Proof. Intuitively,we pass the derivative through the integral, and then apply the quotient
rule. To be perfectly rigorous, though, let us do this carefully. We begin by writing

1

ε

( (
̂s
ε)

′(q)

�̂s
ε(q)

− (
s)′(q)

�s(q)

)
= (
̂s

ε)
′(q) − (
s)′(q)

ε�̂s
ε(q)

︸ ︷︷ ︸
Xε(q)

− (
s)′(q)

�s(q)�̂s
ε(q)

(�̂s
ε(q) − �s(q)

ε

)

︸ ︷︷ ︸
Yε(q)

.

Now we analyze Xε and Yε separately.
We begin with Xε. Observe that because of (4.31), we have

∫ q∗

0
Xε(q) dq = 1

ε

∫ a−δ

a−δ−ε

1

�̂s
ε(q)

dq + ε

∫ âε

a

1

�̂s
ε(q)

dq −
∫ âε

a

(
s)′(q)

�̂s
ε(q)

dq.

To control the first integral on the right-hand side, we observe that

∣
∣
∣

1

�̂s
ε(q)

− 1

�s(q)

∣
∣
∣ =

∣
∣
∣
�̂s

ε(q) − �s(q)

�̂s
ε(q)�s(q)

∣
∣
∣

(4.40)≤ ε + ε2 + (̂aε − a)/λs
(
�s(q) − (̂aε − a)/λs

)
�s(q)

≤ ε + ε2 + (̂aε − a)/λs
(
�s(q∗) − (̂aε − a)/λs

)
�s(q∗)

= o(1). (4.42)

Hence

1

ε

∫ a−δ

a−δ−ε

1

�̂s
ε(q)

dq = 1

ε

∫ a−δ

a−δ−ε

1

�s(q)
dq + o(1), and ε

∫ âε

a

1

�̂s
ε(q)

dq = O(ε).

And by the continuity of q �→ �s(q) we have

lim
ε↘0

1

ε

∫ a−δ

a−δ−ε

1

�s(q)
dq = 1

�s(a − δ)
.

Finally, thanks to the uniform convergence shown in (4.42), Lemma 4.5 gives

lim
ε↘0

∫ âε

a

(
s)′(q)

�̂s
ε(q)

dq = 1

�s(q)
.

In summary, the three previous displays yield

lim
ε↘0

∫ q∗

0
Xε(q) dq = 1

�s(a − δ)
− 1

�s(a)
= −

∫ a

a−δ

( 1

�s(q)

)′
dq

= −
∫ a

a−δ

ζ
([0, q]) (
s)′(q)

(�s(q))2
dq. (4.43)
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Next we analyze Yε. We have
∣
∣
∣
∣Yε(q) − (
s)′(q)

(�s(q))2

d�̂s
ε(q)

dε

∣
∣
∣
ε=0

∣
∣
∣
∣

≤
∣
∣
∣
∣

(
s)′(q)

�s(q)�̂s
ε(q)

(�̂s
ε(q) − �s(q)

ε
− d�̂s

ε(q)

dε

∣
∣
∣
ε=0

)∣∣
∣
∣

+

∣
∣
∣
∣

( (
s)′(q)

�s(q)�̂s
ε(q)

− (
s)′(q)

(�s(q))2

)d�̂s
ε(q)

dε

∣
∣
∣
ε=0

∣
∣
∣
∣

≤ 1/λs

�s(q∗)(�s(q∗) − (̂aε − a))

∣
∣
∣
∣
�̂s

ε(q) − �s(q)

ε
− d�̂s

ε(q)

dε

∣
∣
∣
ε=0

∣
∣
∣
∣

+
1/λs

�s(q∗)

∣
∣
∣

1

�̂s
ε(q)

− 1

�s(q)

∣
∣
∣.

This final line tends to 0 as ε ↘ 0, and by (4.42) is bounded by a constant uniformly in
ε and q. Therefore, by dominated convergence and Claim 4.6,

lim
ε↘0

∫ q∗

0
Yε(q) dq =

(
ζ
([0, a − δ)

) − ζ
([0, a])

) ∫ a−δ

0

(
s)′(q)

(�s(q))2
dq

− ζ
([0, a])

∫ a

a−δ

(
s)′(q)

(�s(q))2
dq. (4.44)

Subtracting (4.44) from (4.43) results in (4.41). ��
We now turn our attention to the second integral in (4.35).

Claim 4.8. We have the following right derivative:

d

dε

( ∫ 1

0
ζε

([0, q])(ξ ◦ 
ε)
′(q) dq

)∣
∣
∣
ε=0+

= λs
[ ∫ a

a−δ

ζ
([0, q])(ξ s ◦ 
)′(q) dq + ζ

([0, a − δ)
)
ξ s(
(a − δ))

− ζ
([0, a])ξ s(
(a))

]

. (4.45)

Proof. By the same change of variables u = α−1
ε (q) we have used before, we can write

∫ 1

0
ζε

([0, q])(ξ ◦ 
ε)
′(q) dq =

∫ 1

0
ζ
([0, u])(ξ ◦ 
̂ε)

′(u) du.

Upon recalling the definition of ξ t from (1.4), we see that the chain rule gives

(ξ ◦ 
̂ε)
′(q) =

∑

t∈S
λtξ t (
̂ε(q))(
̂t

ε)
′(q).

Therefore, we wish to understand the quantity
∑

t∈S
λt

[
ξ t (
̂ε(q))(
̂t

ε)
′(q) − ξ t (
(q))(
t )′(q)

]
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=
∑

t∈S
λt

[[
ξ t (
̂ε(q)) − ξ t (
(q))

]
(
̂t

ε)
′(q) + ξ t (
(q))

[
(
̂t

ε)
′(q) − (
t )′(q)

]

=
∑

t∈S
λt

[
ξ t (
̂ε(q)) − ξ t (
(q))

]
(
̂t

ε)
′(q) + λsξ s(
(q))

[
(
̂s

ε)
′(q) − (
s)′(q)

]]
,

(4.46)

where in the last line we used the fact that (
̂t
ε)

′(q) − (
t )′(q) = 0 for t �= s. Given
any t ∈ S , by the mean value theorem, there is some vector xε,t = (xrε,t )r∈S such that
xrε,t = 
r (q) for all r �= s, 
s(q) ≤ xsε,t ≤ 
̂s

ε(q), and

ξ t (
̂ε(q)) − ξ t (
(q)) = (
̂s
ε(q) − 
s(q))

∂ξ t

∂qs
(xε,t ).

Recalling (4.30) and using the fact that λt∂ξ t/∂qs = λs∂ξ s/∂qt , we have

1

ε

∫ 1

0
ζ
([0, q])

∑

t∈S
λt

[
ξ t (
̂ε(q)) − ξ t (
(q))

]
(
̂t

ε)
′(q) dq

= λs
[
1

ε

∫ a−δ

a−δ−ε

ζ
([0, q])(q − a + δ + ε)

∂ξ s

∂qt
(xε,t )(
̂

t
ε)

′(q) dq

+
∫ a

a−δ

ζ
([0, q])

∑

t∈S

∂ξ s

∂qt
(xε,t )(
̂

t
ε)

′(q) dq

− 1

ε

∫ âε

a
ζ
([0, q])(
s(a) + ε + (q − a)ε2 − 
s(q))(
̂t

ε)
′(q) dq

]

. (4.47)

The first integrand on the right-hand side is bounded byCε for some constantC depend-
ing only on ξ . Since the interval of integration is itself of length ε, we thus have

lim
ε↘0

1

ε

∫ a−δ

a−δ−ε

ζ
([0, q])(q − a + δ + ε)

∂ξ s

∂qt
(xε,t )(
̂

t
ε)

′(q) dq = 0.

Meanwhile, the third integrand on the right-hand side of (4.47) is at most C(ε + ε2), and
the interval of integration has vanishing length by Lemma 4.3. Therefore, this integral
also vanishes in the limit:

lim
ε↘0

1

ε

∫ âε

a
ζ
([0, q])(
s(a) + ε + (q − a)ε2 − 
s(q))(
̂t

ε)
′(q) dq = 0.

The second (and only remaining) integrand on the right-hand side of (4.47) is bounded
by a constant, and converges (as ε ↘ 0) to

ζ
([0, q])

∑

t∈S

∂ξ s

∂qt
(
(q))(
t )′(q) = ζ

([0, q])(ξ s ◦ 
)′(q).

By dominated convergence, we have now argued that

lim
ε↘0

1

ε

∫ 1

0
ζ
([0, q])

∑

t∈S
λt

[
ξ t (
̂ε(q)) − ξ t (
(q))

]
(
̂t

ε)
′(q) dq



Crisanti–Sommers Formula and Simultaneous Symmetry Breaking 1137

= λs
∫ a

a−δ

ζ
([0, q])(ξ s ◦ 
)′(q) dq. (4.48)

It remains to consider the second term on the right-hand side of (4.46). Using (4.31),
we find that

1

ε

∫ 1

0
ζ
([0, q])ξ s(
(q))

[
(
̂s

ε)
′(q) − (
s)′(q)

]
dq

= 1

ε

∫ a−δ

a−δ−ε

ζ
([0, q])ξ s(
(q)) dq

+ ε

∫ âε

a
ζ
([0, q])ξ s(
(q)) dq

− 1

ε

∫ âε

a
ζ
([0, q])ξ s(
(q))(
s)′(q) dq.

By continuity of ξ s ◦ 
 and left-continuity of q �→ ζ
([0, q)

)
, the first integral on the

right-hand side converges to ζ([0, a − δ))ξ s(
(a − δ)). The second integral clearly
converges to 0. For the third and final integral, we can appeal to Lemma 4.5. Putting
these facts together, we conclude

lim
ε↘0

1

ε

∫ 1

0
ζ
([0, q])ξ s(
(q))

[
(
̂s

ε)
′(q) − (
s)′(q)

]
dq

= ζ([0, a − δ))ξ s(
(a − δ)) − ζ
([0, a])ξ s(
(a)). (4.49)

Because of (4.46), the claimed result (4.45) now follows by adding (4.48) and (4.49). ��
The desired identity (4.33) is simply the sum result of Claims 4.6, 4.7, and 4.8. ��
Now let us briefly discuss down-perturbations. As the name suggests, we need to

replace the assumptions from (4.26) by


t (a + δ) < 1 for all t ∈ S , (4.50a)


s(a) > 0, (4.50b)


s(a) > 
s(q) for all q ∈ [0, a). (4.50c)

Under these conditions, for any ε > 0 small enough, we can make definitions analogous
to those for up-perturbations:

ǎε := inf{q ≤ a : 
s(q) = 
s(a) − ε − (a − q)ε2},


̌s
ε(q) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩


s(q) − (a + δ + ε − q) if q ∈ [a + δ, a + δ + ε),


s(q) − ε if q ∈ [a, a + δ),


s(a) − ε − (a − q)ε2 if q ∈ [ǎε, a),


s(q) otherwise.

See Fig. 1b for an illustration. Instead of (4.29), we now take αε(q) to be

αε(q) :=
∑

t∈S
λt
̌t

ε(q).
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The same argument as before will show q �→ αε(q) is strictly increasing, and so α−1
ε is

well-defined. We then take

ζε

([0, q]) := ζ
([0, α−1

ε (q)]), 
ε(q) := 
̌ε(α
−1
ε (q)). (4.51)

By arguments parallel to those for Proposition 4.4, we have the following calculation.

Proposition 4.9 (Down-perturbation). Assuming (4.50), let (ζε,
ε) be as in (4.51). We
then have the following right derivative:

dB(ζε,
ε)

dε

∣
∣
∣
ε=0+

= λs

2

[(
ζ
([0, a + δ]) − ζ

([0, a)
))(

h2s −
∫ a

0

(
s)′(q)

(�2(q))2
dq

)

+
∫ a+δ

a

(
ζ
([0, q]) − ζ

([0, a + δ])
) (
s)′(q)

(�2(q))2
dq

−
∫ a+δ

a
ζ
([0, q])(ξ s ◦ 
)′(q) dq

+ ζ
([0, a + δ])ξ s(
(a + δ)) − ζ

([0, a)
)
ξ s(
(a))

]

. (4.52)

Proof. Let us just highlight the differences relative to the proof of Proposition 4.4:

• Replace Lemma 4.5 with the statement that

lim
ε↘0

1

ε

∫ a

ǎε

fε(q)(
s)′(q) dq = f0(a),

provided f0 is left-continuous at a, because the interval [ǎε, a] collapses to a from
the left. This is why the first and last instances of ζ

([0, a]) in (4.33) are replaced by
ζ
([0, a)

)
in (4.52). Similarly, we replace ζ

([0, a − δ)
)
with ζ

([0, a + δ]) because
q �→ ζ

([0, q]) is right-continuous, and the interval [a +δ, a +δ+ε] collapses to a +δ

from the right.
• Replace Claim 4.6 with the statement that

d�̌s
ε(q)

dε

∣
∣
∣
ε=0+

=

⎧
⎪⎨

⎪⎩

ζ
([0, a + δ]) − ζ

([0, a)
)

if q ∈ [0, a),

ζ
([0, a + δ]) if q ∈ [a, a + δ],

0 otherwise.

The endpoints of intervals here correspond with the intervals of integration in (4.52).
Alsonotice that themiddle case is positive rather thannegative; this iswhy ζ(

[
0, a+δ])

appears in the second line of (4.52) with a sign opposite that of ζ
([0, a]) in (4.33).

• Notice that (4.43) will be replaced with

1

�s(a + δ)
− 1

�s(a)
=

∫ a+δ

a
ζ
([0, q]) (
s)′(q)

(�s(q))2
dq.

This is why ζ
([0, q]) appears in second line of (4.52) with a sign opposite that of the

same term in (4.33).
• Whereas before 
̂s

ε ≥ 
s , we now have 
̌s
ε ≤ 
s . This is why the sign of the third

line in (4.52) has changed. No other terms are affected because (4.30) was only used
once—to obtain (4.47)—and the only surviving integral on the right-hand side of
(4.47) was the middle one.



Crisanti–Sommers Formula and Simultaneous Symmetry Breaking 1139

��
We now use the calculations we havemade to prove the identity (2.14) for minimizers

of the C–S functional. Recall the definitions of A and Ak from (3.3) and (3.13).

Proof of Theorem 2.13. The first claim is that a minimizer exists. By Lemma 3.5 every
(ζ,
) ∈ A satisfying (2.1) can be approximated (with respect to D) by (ζk,
) ∈ Ak
as k → ∞, and furthermore B(ζk,
) → B(ζ,
). Hence

lim
k→∞ inf

Ak

B = inf
A

B. (4.53)

On the other hand, Lemma 3.4 gives the existence of some q̄ < 1 such that the following
is true. For every k ≥ 1, there is (ζk,
k) ∈ Ak(q̄) such that

B(ζk,
k) = inf
Ak

B.

So let (ζ,
) ∈ A(q̄) be some subsequential limit of (ζk,
k) as k → ∞, which
exists because the quotient space of A(q̄) is compact under D. Since continuity of B is
guaranteed by Proposition 3.2, we have

B(ζ,
) = lim
k→∞ B(ζk,
k) = inf

A
B.

For the remainder of the proof, assume (ζ,
) ∈ A(q̄) is a minimizer for B, and let
q∗ ∈ (0, 1) be such that ζ

([0, q∗]
) = 1 and 
s(q∗) ≤ q̄ for each s.

Claim 4.10. For any a ∈ (0, q∗] and δ ≥ 0 at which (4.26b) and (4.26c) hold, we have

0 ≤
(
ζ
([0, a − δ)

) − ζ
([0, a])

)(
h2s −

∫ a

0

(
s)′(q)

(�2(q))2
dq + ξ s(
(a − δ))

)
. (4.54)

Proof. The hypotheses of the claim allow us to apply Proposition 4.4. Using the assump-
tion that (ζ,
) is a minimizer, we learn from (4.33) that

0 ≤
(
ζ
([0, a − δ)

) − ζ
([0, a])

)(
h2s −

∫ a−δ

0

(
s)′(q)

(�2(q))2
dq

)

−
∫ a

a−δ

(
ζ
([0, q]) − ζ

([0, a])
) (
s)′(q)

(�2(q))2
dq

+
∫ a

a−δ

ζ
([0, q])(ξ s ◦ 
)′(q) dq

+ ζ
([0, a − δ)

)
ξ s(
(a − δ)) − ζ

([0, a])ξ s(
(a)). (4.55)

Now take note of the following trivial inequalities:
∫ a

a−δ

(
ζ
([0, a]) − ζ

([0, q])
) (
s)′(q)

(�2(q))2
dq ≤

(
ζ
([0, a]) − ζ

([0, a − δ)
))

∫ a

a−δ

(
s)′(q)

(�2(q))2
dq,

as well as
∫ a

a−δ

ζ
([0, q])(ξ s ◦ 
)′(q) dq ≤ ζ

([0, a])
∫ a

a−δ

(ξ s ◦ 
)′(q) dq

= ζ
([0, a])(ξ s(
(a)) − ξ s(
(a − δ))

)
.

Using these inequalities in (4.55) results in (4.54). ��
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By completely analogous arguments (just using Proposition 4.9 instead of Proposi-
tion 4.4) we also obtain the next claim.

Claim 4.11. For any a ∈ (0, q∗] and δ ≥ 0 at which (4.50) holds, we have

0 ≤
(
ζ
([0, a + δ]) − ζ

([0, a)
))(

h2s −
∫ a

0

(
s)′(q)

(�2(q))2
dq + ξ s(
(a + δ))

)
.

For convenience, let uswrite K = Supp(ζ ) ⊂ [0, q∗], and also K c = (0, 1)\Supp(ζ ).
Since K c is open, it is a disjoint union of countably many intervals of the form (a0, a1),
where a0 ∈ {0} ∪ K and a1 ∈ K ∪ {1}. Note that altering 
 off of K does not change
(ζ,
) under the pseudometric D. Therefore, we can make the following modification.
For every one of the disjoint intervals (a0, a1) ⊂ K c just described, replace 


∣
∣[a0,a1]

with the linear interpolation between 
(a0) and 
(a1). In this way, we may assume the
following for each s ∈ S :

on every (a0, a1) ⊂ K c,
s is either strictly increasing or constant. (4.56)

In particular, (4.26c) holds for a = q∗, since 
s(q∗) < 1 = 
s(1) for all s ∈ S .
Now suppose q ′ ∈ K and 
s(q ′) = x ∈ [0, 1). Define

a0 = inf{q ≥ 0 : 
s(q) = x} and a1 = sup{q ≥ 0 : 
s(q) = x},
so that [a0, a1] is the maximal interval containing q ′ on which 
s is constant. Note that
a1 ≤ q∗ by (4.56).

Claim 4.12. Assuming (4.56), we must have a0 ∈ {0} ∪ K and a1 ∈ K.

Proof. Let us just argue for a0, as the argument for a1 is identical. If a0 = q ′, then we
are done. Otherwise, we have a0 < a1. And if a0 were an element of K c, then there
would exist ε ∈ (0, a1 − a0) such that (a0 − ε, a0 + ε) ⊂ K c. But then (a0 − ε, a0 + ε)

would contain both an interval (a0 − ε, a0] of non-constancy for 
s , and an interval
[a0, a0 + ε) of constancy for 
s . This scenario contradicts (4.56). ��
Claim 4.13. If a1 > 0, then we have

ξ s(
(q)) + h2s =
∫ q

0

(
s)′(q)

(�2(q))2
dq for all q ∈ [a0, a1]. (4.57)

Proof. By maximality of a1, we must have (4.26c) for a = a1. Moreover, since 
s is
continuous, for any δ0 > 0, there exists δ ∈ (0, δ0) such that (4.26c) holds for a = a1+δ.
By Claim 4.10, we then have

0 ≤
(
ζ
([0, a1 − δ)

) − ζ
([0, a1 + δ])

)(
h2s −

∫ a1+δ

0

(
s)′(q)

(�2(q))2
dq + ξ s(
(a1 − δ))

)
.

Since a1 ∈ K , the first factor on the right-hand side is negative. So dividing it out results
in

ξ s(
(a1 − δ)) + h2s ≤
∫ a1+δ

0

(
s)′(q)

(�2(q))2
dq.

As this conclusion holds for all δ along some sequence tending to 0, we conclude that

ξ s(
(a1)) + h2s ≤
∫ a1

0

(
s)′(q)

(�2(q))2
dq.
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But we have supposed (
s)′(q) = 0 for all q ∈ (a0, a1), and so the integral can actually
be taken over just the interval [0, a0], meaning

ξ s(
(a1)) + h2s ≤
∫ a0

0

(
s)′(q)

(�2(q))2
dq. (4.58)

If 
s(a0) > 0, then by parallel reasoning (using the minimality of a0 and Claim 4.11),
we obtain

ξ s(
(a0)) + h2s ≥
∫ a0

0

(
s)′(q)

(�2(q))2
dq. (4.59)

This inequality remains true if 
s(a0) = 0, since the right-hand side is zero. Finally,
note that ξ s(
(a0)) ≤ ξ s(
(a1)) simply because ξ s is non-decreasing in all coordinates.
Consequently, (4.58) and (4.59) together yield

ξ s(
(a0)) + h2s =
∫ a0

0

(
s)′(q)

(�2(q))2
dq =

∫ a1

0

(
s)′(q)

(�2(q))2
dq = ξ s(
(a1)) + h2s .

This identity extends to (4.57) because for any q ∈ (a0, a1), we have (
s)′(q) = 0 and
ξ s(
(a0)) ≤ ξ s(
(q)) ≤ ξ s(
(a1)). ��

Now recall the point q ′ ∈ K ∩[a0, a1]. If q ′ > 0, then Claim 4.13 has established the
desired identity (2.14). In the case 0 ∈ Supp(ζ ), we must provide a separate argument
to guarantee that (2.14) holds for q = 0. First observe that if Supp(ζ ) contains positive
numbers arbitrarily close to 0, then continuity ensures that (2.14) continues to hold at
q = 0. So wemay assume that Supp(ζ )\{0} ⊂ [q1, 1] for some q1 > 0. Now, if h2s = 0,
then (2.14) holds trivially at q = 0, with both sides equal to 0. If instead h2s > 0, then
the following claim tells us that 0 /∈ Supp(ζ ), and so it is not even necessary to check
(2.14) at q = 0.

Claim 4.14. Asumming Supp(ζ ) \ {0} ⊂ [q1, 1] for some q1 > 0, and h2s > 0, we must
have ζ({0}) = 0.

Proof. The argument is similar to that of Claim 4.2. Let us choose q1 maximally so that
q1 ∈ Supp(ζ ) ∪ {1}. If q1 ∈ Supp(ζ ), then we already know

0 < ξ s(
(q1)) + h2s =
∫ q1

0

(
s)′(u)

(�s(u))2
du,

and so we must have 
s(q1) > 0. If instead q1 = 1, then of course 
s(q1) = 
s(1) =
1 > 0.

Again because of Proposition 3.2, we can modify 
 off the support of ζ without
changing the value of B(ζ,
). So let us fix s ∈ S and some p ∈ (0, λs
s(q1) ∧ q1),
and then assume that


s(q) =
⎧
⎨

⎩

q/λs if q ∈ [0, p],
q1 − q

q1 − p
(p/λs) +

q − p

q1 − p

s(q1) if q ∈ (p, q1].

Correspondingly, for t �= s, we assume that


t (q) =
⎧
⎨

⎩

0 if q ∈ [0, p],
q − p

q1 − p

t (q1) if q ∈ (p, q1].
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It is easy to check that these assumptions preserve λ-admissibility.
Now suppose toward a contradiction that ζ({0}) > 0, and consider the following

perturbed measure for sufficiently small ε > 0:

ζ̃ε := ζ − εδ0 + εδp.

If we define

�t
ε(q) :=

∫ 1

q
ζ̃ε

([0, u])(
t )′(u) du,

then by construction we have

�t
ε(q) − �t (q) = −ε1{q<p}

∫ p

q
(
t )′(u) du = −ε1{q<p}(
t (p) − 
t (q)).

This gives the derivative calculation

d

dε
�t

ε(q) = −1{q<p}(
t (p) − 
t (q)) = −1{q<p}1{t=s}
p − q

λs
.

Very similarly, we have

d

dε

∫ 1

0
ζ̃ε

([0, q])(ξ ◦ 
)′(q) dq = −
∫ p

0
(ξ ◦ 
)′(q) dq = −ξ(
(p)).

Referring to the two previous displays, we have

dB(̃ζε,
)

dε
= λs

2

[
− h2s

p

λs
+
∫ p

0

(
s)′(q)

(�s(q))2
· p − q

λs
dq

]
− ξ(
(p))

2
. (4.60)

Since 
t (p) = (p/λs)1{t=s}, the last term is given by

ξ(
(p)) =
∫ p/λs

0
λsξ s

∣
∣{qs=q, qt=0 for all t �=s} dq ≥ pξ s(0).

Furthermore, since (
s)′ ≤ 1/λs , we have

∫ p

0

(
s)′(q)

(�s(q))2
· p − q

λs
dq ≤

( p

λs�s(p)

)2
.

Using the two previous displays in (4.60), we obtain

dB(̃ζε,
)

dε
≤ λs

2

[
− h2s

p

λs
+
( p

λs�s(p)

)2]
.

Since h2s > 0, we can choose p sufficiently small that the right-hand side is negative,
thereby contradicting the assumption that (ζ,
) is a minimizer.�� (Claim and Theorem)
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5. Proof of Crisanti–Sommers Formula

This final section has the single goal of proving Theorem 2.2. The result will follow
from the following three lemmas.

Lemma 5.1. If (ζ,
) satisfies (2.1) and

bs − ds(q) = 1

�s(q)
for all q ∈ Supp(ζ ), (5.1)

then A(ζ,
, b) = B(ζ,
).

Lemma 5.2. If (ζ,
, b) satisfies (2.13), then (5.1) holds.

Lemma 5.3. If (ζ,
) satisfies (2.1), (2.14), and for each s ∈ S we have

bs − ds(q∗) = 1

�s(q∗)
and ξ s(
(q∗)) + h2s =

∫ q∗

0

(
s)′(u)

(�s(u))2
du, (5.2)

then (5.1) holds.

Before proving the lemmas, let us give the argument for Theorem 2.2.

Proof of Theorem 2.2. Let us first assume (H3′) holds. By Theorem 2.12, there exists a
triple (ζ,
, b) which minimizes A and satisfies (2.13). It then follows from Lemma 5.2
that (5.1) holds. Furthermore, (2.13) excludes the possibility that 1 ∈ Supp(ζ ), since
otherwise we would have 
s(1) = 1− 1/bs < 1. So the maximum element of Supp(ζ )

is some q∗ ∈ [0, 1), and for each s ∈ S we have


s(q∗)
(2.13b)= h2s + ξ s(0)

(bs − ds(0))2
+
∫ q∗

0

(ξ s ◦ 
)′(u)

(bs − ds(u))2
du

≤ h2s + ξ s(0)

(bs − ds(0))2
+
∫ 1

0

(ξ s ◦ 
)′(u)

(bs − ds(u))2
du

(2.13a)= 1 − 1

bs
< 1.

Now that we have verified (2.1), we can apply Lemma 5.1 to conclude that

inf A = A(ζ,
, b) = B(ζ,
) ≥ inf B.

To obtain the reverse inequality, we take (ζ,
) to be the minimizer of B guaranteed
by Theorem 2.13, which necessarily satisfies (2.14). Let q∗ ∈ [0, 1) be the maximum
of Supp(ζ ), so that (2.14) implies the second statement in (5.2), and then choose bs to
satisfy the first statement in (5.2). By Lemma 5.3, it follows that (5.1) holds, and then
Lemma 5.1 gives

inf A ≤ A(ζ,
, b) = B(ζ,
) = inf B.

Note that this second inequality did not rely on (H3′) or even (H3).
Now we must argue that inf A = inf B even if we relax (H3′) to (H3). So assume the

covariance function ξ satisfies (H3). For ε > 0, consider the replacement of ξ by

ξε(q) = ξ(q) + ε
∑

s∈S
(λsqs)2.



1144 E. Bates, Y. Sohn

This is equivalent to replacing the Hamiltonian HN : TN → R of (1.2) with

HN ,ε(σ ) := HN (σ ) +
√

ε
∑

s∈S
gs(σ ),

where (gs)s∈S are independent Gaussian processes such that

E[gs(σ 1)gs(σ 2)] = N (λs Rs(σ 1, σ 2))2, with Rs(σ 1, σ 2) = 〈σ 1(s), σ 2(s)〉
Ns

.

(The process gs does indeed exist, since it is just a spherical SK model on SNs .) By [9,
Lem. A.1], this affects the free energy in (1.3) as follows:

EFN ≤ EFN ,ε ≤ EFN + ε/2.

By Theorem A, we then have

inf A ≤ inf Aε ≤ inf A + ε/2, (5.3)

where Aε is the result of replacing ξ with ξε in (1.8). Furthermore, ξε clearly satisfies
(H3′) since ξ already satisfies (H3), and so the first part of this proof gives

inf Aε = inf Bε, (5.4)

where Bε is result of replacing ξ with ξε in (2.3).
For each ε > 0, (4.53) permits us to choose an integer kε large enough that

inf
Akε

Bε ≤ inf
A

Bε + ε. (5.5)

Take any q̄ < 1 which satisfies

q̄ > lim sup
ε↘0

max
s∈S

(1 − usε)(h
2
s + ξ sε (1)) + usε

(1 − usε)(h
2
s + ξ sε (1)) + 1

, where

usε := 1 −
√
1 + 4(h2s + ξ sε (1)) − 1

2(h2s + ξ sε (1))
.

We make this choice so that for all ε > 0 sufficiently small, (5.5) and Lemma 3.4 allow
us to find (ζε,
ε) ∈ Akε (q̄) such that

Bε(ζε,
ε) ≤ inf Bε + ε. (5.6)

Finally, let (ζ,
) ∈ A(q̄) be any subsequential limit (with respect to D) of (ζε,
ε) as
ε ↘ 0. That is, as laws on [0, 1]S , ζε ◦ 
−1

ε converges weakly to ζ ◦ 
−1. Since ξε

converges uniformly to ξ on [0, 1]S , it follows from Proposition 3.2 that

B(ζ,
) = lim
ε↘0

Bε(ζε,
ε)
(5.6)= lim

ε↘0
Bε

(5.4)= lim
ε↘0

Aε
(5.3)= inf A.

Thus inf A ≥ inf B even when (H3′) is relaxed to (H3). As the reverse inequality holds
regardless, we are done. ��

Now we must prove the three lemmas we have just used. We begin with Lemma 5.1,
which is the technical heart of this section.
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Proof of Lemma 5.1. Note that if q0 is the minimium of Supp(ζ ), then (5.1) implies

bs − ds(0) = bs − ds(q0) = 1

�s(q0)
= 1

�s(0)
> 0,

and so A(ζ,
, b) is well-defined. Furthermore, we have

∑

s∈S
λs

h2s + ξ s(0)

(bs − ds(0))2
=

∑

s∈S
λs(h2s + ξ s(0))�s(0). (5.7)

For convenience, let us choose q∗ minimally; that is, q∗ is the maximum of Supp(ζ ).
First note that because ζ

([0, q]) = 1 for all q ∈ [q∗, 1], we have
ds(q) = ξ s(1) − ξ s(
(q)) and �s(q) = 1 − 
s(q) for all q ∈ [q∗, 1]. (5.8)

Since we chose q∗ to belong to Supp(ζ ), the assumption (5.1) now gives


s(q∗) · (bs − ds(q∗)) = 
s(q∗)
1 − 
s(q∗)

= −1 +
1

�s(q∗)
= −1 + bs − ξ s(1) + ξ s(
(q∗)). (5.9)

To condense notation, let us write Supp(ζ ) = K and K c = (0, q∗] \ Supp(ζ ). Consider
the first integral appearing in (1.8):

∑

s∈S
λs

∫ q∗

0

(ξ s ◦ 
)′(q)

bs − ds(q)
dq

(5.1)=
∑

s∈S
λs

[ ∫

K
�s(q)(ξ s ◦ 
)′(q) dq +

∫

K c

(ξ s ◦ 
)′(q)

bs − ds(q)
dq

]

=
∑

s∈S
λs

[ ∫ q∗

0
�s(q)(ξ s ◦ 
)′(q) dq −

∫

K c
�s(q)(ξ s ◦ 
)′(q) dq

+
∫

K c

(ξ s ◦ 
)′(q)

bs − ds(q)
dq

]
. (5.10)

For the first integral on the final line, we use integration by parts:

∫ q∗

0
�s(q)(ξ s ◦ 
)′(q) dq

= �s(q∗)ξ s(
(q∗)) − �s(0)ξ s(0) +
∫ q∗

0
ζ
([0, q])(
s)′(q)(ξ s ◦ 
)(q) dq.

(5.11)

Recall from (5.8) that �s(q∗) = 1 − 
s(q∗), and also observe that

∑

s∈S
λs(ξ s ◦ 
)(q)(
s)′(q) = (ξ ◦ 
)′(q) dq. (5.12)
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Consequently, when we sum over the various species, (5.11) becomes

∑

s∈S
λs

∫ q∗

0
�s(q)(ξ s ◦ 
)′(q) dq = (1 − 
(q∗)) · ∇ξ(
(q∗))

+
∫ q∗

0
ζ
([0, q])(ξ ◦ 
)′(q) dq.

Notice that a portion of the second integral in (2.3) has appeared on the right-hand side.
The remaining portion is

∫ 1

q∗
ζ
([0, q])(ξ ◦ 
)′(q) dq =

∫ 1

q∗
(ξ ◦ 
)′(q) dq = ξ(1) − ξ(
(q∗)).

Adding this quantity to both sides of (5.10), we obtain

∑

s∈S
λs

∫ q∗

0

(ξ s ◦ 
)′(q)

bs − ds(q)
dq + ξ(1) − ξ(
(q∗))

= (1 − 
(q∗)) · ∇ξ(
(q∗)) +
∫ 1

0
ζ
([0, q])(ξ ◦ 
)′(q) dq

+
∑

s∈S
λs

[
− �s(0)ξ s(0) −

∫

K c
�s(q)(ξ s ◦ 
)′(q) dq +

∫

K c

(ξ s ◦ 
)′(q)

bs − ds(q)
dq

]
.

We must also calculate
∫ 1

q∗

(ξ s ◦ 
)′(q)

bs − ds(q)
dq

(5.8)= log bs − log(bs − ds(q∗))
(5.1)= log bs + log�s(q∗).

Combining the two previous displays, we arrive at

∑

s∈S
λs

[
− log bs +

∫ 1

0

(ξ s ◦ 
)′(q)

bs − ds(q)
dq

]

= (1 − 
(q∗)) · ∇ξ(
(q∗)) +
∑

s∈S
λs log�s(q∗) +

∫ 1

0
ζ
([0, q])(ξ ◦ 
)′(q) dq

+
∑

s∈S
λs

[
− �s(0)ξ s(0) −

∫

K c
�s(q)(ξ s ◦ 
)′(q) dq +

∫

K c

(ξ s ◦ 
)′(q)

bs − ds(q)
dq

]
.

(5.13)

Next we consider the first integral in (2.3):

∑

s∈S
λs

∫ q∗

0

(
s)′(q)

�s(q)
dq

(5.1)=
∑

s∈S
λs

[ ∫

K
(bs − ds(q))(
s)′(q) dq +

∫

K c

(
s)′(q)

�s(q)
dq

]

=
∑

s∈S
λs

[ ∫ q∗

0
(bs − ds(q))(
s)′(q) dq −

∫

K c
(bs − ds(q))(
s)′(q) dq

+
∫

K c

(
s)′(q)

�s(q)
dq

]
. (5.14)
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For the first integral on the final line, we integrate by parts:
∫ q∗

0
(bs − ds(q))(
s)′(q) dq

(5.9)= −1 + bs − ξ s(1) + ξ s(
(q∗)) −
∫ q∗

0
ζ
([0, q])(ξ s ◦ 
)′(q)
s(q) dq.

Observe by direct calculation (using definition (1.4)) that

(θ ◦ 
)′(q) =
∑

s∈S

s(q) · λs(ξ s ◦ 
)′(q). (5.15)

Therefore, we can rewrite (5.14) as

∑

s∈S
λs

∫ q∗

0

(
s)′(q)

�s(q)
dq

=
∑

s∈S
λs(bs − 1) − 1 · ∇ξ(1) + 1 · ∇ξ(
(q∗)) −

∫ q∗

0
ζ
([0, q])(θ ◦ 
)′(q) dq

+
∑

s∈S
λs

[
−

∫

K c
(bs − ds(q))(
s)′(q) dq +

∫

K c

(
s)′(q)

�s(q)
dq

]
. (5.16)

We also have
∫ 1

q∗
ζ
([0, q])(θ ◦ 
)′(q) dq = θ(1) − θ(
(q∗)).

= 1 · ∇ξ(1) − ξ(1) − 
(q∗) · ∇ξ(
(q∗)) + ξ(
(q∗)).

Subtracting this quantity from both sides of (5.16), and then rearranging terms, we arrive
at

∑

s∈S
λs(bs − 1) −

∫ 1

0
ζ
([0, q])(θ ◦ 
)′(q) dq − ξ(1) + ξ(
(q∗))

= −(1 − 
(q∗)) · ∇ξ(
(q∗)) +
∑

s∈S
λs

∫ q∗

0

(
s)′(q)

�s(q)
dq

+
∑

s∈S
λs

[ ∫

K c
(bs − ds(q))(
s)′(q) dq −

∫

K c

(
s)′(q)

�s(q)
dq

]
. (5.17)

By adding (5.7), (5.13), and (5.17), and then recalling definitions (1.8) and (2.3), we
obtain

2A(ζ,
, b) = 2B(ζ,
) +
∑

s∈S
λs

[ ∫

K c
(bs − ds(q))(
s)′(q) dq

−
∫

K c
�s(q)(ξ s ◦ 
)′(q) dq +

∫

K c

(ξ s ◦ 
)′(q)

bs − ds(q)
dq −

∫

K c

(
s)′(q)

�s(q)
dq

]
.

Therefore, the proof will be complete once we show that the additional terms on the
right-hand side sum to zero.
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Since K is closed, its complement K c = (0, q∗] \ K is a countable union of disjoint
open intervals of the form (a0, a1), where a0 and a1 are both elements of K ∪ {0}. We
claim that for each such interval, we have

∑

s∈S
λs

[ ∫ a1

a0
(bs − ds(q))(
s)′(q) dq −

∫ a1

a0
�s(q)(ξ s ◦ 
)′(q) dq

+
∫ a1

a0

(ξ s ◦ 
)′(q)

bs − ds(q)
dq −

∫ a1

a0

(
s)′(q)

�s(q)
dq

]
= 0. (5.18)

Of course, this claim is sufficient to conclude the proof.
Since (a0, a1) ⊂ K c, the map u �→ ζ

([0, u]) is constant on [a0, a1). Referring to
definition (1.6), we see that

ds(q) = ds(a1) + ζ
([0, a0]

)[
ξ s(
(a1)) − ξ s(
(q))

]
for all q ∈ [a0, a1]. (5.19)

Similarly, referring to definition (2.2), we have

�s(q) = �s(a1) + ζ
([0, a0]

)[

s(a1) − 
s(q)

]
for all q ∈ [a0, a1]. (5.20)

If ζ
([0, a0]

) = 0, then in fact ζ
([0, a1)

) = 0, which means (0, a1) ⊂ K c and so a0 must
be 0. In this case, we have

∫ a1

0

(ξ s ◦ 
)′(q)

bs − ds(q)
dq

(5.19)= ξ s(
(a1)) − ξ s(0)

bs − ds(a1)

(5.1)= �s(a1)
(
ξ s(
(a1)) − ξ s(0)

)

(5.20)=
∫ a1

0
�s(q)(ξ s ◦ 
)′(q) dq,

as well as
∫ a1

0

(
s)′(q)

�s(q)
dq

(5.20)= 
s(a1)

�s(a1)

(5.1)= (bs − ds(a1))

s(a1)

(5.19)=
∫ a1

0
(bs − ds(q))(
s)′(q) dq.

Hence (5.18) is true if ζ
([0, a0]

) = 0.
If ζ

([0, a0]
)

> 0, then we instead have

∫ a1

a0

(ξ s ◦ 
)′(q)

bs − ds(q)
dq

(5.19)= 1

ζ
([0, a0]) log

bs − ds(a1)

bs − ds(a0)

(5.1)= 1

ζ
([0, a0]

) log
�s(a0)

�s(a1)
(5.20)=

∫ a1

a0

(
s)′(q)

�s(q)
dq.

That is, the second line of (5.18) vanishes, and so we wish to show that the first line also
vanishes. By another application of (5.19), we find
∫ a1

a0
(bs − ds(a1))(


s)′(q) dq = [
bs − ds(q) − ζ

([0, a0]
)
ξ s(
(a1))

]
(
s(a1) − 
s(a0))
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+ ζ
([0, a0]

)
∫ a1

a0
ξ s(
(q))(
s)′(q) dq.

Once we sum over the various species and apply (5.12), this identity becomes
∑

s∈S
λs

∫ a1

a0
(bs − ds(q))(
s)′(q) dq

=
∑

s∈S
λs

[
bs − ds(a1) − ζ

([0, a0]
)
ξ s(
(a1))

]
(
s(a1) − 
s(a0))

+ ζ
([0, a0]

)(
ξ(
(a1)) − ξ(
(a0))

)
. (5.21)

By analogous computations using (5.20) and (5.15), we also have
∑

s∈S
λs

∫ a1

a0
�s(q)(ξ s ◦ 
)′(q) dq

=
∑

s∈S
λs

[
�s(a1) + ζ

([0, a0]
)

s(a1)

](
ξ s(
(a1)) − ξ s(
(a0))

)

− ζ
([0, a0]

)(
θ(
(a1)) − θ(
(a0))

)

(1.4)=
∑

s∈S
λs

[
�s(a1) + ζ

([0, a0]
)

s(a1)

](
ξ s(
(a1)) − ξ s(
(a0))

)

+ ζ
([0, a0]

)
[
(
ξ(
(a1)) − ξ(
(a1))

) −
∑

s∈S
λs

(

s(a1)ξ

s(
(a1))

− 
s(a0)ξ
s(
(a0))

)
]

. (5.22)

Now observe that

ζ
([0, a0]

)(
ξ s(
(a1)) − ξ s(
(a0))

) (5.19)= ds(a0) − ds(a1), as well as

ζ
([0, a0]

)
(
s(a1) − 
s(a0))

(5.20)= �s(a0) − �s(a1).

Using these identities in conjunction with (5.1), we find that

(bs − ds(a1))(

s(a1) − 
s(a0)) − �s(a1)

(
ξ s(
(a1)) − ξ s(
(a0))

)

= 1

ζ
([0, a0]

)

[
1

�s(a1)

(
�s(a0) − �s(a1)

)
− �s(a1)

( 1

�s(a1)
− 1

�s(a0)

)]

= 1

ζ
([0, a0]

) · (�s(a0) − �s(a1))2

�s(a1)�s(a0)

= (
s(a1) − 
s(a0))
( 1

�s(a1)
− 1

�s(a0)

)

= ζ
([0, a0]

)
(
s(a1) − 
s(a0))

(
ξ s(
(a1)) − ξ s(
(a0))

)
. (5.23)

Now subtract (5.22) from (5.21), and divide by ζ
([0, a0]

)
. In light of (5.23), this results

in
∑

s∈S
λs

[

(
s(a1) − 
s(a0))
(
ξ s(
(a1)) − ξ s(
(a0))

) − ξ s(
(a1))(

s(a1) − 
s(a0))
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− 
s(a1)
(
ξ s(
(a1)) − ξ s(
(a0))

)
+ 
s(a1)ξ

s(
(a1)) − 
s(a0)ξ
s(
(a0))

]

= 0.

That is, the first line of (5.18) vanishes, and so we are done. ��
The reader will notice a parallel structure in the proofs of our last two lemmas.

Proof of Lemma 5.2. We start at (the inverse of) the right-hand side of (5.1), and will
transform it to (the inverse of) the left-hand side. For any q ∈ [0, 1], integration by parts
gives

�s(q) =
∫ 1

q
ζ
([0, u])(
s)′(u) du = 1 − ζ

([0, q])
s(q) −
∫

(q,1]

s(u) ζ(du).

(5.24)

Using the hypothesis (2.13b), the integral on the right-hand side can be rewritten as
∫

(q,1]

s(u) ζ(du) =

∫

(q,1]

∫ u

0

(ξ s ◦ 
)′(v)

(bs − ds(v))2
dv ζ(du) +

h2s + ξ s(0)

(bs − ds(0))2
ζ
(
(q, 1]).

Now use a reverse integration by parts:
∫

(q,1]

∫ u

0

(ξ s ◦ 
)′(v)

(bs − ds(v))2
dv ζ(du)

=
∫ 1

0

(ξ s ◦ 
)′(v)

(bs − ds(v))2
dv − ζ([0, q])

∫ q

0

(ξ s ◦ 
)′(v)

(bs − ds(v))2
dv

−
∫ 1

q
ζ
([0, u]) (ξ s ◦ 
)′(u)

(bs − ds(u))2
du.

Invoking (2.13a) and (2.13b) under the assumption that q ∈ Supp(ζ ), we simplify the
right-hand side to obtain

1 − 1

bs
− h2s + ξ s(0)

(bs − ds(0))2
− ζ

([0, q])
(

s(q) − h2s + ξ s(0)

(bs − ds(0))2

)
+
∫ 1

q

( 1

bs − ds(u)

)′
du.

In light of the three previous displays, (5.24) now reads as

�s(q) = 1

bs
−

∫ 1

q

( 1

bs − ds(u)

)′
du = 1

bs − ds(q)
for all q ∈ Supp(ζ ).

��
Proof of Lemma 5.3. We start at the left-hand side of (5.1), and will transform it to the
right-hand side. For any q ∈ [0, q∗], we have

bs − ds(q) = bs − ds(q∗) + ds(q∗) − ds(q)

(5.2)= 1

�s(q∗)
−

∫ q∗

q
ζ
([0, u])(ξ s ◦ 
)′(u) du. (5.25)

Now use integration by parts:
∫ q∗

q
ζ
([0, u])(ξ s ◦ 
)′(u) du = ξ s(
(q∗)) − ζ

([0, q])ξ s(
(q)) −
∫

(q,q∗]
ξ s(
(u)) ζ(du).
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Using (2.14) and a reverse integration by parts, we find that

∫

(q,q∗]
ξ s(
(u)) ζ(du) =

∫

(q,q∗]

∫ u

0

(
s)′(v)

(�s(v))2
dv ζ(du) − h2s ζ

(
(q, q∗]

)

=
∫ q∗

0

(
s)′(v)

(�s(v))2
dv − ζ

([0, q])
∫ q

0

(
s)′(v)

(�s(v))s
dv

−
∫ q∗

q
ζ
([0, u]) (
s)′(u)

(�s(u))2
du − h2s ζ

(
(q, q∗]

)
.

Using (5.2) and (2.14) under the assumption that q ∈ Supp(ζ ), we simplify the final
line to

ξ s(
(q∗)) + h2s − ζ
([0, q])(ξ s(
(q)) + h2s

) −
∫ q∗

q

( 1

�s(u)

)′
du − h2s ζ

(
(q, q∗]

)

= ξ s(
(q∗)) − ζ
([0, q])ξ s(
(q)) −

∫ q∗

q

( 1

�s(u)

)′
du.

In light of the three previous displays, (5.25) now reads as

bs − ds(q) = 1

�s(q∗)
−

∫ q∗

q

( 1

�s(u)

)′
du = 1

�s(q)
for all q ∈ Supp(ζ ).
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