Bounded-Degree Plane Geometric Spanners in Practice

FREDERICK ANDERSON, ANIRBAN GHOSH, MATTHEW GRAHAM,
LUCAS MOUGEQT, and DAVID WISNOSKY, University of North Florida

The construction of bounded-degree plane geometric spanners has been a focus of interest since 2002 when
Bose, Gudmundsson, and Smid proposed the first algorithm to construct such spanners. To date, 11 algorithms
have been designed with various tradeoffs in degree and stretch-factor. We have implemented these sophisti-
cated spanner algorithms in C++ using the CGAL library and experimented with them using large synthetic
and real-world pointsets. Our experiments have revealed their practical behavior and real-world efficacy. We
share the implementations via GitHub for broader uses and future research.

We design and engineer ESTIMATESTRETCHFACTOR, a simple practical algorithm, which can estimate
stretch-factors (obtains lower bounds on the exact stretch-factors) of geometric spanners—a challenging prob-
lem for which no practical algorithm is known yet. In our experiments with bounded-degree plane geometric
spanners, we found that ESTIMATESTRETCHFACTOR estimated stretch-factors almost precisely. Further, it gave
linear runtime performance in practice for the pointset distributions considered in this work, making it much
faster than the naive Dijkstra-based algorithm for calculating stretch-factors.

CCS Concepts: « Theory of computation — Sparsification and spanners;
Additional Key Words and Phrases: Geometric graph, plane spanner, stretch-factor

ACM Reference format:

Frederick Anderson, Anirban Ghosh, Matthew Graham, Lucas Mougeot, and David Wisnosky. 2023. Bounded-
Degree Plane Geometric Spanners in Practice. ACM J. Exp. Algor. 28, 1, Article 1.1 (April 2023), 36 pages.
https://doi.org/10.1145/3582497

1 INTRODUCTION

Let G be the complete Euclidean graph on a given set P of n points embedded in the Euclidean
plane. A geometric t-spanner on P is a geometric graph G’ := (P, E), a subgraph of G such that for
every pair of points u, v € P, the distance between them in G’ (the Euclidean length of a shortest
path between u, v in G’) is at most ¢ times their Euclidean distance |uv|, for some ¢ > 1. It is easy to
check that G itself is a 1-spanner with ©(n?) edges. The quantity ¢ is referred to as the stretch-factor
of G’. If there is no need to specify t, we simply use the term geometric spanner and assume that
there exists some ¢ for G’. We say that G’ is plane if it is crossing-free. G’ is degree-k or is said to

Research on this work was supported by the University of North Florida Academic Technology Grant and NSF Award
CCF-1947887.

Authors’ address: F. Anderson, A. Ghosh, M. Graham, L. Mougeot, and D. Wisnosky, School of Computing, University of
North Florida, 1 UNF Drive, Jacksonville, FL 32224; emails: {n01451351, anirban.ghosh, n00612546, 101398041, n01153911}@
unf.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1084-6654/2023/04-ART1.1 $15.00

https://doi.org/10.1145/3582497

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:2 F. Anderson et al.

o.'c o . . .
. e . 'o . L .
. . . .
« ® . ° ° '0.- .
.
e e . ¢ S . o
°
. . o o o o .
L4
. . °
. ° o.. .
hd
.
. ° . .
° . .
° . .
o® . .\ ‘ .,
o o . . .
e o
. .
.
o . o 28 .
e .) o®
0®
. o oo
. .o ®)
.
. .
e o .

Fig. 1. Left: A set P of 150 points, generated randomly within a square. Right: A plane degree-6 spanner on
P with stretch-factor ~ 1.82. The pair of points for which the spanner achieves a stretch-factor of ~ 1.82 is
shown in red along with the shortest path between them.

have bounded-degree if its degree is at most k. In this work, we experiment with bounded-degree
plane geometric spanners. Figure 1 presents an example of such a spanner.

Bounded-degree plane geometric spanners have been an area of interest in computational ge-
ometry for a long time. Non-crossing edges make them suitable for wireless network applica-
tions where edge crossings create communication interference. The absence of crossing edges
also makes them useful for the design of road networks to eliminate high-budget flyovers. Such
spanners have O(n) edges (at most 3n — 6 edges); as a result, they are less expensive to store and
navigate. Further, shortest-path algorithms run quicker on them since they are sparse. Bounded-
degree helps in reducing on-site equipment costs.

A triangulation T for a pointset P is referred to as a Ly-Delaunay triangulation if no point in P
lies inside the circumcircle of any triangle in T. Bose et al. [13] were the first to show that there
always exists a plane geometric o(x + 1)-spanner of degree at most 27 on any pointset, where
o denotes an upper bound for the stretch-factor of L,-Delaunay triangulations (the current best
known value is 0 = 1.998 due to Xia [45]). This result was subsequently improved in a long series
of papers [9, 12, 14, 16, 33, 34, 36] in terms of degree and/or stretch-factor. Bonichon et al. [11]
reduced the degree to 4 with t ~ 156.8. Soon after this, Kanj et al. [32] improved this stretch-
factor upper bound to 20 in their work. A summary of these results is presented in Table 1. This
family of spanner construction algorithms has turned out to be a fascinating application of the
Delaunay triangulation. Note that all these algorithms produce bounded-degree plane subgraphs
of the complete Euclidean graph on P with constant stretch-factors.

The intriguing question that remains to be answered is whether the degree can be reduced
to 3 while keeping ¢ bounded; refer to the work of Bose and Smid [15, Problem 14] and Toth
et al. [42, Chapter 32]. Interestingly, if one does not insist on constructing a plane spanner, Das
and Heffernan [23] showed that degree 3 is always achievable. Narasimhan and Smid [39, Section
20.1] show that no degree-2 plane spanner of the infinite integer lattice can have a constant stretch-
factor. Thus, a minimum degree of 3 is necessary to achieve a constant stretch-factor. If the points in
P are in convex position, then it is always possible to construct a degree-3 plane geometric spanners
(see [3, 7, 32]). From the other direction, lower bounds on the stretch-factors of plane spanners for
finite pointsets have been investigated elsewhere [24, 25, 35, 37]. In-browser visualizations of some

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:3

Table 1. Summary of Results on Constructions of Bounded-Degree Plane
Geometric Spanners, Sorted by the Degree They Guarantee

REFERENCE | DEGREE | STRETCH-FACTOR
Bose et al. [13] 27 o(r+1)~38.3
Li and Wang [36] 23 o(l+ %) ~ 6.4
Bose et al. [16] 17 o(2+2V3 + 37” +27sin 75) ~ 23.6
Kanj et al. [33] 14 O'(l + m) ~ 2.9
Kanj and Xia [34] 11 0(%) ~ 5.7
Bose et al. [14] 8 ol|l+ ﬁ ~ 44
Bose et al. [12] 7 o(1+V2)2 >~ 11.6
1 ~
Bose et al. [12] 6 o (1—tan(n’/7)(1+1/cos(ﬂ'/14))) ~ 81.7
Bonichon et al. [9] 6 6
Bonichon et al. [11] 4 \/4 +2V2(19 + 29v2) ~ 156.8
Kanj et al. [32] 4 20

The best known upper bound of o = 1.998 for the stretch-factor of the L,-Delaunay
triangulation [45] is used in this table for expressing the stretch-factors.

of the algorithms (those based on the L,-Delaunay triangulation) have been recently presented in
the work of Anderson et al. [2].

In related works, the construction of plane hop spanners (where the number of hops in shortest
paths is of interest) for unit disk graphs has been considered [6, 19, 26].

The most notable experimental work for geometric spanners is done by Farshi and
Gudmundsson [27]. The authors engineered and experimented with some of the well-known geo-
metric spanners construction algorithms published before 2009. However, the authors did not use
the algorithms considered in this work in their experiments. Planarity and bounded-degree are
important concerns in geometric network design. Hence, we found it motivating to implement the
11 algorithms (refer to Table 1) meant to construct bounded-degree plane geometric spanners. Fur-
ther, asymptotic runtimes and various theoretical bounds do not always do justice in explaining
the real-world performance of algorithms, especially in computational geometry, because of heavy
floating-point operations needed for various geometric calculations. Experiments reveal their real-
world performance. We note that a unique aspect of the family of bounded-degree plane spanner
construction algorithms is that users cannot specify an arbitrary value of t and/or degree for span-
ner construction. It is a deviation from many standard spanner algorithms; see elsewhere [12, 39]
for a review of such algorithms. This makes experiments with them even more interesting.

Our Contributions. First, we experimentally compare the aforementioned 11 bounded-degree
plane spanner construction algorithms by implementing them carefully in C++ using the popu-
lar CGAL library [41] and running them on large synthetic and real-world pointsets. The largest
pointset contains approximately 1.9 million points. For broader uses of these sophisticated algo-
rithms, we share the C++ implementations via GitHub. The comparisons are performed based on
their runtime, degree, stretch-factor, and lightness of the generated spanners. We present a brief
overview of the algorithms implemented and our experimental results in Sections 2 and 4, respec-
tively. The findings of our experimental study are presented in Section 5.

Second, in doing experiments with spanners, we found that stretch-factor measurement turns
out to be a severe bottleneck when n is large. To address this, we have designed ESTIMATESTRETCH-
FACTOR, a fast algorithm that can estimate the stretch-factor of a given spanner (not necessarily
plane). In our experiments, we found that it could estimate stretch-factors with high accuracy for
the class of geometric spanners dealt with in this work. It was considerably faster than the naive

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:4 F. Anderson et al.

Dijkstra-based exact stretch-factor measurement algorithm in practice. To our knowledge, no
such practical algorithm exists in the literature. Section 3 presents a description of this algorithm.

2 ALGORITHMS IMPLEMENTED

Every algorithm designed to date for constructing bounded-degree plane geometric spanners relies
on some variant of Delaunay triangulation. The rationale behind this is that such triangulations are
geometric spanners [10, 21, 22, 45] and are plane by definition. As a result, the family of plane span-
ner construction algorithms considered in this work has turned out to be a fascinating application
of Delaunay triangulation. It is essential to know that Delaunay triangulations have unbounded
degrees and cannot be used as bounded-degree plane spanners.

In this section, we provide a brief description for each of the 11 algorithms considered in this
work. Appropriate abbreviations using the authors’ names and dates of publication are used for
naming purposes. Since most of these algorithms are involved, we urge the reader to refer to the
original papers for a deeper understanding and correctness proofs. For visualizing some of these
algorithms, we recommend the interactive in-browser applet developed by us (see [2]). To observe
variations in spanner construction between the algorithms, see Appendix A.1.

In these algorithms, the surrounding of every input point is frequently divided into multiple
cones (depending on the algorithm) for carefully selecting edges from the Delaunay triangulation
used as the starting point. In our pseudocodes, the cone i of point u, considered clockwise, is
denoted by C}'. A triangulation T of a pointset P is said to be an L;-Delaunay triangulation of P
if no point in P lies inside the circumcircle of any triangle in T. Eight of the 11 algorithms use
L,-Delaunay triangulation as the starting point. The remaining 3 algorithms use either Lo, or TD-
Delaunay triangulations, as described later in this section. In the following, n denotes the size of
the input pointset:

e BGS05: Bose et al. [13]: This was the first algorithm that can construct bounded-degree plane
spanners using the classic Ly-Delaunay triangulation. First, a Delaunay triangulation DT of
P is constructed. Next, a degree-3 spanning subgraph SG of DT is computed that contains the
convex hull of P and is a (possibly degenerate) simple polygon with P as its vertex set. The
polygon is then transformed into a simple non-degenerate polygon Q. The vertices of Q are
processed in an order that is obtained from a breadth-first order of DT, then Delaunay edges
are carefully added to Q. The resulting graph denoted G’ is a plane spanner for the vertices
of Q. Refer to Algorithm 5 for a pseudocode of this algorithm. The authors show that their
algorithm generates degree-27 plane spanners with a stretch-factor of 1.998(x + 1) ~ 8.3
and runs in O(nlog n) time.

ALGORITHM 1: CanonicalOrdering(DT)
1 Declare an empty array ®[1,...,n];
2 Make a copy of DT and call it H;
3 Let reserved be a set of two consecutive vertices v1, vy on the convex hull of H;
4 O[1] « v1,P[2] « vy;
5 fori=1ton-2do

6 Let u be a vertex of the outer face of H \ reserved that is adjacent to at most two other
vertices on the outer face;

7 Olu] «n—i+1;

8 Remove u and all incident edges from H;

9 end

10 return @;

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:5

ALGORITHM 2: SpanningGraph(DT)

1 ®[1,...,n] « CanonicalOrdering(DT) (Algorithm 1);
2 SG « 0;
3 Add edges between v1, v2, v3 € ® to SG and mark the vertices as done;

4 forv; € @\ {v1,v9,0v3} do

5 Let ug, . . ., ug be the vertices neighboring v; in DT marked as done;
6 Remove edge {u1,uy} from SG;

7 Add edges {v;,u1} and {v;, uz} to SG;

8 if k > 2 then

9 Remove edge {ug_1,ux} from SG;
10 Add edge {v;, ug} to SG;

1 end

12 end

13 return SG;

ALGORITHM 3: TransformPolygon(SG, DT)

1 Ve0E«0
Let s1,v1 be two consecutive vertices on the convex hull of SG in counterclockwise order;

N}

3 Uprev < S1,0j < U1;

4 Add vprey to V;

5 do

6 Add v; to V;

7 Add {vj, vprev} to E;

8 Let vpexs be the neighbor of v; € SG such that vyex is the next neighbor clockwise from
Uprev;
9 Uprev < Vi, Ui < Unext;

10 while vpreo # 51 and v; # v1;
1 E=EU {{vj,0pren}} UDT \ SG;
12 return (V,E);

ALGORITHM 4: PolygonSpanner(Q, SG)

1 Let V, E be the vertices and edges of Q, respectively;
2 Let p[1,...,n] be the breadth-first ordering of V in Q, starting at any vertex in V;

3 E' « SG;
4 foreachu € p do
5 Let s1, 2, - . ., Sm be the clockwise ordered neighbors of u in Q;
6 Sj, Sk €< Sms
7 if u # p; then
8 Set s; and sy to the first and last vertex in the ordered neighborhood of u where
Sj, Sk € E/;
9 end
10 Divide Zsjusj and Zsgusy, into an minimum number of cones with maximum angle 7/2;
11 In each cone, add the shortest edge in E incident upon u to E’ and all edges {s¢, s¢11} such

that 1<l <jork <€ <m;
12 end
13 return E’;

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

F. Anderson et al.

ALGORITHM 5: BGS05(P)

1 DT « Ly-DelaunayTriangulation(P);

2 SG « SpanningGraph(DT) (Algorithm 2);

3 Q « TransformPolygon(SG, DT) (Algorithm 3);
4+ G’ « PolygonSpanner(Q, SG) (Algorithm 4);

5 return G’;

LW@4: Li and Wang [36]: This algorithm is inspired by BSG2005 but is a lot simpler and avoids
the use of intermediate (possibly degenerate) polygons. The algorithm computes a reverse
low-degree ordering of the vertices of the L,-Delaunay triangulation DT constructed on P.
Then it sequentially considers the vertices in this ordering, divides the surrounding of every
such vertex into multiple cones, and then adds short edges from DT to preserve planarity.
Algorithm 7 presents a pseudocode of this algorithm. The authors have shown that this
algorithm generates degree-23 plane spanners (when the input parameter « of this algorithm
is set to 77/2) having a stretch-factor of 1.998(1 + 7/V2) ~ 6.4 and runs in O(nlog n) time.

ALGORITHM 6: ReverselLowDegreeOrdering(DT)

1 Declare an empty array ®[1...n];
2 Make a copy of DT and call it H;
3 fori=1tondo

4 Let u be a vertex in H with minimal degree;
5 dlu] «n—i+1;

6 Remove u and all incident edges from H;

7 return

ALGORITHM 7: LW04(P, 0 < « < 7/2)

1 DT « Ly-DelaunayTriangulation(P);
2 ®[1...n] « ReverseLowDegreeOrdering(DT) (Algorithm 6);

3 E« 0

4 foreach u € ¢ do

5 if u has unprocessed Delaunay neighbors then

6 Divide the area surrounding u into sectors delineated by these unprocessed neighbors;

7 Divide each sector into a minimum number of equal-sized cones CY,CL, ... with angle
at most «;

8 foreach Ci, do

9 Let vy, vz, ..., v, be the clockwise-ordered Delaunay neighbors of u in C},;

10 Let v jpsest De the closest unprocessed neighbor to u;

1 Add edge {1, voosest) to E;

12 Add all edges {vj,vj+1} such that 1 < j < mto E;

13 | Marku as processed;

14 return E;

BSXQ9: Bose et al. [16]: This algorithm is quite similar to LW04 in design and also relies on re-
verse low-degree ordering of the vertices of the Delaunay triangulation. Refer to Algorithm 8.
The authors have generalized their algorithm so that it can construct bounded-degree plane
spanners from any triangulation of P, not necessarily just the L,-Delaunay triangulation (al-
though the L,-Delaunay triangulation is of primary interest to us). When the L;-Delaunay

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:7

triangulation is used and the parameter « is set to 2;7/3, the algorithm generates degree-17
plane spanners having a stretch-factor of o'(2 + 23 + 37” + 27 sin 75) ~ 23.6 in O(nlogn)
time. After computing the triangulation and the reverse low-degree ordering, at every ver-
tex u, § = [2x/a] Yao cones are initialized such that the closest unprocessed triangulation
neighbor falls on a cone boundary and occupies both cones as the short edge, which is added
to the spanner. In the remaining cones, the closest unprocessed neighbor of u in each cone
is added. In all cones, special edges between pairs of neighbors of u are added to the spanner
if both neighbors are unprocessed.

ALGORITHM 8: BSX09(P, 0 < a < 27/3)

1 DT « Ly-DelaunayTriangulation(P);
2 @[1...n] < ReverselLowDegreeOrdering(DT) (Algorithm 6);

3 E« 0

4 foreach u € ® do

5 if u has unprocessed Delaunay neighbors then

6 Let v¢joses+ e the closest unprocessed neighbor to u;

7 Add the edge {u, vcpsest) to E;

8 Divide the area surrounding u into LZF”J non-overlapping cones C%, C}, . .. such that
Uclosest is on the boundary between the first and last cones;

9 foreach C}, except the first and last do

10 if u has unprocessed neighbors in C}, then

1 Let w be the closest unprocessed neighbor to u in the cone;

12 Add edge {u, w} to E;

13 end

14 Let vg, v1, . .., Um—1 be the clockwise-ordered neighbors of u;

15 Add all edges {v},V(j11) mod m} to E such that 0 < j < m and v}, V(j11) mod m are

unprocessed;

16 end

17 end

18 Mark u as processed;

19 end

20 return E;

BGHP10@: Bonichon et al. [9]: This was the first algorithm that deviated from the use of L,-
Delaunay triangulation; instead, it used TD-Delaunay triangulation to select spanner edges,
introduced by Chew [22] in 1989. For such triangulations, empty equilateral triangles are
used for characterization instead of empty circles, as needed in the case of L,-Delaunay tri-
angulations. TD-Delaunay triangulations are plane 2-spanners but may have an unbounded
degree. BGHP10 first extracts a degree-9 subgraph from the TD-Delaunay triangulation that
has a stretch-factor of 6. Then using some local modifications, the degree is reduced from 9
to 6 but the stretch-factor remains unchanged. Refer to Algorithm 9. It uses internally Algo-
rithms 10 through 15. In this algorithm, charge(u, i) maps vertex u € DT and a cone i of u
to the number of edges charged to the cone, initialized to 0 in the beginning. The algorithm
runs in O(nlogn) time, as shown by the authors.

KPX1@: Kanj et al. [33]: For every vertex u in the L,-Delaunay triangulation, its surrounding
is divided into k > 14 cones. In every nonempty cone of u, the shortest Delaunay edge
incident on u is selected. After this, a few additional Delaunay edges are also selected using
some criteria based on cone sequences. Algorithm 16 presents a complete description of

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:8 F. Anderson et al.

this algorithm with the technical details. When k is set to 14, degree-14 plane spanners

are generated having a stretch-factor of 1.998(1 + W’;/M))

~ 2.9. Note that out of the

11 algorithms we have implemented in this work, this algorithm gives the best theoretical

guarantee on the stretch-factor (see Table 1). KPX10 runs in O(nlog n) time.

ALGORITHM 9: BGHP10(P)

1 Notations. Refer to Algorithms 10 through 15 to see how i-relevant(v, u, i), i-distant(w, i),

parent(u,i), closest(u,i), first(u,i), and last(u, i) are defined.
2 DT < TD-DelaunayTriangulation(P);
3 E« 0
4 foreach nonempty cone i of vertex u € DT where i € {1,3,5} do
5 Add edge {u, closest(u,i)} to E;

6 charge(u, i) « charge(u,i) + 1;
7 charge(closest(u,i),i + 3)) « charge(closest(u,i),i+3) + 1;
8 if first(u,i) # closest(u,i) A i-relevant(first(u,i),u,i — 1) then

Add edge u, first(u, i) to E;

10 charge(u,i — 1) « charge(u,i— 1) + 1;

11 end

12 if last(u,i) # closest(u,i) A i-relevant(last(u,i),u,i+ 1) then
Add edge {u, last(u, i)} to E;

charge(u,i+ 1) « charge(u,i+ 1) + 1;

13

14

15 end

16 end

17 foreach cone i of vertex u € DT where i € {0, 2,4} such that i-distant(u, i) is true do

18 Unext < Tirst(u,i+ 1);

19 VUprev < last(u,i—1);

20 Add edge {vnext, Vprev} to E;

21 charge(vpext,i + 1) « charge(vpexs,i+ 1) + 1;

22 charge(vprev,i— 1) « charge(vprev,i—1) + 1;

23 Let vremouve be the vertex from vpext, Vprew Where Z(parent(u, i), u, Vremove) is
maximized;

24 Remove edge {u, Uremove} from E;

25 charge(u, i) « charge(u,i) — 1;

26 end

27 foreach cone i of vertex u € DT where i € {0, 1,...,5} such that charge(u,i) = 2 A

charge(u,i — 1) = 1 A charge(u,i + 1) = 1 do

28 if u = last(parent(u,i),i) then
29 ‘ Uremove < last(u,i—1);

30 else

31 ‘ Uremove < first(u,i+1);

32 end

33 Remove edge {u, Uremove} from E;
34 charge(u, i) « charge(u,i) — 1;
35 end

36 return E;

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:9

ALGORITHM 10: i-relevant(v, u, i)
1w« parent(u,i);
2 return v # closest(u,i) Av € Cl;

ALGORITHM 11: i-distant(w, i)

1 u « parent(w,i);
2 return {w,u} ¢ E A i-relevant(first(w,i+ 1),u,i+ 1) A i-relevant(last(w,i—1),u,i—1);

ALGORITHM 12: parent(u, i € {0, 2,4})

1 return closest(u,i)

ALGORITHM 13: closest(u, i)

1 return the closest vertex to u in cone i of u, if it exists;

ALGORITHM 14: first(u, i)

1 return the first vertex (considered clockwise) in cone i of u, if it exists;

ALGORITHM 15: last(u, i)

1 return the last vertex (considered clockwise) in cone i, if it exists;

ALGORITHM 16: KPX10(P, integer k > 14)

1 DT « Ly-DelaunayTriangulation(P);
2 foreach vertex u € DT do

3 Partition the area surrounding u into k disjoint cones of angle 27 /k;

4 In each nonempty cone, select the shortest edge in DT incident to u;

5 foreach maximal sequence of £ > 1 consecutive empty cones do

6 if £ > 1 then

7 select the first | £/2] unselected incident DT edges on u clockwise from the

sequence of empty cones and the first [£/2] unselected DT edges incident on u
counterclockwise from the sequence of empty cones;

8 else
9 let ux and uy be the incident DT edges on m clockwise and counterclockwise,
respectively, from the empty cone;

10 if either ux or uy is selected, then select the other edge (in case it has not been
selected); otherwise, select the shorter edge between ux and uy breaking ties
arbitrarily;

11 end

12 end

13 end

14 return the DT edges selected by both endpoints;

e KX12: Kanj and Xia[34]: This O(nlog n)-time algorithm takes a different approach in contrast
with the previous ones, although it still uses the L,-Delaunay triangulation DT as the starting
point. Every vertex u in DT selects at most 11 of its incident edges in DT, and edges that are
selected by both endpoints are kept. As such, it is guaranteed that the degree of the resulting

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:10 F. Anderson et al.

subgraph is at most 11. The stretch-factors of the generated spanners are shown to be at most

2sin(27/5) cos(n/5) \ .
1.998(m) ~ 5.7. Refer to Algorlthm 17.

ALGORITHM 17: KX12(P)

1 DT « Ly-DelaunayTriangulation(P);
2 foreach vertex u € DT do

3 In each wide sequence (a sequence of exactly three consecutive edges incident to a vertex
whose overall angle is at least 477/5) around u, select the edges of the sequence;

4 Partition the remaining space surrounding u not in a wide sequence into a minimum
number of disjoint cones of maximum angle 7/5;

5 In each nonempty cone, select the shortest edge incident to u;

6 In each empty cone, let ux and uy be the incident DT edges on u clockwise and

counterclockwise, respectively, from the empty cone;
7 If either ux or uy is selected, then select the other edge (in case it has not been selected);
otherwise, select the longer edge between ux and uy breaking ties arbitrarily;

s end
9 return all edges selected by both incident vertices;

e BCC12-7, BCC12-6: Bose et al. [12]: The authors present two algorithms in their paper.
Whereas previous algorithms used strategies involving iterating over the vertices one-by-
one, this algorithm takes the approach of iterating over the edges of the Delaunay triangula-
tion in order of non-decreasing length to query agreement among the vertices for bounding
degrees. BCC12-7, the simpler of the two, produces 1.998(1 + V2)? ~ 11.6-spanners with de-
gree 7. However, BCC12-6 constructs 11'998(1—tan(7r/7)(1+l—1/cos(n/14))) ~ 81.7-spanners with
degree 6 but not all edges come from the L,-Delaunay triangulation. Both these algorithms
run in O(nlogn) time. See Algorithm 18. The parameter A € {7, 6} is used to control the
degree. Depending on A, either Algorithm 20 or Algorithm 19 is invoked.

ALGORITHM 18: BCC12(P, A € {6,7))
1 DT « Ly-DelaunayTriangulation(P);
2 E,E* « 0;
3 Initialize k = A + 1 cones surrounding each vertex u, oriented such that the shortest edge

incident on u falls on a boundary;
4 foreach {u,v} € DT in order of non-decreasing length do
5 if VCi, containing {u, v}, C}, N E = 0 and YC), containing {u, v}, C,, N E = 0 then

6 ‘ Add edge {u, v} to E;
7 end

s end

9 foreach {u,v} € E do

10 Wedgenx (u, v);

1 Wedgep (v, u);

12 end

13 return E U E*;

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:11

ALGORITHM 19: Wedge; (u, v;)

1

10

foreach C, containing {u,v;} do

end

Let {u, v} and {u, vy} be the first and last edges of DT in the cone;
Add all edges {vm, Um+1} to E* suchthatj <m <i—lori<m<k—1;
if {u,v;41} € CZ and v;41 # v and Zuv;vi41 > /2 then
‘ Add edge {vj, vi+1} to E¥;
end
if {u,v;-1} € CZ and v;—1 # v and Zuv;vi—1 > /2 then
‘ Add edge {vj, vj—1} to E¥;
end

ALGORITHM 20: Wedge (1, v;)

1 foreach C7 containing {u,v;} do

2

3

4

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

end

Let Q = {vy : {u, v} € CZ N DT} = {vj,..., v}
Let Q" = {vy : LUp-1VnUn+1 < 671/7, 00 € Q'\ {’Uj,vi’vk}};
Add all edges {vp, vp+1) to E* such that vy, vp41 € Q" andne [+ 1,i—2] U [i + 1,k — 2];
/* W.1l.0.g. the points of Q’ lie between v; and v; (the symmetric case is
handled analogously) */
if /uvjvij_1 > 4n/7 and i,i— 1 # j then
‘ Add edge {v;,vj—1} to E*;
end
Let vf be the first point in Q’;
Leta = min{n|n > fand v, € 0\ Q')
if f =i+ 1then
if Zuv;jviy1 < 4m/7 and a # k then
‘ Add edge {vf, va) to E¥;
end
if Zuvjvjy1 > 4n/7 and f + 1 # k then
‘ Add edge {vi,vp41) to E%;
end
else
Let vy be the last point in Q;
Let b = max{n|n < £ and v, € Q\ Q’};
if £ = k — 1 then
‘ Add edge {vg, vy} to E*;
else
Add edge {vp,vpi1} to EY;
if vy_; € Q’ then
‘ Add edge {vg,vp_1} to E;
end

end
end

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:12 F. Anderson et al.

e BKPX15: Bonichon et al. [11]: This algorithm uses the L,-Delaunay triangulation and was
the first degree-4 algorithm. For such triangulations, empty axis parallel squares are used for
characterization instead of empty circles, as needed in the case of L,-Delaunay triangulations.
The L..-distance between two points u, w is defined as dw (u, W) = max(dy (u, w), dy(u, w)).
From the L-Delaunay triangulation of P, a directed Lo,-distance-based Yao graph E") is
constructed: the space around every point p € P is divided into four disjoint 90° cones and
then for each non-empty cone, and a directed edge going out of p is placed between p and
its closest neighbor in the cone according to the L. -distance, breaking ties arbitrarily. The

—
authors show that Y;° is a plane /20 + 14V2-spanner. Then a degree-8 subgraph Hg of Y;* is
constructed. Finally, some redundant edges are removed and new shortcut edges are added

to obtain the final plane degree-4 spanner with a stretch-factor of /20 + 14V2(19 4+ 29V2) ~
156.8. No runtime analysis is presented by the authors. Refer to Algorithm 21.

ALGORITHM 21: BKPX15(P)

1 Notations. The algorithm divides the space around each point into four cones, separated by the
x- and y-axes after translating the point to the origin. Each cone has an associated charge,
which can be 0, 1, or 2. The algorithm labels certain edges as follows. Each edge will be an
anchor or a non-anchor and weak or strong. Further, each edge may have an additional label
of start-of-odd-chain-anchor. A weak anchor chain is a path wg, w1, wy, ..., wy of
maximal length consisting of weak anchors such that the cone of each edge (w.r.t. the source
vertex) alternates between some i and i + 2. Canonical edges are edges between consecutive
vertices in the ordered neighborhood of a vertex u in a common cone i. An edge (u, v) is said to

be dual if there are two or more edges of Eg incident to cone i of u and cone i + 2 of v.
2 DT « Lo -DelaunayTriangulation(P);
3 E") « constructYaoInfinityGraph(DT) (Algorithm 22);
1 A« selectAnchors(Y—‘x’),DT) (Algorithm 23);
5 Hg < degree8Spanner(A, E"),DT) (Algorithm 26);
6 Hg «— processDupEdgeChains(Hg,ﬁ")) (Algorithm 27);

—
7 Hy « createShortcuts(Hg, Y,”, DT) (Algorithm 28);
s return Hy;

ALGORITHM 22: constructYaoInfinityGraph(DT)

—
1 Yf" «— 0;

2 foreach u € DT do

3 foreach cone C}, around u do

4 Let v € C}, be the vertex with the smallest Lo, distance;
5 Add (1,) to Y=

6 end

7 end

(o]
s return Y4 ;

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice

1.1:13

—
ALGORITHM 23: selectAnchors(Y,”, DT)

—
1 foreach (u,v) € Y:O do
Let i be the cone of u containing v;

2

3

4

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33

end

Vanchor

if =

end
Mar

A« 0
foreach anchor (u,v) in each C,i do
if anchor of C52 is (v, u) or undefined then

— 0,
isMutuallySingle(Y,”, u,v,i) and u has more than one Y, edge in C;, then
Let £ be the position of v and k the number of vertices in fan(DT, u, i);
— —
if ¢ > 2and (vy_q,v¢) € V" and (vg,vp-1) € Y,” then
Let vgr such that ¢/ < € be the starting vertex of the maximal uni-directional
canonical path ending at vg;
Yanchor < V5
. 73 I
elseif £ <k —1and (vpy1,v¢) € Y,” and (vg,vp41) € Y,° then
Let vy such that £’ > € be the starting vertex of the maximal uni-directional
canonical path ending at vg;

Vanchor < V¢

Kk (, Vgnehor) as the anchor of Ci;

Mark (u,v) as strong and add it to A;

else
‘ Mark (u,v) as weak;
end
end
foreach weak anchor (u,v) in each Cl, do
if u begins the weak anchor chain (wg, w1, ..., wy) then
if k is odd then
‘ Mark (wp, w1) as a start-of-odd-chain-anchor;
end
for({=k-1;,0>0; {=¢-2do
| Add (wg_q,we) to A;
end
end
end
return A;

ALGORITHM 24: fan(DT, u, i)

1 return all neighboring vertices (v1, vo, . .., vg) in C}, in counterclockwise order;

—
ALGORITHM 25: isMutuallySingle(Y;*, u, v, i)

— . —_— .
1 return u has one edge from Y;” in C}, and v has one edge from Y,” in cire,

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:14 F. Anderson et al.

—
ALGORITHM 26: degree8Spanner(A, Y:", DT)

1 Charge each anchor (u,v) € A to the cones of each vertex in which the edge lies;

2 Hg « A;

3 foreach vertex u and cone i of u do

4 {v1,...,0r} « fan(DT,u, i);

5 if k > 2 then

6 Add all uni-directional canonical edges to Hg except (v2,v1) and (vg_1, Vg);
7 if (v2,v1) is a non-anchor, uni-directional edge such that

— —
(v2,v1) € Y A (v1,02) ¢ Y7 A (v1,u) is a dual edge A not a start-of-odd-chain
anchor chosen by v; then

8 | Add (vz, 1) to Hg;
9 end
10 if (vg_1, vg) is a non-anchor, uni-directional edge such that

— — .
(Vk-1Vk) € Y,° A (U, v—1) € Y;° A (v, u) is a dual edge A not a
start-of-odd-chain anchor chosen by v then

11 ‘ Add (vg_1,vg) to Hs;

12 end

13 foreach canonical edge (v, w) added to Hg do
1 Ucharge < U5

15 if (v, w) is a non-anchor then

16 ‘ Ucharge < Us

17 end

18 Charge (v, w) to the cone of v containing w and the cone of w containing v¢parges
19 end

20 end

21 end

22 return Hg;

—
ALGORITHM 27: processDupEdgeChains(Hs, Y,*)

1 Hg « Hg;

2 foreach uni-directional non-anchor (u,v) in cone i of u in Hg with charge = 1 do

3 if cone i+ 1 ori— 1 of v has charge = 2 A (4, v) is charged to cone i + 1 or i — 1 of v then
4 Let j be the cone of v where (u, v) is charged;

5 Vcurrent < U, Vnext < 0, D « 0;

6 while cone j of v,ex; has charge = 2 A (Veurrents Vnext) is in cone j of vyexr do

7 Add (Veurrent, Vnext) to D;

8 Ucurrent < Unext;

9 Set Vpext to the target of the g") edge beginning in cone j of veyrrent;

10 swap(i, j);

11 end

12 Starting with the last edge in the path induced by D, remove every other edge from Hg;
13 end

1 end

15 return Hg;

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:15

—
ALGORITHM 28: createShortcuts(Hj, Y:°, DT)

1 H4 — H6;
2 foreach pair of non-anchor uni-directional canonical edges (vr-1,vr), (Ur4+1,vr) in cone i of

u do
3 Remove (vy—1,vy) and (vy41, vr) from Hy;
4 Add (vy-1,vr+1) to Hy;
5 Charge this edge to the cones of each vertex in which the edge lies;
¢ end

7 return Hy;

e KPT17: Kanj et al. [32]: Akin to BGHP10, this algorithm uses the TD-Delaunay triangulation
and ©-graph to introduce fresh techniques in spanner construction. Refer to Algorithm 29
for a pseudocode of this algorithm. The authors show that their algorithm generates degree-4
spanners with a stretch-factor of 20 and runs in O(nlog n) time.

ALGORITHM 29: KPT17(P)

1 Notations. For each vertex, the shortest edge in each odd cone is called an anchor. Cones 1 and 4
are labeled as blue and the rest as white. The first and last edges incident upon a vertex u in a
cone i are called the boundary edges of u in i. The canonical path is made up of all canonical
edges incident on u in cone i, forming a path from one boundary edge in the cone to the other.

2 DT « TD-DelaunayTriangulation(P);

3 E,A « 0

foreach white anchor (u,v) in increasing order of dy length do
if u and v do not have a white anchor in a cone adjacent to (u,v)’s cone then

‘ Add (u,v) to A;

7 end

ST N

s end
Add all blue anchors to A;
10 foreach blue anchor u do

©

11 Let s1, 2, . - ., Sm be the clockwise ordered neighbors of u in DT;
12 Add all canonical edges (s¢,s¢+1) € Ato Esuchthat 1 < € < m;
13 end

14 foreach pair of canonical edges (u,v), (w,v) € E in a blue cone do
15 Remove (u,v) and (w, v) from E;

16 Add a shortcut edge (u, w) to E;

17 end

18 foreach white canonical edge (u, v) on the white side of its anchor a do
19 if a ¢ A then

20 ‘ Add (u,v) to E;

21 end

22 end

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:16

F. Anderson et al.

25
26
27
28

29

30

31

32

33

34

35

36

37

foreach white anchor (v, w) and its boundary edge (u, w) # (v, w) on the white side do
Let u = s1,52,...,5m = v be the canonical path between u and v;
fori=0tomdo
if (sj+1,s;) is blue then
Let j be the smallest index in P; = {sj+1,...,Sn} such that s; is in a white cone of s;
and P; lies on the same side (or on) the straight line s;sj;
Add the shortcut (Sj, s,-) to E;
if (sj,sj_l) € E then
Remove (Sj,Sj_l) from E;
end

i< j;

end
end

end
return E U A;

e BHS18: Bose et al. [14]. This algorithm produces a plane degree-8 spanner with stretch-factor
atmost 1.998(1+—2Z——) ~ 4.4 using the L,-Delaunay triangulation and ©-graph. However,

6 cos(/6)

the authors do not present any runtime analysis of their algorithm. In BHS18, the space
around every point p is divided into six cones and oriented such that a boundary lies on the x-
axis after translating p to the origin. The algorithm starts with the L,-Delaunay triangulation
DT, then, in order of non-decreasing bisector distance, each edge is added to the spanner if
the cones containing it are both empty. For each edge added here, certain canonical edges
will also be carefully added to the spanner. Refer to Algorithm 30.

ALGORITHM 30: BHS18(P)

1 Notations. The bisector-distance [pq] between p and q is the distance from p to the

w

«

N

N1

©

orthogonal projection of g onto the bisector of C’l.O where g € C’l.o. Let {q0.q1,---,qq—1} be the
sequence of all neighbors of p in DT in consecutive clockwise order. The neighborhood N, with
apex p is the graph with the vertex set {p, qo. q1, - - ., q4—1} and the edge set

{9, qj+11} U {gj. ¢j+11},0 < j < d — 1, with all values mod d. The edges {{g;, gj+1}} are called
canonical edges. N;D is the subgraph of N, induced by all the vertices of N, in Cf , including p.

Let Canl!p " be the subgraph of DT consisting of the ordered subsequence of canonical edges
{s,t} of Nip in clockwise order around apex p such that [ps] > [pr] and [pt] > [pr].

DT « Ly-DelaunayTriangulation(P);

Let m be the number of edges in DT;

L be the edges € DT sorted in non-decreasing order of bisector-distance;
Ej < addIncident(L), EcaN < 0;

foreach {u,v} € E4 do

‘ Ecan < Ecan U addCanonical(u,v) U addCanonical(v, u);

end
return Eq U Ecan;

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:17

ALGORITHM 31: addIncident(L)

1 Eq « 0

2 foreach {u,v} € L do

3 Let i be the cone of u containing v;

4 if {u,w} ¢ Eq forallw € N} A {v,y} ¢ E4 forally € Nf, ; then
5 ‘ Add {u,v} to Ey;

6 end

7 end

8 return E4;

ALGORITHM 32: addCanonical(u, v)
1 E « 0

Let i be the cone of u containing v;

[N}

3 Let efj g, and ej4, be the first and last canonical edge in Cané"’v};
4 if Cani”’v} has at least three edges then

{u,v}

5 foreach {s,t} € Can; """ \ {efirss, €1a5:} dO

6 ‘ Add {s,t} to E’;

7 end

s end

9 if v € {efirsss €15,) and there is more than one edge in Canl‘.u’v} then
10 ‘ Add the edge of Cangu’v] incident to v to E’;

11 end

12 foreach {y,z} € {ef;,ss, €145} do

13 if {y,z} € N7 | then

1 | Add{y,z}to E;

15 end

16 if {y,z} € N7, then

17 if N7, N E4 does not have an edge incident to z then
1 | Add {y,z} to E;

19 end

20 if NZ, NEA\ {y,z} has an edge incident to z then

21 Let {w, y} be the canonical edge of z incident to y;
22 Add {w,y} to E;

23 end

24 end

25 end

6 return E’;

N

3 ESTIMATING STRETCH-FACTORS OF LARGE SPANNERS

Measuring exact stretch-factors of large graphs is a tedious job, and also is for geometric spanners.
Although many algorithms exist in the literature for constructing geometric spanners, nothing is
known about practical algorithms for computing stretch-factors of large geometric spanners. It
is a severe bottleneck for conducting experiments with large spanners since the stretch-factor is
considered a fundamental quality of geometric spanners.

For any spanner (not necessarily geometric) on n vertices, its exact stretch-factor can be com-
puted in O(n?logn + n|E|) time by running the folklore Dijkstra algorithm (implemented using
a Fibonacci heap) from every vertex, and in ©(n®) time by running the classic Floyd-Warshall

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:18 F. Anderson et al.

algorithm. Note that the Dijkstra-based algorithm runs O(n? log n) time for plane spanners since
the number of edges is O(n). Both of these are very slow in practice. However, the latter has a
quadratic space-complexity and is unusable when n is large. Consequently, they are practically
useless when n is large. Stretch-factor estimation of large geometric graphs appears to be a far cry
despite theoretical studies on this problem (see [1, 20, 28, 38, 44]). We believe these algorithms are
either involved from an algorithm engineering standpoint or rely on well-separated pair decompo-
sition [18], which may potentially slow down practical implementations due to the large number
of well-separated pairs needed by those algorithms. This has motivated us to design a practical al-
gorithm, named EsTIMATESTRETCHFACTOR, which gives a lower bound on the actual stretch-factor
of any geometric spanner (not necessarily plane). However, we will consider the universe of plane
geometric spanners as the input domain in this work. To our knowledge, we are not aware of any
such algorithm in the literature. Refer to Algorithm 33, which takes as input an n-element pointset
P and a geometric graph G, constructed on P.

ALGORITHM 33: ESTIMATESTRETCHFACTOR(P, G)
1 DT « Ly-DelaunayTriangulation(P);

2 L« 1;

3 foreach p € P do

4 h«1, tp < 1;

5 while true do

6 Let X denote the set of points which are exactly h hops away from p in DT found using a
breadth-first traversal originating at p;

7 o~ 1;

8 foreach g € X do

9 ‘ t' « max (—Iﬂcfl(i;,lq)l , t’);

10 end

11 if t’ > t; then

12 ‘ h<—h+1;tp<—t';

13 else

14 ‘ break;

15 end

16 t <« max(t, tp);

17 end

18 return f;

The underlying idea of our algorithm is as follows. We observe that most geometric spanners
are well constructed, meaning it is likely that far away points (having many hops in the shortest
paths between them) have low detour ratios (ratio of the length of a shortest path to that of the
Euclidean distance) between them and the worst-case detour is achieved by point pairs that are
a few hops apart. Note that stretch-factor of a graph is the maximum detour ratio over all vertex
pairs. To capture closeness, we use the Ly-Delaunay triangulation constructed on P as the basis. For
every point p € P, we start a breadth-first traversal on the Delaunay triangulation DT. At every
level, we compute the detour ratios in G from p to all the points in that level. If a worse detour ratio
is found in the current level compared to the worst found in the previous level, we continue to the
next level; otherwise, the process is terminated. For finding detour ratios in G, we use the folklore
Dijkstra algorithm since computation of shortest paths are required. In our algorithm, 7 (p, q)
denotes a shortest path between the points p, g € P in G and |z (p, q)| its total length. The detour
between p, q in G can be easily calculated as |7 (p, g)|/|pgl. The current level is denoted by h. It
is assumed that the neighbors of p in G are at level 1. For efficiency reasons, we do not restart

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:19

the Dijkstra at every level of the breadth-first traversal; instead, we save our progress from the
previous level and continue after that.

To our surprise, we found that for the class of spanners used in this work, ESTIMATESTRETCHFAC-
TOR returned exact stretch-factors almost every time. The precision error was very low whenever
it failed to compute the exact stretch-factor. Further, our algorithm can be parallelized very easily
by spawning parallel iterations of the foreach loop. Apart from the L,-Delaunay triangulation
(which can be constructed very fast in practice), it does not use any advanced geometric struc-
ture, making it fast in practice. We present our experimental observations for this algorithm in
Section 4.3.

4 EXPERIMENTS

We have implemented the algorithms in GNU C++17 using the CGAL library [41]. The machine
used for experiments is equipped with an AMD Ryzen 5 1600 (3.2 GHz) processor and 24 GB of main
memory, and runs Ubuntu Linux 20.04 LTS. The g++ compiler was invoked with -03 flag to achieve
fast real-world speed. From CGAL, the Exact_predicates_inexact_constructions_kernel is
used for accuracy and speed.

All 11 algorithms considered in this work use one of the following three kinds of Delaunay
triangulation as the starting point: Ly, TD, and L. For constructing L, and Ly-Delaunay triangu-
lations, the CGAL: :Delaunay_triangulation_2 and CGAL: :Segment_Delaunay_graph_Linf_2
implementations have been used, respectively. As of now, a TD-Delaunay triangulation implemen-
tation is not available in the CGAL. It was pointed out by Chew [22] that such triangulations can
be constructed in O(nlogn) time. However, no precise implementable algorithm was presented.
But luckily, it is shown in the work of Bonichon et al. [8] that TD-Delaunay triangulation of
a pointset is the same as its %-@ graph. We leveraged this result and used the O(nlogn) time
CGAL: :Construct_theta_graph_2 implementation for constructing the TD-Delaunay triangula-
tions. For faster speed, the input pointsets are always sorted using CGAL: : spatial_sort before
constructing Delaunay triangulations on them.

In our experiments, we have used both synthetic and real-world pointsets, as described next.

4.1 Synthetic Pointsets

We have used the following eight distributions to generate synthetic pointsets for our experiments.
The selection of these distributions are inspired by the ones used elsewhere [4, 5, 29, 30, 40] for
geometric experiments. Figure 2 allows us to visualize these eight distributions:

(1) uni-square: Points were generated uniformly inside a square of side length of 1,000 using
the CGAL: :Random_points_in_square_2 generator.

(2) uni-disk: Points were generated uniformly inside a disc of radius 1,000 using the
CGAL: :Random_points_in_disc_2 generator.

(3) normal-clustered: A set of 10 normally distributed clusters placed randomly in the plane.
Each cluster contains n/10 normally distributed points (mean and standard deviation were
set to 2.0). We have used std::normal_distribution<double> to generate the point
coordinates.

(4) normal: This is the same as normal-clustered except that only one cluster was used.

(5) grid-contiguous: Points were generated contiguously on a [y/n] X [v/n] square grid using
the CGAL: :points_on_square_grid_2 generator.

(6) grid-random: Points were generated on a [0.7n] X [0.7n] unit square grid. The value
0.7 was chosen arbitrarily to obtain well-separated non-contiguous grid points. The
coordinates of the generated points are integers and were generated independently using
std: :uniform_int_distribution.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:20

F. Anderson et al.

(a) uni-square (b) uni-disk (c) normal-clustered (d) normal

(7)

(®)

(e) grid-contiguous (f) grid-random (g) annulus (h) galaxy

Fig. 2. The eight distributions used to generate synthetic pointsets for our experiments.

annulus: Points were generated inside an annulus whose outer radius was set to 1,000 and
the inner radius to 800. We have used std: :uniform_real_distribution to generate the
coordinates.

galaxy: Points were generated in the shape of a spiral galaxy having outer five arms
(see [31]).

For seeding the random number generators from C++, we have used the Mersenne twister
engine std::mt19937. Since some of the algorithms assume that no two points must have

the s
CGAL:

ame value x- or y-coordinates, the generated pointsets were perturbed using the
:perturb_points_2 function with 0.0001, 0.0001 as the two required parameters.

4.2 Real-World Pointsets

The following real-world pointsets were obtained from various publicly available sources. We have
removed duplicate points (wherever present) from the pointsets. The main reason behind the use of
such pointsets is that they do not follow the popular synthetic distributions. Hence, experimenting
with them is beneficial to see how the algorithms perform on them:

burma: 33,708-element pointset representing cities in Burma [29, 43].

e birch3: 99,801-element pointset representing random clusters at random locations [17, 30].
e monalisa: 100,000-city TSP instance representing a continuous-line drawing of the Mona

Lisa [29, 30, 43].

KDDCU2D: 104,297-element pointset representing the first two dimensions of a protein data-
set [17, 29, 30].

usa: 115,475-city TSP instance representing (nearly) all towns, villages, and cities in the
United States [29, 30, 43].

europe: 168,896-element pointset representing differential coordinates of the map of
Europe [17, 29, 30].

wiki: 317,695-element pointset of coordinates found in English language Wikipedia articles
(source: https://github.com/placemarkt/wiki_coordinates).

vlsi: 744,710-element pointset representing a very large-scale integration chip [43].

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:21

—eo— BGSO5 = LW04 —— BSX09 —+— KPX10 —— KX12 —e BHS18
—®— BCC12-7 ——BCC12-6 —e— BGHP10 —=— BKPX15 —— KPT17

Fig. 3. The plot legends.

e china: 808,693-element pointset representing cities in China [17, 29, 30].

o world: 1,904,711-element pointset representing all locations in the world that are registered
as populated cities or towns, as well as several research bases in Antarctica [29, 30, 43].

e nyctaxi: 2,728,717-element pointset representing Yellow Cab pickup locations in New York
City in 2016 [29] (source: https://www.kaggle.com/c/nyc-taxi-trip-duration).

4.3 Efficacy of ESTIMATESTRETCHFACTOR

We have seen in Section 3 that it is quite challenging to measure stretch-factor of large spanners.
This motivated us to design and use the ESTIMATESTRETCHFACTOR algorithm in our experiments
for estimating stretch-factors of the generated spanners. In the following, we compare ESTIMAT-
ESTRETCHFACTOR with Dijkstra’s algorithm (run from every vertex) and show that for the eight
distributions it is not only much faster than Dijkstra but can also estimate stretch-factors of plane
spanners with high accuracy.

The main reason behind the fast practical performance of ESTIMATESTRETCHFACTOR is early
terminations of the breadth-first traversals (one traversal per vertex), which in turn makes Dijk-
stra run fast to find the shortest paths to the vertices in all the levels. We have noticed in our
experiments that the pair that achieves the stretch-factor for a bounded-degree plane spanner are
typically a few hops away and pairwise stretch-factors (ratio of detour between two vertices to
that of their Euclidean distance) drop with the increase in hops. Consequently, the breadth-first
traversals terminate very early most of the time.

The total number of pointsets used in this comparison experiment is 11 -8 - 10 - 5 = 4,400 since
there are 11 algorithms, eight distributions, and 10 distinct values of n (1K, 2K, . .., 10K), and five
samples were used for every value of n. Out of these, the number of times ESTIMATESTRETCH-
FAcTOR has failed to return the exact stretch-factor is just 8. Thus, the observed failure rate is
~ 0.18%. Interestingly, in the cases where ESTIMATESTRETCHFACTOR failed to compute the exact
stretch-factor, the largest observed error percentage between the exact stretch-factor (found using
Dijkstra) and the stretch-factor returned by it is just ~ 0.15. This gave us the confidence that our
algorithm can be safely used to estimate stretch-factor of large spanners. Refer to Figure 5. As is evi-
dent from these graphs, ESTIMATESTRETCHFACTOR is substantially faster than Dijkstra everywhere.
Henceforth, we use ESTIMATESTRETCHFACTOR (Algorithm 33) to estimate the stretch-factors of the
spanners in our experiments.

4.4 Experimental Comparison of the Algorithms

We compare the 11 implemented algorithms based on their runtime, degree, stretch-factor, and
lightness of the generated spanners.

In the interest of space, we avoid legend tables everywhere in our plots. Since the legends are
used uniformly everywhere, we present them here for an easy reference (Figure 3).

For synthetic pointsets, we varied n from 10K to 100K. For every value of n, we have used five
random samples to measure runtimes and the preceding characteristics of the spanners. In the
case of real-world pointsets, we ran every one of them five times and computed the average time
taken.

In our experiments, we found that BGHP10 and KPT17 were considerably slower than the other
algorithms considered in this work. The reason behind this is slow construction of TD-Delaunay

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:22 F. Anderson et al.

(=3 =
|- - |- B S+ B
=z~ =z~ =
o o o
g g R .
k=i k=i k=l
f=3 (=1
g2 S+ -1 =2 2 -1 =
9 g L2 o -
g =1 g
5 5 5
g g g
= = %
o o g 1
=3 =3
o BF 1 e &t 1 @
o B & ® &
g £ £
g g g ar N
= = B
< << <<
ol ¥ o —o—o—G—n—f=R=0—F ol oo e—a—a—a—t 5 o | s 4

1020 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 50 90 100 10 20 30 40 50 60 70 50 90 100
n (in thousands) 7 (in thousands) 7 (in thousands)

Fig. 4. Points are generated using the uni-square distribution. Left: The running times for all the algorithms

are shown; the plots for BGHP10 and KPT17 have overlapped in this figure, and they are the slowest ones in this

case. Middle: Here, we consider the runtimes without the time taken to construct the respective Delaunay

triangulation. Right: This is the same as the middle figure with y-axis scale adjusted for a better visual

comparison.

triangulations. Figure 4 represents an illustration. When n = 100K, both took more than 150 sec-
onds to finish. In contrast, the other nine algorithms took less than 10 seconds. Since real-world
speed is an important factor for spanner construction algorithms, we do not consider them further
in our runtime comparisons:

e Runtime: Fast execution speed is highly desired for spanner construction on large pointsets.
We present the runtimes for all eight distributions in Figure 6. As explained earlier, we have
excluded BGHP10 and KPT17 from these plots since they are considerably slower than the
other nine algorithms. Interestingly, we found that the relative performance of these algo-
rithms is independent of the point distributions. We further observed that not only are these
algorithms slow because of the time taken to construct TD-Delaunay triangulation, but in-
terestingly, their non-Delaunay steps are even slower than the other algorithms. Thus, this
means that even if the construction of TD-Delaunay triangulation is engineered more effi-
ciently, BGHP10 and KPT17 will still be the slowest in practice.

For all eight distributions, we found that BKPX15 was much slower than the others. This is
mainly due to the time taken to construct Lo,-Delaunay triangulation. Among the ones that
use Ly-Delaunay triangulations, BGS@5 was the slowest due to the overhead of creation of
temporary geometric graphs needed to control the degree and stretch-factor of the output
spanners. Refer to Section 2 to see more details on this algorithm. The fastest algorithms
are KPX10, BSX09, LW@4, and KX12. The main reason behind their speedy performance is fast
construction of Ly-Delaunay triangulations and lightweight processing of the triangulations
for spanner construction. The BHS18, BCC12-7, and BCC12-6 algorithms came out quite close
to the preceding four algorithms. Note that these three algorithms also use L;-Delaunay
triangulation as the starting point. The same observations hold for the real-world pointsets
used in our experiments. The table presented in Figure 9 presents the runtimes in seconds.

Degree: Refer to Figure 7. In the tables, A denotes the theoretical degree upper bound, as
claimed by the authors of these algorithms; max Agpserved denotes the maximum degree ob-
served in our experiments; avg Aopserved denotes the observed average degree; and avg Avertex
denotes the observed average degree per vertex. In our experiments, we found that spanners
generated by BGS@5, LW04, and BSXQ9 have degrees much less than the degree upper bounds
derived by the authors. Although it cannot be denied that there could be special examples
where these upper bounds are actually achieved, the maximum degrees achieved in our
experiments are 14, 11, and 9, respectively. Note that the theoretical degree upper bounds

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice

2
3
S
2

Average execution

Average execution time (in seco

Average execution time (

N g s ——
< ® |- DIJKSTRA

g —a— ESTIMATESTRETCHFACTOR
%

= ol

Q ™

2

5 ol

g =

3

%

3

o

1)

o

=

S ol

= Y S I S S

6 7 8

n (in thousands)

(a) uni-square

—e— DIJKSTRA
—#— ESTIMATESTRETCHFACTOR

n (in thousands)

(c) normal-clustered

— ——
—— DIJKSTRA
—8— ESTIMATESTRETCHFACTOR
< [
&
v L
==
0 -
o e
|| I S R

n (in thousands)

(e) grid-contiguous

—— DIJKSTRA
—a— ESTIMATESTRETCHFACTOR

n (in thousands)

(g) annulus

Average execution time (in seconds)

Average execution time (in seconds)

Average execution time (in seconds)

Average execution time (in seconds)

30

20

10

30

10

30

10

30

20

10

e

DIJKSTRA

—8— ESTIMATESTRETCHFACTOR

6 7 8

n (in thousands)

(b) uni-disk

—e— DIJKSTRA
—#— ESTIMATESTRETCHFACTOR

n (in thousands)

(d) normal

—e— DIJKSTRA
—8— ESTIMATESTRETCHFACTOR

n (in thousands)

(f) grid-random

—e— DIJKSTRA
—8— ESTIMATESTRETCHFACTOR

n (in thousands)

(h) galaxy

1.1:23

Fig. 5. Runtime comparison: Dijkstra (run from every vertex) vs ESTIMATESTRETCHFACTOR. For every value of
n, we have used 11 -5 = 55 spanner samples since there are 11 algorithms and five pointsets were generated

for that value of n using the same distribution.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:24 F. Anderson et al.

o]
= =
o o
£ 7 1
E o=k B 2
g g
2 2
B i
g 5
g0 | Eaf |
< @
& g
8 g
s s
< <
f=0 — (=3 -
T T S N RO SO RO T T S T B SO RO T
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
n (in thousands) n (in thousands)
(a) uni-square (b) uni-disk
T T T
o 9
g g
£ .l | R 1
£ £
= 2
g « R S o g
g 8
o o
o0 o0
g~ N g -t 1
o - o -
Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
n (in thousands) n (in thousands)
(c) normal-clustered (d) normal
T T
A -
= =
P B 1
E-E b k=
g g
2 L
g £ ol |
@ <
EES g g
8 g
3 3
< <
o+ g o+ g
T S N RO SO RO T T S T B SO RO T
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
n (in thousands) n (in thousands)
(e) grid-contiguous (f) grid-random
T T
o - — w - -
= =
o o T 1
g g
L= i B
2 Er]
E=} £
Z]
o 153
& g ook 8
C o~ B 13}
& &
< <
g g [:
Z =
N Il Il Il Il Il Il Il Il Il Il N Il Il Il Il Il Il Il Il Il Il
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
n (in thousands) n (in thousands)
(g) annulus (h) galaxy

Fig. 6. Runtime comparisons of the nine algorithms (BGHP1@ and KPT17 are excluded).

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice

1.1:25

Fig. 7. Degree comparisons of the spanners generated by the 11 algorithms.

Algorithm A | max Agpserved aVg Agbserved | a8 Avertex Algorithm | A max Agpserved | aV8 Agbserved | Vg Avertex
BGS05 27 13 11.580 5.745 BGS05 27 12 11.540 5.744
Lwo4 23 11 9.820 5.148 LWo4 23 11 9.880 5.146
BSX09 17 9 7.840 4.392 BSX09 17 9 7.760 4.389
KPX10 14 14 12.980 5.994 KPX10 14 13 12.420 5.993
KX12 11 10 9.960 5.449 KX12 11 10 9.980 5.451
BHS18 8 7 6.980 4.113 BHS18 8 7 6.200 4.109
BCC12-7 7 7 7.000 4.337 BCC12-7 7 7 7.000 4.335
BCC12-6 6 7 6.820 4.016 BCC12-6 6 7 6.020 4.012
BGHP10 6 6 6.000 4.240 BGHP10 6 6 6.000 4.239
BKPX15 4 4 4.000 3.328 BKPX15 4 4 4.000 3.319
KPT17 4 4 4.000 3.140 KPT17 4 4 4.000 3.141

(a) uni-square (b) uni-disk

Algorithm A | max Agpserved avg€ Aobserved | aVE Avertex Algorithm | A max Agpserved | av€ Agbserved | ave Avertex
BGS05 27 13 11.600 5.750 BGS05 27 13 11.740 5.751
LWo4 23 11 9.800 5.154 LWo4 23 11 9.760 5.158
BSX09 17 9 7.860 4.392 BSX09 17 9 7.880 4.395
KPX10 14 14 12.820 5.996 KPX10 14 14 12.320 5.997
KX12 11 10 9.980 5.450 KX12 11 10 9.940 5.452
BHS18 8 7 6.100 4.110 BHS18 8 7 6.060 4.117
BCC12-7 7 7 7.000 4.334 BCC12-7 7 7 7.000 4.346
BCC12-6 6 6 6.000 4.010 BCC12-6 6 6 6.000 4.023
BGHP10 6 6 6.000 4.245 BGHP10 6 6 6.000 4.254
BKPX15 4 4 4.000 3.327 BKPX15 4 4 4.000 3.327
KPT17 4 4 4.000 3.144 KPT17 4 4 4.000 3.150

(c) normal-clustered (d) normal

Algorithm A | max Agpserved avg Aobserved | aVE Avertex Algorithm | A max Agpserved | aV8 Aobserved | aVE Avertex
BGS05 27 11 11.000 5.919 BGS05 27 13 11.540 5.745
LWO4 23 9 7.920 5.099 LW04 23 11 9.900 5.148
BSX09 17 9 7.660 4.412 BSX09 17 9 7.980 4.391
KPX10 14 12 11.880 5.993 KPX10 14 14 12.940 5.995
KX12 11 11 10.000 5.987 KX12 11 10 9.980 5.449
BHS18 8 7 7.000 4.825 BHS18 8 7 6.960 4.114
BCC12-7 7 7 7.000 5.160 BCC12-7 7 7 7.000 4.338
BCC12-6 6 7 6.960 4.361 BCC12-6 6 7 6.740 4.016
BGHP10 6 6 6.000 4.979 BGHP10 6 6 6.000 4.240
BKPX15 4 4 4.000 3.350 BKPX15 4 4 4.000 3.327
KPT17 4 4 4.000 3.537 KPT17 4 4 4.000 3.140

(e) grid-contiguous (f) grid-random

Algorithm A | max Agpserved V8 Aobserved | aVE Avertex Algorithm | A max Agpserved | aV8 Agbserved | aVg Avertex
BGS05 27 13 11.520 5.730 BGS05 27 14 12.320 5.736
Lwo4 23 11 9.740 5.130 LWo4 23 11 9.920 5.134
BSX09 17 9 8.100 4.382 BSX09 17 9 8.180 4.384
KPX10 14 14 13.180 5.987 KPX10 14 14 13.680 5.993
KX12 11 11 10.300 5.448 KX12 11 11 10.000 5.434
BHS18 8 7 6.960 4.098 BHS18 8 7 6.580 4.090
BCC12-7 7 7 7.000 4.313 BCC12-7 7 7 7.000 4.290
BCC12-6 6 8 6.940 3.994 BCC12-6 6 7 6.120 3.970
BGHP10 6 6 6.000 4.230 BGHP10 6 6 6.000 4.228
BKPX15 4 4 4.000 3.315 BKPX15 4 4 4.000 3.326
KPT17 4 4 4.000 3.130 KPT17 4 4 4.000 3.131

(g) annulus (h) galaxy

are 27, 23, and 17, respectively. For the remaining eight algorithms, the claimed degree upper
bounds were achieved in our experiments, thereby showing that the analyses obtained by
the authors of those algorithms are tight. However, the degree bound claimed by the authors
of BCC12-6 appears to be incorrect. We present an example in the appendix (Section A.2)

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:26 F. Anderson et al.

Algorithm t tmax tavg Algorithm 14 Algorithm t tmax tavg Algorithm l
BGS05 8.3 | 2.687 | 2.215 BGS05 10.209 BGS05 8.3 | 2409 2.202 BGS05 10.014
Lwo4 6.4 2.687 | 2.349 LW04 4.366 LW04 6.4 2.525 2.325 Lwo4 4.310
BSX09 23.6 | 4.284 | 3.666 BSX09 3.585 BSX09 23.6 | 4.267 3.656 BSX09 3.528
KPX10 2.9 1.519 | 1.453 KPX10 5.378 KPX10 2.9 1.497 1.450 KPX10 5.279
KX12 5.7 2.021 | 1.848 KX12 4.728 KX12 5.7 2.034 1.857 KX12 4.661
BHS18 4.4 2.812 | 2.548 BHS18 3.315 BHS18 4.4 3.152 2.587 BHS18 3.275

BCC12-7 11.6 | 2.433 | 2.152 BCC12-7 3.636 BCC12-7 11.6 | 2.460 2.167 BCC12-7 3.597

BCC12-6 81.7 | 2.894 | 2.494 BCC12-6 3.298 BCC12-6 81.7 | 2.998 2.460 BCC12-6 3.261
BGHP10 6 3.204 | 2.755 BGHP10 3.429 BGHP10 6 3.034 2.782 BGHP10 3.415
BKPX15 156.8 | 4.692 | 3.505 BKPX15 4.824 BKPX15 156.8 | 4.255 3.501 BKPX15 4.702
KPT17 20 4.895 | 4.067 KPT17 2.261 KPT17 20 5.050 4.052 KPT17 2.259

(a) uni-square (b) uni-disk

Algorithm t tmax tave Algorithm 14 Algorithm t tmax tave Algorithm 14
BGS05 8.3 2.555 | 2.214 BGS05 12.802 BGS05 8.3 2.504 2.198 BGS05 10.111
LW0O4 6.4 2.522 | 2.327 LW0o4 5.220 LW0o4 6.4 2.575 2.329 LW0o4 4.345
BSX09 23.6 | 4.226 | 3.664 BSX09 4.345 BSX09 23.6 | 4172 3.701 BSX09 3.553
KPX10 2.9 1.489 | 1.448 KPX10 6.752 KPX10 2.9 1.500 1.450 KPX10 5.319
KX12 5.7 2.126 | 1.856 KX12 5.611 KX12 5.7 2493 1.872 KX12 4.702
BHS18 4.4 3.098 | 2.571 BHS18 3.726 BHS18 4.4 3.090 2.538 BHS18 3.288

BCC12-7 11.6 | 2.457 | 2.161 BCC12-7 4.031 BCC12-7 11.6 | 2.438 2.173 BCC12-7 3.603

BCC12-6 81.7 | 2.814 | 2.476 BCC12-6 3.680 BCC12-6 81.7 | 2.737 2.447 BCC12-6 3.264

BGHP10 6 3.400 | 2.804 BGHP10 3.870 BGHP10 6 3.178 2.731 BGHP10 3.431

BKPX15 156.8 | 3.967 | 3.500 BKPX15 5.328 BKPX15 156.8 | 4.344 3.507 BKPX15 4.748

KPT17 20 4.852 | 4.032 KPT17 2.545 KPT17 20 5.236 3.990 KPT17 2.267
(c) normal-clustered (d) normal

Algorithm t tmax tavg Algorithm ¢ Algorithm t tmax tave Algorithm l
BGS05 8.3 3.000 | 2.812 BGS05 6.911 BGS05 8.3 2.413 2.199 BGS05 10.213
Lwo4 6.4 3.000 | 2.965 LW04 2.820 LW04 6.4 2.707 2.364 LWo4 4.367
BSX09 23.6 | 3.000 | 3.000 BSX09 2.455 BSX09 23.6 | 4.080 3.686 BSX09 3.585
KPX10 29 1.414 | 1.414 KPX10 3.506 KPX10 2.9 1.508 1.452 KPX10 5.382
KX12 5.7 1.414 | 1.414 KX12 3.480 KX12 5.7 2.153 1.838 KX12 4.730
BHS18 4.4 1.414 | 1.414 BHS18 2.613 BHS18 4.4 2.905 2.555 BHS18 3.318

BCC12-7 11.6 | 1.414 | 1.414 BCC12-7 | 2.850 BCC12-7 11.6 | 2.349 2.126 BCC12-7 3.637

BCC12-6 81.7 | 1.414 | 1.414 BCC12-6 | 2.286 BCC12-6 81.7 | 2.698 2.441 BCC12-6 3.300
BGHP10 6 1.414 | 1.414 BGHP10 2.705 BGHP10 6 3171 2.807 BGHP10 3.431
BKPX15 156.8 | 7.242 | 6.337 BKPX15 3.852 BKPX15 156.8 | 4.056 3.496 BKPX15 4.825
KPT17 20 3.000 | 3.000 KPT17 1.915 KPT17 20 4.777 4.036 KPT17 2.261

(e) grid-contiguous (f) grid-random

Algorithm t tmax tavg Algorithm [Algorithm t tmax tavg Algorithm l
BGS05 8.3 2.490 | 2.185 BGS05 10.375 BGS05 8.3 2.452 2.209 BGS05 12.119
LW04 6.4 2.735 | 2.344 LWo4 4.445 LWo4 6.4 2.673 2.323 LWo4 5.114
BSX09 23.6 | 4.294 | 3.668 BSX09 3.675 BSX09 23.6 | 4.077 3.716 BSX09 4.250
KPX10 2.9 1.557 | 1.522 KPX10 5.524 KPX10 2.9 1.512 1.451 KPX10 6.521
KX12 5.7 2.078 | 1.862 KX12 4.833 KX12 5.7 2.552 1.878 KX12 5.326
BHS18 4.4 3.286 | 2.559 BHS18 3.351 BHS18 4.4 3.147 2.587 BHS18 3.686

BCC12-7 11.6 | 2.574 | 2.162 BCC12-7 3.661 BCC12-7 11.6 | 2.352 2.149 BCC12-7 3.949

BCC12-6 81.7 | 2.922 | 2.466 BCC12-6 3.321 BCC12-6 81.7 2.803 2.483 BCC12-6 3.608

BGHP10 6 3.077 | 2.756 BGHP10 6.154 BGHP10 6 3.309 2.773 BGHP10 4.398

BKPX15 156.8 | 4.226 | 3.527 BKPX15 7.273 BKPX15 156.8 | 6.833 3.615 BKPX15 5.806
KPT17 20 4.637 | 4.002 KPT17 3.544 KPT17 20 4.867 4.049 KPT17 2.871

(g) annulus (h) galaxy

Fig. 8. Stretch-factor and lightness comparisons of the spanners generated by the 11 algorithms.

where the degree of the spanner generated by this algorithm exceeds 6 (in fact, it is 7 in this
example). For every algorithm, we found that the average degree of the generated spanners
was not far away from the maximum observed degrees. It shows that the algorithms appear
to spread the edges evenly in constructing the spanners. The average degree per vertex is
another way to judge the quality of the spanners. In this regard, we found that it was always
between 6 and 3 everywhere and is quite reasonable for practical purposes. This shows that

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:27
Pointset n BGS05 Lwo4 BSX09 KPX10 KX12 BHS18 BCC12-7 BCC12-6 BGHP10 BKPX15 KPT17
burma 33708 2.888 0.711 0.627 0.599 0.832 1.101 1.569 1.549 173.528 5.885 173.447
birch3 99999 9.507 2.362 1.970 1.981 2.754 4.340 4.725 4.675 611.018 21.689 613.265
mona-lisa 100000 8.527 2.450 2.127 2.236 3.189 4.960 5.863 5.588 704.980 27.988 706.000
KDDCU2D 104297 10.024 2.579 2.252 2.250 3.146 4.837 5.569 5.460 811.921 21.424 812.665
usa 115475 10.575 2.878 2.497 2.521 3.559 5.600 6.426 6.258 1033.99 35.769 1035.64
europe 168435 15.015 4.310 3.642 3.643 5.142 8.176 8.617 8.507 1494.205 38.482 1498.644
wiki 406648 47.605 11.201 9.479 9.529 13.368 23.072 22.300 22.054 6031.610 101.816 6042.090
vlsi 744710 81.461 21.655 19.457 19.693 28.165 46.630 47.297 46.183 13296.6 509.795 13312.2
china 808693 88.983 23.142 19.665 | 20.071 28.293 51.278 50.648 49.943 16886.620 470.077 16913.390
world 1904711 259.147 57.657 52.078 52.337 74.570 125.078 128.316 125.787 58707.7 1358.70 58780.3
nyctaxi 2728717 376.925 | 82.787 70.967 | 72.258 103.779 180.540 180.692 177.558 78800.200 | 2333.237 78913.100
Fig. 9. Average execution time (in seconds).
Pointset n BGS05 LwWo4 BSX09 KPX10 KX12 BHS18 BCC12-7 BCC12-6 BGHP10 BKPX15 KPT17
burma 33708 11 10 8 | 11 6 7 6 6 1 1
birch3 99999 12 10 8 13 10 6 7 6 6 4 4
mona-lisa | 100000 | 11 8 8 12 10 7 7 7 6 4 4
KoDC2D | 104297 | 13 10 8 14 10 6 7 7 6 4 4
usa 115475 | 12 10 8 1 | u 7 7 7 6 4 4
ecurope | 168435 | 12 10 8 13 10 6 7 6 6 4 4
wiki 406648 | 13 11 9 1 | n 7 7 7 6 4 4
visi 744710 | 15 11 9 4 | 10 7 7 7 6 4 4
china | 808693 | 13 11 9 4 | 10 6 7 7 6 4 4
world 1904711 14 11 9 14 11 7 7 7 6 4 4
nyctaxi | 2728717 | 15 11 9 4 | 10 7 7 6 6 4 4
Fig. 10. Degree of the spanners.
Pointset n BGS05 Lwo4 BSX09 KPX10 KX12 BHS18 BCC12-7 BCC12-6 BGHP10 BKPX15 KPT17
burma 33708 | 5.761 | 5.192 | 4.454 | 5.994 | 5512 | 4.166 | 4.292 | 4.068 | 4.347 | 3346 | 3.18
birch3 | 99999 | 5752 | 5.171 | 4.428 | 5.997 | 5.450 | 4.111 | 4324 | 4.004 | 4246 | 3328 | 3.146
mona-lisa | 100000 | 5.938 | 5596 | 4.617 | 5.99 | 5.981 | 5259 | 5741 | 5165 | 5434 | 3572 | 3.613
KDDCU2D 104297 5.720 5.127 4.399 5.985 5.390 4.047 4.294 4.015 4.216 3.325 3.122
usa 115475 | 5.761 | 5.208 | 4.447 | 5.993 | 5529 | 4.248 | 4.493 | 4132 | 4398 | 3366 | 3.211
europe 168435 5.743 5.161 4.427 5.997 5.436 4.087 4.308 3.989 4.233 3.325 3.136
wiki 406648 | 5.692 | 5.088 | 4.391 | 5.988 | 5361 | 3.971 | 4.079 | 3.787 | 4.106 | 3313 | 3.043
vlsi 744710 5.749 5.152 4.416 5.994 5.438 4.096 4.334 4.007 4.277 3.316 3.176
china | 808693 | 5769 | 5.213 | 4.463 | 5.99 | 5520 | 4.242 | 4507 | 4154 | 4367 | 3.344 | 3.211
world | 1904711 | 5748 | 5.171 | 4.438 | 5.991 | 5.489 | 4.151 | 4371 | 4.020 | 4318 | 3344 | 3.168
nyctaxi | 2728717 | 5.743 | 5.148 | 4.395 | 5996 | 5436 | 4.088 | 4.295 | 3.975 | 4234 | 3324 | 3.133

Fig. 11. Average degree per vertex.

all these algorithms are very careful when it comes to the selection of spanner edges. The
lowest values were achieved by BKPX15 and KPT17. For the real-world pointsets, we found
similar performance from the algorithms when it comes to the degree and degree per ver-
tex of the spanners. This is quite surprising since these real-world pointsets do not follow
specific distributions. Refer to Figures 10 and 11 for more details. Note that BSG@5 has pro-
duced a degree-15 spanner for the v1si pointset. In contrast, for the synthetic pointsets, the
highest degree we could observe is 14.

o Stretch-factor: Refer to Figure 8. In the tables, t denotes the theoretical stretch-factor, as de-
rived by the authors of these algorithms; f,,,x denotes the maximum stretch-factor observed
in our experiments; and t,,, denotes the average observed stretch-factor. Among the 11 algo-
rithms, KPX10 has the lowest guaranteed stretch-factor—it is 2.9. The stretch-factors of the
spanners generated by KPX10 are always less than 1.6, thereby making it the best among the
11 algorithms in terms of stretch-factor. In this regard, BKPX15 turned out to be the worst;
the largest stretch-factor we have observed is 7.242, although it is substantially less than the
theoretical stretch-factor upper bound of 156.8. Its competitor KPX17 that can also gener-
ate degree-4 plane spanners has a lower observed maximum stretch-factor—it is 5.236 (the
theoretical upper bound is 20 for this algorithm). Overall, we found that the stretch-factors
of the generated spanners are much less than the claimed theoretical upper bounds. This

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:28 F. Anderson et al.

Pointset n BGS05 LWo4 BSX09 KPX10 KX12 BHS18 BCC12-7 BCC12-6 BGHP10 BKPX15 KPT17
burma 33708 2.414 2.414 3.681 1.482 1.738 2.856 2.156 2.162 3.161 4.404 4.409
birch3 99999 2.552 2.283 3.520 1.438 1.969 2.475 2.253 2.557 2.933 3.519 4.102
mona-lisa 100000 2.523 2.237 5375 1.413 1.609 2.872 1.778 2.278 2.872 4.190 3.768
KDDCU2D 104297 2.211 2.435 3.953 1.492 2.068 2.937 2.174 2.603 2.937 4.299 4.218
usa 115475 2.300 2.351 3.564 1.480 2.038 2.765 2.241 2.576 3.430 3.740 4.455
europe 168435 2.245 2.294 4.186 1.479 1.996 2.745 2.185 2.659 3.103 5.192 4.642
wiki 406648 2.400 2.492 3.890 1.495 2.085 2.859 2.300 2.542 2.999 4.392 4.556
vlsi 744710 2.468 2.999 3.650 1.471 1.970 2.942 2.355 2.263 3.521 11.535 5.472
china 808693 2.356 2.550 3.848 1.482 2.021 2.990 2.277 2.644 3.042 4.136 4.661
world 1904711 2.989 2.961 4.228 1.522 1.997 3.056 2.357 2.657 3.545 6.140 5.422
nyctaxi 2728717 2.462 2.602 4.125 1.468 2.254 3.148 2.344 2.843 3.268 20.009 4.898

Fig. 12. Stretch-factor of the spanners.

Pointset n BGS05 LWo4 BSXQ9 | KPX10 KX12 BHS18 | BCC12-7 | BCC12-6 | BGHP1@ | BKPX15 | KPT17
burma 33708 10.755 | 4.538 3.768 5.672 4.922 3.374 3.609 3.365 3.620 5.048 2.345
birch3 99999 10.662 | 4.541 3.740 5.601 4.896 3.389 3.703 3.361 3.567 4.986 2.347
mona-lisa 100000 7.070 3.259 2.656 3.574 3.542 3.012 3.326 2.934 3.147 3.934 1.994
KDDCU2D 104297 10.576 | 4.491 3.719 5.605 4.830 3.316 3.670 3.355 3.511 4.954 2.311
usa 115475 10.264 | 4.427 3.663 5.431 4.753 3.336 3.642 3.305 3.602 4.935 2.336
europe 168435 10.376 | 4.391 3.690 5.458 4.835 3.228 3.540 3.199 3.389 4.745 2.218
wiki 406648 11.945 5.037 4.156 6.448 3.321 3.585 3.846 3.505 3.827 5.417 2.463
vlsi 744710 11.344 | 4.850 4.024 5.989 5.110 3.521 3.899 3.539 3.864 5.130 2.513
china 808693 9.883 4.314 3.564 5.233 4.603 3.287 3.595 3.248 3.481 4.719 2.279
world 1904711 11.145 | 4.744 3.923 5.917 5.003 3.476 3.777 3.432 3.967 5.272 2.541
nyctaxi 2728717 11.523 | 5.047 4.145 6.197 5.119 3.144 3.347 2.827 3.208 5.136 2.019

Fig. 13. Lightness of the spanners.

shows that the generated spanners are well constructed in practice. With the exception of
BKPX15, we found that the average stretch-factors are quite close to the maximum stretch-
factors. Now let us turn our attention to the real-world pointsets. Refer to Figure 12. Once
again, KPX10 produced the lowest stretch-factor spanners. The stretch-factors seem quite
reasonable everywhere except in the two cases of vlsi and nyctaxi pointsets when fed
to BKPX15. The produced spanners have stretch-factors of 11.535 and 20.009, respectively.
The latter is interesting since the lower bound example constructed by Bonichon et al. [11]
for the worst-case stretch-factor of the spanners produced by BKPX15 has a stretch-factor of
7 + 72 ~ 16.899. The nyctaxi pointset beats this lower bound.

o Lightness: The lightness of a geometric graph G on a pointset P is defined as ratio of the
weight of G to that of a Euclidean minimum spanning tree on P. Since a minimum spanning
tree is the cheapest (in terms of the sum of the total length of the edges) way to connect
n points, lightness can be used to judge the quality of spanners. This metric is beneficial
when spanners are used for constructing computer or transportation networks. Refer to
Figure 8. Lightness is denoted by £. With a few exceptions, we found that lightness somewhat
correlates with degree. This is because using a lower number of carefully placed spanner
edges usually leads to lower lightness. The spanners generated by BGS@5 are always found
to have the highest lightness. This is expected because of their high degrees. Although the
difference in degree of the spanners generated by BGXS05 and LW@4 is marginal (around
2), the difference between their lightness is substantial (approximately 6 for some cases).
However, the degree-4 spanners generated by KPT17 have the lowest lightness (less than 2.9
everywhere). Interestingly, although BKPX15 generates degree-4 spanners, their lightness
was found to be approximately twice that of the ones generated by KPT17. In fact, their
lightness turned out to be one of the highest. This shows that KPT17 is more careful when it
comes to placing long edges. The lightness of the spanners generated for real-world pointsets
follows a similar trend, and we did not observe anything special. Figure 13 presents more
details.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:29

Remark. In our experiments, we found that the spanners’ degree, stretch-factor, and lightness
remained somewhat constant with the increase in n. Hence, we do not present plots for them.

5 CONCLUSION

Since there are various ways (speed, degree, stretch-factor, lightness) to judge the 11 algorithms,
it is hard to declare the winner(s). Thus, based on our experimental observations, we come to the
following conclusions (which are our recommendations as well):

o If speedy performance is the main concern, we recommend using KPX10, BSX09, LW04, or
KX12.

e When it comes to minimization of degree, we recommend using BCC12-7 or BHS18 since
they produce spanners of reasonable degrees in practice. If degree-4 spanners are desired,
we recommend using BKPX15 since KPT17 is much slower in practice.

e In terms of stretch-factor, we found the KPX10 as the clear winner. This is particularly im-
portant in the study of geometric spanners since not much is known about fast construction
of low stretch-factor spanners (¢ ~ 1.6) in the plane having at most 3n edges. However, the
spanners produced by it have higher degrees compared to the ones produced by some of the
other algorithms, such as BCC12 and BHS18.

e In our experiments, KPT17 produced spanners with the lowest lightnesses. But in practice,
we found it to be very slow compared to the other algorithms except for BGHP1@ (which is
as slow as KPT17). If degree-4 spanners are not a requirement, we recommend using BHS18
or BCC12-7 since they produced spanners of reasonable lightness (less than 4 most of the
time).

6 CODE AND VISUALIZATIONS

For the C++ implementations, refer to our GitHub repository at https://github.com/ghoshanirban/
BoundedDegreePlaneSpannersCppCode. Refer to the applet hosted at https://ghoshanirban.github.
io/bounded-degree-plane-spanners/index.html for an in-browser visual experience.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:30

A APPENDIX
A.1 Sample Outputs

Fig. A.1. A 150-element pointset, drawn randomly Fig. A.2. The spanner generated by BGS@5 on the
pointset shown in Figure A.1; degree: 8, stretch-factor:

from a square.
1.565763.

V@
SN {
B K

Fig. A.3. The spanner generated by LW@4 on the Fig. A.4. The spanner generated by BSX@9 on the
h-factor: pointset shown in Figure A.1; degree: 6, stretch-factor:

2.602559.

pointset shown in Figure A.1; degree: 6, stretc
2.602559.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:31

NN Ay
RS X

N\

Fig. A.5. The spanner generated by KPX10 on the Fig. A.6. The spanner generated by KX12 on the
pointset shown in Figure A.1; degree: 9, stretch-factor: pointset shown in Figure A.1; degree: 8, stretch-factor:
1.360771. 1.440861.

Fig. A.7. The spanner generated by BHS18 on the Fig. A.8. The spanner generated by BCC12-7 on the
pointset shown in Figure A.1; degree: 6, stretch-factor: pointset shown in Figure A.1; degree: 6, stretch-factor:
1.879749. 2.302473.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

et

F. Anderson

1.1:32

r: pointset

ed by BCC12-6 on the Fig. A.10. The spanner

S
S
&
o
<
Q
S
©
S
5
%]
N>
]
(]
g
&0
te
s
5=
c
S
o =
. S
g &0
nr_l
8 C
g £
o c
v 3
22
TS
oo
< &
. S
905
C a

ACM Journal of Exper

Bounded-Degree Plane Geometric Spanners in Practice 1.1:33

A.2 A Counterexample for BCC12-6

In the following, we present a 13-element pointset on which BCC12-6 fails to construct a degree-6
plane spanner. Figure A.13 presents the pointset.

p.1 p3 P4 De P8 P12 p13

P2
P11
P1o

. pr P9

D5
Fig. A.13. Aset Pof 13 points p1,. .., p13. p1: (—4.98845,0.22414), py: (—4.23759, 0.08), p3: (—3.98106, 0.10125),
pa: (—2.82831,0.02396), ps5: (—2.44066,—0.46761), pe: (—2.37275,0.12191), p7: (—1.90395,—0.27187), ps:
(=1.65373,—0.00109), po: (—1.28739,—0.01854), p1o: (—0.642516,0.02836), p11: (—0.019359,0.02), pi2:

(0.850154,0.14431), py3: (2.01517,0.19194).

First, BCC12-6 creates the L;-Delaunay triangulation of P and initializes seven cones around
every p;, oriented such that the shortest edge incident on p; falls on a boundary. See Figures A.14
and A.15.

10_1 p3 Ps Dpe P8 P12 P13

P2
P11
P1o
v pr P9
Ds

Fig. A.14. The Ly-Delaunay triangulation of P.

p1 p3 P4 De . P8 P12 P13
P2 8 : P11
: Do P1o
p7

D5

Fig. A.15. The cones (dotted) of each point in P with @ = 27/7, oriented by the shortest edge incident on
that point (bold).

Next, in Figure A.16, we show the edges added by the main portion of the algorithm (excluding the
edges added by Wedge, calls). Only Wedge, (p1, p2) and Wedge, (p12, p11) calls add new edges to E*
and thus to the final spanner as well. The former call adds the two edges psps, psp12 (Figure A.17),
and the latter call adds the edge pgp1o (Figure A.18). The final spanner is shown in Figure A.19.
Note that ps has degree 7 in the spanner, which violates the degree requirement of the spanners
produced by BCC12-6.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:34 F. Anderson et al.

Fig. A.16. Edges added by the main portion of BCC12 (excluding calls to subroutine Wedge).

b1 P3 P4+ Dpe Ps P12 P13
~eszzzzs .

b2

P10 P11
N pr DP9
ps

Fig. A.17. The edge p1p2 (shown in red) is added during the main portion of the algorithm, and the call to
Wedges(p1, p2) adds the two blue edges p3ps and pep12.

P} p3 P4 De P8 P12 P13
P2 P
P1o H
N b7 po
Ps

Fig. A.18. The edge p12p11 (shown in red) is added during the main portion of the algorithm, and the call to
Wedge(,(plz,pn) adds the blue edge Pep10-

b1 P3 P4+ Ds Ps P12 P13
~==zzgzzo=s -

b2

Plo P11
pr Do
ps
Fig. A.19. The resulting graph on P is a degree-7 plane spanner due to ps whose degree is exactly 7. Note
that this graph contains the edges shown in Figure A.16 along with the blue edges shown in Figures A.17

and A.18.

ACKNOWLEDGMENTS

We sincerely thank Nicolas Bonichon (one of the authors of BKPX15) for sharing the applet code
for the algorithm BKPX15 [11]. The code has helped us understand the algorithm clearly and create
a CGAL implementation of the algorithm. We are grateful to the three anonymous reviewers of
our manuscript, whose suggestions have helped us improve this article’s presentation.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:35

REFERENCES

(1]

(3]
(4]
5]
(6]
(7]

[10]
(1]
[12]
[13]

[14

—

(15

—

(16

—

(17

—

[18]

[19

—

[20

[t

[21]
[22]
[23]

[24

[l

[25]

[26]

Pankaj K. Agarwal, Rolf Klein, Christian Knauer, Stefan Langerman, Pat Morin, Micha Sharir, and Michael Soss.
2008. Computing the detour and spanning ratio of paths, trees, and cycles in 2D and 3D. Discrete & Computational
Geometry 39, 1 (2008), 17-37.

Fred Anderson, Anirban Ghosh, Matthew Graham, Lucas Mougeot, and David Wisnosky. 2021. An interactive tool
for experimenting with bounded-degree plane geometric spanners (media exposition). In Proceedings of the 37th
International Symposium on Computational Geometry (SoCG’21).

Davood Bakhshesh and Mohammad Farshi. 2021. A degree 3 plane 5.19-spanner for points in convex position. Scientia
Iranica 28, 6 (2021), 3324-3331.

Jon Jouis Bentley. 1992. Fast algorithms for geometric traveling salesman problems. ORSA Journal on Computing 4,
4(1992), 387-411.

Jon Louis Bentley. 1990. K-d trees for semidynamic point sets. In Proceedings of the 6th Annual Symposium on Com-
putational Geometry. 187-197.

Ahmad Biniaz. 2020. Plane hop spanners for unit disk graphs: Simpler and better. Computational Geometry 89 (2020),
101622.

Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel, Cyril Gavoille, Anil Maheshwari, and Michiel Smid. 2017. To-
wards plane spanners of degree 3. Journal of Computational Geometry 8, 1 (2017), 11-31.

Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, and David Ilcinkas. 2010. Connections between theta-graphs,
Delaunay triangulations, and orthogonal surfaces. In Proceedings of the International Workshop on Graph-Theoretic
Concepts in Computer Science. 266-278.

Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, and Ljubomir Perkovi¢. 2010. Plane spanners of maximum degree
six. In Proceedings of the International Colloquium on Automata, Languages, and Programming. 19-30.

Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, and Ljubomir Perkovi¢. 2012. The stretch factor of Li-and Leo-
Delaunay triangulations. In Proceedings of the European Symposium on Algorithms. 205-216.

Nicolas Bonichon, Iyad Kanj, Ljubomir Perkovi¢, and Ge Xia. 2015. There are plane spanners of degree 4 and moderate
stretch factor. Discrete & Computational Geometry 53, 3 (2015), 514-546.

Prosenjit Bose, Paz Carmi, and Lilach Chaitman-Yerushalmi. 2012. On bounded degree plane strong geometric span-
ners. Journal of Discrete Algorithms 15 (2012), 16-31.

Prosenjit Bose, Joachim Gudmundsson, and Michiel Smid. 2005. Constructing plane spanners of bounded degree and
low weight. Algorithmica 42, 3-4 (2005), 249-264.

Prosenjit Bose, Darryl Hill, and Michiel Smid. 2018. Improved spanning ratio for low degree plane spanners. Algo-
rithmica 80, 3 (2018), 935-976.

Prosenjit Bose and Michiel Smid. 2013. On plane geometric spanners: A survey and open problems. Computational
Geometry 46, 7 (2013), 818-830.

Prosenjit Bose, Michiel Smid, and Daming Xu. 2009. Delaunay and diamond triangulations contain spanners of
bounded degree. International Journal of Computational Geometry & Applications 19, 02 (2009), 119-140.

Norbert Bus, Nabil H. Mustafa, and Saurabh Ray. 2018. Practical and efficient algorithms for the geometric hitting
set problem. Discrete Applied Mathematics 240 (2018), 25-32.

Paul B. Callahan and S. Rao Kosaraju. 1995. A decomposition of multidimensional point sets with applications to
k-nearest-neighbors and n-body potential fields. Journal of the ACM 42, 1 (1995), 67-90.

Nicolas Catusse, Victor Chepoi, and Yann Vaxés. 2010. Planar hop spanners for unit disk graphs. In Proceedings of
the International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks, and Distributed
Robotics. 16-30.

Siu-Wing Cheng, Christian Knauer, Stefan Langerman, and Michiel Smid. 2012. Approximating the average stretch
factor of geometric graphs. Journal of Computational Geometry 3, 1 (2012), 132-153.

L. Paul Chew. 1986. There is a planar graph almost as good as the complete graph. In Proceedings of the 2nd Annual
Symposium on Computational Geometry.

L. Paul Chew. 1989. There are planar graphs almost as good as the complete graph. Journal of Computer and System
Sciences 39, 2 (1989), 205-219.

Gautam Das and Paul J. Heffernan. 1996. Constructing degree-3 spanners with other sparseness properties. Interna-
tional Journal of Foundations of Computer Science 7, 02 (1996), 121-135.

Adrian Dumitrescu and Anirban Ghosh. 2016. Lattice spanners of low degree. Discrete Mathematics, Algorithms and
Applications 8, 03 (2016), 1650051.

Adrian Dumitrescu and Anirban Ghosh. 2016. Lower bounds on the dilation of plane spanners. International Journal
of Computational Geometry & Applications 26, 02 (2016), 89-110.

Adrian Dumitrescu, Anirban Ghosh, and Csaba D. Toth. 2022. Sparse hop spanners for unit disk graphs. Computa-
tional Geometry 100 (2022), 101808.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:36 F. Anderson et al.

[27] Mohammad Farshi and Joachim Gudmundsson. 2009. Experimental study of geometric #-spanners. Journal of Exper-
imental Algorithmics 14 (2009), 3.

[28] Greg N. Federickson. 1987. Fast algorithms for shortest paths in planar graphs, with applications. SIAM Journal on
Computing 16, 6 (1987), 1004-1022.

[29] Rachel Friederich, Anirban Ghosh, Matthew Graham, Brian Hicks, and Ronald Shevchenko. 2023. Experiments with
unit disk cover algorithms for covering massive pointsets. Computational Geometry 109 (2023), 101925.

[30] Anirban Ghosh, Brian Hicks, and Ronald Shevchenko. 2019. Unit disk cover for massive point sets. In Proceedings of

the International Symposium on Experimental Algorithms. 142-157.

Itinerant Games. 2014. A 2D Procedural Galaxy with C++. Retrieved February 8, 2023 from https://itinerantgames.

tumblr.com/post/78592276402/a-2d-procedural-galaxy-with-c.

[32] Iyad Kanj, Ljubomir Perkovic, and Duru Tirkoglu. 2017. Degree four plane spanners: Simpler and better. Journal of
Computational Geometry 8, 2 (2017), 3-31.

[33] Iyad A. Kanj, Ljubomir Perkovi¢, and Ge Xia. 2010. On spanners and lightweight spanners of geometric graphs. SIAM
Journal on Computing 39, 6 (2010), 2132-2161.

[34] Iyad A. Kanj and Ge Xia. 2012. Improved local algorithms for spanner construction. Theoretical Computer Science
453 (2012), 54-64.

[35] Rolf Klein, Martin Kutz, and Rainer Penninger. 2015. Most finite point sets in the plane have dilation > 1. Discrete &
Computational Geometry 53, 1 (2015), 80-106.

[36] Xiang-Yang Li and Yu Wang. 2004. Efficient construction of low weighted bounded degree planar spanner. Interna-

tional Journal of Computational Geometry & Applications 14, 01n02 (2004), 69-84.

Wolfgang Mulzer. 2004. Minimum Dilation Triangulations for the Regular n-Gon. Master’s Thesis. Freie Universitat

Berlin, Germany.

[38] Giri Narasimhan and Michiel Smid. 2000. Approximating the stretch factor of Euclidean graphs. SIAM Journal on
Computing 30, 3 (2000), 978-989.

[39] Giri Narasimhan and Michiel Smid. 2007. Geometric Spanner Networks. Cambridge University Press.

[40] Giri Narasimhan and Martin Zachariasen. 2001. Geometric minimum spanning trees via well-separated pair decom-
positions. Journal of Experimental Algorithmics 6 (2001), 6-es.

[41] The CGAL Project. 2021. CGAL User and Reference Manual (5.3 ed.). CGAL Editorial Board. https://doc.cgal.org/5.3/
Manual/packages.html.

[42] Csaba D. Toth, Joseph O’Rourke, and Jacob E. Goodman. 2017. Handbook of Discrete and Computational Geometry.
Chapman & Hall/CRC.

[43] TSP. 2022. Traveling Salesman Problem. Retrieved December 8, 2022 from https://www.math.uwaterloo.ca/tsp/.

Christian Wulff-Nilsen. 2010. Computing the maximum detour of a plane geometric graph in subquadratic time.

Journal of Computational Geometry 1, 1 (2010), 101-122.

[45] Ge Xia. 2013. The stretch factor of the Delaunay triangulation is less than 1.998. SIAM Journal on Computing 42,
4(2013), 1620-1659.

[31

—

—
w
~

—

—
o~
=

flans’

Received 5 May 2022; revised 7 November 2022; accepted 6 December 2022

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

