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Abstract
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Cerium-based ternary compounds CeNi,Cdyy and CePd,Cdyg do not exhibit long-range

order down to millikelvin temperature range. Given the large separation between Ce ions which
significantly reduces the super-exchange interactions and vanishingly small
Ruderman—Kittel-Kasuya—Yosida interaction, here we show that nodal superconductivity

mediated by the valence fluctuations must be a ground state in these materials. We propose that
the critical temperature for the superconducting transition can be significantly increased by
applying hydrostatic pressure. We employ an extended periodic Anderson lattice model which
includes the long-range Coulomb interactions between the itinerant electrons as well as the local
Coulomb interaction between the predominantly localized and itinerant electrons to compute a
critical temperature of the superconducting transition. Using the slave-boson approach we show
that fluctuations mediated by the repulsive electron—electron interactions lead to the emergence
of d-wave superconductivity.

Keywords: superconductivity, Ce, cage, compounds, superconductivity, heavy-fermion systems

(Some figures may appear in colour only in the online journal)

1. Introduction

Ternary compounds CeNi,Cd,y and CePd,Cd, are members
of a family of compounds with chemical formula RT,Xj5
(R = rare-earth element, T = transition-metal element and X
= AlLZn,Cd) and cubic lattice structure [1-7]. It was repor-
ted recently that no long-range order has been observed in
CeNi,Cdyg and CePd,;Cd,y down to temperatures in the mil-
likelvin range even though the well formed cerium magnetic
moments were observed in magnetization measurements [8].
This surprising experimental fact may be understood by taking
into account that (i) there is a fairly large separation between
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the neighboring cerium ions ~6.8 A, so that super-exchange
interactions [9] are vanishingly small and (ii) the Ruderman—
Kittel-Kasuya—Yosida (RKKY) [10-12] interaction between
the cerium local moments is essentially zero due to the sym-
metry of the lowest lying f-orbital multiplet [13]. Further-
more, transport measurements indicate the weak hybridization
between the conduction and predominantly localized f-
electrons.

Vanishingly small RKKY interaction in CeNiCd,y and
CePd,Cd;( makes these compounds analogous to CeAl,. The
latter, however, develops long-range antiferromagnetic order
driven by the super-exchange interactions [14]. Therefore,
in the absence of interactions which would promote mag-
netic long-range order, these materials should be expected
to develop superconductivity upon further cooling. Supercon-
ductivity may be driven either by electron—phonon interactions
[15] or by purely electron—electron interactions [16]. It is
indeed very well known by now that valence fluctuations
originating from the hybridization between the conduction

© 2023 The Author(s). Published by IOP Publishing Ltd
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and f-electrons may lead to a superconducting instability
[17-19].

As it follows from the results of the transport and thermody-
namic measurements, hybridization between the itinerant and
f-electrons remains weak down to low temperatures as mani-
fested by the absence of the coherence peak in resistivity as
well as low values of the Sommerfeld coefficient v [20]. On
the other hand, it is known that applying pressure will pro-
mote the valence fluctuations and, as a result, will lead to an
increase in the hybridization amplitude in the f© <+ f! chan-
nel. As a consequence, average occupation on the f-site may
become lower than one and electron—electron correlations may
produce superconducting instability in the d-wave channel.

In this paper we propose that upon further cooling
CeNi,Cdyg and CePd,Cdyg will develop superconducting
instability with the d-wave of the order parameter. In the
limit of the weak coupling, the energy scale which determ-
ines the critical temperature is given by the Kondo coherence
temperature, 7.on. One of the consequences is that applying
external pressure, which promotes the fluctuations between
the cerium f° and f! valence configurations, will boost 7cop
and superconducting transition temperature will also increase.
In this regard, these compounds may be similar to another
Ce-based ternary compound CeCu,Si, where similar mech-
anism for superconductivity was proposed a while ago [19].
Although conceptually similar to the previous works [17-19],
our work is different from the previous ones in two aspects:
(i) we use the large-N approach based on the generators of the
SP(2N) group, which preserves the time-reversal symmetry
and allows us to consider spin-triplet superconducting instabil-
ity and (ii) we take into account long-range Coulomb inter-
actions between the conduction electrons. In this context, we
are interested to check how the fluctuations associated with
the plasmon field would affect the Cooper pairing in the nodal
superconductor with repulsive interactions [21].

In what follows, we will analyze the superconducting
instability induced by the fluctuations of the bosonic fields
associated with the long-rangle electron—electron correlations.
Our results show that the presence of the fluctuations associ-
ated with the plasmon field leads to a significant (factor of
~2) suppression of the critical temperature, when the local
f — ¢ Coulomb interactions are relatively weak. We find that
the maximum of the critical temperature is attained in a
mixed-valent regime when the average occupation number
for the f-electrons ~0.8. In this regard, these systems may
provide a clearest example of superconductivity induced by
strong electron—electron correlations without requiring sys-
tem’s proximity to a quantum critical phase transition. Unless
pointed out otherwise, throughout this paper we will adopt the
energy unitse =h=c=kg = 1.

2. Model and basic equations

We consider a system of itinerant (c¢) and flat-band (f) elec-
trons described by the following Hamiltonian:

HZHC+Hf+Hv+HfC+HC. (1)

Here the first two terms on the right hand side are

1
_ i
H. = NI kEU €kCiyChos

Hy=cer0y fiofio + Upy_nhnl,,

Jjo J

2

where the summation is performed over the f-sites, A is a
number of lattice sites, €k is the single-particle dispersion for
the itinerant electrons (to be specified below), ¢ is the single
particle energy for the f-electrons and njf(7 = ﬁ; fio- The third
term (1) accounts for the hybridization between the itinerant
and f-electrons:

Hy (ka[ia-ckn + VECl@fka) , 3)

1
VA

where V= (1/VNL) Y, Vie®®~R) is the hybridization
amplitude. Although Vx is anisotropic due to the difference
in symmetry of the conduction and f-orbitals [22], in what
follows without loss of generality we ignore its momentum
dependence Vi — V. Due to the fact that number of the con-
duction and f-electrons are not separately conserved, both ex
and ef are taken relative to the chemical potential ;, which
will be computed self-consistently.

Lastly, the remaining last two terms in (1) describe the Cou-
lomb interactions between the electrons:

He= U Y [ arod (e (], 50 - Ry,

joo!

He= %/dr/dr’pc(r)U(r—r’)pC (r').

Here pc(r) =" 1! ()1, (r) is the density operator, U(r) =
e*/|r| is the bare Coulomb potential and

1 .
Yy (r) = \/Tf ; cqoe'. (5)

To generate the large-N expansion, we first extend the num-
ber of spin and orbital degrees of freedom for both conduc-
tion and f-electrons from 2 to N using the generators of the
SP(N) (N =2k, k=1,2,...) subgroup of SU(N) to preserve
the invariance with respect to the time-reversal symmetry
[23]. Since the interaction between the localized f-electrons
is assumed to be the largest energy scale of the problem, we
are going to adopt the limit

Uﬂ = 00, (6)
which means that we are projecting out the doubly occupied
states and therefore we need to introduce slave-boson pro-
jection operators according to fi, — ]j-abj, ]31; — jfxbj (=
+1,...,%k) along with the constraint condition

Qj=> flfia+blbj=1. )
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We can now follow the avenue of [19]. The large-N expan-
sion is generated by rescaling Q; — gN, b; — bj\/TV, V—
V/V/N, Uy — Uy /v/N and U(r) — U(r)/N. First, we use the
path integral approach within the Matsubara formalism, so that
the partition function is given by

Z= / D [eclffipA] e, (8)

where p is a real bosonic field which appears as a result of
the gauge transformation b;(7) = p;(7)e%(™), fi, — fioe®(™)
and \;(7) = Aj(7) +6;(7) is the slave field which is used to
enforce the constraint (7).

We employ the Hubbard—Stratonovich transformation

B
1
/Daoexp —*/dT
0

2

= const.

o\T + Jkaa Cka

ka

®

“ —i Ok’ +
Glk k') = (—iwn + €x) Ok
k) l Vplk! k)

where k = (iwy,K), iw, = inT(2n + 1) are the fermionic Mat-
subara frequencies. Note that the constraint field iA\(k) plays
the same role for the f-electron part of the propagator as a plas-
mon field i¢ (k) for the c-electron part of the propagator.

2.1. Saddle-point approximation

In the saddle-point approximation the bosonic fields are
chosen in the following form:

p(k7 T) = ﬁ(sk@a )‘<k7 T) = Xék,Ch
Qac,f(va) = ¢(kaT) =0.

The zero value of the plasmon field ¢(k, 7) in (12) means that
its effect at the saddle-point level has already been included
into the definition of the chemical potential. The stationary
point equations in the saddle-point approximation are found by
minimizing the action with respect to the bosonic fields (12),
which results in the system of the following equations [19]:

= (12)
<Pc,f5k,0a

V2

ST
A Z/ (iwn — &) (iwn — €f) —

VR
BV (o Ve
(iwy — &) (iwn — g7) — (Vp)?’
13)
Mn _ Ek) iw, 0+
—or ,
7= Z/ (i0n — 20 (ion —2) — (V7)?
zwn —gp)et 0t
Z/ (iwy, — Ex) (iwn —p) — (Vp)?

Ye ok — k') + ip(k — k)

to decouple the interaction terms (4) in the action (8) by using
the bosonic fields ¢.(r,7), ¢/(r,7) and ¢(r,7). After this
step, one can formally integrate out the fermionic fields which
yields the purely bosonic action

—R) (A~ k) p(K)

0+ A

S=-NTrlogG+N> p
kk'’

NUfC Z e

(10)
- qN\/JVL/dT (iAk=0,7)).

Here 47me? /k*  and

g=1/N, U(k)= E{}:
TS (1/V/AL) Z{ .}. The first term in (10) is a matrlx rep-

ivy
resenting a s1ngle particle fermionic propagator:

Vo(k—k')

11
+ e (k— k') +ix(k— k') (n

(—iw,, + 5f0)5kk’

In these equations [, = [ —(3;133 JEk = ek + Up /2 and gp =
gr0 + UpP, /2 + i) From the last two equation (13) it follows
that @, , = 2n. s, where n,, are the average occupation numbers
per spin. In what follows we assume that the total number of
particles is fixed

7= n¢ -+ ny = const. (14)
The Matsubara summations can be easily performed using the
Poisson summation formula

_ ng(b) —ng(a)

15
iv+b—a ’ (15

1
T
; (iwy + iv — a) (iw, —b)

where ng(e) = 1/ (exp[(e — )/T] + 1) is the Fermi distribu-
tion function and g is a chemical potential. As a result, we
obtain the following three equations which self-consistently
determine the values of ¢f, p and the chemical potential

np(Eo) *nF(Elk)
\/5f Zx)? 2Vp)

er—¢efo — Upne =

e = [ Ine(En) + ne(E). (16)

Kk
B / (8x — &) [np(Exx) — np(Ex)]

e = =2 -z

k /(e —%)*+(2VD)
where we introduced
1/_ _ —
E1(2)k = B (5]( +ept \/(Ef— Ek)2 —|—4(Vp)2) . 17
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Figure 1. Dependence of the f-level occupation number (per spin)
on the position of the ‘bare’ f-level energy £ computed using the
saddle-point approximation. All energies are given in the units of the
band width D of the conduction band. The values of the parameters
used to obtain this plot are: 7' = 1074D, N=2,V=0.5D,n=0.875.

To perform the integration over momentum, we will assume
that the particle density in the conduction band is low enough.
Thus, we consider the Galilean-invariant spectrum

k2
= % — s
where D is set as a unit of energy. The effective mass m =
(372 /+/2)%/3 /2D of the conduction electrons is obtained from

the condition that the total number of particles (per spin)
equals one:

(18)

€k

D
/V()(Ek)dﬁk =1. (19)
—-D

In this formula vy(€) = (3/4v/2D)+\/e/D+1 is the single-
particle density of states for the non-interacting system. In
what follows we will limit out calculations to the case when the
particle occupation number of the conduction band (per spin)
equals to 0.375, which means that the total particle occupation
number per spin must be n =0.875.

The results of the numerical solution of these equations are
presented in figures 1 and 2. In figure 1 we show the depend-
ence of the f-level occupation numbers as a function of the
bare f-level energy. Notice, that with an increase in the values
of Uy, the system approaches the first order phase transition

when the value of n; changes abruptly from nf(.imerm') ~0.1to

nf(-local) ~ 0.5 although they are not shown in figure 2. In the

level of mean-field approximation for slave boson Hamilto-
nian, our treatment of the effect of Uy, is just like that in the
Hartree—Fock approximation. In figure 2 we plot the depend-
ence of the Sommerfeld coefficient y = %13}) C(T)/T as a func-

tion of the parameter 7 — u (the latter is usually associated

Figure 2. Plot of the Sommerfeld coefficient v = (> /3)Dug in the
units of the Sommerfeld coefficient ~y, in the absence of
hybridization (vr is the single-particle density of states at the Fermi
level) as a function of the Kondo lattice coherence temperature

Tcoh = &7 — p for various values of the coupling Uy.. The inset
shows the dependence of the f-level occupation numbers as a
function of T,. These results are found from the solution of the
saddle-point equations assuming 7= 10~*D, N =2, V = 0.5D and
the total particle number n = 0.875.

with the coherence temperature of the Kondo lattice, T¢op).
The value of ~y is significantly enhanced in the local moment
regime n; ~ 0.5. Itis worth pointing out that at least in the local
moment regime the fluctuations associated with the plasmon
field ¢(k,7) will not affect the value of v significantly, since
their contribution is proportional to 1 /N. Since Tcon ~ Vg and
both of these parameters will ultimately determine the value of
the superconducting transition temperature, it is clear that the
effects associated with the plasmon field will be encoded into
the magnitude of the pairing strength. Furthermore, the Fermi
energy is given by

(Vp)?

Er=pu+
a Tcoh

—U, fellf (20)

and so the Fermi energy increases with an increase in effective
hybridization, Vp. Overall, our results presented in figures 1
and 2 agree with those reported earlier [19].

2.2. Fluctuation propagator

Having determined the values of the bosonic fields at the sta-
tionary point, we can determine the propagators of the bosonic
fields at the Gaussian level. We represent the bosonic fields as

p(k7T) = pékﬁ + 6p(k77—)7 l¢(ka7-) = 6(l¢(k57))a
iAK,T) = iX0ko + 6 (iN(K,T)),
SOC,f(k7 T) = ¢6f6k70 + 5(Pc‘f(kv T>7

2y
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and expand each term in the action (10) in powers of the com-
ponents of

60 = (6p,8(i), 0pc, 810y, 8(i6)) (22)
|
(4 VILy(q) +VIL() 7+ V() ) a(g) (%) m@ VIL(g) |
7 VIL(—g) HLy(g) (%) 11s(a) %) o(q) 1L (q)
s=| (F)mea (Omeo (e %+ (F)me (%)
(B)mea  ($)meco %+ (F)nco ($)e (%)
| V() {T(~q) (%) () (%) el-a)  — ot + 3T1eela)

The corresponding expressions for the polarization operators
entering into this expression can be found in the appendix B.
It is worth noting here that not all of the polarization operat-
ors are independent. For example, a simple calculation shows
that
2 ~ 12 .V

VIs(q) = —ix+ VIl (q) — lV%HZ(q), 24)

where ¢ = (q, iv). Finally, a quantity which will be central to

our discussion below—bosonic propagator—is given by the
inverse of (23):

D(g)=-8,". (25)
In what follows we will use equations (23) and (25) to invest-
igate the superconducting instability mediated by the interac-
tions between the fermions and fluctuating bosonic fields.

3. Superconductivity from repulsive
electron—electron interactions

The problem of superconductivity emerging as a ground state
in the Anderson lattice model has been extensively discussed
in the literature starting with the pioneering papers by Lavagna
et al [17] and by Houghton et al [18]. In the context of
the extended Anderson model the problem of superconduct-
ing pairing mediated by the bosonic fluctuations has been
studied by Onishi and Miyake [19]. Specifically, they found
that with an increase in the strength of the Hubbard interac-
tion Uy between the conduction and f-electrons, the critical
temperature of the superconducting transition also increases,

up to the second order (¢ means transpose). For the details
on the derivation we refer the reader to appendix A.
As a result, an inverse of the fluctuation propagator can
be represented in terms of a 5 x5 matrix given by

i.e. increasing the strength of the local repulsive interaction
boosts superconductivity. Since there are no retardation effects
and all interactions are repulsive, it is expected that the super-
conducting order parameter has nodes and the highest trans-
ition temperature was found to be for the d-wave symmetry.
In this regard, it will be interesting to check whether the
long-range Coulomb interactions may produce the same effect
here.

By the nature of the interaction which induces the Cooper
pairing, in the weak coupling theory the Kondo lattice coher-
ence temperature T, plays a role of the characteristic energy
scale analogous to the Debye frequency in the conventional
theory of superconductivity. The critical temperature describ-
ing the superconducting instability in the [-orbital channel is
given by

T = Tegne ™/, (26)
where \; = vgl'; is the dimensionless coupling constant, vg is
the density of states at the Fermi level and I'; > 0 is given by

o

Here P;(cos ) is the Legendre polynomial and I'(*) (9) the bare
interaction in the Cooper channel [24].

Interaction function T'(®)(6) is determined by the matrix
elements of the fluctuation propagator f)(q, iv) evaluated at
|q| = 2kgsin(#/2) and iv — 0 [17-19]. The specific form of
I'© () depends on whether the chemical potential is in the
first £y or the second E,i band. Since we have chosen the
fairly low occupation number for the conduction band, we

s

2”1) / 7O (0)P,(cosh) sinfdd.  (27)
0
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find that the chemical potential lies close to the top of the
second band, Eyk. The fermionic operators ako,alg, which
describe the quasiparticles in this band are related to the
original fermionic operators ck, and fix, by the following
relation:

Cko = —Vklko, Jko = UkOko- (28)

Here ui and vi are the coherence factors defined in the
appendix B. We introduce the two-particle correlation function

rO9) = vy

2 2

Up Ue\’
+7fp%)\(9) + (;) D%wc(a)

VU

+2V2Dpp(9)] — dug vy, {VDW(G) +—-

= Lecee(0) + Lgg(0) + Tprec(0) + Lecer(0) + T (0)

and the coherence factors uy,, vk, are evaluated at the Fermi
energy:

Vﬁ Tcoh

s Vig = . (€20)
Tzoh + (Vﬁ)z Tcz:oh + (Vﬁ)z

Uk =

The subscripts in D refer to its matrix elements, i.e. D, cor-
responds to the matrix element Ds; etc in accordance with the
definition (22).

The relations (31) imply that in the vicinity of the local
moment regime ng~ 1/2, when Teon < D we find that uy, ~
1. Therefore, we can expect that the largest contribution to
the pairing interaction is provided by the last term in (30),
which is confirmed by the numerical calculations. This means
that the long-range Coulomb interactions should not sig-
nificantly affect the value of the transition temperature in
the local moment regime: in comparison to the contribu-
tion from the itinerant c-states, the f-states provide signi-
ficantly larger spectral weight contribution to the pairing
quasiparticles.

Our results of the numerical calculation of the super-
conducting critical temperature are shown in figure 3. First,
we found that the largest critical temperature is realized in
the d-wave (/=2) channel. In agreement with the previ-
ous studies, we have found that the maximum of the crit-
ical temperature remains weakly dependent on the value

U'C : U'c U'c
(f> DWW(Q) + LDW(#(@) + %D%Df(a) + 'D¢¢(9)
Uy 2 Uy
+ 2up, %, [;me) + ( 3 ) Dy, (0) + %Dw(e) +Dxg(0)

D@fp(e)} — Ay, {VDAP(G) +

Topos(12:34) = — <T {aa(l)aﬁ(z)ag(3)ag(4)}>, (29)

where averaging is performed over the action (10)
and a,(l)=a,(k;,7) etc. Expanding the action up
to the second order in 0P (22), we have found the
following expression for the interaction function:

Uy,
+utf, | Dar(0) + 5 D (0)

Uge
(30)

VU
Tfpﬁprp (9)

of er9. At the same time we find that the critical tem-
perature is decreasing with both an inclusion of the plas-
mon field fluctuations as well as with an increase in the
values of Up, which is strike contrast with the earlier
results [19].

In order to get insight into the origin of this effect, we fix the
values of ¢, p and p to their corresponding values at the max-
imum of T, and consider how the interaction (30) changes with
the changes in Up.. First of all, we recall that vr remains inde-
pendent on the value of Uy, figure 2. This result implies that
Ton must also remain essentially independent of Uy.. Indeed,
for the results shown in figure 3 we found that T, /D &2 2.3 x
10~3 and g /vo ~ 770 when T, approaches its maximum
value. At the same time two largest contributions to the inter-
action kernel, 'y (0) and I'g5#(6), do change with Uy, figure 4.
As it turns, however, their respective contributions to the
VFF(O) (9) yield similar results and, as a consequence, we find
that veI"(*)(9) is slightly increased while the value of the max-
imum 7 is somewhat reduced with an increase of U.. In other
words, valence fluctuations produce superconductivity even in
the case of when Uy, can be neglected and the increasing the
value of Uy, reduced the value of the superconducting critical
temperature to an intermediate valence regime. The same argu-
ment can be implied to the effects of the long-range Coulomb
interactions, which also lead to the reduction in the value of
T, as soon as the system in tuned away from the local moment
regime.
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Figure 3. Superconducting critical temperature computed for three
different values of the Hubbard Uy interaction and for the two
separate cases of zero and non-zero plasmonic field fluctuations. We
find that the fluctuations of the plasmonic field has significant effect
on critical temperature when Uy, < D. Contrary to the earlier
studies, we found that the maximum value of the critical
temperature is decreasing with the increase in the strength of U..
These results are found from the solution of the saddle-point
equations with pr = (2mEg/D)"/* ~3.73, T=10"°D,N =2,

V = 0.5D and the total particle number n = 0.875.
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Figure 4. Interaction kernel as a function of momentum computed
without the effects of the plasmon fluctuations. This result shows
that although separate contributions to I'® such as the leading ones
I'g and I'gy, do depend on the value of Uy, '® shows much
weaker dependence on Uy.. Notably, as the value of Uy, increases,
the effective interaction becomes more repulsive rendering the lower
T¢ in the d-wave channel. These results are found from the solution
of the saddle-point equations with kg = (2mEg/D)"/? ~ 3.73,

T= 1075D, N =2, V=0.5D and the total particle number
n=0.875. The values of the remaining parameters are as follows:
for Uy, = 0.5D: g9 = —0.40487D, ¢y = 0.3461D, p = 0.2304 and
w1 = 0.3279D and for Uy = 0.9D and gpp = —0.46915D we found
er=10.50685D, p = 0.17148 and p = 0.49712D.

4. Conclusions

In this paper we have presented the results of the calcula-
tions for the critical temperature of the superconducting trans-
ition in the extended Anderson lattice model, which also
included the long-range Coulomb repulsion between the con-
duction electrons. Our work has been motivated by recent
discovery of the Ce-based cage compounds CeNi,Cd,o and
CePd,;Cd;p. These compounds have vanishing RKKY inter-
actions and do not exhibit a long-range order down to very
low temperatures in the millikelvin range. We propose that
d-wave superconductivity may develop in these compounds
under an application of the hydrostatic pressure. Our estimates
based on the results for the CeCu,Si, indicate that the max-
imum in 7, should be achieved in the pressure range from 5 to
15 GPa.

We have also found that the long-range Coulomb repulsion
leads to a decrease in the values of superconducting critical
temperature: in the local moment regime it has small effect on
the value of T, due to the fact the most of the spectral weight
carried by the quasiparticles, which form the Cooper pairs, is
provided by the f-electrons. In the mixed-valent regime and
for the low enough values of Uy, the fluctuations of the plas-
mon field significantly reduces the value of the superconduct-
ing critical temperature.
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Appendix A. Effective action in the Gaussian
approximation

We define the single-particle fermionic propagator in the sta-
tionary point, which is obtained from (11) using (12)

Wy — €k — Ufcnf

Vp ] (A1)

Wy —&f

Vép(k—k'

My = [?&Pf(k — k') +6(ip(k—k'))
)

In the Gaussian approximation we formally expand the expres-
sion under the logarithm (A4)

~Trlog [1 - GM| = i %Tr (gM) (A6)

n=1

and retain only the term with n=2. As a result we find the
following expression for (A4):

88 = NZ(SCI) k) S (k), (A7)

with S given by equation (23) in the main text. Upon integ-
rating out the bosonic fields, it is straightforward to check that
the fluctuations give the correction of the order of O(1/N) to
the free energy.

Then the action at the stationary point is given by

NUpe_
1 PP

(A2)

So = —NTrlog [—_C';_l} +iNA (ﬁz —qo0) —

Minimizing Sy with respect to the slave-boson fields yields the

equation (13).
We can now expand action (10) up to the second order in
powers of 6P (see (21) in main text). It follows
S=2Sp+46S, (A3)

where the fluctuation correction to the action 4 is of the form

55 = —NTrlog [1 - QAM}

+NZ [(IX)3p(—k)Sp(k) + 2pidN(—k)dp(K)]
‘NZ { © Sior(—k)ie(K) + 5(i¢(z];)()1<6)(i¢(k))
(A4)
Here matrix M is defined by
Vop(k—k’)
Ye ek — k) +5(i)\(k—k’))1 | (A9

Appendix B. Polarization operators

The polarization operators which enter into equation (23) are
defined according to

TZZQLL k+¢] gcc )

iwp

Tzzgﬁkw G(k)

iwy

Tzzgfc k+q)Ger(k),

iwy

TZZQCC k+ q)Ger(k) =

iwy

(BI)

va Tzzgﬁ‘k+q gfc ) vf( )

I (g Tzzgff k+q)Gec (k) =T f(—q).
Here g = (q, i), ivy, = 2inTm is the bosonic Matsubara fre-
quency, k = (k,iw,) and iw, = ir T(2n+ 1) is the fermionic
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Matsubara frequency. Functions G,,(k) which appear in this
expressions are defined according to

iwn —E&f
(i~ in— )~ (VP
ui Vi
N iwy, — Enx  iw, — Ex’

iw, — €k
k =
WD) = o, =22 (V7P

Geelk+q) =

(B2)

iwy, —Ewk  iwy — Epx

The remaining correlator Gy, = Gy is given by

V2
(iwn = &) (iwn — &) = (Vp)?

_ Vp 1 - 1 (B3)
Eix— Ex \iw, —Eix  iwy, —Ex )’

(iwn41 — €ktq)

In the expressions above we introduced the coherence
factors

1 Ek — € 1 Ek— €
2 f 2 k f
uk 2 ( Iek ) ’ Vk 2 ( lek > ( )

and R = Ex — E»x. For convenience, instead of the last three
polarization functions, we will consider

T, iv1) = 5 [T (,0) + el )]
IL(q,iv) = % [y (q,ivy) + Tie(q, iv1)] (BS)
(g, 1) = 5 [l ) + T ).

The summations over the Matsubara frequencies

can be easily performed using (15). For example

(iw, — Ef)

» o [nR(E) — np(Eikiq)]

T - - - -
; (iwny1 — E\kyq+ 1) (i1 — Erkyq+ ) (iw, — Erx + p) (iw,, — Exx + p)
> [nF(Eax) — np(Eiktq)]

5 [ME(Eik) — ne(Exktq)] (B6)

)
= Virqlk— F VitqVk
4 i+ Ex — Elkiq 4

Erx) — E
TR [nﬁ( 2k) — 15(Ezictq)]
i+ Eox — Exxqq

We also would like to remind the reader that all the energies
entering into these expressions are taken relative to the chem-
ical potential p. Formally, this is accomplished by including
the chemical potential into the definition of the Fermi distri-
bution function, equation (15).
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