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Abstract—The correct use of cryptography is central to en-
suring data security in modern software systems. Hence, sev-
eral academic and commercial static analysis tools have been
developed for detecting and mitigating crypto-API misuse. While
developers are optimistically adopting these crypto-API misuse
detectors (or crypto-detectors) in their software development
cycles, this momentum must be accompanied by a rigorous
understanding of their effectiveness at finding crypto-API misuse in
practice. This paper presents the MASC framework, which enables
a systematic and data-driven evaluation of crypto-detectors using
mutation testing. We ground MASC in a comprehensive view of the
problem space by developing a data-driven taxonomy of existing
crypto-API misuse, containing 105 misuse cases organized among
nine semantic clusters. We develop 12 generalizable usage-
based mutation operators and three mutation scopes that can
expressively instantiate thousands of compilable variants of the
misuse cases for thoroughly evaluating crypto-detectors. Using
MASC, we evaluate nine major crypto-detectors and discover 19

unique, undocumented flaws that severely impact the ability of
crypto-detectors to discover misuses in practice. We conclude
with a discussion on the diverse perspectives that influence the
design of crypto-detectors and future directions towards building
security-focused crypto-detectors by design.

I. INTRODUCTION

Effective cryptography is critical in ensuring the security of

confidential data in modern software. However, ensuring the

correct use of cryptographic primitives has historically been

a hard problem, whether we consider the vulnerable banking

systems from Anderson’s seminal work [1], or the widespread

misuse of cryptographic APIs (i.e., crypto-APIs) in mobile

and Web apps that can lead to the compromise of confidential

financial or medical data and even the integrity of IoT de-

vices [2]–[8]. In response, security researchers have developed

a wide array of techniques and tools for detecting crypto-API

misuse [2]–[4], [9]–[17] that can be integrated into the software

development cycle, thereby preventing vulnerabilities at the

source. These crypto-API misuse detectors, or crypto-detectors,

play a crucial role in the security of end-user software.
Crypto-detectors have been independently used by developers

for decades [18]. They are integrated into IDEs (e.g., the

CogniCrypt plugin for Eclipse [19]), incorporated in the internal

testing suites of organizations (e.g., Cryptoguard [3], integrated

into Oracle’s testing suite [20]), or are currently targeted for

commercialization and widespread deployment [3], [21]. In fact,

several crypto-detectors are also being formally provisioned

by code hosting services as a way of allowing developers to

ensure compliance with data security standards and security

best-practices (e.g., Github’s CodeScan initiative [22]). Thus,

the importance of crypto-detectors in ensuring data security

in modern Web and mobile software cannot be overstated,

as key stakeholders (i.e., researchers, code-hosting services,

app markets, and developers) are increasingly reliant on them.

However, what is concerning is that while stakeholders are

optimistically adopting crypto-detectors, we know very little

regarding their actual effectiveness at finding crypto-API

misuse. That is, beyond manually-curated benchmarks, there

is no approach for systematically evaluating crypto-detectors.

This example in Listing 1 illustrates the gravity of this problem:

String algorithm = "DES";

Cipher cipher = Cipher.getInstance(algorithm);

Listing 1. Instantiating “DES” as a cipher instance.

In this example, we define DES as our algorithm of choice,

and instantiate it using the Cipher.getInstance(<parameter>)

API. Given that DES is not secure, one would expect any

crypto-detector to detect this relatively straightforward misuse.

However, two very popular crypto-detectors, i.e., ToolX
1 (used

by over 3k+ open source Java projects), and QARK [23]

(promoted by LinkedIn and recommended in security testing

books [24]–[26]), are unable to detect this trivial misuse case

as we discuss later in the paper. Further, one might consider

manually-curated benchmarks (e.g., CryptoAPIBench [27], or

the OWASP Benchmark [28]) as practical and sufficient for

evaluating crypto-detectors to uncover such issues. However,

given the scale and diversity of crypto protocols, APIs, and their

potential misuse, benchmarks may be incomplete, incorrect, and

impractical to maintain; e.g., the OWASP benchmark considered

using ECB mode with AES as secure until it was reported in

March 2020 [29]. Thus, it is imperative to address this problem

through a reliable and evolving evaluation technique that scales

to the volume and diversity of crypto-API misuse.

In this paper, we propose the first systematic, data-driven

framework that leverages the well-founded approach of Muta-

tion Analysis for evaluating Static Crypto-API misuse detectors

– the MASC framework, pronounced as mask. Stakeholders can

use MASC in a manner similar to the typical use of mutation

analysis in software testing: MASC mutates Android/Java apps

by seeding them with mutants, i.e., code snippets exhibiting

1We have anonymized this tool in the paper as requested by its developers.
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crypto-API misuse. These mutated apps are then analyzed

with the crypto-detector that is the target of the evaluation,

resulting in mutants that are undetected, which when analyzed

further reveal design or implementation-level flaws in the

crypto-detector. To enable this workflow for practical and

effective evaluation of crypto-detectors, MASC addresses three

key research challenges (RCs) arising from the unique scale

and complexity of the problem domain of crypto-API misuse:

RC1: Taming the Complexity of Crypto-API Misuse - An

approach that effectively evaluates crypto-detectors must com-

prehensively express (i.e., test with) relevant misuse cases

across all existing crypto-APIs, which is challenging as crypto-

APIs are as vast as the primitives they enable. For instance,

APIs express the initialization of secure random numbers, cre-

ation of ciphers for encryption/decryption, computing message

authentication codes (MACs), and higher-level abstractions

such as certificate and hostname verification for SSL/TLS.

RC2: Instantiating Realistic Misuse Case Variations - To

evaluate crypto-detectors, code instances of crypto-API misuse

must be seeded into apps for analysis. However, simply

injecting misuse identified in the wild verbatim may not lead

to a robust analysis, as it does not express the variations

with which developers may use such APIs. Strategic and

expressive instantiation of misuse cases is critical for an

effective evaluation, as even subtle variations may evade

detection, and hence lead to the discovery of flaws (e.g., passing

DES as a variable instead of a constant in Listing 1).

RC3: Scaling the Analysis - Efficiently creating and seeding

large numbers of compilable mutants without significant manual

intervention is critical for identifying as many flaws in crypto-

detectors as possible. Thus, the resultant framework must

efficiently scale to thousands of tests (i.e., mutants).

To address these research challenges, this paper makes the

following major contributions:

• Crypto-API Misuse Taxonomy: We construct the first

comprehensive taxonomy of crypto-API misuse cases

(105 cases, grouped into nine clusters), using a data-

driven process that systematically identifies, studies, and

extracts misuse cases from academic and industrial sources

published over the last 20 years. The taxonomy provides

a broad view of the problem space, and forms the core

building block for MASC’s approach, enabling it to be

grounded in real misuse cases observed in the wild (RC1).

• Crypto-Mutation Operators and Scopes: We contextu-

alize mutation testing for evaluating crypto-detectors by

designing abstractions that allow us to instantiate the

misuse cases from the taxonomy to create a diverse

array of feasible (i.e., compilable) mutants. We begin

by formulating a threat model consisting of 3 adversary-

types that represent the threat conditions that crypto-

detectors may face in practice. We then design usage-

based mutation operators, i.e., general operators that

leverage the common usage characteristics of diverse

crypto-APIs, to expressively instantiate misuse cases from

the taxonomy (addresses RC2). Similarly, we also design

the novel abstraction of mutation scopes for seeding

mutants of variable fidelity to realistic API-use and threats.

• The MASC Framework: We implement the MASC frame-

work for evaluating Java-based crypto-detectors, including

12 mutation operators that can express a majority of

the cases in our taxonomy, and 3 mutation scopes. We

implement the underlying static analysis to automatically

instantiate thousands of compilable mutants, with manual

effort limited to configuring the mutation operators with

values signifying the misuse (RC3).

• Empirical Evaluation of Crypto-Detectors: We evaluate

9 major crypto-detectors using 20, 303 mutants generated

by MASC, and reveal 19 previously unknown flaws (several

of which are design-level). A majority of these discoveries

of flaws in individual detectors (i.e., 45/76 or 59.2%)

are due to mutation (vs. being unable to detect the

base/verbatim instantiations of the misuse case). Through

the study of open source apps, we demonstrate that the

flaws uncovered by MASC are serious and would impact

real systems. Finally, we disclose our findings to the

designers/maintainers of the affected crypto-detectors, and

further leverage these communication channels to obtain

their perspectives on the flaws. These perspectives allow us

to present a balanced discussion on the factors influencing

the current design and testing of crypto-detectors, as well

as a path forward towards more robust tool.

Artifact Release: To foster further research in the eval-

uation and development of effective cryptographic misuse

detection techniques, and in turn, more secure software, we

have released all code and data associated with this paper [30].

II. MOTIVATION AND BACKGROUND

Insecure use of cryptographic APIs is the second most

common cause of software vulnerabilities after data leaks [31].

To preempt vulnerabilities before software release, non-experts

such as software developers or quality assurance teams are

likely to use crypto-API misuse detectors (or crypto-detectors)

as a part of the Continuous Integration/Continuous Delivery

(CI/CD) pipeline (e.g., Xanitizer [12] and ShiftLeft [16] used

in GitHub Code Scan [22]), quality assurance suites (e.g.,

SWAMP [32]) or IDEs (e.g., CogniCrypt [9]). Thus, the

inability of a crypto-detector to flag an instance of a misuse

that it claims to detect directly impacts the security of end-

user software. We illustrate this problem with a motivating

example, followed by a threat model that describes the potential

adversarial conditions a crypto-detector may face in the wild.

A. Motivating Example

Consider Alice, a Java developer who uses CryptoGuard [3],

a state-of-the-art crypto-detector, for identifying cryptographic

vulnerabilities in her software before release. In one of her

apps, Alice decides to use the DES cipher, as follows:

Cipher cipher = Cipher.getInstance("des");

Listing 2. Instantiating DES as a cipher instance in lower case.



This is another instance of the misuse previously shown in

Listing 1, i.e., using the vulnerable DES cipher. CryptoGuard is

unable to detect this vulnerability as Alice uses “des” instead

of “DES” as the parameter (see Section X). However, this is a

problem, because the lowercase parameter makes no functional

difference as Java officially supports both parameter choices.

As CryptoGuard does not detect this vulnerability, Alice will

assume that her app is secure and release it to end-users. Thus,

we need to systematically identify such flaws, which would

allow the maintainers of crypto-detectors such as CryptoGuard

to promptly fix them, enabling holistic security improvements.

B. Threat Model

To evaluate crypto-detectors, we first define the scope of

our evaluation, for which we leverage the documentation of

popular crypto-detectors to understand how they position their

tools, i.e., what use cases they target (see [30] for all quotes).

For example, ToolX ’s documentation states that it may be used

to “ensure compliance with security and coding standards” .

Similarly, SpotBugs’s Find Security Bugs plugin is expected to

be used for “security audits” [33]. Further, CogniCrypt states

that its analyses “ensure that all usages of cryptographic APIs

remain secure” [34], which may suggest the ability to detect

vulnerabilities in code not produced by the developer, but

originating in a third-party source (e.g., external library, or a

contractor), whose developer may not be entirely “virtuous”.

In fact, 8/9 crypto-detectors evaluated in this paper claim

similar cases that demand strong guarantees, i.e., for tasks

such as compliance auditing or security assurance that are

generally expected to be performed by an independent third

party that assumes the worst, including bad coding practices

or malpractice [35]. As aptly stated by Anderson [35], “When

you really want a protection property to hold, it’s vital that

the design and implementation be subjected to hostile review”.

Thus, given that crypto-detectors claim to be useful for

tasks such as compliance audits, it is likely for them to

be deployed in adversarial circumstances, i.e., where there

is tension between the party that uses a crypto-detector for

evaluating software for secure crypto-use (e.g., markets such

as Google Play, compliance certifiers such as Underwriters

Laboratories (UL) [36]), and the party implementing the

software (e.g., a third-party developer). With this intuition, we

define a threat model consisting of three types of adversaries

(T1 – T3), which guides/scopes our evaluation according to

the conditions crypto-detectors are likely to face in the wild:

T1 Benign developer, accidental misuse – This scenario

assumes a benign developer, such as Alice, who acci-

dentally misuses crypto-API, but attempts to detect and

address such vulnerabilities using a crypto-detector before

releasing the software.

T2 Benign developer, harmful fix – This scenario also

assumes a benign developer such as Alice who is trying

to address a vulnerability identified by a crypto-detector

in good faith, but ends up introducing a new vulnera-

bility instead. For instance, a developer may not fully

understand the problem identified by a crypto-detector,

such as missing certificate verification (e.g., an empty

checkServerTrusted method in a custom TrustManager),

and address it with an inadequate Stack Overflow fix [37].

T3 Evasive developer, harmful fix – This scenario assumes

a developer whose goal is to finish a task as quickly or

with low effort (e.g., a third-party contractor), and is hence

attempting to purposefully evade a crypto-detector. Upon

receiving a vulnerability alert from a crypto-detector, such

a developer may try quick-fixes that do not address the

problem, but simply hide it (e.g., hiding the vulnerable

code in a class that the crypto-detector does not analyze).

For example, Google Play evaluates apps by third-

party developers to ensure compliance with its crypto-

use policies, but there is ample evidence of developers

seeking to actively violate these policies [38], [39]. In

fact, as Oltrogge et al. [40] recently discovered that

developers have been using Android’s Network Security

Configurations (NSCs) to circumvent safe defaults (e.g.,

to permit cleartext traffic that is disabled by default).

This threat model, which guides MASC’s design (Section IV),

represents that adversarial conditions under which crypto-

detectors may have to operate in practice, and hence, motivates

an evaluation based on what crypto-detectors should be

detecting. However, we note that there may be a gap between

what should be and what is, i.e., while crypto-detectors may

want to be relevant in strong deployment scenarios such as

compliance checking, their actual design may not account for

adversarial use cases (i.e., T3). Therefore, we balance our

evaluation that uses this threat model with a discussion that

acknowledges all views related to this argument, and especially

the tool designer’s perspective (Sec. XII).

III. RELATED WORK

Security researchers have recently shown significant interest

in the external validation of static analysis tools [41]–[45].

Particularly, there is a growing realization that static analysis

security tools are sound in theory, but soundy in practice, i.e.,

consisting of a core set of sound decisions, as well as certain

strategic unsound choices made for practical reasons such as

performance or precision [46]. Soundy tools are desirable for

security analysis as their sound core ensures sufficient detection

of targeted behavior, while also being practical, i.e., without

incurring too many false alarms. However, given the lack of

oversight and evaluation they have faced so far, crypto-detectors

may violate this basic assumption behind soundiness and may

in fact be unsound, i.e., have fundamental flaws that prevent

them from detecting even straightforward instances of crypto-

API misuse observed in apps. This intuition drives our approach

for systematically evaluating crypto-detectors, leading to novel

contributions that deviate from related work.

To the best of our knowledge, MASC is the first framework

to use mutation testing, combined with a large-scale data-

driven taxonomy of crypto-API misuse, for comprehensively

evaluating the detection ability of crypto-detectors to find

design/implementation flaws. However, in a more general

sense, Bonett et al. [45] were the first to leverage the intuition



behind mutation testing for evaluating Java/Android security

tools, and developed the µSE framework for evaluating data

leaks detectors (e.g., FlowDroid [47] and Argus [48]). MASC

significantly deviates from µSE in terms of its design focus,

in order to address the unique challenges imposed by the

problem domain of crypto-misuse detection (i.e.,RC1 – RC3

in Sec. I). Particularly, µSE assumes that for finding flaws,

it is sufficient to manually define “a” security operator and

strategically place it at hard-to-reach locations in source code.

This assumption does not hold when evaluating crypto-detectors

as it is improbable to cast cryptographic misuse as a single

mutation, given that cryptographic misuse cases are diverse

(RC1), and developers may express the same type of misuse

in different ways (RC2). For example, consider three well-

known types of misuse that would require unique mutation

operators: (1) using DES for encryption (operator inserts

prohibited parameter names, e.g., DES), (2) trusting all SSL/TLS

certificates (operator creates a malformed TrustManager), and

(3) using a predictable initialization vector (IV) (operator

derives predictable values for the IV). In fact, developers may

even express the same misuse in different ways, necessitating

unique operators to express such distinct instances, e.g., the

DES misuse expressed differently in Listing 1 and Listing 2.

Thus, instead of adopting µSE’s single-operator approach,

MASC designs general usage-based mutation operators that can

expressively instantiate misuses from our taxonomy of 105

misuses. In a similar manner, MASC’s contextualized mutation

abstractions (i.e., for evaluating crypto-detectors) distinguish it

from other systems that perform vulnerability injection for C

programs [49], discover API misuse using mutation [50], [51],

or evaluate static analysis tools for precision using handcrafted

benchmarks or user-defined policies [41], [44].

Finally, the goal behind MASC is to assist the designers

of crypto-detectors [2], [9], [10], [19], [34] in identifying

design and implementation gaps in their tools, and hence,

MASC is complementary to the large body of work in this area.

Particularly, prior work provides rule-sets or benchmarks [52],

[53] consisting of a limited set of cryptographic “bad prac-

tices” [54], or taxonomies of smaller subsets (e.g., SSL/TLS

misuse taxonomy by Vasan et al. [55]). However, we believe

that ours is the first systematically-driven and comprehensive

taxonomy of crypto-API misuse, which captures 105 cases

that are further expanded upon into numerous unique misuse

instances through MASC’s operators. Thus, relative to prior

handcrafted benchmarks, MASC can thoroughly test detectors

with a far more comprehensive set of crypto-misuse instances.

IV. THE MASC FRAMEWORK

We propose a framework for Mutation-based Analysis of

Static Crypto-misuse detection techniques (or MASC). Fig. 1

provides an overview of the MASC framework. As described

previously (RC1), cryptographic libraries contain a sizable,

diverse set of APIs, each with different potential misuse cases,

leading to an exponentially large design space. Therefore, we

initialize MASC by developing a data-driven taxonomy of crypto-

Crypto-API Misuse Taxonomy
Data-Driven

Taxonomy Generation

Misuse Sources

Research
Papers

Industry
Tools

Advisories …

Open Source 
Apps

source 

code

 Mutation 

Operators 

Mutation 

Scopes

misuse cases

Target
Crypto-detector

Mutated 
App(s) 

analyze

apps

uncaught

 mutants

Design/

Implementation

flaws

Creating mutants

Evaluating tools

Fig. 1. A conceptual overview of the MASC framework.

API misuse, which grounds our evaluation in a unified collection

of misuse cases observed in practice (Sec. V).
The misuse cases in the taxonomy must be instantiated

in an expressive manner to account for the diverse ways for

expressing a misuse, i.e., misuse instances, that crypto-detectors

may face in practice. For example, we previously described two

ways of encrypting with DES: (1) providing DES as a variable

in Cipher.getInstance(<parameter>) (Listing 1), or (2) using

it in lowercase (Listing 2), which both represent something

a benign developer might do (i.e., threat T1). To represent

all such instances without having to hard-code instantiations

for every misuse case, we identify usage-characteristics of

cryptographic APIs (particularly, in JCA), and leverage them to

define general, usage-based mutation operators, i.e., functions

that can create misuse instances (i.e., mutants) by instantiating

one or more misuse cases from the taxonomy (Sec. VI).
Upon instantiating mutants by applying our mutation op-

erators to the misuse cases from the taxonomy, MASC seeds,

i.e., injects, the mutants into real Java/Android applications.

The challenge here is to seed the mutants at specific locations

that reflect the threat scenarios described in Sec. II-B, because

crypto-detectors may not only face various instances of misuse

cases, but also variations in where the misuse instances appear,

e.g., evasive (T3) developers may attempt to actively hide

code to evade analysis. Thus, we define the abstraction of

mutation scopes that place the instantiated mutants at strategic

locations within code, emulating practical threat scenarios

(Sec. VII). Finally, we analyze these mutated apps with the

crypto-detector that is targeted for evaluation (Sec. IX), which

results in undetected/unkilled mutants that can be then inspected

to uncover design or implementation flaws (Sec. X).

V. TAXONOMY OF CRYPTOGRAPHIC MISUSE

To ground MASC in real cases of crypto API misuses,

we systematically developed a taxonomy that provides a

unified perspective of previously-known crypto-API misuse.

In particular, we focus on identifying instances of crypto-

API misuses in the Java ecosystem, due to its popularity and

ubiquity, and because most crypto-detectors that we seek to

evaluate were designed to analyze Java/Android apps.
As crypto-API misuse has been widely studied, it is likely

that a majority of the misuse cases that we are interested in

codifying are already present in existing literature. Therefore,

our methodology identifies crypto-API misuses in existing

artifacts sourced from both industry and academia, following

Kitchenham et al.’s [56] guidelines for identifying relevant



Compromising Integrity through 
Improper Checksum Use  (10)

* CBC is insecure in TLS/client-server context; + applicable in specific situations; some misuse are newer compared to other in same cluster, # PKCS5 suggestion based

Compromising Non-Repudiation (3)

Key Signing Misuses
• Low entropy with DSA (1)
• Low entropy with ECDSA (1)
• Using 1024 bit DSA (2)

Compromising Client & Server Secrecy  (20)

Compromising Secret Keys (12)

Unclustered (6)

Compromising Secrecy of Cipher Text (26)

Compromising Communication Secrecy 
with Intended Receiver  (6)

API/Program Specific Misuses (17)

Compromising Randomness (5)

Small Key Size
• Using RSA with < 1024 bit key (7)
• Using RSA with < 2048 bit key  (3) +
• Using RSA with 2048 bit private key (1)

Weak Algorithm
• Using RSA with CBC (1)
• Using RSA with no padding (2)
• Using RSA with PKCS1 padding (5)

Weak Certificate Management
• Improper certificate validation expiry check (2) ✔
• Trusting all certificates (3) ✔
• Missing certificate validation (3) ✔
• Improper following of a cert’s chain of trust (1)✔

Weak SSL Protocol
• Using weak SSL context 

{SSLContext.getInstance(“SSL”)} (1)
• Using SSL and not using TLS as context (1)
• Using SSLV3 (1)
• Using SSLV2 (1)
• HMAC for TLS with SHA1 (1)
• Using CBC for SSL/TLS with AES (1) *
• Using TLS < v 1.2 (1)
• Using TLS < v 1.1 (3)

Weak Hostname Management
• Allowing all hostnames (10) ✔
• Using Default hostname verifier (1) +

Insecure Key Size
• ECC < 224 bit (2)
• Using AES with < 128 bit key (1)
• Using RC2 with < 64 bits (1)

Insecure Number of Iterations/Cycles
• Using < 500 iterations for PBE (1) 
• Using < 1000 iterations for PBE (6)#

Using Unsafe Mode
• Using ECB for symm. encryp. with AES (2) ✔
• Using AES with CBC for encryption with 

PKCS5Padding (1)
• Using Electronic Code Book Mode (ECB) for 

encryption (11) ✔
• Using AES with CBC for Encryption * (2)
• Using DESede with ECB (1)
• Using DES with CBC3 SHA (1)
• Using CBC without HMAC (1)
• Using 3DES with EDE CBC SHA (1)
• Using non-random IV in Cipher Block Chaining 

(CBC) for encryption (6)

Using Non-Random Salt
• Using constant salts for PBE (6)

Unsafe Algorithm Usage
• Using RC2 for symmetric encryption (4)
• Using NullCipher to encrypt plain text (1)
• Using Blowfish Algorithm for Encryption (4)
• Using ESAPI Encryptor (1)
• Using 3DES/DESEDE for encryption (4)
• Using RC4 (3)
• Using IDEA Algorithm for Encryption  (3)
• Using DES for encryption (8) ✔
• Using EXP1024 for ciphers (1)
• Using Seed Cipher (1)
• Using blowfish with less than 128 bit key (1)

Communication Secrecy Compromised
• Use of a key past its expiration date (1)
• HTTP and HTTPs mixing (3)
• Key Exchange without Entity Authentication (1)
• Improper Check for Certificate Revocation (1) ✔
• Improper Validation of Certificate with Host 

Mismatch (1) ✔
• Untrusted CA Signed Certificate (1) ✔

API/Program Specific
• Apache HTTPClient no host verification (1)
• Gnutls_certificate_verify_peers2	returns 0 

when self signed certificate (1)
• Constant password for android keystore (2)
• JSSE checkTrusted method does not check identify if 

the algorithm field is null or empty string (1) ✔
• Android Webview incorrect certificate verification (2)
• Java	defaults to ECB for encryption with “AES"
• Weberknecht does not have host verification (1)
• Using DefaultHttpClient (due to no TLSv1.2) (1)
• ignoring onReceivedSSLError	(3)
• SSLSocketFactory without verifying Hostname (1)
• Reusing counter value in encryption (2)
• Apache HttpHost data allows mixed schemes (1)
• Using obsolete algorithm (11) ✔
• Storing sensitive data in Java String (3)
• Using Socket directly for connection (1)
• No clearPassword call after using PBEKeySpec (2)
• PBEKeySpec	initialized without salt (2)

Secret Key Misuses
• Using low entropy seeds in key generation (1)
• Password Based Key Derivation Function (PBKDF) 

Using < SHA224 (1)
• Not using Salts while hashing password  (1)
• PBKDF Using HMAC (1)
• PBKDF Using MD5  (3)
• PBKDF Using MD2 (2)
• IVs generated w/o random num generator (1) ✔
• Static IV (4) ✔
• Zeroed IV (2)
• Using hardcoded key / password (3)
• Using Constant Encryption Key (9)
• Using < 64bit salt for password (2)

Misuse of Randomness
• Bad derivation of IV (file/text) (4) ✔
• Low entropy in key generation/ RNG (3)
• Using static seeds for Secure Random RNG (7) 
• Not using Secure Pseudo RNG (7)
• Using Setseed (3)

• Inscure pinning  with ambiguous values 
• Trusting Self-signed Certificates +
• Using unencrypted server socket
• Using unencrypted socket
• Using export quality ciphers
• Using stateless encryption

Compromised Checksums
• Hashing credentials - MD5 (5) ✔
• Hashing Credentials - MD4
• Hashing Credentials - MD2
• Digital Signature Hashes - MD4
• Obsolete Hash Algorithm (7) ✔
• Hashing Credentials - SHA1
• Digital Signature Hashes - MD5 (5) ✔
• Using a custom MessageDigest instead of relying 

on the SHA-224 (1)
• Digital Signature Hashes - MD2 (4)
• Digital Signature Hashes - SHA1 (5)

Fig. 2. The derived taxonomy of cryptographic misuses. (n) indicates misuse was present across n artifacts. A Xindicates that the specific
misuse case was instantiated with MASC’s mutation operators for our evaluation (Sec. IX).

artifacts, as well as Petersen et al.’s [57] recommendations

for constructing a systematic mapping, in three main steps:

(1) identifying information sources, (2) defining the search,

inclusion, and exclusion criteria for identifying artifacts, and (3)

extracting misuse cases from artifacts and clustering them for

ease of representation and extensibility. Two authors executed

this methodology and created the taxonomy illustrated in Fig. 2.

Data from each step is provided in the online appendix [30].

A. Identifying Information Sources

We considered information sources from both academia and

industry. More specifically, we considered the proceedings

of top-tier venues in security and software engineering (i.e.,

USENIX Security, ACM CCS, IEEE S&P, NDSS, ICSE, ASE,

FSE), published after 1999, i.e., in the last 20 years. Moreover,

we also performed a thorough search for relevant keywords

(Sec. V-B) in digital libraries, i.e., the ACM Digital Library,

IEEE Explore, and Google Scholar, which aided in identifying

artifacts that may have fallen outside the top conferences.

Finally, to incorporate sources outside academia, we studied

guidelines from the Open Web Application Security Project

(OWASP) [58], and documentation of several industry tools.

B. Search, Inclusion, and Exclusion Criteria

We select relevant artifacts from the identified sources using a

keyword-based search with precise inclusion/exclusion criteria.

We defined 3 classes of keyword phrases and enumerated

several keyword combinations for each class, drawing from

domain expertise and a random sample of artifacts.

To decide whether to consider an artifact for further analysis,

we defined a simple inclusion criterion, that the artifact should

discuss crypto API misuse or its detection. We also defined an



exclusion criterion, i.e., that the crypto-API misuse described

by the artifact relates to a programming environment outside

the Java ecosystem, was published prior to 1999, or does not

contain relevant information. Following this methodology, we

short-listed 40 artifacts for misuse extraction, i.e., 35 from

academia and 5 from industry. Note that we count multiple

documents for a single industry tool as one artifact.

C. Misuse Extraction and Clustering

Two authors independently extracted, described, and grouped

individual misuse cases from the 40 artifacts. More specifically,

each identified misuse case was labeled using a specifically

designed data extraction form (see online appendix for fig-

ure [30]). The two authors met and resolved disagreements, to

eventually identify 105 unique misuse cases.

Such a large set of misuse cases could prove intractable

for direct analysis or extension. Hence, we constructed a

categorized taxonomy by grouping the discovered misuse cases

into semantically meaningful clusters. Each author constructed

the clusters as per two differentiating criteria: (1) the security

goal/property represented by the misuse cases (e.g., secrecy,

integrity, non-repudiation), and (2) its level of abstraction (i.e.,

specific context) within the communication/computing stack

(e.g., confidentiality in general, or confidentiality with respect

to SSL/TLS). The two authors met and reached agreement on

a taxonomy consisting of 105 misuse cases grouped into nine

semantic clusters, as shown in Fig. 2. The entire process of

taxonomy generation took over two person-months in effort.

VI. USAGE-BASED MUTATION OPERATORS

In designing our mutation operators, we must balance the

dichotomous tradeoff between representing as many misuse

cases (and their corresponding variations) as possible, while

also creating a tractable number of operators that can be

reasonably maintained in the future. Thus, building a large set

of hard-coded operators that are tightly coupled with specific

misuse cases would be infeasible from an engineering/mainte-

nance perspective. Further, to discover new issues in crypto-

detectors, these operators should not exploit general soundiness-

related [46], [59]) limitations, such as dynamic code execution

and implicit calls. Therefore, we seek to build operators that

are general enough to be maintainable, but which also provide

expressive instantiation of several misuse cases, guided by the

threat model in Section II-B, and without focusing on any

specific static analysis technique or soundiness issue.

We define the abstraction of usage-based mutation operators,

inspired by a key observation: misuse cases that are unrelated

in terms of the security problem may still be related in terms

of how the crypto APIs corresponding to the misuse cases are

expected to be used. Thus, characterizing the common usage

of crypto APIs would allow us to mutate that characterization

and define operators that apply to multiple misuse cases, while

remaining independent of the specifics of each misuse.

Common Crypto-API Usage Characteristics: We identified

two common patterns in crypto-API usage by examining crypto-

API documentation from JCA, and our taxonomy, which

we term as (1) restrictive and (2) flexible invocation. To

elaborate, a developer can only instantiate certain objects

by providing values from a predefined set, hence the name

restrictive invocation; e.g., for symmetric encryption with the

Cipher.getInstance(<parameter>) method, JCA only accepts

predefined configuration values for the algorithm name, mode,

and padding, in String form. Conversely, JCA allows significant

extensibility for certain crypto APIs, which we term as

flexible invocation; e.g., developers can customize the hostname

verification component of the SSL/TLS handshake by creating

a class extending the HostnameVerifier, and overriding its

verify method, with any content. We leverage these notions

of restrictive & flexible usage to define our operator types.

A. Operators based on Restrictive Crypto API Invocation

Our derived taxonomy indicates that several parameter values

used in restrictive API invocations may not be secure (e.g.,

DES, or MD5). Therefore, we designed six mutation operator

types (OPs) that apply a diverse array of transformations to

such values and generate API invocations that are acceptable/-

compilable as per JCA syntax and conventions, but not secure.

OP1: Atypical case – This operator changes the case of

algorithm specification misuse to an atypical form (e.g., low-

ercase), and represents accidental misuse/typos by developers

(i.e., T1). For example, as previously shown in Listing 1, this

operator would instantiate the DES misuse by specifying “des”

(lowercase) in the Cipher.getInstance(<parameter>) API.

OP2: Weak Algorithm in Variable – This operator repre-

sents the relatively common usage of expressing API arguments

in variables before passing them to an API, and can be applied

to instantiate all misuse cases that are represented by restrictive

API invocations (e.g., DES instantiation in Listing 2).

OP3: Explicit case fix – This operator instantiates

misuse cases by using the atypical case for an argument

(e.g., algorithm name) in a restrictive API invocation, as

seen in OP1, but also explicitly fixes the case, emulat-

ing a developer attempting to follow conventions by ex-

plicitly invoking String manipulation methods (i.e., T2);

e.g.,SSLContext.getInstance("ssl".toUpperCase()) is one in-

stantiation of the misuse of using SSL2 or SSLv3 protocols.

OP4: Removing noise – This operator extends OP3

by defining transformations that are more complex than

simple case changes, such as removing extra characters

or “noise” present in the arguments, which is likely if

the arguments are acquired from a properties/database file;

e.g., Cipher.getInstance("DES//".replace("//","")).

OP5: Method chains – This operator performs arbitrary

transformations (e.g., among those in OP1 – OP4) on the

restricted argument string, but splits the transformation into

a chain of procedure calls, thereby hiding the eventual value

(see Listing 3 in Appendix A). Such behavior can be attributed

to an evasive developer (T3).

OP6: Predictable/Non-Random Derivation – This operator

emulates a benign developer (T1) attempting to derive a

random value (i.e., instead of using a cryptographically-secure

random number generator), by performing seemingly complex



operations resulting in a predictable value, and then using the

derived value to obtain other cryptographic parameters, such

as IVs. For example, Listing 4 in Appendix A shows such an

instantiation of the “Bad derivation of IV” misuse from the

taxonomy that uses the system time to derive the IV.

B. Operators based on Flexible Crypto API Invocations

In contrast with restrictive APIs, Java allows several types

of flexible extensions to crypto APIs represented by interfaces

or abstract classes, only enforcing typical syntactic rules, with

little control over what semantics developers express. Thus, we

consider three particular types of flexible extensions developers

may make, and hence, our OPs may emulate, in the context of

API misuse cases that involve flexible invocations: (1) method

overriding, (2) class extension, and (3) object instantiation.

1) Method Overriding: Crypto APIs are often declared as

interfaces or abstract classes containing abstract methods, to

facilitate customization. These abstract classes provide a fertile

ground for defining mutation operators with a propensity for

circumventing detectors (i.e., considering threats T3 ).

OP7: Ineffective Exceptions – If the correct behavior of

a method is to throw an exception, such as invalid certificate,

this operator creates misuse instances of two types: (1) not

throwing any exception, and (2) throwing an exception within a

conditional block that is only executed when a highly unlikely

condition is true. For example, as shown in Listing 5 in

Appendix A, this operator instantiates a weak TrustManager

by implementing a checkServerTrusted method containing a

condition block is unlikely to be executed.

OP8: Ineffective Return Values – If the correct behavior

of a method is to return a specific value to denote security

failure, this operator modifies the return value to create two

misuse instances: (1) if the return type is boolean, return a

predefined boolean value that weakens the crypto feature, or

return null otherwise, and (2) introduce a condition block that

will always, prematurely return a misuse-inducing boolean/null

value before the secure return statement is reached. Contrary to

OP7, this operator ensures that the condition will always return

the value resulting in misuse (see Listing 6 in Appendix A).

OP9: Irrelevant Loop – This operator adds loops that seem

to perform some work, or security checks, before returning

a value, but in reality do nothing to change the outcome,

emulating an evasive (T3) developer.

2) Class Extension: Creating abstractions on top of

previously-defined on crypto classes is fairly common; e.g.,

the abstract class X509ExtendedTrustManager implements the

interface X509TrustManager in the JCA, and developers can be

expected to extend/implement both these constructs in order to

customize certificate verification for their use-cases. Similarly,

developers may create abstract subtypes of an interface or

abstract class; e.g., as shown in Listing 7 (Appendix A), the

X509TrustManager can be both extended and implemented by

an abstract type interface and an abstract class respectively.

Our next set of operators is motivated by this observation:

OP10: Abstract Extension with Override – This mutation

operator creates an abstract sub-type of the parent class (e.g.,

the X509TrustManager as shown in Listing 7), but this time,

overrides the methods incorrectly, i.e., adapting the techniques

in OP7 – OP9 for creating various instances of misuse.

OP11: Concrete Extension with Override – This mutation

operator creates a concrete class based on a crypto API,

incorrectly overriding methods similar to OP10.

3) Object Instantiation Operators: In Java, objects can be

created by calling either the default or a parametrized con-

structor, and moreover, it may also be possible to override the

properties of the object through Inner class object declarations.

We leverage these properties to create OP12 as follows:

OP12: Anonymous Inner Object – Creating an instance of

a flexible crypto API through constructor or anonymous inner

class object is fairly common, as seen for HostnameVerifier

in Oracle Reference Guide [60] and Android developer doc-

umentation [61], respectively. Similarly, this operator creates

anonymous inner class objects from abstract crypto APIs, and

instantiates misuse cases by overriding the abstract methods

using OP7 – OP9, as shown in Listing 8 (Appendix A), where

the misuse is introduced through OP8.

MASC’s 12 operators are capable of instantiating 69/105

(65.71%), misuse cases distributed across all 9 semantic

clusters. This indicates that MASC’s operators can express a

diverse majority of misuse cases, signaling a reasonable trade-

off between the number of operators and their expressivity. Of

the remaining 36 cases that our operators do not instantiate, 16

are trivial to implement (e.g., using AES with a < 128 bit key,

see Listing 14, Appendix A). Finally, 20 cases (19.01%) would

require a non-trivial amount of additional engineering effort;

e.g., designing an operator that uses a custom MessageDigest

algorithm instead of a known standard such as SHA-3, which

would require a custom hashing algorithm.

VII. THREAT-BASED MUTATION SCOPES

We seek to emulate the typical placement of vulnerable code

by benign (T1, T2), and evasive (T3) developers, for which

we design three mutation scopes:

1. Main Scope: The main scope is the simplest of the three,

and seeds mutants at the beginning of the main method of a

simple Java or Android template app developed by the authors

(i.e., instead of the real, third-party applications mutated by

the other two scopes). This specific seeding strategy ensures

that the mutant would always be reachable and executable,

emulating basic placement by a benign developer (T1, T2).

2. Similarity Scope: The similarity scope seeds security oper-

ators at locations in a target application’s source code where

a similar API is already being used, i.e., akin to modifying

existing API usages and making them vulnerable. Hence, this

scope emulates code placement by a typical, well-intentioned,

developer (T1, T2), assuming that the target app we mutate is

also written by a benign developer. This helps us evaluate if the

crypto-detector is able to detect misuse at realistic locations.

3. Exhaustive Scope: As the name suggests, this scope exhaus-

tively seeds mutants at all locations in the target app’s code,

i.e., class definitions, conditional segments, method bodies as

well as anonymous inner class object declarations. Note that



some mutants may not be seeded in all of these locations; e.g.,

a Cipher.getInstance(<parameter>) is generally surrounded

by try-catch block, which cannot be placed at class scope.

This scope emulates placement by an evasive developer (T3).

VIII. IMPLEMENTATION

The implementation of MASC involved three components,

namely, (1) selecting misuse cases from the taxonomy for

mutation, (2) implementing mutation operators that instantiate

the misuse cases, and (3) seeding/inserting the instantiated

mutants in Java/Android source code at targeted locations.

1. Selecting misuse cases from the Taxonomy: We chose

19 misuse cases from the taxonomy for mutation with MASC’s

12 operators (indicated by a X in Fig. 2), focusing on ensuring

broad coverage across our taxonomy as well as on their

prevalence, i.e., prioritizing misuse cases that are discussed

more frequently in the artifacts used to construct the taxonomy,

and which most crypto-detectors can be expected to target. We

expand on some of these choices in Appendix B.

2. Implementing mutants: The mutation operators described

in Sec. VI are designed to be applied to one or more

crypto APIs, for instantiating specific misuse cases. To ensure

compilable mutants by design, MASC carefully considers the

syntactic requirements of the API being implemented (e.g., the

requirement of a surrounding try-catch block with appropriate

exception handling), as well as the semantic requirements of

a particular misuse being instantiated, such as the need to

throw an exception only under a truly improbable condition

(e.g., as expressed in OP7). MASC uses Java Reflection to

determine all the “syntactic glue” for automatically instantiating

a compilable mutant, i.e., exceptions thrown, requirements of

being surrounded by a try-catch block, the need to implement

a certain abstract class and certain methods, etc. MASC then

combines this automatically-derived and compilable syntactic

glue with parameters, i.e., values to be used in arguments,

return statements, or conditions, which we manually define for

specific operators (and misuse cases), to create mutants.

To further ensure compilability and evaluation using only

compilable mutants, we take two steps: (1) We use Eclipse

JDT’s AST-based checks for identifying syntactic anomalies

in the generated mutated apps, and (2) compile the mutated

app automatically using build/test scripts provided with the

original app. In the end, every single mutant analyzed by the

target crypto-detector is compilable and accurately expresses

the particular misuse case that is instantiated. This level of

automation allows MASC to create thousands of mutants with

very little manual effort, and makes MASC extensible to future

evolution in Java cryptographic APIs (addressing RC3).

3. Identifying Target Locations and Seeding Mutants: To

identify target locations for the similarity scope, we extended

the MDroid+ [62], [63] mutation analysis framework, by retar-

geting its procedure for identifying suitable mutant locations,

adding support for dependencies that crypto-based mutations

may introduce, and enabling identification of anonymous inner

class objects as mutant-seeding locations, resulting in 10

additional, custom AST- and string-based location detectors.

Further, MASC extends µSE [45] to implement the exhaustive

scope, i.e., to identify locations where crypto-APIs can be

feasibly inserted to instantiate compilable mutants (e.g., a

Cipher.getInstance(<parameter>) has to be contained in a

try-catch block, making it infeasible to insert at class-level).
Finally, although we have heavily tested MASC, there may

be corner cases due to our implementation that result in

compilation errors. We observed ≈ 20 uncompilable mutants

during our evaluation with over 20, 303 mutants, i.e., in 0.098%

cases. These errors do not affect the soundness of the evaluation,

as these non-compilable mutants are simply discarded.

IX. EVALUATION OVERVIEW AND METHODOLOGY

The two main goals of our evaluation are to (1) measure the

effectiveness of MASC at uncovering flaws in crypto-detectors,

and (2) learn the characteristics of the flaws and their real-

world impact, in terms of the security of end-user applications.

Therefore, we formulate the following research questions:

• RQ1: Can MASC discover flaws in crypto-detectors?

• RQ2: What are the characteristics of these flaws?

• RQ3: What is the impact of the flaws on the effectiveness

of crypto-detectors in practice?

To answer RQ1 – RQ3, we first used MASC to evaluate

a set of nine major crypto-detectors, namely CryptoGuard,

CogniCrypt, Xanitizer, ToolX , SpotBugs with FindSecBugs,

QARK, LGTM, Github Code Security (GCS), and ShiftLeft

Scan, prioritizing practically relevant tools that were recent and

under active maintenance. As MASC’s usefulness is in system-

atically evaluating individual crypto-detectors by characterizing

their detection-ability, with the goal of enabling improvement

in the tools, and hence, the results of our evaluation indicate

gaps in individual tools, and not comparative advantages.
Step 1 – Selecting and mutating apps: We use MASC to

mutate 13 open source Android apps from F-Droid [64] and

Github [65], and four sub-systems of Apache Qpid Broker-

J [66], a large Java Apache project (for list see [30]). Our

selection criteria was biased towards popular projects that

did not contain obsolete dependencies (i.e., compilable using

Android Studio 4/Java LTS 1.8). Moreover, we specifically used

the similarity scope on 3/13 Android apps, and all 4 Qpid sub-

systems, as they contained several types of crypto API usage

(e.g., Cipher, MessageDigest, X509TrustManager). In total, we

generated 2, 515 mutants using the 13 Android apps (src & apk)

and 17, 788 mutants using the 4 Java programs (src & jar),

totaling 20, 303 mutants. We confirmed that each mutated app

was compilable and runnable. Generating these 20k mutants

took MASC roughly 15 minutes, and did not require any human

intervention, addressing RC3. As the cost to generate this

volume of mutants is feasible, MASC may not benefit from

generating a focused subset of mutants (see Appendix B).
Step 2 – Evaluating crypto-detectors and identifying un-

killed/undetected mutants: To evaluate a crypto-detector, we

analyzed the mutants using the crypto-detector, and identified

the mutants that were not killed by it, i.e., undetected as

misuse. To facilitate accurate identification of killed mutants,

we compare the mutation log MASC generates when inserting



mutants (which describes the precise location and type of

mutant injected, for each mutant), and the reports from crypto-

detectors, which for all the tools contained precise location

features such as the class/method names, line numbers, and

other details such as associated variables. To elaborate, we

use the following methodology: We first compare the analysis

report generated by the crypto-detector/target on a mutated app,

with its analysis report on the original (i.e., unmutated) version

of the same app. Any difference in the two reports can be

attributed to mutants inserted by MASC, i.e., denotes an instance

of a “mutant being killed”. To identify the mutant that was

killed, we obtain location features (i.e., type, file, class, method,

line number and/or variables associated) of the specific “killed

mutant” from the crypto-detectors report on the mutated app,

and use them to search for a unique mutant in MASC’s mutation

log. If a match is found, we mark that specific mutant as killed.

We additionally confirm the location of each killed mutant by

referring to the mutated app’s source code. Once all the killed

mutants are identified, the remaining mutants (i.e., inserted

in MASC’s mutation but not killed) are flagged as unkilled.

This approach ensures that alarms by the crypto-detector

for anomalies not inserted by MASC are not considered in the

evaluation, and all mutants inserted by MASC are identified as

either killed or unkilled. Our semi-automated implementation of

this methodology, which adapts to the disparate report formats

of the studied crypto-detectors, can be found in Appendix B.

The evaluation resulted in 7, 540 undetected mutants on average

across all detectors (see Table III in the Appendix).

Step 3 – Identifying flaws (RQ1): We analyzed 350 random

undetected mutants to discover flaws, wherein a flaw is defined

as a misuse case that a particular crypto-detector claims to

detect in its documentation, but fails to detect in practice. We

took care to also exempt the exceptions/limitations explicitly

stated in the crypto-detector’s documentation, ensuring that all

of our identified flaws are novel. On a similar note, while a

crypto-detector may seem flawed because it does not detect a

newer, more recently identified misuse pattern, we confirm that

all the flaws we report are due to misuse cases that are older

than the tools in which we find them. This can be attributed

to two features of our evaluation: our choice of the most

frequently discussed misuse cases in a taxonomy going back

20 years, and, our choice of tools that were recently built or

maintained. Finally, to confirm the flaw without the intricacies

of the mutated app, we created a corresponding minimal app

that contained only the undetected misuse instance (i.e., the

flaw), and re-analyzed it with the detector.

Step 4 – Characterizing flaws (RQ2): We characterized the

flaws by grouping them by their most likely cause, into flaw

classes. We also tested each of the nine tools with the minimal

examples for all the flaws, allowing us to further understand

each flaw given its presence/absence in certain detectors, and

their documented capabilities/limitations. We reported the flaws

to the respective tool maintainers, and contributed 3 patches

to CryptoGuard that were all integrated [30].

Step 5 – Understanding the practical impact of flaws (RQ3):

To gauge the impact of the flaws, we studied publicly available

applications after investigating RQ1 and RQ2. We first tried

to determine if the misuse instances similar to the ones that

led to the flaws were also found in real-world apps (i.e., public

GitHub repositories) using GitHub Code Search [67], followed

by manual confirmation. Additionally, we manually searched

Stack Overflow [68] and Cryptography Stack Exchange [69]

for keywords such as “unsafe hostnameverifier” and “unsafe

x509trustmanager”. Finally, we narrowed our search space to

identify the impact on apps that were in fact analyzed with

a crypto-detector. As only LGTM showcases the repos that

it scans, we manually explored the top 11 Java repositories

from this set (prioritized by the number of contributors), and

discovered several misuse instances that LGTM tool may have

failed to detect due to the flaws discovered by MASC.

Step 6 – Attributing flaws to mutation vs. base instantia-

tion: To determine whether a flaw detected by MASC can be

attributed to mutation, versus the crypto-detector’s inability to

handle even a base case (i.e., the most literal instantiations of

the misuse case from the taxonomy), we additionally evaluated

each crypto-detector with base instantiations for each misuse

that led to a flaw exhibited by it.

X. RESULTS AND FINDINGS

Our manual analysis of undetected mutants revealed 19 flaws

across our 9 crypto-detectors that we resolved to both design

and implementation-gaps (RQ1). We organize these flaws into

five flaw classes (RQ2), representing the shared limitations

that caused them. Table I provides the complete list of the

flaws, categorized along flaw classes, while Table II provides a

mapping of the flaws to the crypto-detectors that exhibit them.

As shown in Table II, a majority of the total flaws (computed

by adding 7 and Ø instances) identified in crypto-detectors, i.e.,

45/76 or 59.21% can be solely attributed to our mutation-based

approach, whereas only 31/76, i.e., 40.79% could also be found

using base instantiations of the corresponding misuse cases.

Further, all flaws in 6/9 crypto-detectors were only identified

using MASC. This demonstrates the advantage of using mutation,

over simply evaluating with base instantiations of misuses from

the taxonomy. GCS, LGTM, and QARK fail to detect base cases

due to incomplete rule sets (see Appendix B for discussion).

At the initial stage of our evaluation (i.e., before we

analyzed uncaught mutants), we discovered that certain crypto-

detectors [3], [9] analyze only a limited portion of the target

applications, which greatly affects the reliability of their results.

As these gaps were not detected using MASC’s evaluation, we

do not count these in our flaws or flaw classes. However,

due to their impact on the basic guarantees provided by

crypto-detectors, we believe that such gaps must be discussed,

addressed, and avoided by future crypto-detectors, which is

why we discuss them under a flaw class zero.

Flaw Class Zero (FC0) – Incomplete analysis of target

code: Starting from Android API level 21 (Android 5.0), apps

with over 64k reference methods are automatically split to

multiple Dalvik Executable (DEX) byte code files in the form

of classes<N>.dex. Most apps built after 2014 would fall into



TABLE I
DESCRIPTIONS OF FLAWS DISCOVERED BY ANALYZING CRYPTO-DETECTORS.

ID Flaw Name (Operator) Description of Flaws

FLAW CLASS 1 (FC1): STRING CASE MISHANDLING +

F1 smallCaseParameter (OP1) Not detecting an insecure algorithm provided in lower case; e.g.,Cipher.getInstance("des");

FLAW CLASS 2 (FC2): INCORRECT VALUE RESOLUTION +

F2 valueInVariable (OP2) Not resolving values passed through variables. e.g.,String value = "DES"; Cipher.getInstance(value);

F3* secureParameterReplaceInsecure (OP4) Not resolving parameter replacement; e.g., MessageDigest.getInstance("SHA-256".replace("SHA-256", "MD5"));

F4* insecureParameterReplaceInsecure
(OP4)

Not resolving an insecure parameter’s replacement with another insecure parameter e.g.,

Cipher.getInstance("AES".replace("A", "D")); (i.e., where “AES” by itself is insecure as it defaults to using ECB).

F5* stringCaseTransform (OP3) Not resolving the case after transformation for analysis; e.g.,Cipher.getInstance("des".toUpperCase(Locale.English));

F6* noiseReplace (OP4) Not resolving noisy versions of insecure parameters, when noise is removed through a transformation; e.g.,

Cipher.getInstance("DE$S".replace("$", ""));

F7 parameterFromMethodChaining (OP5) Not resolving insecure parameters that are passed through method chaining, i.e., from a class that contains both secure and
insecure values; e.g.,Cipher.getInstance(obj.A().B().getValue()); where obj.A().getValue() returns the secure value,
but obj.A().B().getValue(), and obj.B().getValue() return the insecure value.

F8* deterministicByteFromCharacters
(OP6)

Not detecting constant IVs, if created using complex loops, casting, and string transformations; e.g., a new

IvParameterSpec(v.getBytes(),0,8), which uses a String v=""; for(int i=65; i<75; i++){ v+=(char)i;}

F9 predictableByteFromSystemAPI (OP6) Not detecting predictable IVs that are created using a predictable source (e.g., system time), converted to bytes; e.g.,new

IvParameterSpec(val.getBytes(),0,8);, such that val = new Date(System.currentTimeMillis()).toString();

FLAW CLASS 3 (FC3): INCORRECT RESOLUTION OF COMPLEX INHERITANCE AND ANONYMOUS OBJECTS

F10 X509ExtendedTrustManager (OP12) Not detecting vulnerable SSL verification in anonymous inner class objects created from the X509ExtendedTrustManager

class from JCA; e.g., see Listing 9 in Appendix).

F11 X509TrustManagerSubType (OP12) Not detecting vulnerable SSL verification in anonymous inner class objects created from an empty abstract class which
implements the X509TrustManager interface; e.g., see Listing 12).

F12 IntHostnameVerifier (OP12) Not detecting vulnerable hostname verification in an anonymous inner class object that is created from an interface that

extends the HostnameVerifier interface from JCA; e.g., see Listing 13 in Appendix.

F13 AbcHostnameVerifier (OP12) Not detecting vulnerable hostname verification in an anonymous inner class object that is created from an empty abstract

class that implements the HostnameVerifier interface from JCA; e.g., see Listing 11 in Appendix.

FLAW CLASS 4 (FC4): INSUFFICIENT ANALYSIS OF GENERIC CONDITIONS IN EXTENSIBLE CRYPTO-APIS

F14 X509TrustManagerGenericConditions
(OP7, OP9, OP12)

Insecure validation of a overridden checkServerTrusted method created within an anonymous inner class (constructed sim-
ilarly as in F13), due to the failure to detect security exceptions thrown under impossible conditions; e.g., if(!(true||arg0

== null||arg1 == null)) throw new CertificateException();

F15 IntHostnameVerifierGenericCondition
(OP8, OP12)

Insecure analysis of vulnerable hostname verification, i.e., the verify() method within an anonymous inner class (constructed
similarly as in F14), due to the failure to detect an always-true condition block that returns true; e.g.,if(true || session

== null) return true; return false;

F16 AbcHostnameVerifierGenericCondition
(OP8, OP12)

Insecure analysis of vulnerable hostname verification, i.e., the verify() method within an anonymous inner class (constructed
similarly as in F15), due to the failure to detect an always-true condition block that returns true; e.g.,if(true || session

== null) return true; return false;

FLAW CLASS 5 (FC5): INSUFFICIENT ANALYSIS OF CONTEXT-SPECIFIC, CONDITIONS IN EXTENSIBLE CRYPTO-APIS

F17 X509TrustManagerSpecificConditions
(OP7, OP12)

Insecure validation of a overridden checkServerTrusted method created within an anonymous inner class created from the
X509TrustManager, due to the failure to detect security exceptions thrown under impossible but context-specific conditions,

i.e., conditions that seem to be relevant due to specific variable use, but are actually not; e.g.,if (!(null != s ||

s.equalsIgnoreCase("RSA")|| certs.length >= 314))throw new CertificateException("RSA");

F18 IntHostnameVerifierSpecificCondition
(OP8, OP12)

Insecure analysis of vulnerable hostname verification, i.e., the verify() method within an anonymous inner class (constructed
similarly as in F14), due to the failure to detect a context-specific always-true condition block that returns true; e.g.,if(true

|| session.getCipherSuite().length()>=0) return true; return false;

F19 AbcHostnameVerifierSpecificCondition
(OP8, OP12)

Insecure analysis of vulnerable hostname verification, i.e., the verify() method within an anonymous inner class (constructed
similarly as in F15), due to the failure to detect a context-specific always-true condition block that returns true; e.g.,if(true

|| session.getCipherSuite().length()>=0)return true; return false;

+ flaws were observed for mulitple API misuse cases
*Certain seemingly-unrealistic flaws may be seen in or outside a crypto-detector’s “scope”, depending on the perspective; see Section XII for a broader treatment of this caveat.

this category, as the Android Studio IDE automatically uses mul-

tidex packaging for any app built for Android 5.0 or higher [70].

However, we discovered that CryptoGuard and CogniCrypt

do not handle multiple dex files (see Table II), despite being

released 4 and 5 years after Android 21, respectively. Given that

this flaw affected CryptoGuard’s ability to analyze a majority

of Android mutants (i.e., detecting only only 871/2515), we

developed a patch that fixes this issue, and used the patched

version of CryptoGuard for our evaluation. The CogniCrypt

maintainers confirmed that they are working on this issue

in their upcoming release, which is why we did not create a

patch, but used non-multidex minimal examples to confirm that

each flaw discovered in CogniCrypt is not due to the multidex

issue. Similarly, we discovered that CryptoGuard ignores any

class whose package name contains “android.” or ends in

“android”, which prevents it from analyzing important apps

such as LastPass (com.lastpass.lpandroid) and LinkedIn

(com.linkedin.android), which indicates the severity of even

trivial implementation flaws. We submitted a patch to address

this flaw and evaluated the patched version [30].
The remainder of this section discusses each flaw class with

representative examples as they manifest in specific crypto-

detectors, as well as the impact of the flaws in terms of

examples found in real software.
FC1: String Case Mishandling (F1): As discussed in the

motivating example (and seen in F1 in Table I), a

developer may use des or dEs (instead of DES) in

Cipher.getInstance(<parameter>) without JCA raising excep-

tions. CryptoGuard does not detect such misuse. We submitted

a patch to CryptoGuard to address this flaw, which was

accepted, and demonstrates that this flaw was recognized as



TABLE II
FLAWS OBSERVED IN DIFFERENT STATIC CRYPTO-DETECTORS

Class ID CG CC SB XT TX QA SL GCS LGTM

FC1 F1 7 3 3 3 3 Ø 3 3 3

FC2

F2 3 3 3 3 7 Ø 3 G# G#

F3* 7 7 7 3 7 Ø 7 3 3

F4* 7 7 7 3 7 Ø 7 7 7

F5* 7 7 G# 3 7 Ø G# 3 3

F6* 7 7 7 3 7 Ø 7 7 7

F7 7 3 7 3 7 Ø 7 3 3

F8 7 3 3 3 - Ø 3 Ø 7

F9 7 3 3 3 - Ø 3 Ø 7

FC3

F10 7 - 3 3 G# G# 3 Ø Ø

F11 7 - 3 3 G# G# 3 Ø Ø

F12 7 - 3 3 3 - 3 Ø Ø

F13 7 - 3 3 3 - 3 Ø Ø

FC4

F14 7 - 3 3 3 7 3 Ø Ø

F15 7 - 3 3 3 - 3 Ø Ø

F16 7 - 3 3 3 - 3 Ø Ø

FC5

F17 7 - 7 7 3 7 7 Ø Ø

F18 7 - 3 7 3 - 3 Ø Ø

F19 7 - 3 3 3 - 3 Ø Ø

7 = Flaw Present, 3 = Flaw Absent, G# = Flaw partially present, -= detector
does not claim to handle the misuse associated with the flaw, Ø= detector
claims to handle but did not detect base version of misuse;
CG = CryptoGuard, CC = CogniCrypt, SB = SpotBugs, XT = Xanitizer,
TX = ToolX , QA = QARK, SL = ShiftLeft, GCS = Github Code Security.
*Certain seemingly-unrealistic flaws may be seen in/outside a
crypto-detector’s “scope”, depending on the perspective; see Section XII for a
broader treatment of this caveat.

an implementation gap by the CryptoGuard developers [30].

FC2: Incorrect Value Resolution (F2 – F9): The flaws in

this class occur due to the inability of 8/9 of the crypto-detectors

to resolve parameters passed to crypto-APIs. For example,

consider F2, previously discussed in Listing 1 in Section I,

where the string value of an algorithm type (e.g., DES) is

passed through a variable to Cipher.getInstance(<parameter>).

ToolX was not able to detect this (mis)use instance, hence

exhibiting F2 (Table II), and in fact, demonstrated a consistent

inability to resolve parameter values (flaws F2 – F7), indicating

a design gap. On the contrary, as SpotBugs partially detects the

type of misuse represented in F5, i.e., when it is instantiated

using the Cipher.getInstance(<parameter>) API, but not us-

ing the MessageDigest.getInstance(<parameter>) API, which

indicates an implementation gap.

Further, LGTM and GCS are partially susceptible to F2

because of an intricate problem in their rulesets. That is, both

tools are capable of tracking values passed from variables, and

generally detect mutations similar to the one in F2 (i.e., and

also the one in Listing 1, created using OP2). However, one

of the mutant instances that we created using OP2 used AES

in Cipher.getInstance(<parameter>), which may seem correct

but is actually a misuse, since specifying AES alone initializes

the cipher to use the highly vulnerable ECB mode as the block

chaining mode. Unfortunately, both LGTM and GCS use the

same CODEQL ruleset [71] which doesn’t consider this nuance,

leading both tools to ignore this misuse.

Finally, we observe that CogniCrypt detects some of the

more complex behaviors represented by flaws in FC2 (i.e.,

F7 – F9), but does not detect the simpler ones (F3 – F6).

From our interaction with CogniCrypt’s maintainers, we have

discovered that CogniCrypt should be able to detect such

transformations by design, as they deviate from CrySL rules.

However, in practice, CogniCrypt cannot reason about certain

transformations at present (but could be modified to do so in

the future), and produces an ambiguous output that neither

flags such instances as misuse, nor as warnings for manual

inspection, due to an implementation gap. The developers agree

that CogniCrypt should clearly flag the API-use that it does not

handle in the report, and refer such use to manual inspection.

Impact (FC2): We found misuse similar to the instance in F2

in Apache Druid, an app with 10.3K stars and 400 contributors

on Github (see Listing 17 in Appendix A). Further, we found

real apps that convert the case of algorithm values before using

them in a restrictive crypto API [72] (F5, instantiated using

OP3), or process values to replace “noise” [73] (F3, F4, F6,

instantiated using OP4). We observed that ExoPlayer, a media

player from Google with over 16.8K stars on GitHub, used

the predictable Random API for creating IvParameterSpec

objects [74] until 2019, similar in nature to F9. Developers also

use constants for IVs (F8), as seen in UltimateAndroid [75]

(2.1K stars), and JeeSuite (570 stars) [76].

We also found instances of these flaws in apps that were

analyzed with a crypto-detector, specifically, LGTM. Apache

Ignite [77] (360 contributors, 3.5K stars) contains a misuse

instance similar to one that led to F2, where only the name of

the cipher is passed to the Cipher.getInstance(<parameter>)

API [78] which causes it to default to “ECB” mode. LGTM

does not report this as it considers ECB use as insecure for Java

(but oddly secure for JavaScript). We found similar instances

of ECB misuse in Apache-Hive [79] (250 contributors, 3.4K

stars), Azure SDK for Java [80] (328 contributors, 857 stars),

which LGTM would not detect. Finally, in Apache Ignite [77],

we found a Cipher.getInstance(<parameter>) invocation that

contained a method call in place of the cipher argument (i.e.,

a chain of length 1, a basic instance of F7) [78].

FC3: Incorrect Resolution of Complex Inheritance and

Anonymous Objects (F10 – F13): The flaws in this class

occur due to the inability of 3/9 crypto-detectors to resolve

complex inheritance relationships among classes, generally

resulting from applying flexible mutation operators (Sec. VI-B)

to certain misuse cases. For example, consider F11 in Table I,

also illustrated in Listing 12 in Appendix A. Further, we find

that Xanitizer & SpotBugs are immune to these flaws, which

indicates that traversing intricate inheritance relationships

is a design consideration for some crypto-detectors, and

a design gap in others such as CryptoGuard and QARK.

Moreover, such indirect relationships can not only be expected

from evasive developers (i.e., T3) but is also found in real

apps investigated by the crypto-detectors, as described below.

Impact (FC3): We found an exact instance of the mis-

use representing F10 (generated from OP12) in the class

TrustAllSSLSocketFactory in Apache JMeter [81] (4.7K stars

in GitHub). F11 is the generic version of F10, and fairly

common in repositories and libraries (e.g., BountyCastle [82],

[83]). F12 an F13 were also generated using OP12, but with the



HostnameVerifier-related misuse, and we did not find similar

instances in the wild in our limited search.

FC4: Insufficient Analysis of Generic Conditions in

Extensible Crypto-APIs (F14 – F16): The flaws in this

class represent the inability of certain crypto-detectors to

identify fake conditions within overridden methods, i.e.,

unrealistic conditions, or always true condition blocks (e.g., as

Listing 16 in Appendix A shows for F14). Flaws in this class

represent the behavior of an evasive developer (T3). Xanitizer

and SpotBugs can identify such spurious conditions.

FC5: Insufficient Analysis of Context-specific Conditions

in Extensible Crypto-APIs (F17 – F19): The flaws in this

class represent misuse similar to FC4, except that the fake

conditions used here are contextualized to the overridden

function, i.e., they check context-specific attributes (e.g., the

length of the certificate chain passed into the method, F17).

An evasive developer may attempt this to add further realism

to fake conditions to evade tools such as Xanitizer that are

capable of detecting generic conditions. Indeed, we observe

that Xanitizer fails to detect misuse when context-specific

conditions are used, for both F17 and F18. Our suspicion is

that this weakness is due to an optimization, which exempts

conditions from analysis if they seem realistic.
Particularly, we observe that Xanitizer correctly detects the

fake condition in F19, and that the only difference between

F19 and F18 is that the instances of misuse they represent

occur under slightly different class hierarchies. Hence, our

speculation is that this an accidental benefit, i.e., the difference

could be the result of an incomplete implementation of the

unnecessary optimization across different class hierarchies.

SpotBugs shows a similar trend, potentially because Xanitizer

uses SpotBugs for several SSL-related analyses. Finally, we

observe that ToolX is immune to both generic FC4) and context-

specific fake conditions FC5).
Impact (FC4, FC5): In this Stack Overflow post [37], the de-

veloper describes several ways in which they tried to get Google

Play to accept their faulty TrustManager implementation, one

of which is exactly the same as the misuse instance that led to

F17 (generated using OP7 and OP12), which is a more specific

variant of F14 (generated OP7, OP9 and OP12), as illustrated

in Listing 10 in Appendix A. We observe similar evasive

attempts towards vulnerable hostname verification [84] which

are similar in nature to F15 and F16, and could be instantiated

using OP8 and OP10. We also found developers trying to

evade detection by applying context-specific conditions in the

hostname verifier [85], similar to F18 and F19.

XI. LIMITATIONS

MASC does not attempt to replace formal verification, and

hence, does not guarantee that all flaws in a crypto-detector

will be found. Instead, it enables systematic evaluation of

crypto-detectors, which is an advancement over manually

curated benchmarks. Aside from this general design-choice,

our approach has the following limitations:
1. Completeness of the Taxonomy: To ensure a taxonomy

that is as comprehensive as possible, we meticulously follow

best-practices learned from prior work [56], [86], and also

ensure labeling by two authors. However, the fact remains

that regardless of how systematic our approach is, due to the

manual and generalized of the SLR, we may miss certain

subtle contexts during the information extraction phase (see

specific examples in Appendix C). Thus, while not necessarily

complete, this taxonomy, generated through over 2 person

months of manual effort, is, to the best of our knowledge, the

most comprehensive in recent literature.

2. Focus on Generic Mutation Operators: We have cur-

rently constructed generic operators based on typical usage

conventions, i.e., to apply to as many misuse instances from

the taxonomy as possible. However, currently, MASC does not

incorporate operators that may fall outside of usage-based

conventions, i.e., which may be more tightly coupled with

specific misuse cases, such as an operator for calling create

and clearPassword in a specific order for PBEKeySpec. We plan

to incorporate such operators into MASC in the future.

3. Focus on Java and JCA: MASC’s approach is largely

informed by JCA and Java. Additional mutation operators and

adjustments will be required to adapt MASC to JCA-equivalent

frameworks in other languages, particularly when adapting our

usage-based mutation operators to non-JCA conventions.

4. Evolution of APIs: Future, tangential changes in how JCA

operates might require changing the implementation of MASC’s

mutation operators. Furthermore, incremental effort will be

required to incorporate new misuse cases that are discovered

with the evolution of crypto APIs. We have designed MASC to

be as flexible as possible by means of reflection and automated

code generation for mutation operators, which should make

adapting to such changes easier.

5. Relative Effectiveness of Individual Operators: This

paper demonstrates the key claims of MASC, and its overall

effectiveness at finding flaws, but does not evaluate/claim the

relative usefulness of each operator individually. A compre-

hensive investigation of relative usefulness would require the

mutation of all/most misuse cases from the taxonomy, with

every possible operator and scope, a broader set of apps to

mutate, and a complete set of crypto-detectors, which is outside

the scope of MASC, but a direction for future work.

XII. DISCUSSION AND CONCLUSION

Designing crypto-detectors is in no way a simple task; tool

designers have to balance several orthogonal requirements

such as detecting as many vulnerabilities as possible without

introducing false positives, while also scaling to large code-

bases. Yet, the fact remains that there is significant room for

improvement in how crypto-detectors are built and evaluated,

as evidenced by the flaws discovered by MASC.

To move forward, we need to understand the divergent

perspectives regarding the design of crypto-detectors, and reach

a consensus (or at least an agreeable minima) in terms of what

is expected from crypto-detectors and how we will design and

evaluate them to satisfy the expectations. We seek to begin this

discourse within the security community by integrating several

views on the design decisions behind crypto-detectors, informed



by our results and conversations with tool designers (quoted

with consent) during the vulnerability reporting process.

A. Security-centric Evaluation vs. Technique-centric Design

Determining what misuse is within or outside the scope

for a crypto-detector is a complex question that yields several

different viewpoints. This paper’s view is security-centric, i.e.,

even if some misuse instances may seem unlikely or evasive,

crypto-detectors that target security-focused use cases (e.g.,

compliance, auditing) should attempt to account for them.

However, we observe that tool designers typically adhere

to a technique-centric perspective, i.e., the design of crypto-

detectors is not influenced by a threat model, but mainly by

what static analysis can and cannot accomplish (while implicitly

assuming a benign developer). This quote from the maintainers

of CryptoGuard highlights this view, wherein they state that

the “lines” between what is within/outside scope “seen so far

were technically motivated – not use-case motivated..should

we use alias analysis?...”. This gap in perspective does not

mean that crypto-detectors may not detect any of the mutants

generated by MASC using operators based on the T3 threat

model; rather, it only means that detection (or lack thereof)

may not be caused by a security-centric design.

B. Defining “Scope” for the Technique-centric Design

We observe that even within crypto-detectors that take a

technique-centric approach, there is little agreement on the

appropriate scope of detection. For instance, Xanitizer focuses

on catching every possible misuse instance, regardless of any

external factors such as whether that kind of misuse is observed

in the wild, or a threat model, as the designers believe that “the

distinction should not be between ‘common’ and ‘uncommon’,

but instead between ‘can be (easily) computed statically’ and

‘can not be computed’.”. This makes it possible for Xanitizer

to detect unknown or rare problems, but may also result in

it not detecting a commonly observed misuse that is hard to

compute statically, although we did not observe such cases.

In contrast, CryptoGuard, CogniCrypt, and GCS/LGTM

(same developers) would consider seemingly-unlikely/evasive

flaws within scope (e.g., F3 – F6, F8), because they were

found in the wild (unlike Xanitizer, for which this is not a

consideration). This view aligns with our perspective, that

regardless of how it was generated, if a misuse instance

(representing a flaw) is discovered in real apps (which is true for

all flaws except F12 and F13, it should be within the detection

scope. However, GCS/LGTM maintainers extend this definition

with the condition that the observations in the wild be frequent,

to motivate change. These divergent perspectives motivate the

need to clearly define the expectations from crypto-detectors.

C. Utility of Seemingly-Uncommon or Evasive Tests

As Bessey et al. state from practical deployment experience

in 2010 [18], “No bug is too foolish to check for”, and that

“Given enough code, developers will write almost anything

you can think of...”. The results from our evaluation and the

impact study corroborate this sentiment, i.e., F3 – F6 and

F8 were all obtained using operators (OP3, OP4, and OP6)

modeled to emulate threats T1 and T2, i.e., representing benign

behavior (however unlikely); and indeed, these flaws were later

found in supposedly benign applications. This suggests that the

experience of Bessey et al. is valid a decade later, making it

important to evaluate crypto-detectors with “more-than-trivial”

cases to not only test their detection prowess, but to also

account for real problems that may exist in the wild.

D. The Need to Strengthen Crypto-Detectors

We argue that it is not only justified for tools to detect

uncommon cases (e.g., given that even benign developers

write seemingly-unlikely code), but also critical for their

sustained relevance. As the designers of Coverity found [18],

false negatives matter from a commercial perspective, because

“Potential customers intentionally introduced bugs into the

system, asking ‘Why didn’t you find it?’”.

Perhaps more significantly, the importance of automated

crypto-detectors with the ability to guarantee assurance is

rising with the advent of new compliance legislation such

as the IoT Cybersecurity Improvement Act of 2020 [87],

which seeks to rein in vulnerabilities in billions of IoT

systems that include vulnerable server-side/mobile components.

Vulnerabilities found after a compliance certification may result

in penalties for the developers, and financial consequences

for the compliance checkers/labs and crypto-detectors used.

Complementing static detection with manual or dynamic

analysis may be infeasible at this scale, as tool designers noted:

e.g., “...review an entire codebase at once, manual review can

be difficult.” (LGTM) and “Existing dynamic analysis tools will

be able to detect them only if the code is triggered (which can

be notoriously difficult)” (CryptoGuard). Thus, static crypto-

detectors will need to become more robust, and capable of

detecting hard-to-detect misuse instances.

E. Towards Crypto-Detectors Strengthened by a Security-

Centric Evaluation

Fortunately, we observe that there is support among tool

designers for moving towards stronger security guarantees. For

instance, CogniCrypt designers see a future research direction in

expressing evasive scenarios in the CrySL language i.e.,“...what

would be a nice future direction is to tweak the SAST with

such optimizations/ more analysis but still allow the CrySL

developer to decide if he wants to switch these ‘evasive user’

checks...”, but indicate the caveat that developers may not use

such additional configuration options [88]. However, we believe

that such options will benefit independent evaluators, as well

as developers who are unsure of the quality of their own supply

chain, to perform a hostile review of the third-party code at

their disposal. Similarly, the CryptoGuard designers state that

“...this insight of evasive developers is very interesting and timely,

which immediately opens up new directions.”

This potential paradigm-shift towards a security-focused

design of crypto-detectors is timely, and MASC’s rigorous

evaluation with expressive test cases can play an effective

role in it, by enabling tool designers to proactively address

gaps in detection during the design phase itself, rather than



reactively (i.e., after a vulnerability is discovered in the wild).

More importantly, further large-scale evaluations using MASC,

and the flaws discovered therein, will enable the community

to continually examine the design choices made by crypto-

detectors and reach consensus on what assurances we can

feasibly expect. We envision that such development aided by

MASC will lead to a mature ecosystem of crypto-detectors with

a well-defined and strong security posture, and which can hold

their own in adversarial situations (e.g., compliance assess-

ments) within certain known bounds, which will eventually

lead to long-lasting security benefits for end-user software.
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APPENDIX A

CODE SNIPPETS

Class T { String algo="AES/CBC/PKCS5Padding";

T mthd1(){ algo = "AES"; return this;} T mthd2(){

algo="DES"; return this;} }

Cipher.getInstance(new T().mthd1().mthd2());

Listing 3. Method Chaining (OP5).

val = new Date(System.currentTimeMillis ()).toString ();

new IvParameterSpec(val.getBytes () ,0,8);}

Listing 4. Predictable/Non-Random Derivation of Value (OP6)

void checkServerTrusted(X509Certificate [] x, String s)

throws CertificateException {

if (!( null != s && s.equalsIgnoreCase("RSA"))) {

throw new CertificateException("not RSA");}

Listing 5. Exception in an always-false condition block (OP7).

public boolean verify(String host , SSLSession s) {

if(true || s.getCipherSuite ().length () >=0)}

return true;} return false ;}

Listing 6. False return within an always true condition block (OP8).

interface ITM extends X509TrustManager { }

abstract class ATM implements X509TrustManager { }

Listing 7. Implementing an Interface with no overridden methods.

new HostnameVerifier (){

public boolean verify(String h, SSLSession s) {

return true; } };

Listing 8. Inner class object from Abstract type (OP12)

new X509ExtendedTrustManager (){

public void checkClientTrusted(X509Certificate [] chain ,

String a) throws CertificateException {}

public void checkServerTrusted(X509Certificate [] chain ,

String authType)throws CertificateException {}

public X509Certificate [] getAcceptedIssuers () {return

null;} ...};

Listing 9. Anonymous Inner Class Object of
X509ExtendedTrustManager (F10)

void checkServerTrusted(X509Certificate [] certs , String s)

throws CertificateException {

if (!( null != s || s.equalsIgnoreCase("RSA") ||

certs.length >= 314)) {

throw new CertificateException("Error");}}

Listing 10. Specific Condition in checkServerTrusted method (F17)

abstract class AHV implements HostnameVerifier {} new AHV(){

public boolean verify(String h, SSLSession s)

return true ;}};

Listing 11. Anonymous Inner Class Object of An Empty Abstract
Class that implements HostnameVerifier



abstract class AbstractTM implements X509TrustManager {}

new AbstractTM (){

public void checkServerTrusted(X509Certificate [] chain ,

String authType) throws CertificateException {}

public X509Certificate [] getAcceptedIssuers () {return

null ;}}};

Listing 12. Anonymous inner class object with a vulnerable
checkServerTrusted method (F13)

interface IHV extends HostnameVerifier {} new IHV(){

public boolean verify(String h, SSLSession s) return

true ;}};

Listing 13. Anonymous Inner Class Object of an Interface that extends
HostnameVerifier

KeyGenerator keyGen = KeyGenerator.getInstance("AES");

keyGen.init (128); SecretKey secretKey=keyGen.generateKey ();

Listing 14. Misuse case requiring a trivial new operator

if (! className.contains("android."))

classNames.add(className.substring(1,

className.length () - 1)); return classNames;

Listing 15. CryptoGuard’s code ignoring names with “android”

if(!( true || arg0==null || arg1==null)) {

throw new CertificateException ();}

Listing 16. Generic Conditions in checkServerTrusted

this.name = name == null ? "AES" : name;

this.mode = mode == null ? "CBC" : mode;

this.pad = pad == null ? "PKCS5Padding" : pad;

this.string = StringUtils.format(

"%

Listing 17. Transformation String formation in Apache Druid similar to
F2 which uses AES in CBC mode with PKCS5Padding, a configuration
that is known to be a misuse [29], [89].

APPENDIX B

ADDITIONAL IMPLEMENTATION AND EVALUATION DETAILS

A. Expanded rationale for choosing certain operators

We prioritized misuse cases for inclusion in MASC that are

discussed more frequently in the artifacts. For instance, when

implementing restrictive operators (Sec. VI-A), we chose the

misuse of using AES with ECB mode, or using ECB mode in

general, as both misuse cases were frequently mentioned in

our artifacts (i.e., in 2 and 11 artifacts respectively). Similarly,

we chose the misuse cases of using MD5 algorithm with

the MessageDigest API for hashing (5 artifacts), and digital

signatures (5 artifacts). When implementing flexible mutation

operators (Sec. VI-B), we observed that the majority of the

misuse cases relate to improper SSL/TLS verification and error

handling, and hence chose to mutate the X509TrustManager and

HostnameVerifier APIs with OP7 – OP13.

B. Do we need to optimize the number of mutants generated?

MASC generates thousands of mutants to evaluate crypto-

detectors, which may prompt the question: should we determine

exactly how many mutants to generate or optimize them? The

answer to this question is no, for two main reasons.
First, MASC generates mutants as per the mutation-scope

applied, i.e., for the exhaustive scope, it is natural for MASC

to seed an instance of the same mutation at every possible/-

compilable entry point (including internal methods) in the

mutated application. Similarly, for the similarity scope, we

seed a mutant besides every similar “usage” in the mutated

application. Therefore, in all of these cases, every mutant

seeded is justified/necessitated by the mutation scope being

instantiated. Any reduction in mutants would require MASC to

sacrifice the goals of its mutation scopes, which may not be in

the interest of a best-effort comprehensive evaluation. Second,

in our experience, the number of mutants does not significantly

affect the time to seed taken by MASC. That is, MASC took

just 15 minutes to seed over 20000 mutants as a part of our

evaluation (see Section X). Moreover, once the target tool’s

analysis is complete, we only have to analyze the unkilled

mutants, which is a far smaller number than those originally

seeded (Section X). Therefore, in our experience, there is little

to gain (and much to lose) by reducing the number of mutants

seeded; i.e., we want to evaluate the tools as thoroughly as we

can, even if it means evaluating them with certain mutation

instances/mutants that may be effectively similar.

That said, from an analysis perspective, it may be interesting

to dive deeper into the relative effectiveness of individual

features (i.e., operators as well as scopes), even if they are

all individually necessary, as each mutation operator exploits

a unique API use characteristic, and scopes exploit unique

code-placement opportunities, and any combination of these

may appear in real programs. However, it would be premature

to determine relative advantages among scopes/operators using

the existing evaluation sample (i.e., 9 detectors evaluated, 13

open-source apps mutated, 19 misuse cases instantiated, with

12 operators). For instance, mutating other misuse cases, or

evaluating another tool, or using a different set of open source

apps to mutate, may all result in additional/different success

at the feature-level (although overall, MASC would still find

flaws, and satisfy its claims). We defer such an evaluation to

determine the relative advantages of different mutation features

to future work, as described in Section XI.

C. Further details regarding confirming killed mutants

Matching the mutation log generated by MASC with the

reports generated by crypto-detectors is challenging because

crypto-detectors often generate reports in heterogeneous and

often mutually incompatible ways; i.e., GCS, LGTM, ShiftLeft

generate text files following the recently introduced Static

Analysis Results Interchange Format (SARIF) [90] format, Cog-

niCrypt, CryptoGuard, ToolX , SpotBugs and QARK generate

reports in custom report formats, downloadable as HTML, CSV,

or text, and finally, Xanitizer generates PDFs with source code

annotations. We developed a semi-automated implementation

that allows us to systematically identify uncaught mutants given

these disparate formats. For QARK and CryptoGuard, we wrote

custom scripts to parse and summarize their reports into a more

manageable format, which we then manually reviewed and

matched against MASC’s mutation logs. For SARIF formatted

reports, we used a VSCode based SARIF viewer [91] that

allows iterative searching of logs and tool reports by location.

For CogniCrypt, SpotBugs, and Xanitizer, we performed the

matching manually since even though they used custom Text or



TABLE III
MUTANTS ANALYZED VS DETECTED BY CRYPTO-DETECTORS

Tool Input Type Analyzed Detected

CryptoGuard apk or jar 20,303 18,616/19,759

CogniCrypt apk or jar 20,303 475

Xanitizer Java Src Code & jar 17,788 17,774

ToolX Android or Java Src Code 20,303 48

SpotBugs jar 17,788 17,715

QARK Java Src Code or apk 20,303 7

LGTM Java Src Code 20,303 16,929

GCS Java Src Code 20,303 16,929

ShiftLeft Java Src Code 20,303 20,199

PDF formats, they were generated in such a way that manual

checking was trivial. This process is in line with prior work

that faces similar challenges [92]. As more tools move to

standard formats such as SARIF (which is being promoted by

analysis suites such as Github Code Scan) and being adopted by

crypto-detectors (e.g., Xanitizer adopted SARIF after our study

concluded), we expect the methodology to be fully automated.

D. Why GCS, LGTM, and QARK fail to detect base cases

We observe that GCS and LGTM fail to detect base cases

(i.e., Ø in Table II) for FC3 – FC5, although they claim to find

SSL vulnerabilities in Java, due to incomplete rulesets (i.e., the

absence of several SSL-related rules) [71]. However, we noticed

that there was an SSL-related experimental pull request for

GCS’s ruleset [93], [94] and even upon integrating it into GCS

and LGTM, we found both tools to still be vulnerable to the

base cases. Similarly, QARK fails to detect base cases for all

flaws in FC1 and FC2, because of its incomplete ruleset [95].

APPENDIX C

TYPES OF CASES THAT OUR SLR APPROACH MAY MISS

Our SLR approach involves manually analyzing each doc-

ument in an attempt to include all misuse cases, but this

extraction of misuse cases is often affected by the context

in which they are expressed. For instance, CogniCrypt’s core

philosophy is whitelisting, which is reflected throughout its

papers and documentation. However, there are two ways in

which whitelisting is expressed in the paper, one concerning

functionality, and another security, i.e., cases of desired

behavior expressed in the paper may not always indicate a

security best-practice. For instance, the ORDER keyword in the

CrySL language initially caused us to miss the PBEKeySpec

misuse (now included in the taxonomy), because as defined in

the paper, ORDER keyword allows defining “usage patterns”

that will not break functionality. Thus, as the “usage” patterns

were not security misuses (or desired behaviors for security), we

did not include them as misuse cases in the taxonomy.However,

in a later part of the paper, the ORDER keyword is used to

express a security-sensitive usage, for PBEKeySpec, but the

difference in connotation is not made explicit. This implicit

and subtle context-switch was missed by both our annotators in

the initial SLR, but fixed in a later iteration, and misuse cases

related to the ORDER keyword were added to the taxonomy.
Similarly when labeling for misuse extraction (Sec. V-C)

we marked each misuse found in a document using common

terminology (i.e., labels) across all documents. Thus, if a misuse

found in the current document was previously discovered and

annotated with a particular label, we would simply apply

the same label to the newly found instance.This standard,

best-practice approach [56], [96] makes it feasible to extract

a common taxonomy from a variety of documents written

by different authors, who may use inconsistent terminology.

However, a limitation of this generalization is that in a rare

case wherein a particular example may be interpreted as two

different kinds of misuse, our approach may lose context

and label it as only one type of misuse. For instance, based

on how the misuse of a “password stored in String” was

described in most of the documents we studied, the misuse

label of “using a hardcoded password” was applied to identify

it across the documents. However, this results in the loss of

the additional, semantically different misuse that may still

be expressed in terms of a “password stored in String”, that

passwords should not be stored/used in a String data construct

for garbage collection-related reasons. Note that this problem

would only occur in rare instances wherein (1) there are

multiple contexts/interpretations of the same misuse example,

and (2) only one or few document(s) use the additional context.

This misuse has also been included in the taxonomy.
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