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Abstract—Proximal operators are of particular interest in optimization problems dealing with non-smooth objectives because in many
practical cases they lead to optimization algorithms whose updates can be computed in closed form or very efficiently. A well-known
example is the proximal operator of the vector ‘1 norm, which is given by the soft-thresholding operator. In this paper we study the
proximal operator of the mixed ‘1;1 matrix norm and show that it can be computed in closed form by applying the well-known soft-
thresholding operator to each column of the matrix. However, unlike the vector ‘1 norm case where the threshold is constant, in the
mixed ‘1;1 norm case each column of the matrix might require a different threshold and all thresholds depend on the given matrix. We
propose a general iterative algorithm for computing these thresholds, as well as two efficient implementations that further exploit easy
to compute lower bounds for the mixed norm of the optimal solution. Experiments on large-scale synthetic and real data indicate that
the proposed methods can be orders of magnitude faster than state-of-the-art methods.

Index Terms—Proximal operator, mixed norm, block sparsity
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1 INTRODUCTION

RECENT advances in machine learning and convex optimi-
zation techniques have led to very efficient algorithms

for solving a family of regularized estimation problems.
Sparsity, as a strong regularization prior, plays a central
role in many inverse problems and the use of sparsity-
promoting norms as regularizers has become widespread
over many different disciplines of science and engineering.
One added difficulty is the non-differentiability of such pri-
ors, which prevents the use of classical optimization meth-
ods such as gradient descent or Gauss-Newton methods [1],
[2]. Proximal algorithms present an efficient alternative to
cope with non-smoothness of the objective function. Fur-
thermore, in many practical situations, simple closed-form
updates of the variables of interest are possible. For an
excellent review about proximal operators and algorithms
see [3] and the monographs [4], [5].

1.1 Motivation
Let XX ¼ ½xx1; . . . ; xxm# 2 Rn$m be a real matrix with columns
xxi 2 Rn. The mixed ‘p;q norm of XX is defined over its col-
umns as

kXXkp;q ¼

 
Xm

i¼1

kxxikqp

!1=q

: (1)

Mixed norms such as the ‘p;1 matrix norm ðp & 2Þ have been
used to promote block-sparse structure in the variables of

interest, and the larger p the stronger the correlation among
the rows of XX [6]. In particular, the ‘1;1 norm has been
shown to be useful for estimating a set of covariate regres-
sors in problems such as multi-task learning [6], [7], [8], and
representative (exemplar) selection [9]. A general formula-
tion for these type of problems is to minimize some convex
loss function subject to norm constraints:

minimize
XX

JðXXÞ
subject to kXXk1;1 ( t;

(2)

where t > 0 controls the sparsity level and Jð)Þ is some
convex loss function. Note that keeping kXXk1;1 small
encourages whole columns of XX to be zero. In this contribu-
tion, we are interested in efficiently solving problems of the
form of (2). A simple method to solve problem (2) is to use a
projected (sub)gradient descent method that computes the
kth iteration estimateXXðkÞ as

ZZ  XXðk*1Þ * hk@J
!
XXðk*1Þ" (3)

XXðkÞ  Pk)k1;1(t

!
ZZ
"
; (4)

where hk is the stepsize at the kth iteration of the algorithm,
@JðXXÞ denotes a subgradient (i.e., the gradient if differentia-
ble) of J at XX, and where Pk)k1;1(tðZZÞ denotes the projection
of ZZ onto the ‘1;1 ball of radius t. In solving problems of the
form of (2) one needs to compute a projection onto the ‘1;1

mixed normball. Such projection can be computed by a proxi-
mal mapping of the dual norm – themixed ‘1;1 norm (i.e., the
induced ‘1 norm ofXX seen as a linear operator). In this paper,
we address the problem of projecting onto the mixed ‘1;1

norm ball via the computation of the proximal operator of its
dual norm. This allows us to solve the class of problems in (2)
that involve structured/group sparsity, namely those involv-
ing constraints on (projections onto) themixed ‘1;1 norm. The
proximal mapping of the mixed ‘1;1 norm is also applicable
to the computation of minimax sparse pseudoinverses to
underdetermined systems of linear equations [10], [11].
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1.2 Prior Work
Since one of the computational challenges in solving prob-
lems of the form (2) is in the computation of the projection
onto the ‘1;1 ball of a certain radius, it is then of practical
importance to devise computationally efficient algorithms
for computing such projections. An efficient method for
computing these projections is proposed in [8]. The algo-
rithm is based on sorting the entries of the n by m data
matrix in order to find the values that satisfy the optimality
conditions of the projection problem. The complexity of the
method is dominated by the sorting operation and therefore
has an average complexity of Oðmnlog ðmnÞÞ. An alternative
strategy is to use root-search methods such as those in [12],
[13] in order to find the optimal solution. Here we take an
alternative approach and look at the proximal operator of
the mixed ‘1;1 matrix norm. Since the mixed ‘1;1 and ‘1;1

norms are duals of each other, a simple relationship can be
established between the proximal operator and the projec-
tion operator (see Section 2). However, by looking at the
proximal operator a better insight and understanding of the
problem can be gained and exploited to accelerate the algo-
rithms. Contrary to root-search methods our method is
exact (up to machine precision), does not require any
thresholds to determine convergence, and it is guaranteed
to find the optimal solution in a finite number of iterations.

1.3 Contributions
In this paper we study the proximal operator of the mixed
‘1;1 matrix norm and show that it can be computed using a
generalization of the well-known soft-thresholding operator
from the vector to the matrix case. The generalization involves
applying the soft-thresholding operator to each column of the
matrix using a possibly different threshold for each column.
Interestingly, all thresholds are related to each other via a
quantity that depends on the given matrix. This is in sharp
contrast to the vector case, where the threshold is constant
and is given by the regularization parameter. To compute the
proximal operator efficiently, we propose a general iterative
algorithm based on the optimality conditions of the proximal
problem. Our method is further accelerated by the derivation
of easy to compute lower bounds on the optimal value of the
proximal problem that contribute to effectively reduce the
search space. A numerical comparison with the state of the
art of two particular implementations of our general method
reveals the improved computational efficiency of the pro-
posed algorithms. We also illustrate the application of our
results to biomarker discovery for the problem of cancer clas-
sification from gene expression data. The code used to gener-
ate the results presented in this paper is made publicly
available by the authors.1

2 NORMS, PROJECTIONS, AND PROXIMAL

OPERATORS

In this section we present some background material that
highlights the relationship between proximal operators,
norms, and orthogonal projection operators.

Consider a non-empty closed convex set C , Rn. The
orthogonal projection of a point xx 2 Rn onto C is given by

PCðxxÞ ¼ argmin
yy2C

1

2
kxx* yyk22; (5)

where we have included an irrelevant 1=2 factor for conve-
nience in the exposition. Alternatively, we can also express
the projection of a point as an unconstrained optimization
problem as

PCðxxÞ ¼ argmin
yy

Iðyy 2 CÞ þ 1

2
kxx* yyk22; (6)

where we have moved the constraint into the objective by
making use of the indicator function of a non-empty subset
X , Rn, which is given by

Iðxx 2 XÞ ¼
0; xx 2 X

þ1; otherwise

#
: (7)

Keeping in mind the definition of the projection operator
given in (6) as an unconstrained optimization problem, we
are now ready to introduce the definition of the proximal
operator. Let fðxxÞ : Rn 7! R be a lower semicontinuous con-
vex function. Then, for every xx 2 Rn the proximal operator
proxfðxÞ is defined as

proxfðxxÞ ¼ argmin
yy

fðyyÞ þ 1

2
kxx* yyk22: (8)

It is then clear, that the proximal operator can be regarded as a
generalization of the projection operator (e.g., replace fðyyÞ by
the indicator function of a set C). Note that, at every point, the
proximal operator is the unique solution of an unconstrained
convex optimization problem. Uniqueness of the proximal
operator can be easily argued from the fact that the quadratic
term in (8) makes the optimization cost strictly convex.

An important particular case that often appears in practice
is that where the function f is a norm. For example, problems
of the form of (8) appear inmany learning and signal process-
ing problems, where the quadratic term can be seen as a data-
fidelity term while the function f can be thought of as impos-
ing some prior on the solution (e.g., sparsity). The special case
where f is a norm has also a close connection to projections
via the Moreau decomposition theorem as we shall describe
next. Let f : X . Rn 7! R be a lower semicontinuous convex
function, then its Fenchel conjugate f/ is defined as

f/ðyyÞ ¼ sup
xx2X

$
hyy; xxi* fðxxÞ

%
: (9)

The Moreau decomposition theorem relates the proximal
operators of a convex function and its Fenchel conjugate, as
stated next.

Theorem 1 ([14]). Let f be a lower semicontinuous convex func-
tion and let f/ denote its Fenchel (or convex) conjugate, then

proxfðxxÞ þ proxf/ ðxxÞ ¼ xx: (10)

For the special case where fðxxÞ ¼ kxxk is a norm, it is well
known that its Fenchel conjugate f/ is given by

f/ðxxÞ ¼ Iðkxxk/ ( 1Þ ¼ 0; kxxk/ ( 1
þ1; otherwise

#
; (11)

1. https://github.com/bbejar/prox-l1oo.
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where k ) k/ is the dual norm of k ) k (i.e., kzzk/ ¼ supxx
fhzz; xxi : kxxk ( 1g). That is, the Fenchel conjugate of a norm
is the indicator function of the unit-norm ball of its dual
norm (see for instance [2] for a proof). Since the proximal
operator of the indicator function of a set equals the orthog-
onal projection onto the set, it follows from (10) that

prox!k)k ¼ I * Pk)k/(!; (12)

where Pk)k/(! denotes the projection onto the ball of radius !
of the dual norm, and where I is the identity operator.

For a given matrix XX 2 Rn$m its mixed ‘1;1 (induced ‘1)
norm is given by

kXXk1;1 ¼ max
kuuk1¼1

kXuXuk1 ¼ max
i
kxxik1; (13)

where xxi corresponds to the ith column of matrix XX. For the
case of the induced ‘1 operator norm we have the well-
known relationship

kXXk1 ¼ max
kuuk1¼1

kXuXuk1 ¼ kXXTk1;1: (14)

Also, recall the duality relationship between the ‘1;1 norm
and the mixed ‘1;1 norm:

kXXk1;1 ¼
Xm

i¼1

kxxik1 ¼
!
kXXk1;1

"
/: (15)

Thus, without loss of generality, we will focus our analysis
on the derivation of the proximal operator for the mixed
‘1;1 norm, and derive expressions for the proximal opera-
tors of the induced ‘1 and the projection operator onto the
‘1;1 norm using the above relationships.

3 ANALYSIS OF THE MIXED ‘1;1 NORM PROXIMAL

OPERATOR

The relationship given in (12) makes it clear that finding the
proximal operator of a norm amounts to knowing how to
project onto the unit-norm ball of the dual norm and vice-
versa. In [8] the authors derived the optimality conditions
for the projection onto the ‘1;1 norm (see (15)) and proposed
an algorithm for its computation based on sorting the
entries of the matrix. Since these norms are duals of each
other, the proximal operator for such norms can be readily
computed based on (12). In contrast, we look at the proxi-
mal operator itself and derive the optimality conditions. By
doing so, we arrive at a more compact expression for the
optimality conditions that generalizes the well-known soft-
thresholding algorithm to the matrix case. Our analysis
allows for a more intuitive interpretation of the proximal
operator as well as the derivation of novel algorithms for its
computation.

Given a matrix VV 2 Rn$m, the proximal operator of the
mixed ‘1;1 norm with parameter ! > 0 is the solution to
the following convex optimization problem:

prox!k)k1;1ðVV Þ ¼ argmin
XX

kXXk1;1 þ 1

2!
kXX * VV k2F : (16)

Using the definition of the mixed norm in (13), we can
rewrite problem (16) as the following constrained

optimization problem:

minimize
XX; t

tþ 1

2!
kXX * VV k2F

subject to kxxik1 ( t; i ¼ 1; . . . ;m:
(17)

By looking at the structure of problem (17) it is easy to
derive the following result:

Lemma 1 (Matched Sign). The sign of the optimal solution
XX

?
of (17) must match the sign of VV , that is

signðXX? Þ ¼ signðVV Þ; (18)

where the signð)Þ function operates element-wise.

Proof. The proof follows by contradiction. Assume ðXX?
; t

? Þ
is the optimal solution to problem (17) and that there are
some nonzero entries of XX

?
that have the opposite sign to

the corresponding entries in VV , i.e., signðx?

ijÞ ¼ *signðvijÞ
for some ij. Now, form the matrix ~X~X such that ~xij ¼
signðvijÞjx?

ijj. The point ð ~X~X; t
? Þ is feasible and causes a

reduction in the objective function since k ~X~X * VV kF <
kXX? * VV kF while keeping the norm unchanged
kXX? k1;1 ¼ t

? ¼ k ~X~Xk1;1. This contradicts the assumption
thatXX

?
is the optimal solution. tu

Based on Lemma 1 the problem of finding the proximal
operator in (17) boils down to finding the magnitudes of the
entries of the matrixXX. Therefore, we can formulate it as2

minimize
XX; t

tþ 1

2!
kXX * UUk2F

subject to 11Txxi ( t; xxi & 00; i ¼ 1; . . . ;m;

(19)

where UU ¼ ½uu1; . . . ; uum# 2 Rn$m
þ is a matrix with non-

negative entries given by uij ¼ jvijj. The following result
determines the optimal solution of problem (19) and, as a
consequence, it also determines the proximal operator of
the mixed ‘1;1 norm:

Proposition 1. The optimal solution ðXX?
; t

? Þ of problem (19) is
given by

XX
? ¼

h
UU * !11mmT

i

þ
; (20)

and

t
? ¼

P
i2M?

1
jJ ?

i j
P

j2J ?
i
uij * !

P
i2M?

1
jJ ?

i j
; (21)

where ½)#þ ¼ maxð); 0Þ, M? ¼ f1 ( i ( m : 11Tuui & t
? g is

the set of columns affected by thresholding, J ?

i ¼ f1 ( j ( n :
uij * !m

?

i & 0g is the set of indices of the non-zero entries of
xx

?

i , and

m
?

i ¼
hP

j2J ?
i
uij * t

?

!jJ ?

i j

i

þ
; i ¼ 1; . . . ;m; (22)

is the ith entry of the vector mm 2 Rm
þ .

2. Notice that this is a power allocation problem which belongs to
the general family of waterfilling problems [15].
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Proof. The Lagrangian of problem (19) is given by

L
!
XX; t;mm; fssigmi¼1

"
¼ tþ 1

2!

Xm

i¼1

kxxi * uuik2

þ
Xm

i¼1

mið11Txxi * tÞ *
Xm

i¼1

ssT
i xxi :

(23)

Since the problem is convex, the necessary and sufficient
conditions for optimality are given by the KKT conditions:

+ Zero gradient of the Lagrangian

@L
@xxk

¼ 1

!
ðxxk * uukÞ þ mk11* ssk ¼ 00; 8k (24)

@L
@t

¼ 1*
Xm

i¼1

mi ¼ 0 (25)

+ Primal and dual feasibility

11Txxk ( t; xxk & 00; k ¼ 1; . . . ;m (26)

mm & 00; ssk & 00; k ¼ 1; . . . ;m (27)

+ Complementary slackness

mkð11Txxk * tÞ ¼ 0; k ¼ 1; . . . ;m (28)

ssk 0 xxk ¼ 0; k ¼ 1; . . . ;m; (29)

where 0 denotes element-wise product.
We start by showing that equation (20) holds or equiva-
lently, that every column xxk ofXX satisfies

xxk ¼
&
uuk * !mk11

'
þ; k ¼ 1; . . . ;m: (30)

In order to do so, letM ¼ f1 ( i ( m : 11Tuui & tg be the
set of columns that are affected by thresholding. Take for
instance xxk for some k 2 M, then we have

xxk ¼ uuk * !mk11þ !ssk: (31)

In this case we can have xkj > 0 which, by (29), (26), (27)
implies skj ¼ 0. Alternatively, we can have xkj ¼ 0 which
means ukj * !mk < 0. Therefore, both situations can be
written in compact form as

xxk ¼
&
uuk * !mk11

'
þ; k 2 M; (32)

where the thresholding operation ½)#þ is applied element-
wise. Alternatively, take xxk for some k =2 M then from
(28) it follows that mk ¼ 0 and hence, xxk ¼ uuk þ !ssk.
From (29) and the fact that uuk & 00 it follows that ssk ¼ 00
for all k =2 M. Therefore, we have that

xxk ¼ uuk; k =2 M: (33)

Since mk ¼ 0 for k =2 M we can put together (32) and (33)
into a single expression as in (30). It remains now to
derive an expression that relates t and fmkg

m
k¼1. We know

from (28) and the fact that mk 6¼ 0 for k 2 M that

11Txxk ¼
Xn

j¼1

&
ukj * !mk

'
þ ¼

X

j2J k

ðukj * !mkÞ ¼ t; k 2 M;

(34)
where we the set J k denotes the non-zero entries of xxk.
Solving for mk in (34) leads to

mk ¼
P

j2J k
ukj * t

!jJ kj
; k 2 M: (35)

Recall that for k =2 Mwe have mk ¼ 0 and 11Tuuk < t there-
fore, we can compactly express mk as

mk ¼
hP

j2J k
ukj * t

?

!jJ kj

i

þ
; k ¼ 1; . . . ;m;

and we recover the expression in (22). Finally, using
equation (25) it is easy to check that

t
? ¼

P
k2M

1
jJ kj
P

j2J k
ukj * !

P
k2M

1
jJ kj

;

which completes the proof. tu

We are now ready to derive an expression for the proxi-
mal operator of the mixed ‘1;1 norm as:

Corollary 1 (Proximal Operator). The proximal operator in
(16) is given by

prox!k)k1;1ðVV Þ ¼ signðVV Þ 0
h
jVV j* !11mmT

i

þ
; (36)

where mm is given as in Proposition 1.

Proof. It follows directly fromLemma 1 andProposition 1. tu

The expression in Corollary 1 resembles very much the
well-known soft-thresholding operator. In fact, the proximal
operator of the mixed ‘1;1 norm applies a soft-thresholding
operation to every column of the matrix but with a different
threshold value !mi for each column i ¼ 1; . . . ;m (see
Fig. 1). As expected, the above expression reduces to soft-
thresholding form ¼ 1:

Corollary 2 (Soft-thresholding). In the case m ¼ 1 so that
VV ¼ vv 2 Rn is a vector, the proximal operator is given by the
well-known soft-thresholding

prox!k)k1ðvvÞ ¼ signðvvÞ 0 ½jvvj* !11#þ: (37)

Proof. By setting m ¼ 1 we get from Proposition 1 that t ¼P
j2J jvjj* jJ j!, where J is the set of non-zero entries of

the optimal vector xx? . Substituting this value into (22) we
get thatm? ¼ 1. The result then follows fromCorollary 1. tu

Corollary 3 (Projection onto the ‘1;1 ball). The projection
onto the ‘1;1 ball of radius ! is

Pk)k1;1(!ðVV Þ ¼ signðVV Þ 0min jVV j;!11mmT
! "

; (38)

with mm given as in Proposition 1.

Proof. The result follows from Corollary 1, (12) and (15). tu

Remark. Note that the results presented in this section can
be trivially extended to the case of complex-valued
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matrices by interpreting the sign operation as extracting
the phase of a complex number (i.e., signðVV Þ ¼ VV =jVV j).

4 ALGORITHMS FOR COMPUTING THE MIXED ‘1;1
NORM PROXIMAL OPERATOR

The results in Proposition 1 and Corollary 1 give us the basis
for finding an efficient algorithm for computing the mixed
‘1;1 norm proximal operator. However, the computation of
the proximal operator directly from those expressions
requires knowledge about the optimal setsM?

and fJ ?

i g
m
i¼1,

which are not known a priori. In this section we present a
procedure for addressing this issue. But first, we describe
an efficient pre-processing stage that can be used to reduce
the search space for the optimal sets M?

and fJ ?

i g
m
i¼1

needed to compute the proximal operator in Proposition 1.
The idea is to maximize a lower bound on the mixed ‘1;1
norm of the optimal solution, which allows us to discard
columns that will not be affected by thresholding hence,
reducing the search space for the optimal sets M?

and
fJ ?

i g
m
i¼1. This allows us to effectively reduce the dimension-

ality of the problem since our algorithm will be then applied
to a smaller matrix (i.e., a matrix which contains a subset of
columns of the original input matrix). After describing a
procedure to maximize such lower bound we then propose
a general iterative algorithm that uses the results in Proposi-
tion 1 and Corollary 1 to find the right solution.

4.1 A Lower Bound on the Norm
It follows from the analysis presented in Section 3 that only
a subset of the columns of the matrix VV might be affected by
the proximal operator (i.e., those with ‘1 norm larger than
t
? ). This fact can be exploited to reduce the search space of
the problem provided that some knowledge about the value
of t? is available. In particular, having a lower bound on t

?

would allow us to discard columns with smaller ‘1 norm. It
turns out that a simple lower bound can be derived from
the optimality conditions as stated in the following result:

Lemma 2 (Lower-bound on the norm). Let XX
? ¼

prox!k)k1;1ðVV Þ for some VV 2 Rn$m. Let t? ¼ kXX? k1;1 be the
mixed ‘1;1 norm of the optimal solution. Then, for any subset
M . f1; . . . ;mg

tM ¼ 1

jMj

(X

i2M
kvvik1 * n!

)
( t

?
: (39)

Proof. From the optimality conditions of Problem (19) we
know that xx

?

i ¼ ½uui * !m
?

i 11#þ, with uui ¼ jvvij, and that
11Txx?

i ( t
? . Then, it follows that

t
? & 1

jMj
X

i2M
11Txx

?

i ¼
1

jMj
X

i2M
11T½uui * !m

?

i 11#þ

& 1

jMj
X

i2M
11Tðuui * !m

?

i 11Þ ¼
1

jMj
X

i2M
ð11Tuui * n!m

?

i Þ

& 1

jMj

(X

i2M
11Tuui * n!

)
¼ 1

jMj

(X

i2M
kvvik1 * n!

)
;

(40)
where the last inequality follows from the fact thatP

i2M m
?

i ( 1. tu

In order to reduce the search space of the problem, we
can maximize the lower bound tM in (39) with respect to
M. Since the sum

P
i2M kvvik1 is maximized when we

choose the columns of VV with the largest ‘1 norm, a simple
method to compute the setM that maximizes tM is to sort
the columns of VV according to their ‘1 norm, evaluate the
objective for the top k columns, and choose the value of k
that maximizes tM, as described in Algorithm 1. Specifi-
cally, we form the vector ww that contains the ‘1 norms of the
columns of VV in decreasing order. From ww we compute
the partial sums sk ¼

Pk
i¼1 wi for k ¼ 1; . . . ;m, and evaluate

the value of the bound (39) as described in Algorithm 1 to
find its maximizer.

Algorithm 1.Maximizing the Lower Bound (39) on t
?

1: Input: ðVV ;!Þ
2: Initialization: UU  jVV j and vv 11TUU
3: Sort by ‘1 norm such that w1 & w2 & ) ) ) & wm

ww sortðvvÞ

4: Compute the maximizer

sk  
Xk

i¼1

wi; k ¼ 1; . . . ;m

t max
1(k(m

!
ðsk * n!Þ=k

"

5: Return: t

Note however, that while Algorithm 1 allows us to effi-
ciently find a maximum lower bound tM for t? , depending

Fig. 1. Illustration of the effect of the proximal operator. The left plot corresponds to the original matrix while the right plot corresponds to its thresh-
olded counterpart. The bottom color plots represent the ‘1 norm of each column. Warmer colors mean larger entries. The proximal operator projects
the columns of the input matrix onto the ‘1 ball of radius t

?
.
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on the parameter !, the maximum lower bound might be
smaller than zero, in which case it is not useful. In such
case, an alternative lower bound for t

? is given by the fol-
lowing result:

Lemma 3. Let XX
? ¼ prox!k)k1;1ðVV Þ for some VV 2 Rn$m. Let

t
? ¼ kXX? k1;1 be the mixed ‘1;1 norm of the optimal solution.
Then, it holds that

1

m

(
kVV k1;1 * !

)
¼ 1

m

(Xm

i¼1

kvvik1 * !

)
( t

?
; (41)

Proof. From (25) we know that
Pm

i¼1 m
?

i ¼ 1. It also holds
that t? & 11Txx?

i , hence

mt
? &

Xm

i¼1

11Txx
?

i ¼
Xm

i¼1

11T½uui * !m
?

i 11#þ

&
Xm

i¼1

!
max
1(j(n

uij * !m
?

i

"
¼
Xm

i¼1

kuuik1 * !
Xm

i¼1

m
?

i

¼ kUUk1;1 * ! ¼ kVV k1;1 * !:

(42)

tu

Note that the bound in (41) will be negative only if the
optimal solution is the zero matrix since:

kVV k1;1 < ! ¼) Pk)k1;1(!ðVV Þ ¼ VV

¼) prox!k)k1;1ðVV Þ ¼ 00:
(43)

4.2 A General Algorithm
A general procedure for computing the proximal operator of
the mixed ‘1;1 norm can be devised based on the optimality
conditions of Proposition 1 and the observation that, for a
fixed t, the problem in (19) boilds down to projecting the col-
umns of UU onto the ‘1 ball of radius t. A possible strategy for
finding t

? is to start with a lower bound t for t? , project each
column ofU whose ‘1 norm is above the current lower bound
onto the ‘1 ball of radius t, update the value of the lower
bound using (21), and keep iterating until there are no fur-
ther changes in t (see Algorithm 2). This algorithm is guaran-
teed to converge to the optimal solution, as stated next.

Algorithm 2. Proximal Operator of Mixed ‘1;1 Norm:
prox!k)k1ðVV Þ
1: Initialization: UU  jVV j
2: Compute lower bound on t
3: do
4: M-update:M 

$
i j t < kuuik1

%

5: for i 2 M do
6: Projection onto the simplex: xxi  Pk)k1(tðuuiÞ
7: J i-update: J i  

$
j jxij > 0

%

8: end for
9: t-update: t ¼

P
i2M

1
jJ i j
P

j2J i
uij*!P

i2M
1
jJ i j

10: whileM or fJ igmi¼1 change
11: Compute proximal operator using Corollary 1.

Proposition 2 (Correctness). Algorithm 2 converges to the
proximal operator of the mixed ‘1;1 norm of matrix VV 2 Rn$m

in at most nm iterations.

Proof. We prove that the algorithm reaches the optimal
solution by showing that starting from a lower bound,
the method produces a monotonic sequence of values for
t that eventually converges to the optimal value t? . To see
this, note that for a given t, the projection onto the ‘1 ball
has the form of (30) that is, xxi ¼

&
uui * !mi11

'
þ for some

value mi. LetM be the set of columns with ‘1 norm larger
than t (i.e.,M ¼ fi j kuuik1 > tg), and let J i; i 2 M denote
the sets of non-zero entries for the ith column after projec-
ting onto the ‘1 ball of radius t. Let also !m

?

i denote the
(per column) thresholding values at the optimal solution.
Now since t is a lower bound on t

? then it is necessary the
case thatM? .M and also that mi & m

?

i (hence J i . J
?

i ),
whereM?

is the subset of columns that are being thresh-
olded at the optimal solution. With these considerations
in mind, we can now compute the new value tþ using the
t-update step 14 in Algorithm 2 to get

tþ ¼
P

i2M
1
jJ ij
P

j2J i
uij * !

P
i2M

1
jJ ij

¼
P

i2M
1
jJ ij
P

j2J i

!
uij * mi!þ mi!

"
* !

P
i2M

1
jJ ij

¼
P

i2M
1
jJ ij

tþ mi!* !
P

i2M
1
jJ ij

¼ tþ !

P
i2M mi * 1P

i2M
1
jJ ij

& t;

(44)

where the last inequality follows from the fact that mi &
m

?

i ,
P

i2M? m
?

i ¼ 1 (see (25)) and M? .M. This proves
that starting from a lower bound of t, an iteration of
Algorithm 2 produces a new value that is larger or equal
than the previous one. If the new value is equal to the
previous one (i.e., tþ ¼ t), it means we have found the
optimal solution since the optimality conditions of Prop-
osition 1 are satisfied (note that the setsM and fJ igmi¼1

are determined by t and no changes in the value of t
would imply no changes in those sets either). For the
case where tþ > t, we need to show that the new value
tþ remains a lower bound on the optimal value. This is
the case since the t-update corresponds to the minimizer
of the cost function (19) given that we fix the support of
XX (i.e., specify the sets M and fJ igmi¼1). We can easily
see this by plugging the solution XX

?
as a function of t

into the cost function to get the function:

fðtÞ ¼ tþ 1

2!

Xm

i¼1

kxx/
i * uuik22 ¼ tþ 1

2!

X

i2M
ð!miÞ

2: (45)

Substituting the value of mi in (22) into (45) we get

fðtÞ ¼ tþ 1

2!

X

i2M

 P
j2J i

*t

jJ ij

!2

: (46)

Differentiating (46) with respect to t and equating to zero
yields the update equation for t. Since the setsM and J i

are determined based on a lower bound of t? then the
quadratic term in the optimization problem (19) is larger
than its value at the optimal threshold t

? . Therefore, the
updated t value must be smaller that t

? . As a conse-
quence, starting from a lower bound tð0Þ the algorithm
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produces a sequence of the form:

tð0Þ < tð1Þ < . . . < tðkÞ ¼ t
?
; (47)

with corresponding sets Mð0Þ 1Mð1Þ 1 . . . 1M?
and

J ð0Þ
i . J ð1Þ

i . . . . . J ?

i . Now since a change on t neces-
sarily implies a change in the support sets M and/or
fJ igmi¼1 and due to the inclusion relationships over itera-
tions at least one new element of the non-zero support of
the solution is added at every iteration. Since the non-
zero support of the solution has at mostmn elements, the
algorithm terminates in at mostmn iterations. tu

4.3 Particular Implementations and Complexity
The complexity ofAlgorithm 2 depends on themethod used for
computing the projection step onto the simplex and there exist
different alternatives in the literature [16]. A naive implementa-
tion of the proposed algorithm can lead to a computationally
inefficientmethod if at every iteration the projection step is com-
puted from scratch. Alternatively, one could exploit previous
estimates from one iteration to the next in order to improve the
computational efficiency. In this paper we explore two different
approaches for computing the projection step onto the simplex.
The first one is based on sorting the columns of the matrix of
absolute values that are affected by thresholding as described in
Algorithm 3. In such case, the expected complexity of the
method is dominated by the sorting operation and it is
OðmnlognÞ operations. Note that the projection onto the sim-
plex step only needs to be updated from one iteration to the
next due to the monotonicity of the t sequence. We can think of
the method as a nested version of [17] where the ball radius t is
updated in the outer loop allowing for a warm start of the pro-
jection step. The second approach is based on an active set
method based on Proposition 1 as described in Algorithm 4. In

this case, the nested projection onto the simplex is equivalent to
Michelot’s method [18]. While in the latter case the worst case
complexity of the projection step for each column is Oðn2Þ [16]
we have empirically observed that the method is more efficient
than the sorting-based one. Since both Algorithms 3 and 4 are
particular implementations of Algorithm 2 they are guaranteed
to terminate in at most mn (outer) iterations. In practice, how-
ever we have observed that the number of iterations to reach
convergence ismuch smaller (see Table 1).

Algorithm 3. Sorting-Based prox!k)k1ðVV Þ
1: Initialization: UU  jVV j
2: #==== Pre-processing ====#

3: Compute lower bound on t
4: M initialization:M 

$
i j t < kuuik1

%

5: for i 2M do
6: Sort uui into ssi: si1 & si2 & . . . & sin
7: J i ¼ fsi1g #Initialize J i

8: end for
9: #==== Iterations ========#

10: do
11: for i 2M then
12: while jJ ij < n
13: if

!PjJ i j
j¼1 sij * t

"
=jJ ij < sijJ i j then

14: J i ¼ J i [ fj j sijJ ij ¼ xijg #Lookup table

15: else
16: break
17: end for
18: t-update: t ¼

P
i2M

1
jJ i j
P

j2J i
uij*!P

i2M
1
jJ i j

19: M-update:M 
$
i j t < kuuik1

%

20: whileM or fJ igmi¼1 change
21: Compute proximal operator using Corollary 1.

TABLE 1
Average Execution Time and Average Number of Iterations (in Brackets) of the

Different Methods in Computing the Projection Onto the ‘1;1 Ball

Size a ST [13] NT [19] QT [8] Sort Active Set Bisection

100$ 100 10*4 1.48E-03 [2.0] 7.54E-04 [2.4] 2.12E-03 [-] 1.51E-04 [1.9] 1.26E-04 [2.8] 1.72E-04 [49.1]
10*3 3.66E-03 [6.5] 2.01E-03 [6.5] 2.19E-03 [-] 1.80E-04 [2.1] 1.09E-04 [4.2] 1.55E-04 [67.1]
10*2 6.83E-03 [8.3] 4.37E-03 [8.3] 1.98E-03 [-] 4.34E-04 [2.8] 1.36E-04 [6.8] 4.07E-04 [85.5]
10*1 6.62E-03 [7.2] 4.40E-03 [7.2] 1.64E-03 [-] 6.27E-04 [3.1] 2.43E-04 [9.8] 1.73E-03 [103.2]

1000$ 100 10*4 1.38E-02 [8.1] 6.08E-03 [8.1] 1.72E-02 [-] 7.90E-04 [2.1] 6.31E-04 [4.1] 7.18E-04 [68.6]
10*3 3.42E-02 [10.7] 1.96E-02 [10.7] 1.61E-02 [-] 1.05E-03 [2.7] 6.36E-04 [5.8] 9.99E-04 [81.3]
10*2 4.32E-02 [9.0] 2.89E-02 [9.0] 2.02E-02 [-] 3.43E-03 [3.1] 1.08E-03 [9.1] 1.83E-03 [107.3]
10*1 9.26E-02 [7.9] 6.31E-02 [7.9] 3.87E-02 [-] 1.22E-02 [3.8] 5.08E-03 [14.2] 5.58E-03 [117.7]

100$ 1000 10*4 3.99E-03 [4.0] 2.59E-03 [4.1] 1.81E-02 [-] 9.95E-04 [2.0] 6.70E-04 [4.0] 1.19E-03 [68.8]
10*3 1.07E-02 [6.7] 6.75E-03 [6.7] 1.72E-02 [-] 2.04E-03 [2.3] 6.88E-04 [5.1] 2.32E-03 [79.2]
10*2 2.45E-02 [8.6] 1.46E-02 [8.6] 1.65E-02 [-] 6.25E-03 [3.0] 1.06E-03 [9.0] 9.41E-03 [107.0]
10*1 2.33E-02 [8.0] 1.47E-02 [8.0] 1.67E-02 [-] 7.25E-03 [3.8] 2.46E-03 [14.2] 2.19E-02 [140.5]

1000$ 1000 10*4 9.97E-02 [8.8] 6.57E-02 [8.8] 2.01E-01 [-] 1.05E-02 [2.3] 7.91E-03 [5.0] 1.01E-02 [76.5]
10*3 2.66E-01 [11.0] 1.71E-01 [11.0] 2.00E-01 [-] 2.20E-02 [2.9] 8.57E-03 [8.6] 1.83E-02 [99.8]
10*2 3.14E-01 [9.0] 2.16E-01 [9.0] 2.00E-01 [-] 6.53E-02 [3.1] 1.38E-02 [9.0] 7.35E-02 [109.6]
10*1 3.05E-01 [8.2] 2.15E-01 [8.2] 1.99E-01 [-] 7.52E-02 [4.0] 3.16E-02 [16.0] 2.30E-01 [151.2]

10000$ 1000 10*4 3.55E+00 [13.0] 2.23E+00 [13.0] 2.62E+00 [-] 1.16E-01 [3.0] 9.60E-02 [8.3] 1.14E-01 [100.7]
10*3 3.62E+00 [11.0] 2.38E+00 [11.0] 2.61E+00 [-] 2.23E-01 [3.0] 1.10E-01 [9.0] 1.86E-01 [112.1]
10*2 4.41E+00 [9.0] 2.99E+00 [9.0] 2.64E+00 [-] 6.57E-01 [3.7] 1.71E-01 [9.5] 2.21E-01 [115.2]
10*1 4.54E+00 [8.8] 3.09E+00 [8.8] 2.65E+00 [-] 7.59E-01 [4.0] 3.51E-01 [16.0] 3.98E-01 [159.8]

The results correspond to an average over 100 realizations.
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Algorithm 4. Active Set prox!k)k1ðVV Þ
1: Initialization: UU  jVV j
2: #==== Pre-processing ====#

3: Compute lower bound on t
4: M initialization:M 

$
i j t < kuuik1

%

5: Partial sums: Sð0Þ
i ¼ kuuik1; i ¼ 1; . . . ; m:

6: #==== Iterations ========#

7: do
8: for i 2 M do
9: Si  Sð0Þ

i ; J i  f1; . . . ; ng #Initialize

10: do
11: mi ¼ ðSi * tÞ=ð!jJ ijÞ
12: for j ¼ 1; . . . ; n do
13: if uij ( mi then
14: J i ¼ J i * fjg
15: Si ¼ Si * uij

16: end for
17: while J i changes
18: end for
19: t-update: t ¼

P
i2M

1
jJ i j
P

j2J i
uij*!P

i2M
1
jJ i j

20: M-update:M 
$
i j t < kuuik1

%

21: whileM or fJ igmi¼1 change
22: Compute proximal operator using Corollary 1.

4.3.1 Bisection Search

The algorithms presented so far approach the solution from
below, starting with a lower bound on the optimal value t.
Given an initial search interval that contains the optimal
solution t

? and, using the update equation for the value of t
it is possible to devise a bisection procedure that would iter-
atively shrink the search interval. A lower bound is given
by Lemmas 2 and 3. A trivial upper bound is given by the
‘1;1 norm of VV . From (44) we know that starting from a
lower bound, the t-update will necessarily be larger or equal
than the previous value. Furthermore, it will only be equal
provided we are at the optimal solution. Likewise, by start-
ing with an upper bound of t the update equation will lead
to a less than or equal value for t. In order to see this, recall
from (44) that:

tþ ¼ tþ !

P
i2M mi * 1P

i2M
1
jJ ij

:

Now, we can have two different situations:

+ t < t
? is a lower bound which implies thatM 1M?

and mi > m
?

i . Therefore,
P

i2M mi >
P

i2M m
?

i ¼ 1
and hence tþ > t (see (44)).

+ t > t
? is an upper bound which implies thatM .M?

and mi < m
?

i . Therefore,
P

i2M mi <
P

i2M m
?

i (P
i2M m

?

i ¼ 1 and hence tþ < t.
As a consequence of the above relations a simple bisection
search can be devised for finding an "-optimal value for t as
summarized in Algorithm 5. Note that the algorithm uses
the fact that starting from a lower bound the t-update step
results in yet another lower bound, so the updated lower
bound is set to the newly computed value tþ as opposed to
t. Starting from an upper bound it is not necessarily the case
that the new updated value remains an upper bound, hence

the update for the upper bound uses the tested t value
instead.

Algorithm 5. Bisection prox!k)k1ðVV Þ
1: Set tolerance: " & 0
2: Initialization: UU  jVV j
3: #==== Pre-processing ====#

4: Compute lower bound tL
5: Compute upper bound tU ¼ maxi 11

Tuui

6: Inital test point: t ¼ tL
7: #==== Iterations ========#

8: while ðtU * tL > "Þ
9: M-update:M 

$
i j t < kuuik1

%

10: for i 2M do
11: Projection onto the simplex: xxi  Pk)k1(tðuuiÞ
12: J i-update: J i  

$
j jxij > 0

%

13: end for
14: t-update: tþ ¼

P
i2M

1
jJ i j
P

j2J i
uij*!P

i2M
1
jJ i j15: if tþ > t then

16: tL ¼ tþ #New lower bound

17: else
18: tU ¼ t #New upper bound

19: end if
20: New test point: t ¼ ðtU þ tLÞ=2
21: end while
22: Compute prox!k)k1ðVV Þ using Corollary 1 based on tL.

5 NUMERICAL EXPERIMENTS

5.1 Numerical Validation
In order to evaluate the computational complexity of the
proposed algorithms we randomly generate matrices in
Rn$m with independent and identically distributed random
entries drawn from a uniform distribution Uð½*0:5; 0:5#Þ.
We then apply the proposed implementations of Algorithm
2 to compute projections onto the mixed ‘1;1 ball for differ-
ent values of the ball radius. We label our implementations
as “Sort” for the sorting-based implementation, “Active
Set” for the one based on active sets, and “Bisection” for the
one based on a bisection search. For the bisection approach,
we use the same projection method as in the Active Set
method of Algorithm 4. We also compute the projections
using the state of the art algorithms. In particular we com-
pare to the method proposed in [8] which we denote as
“QT” and with the recently proposed root-search based
methods of [13], [19] which we denote as “ST” (Steffensen)
and “NT” (Newton), respectively. We record the execution
time for different configurations (sizes) of the data matrix
and for different values of the ‘1;1 ball radius. In our experi-
ments, we choose the radius of the ball to be a fraction a 2
½0; 1# of the true mixed norm of the matrix and compute the
average computation time over 100 realizations. For the
methods in [8], [13], [19] we use the implementations pro-
vided by the authors. The tolerance for root-search based
methods is set to its default value of " ¼ 1E * 10. For the
bisection search method we set the tolerance to that same
value. The numerical experiments have been conducted on
a 2.8 GHz machine with Intel I7 processor, and using Mat-
lab R2019b. The results for different matrix sizes are dis-
played in Table 1 where we report the averages for the
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execution time and the number of iterations3 (in brackets).
As it can be observed from the table, our implementations
achieve the best performance offering an improvement over
the state of the art that ranges between one and two orders of
magnitude with the Active Set method being the most effi-
cient in this setting. We also observed that both the Sorting
and Active Set methods converge to the true solution in a
very small number of iterations, far below to the worst-case
case ofmn.

Figs. 2 and 3 display the average execution time for the
case of 100$ 100 randomly generated matrices and for a tar-
get fraction of the ball radius of a ¼ 0:1 as we vary the num-
ber of columns (resp. rows). Also, Fig. 4 displays the
execution time for the different methods as a function of the
fraction of the norm a. As we can see, our proposed
approaches significantly outperform all previous methods.

In general, we also observe that all methods (except
Quattoni’s) perform better when projecting onto a ball of
small radius and that in such regime the root-search-based
methods can outperform Quattonni’s. The drop in execution
time for a & 1 corresponds to the case where there is no
thresholding (e.g., projection is the identity).

5.2 Application to Cancer Classification From Gene
Expression Data

In this section we test our algorithms in the context of multi-
task learning for the problem of cancer classification from
gene expression data where the dimensionality of the feature
vectorsm is typicallymuch larger than the number of samples
p. We use the datasets provided in [20] which consist of five
curated datasets of different types of cancers as described in
[20]. The datasets are briefly summarized in Table 2. We pose
the classification problem as amulti-task learning problem. In
particular, given a dataset of pointswith associated labelsD ¼$
ðxxi; ciÞ

%p

i¼1
, with xxi 2 Rm and ci 2 f0; . . . ; ng, where n is the

number of classes, we build a data matrix XX ¼ ½xx1; . . . ; xxp#T
and target labelmatrix YY ¼ ½yy1; . . . ; yyp#

T with

yyi ¼ ½yi1; . . . ; yin#T; yij ¼
1 j ¼ ci
0 else

#
: (48)

The problem is to predict the correct label for each class
while enforcing feature sharing among them:

minimize
WW

kYY *XXWWTk2F

subject to kWWk1;1 ( t
: (49)

Fig. 2. Average execution time for the projection onto the ‘1;1 ball for
randomly generated matrices of n ¼ 100 rows and for different number
of columns. The data is projected onto a ball whose radius is a fraction
a ¼ 0:1 of the original matrix. The results correspond to an average over
100 realizations.

Fig. 3. Average execution time for the projection onto the ‘1;1 ball for
randomly generated matrices with m ¼ 100 columns and for different
number of rows. The data is projected onto a ball whose radius is a frac-
tion a ¼ 0:1 of the original matrix. The results correspond to an average
over 100 realizations.

Fig. 4. Average execution time for the projection onto the ‘1;1 ball for
randomly generated matrices of size data 100$ 100. The data is pro-
jected onto a ball whose radius is a fraction a of the original matrix. The
results correspond to an average over 100 realizations.

TABLE 2
Characterization Summary of the Used Datasets, see [20]

Dataset Classes n Samples p Dimensionm

Carcinom [21], [22] 11 174 9182
GLIOMA [23] 4 50 4434
LUNG [24] 5 203 3312
ALLAML [25] 2 72 7129
Prostate-GE [26] 2 102 5966

3. For QT the implementation provided by the authors does not
return the number of iterations and hence it is not reported in Table 1.
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Note that problem (49) falls within the family of problems in
(2) which can be solved using a projected gradient descent
strategy. For the projection step onto the ‘1;1 ball we use the
sorting-based implementation of Algorithm 2.

We conducted an experiment using the datasets of
Table 2 where we center the data points (mean subtraction)
and normalize them by dividing each coordinate by its stan-
dard deviation. For each dataset we split the data into 80
percent training and 20 percent testing and computed the
average classification performance over 100 random data
splits. Once we solve (49) we use the following simple clas-
sification rule:

ĉi ¼ argmax
1(j(n

ŷij; ŶY ¼ XXWWT ¼ ½ŷy1; . . . ; ŷyp#
T : (50)

In addition, we use the learned weights to identify rele-
vant features and train a (kernel) support vector machine
(SVM) classifier on the identified features. Features are
sorted according to the euclidean norm of the columns ofWW
being the most relevant index the one with larger norm. For
the multi-class problem we use a one-versus-one strategy
with majority voting. We also provide a comparison with
the ‘2;1 norm based feature selection method of [20] for
which we used the implementation provided by the
authors. The ‘1;1 ball radius t in (49) as well as the regulari-
zation parameter for the method in [20] were chosen using a
grid search. The average classification accuracy of both

methods the classification rule (50) are summarized in
Table 3. As it can be appreciated we observe that the pro-
posed method using the ‘1;1 norm achieves better classifica-
tion accuracy than the method based on the ‘2;1 proposed in
[20]. It is important to note that the differences are more pro-
nounced in multi-class problems than in binary ones indi-
cating as expected, that the ‘1;1 norm encourages the
discovery of variables that are most correlated.

We also report the classification results using an SVM
classifier and for different number of features used. The
results are displayed in Fig. 6 for all datasets. We can
observe the superior performance of the proposed scheme
in selecting relevant features for the discrimination task.
Again the performance gap is generally more pronounced
on those datasets with more than two classes.

Finally, we also provide a comparison between the exe-
cution time required for the computation of the two steps
in the projected gradient descent. In particular, we record
the execution time for the computation of the gradient and
compare it with the time it takes to project onto the ‘1;1

ball. We do this for the largest (Carcinom) dataset. We dis-
play such projection time for all the considered projection
methods in this paper. The results are illustrated in Fig. 5.
Again, we appreciate the improved efficiency of our pro-
posed algorithms as compared to the state of the art. We
can also see that the computation of the projection opera-
tor using our proposed methods can be cheaper than the
computation of the gradient step. Surprisingly the bisec-
tion search appears to be the most efficient in this real data
scenario. A possible reason for such behavior might be
associated to the existing correlation among the data varia-
bles. In any case, the bisection search can be a suitable
option when there is a need to trade-off between accuracy
and computational complexity.

6 CONCLUSION

In this paper we have analyzed in detail the proximity oper-
ator of the mixed ‘1;1 matrix norm. We have provided
simple expressions for its computation that generalize the
well-known soft-thresholding algorithm. By exploiting the
duality relationship to the ‘1;1 norm we also derive the pro-
jection operator onto the mixed ‘1;1 norm. In addition, we
have proposed a general algorithm for the computation of
the proximal operator and two particular implementations
that can be orders of magnitude faster than the state of the
art making them particularly suitable for large-scale prob-
lems. We have also illustrated the application of the ‘1;1

norm for biomarker discovery (feature selection) for the
problem of cancer classification from gene expression data.

TABLE 3
Average Classification Accuracy Using Criterion (50)

Dataset Carcinom GLIOMA LUNG ALLAML Prostate-GE

[11 classes] [4 classes] [5 classes] [2 classes] [2 classes]

‘2;1 (Nie et al.) 95.50 68.90 76.95 92.36 93.25
‘1;1 (Proposed) 97.74 78.50 83.28 95.07 93.65

Fig. 5. Average execution time for the projection onto the ‘1;1 ball for the
multi-task learning problem using the Carcinom dataset as compared to
the computation time for the gradient step. We report the results for dif-
ferent values of the ‘1;1 ball radius t. The results correspond to an aver-
age over 5 random data splits where 80 percent of the data is used for
training. Our methods are indicated by an asterisk / where CS, AS, and
BI denote “Column Sort”, “Active Set” and “Bisection,” respectively.
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