
1.1

Bounded-Degree Plane Geometric Spanners in Practice

FREDERICK ANDERSON, ANIRBAN GHOSH, MATTHEW GRAHAM,

LUCAS MOUGEOT, and DAVID WISNOSKY, University of North Florida

The construction of bounded-degree plane geometric spanners has been a focus of interest since 2002 when

Bose, Gudmundsson, and Smid proposed the first algorithm to construct such spanners. To date, 11 algorithms

have been designed with various tradeoffs in degree and stretch-factor. We have implemented these sophisti-

cated spanner algorithms in C++ using the CGAL library and experimented with them using large synthetic

and real-world pointsets. Our experiments have revealed their practical behavior and real-world efficacy. We

share the implementations via GitHub for broader uses and future research.

We design and engineer EstimateStretchFactor, a simple practical algorithm, which can estimate

stretch-factors (obtains lower bounds on the exact stretch-factors) of geometric spanners—a challenging prob-

lem for which no practical algorithm is known yet. In our experiments with bounded-degree plane geometric

spanners, we found that EstimateStretchFactor estimated stretch-factors almost precisely. Further, it gave

linear runtime performance in practice for the pointset distributions considered in this work, making it much

faster than the naive Dijkstra-based algorithm for calculating stretch-factors.

CCS Concepts: • Theory of computation→ Sparsification and spanners;

Additional Key Words and Phrases: Geometric graph, plane spanner, stretch-factor

ACM Reference format:

Frederick Anderson, Anirban Ghosh, Matthew Graham, Lucas Mougeot, and David Wisnosky. 2023. Bounded-

Degree Plane Geometric Spanners in Practice. ACM J. Exp. Algor. 28, 1, Article 1.1 (April 2023), 36 pages.

https://doi.org/10.1145/3582497

1 INTRODUCTION

Let G be the complete Euclidean graph on a given set P of n points embedded in the Euclidean

plane. A geometric t-spanner on P is a geometric graph G ′ := (P ,E), a subgraph of G such that for

every pair of points u,v ∈ P , the distance between them in G ′ (the Euclidean length of a shortest

path betweenu,v inG ′) is at most t times their Euclidean distance |uv |, for some t ≥ 1. It is easy to

check thatG itself is a 1-spanner with Θ(n2) edges. The quantity t is referred to as the stretch-factor

of G ′. If there is no need to specify t , we simply use the term geometric spanner and assume that

there exists some t for G ′. We say that G ′ is plane if it is crossing-free. G ′ is degree-k or is said to

Research on this work was supported by the University of North Florida Academic Technology Grant and NSF Award

CCF-1947887.

Authors’ address: F. Anderson, A. Ghosh, M. Graham, L. Mougeot, and D. Wisnosky, School of Computing, University of

North Florida, 1 UNF Drive, Jacksonville, FL 32224; emails: {n01451351, anirban.ghosh, n00612546, n01398041, n01153911}@

unf.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1084-6654/2023/04-ART1.1 $15.00

https://doi.org/10.1145/3582497

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:2 F. Anderson et al.

Fig. 1. Left: A set P of 150 points, generated randomly within a square. Right: A plane degree-6 spanner on

P with stretch-factor ≈ 1.82. The pair of points for which the spanner achieves a stretch-factor of ≈ 1.82 is

shown in red along with the shortest path between them.

have bounded-degree if its degree is at most k . In this work, we experiment with bounded-degree

plane geometric spanners. Figure 1 presents an example of such a spanner.

Bounded-degree plane geometric spanners have been an area of interest in computational ge-

ometry for a long time. Non-crossing edges make them suitable for wireless network applica-

tions where edge crossings create communication interference. The absence of crossing edges

also makes them useful for the design of road networks to eliminate high-budget flyovers. Such

spanners have O (n) edges (at most 3n − 6 edges); as a result, they are less expensive to store and

navigate. Further, shortest-path algorithms run quicker on them since they are sparse. Bounded-

degree helps in reducing on-site equipment costs.

A triangulation T for a pointset P is referred to as a L2-Delaunay triangulation if no point in P
lies inside the circumcircle of any triangle in T . Bose et al. [13] were the first to show that there

always exists a plane geometric σ (π + 1)-spanner of degree at most 27 on any pointset, where

σ denotes an upper bound for the stretch-factor of L2-Delaunay triangulations (the current best

known value is σ = 1.998 due to Xia [45]). This result was subsequently improved in a long series

of papers [9, 12, 14, 16, 33, 34, 36] in terms of degree and/or stretch-factor. Bonichon et al. [11]

reduced the degree to 4 with t ≈ 156.8. Soon after this, Kanj et al. [32] improved this stretch-

factor upper bound to 20 in their work. A summary of these results is presented in Table 1. This

family of spanner construction algorithms has turned out to be a fascinating application of the

Delaunay triangulation. Note that all these algorithms produce bounded-degree plane subgraphs

of the complete Euclidean graph on P with constant stretch-factors.

The intriguing question that remains to be answered is whether the degree can be reduced

to 3 while keeping t bounded; refer to the work of Bose and Smid [15, Problem 14] and Toth

et al. [42, Chapter 32]. Interestingly, if one does not insist on constructing a plane spanner, Das

and Heffernan [23] showed that degree 3 is always achievable. Narasimhan and Smid [39, Section

20.1] show that no degree-2 plane spanner of the infinite integer lattice can have a constant stretch-

factor. Thus, a minimum degree of 3 is necessary to achieve a constant stretch-factor. If the points in

P are in convex position, then it is always possible to construct a degree-3 plane geometric spanners

(see [3, 7, 32]). From the other direction, lower bounds on the stretch-factors of plane spanners for

finite pointsets have been investigated elsewhere [24, 25, 35, 37]. In-browser visualizations of some

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:3

Table 1. Summary of Results on Constructions of Bounded-Degree Plane

Geometric Spanners, Sorted by the Degree They Guarantee

Reference Degree Stretch-Factor

Bose et al. [13] 27 σ (π + 1) ≈ 8.3

Li and Wang [36] 23 σ (1 + π√
2

) ≈ 6.4

Bose et al. [16] 17 σ (2 + 2
√

3 + 3π
2 + 2π sin π

12) ≈ 23.6

Kanj et al. [33] 14 σ (1 + 2π
14 cos(π /14)) ≈ 2.9

Kanj and Xia [34] 11 σ (
2 sin(2π /5) cos(π /5)

2 sin(2π /5) cos(π /5)−1
) ≈ 5.7

Bose et al. [14] 8 σ
(
1 + 2π

6 cos(π /6)

)
≈ 4.4

Bose et al. [12] 7 σ (1 +
√

2)2 ≈ 11.6

Bose et al. [12] 6 σ
(

1
1−tan(π /7)(1+1/ cos(π /14))

)
≈ 81.7

Bonichon et al. [9] 6 6

Bonichon et al. [11] 4

√
4 + 2

√
2(19 + 29

√
2) ≈ 156.8

Kanj et al. [32] 4 20

The best known upper bound of σ = 1.998 for the stretch-factor of the L2-Delaunay

triangulation [45] is used in this table for expressing the stretch-factors.

of the algorithms (those based on the L2-Delaunay triangulation) have been recently presented in

the work of Anderson et al. [2].

In related works, the construction of plane hop spanners (where the number of hops in shortest

paths is of interest) for unit disk graphs has been considered [6, 19, 26].

The most notable experimental work for geometric spanners is done by Farshi and

Gudmundsson [27]. The authors engineered and experimented with some of the well-known geo-

metric spanners construction algorithms published before 2009. However, the authors did not use

the algorithms considered in this work in their experiments. Planarity and bounded-degree are

important concerns in geometric network design. Hence, we found it motivating to implement the

11 algorithms (refer to Table 1) meant to construct bounded-degree plane geometric spanners. Fur-

ther, asymptotic runtimes and various theoretical bounds do not always do justice in explaining

the real-world performance of algorithms, especially in computational geometry, because of heavy

floating-point operations needed for various geometric calculations. Experiments reveal their real-

world performance. We note that a unique aspect of the family of bounded-degree plane spanner

construction algorithms is that users cannot specify an arbitrary value of t and/or degree for span-

ner construction. It is a deviation from many standard spanner algorithms; see elsewhere [12, 39]

for a review of such algorithms. This makes experiments with them even more interesting.

Our Contributions. First, we experimentally compare the aforementioned 11 bounded-degree

plane spanner construction algorithms by implementing them carefully in C++ using the popu-

lar CGAL library [41] and running them on large synthetic and real-world pointsets. The largest

pointset contains approximately 1.9 million points. For broader uses of these sophisticated algo-

rithms, we share the C++ implementations via GitHub. The comparisons are performed based on

their runtime, degree, stretch-factor, and lightness of the generated spanners. We present a brief

overview of the algorithms implemented and our experimental results in Sections 2 and 4, respec-

tively. The findings of our experimental study are presented in Section 5.

Second, in doing experiments with spanners, we found that stretch-factor measurement turns

out to be a severe bottleneck whenn is large. To address this, we have designed EstimateStretch-

Factor, a fast algorithm that can estimate the stretch-factor of a given spanner (not necessarily

plane). In our experiments, we found that it could estimate stretch-factors with high accuracy for

the class of geometric spanners dealt with in this work. It was considerably faster than the naive

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:4 F. Anderson et al.

Dijkstra-based exact stretch-factor measurement algorithm in practice. To our knowledge, no

such practical algorithm exists in the literature. Section 3 presents a description of this algorithm.

2 ALGORITHMS IMPLEMENTED

Every algorithm designed to date for constructing bounded-degree plane geometric spanners relies

on some variant of Delaunay triangulation. The rationale behind this is that such triangulations are

geometric spanners [10, 21, 22, 45] and are plane by definition. As a result, the family of plane span-

ner construction algorithms considered in this work has turned out to be a fascinating application

of Delaunay triangulation. It is essential to know that Delaunay triangulations have unbounded

degrees and cannot be used as bounded-degree plane spanners.

In this section, we provide a brief description for each of the 11 algorithms considered in this

work. Appropriate abbreviations using the authors’ names and dates of publication are used for

naming purposes. Since most of these algorithms are involved, we urge the reader to refer to the

original papers for a deeper understanding and correctness proofs. For visualizing some of these

algorithms, we recommend the interactive in-browser applet developed by us (see [2]). To observe

variations in spanner construction between the algorithms, see Appendix A.1.

In these algorithms, the surrounding of every input point is frequently divided into multiple

cones (depending on the algorithm) for carefully selecting edges from the Delaunay triangulation

used as the starting point. In our pseudocodes, the cone i of point u, considered clockwise, is

denoted by Cu
i . A triangulation T of a pointset P is said to be an L2-Delaunay triangulation of P

if no point in P lies inside the circumcircle of any triangle in T . Eight of the 11 algorithms use

L2-Delaunay triangulation as the starting point. The remaining 3 algorithms use either L∞ or TD-

Delaunay triangulations, as described later in this section. In the following, n denotes the size of

the input pointset:

• BGS05: Bose et al. [13]: This was the first algorithm that can construct bounded-degree plane

spanners using the classic L2-Delaunay triangulation. First, a Delaunay triangulation DT of

P is constructed. Next, a degree-3 spanning subgraph SG ofDT is computed that contains the

convex hull of P and is a (possibly degenerate) simple polygon with P as its vertex set. The

polygon is then transformed into a simple non-degenerate polygon Q . The vertices of Q are

processed in an order that is obtained from a breadth-first order of DT , then Delaunay edges

are carefully added to Q . The resulting graph denoted G ′ is a plane spanner for the vertices

of Q . Refer to Algorithm 5 for a pseudocode of this algorithm. The authors show that their

algorithm generates degree-27 plane spanners with a stretch-factor of 1.998(π + 1) ≈ 8.3
and runs in O (n logn) time.

ALGORITHM 1: CanonicalOrdering(DT)

1 Declare an empty array Φ[1, . . . ,n];

2 Make a copy of DT and call it H ;

3 Let reserved be a set of two consecutive vertices v1,v2 on the convex hull of H ;

4 Φ[1]← v1,Φ[2]← v2;

5 for i = 1 to n − 2 do

6 Let u be a vertex of the outer face of H \ reserved that is adjacent to at most two other

vertices on the outer face;

7 Φ[u]← n − i + 1;

8 Remove u and all incident edges from H ;

9 end

10 return Φ;

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:5

ALGORITHM 2: SpanningGraph(DT)

1 Φ[1, . . . ,n]← CanonicalOrdering(DT) (Algorithm 1);

2 SG ← ∅;
3 Add edges between v1,v2,v3 ∈ Φ to SG and mark the vertices as done;

4 for vi ∈ Φ \ {v1,v2,v3} do

5 Let u1, . . . ,uk be the vertices neighboring vi in DT marked as done;

6 Remove edge {u1,u2} from SG;

7 Add edges {vi ,u1} and {vi ,u2} to SG;

8 if k > 2 then

9 Remove edge {uk−1,uk } from SG;

10 Add edge {vi ,uk } to SG;

11 end

12 end

13 return SG;

ALGORITHM 3: TransformPolygon(SG,DT)

1 V ← ∅,E ← ∅;
2 Let s1,v1 be two consecutive vertices on the convex hull of SG in counterclockwise order;

3 vpr ev ← s1,vi ← v1;

4 Add vpr ev to V ;

5 do

6 Add vi to V ;

7 Add {vi ,vpr ev } to E;

8 Let vnext be the neighbor of vi ∈ SG such that vnext is the next neighbor clockwise from

vpr ev ;

9 vpr ev ← vi ,vi ← vnext ;

10 while vpr ev � s1 and vi � v1;

11 E = E ∪ {{vi ,vpr ev }} ∪ DT \ SG;

12 return (V ,E);

ALGORITHM 4: PolygonSpanner(Q, SG)

1 Let V ,E be the vertices and edges of Q , respectively;

2 Let ρ[1, . . . ,n] be the breadth-first ordering of V in Q , starting at any vertex in V ;

3 E ′ ← SG;

4 foreach u ∈ ρ do

5 Let s1, s2, . . . , sm be the clockwise ordered neighbors of u in Q ;

6 sj , sk ← sm ;

7 if u � ρ1 then

8 Set sj and sk to the first and last vertex in the ordered neighborhood of u where

sj , sk ∈ E ′;
9 end

10 Divide ∠s1usj and ∠skusm into an minimum number of cones with maximum angle π/2;

11 In each cone, add the shortest edge in E incident upon u to E ′ and all edges {s� , s�+1} such

that 1 ≤ � < j or k ≤ � < m;

12 end

13 return E ′;

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:6 F. Anderson et al.

ALGORITHM 5: BGS05(P)

1 DT ← L2-DelaunayTriangulation(P);

2 SG ← SpanningGraph(DT) (Algorithm 2);

3 Q ← TransformPolygon(SG,DT) (Algorithm 3);

4 G ′ ← PolygonSpanner(Q, SG) (Algorithm 4);

5 return G ′;

• LW04: Li and Wang [36]: This algorithm is inspired by BSG2005 but is a lot simpler and avoids

the use of intermediate (possibly degenerate) polygons. The algorithm computes a reverse

low-degree ordering of the vertices of the L2-Delaunay triangulation DT constructed on P .

Then it sequentially considers the vertices in this ordering, divides the surrounding of every

such vertex into multiple cones, and then adds short edges from DT to preserve planarity.

Algorithm 7 presents a pseudocode of this algorithm. The authors have shown that this

algorithm generates degree-23 plane spanners (when the input parameter α of this algorithm

is set to π/2) having a stretch-factor of 1.998(1 + π/
√

2) ≈ 6.4 and runs in O (n logn) time.

ALGORITHM 6: ReverseLowDegreeOrdering(DT)

1 Declare an empty array Φ[1 . . .n];

2 Make a copy of DT and call it H ;

3 for i = 1 to n do

4 Let u be a vertex in H with minimal degree;

5 Φ[u]← n − i + 1;

6 Remove u and all incident edges from H ;

7 return Φ;

ALGORITHM 7: LW04(P , 0 < α ≤ π/2)

1 DT ← L2-DelaunayTriangulation(P);

2 Φ[1 . . .n]← ReverseLowDegreeOrdering(DT) (Algorithm 6);

3 E ← ∅;
4 foreach u ∈ Φ do

5 if u has unprocessed Delaunay neighbors then

6 Divide the area surrounding u into sectors delineated by these unprocessed neighbors;

7 Divide each sector into a minimum number of equal-sized cones C0
u ,C

1
u , . . . with angle

at most α ;

8 foreach Ci
u do

9 Let v1,v2, . . . ,vm be the clockwise-ordered Delaunay neighbors of u in Ci
u ;

10 Let vclosest be the closest unprocessed neighbor to u;

11 Add edge {u,vclosest } to E;

12 Add all edges {vj ,vj+1} such that 1 ≤ j < m to E;

13 Mark u as processed;

14 return E;

• BSX09: Bose et al. [16]: This algorithm is quite similar to LW04 in design and also relies on re-

verse low-degree ordering of the vertices of the Delaunay triangulation. Refer to Algorithm 8.

The authors have generalized their algorithm so that it can construct bounded-degree plane

spanners from any triangulation of P , not necessarily just the L2-Delaunay triangulation (al-

though the L2-Delaunay triangulation is of primary interest to us). When the L2-Delaunay

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:7

triangulation is used and the parameter α is set to 2π/3, the algorithm generates degree-17

plane spanners having a stretch-factor of σ (2 + 2
√

3 + 3π
2 + 2π sin π

12) ≈ 23.6 in O (n logn)
time. After computing the triangulation and the reverse low-degree ordering, at every ver-

tex u, δ =
2π/α� Yao cones are initialized such that the closest unprocessed triangulation

neighbor falls on a cone boundary and occupies both cones as the short edge, which is added

to the spanner. In the remaining cones, the closest unprocessed neighbor of u in each cone

is added. In all cones, special edges between pairs of neighbors ofu are added to the spanner

if both neighbors are unprocessed.

ALGORITHM 8: BSX09(P , 0 < α ≤ 2π/3)

1 DT ← L2-DelaunayTriangulation(P);

2 Φ[1 . . .n]← ReverseLowDegreeOrdering(DT) (Algorithm 6);

3 E ← ∅;
4 foreach u ∈ Φ do

5 if u has unprocessed Delaunay neighbors then

6 Let vclosest be the closest unprocessed neighbor to u;

7 Add the edge {u,vclosest } to E;

8 Divide the area surrounding u into � 2π
α � non-overlapping cones C0

u ,C
1
u , . . . such that

vclosest is on the boundary between the first and last cones;

9 foreach Ci
u except the first and last do

10 if u has unprocessed neighbors in Ci
u then

11 Let w be the closest unprocessed neighbor to u in the cone;

12 Add edge {u,w } to E;

13 end

14 Let v0,v1, . . . ,vm−1 be the clockwise-ordered neighbors of u;

15 Add all edges {vj ,v(j+1) mod m } to E such that 0 ≤ j < m and vj ,v(j+1) mod m are

unprocessed;

16 end

17 end

18 Mark u as processed;

19 end

20 return E;

• BGHP10: Bonichon et al. [9]: This was the first algorithm that deviated from the use of L2-

Delaunay triangulation; instead, it usedTD-Delaunay triangulation to select spanner edges,

introduced by Chew [22] in 1989. For such triangulations, empty equilateral triangles are

used for characterization instead of empty circles, as needed in the case of L2-Delaunay tri-

angulations.TD-Delaunay triangulations are plane 2-spanners but may have an unbounded

degree. BGHP10 first extracts a degree-9 subgraph from the TD-Delaunay triangulation that

has a stretch-factor of 6. Then using some local modifications, the degree is reduced from 9

to 6 but the stretch-factor remains unchanged. Refer to Algorithm 9. It uses internally Algo-

rithms 10 through 15. In this algorithm, charge(u, i) maps vertex u ∈ DT and a cone i of u
to the number of edges charged to the cone, initialized to 0 in the beginning. The algorithm

runs in O (n logn) time, as shown by the authors.

• KPX10: Kanj et al. [33]: For every vertex u in the L2-Delaunay triangulation, its surrounding

is divided into k ≥ 14 cones. In every nonempty cone of u, the shortest Delaunay edge

incident on u is selected. After this, a few additional Delaunay edges are also selected using

some criteria based on cone sequences. Algorithm 16 presents a complete description of

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:8 F. Anderson et al.

this algorithm with the technical details. When k is set to 14, degree-14 plane spanners

are generated having a stretch-factor of 1.998(1 + 2π
14 cos(π /14)) ≈ 2.9. Note that out of the

11 algorithms we have implemented in this work, this algorithm gives the best theoretical

guarantee on the stretch-factor (see Table 1). KPX10 runs in O (n logn) time.

ALGORITHM 9: BGHP10(P)

1 Notations. Refer to Algorithms 10 through 15 to see how i-relevant(v,u, i), i-distant(w, i),
parent(u, i), closest(u, i), first(u, i), and last(u, i) are defined.

2 DT ← TD-DelaunayTriangulation(P);

3 E ← ∅;
4 foreach nonempty cone i of vertex u ∈ DT where i ∈ {1, 3, 5} do

5 Add edge {u, closest(u, i)} to E;

6 charge(u, i) ← charge(u, i) + 1;

7 charge(closest(u, i), i + 3)) ← charge(closest(u, i), i + 3) + 1;

8 if first(u, i) � closest(u, i) ∧ i-relevant(first(u, i),u, i − 1) then

9 Add edge u, first(u, i) to E;

10 charge(u, i − 1) ← charge(u, i − 1) + 1;

11 end

12 if last(u, i) � closest(u, i) ∧ i-relevant(last(u, i),u, i + 1) then

13 Add edge {u, last(u, i)} to E;

14 charge(u, i + 1) ← charge(u, i + 1) + 1;

15 end

16 end

17 foreach cone i of vertex u ∈ DT where i ∈ {0, 2, 4} such that i-distant(u, i) is true do

18 vnext ← first(u, i + 1);

19 vpr ev ← last(u, i − 1);

20 Add edge {vnext ,vpr ev } to E;

21 charge(vnext , i + 1) ← charge(vnext , i + 1) + 1;

22 charge(vpr ev , i − 1) ← charge(vpr ev , i − 1) + 1;

23 Let vr emove be the vertex from vnext ,vpr ev where ∠(parent(u, i),u,vr emove) is

maximized;

24 Remove edge {u,vr emove } from E;

25 charge(u, i) ← charge(u, i) − 1;

26 end

27 foreach cone i of vertex u ∈ DT where i ∈ {0, 1, . . . , 5} such that charge(u, i) = 2 ∧
charge(u, i − 1) = 1 ∧ charge(u, i + 1) = 1 do

28 if u = last(parent(u, i), i) then

29 vr emove ← last(u, i − 1);

30 else

31 vr emove ← first(u, i + 1);

32 end

33 Remove edge {u,vr emove } from E;

34 charge(u, i) ← charge(u, i) − 1;

35 end

36 return E;

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:9

ALGORITHM 10: i-relevant(v,u, i)

1 w ← parent(u, i);

2 return v � closest(u, i) ∧v ∈ Ci
w ;

ALGORITHM 11: i-distant(w, i)

1 u ← parent(w, i);

2 return {w,u} � E ∧ i-relevant(first(w, i + 1),u, i + 1) ∧ i-relevant(last(w, i − 1),u, i − 1);

ALGORITHM 12: parent(u, i ∈ {0, 2, 4})
1 return closest(u, i)

ALGORITHM 13: closest(u, i)

1 return the closest vertex to u in cone i of u, if it exists;

ALGORITHM 14: first(u, i)

1 return the first vertex (considered clockwise) in cone i of u, if it exists;

ALGORITHM 15: last(u, i)

1 return the last vertex (considered clockwise) in cone i , if it exists;

ALGORITHM 16: KPX10(P , integer k ≥ 14)

1 DT ← L2-DelaunayTriangulation(P);

2 foreach vertex u ∈ DT do

3 Partition the area surrounding u into k disjoint cones of angle 2π/k ;

4 In each nonempty cone, select the shortest edge in DT incident to u;

5 foreach maximal sequence of � ≥ 1 consecutive empty cones do

6 if � > 1 then

7 select the first ��/2� unselected incident DT edges on u clockwise from the

sequence of empty cones and the first
�/2� unselected DT edges incident on u
counterclockwise from the sequence of empty cones;

8 else

9 let ux and uy be the incident DT edges onm clockwise and counterclockwise,

respectively, from the empty cone;

10 if either ux or uy is selected, then select the other edge (in case it has not been

selected); otherwise, select the shorter edge between ux and uy breaking ties

arbitrarily;

11 end

12 end

13 end

14 return the DT edges selected by both endpoints;

• KX12: Kanj and Xia [34]: ThisO (n logn)-time algorithm takes a different approach in contrast

with the previous ones, although it still uses the L2-Delaunay triangulationDT as the starting

point. Every vertex u in DT selects at most 11 of its incident edges in DT , and edges that are

selected by both endpoints are kept. As such, it is guaranteed that the degree of the resulting

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:10 F. Anderson et al.

subgraph is at most 11. The stretch-factors of the generated spanners are shown to be at most

1.998(2 sin(2π /5) cos(π /5)
2 sin(2π /5) cos(π /5)−1

) ≈ 5.7. Refer to Algorithm 17.

ALGORITHM 17: KX12(P)

1 DT ← L2-DelaunayTriangulation(P);

2 foreach vertex u ∈ DT do

3 In each wide sequence (a sequence of exactly three consecutive edges incident to a vertex

whose overall angle is at least 4π/5) around u, select the edges of the sequence;

4 Partition the remaining space surrounding u not in a wide sequence into a minimum

number of disjoint cones of maximum angle π/5;

5 In each nonempty cone, select the shortest edge incident to u;

6 In each empty cone, let ux and uy be the incident DT edges on u clockwise and

counterclockwise, respectively, from the empty cone;

7 If either ux or uy is selected, then select the other edge (in case it has not been selected);

otherwise, select the longer edge between ux and uy breaking ties arbitrarily;

8 end

9 return all edges selected by both incident vertices;

• BCC12-7, BCC12-6: Bose et al. [12]: The authors present two algorithms in their paper.

Whereas previous algorithms used strategies involving iterating over the vertices one-by-

one, this algorithm takes the approach of iterating over the edges of the Delaunay triangula-

tion in order of non-decreasing length to query agreement among the vertices for bounding

degrees. BCC12-7, the simpler of the two, produces 1.998(1+
√

2)2 ≈ 11.6-spanners with de-

gree 7. However, BCC12-6 constructs 11.998(1
1−tan(π /7)(1+1/ cos(π /14))) ≈ 81.7-spanners with

degree 6 but not all edges come from the L2-Delaunay triangulation. Both these algorithms

run in O (n logn) time. See Algorithm 18. The parameter Δ ∈ {7, 6} is used to control the

degree. Depending on Δ, either Algorithm 20 or Algorithm 19 is invoked.

ALGORITHM 18: BCC12(P ,Δ ∈ {6, 7})
1 DT ← L2-DelaunayTriangulation(P);

2 E,E∗ ← ∅;
3 Initialize k = Δ + 1 cones surrounding each vertex u, oriented such that the shortest edge

incident on u falls on a boundary;

4 foreach {u,v} ∈ DT in order of non-decreasing length do

5 if ∀Ci
u containing {u,v}, Ci

u ∩ E = ∅ and ∀C j
v containing {u,v}, C j

v ∩ E = ∅ then

6 Add edge {u,v} to E;

7 end

8 end

9 foreach {u,v} ∈ E do

10 WedgeΔ(u,v);

11 WedgeΔ(v,u);

12 end

13 return E ∪ E∗;

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:11

ALGORITHM 19: Wedge7 (u,vi)

1 foreach Cz
u containing {u,vi } do

2 Let {u,vj } and {u,vk } be the first and last edges of DT in the cone;

3 Add all edges {vm ,vm+1} to E∗ such that j < m < i − 1 or i < m < k − 1;

4 if {u,vi+1} ∈ Cz
u and vi+1 � vk and ∠uvivi+1 > π/2 then

5 Add edge {vi ,vi+1} to E∗;
6 end

7 if {u,vi−1} ∈ Cz
u and vi−1 � vk and ∠uvivi−1 > π/2 then

8 Add edge {vi ,vi−1} to E∗;
9 end

10 end

ALGORITHM 20: Wedge6 (u,vi)

1 foreach Cz
u containing {u,vi } do

2 Let Q = {vn : {u,vn } ∈ Cz
u ∩ DT } = {vj , . . . ,vk };

3 Let Q ′ = {vn : ∠vn−1vnvn+1 < 6π/7,vn ∈ Q \ {vj ,vi ,vk }};
4 Add all edges {vn ,vn+1} to E∗ such that vn ,vn+1 � Q ′ and n ∈ [j + 1, i − 2] ∪ [i + 1,k − 2];

/* W.l.o.g. the points of Q ′ lie between vi and vk (the symmetric case is

handled analogously) */

5 if ∠uvivi−1 > 4π/7 and i, i − 1 � j then

6 Add edge {vi ,vi−1} to E∗;
7 end

8 Let vf be the first point in Q ′;
9 Let a = min{n |n > f and vn ∈ Q \Q ′};

10 if f = i + 1 then

11 if ∠uvivi+1 ≤ 4π/7 and a � k then

12 Add edge {vf ,va } to E∗;
13 end

14 if ∠uvivi+1 > 4π/7 and f + 1 � k then

15 Add edge {vi ,vf +1} to E∗;
16 end

17 else

18 Let v� be the last point in Q ′;
19 Let b = max{n |n < � and vn ∈ Q \Q ′};
20 if � = k − 1 then

21 Add edge {v� ,vb } to E∗;
22 else

23 Add edge {vb ,v�+1} to E∗;
24 if v�−1 ∈ Q ′ then

25 Add edge {v� ,v�−1} to E∗;
26 end

27 end

28 end

29 end

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:12 F. Anderson et al.

• BKPX15: Bonichon et al. [11]: This algorithm uses the L∞-Delaunay triangulation and was

the first degree-4 algorithm. For such triangulations, empty axis parallel squares are used for

characterization instead of empty circles, as needed in the case ofL2-Delaunay triangulations.

The L∞-distance between two points u,w is defined as d∞ (u,w) = max(dx (u,w),dy (u,w)).

From the L∞-Delaunay triangulation of P , a directed L∞-distance-based Yao graph
−−→
Y∞4 is

constructed: the space around every point p ∈ P is divided into four disjoint 90◦ cones and

then for each non-empty cone, and a directed edge going out of p is placed between p and

its closest neighbor in the cone according to the L∞-distance, breaking ties arbitrarily. The

authors show that
−−→
Y∞4 is a plane

√
20 + 14

√
2-spanner. Then a degree-8 subgraph H8 ofY∞4 is

constructed. Finally, some redundant edges are removed and new shortcut edges are added

to obtain the final plane degree-4 spanner with a stretch-factor of

√
20 + 14

√
2(19+ 29

√
2) ≈

156.8. No runtime analysis is presented by the authors. Refer to Algorithm 21.

ALGORITHM 21: BKPX15(P)

1 Notations. The algorithm divides the space around each point into four cones, separated by the

x- and y-axes after translating the point to the origin. Each cone has an associated charge,

which can be 0, 1, or 2. The algorithm labels certain edges as follows. Each edge will be an

anchor or a non-anchor and weak or strong. Further, each edge may have an additional label

of start-of-odd-chain-anchor. A weak anchor chain is a path w0,w1,w2, . . . ,wk of

maximal length consisting of weak anchors such that the cone of each edge (w.r.t. the source

vertex) alternates between some i and i + 2. Canonical edges are edges between consecutive

vertices in the ordered neighborhood of a vertex u in a common cone i . An edge (u,v) is said to

be dual if there are two or more edges of
−−→
Y∞4 incident to cone i of u and cone i + 2 of v .

2 DT ← L∞-DelaunayTriangulation(P);

3
−−→
Y∞4 ← constructYaoInfinityGraph(DT) (Algorithm 22);

4 A← selectAnchors(
−−→
Y∞4 ,DT) (Algorithm 23);

5 H8 ← degree8Spanner(A,
−−→
Y∞4 ,DT) (Algorithm 26);

6 H6 ← processDupEdgeChains(H8,
−−→
Y∞4) (Algorithm 27);

7 H4 ← createShortcuts(H6,
−−→
Y∞4 ,DT) (Algorithm 28);

8 return H4;

ALGORITHM 22: constructYaoInfinityGraph(DT)

1
−−→
Y∞4 ← ∅;

2 foreach u ∈ DT do

3 foreach cone Ci
u around u do

4 Let v ∈ Ci
u be the vertex with the smallest L∞ distance;

5 Add (u,v) to
−−→
Y∞4 ;

6 end

7 end

8 return
−−→
Y∞4 ;

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:13

ALGORITHM 23: selectAnchors(
−−→
Y∞4 ,DT)

1 foreach (u,v) ∈
−−→
Y∞4 do

2 Let i be the cone of u containing v ;

3 vanchor ← v ;

4 if ¬isMutuallySingle(
−−→
Y∞4 ,u,v, i) and u has more than one

−−→
Y∞4 edge in Ci

u then

5 Let � be the position of v and k the number of vertices in fan(DT ,u, i);

6 if � ≥ 2 and (v�−1,v�) ∈
−−→
Y∞4 and (v� ,v�−1) �

−−→
Y∞4 then

7 Let v�′ such that �′ < � be the starting vertex of the maximal uni-directional

canonical path ending at v� ;

8 vanchor ← v�′ ;

9 else if � ≤ k − 1 and (v�+1,v�) ∈
−−→
Y∞4 and (v� ,v�+1) �

−−→
Y∞4 then

10 Let v�′ such that �′ > � be the starting vertex of the maximal uni-directional

canonical path ending at v� ;

11 vanchor ← v�′ ;

12 end

13 Mark (u,vanchor) as the anchor of Ci
u ;

14 end

15 A← ∅;
16 foreach anchor (u,v) in each Ci

u do

17 if anchor of Ci+2
v is (v,u) or undefined then

18 Mark (u,v) as strong and add it to A;

19 else

20 Mark (u,v) as weak;

21 end

22 end

23 foreach weak anchor (u,v) in each Ci
u do

24 if u begins the weak anchor chain (w0,w1, . . . ,wk) then

25 if k is odd then

26 Mark (w0,w1) as a start-of-odd-chain-anchor;

27 end

28 for � = k − 1; � ≥ 0; � = � − 2 do

29 Add (w�−1,w�) to A;

30 end

31 end

32 end

33 return A;

ALGORITHM 24: fan(DT ,u, i)

1 return all neighboring vertices (v1,v2, . . . ,vk) in Ci
u in counterclockwise order;

ALGORITHM 25: isMutuallySingle(
−−→
Y∞4 ,u,v, i)

1 return u has one edge from
−−→
Y∞4 in Ci

u and v has one edge from
−−→
Y∞4 in Ci+2

v ;

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:14 F. Anderson et al.

ALGORITHM 26: degree8Spanner(A,
−−→
Y∞4 ,DT)

1 Charge each anchor (u,v) ∈ A to the cones of each vertex in which the edge lies;

2 H8 ← A;

3 foreach vertex u and cone i of u do

4 {v1, . . . ,vk } ← fan(DT ,u, i);

5 if k ≥ 2 then

6 Add all uni-directional canonical edges to H8 except (v2,v1) and (vk−1,vk);

7 if (v2,v1) is a non-anchor, uni-directional edge such that

(v2,v1) ∈
−−→
Y∞4 ∧ (v1,v2) �

−−→
Y∞4 ∧ (v1,u) is a dual edge ∧ not a start-of-odd-chain

anchor chosen by v1 then

8 Add (v2,v1) to H8;

9 end

10 if (vk−1,vk) is a non-anchor, uni-directional edge such that

(vk−1,vk) ∈
−−→
Y∞4 ∧ (vk ,vk−1) �

−−→
Y∞4 ∧ (vk ,u) is a dual edge ∧ not a

start-of-odd-chain anchor chosen by vk then

11 Add (vk−1,vk) to H8;

12 end

13 foreach canonical edge (v,w) added to H8 do

14 vcharдe ← v ;

15 if (v,w) is a non-anchor then

16 vcharдe ← u;

17 end

18 Charge (v,w) to the cone of v containing w and the cone of w containing vcharдe ;

19 end

20 end

21 end

22 return H8;

ALGORITHM 27: processDupEdgeChains(H8,
−−→
Y∞4)

1 H6 ← H8;

2 foreach uni-directional non-anchor (u,v) in cone i of u in H8 with charge = 1 do

3 if cone i + 1 or i − 1 of v has charge = 2 ∧ (u,v) is charged to cone i + 1 or i − 1 of v then

4 Let j be the cone of v where (u, v) is charged;

5 vcurr ent ← u,vnext ← v , D ← ∅;
6 while cone j of vnext has charge = 2 ∧ (vcurr ent ,vnext) is in cone j of vnext do

7 Add (vcurr ent ,vnext) to D;

8 vcurr ent ← vnext ;

9 Set vnext to the target of the
−−→
Y∞4 edge beginning in cone j of vcurr ent ;

10 swap(i, j);

11 end

12 Starting with the last edge in the path induced by D, remove every other edge from H6;

13 end

14 end

15 return H6;

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:15

ALGORITHM 28: createShortcuts(H6,
−−→
Y∞4 ,DT)

1 H4 ← H6;

2 foreach pair of non-anchor uni-directional canonical edges (vr−1,vr), (vr+1,vr) in cone i of

u do

3 Remove (vr−1,vr) and (vr+1,vr) from H4;

4 Add (vr−1,vr+1) to H4;

5 Charge this edge to the cones of each vertex in which the edge lies;

6 end

7 return H4;

• KPT17: Kanj et al. [32]: Akin to BGHP10, this algorithm uses the TD-Delaunay triangulation

and Θ-graph to introduce fresh techniques in spanner construction. Refer to Algorithm 29

for a pseudocode of this algorithm. The authors show that their algorithm generates degree-4

spanners with a stretch-factor of 20 and runs in O (n logn) time.

ALGORITHM 29: KPT17(P)

1 Notations. For each vertex, the shortest edge in each odd cone is called an anchor. Cones 1 and 4

are labeled as blue and the rest as white. The first and last edges incident upon a vertex u in a

cone i are called the boundary edges of u in i . The canonical path is made up of all canonical
edges incident on u in cone i , forming a path from one boundary edge in the cone to the other.

2 DT ← TD-DelaunayTriangulation(P);

3 E,A← ∅;
4 foreach white anchor (u,v) in increasing order of d� length do

5 if u and v do not have a white anchor in a cone adjacent to (u,v)’s cone then

6 Add (u,v) to A;

7 end

8 end

9 Add all blue anchors to A;

10 foreach blue anchor u do

11 Let s1, s2, . . . , sm be the clockwise ordered neighbors of u in DT ;

12 Add all canonical edges (s� , s�+1) � A to E such that 1 ≤ � < m;

13 end

14 foreach pair of canonical edges (u,v) , (w,v) ∈ E in a blue cone do

15 Remove (u,v) and (w,v) from E;

16 Add a shortcut edge (u,w) to E;

17 end

18 foreach white canonical edge (u,v) on the white side of its anchor a do

19 if a � A then

20 Add (u,v) to E;

21 end

22 end

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:16 F. Anderson et al.

24 foreach white anchor (v,w) and its boundary edge (u,w) � (v,w) on the white side do

25 Let u = s1, s2, . . . , sm = v be the canonical path between u and v ;

26 for i = 0 tom do

27 if (si+1, si) is blue then

28 Let j be the smallest index in Pi = {si+1, . . . , sm } such that sj is in a white cone of si
and Pi lies on the same side (or on) the straight line sisj ;

29 Add the shortcut
(
sj , si
)

to E;

30 if
(
sj , sj−1

)
∈ E then

31 Remove
(
sj , sj−1

)
from E;

32 end

33 i ← j;

34 end

35 end

36 end

37 return E ∪A;

• BHS18: Bose et al. [14]. This algorithm produces a plane degree-8 spanner with stretch-factor

at most 1.998(1+ 2π
6 cos(π /6)) ≈ 4.4 using theL2-Delaunay triangulation and Θ-graph. However,

the authors do not present any runtime analysis of their algorithm. In BHS18, the space

around every pointp is divided into six cones and oriented such that a boundary lies on the x-

axis after translatingp to the origin. The algorithm starts with the L2-Delaunay triangulation

DT , then, in order of non-decreasing bisector distance, each edge is added to the spanner if

the cones containing it are both empty. For each edge added here, certain canonical edges

will also be carefully added to the spanner. Refer to Algorithm 30.

ALGORITHM 30: BHS18(P)

1 Notations. The bisector-distance [pq] between p and q is the distance from p to the

orthogonal projection of q onto the bisector of C
p
i where q ∈ Cp

i . Let {q0,q1, . . . ,qd−1} be the

sequence of all neighbors of p in DT in consecutive clockwise order. The neighborhood Np with

apex p is the graph with the vertex set {p,q0,q1, . . . ,qd−1} and the edge set

{{qj ,qj+1}} ∪ {{qj ,qj+1}}, 0 ≤ j ≤ d − 1, with all values mod d . The edges {{qj ,qj+1}} are called

canonical edges. N
p
i is the subgraph of Np induced by all the vertices of Np in C

p
i , including p.

Let Can
{p,r }
i be the subgraph of DT consisting of the ordered subsequence of canonical edges

{s, t } of N
p
i in clockwise order around apex p such that

[
ps
] ≥ [pr] and

[
pt
] ≥ [pr] .

2 DT ← L2-DelaunayTriangulation(P);

3 Let m be the number of edges in DT ;

4 L be the edges ∈ DT sorted in non-decreasing order of bisector-distance;

5 EA ← addIncident(L), ECAN ← ∅;
6 foreach {u,v} ∈ EA do

7 ECAN ← ECAN ∪ addCanonical(u,v) ∪ addCanonical(v,u);

8 end

9 return EA ∪ ECAN ;

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:17

ALGORITHM 31: addIncident(L)

1 EA ← ∅;
2 foreach {u,v} ∈ L do

3 Let i be the cone of u containing v ;

4 if {u,w } � EA for all w ∈ Nu
i ∧ {v,y} � EA for all y ∈ Nv

i+3 then

5 Add {u,v} to EA;

6 end

7 end

8 return EA;

ALGORITHM 32: addCanonical(u,v)

1 E ′ ← ∅;
2 Let i be the cone of u containing v ;

3 Let ef ir st and elast be the first and last canonical edge in Can {u,v }i ;

4 if Can {u,v }i has at least three edges then

5 foreach {s, t } ∈ Can {u,v }i \ {ef ir st , elast } do

6 Add {s, t } to E ′;
7 end

8 end

9 if v ∈ {ef ir st , elast } and there is more than one edge in Can {u,v }i then

10 Add the edge of Can {u,v }i incident to v to E ′;
11 end

12 foreach {y, z} ∈ {ef ir st , elast } do

13 if {y, z} ∈ N z
i−1 then

14 Add {y, z} to E ′;
15 end

16 if {y, z} ∈ N z
i−2 then

17 if N z
i−2 ∩ EA does not have an edge incident to z then

18 Add {y, z} to E ′;
19 end

20 if N z
i−2 ∩ EA \ {y, z} has an edge incident to z then

21 Let {w,y} be the canonical edge of z incident to y;

22 Add {w,y} to E ′;
23 end

24 end

25 end

26 return E ′;

3 ESTIMATING STRETCH-FACTORS OF LARGE SPANNERS

Measuring exact stretch-factors of large graphs is a tedious job, and also is for geometric spanners.

Although many algorithms exist in the literature for constructing geometric spanners, nothing is

known about practical algorithms for computing stretch-factors of large geometric spanners. It

is a severe bottleneck for conducting experiments with large spanners since the stretch-factor is

considered a fundamental quality of geometric spanners.

For any spanner (not necessarily geometric) on n vertices, its exact stretch-factor can be com-

puted in O (n2 logn + n |E |) time by running the folklore Dijkstra algorithm (implemented using

a Fibonacci heap) from every vertex, and in Θ(n3) time by running the classic Floyd-Warshall

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:18 F. Anderson et al.

algorithm. Note that the Dijkstra-based algorithm runs O (n2 logn) time for plane spanners since

the number of edges is O (n). Both of these are very slow in practice. However, the latter has a

quadratic space-complexity and is unusable when n is large. Consequently, they are practically

useless when n is large. Stretch-factor estimation of large geometric graphs appears to be a far cry

despite theoretical studies on this problem (see [1, 20, 28, 38, 44]). We believe these algorithms are

either involved from an algorithm engineering standpoint or rely on well-separated pair decompo-

sition [18], which may potentially slow down practical implementations due to the large number

of well-separated pairs needed by those algorithms. This has motivated us to design a practical al-

gorithm, named EstimateStretchFactor, which gives a lower bound on the actual stretch-factor

of any geometric spanner (not necessarily plane). However, we will consider the universe of plane

geometric spanners as the input domain in this work. To our knowledge, we are not aware of any

such algorithm in the literature. Refer to Algorithm 33, which takes as input an n-element pointset

P and a geometric graph G, constructed on P .

ALGORITHM 33: EstimateStretchFactor(P ,G)

1 DT ← L2-DelaunayTriangulation(P);

2 t ← 1;

3 foreach p ∈ P do

4 h ← 1, tp ← 1;

5 while true do

6 Let X denote the set of points which are exactly h hops away from p in DT found using a

breadth-first traversal originating at p;

7 t ′ ← 1;

8 foreach q ∈ X do

9 t ′ ← max
(
|πG (p,q) |
|pq | , t

′
)
;

10 end

11 if t ′ > tp then

12 h ← h + 1; tp ← t ′;
13 else

14 break;

15 end

16 t ← max(t , tp);

17 end

18 return t ;

The underlying idea of our algorithm is as follows. We observe that most geometric spanners

are well constructed, meaning it is likely that far away points (having many hops in the shortest

paths between them) have low detour ratios (ratio of the length of a shortest path to that of the

Euclidean distance) between them and the worst-case detour is achieved by point pairs that are

a few hops apart. Note that stretch-factor of a graph is the maximum detour ratio over all vertex

pairs. To capture closeness, we use the L2-Delaunay triangulation constructed on P as the basis. For

every point p ∈ P , we start a breadth-first traversal on the Delaunay triangulation DT . At every

level, we compute the detour ratios inG from p to all the points in that level. If a worse detour ratio

is found in the current level compared to the worst found in the previous level, we continue to the

next level; otherwise, the process is terminated. For finding detour ratios inG, we use the folklore

Dijkstra algorithm since computation of shortest paths are required. In our algorithm, πG (p,q)
denotes a shortest path between the points p,q ∈ P inG and |πG (p,q) | its total length. The detour

between p,q in G can be easily calculated as |πG (p,q) |/|pq |. The current level is denoted by h. It

is assumed that the neighbors of p in G are at level 1. For efficiency reasons, we do not restart

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:19

the Dijkstra at every level of the breadth-first traversal; instead, we save our progress from the

previous level and continue after that.

To our surprise, we found that for the class of spanners used in this work, EstimateStretchFac-

tor returned exact stretch-factors almost every time. The precision error was very low whenever

it failed to compute the exact stretch-factor. Further, our algorithm can be parallelized very easily

by spawning parallel iterations of the foreach loop. Apart from the L2-Delaunay triangulation

(which can be constructed very fast in practice), it does not use any advanced geometric struc-

ture, making it fast in practice. We present our experimental observations for this algorithm in

Section 4.3.

4 EXPERIMENTS

We have implemented the algorithms in GNU C++17 using the CGAL library [41]. The machine

used for experiments is equipped with an AMD Ryzen 5 1600 (3.2 GHz) processor and 24 GB of main

memory, and runs Ubuntu Linux 20.04 LTS. The g++ compiler was invoked with -O3 flag to achieve

fast real-world speed. From CGAL, the Exact_predicates_inexact_constructions_kernel is

used for accuracy and speed.

All 11 algorithms considered in this work use one of the following three kinds of Delaunay

triangulation as the starting point: L2,TD, and L∞. For constructing L2 and L∞-Delaunay triangu-

lations, the CGAL::Delaunay_triangulation_2 and CGAL::Segment_Delaunay_graph_Linf_2
implementations have been used, respectively. As of now, aTD-Delaunay triangulation implemen-

tation is not available in the CGAL. It was pointed out by Chew [22] that such triangulations can

be constructed in O (n logn) time. However, no precise implementable algorithm was presented.

But luckily, it is shown in the work of Bonichon et al. [8] that TD-Delaunay triangulation of

a pointset is the same as its 1
2 -Θ graph. We leveraged this result and used the O (n logn) time

CGAL::Construct_theta_graph_2 implementation for constructing the TD-Delaunay triangula-

tions. For faster speed, the input pointsets are always sorted using CGAL::spatial_sort before

constructing Delaunay triangulations on them.

In our experiments, we have used both synthetic and real-world pointsets, as described next.

4.1 Synthetic Pointsets

We have used the following eight distributions to generate synthetic pointsets for our experiments.

The selection of these distributions are inspired by the ones used elsewhere [4, 5, 29, 30, 40] for

geometric experiments. Figure 2 allows us to visualize these eight distributions:

(1) uni-square: Points were generated uniformly inside a square of side length of 1,000 using

the CGAL::Random_points_in_square_2 generator.

(2) uni-disk: Points were generated uniformly inside a disc of radius 1,000 using the

CGAL::Random_points_in_disc_2 generator.

(3) normal-clustered: A set of 10 normally distributed clusters placed randomly in the plane.

Each cluster contains n/10 normally distributed points (mean and standard deviation were

set to 2.0). We have used std::normal_distribution<double> to generate the point

coordinates.

(4) normal: This is the same as normal-clustered except that only one cluster was used.

(5) grid-contiguous: Points were generated contiguously on a

√
n� ×

√
n� square grid using

the CGAL::points_on_square_grid_2 generator.

(6) grid-random: Points were generated on a
0.7n� ×
0.7n� unit square grid. The value

0.7 was chosen arbitrarily to obtain well-separated non-contiguous grid points. The

coordinates of the generated points are integers and were generated independently using

std::uniform_int_distribution.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:20 F. Anderson et al.

Fig. 2. The eight distributions used to generate synthetic pointsets for our experiments.

(7) annulus: Points were generated inside an annulus whose outer radius was set to 1,000 and

the inner radius to 800. We have used std::uniform_real_distribution to generate the

coordinates.

(8) galaxy: Points were generated in the shape of a spiral galaxy having outer five arms

(see [31]).

For seeding the random number generators from C++, we have used the Mersenne twister

engine std::mt19937. Since some of the algorithms assume that no two points must have

the same value x- or y-coordinates, the generated pointsets were perturbed using the

CGAL::perturb_points_2 function with 0.0001, 0.0001 as the two required parameters.

4.2 Real-World Pointsets

The following real-world pointsets were obtained from various publicly available sources. We have

removed duplicate points (wherever present) from the pointsets. The main reason behind the use of

such pointsets is that they do not follow the popular synthetic distributions. Hence, experimenting

with them is beneficial to see how the algorithms perform on them:

• burma: 33,708-element pointset representing cities in Burma [29, 43].

• birch3: 99,801-element pointset representing random clusters at random locations [17, 30].

• monalisa: 100,000-city TSP instance representing a continuous-line drawing of the Mona

Lisa [29, 30, 43].

• KDDCU2D: 104,297-element pointset representing the first two dimensions of a protein data-

set [17, 29, 30].

• usa: 115,475-city TSP instance representing (nearly) all towns, villages, and cities in the

United States [29, 30, 43].

• europe: 168,896-element pointset representing differential coordinates of the map of

Europe [17, 29, 30].

• wiki: 317,695-element pointset of coordinates found in English language Wikipedia articles

(source: https://github.com/placemarkt/wiki_coordinates).

• vlsi: 744,710-element pointset representing a very large-scale integration chip [43].

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:21

Fig. 3. The plot legends.

• china: 808,693-element pointset representing cities in China [17, 29, 30].

• world: 1,904,711-element pointset representing all locations in the world that are registered

as populated cities or towns, as well as several research bases in Antarctica [29, 30, 43].

• nyctaxi: 2,728,717-element pointset representing Yellow Cab pickup locations in New York

City in 2016 [29] (source: https://www.kaggle.com/c/nyc-taxi-trip-duration).

4.3 Efficacy of EstimateStretchFactor

We have seen in Section 3 that it is quite challenging to measure stretch-factor of large spanners.

This motivated us to design and use the EstimateStretchFactor algorithm in our experiments

for estimating stretch-factors of the generated spanners. In the following, we compare Estimat-

eStretchFactor with Dijkstra’s algorithm (run from every vertex) and show that for the eight

distributions it is not only much faster than Dijkstra but can also estimate stretch-factors of plane

spanners with high accuracy.

The main reason behind the fast practical performance of EstimateStretchFactor is early

terminations of the breadth-first traversals (one traversal per vertex), which in turn makes Dijk-

stra run fast to find the shortest paths to the vertices in all the levels. We have noticed in our

experiments that the pair that achieves the stretch-factor for a bounded-degree plane spanner are

typically a few hops away and pairwise stretch-factors (ratio of detour between two vertices to

that of their Euclidean distance) drop with the increase in hops. Consequently, the breadth-first

traversals terminate very early most of the time.

The total number of pointsets used in this comparison experiment is 11 · 8 · 10 · 5 = 4, 400 since

there are 11 algorithms, eight distributions, and 10 distinct values of n (1K , 2K , . . . , 10K), and five

samples were used for every value of n. Out of these, the number of times EstimateStretch-

Factor has failed to return the exact stretch-factor is just 8. Thus, the observed failure rate is

≈ 0.18%. Interestingly, in the cases where EstimateStretchFactor failed to compute the exact

stretch-factor, the largest observed error percentage between the exact stretch-factor (found using

Dijkstra) and the stretch-factor returned by it is just ≈ 0.15. This gave us the confidence that our

algorithm can be safely used to estimate stretch-factor of large spanners. Refer to Figure 5. As is evi-

dent from these graphs, EstimateStretchFactor is substantially faster than Dijkstra everywhere.

Henceforth, we use EstimateStretchFactor (Algorithm 33) to estimate the stretch-factors of the

spanners in our experiments.

4.4 Experimental Comparison of the Algorithms

We compare the 11 implemented algorithms based on their runtime, degree, stretch-factor, and

lightness of the generated spanners.

In the interest of space, we avoid legend tables everywhere in our plots. Since the legends are

used uniformly everywhere, we present them here for an easy reference (Figure 3).

For synthetic pointsets, we varied n from 10K to 100K . For every value of n, we have used five

random samples to measure runtimes and the preceding characteristics of the spanners. In the

case of real-world pointsets, we ran every one of them five times and computed the average time

taken.

In our experiments, we found that BGHP10 and KPT17 were considerably slower than the other

algorithms considered in this work. The reason behind this is slow construction of TD-Delaunay

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:22 F. Anderson et al.

Fig. 4. Points are generated using the uni-square distribution. Left: The running times for all the algorithms

are shown; the plots for BGHP10 and KPT17 have overlapped in this figure, and they are the slowest ones in this

case. Middle: Here, we consider the runtimes without the time taken to construct the respective Delaunay

triangulation. Right: This is the same as the middle figure with y-axis scale adjusted for a better visual

comparison.

triangulations. Figure 4 represents an illustration. When n = 100K , both took more than 150 sec-

onds to finish. In contrast, the other nine algorithms took less than 10 seconds. Since real-world

speed is an important factor for spanner construction algorithms, we do not consider them further

in our runtime comparisons:

• Runtime: Fast execution speed is highly desired for spanner construction on large pointsets.

We present the runtimes for all eight distributions in Figure 6. As explained earlier, we have

excluded BGHP10 and KPT17 from these plots since they are considerably slower than the

other nine algorithms. Interestingly, we found that the relative performance of these algo-

rithms is independent of the point distributions. We further observed that not only are these

algorithms slow because of the time taken to construct TD-Delaunay triangulation, but in-

terestingly, their non-Delaunay steps are even slower than the other algorithms. Thus, this

means that even if the construction of TD-Delaunay triangulation is engineered more effi-

ciently, BGHP10 and KPT17 will still be the slowest in practice.

For all eight distributions, we found that BKPX15 was much slower than the others. This is

mainly due to the time taken to construct L∞-Delaunay triangulation. Among the ones that

use L2-Delaunay triangulations, BGS05 was the slowest due to the overhead of creation of

temporary geometric graphs needed to control the degree and stretch-factor of the output

spanners. Refer to Section 2 to see more details on this algorithm. The fastest algorithms

are KPX10, BSX09, LW04, and KX12. The main reason behind their speedy performance is fast

construction of L2-Delaunay triangulations and lightweight processing of the triangulations

for spanner construction. The BHS18, BCC12-7, and BCC12-6 algorithms came out quite close

to the preceding four algorithms. Note that these three algorithms also use L2-Delaunay

triangulation as the starting point. The same observations hold for the real-world pointsets

used in our experiments. The table presented in Figure 9 presents the runtimes in seconds.

• Degree: Refer to Figure 7. In the tables, Δ denotes the theoretical degree upper bound, as

claimed by the authors of these algorithms; max Δobserved denotes the maximum degree ob-

served in our experiments; avg Δobserved denotes the observed average degree; and avg Δvertex

denotes the observed average degree per vertex. In our experiments, we found that spanners

generated by BGS05, LW04, and BSX09 have degrees much less than the degree upper bounds

derived by the authors. Although it cannot be denied that there could be special examples

where these upper bounds are actually achieved, the maximum degrees achieved in our

experiments are 14, 11, and 9, respectively. Note that the theoretical degree upper bounds

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:23

Fig. 5. Runtime comparison: Dijkstra (run from every vertex) vs EstimateStretchFactor. For every value of

n, we have used 11 · 5 = 55 spanner samples since there are 11 algorithms and five pointsets were generated

for that value of n using the same distribution.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:24 F. Anderson et al.

Fig. 6. Runtime comparisons of the nine algorithms (BGHP10 and KPT17 are excluded).

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:25

Fig. 7. Degree comparisons of the spanners generated by the 11 algorithms.

are 27, 23, and 17, respectively. For the remaining eight algorithms, the claimed degree upper

bounds were achieved in our experiments, thereby showing that the analyses obtained by

the authors of those algorithms are tight. However, the degree bound claimed by the authors

of BCC12-6 appears to be incorrect. We present an example in the appendix (Section A.2)

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:26 F. Anderson et al.

Fig. 8. Stretch-factor and lightness comparisons of the spanners generated by the 11 algorithms.

where the degree of the spanner generated by this algorithm exceeds 6 (in fact, it is 7 in this

example). For every algorithm, we found that the average degree of the generated spanners

was not far away from the maximum observed degrees. It shows that the algorithms appear

to spread the edges evenly in constructing the spanners. The average degree per vertex is

another way to judge the quality of the spanners. In this regard, we found that it was always

between 6 and 3 everywhere and is quite reasonable for practical purposes. This shows that

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:27

Fig. 9. Average execution time (in seconds).

Fig. 10. Degree of the spanners.

Fig. 11. Average degree per vertex.

all these algorithms are very careful when it comes to the selection of spanner edges. The

lowest values were achieved by BKPX15 and KPT17. For the real-world pointsets, we found

similar performance from the algorithms when it comes to the degree and degree per ver-

tex of the spanners. This is quite surprising since these real-world pointsets do not follow

specific distributions. Refer to Figures 10 and 11 for more details. Note that BSG05 has pro-

duced a degree-15 spanner for the vlsi pointset. In contrast, for the synthetic pointsets, the

highest degree we could observe is 14.

• Stretch-factor : Refer to Figure 8. In the tables, t denotes the theoretical stretch-factor, as de-

rived by the authors of these algorithms; tmax denotes the maximum stretch-factor observed

in our experiments; and tavg denotes the average observed stretch-factor. Among the 11 algo-

rithms, KPX10 has the lowest guaranteed stretch-factor—it is 2.9. The stretch-factors of the

spanners generated by KPX10 are always less than 1.6, thereby making it the best among the

11 algorithms in terms of stretch-factor. In this regard, BKPX15 turned out to be the worst;

the largest stretch-factor we have observed is 7.242, although it is substantially less than the

theoretical stretch-factor upper bound of 156.8. Its competitor KPX17 that can also gener-

ate degree-4 plane spanners has a lower observed maximum stretch-factor—it is 5.236 (the

theoretical upper bound is 20 for this algorithm). Overall, we found that the stretch-factors

of the generated spanners are much less than the claimed theoretical upper bounds. This

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:28 F. Anderson et al.

Fig. 12. Stretch-factor of the spanners.

Fig. 13. Lightness of the spanners.

shows that the generated spanners are well constructed in practice. With the exception of

BKPX15, we found that the average stretch-factors are quite close to the maximum stretch-

factors. Now let us turn our attention to the real-world pointsets. Refer to Figure 12. Once

again, KPX10 produced the lowest stretch-factor spanners. The stretch-factors seem quite

reasonable everywhere except in the two cases of vlsi and nyctaxi pointsets when fed

to BKPX15. The produced spanners have stretch-factors of 11.535 and 20.009, respectively.

The latter is interesting since the lower bound example constructed by Bonichon et al. [11]

for the worst-case stretch-factor of the spanners produced by BKPX15 has a stretch-factor of

7 + 7
√

2 ≈ 16.899. The nyctaxi pointset beats this lower bound.

• Lightness: The lightness of a geometric graph G on a pointset P is defined as ratio of the

weight ofG to that of a Euclidean minimum spanning tree on P . Since a minimum spanning

tree is the cheapest (in terms of the sum of the total length of the edges) way to connect

n points, lightness can be used to judge the quality of spanners. This metric is beneficial

when spanners are used for constructing computer or transportation networks. Refer to

Figure 8. Lightness is denoted by �. With a few exceptions, we found that lightness somewhat

correlates with degree. This is because using a lower number of carefully placed spanner

edges usually leads to lower lightness. The spanners generated by BGS05 are always found

to have the highest lightness. This is expected because of their high degrees. Although the

difference in degree of the spanners generated by BGXS05 and LW04 is marginal (around

2), the difference between their lightness is substantial (approximately 6 for some cases).

However, the degree-4 spanners generated by KPT17 have the lowest lightness (less than 2.9
everywhere). Interestingly, although BKPX15 generates degree-4 spanners, their lightness

was found to be approximately twice that of the ones generated by KPT17. In fact, their

lightness turned out to be one of the highest. This shows that KPT17 is more careful when it

comes to placing long edges. The lightness of the spanners generated for real-world pointsets

follows a similar trend, and we did not observe anything special. Figure 13 presents more

details.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:29

Remark. In our experiments, we found that the spanners’ degree, stretch-factor, and lightness

remained somewhat constant with the increase in n. Hence, we do not present plots for them.

5 CONCLUSION

Since there are various ways (speed, degree, stretch-factor, lightness) to judge the 11 algorithms,

it is hard to declare the winner(s). Thus, based on our experimental observations, we come to the

following conclusions (which are our recommendations as well):

• If speedy performance is the main concern, we recommend using KPX10, BSX09, LW04, or

KX12.

• When it comes to minimization of degree, we recommend using BCC12-7 or BHS18 since

they produce spanners of reasonable degrees in practice. If degree-4 spanners are desired,

we recommend using BKPX15 since KPT17 is much slower in practice.

• In terms of stretch-factor, we found the KPX10 as the clear winner. This is particularly im-

portant in the study of geometric spanners since not much is known about fast construction

of low stretch-factor spanners (t ≈ 1.6) in the plane having at most 3n edges. However, the

spanners produced by it have higher degrees compared to the ones produced by some of the

other algorithms, such as BCC12 and BHS18.

• In our experiments, KPT17 produced spanners with the lowest lightnesses. But in practice,

we found it to be very slow compared to the other algorithms except for BGHP10 (which is

as slow as KPT17). If degree-4 spanners are not a requirement, we recommend using BHS18
or BCC12-7 since they produced spanners of reasonable lightness (less than 4 most of the

time).

6 CODE AND VISUALIZATIONS

For the C++ implementations, refer to our GitHub repository at https://github.com/ghoshanirban/

BoundedDegreePlaneSpannersCppCode. Refer to the applet hosted at https://ghoshanirban.github.

io/bounded-degree-plane-spanners/index.html for an in-browser visual experience.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:30 F. Anderson et al.

A APPENDIX

A.1 Sample Outputs

Fig. A.1. A 150-element pointset, drawn randomly

from a square.

Fig. A.2. The spanner generated by BGS05 on the

pointset shown in Figure A.1; degree: 8, stretch-factor:

1.565763.

Fig. A.3. The spanner generated by LW04 on the

pointset shown in Figure A.1; degree: 6, stretch-factor:

2.602559.

Fig. A.4. The spanner generated by BSX09 on the

pointset shown in Figure A.1; degree: 6, stretch-factor:

2.602559.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:31

Fig. A.5. The spanner generated by KPX10 on the

pointset shown in Figure A.1; degree: 9, stretch-factor:

1.360771.

Fig. A.6. The spanner generated by KX12 on the

pointset shown in Figure A.1; degree: 8, stretch-factor:

1.440861.

Fig. A.7. The spanner generated by BHS18 on the

pointset shown in Figure A.1; degree: 6, stretch-factor:

1.879749.

Fig. A.8. The spanner generated by BCC12-7 on the

pointset shown in Figure A.1; degree: 6, stretch-factor:

2.302473.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:32 F. Anderson et al.

Fig. A.9. The spanner generated by BCC12-6 on the

pointset shown in Figure A.1; degree: 6, stretch-factor:

1.735716.

Fig. A.10. The spanner generated by BGHP10 on the

pointset shown in Figure A.1; degree: 6, stretch-factor:

1.817045.

Fig. A.11. The spanner generated by BKPX15 on the

pointset shown in Figure A.1; degree: 4, stretch-factor:

2.525204.

Fig. A.12. The spanner generated by KPT17 on the

pointset shown in Figure A.1; degree: 4, stretch-factor:

2.582846.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:33

A.2 A Counterexample for BCC12-6

In the following, we present a 13-element pointset on which BCC12-6 fails to construct a degree-6

plane spanner. Figure A.13 presents the pointset.

Fig. A.13. A set P of 13 pointsp1, . . . ,p13.p1: (−4.98845, 0.22414),p2: (−4.23759, 0.08),p3: (−3.98106, 0.10125),
p4: (−2.82831, 0.02396), p5: (−2.44066,−0.46761), p6: (−2.37275, 0.12191), p7: (−1.90395,−0.27187), p8:

(−1.65373,−0.00109), p9: (−1.28739,−0.01854), p10: (−0.642516, 0.02836), p11: (−0.019359, 0.02), p12:

(0.850154, 0.14431), p13: (2.01517, 0.19194).

First, BCC12-6 creates the L2-Delaunay triangulation of P and initializes seven cones around

every pi , oriented such that the shortest edge incident on pi falls on a boundary. See Figures A.14

and A.15.

Fig. A.14. The L2-Delaunay triangulation of P .

Fig. A.15. The cones (dotted) of each point in P with α = 2π/7, oriented by the shortest edge incident on

that point (bold).

Next, in Figure A.16, we show the edges added by the main portion of the algorithm (excluding the

edges added by Wedge6 calls). Only Wedge6 (p1,p2) and Wedge6 (p12,p11) calls add new edges to E∗

and thus to the final spanner as well. The former call adds the two edges p3p6,p6p12 (Figure A.17),

and the latter call adds the edge p6p10 (Figure A.18). The final spanner is shown in Figure A.19.

Note that p6 has degree 7 in the spanner, which violates the degree requirement of the spanners

produced by BCC12-6.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:34 F. Anderson et al.

Fig. A.16. Edges added by the main portion of BCC12 (excluding calls to subroutine Wedge6).

Fig. A.17. The edge p1p2 (shown in red) is added during the main portion of the algorithm, and the call to

Wedge6(p1,p2) adds the two blue edges p3p6 and p6p12.

Fig. A.18. The edge p12p11 (shown in red) is added during the main portion of the algorithm, and the call to

Wedge6(p12,p11) adds the blue edge p6p10.

Fig. A.19. The resulting graph on P is a degree-7 plane spanner due to p6 whose degree is exactly 7. Note

that this graph contains the edges shown in Figure A.16 along with the blue edges shown in Figures A.17

and A.18.

ACKNOWLEDGMENTS

We sincerely thank Nicolas Bonichon (one of the authors of BKPX15) for sharing the applet code

for the algorithm BKPX15 [11]. The code has helped us understand the algorithm clearly and create

a CGAL implementation of the algorithm. We are grateful to the three anonymous reviewers of

our manuscript, whose suggestions have helped us improve this article’s presentation.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

Bounded-Degree Plane Geometric Spanners in Practice 1.1:35

REFERENCES

[1] Pankaj K. Agarwal, Rolf Klein, Christian Knauer, Stefan Langerman, Pat Morin, Micha Sharir, and Michael Soss.

2008. Computing the detour and spanning ratio of paths, trees, and cycles in 2D and 3D. Discrete & Computational

Geometry 39, 1 (2008), 17–37.

[2] Fred Anderson, Anirban Ghosh, Matthew Graham, Lucas Mougeot, and David Wisnosky. 2021. An interactive tool

for experimenting with bounded-degree plane geometric spanners (media exposition). In Proceedings of the 37th

International Symposium on Computational Geometry (SoCG’21).

[3] Davood Bakhshesh and Mohammad Farshi. 2021. A degree 3 plane 5.19-spanner for points in convex position. Scientia

Iranica 28, 6 (2021), 3324–3331.

[4] Jon Jouis Bentley. 1992. Fast algorithms for geometric traveling salesman problems. ORSA Journal on Computing 4,

4 (1992), 387–411.

[5] Jon Louis Bentley. 1990. K-d trees for semidynamic point sets. In Proceedings of the 6th Annual Symposium on Com-

putational Geometry. 187–197.

[6] Ahmad Biniaz. 2020. Plane hop spanners for unit disk graphs: Simpler and better. Computational Geometry 89 (2020),

101622.

[7] Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel, Cyril Gavoille, Anil Maheshwari, and Michiel Smid. 2017. To-

wards plane spanners of degree 3. Journal of Computational Geometry 8, 1 (2017), 11–31.

[8] Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, and David Ilcinkas. 2010. Connections between theta-graphs,

Delaunay triangulations, and orthogonal surfaces. In Proceedings of the International Workshop on Graph-Theoretic

Concepts in Computer Science. 266–278.

[9] Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, and Ljubomir Perković. 2010. Plane spanners of maximum degree

six. In Proceedings of the International Colloquium on Automata, Languages, and Programming. 19–30.

[10] Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, and Ljubomir Perković. 2012. The stretch factor of L1-and L∞-

Delaunay triangulations. In Proceedings of the European Symposium on Algorithms. 205–216.

[11] Nicolas Bonichon, Iyad Kanj, Ljubomir Perković, and Ge Xia. 2015. There are plane spanners of degree 4 and moderate

stretch factor. Discrete & Computational Geometry 53, 3 (2015), 514–546.

[12] Prosenjit Bose, Paz Carmi, and Lilach Chaitman-Yerushalmi. 2012. On bounded degree plane strong geometric span-

ners. Journal of Discrete Algorithms 15 (2012), 16–31.

[13] Prosenjit Bose, Joachim Gudmundsson, and Michiel Smid. 2005. Constructing plane spanners of bounded degree and

low weight. Algorithmica 42, 3-4 (2005), 249–264.

[14] Prosenjit Bose, Darryl Hill, and Michiel Smid. 2018. Improved spanning ratio for low degree plane spanners. Algo-

rithmica 80, 3 (2018), 935–976.

[15] Prosenjit Bose and Michiel Smid. 2013. On plane geometric spanners: A survey and open problems. Computational

Geometry 46, 7 (2013), 818–830.

[16] Prosenjit Bose, Michiel Smid, and Daming Xu. 2009. Delaunay and diamond triangulations contain spanners of

bounded degree. International Journal of Computational Geometry & Applications 19, 02 (2009), 119–140.

[17] Norbert Bus, Nabil H. Mustafa, and Saurabh Ray. 2018. Practical and efficient algorithms for the geometric hitting

set problem. Discrete Applied Mathematics 240 (2018), 25–32.

[18] Paul B. Callahan and S. Rao Kosaraju. 1995. A decomposition of multidimensional point sets with applications to

k-nearest-neighbors and n-body potential fields. Journal of the ACM 42, 1 (1995), 67–90.

[19] Nicolas Catusse, Victor Chepoi, and Yann Vaxès. 2010. Planar hop spanners for unit disk graphs. In Proceedings of

the International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks, and Distributed

Robotics. 16–30.

[20] Siu-Wing Cheng, Christian Knauer, Stefan Langerman, and Michiel Smid. 2012. Approximating the average stretch

factor of geometric graphs. Journal of Computational Geometry 3, 1 (2012), 132–153.

[21] L. Paul Chew. 1986. There is a planar graph almost as good as the complete graph. In Proceedings of the 2nd Annual

Symposium on Computational Geometry.

[22] L. Paul Chew. 1989. There are planar graphs almost as good as the complete graph. Journal of Computer and System

Sciences 39, 2 (1989), 205–219.

[23] Gautam Das and Paul J. Heffernan. 1996. Constructing degree-3 spanners with other sparseness properties. Interna-

tional Journal of Foundations of Computer Science 7, 02 (1996), 121–135.

[24] Adrian Dumitrescu and Anirban Ghosh. 2016. Lattice spanners of low degree. Discrete Mathematics, Algorithms and

Applications 8, 03 (2016), 1650051.

[25] Adrian Dumitrescu and Anirban Ghosh. 2016. Lower bounds on the dilation of plane spanners. International Journal

of Computational Geometry & Applications 26, 02 (2016), 89–110.

[26] Adrian Dumitrescu, Anirban Ghosh, and Csaba D. Tóth. 2022. Sparse hop spanners for unit disk graphs. Computa-

tional Geometry 100 (2022), 101808.

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

1.1:36 F. Anderson et al.

[27] Mohammad Farshi and Joachim Gudmundsson. 2009. Experimental study of geometric t -spanners. Journal of Exper-

imental Algorithmics 14 (2009), 3.

[28] Greg N. Federickson. 1987. Fast algorithms for shortest paths in planar graphs, with applications. SIAM Journal on

Computing 16, 6 (1987), 1004–1022.

[29] Rachel Friederich, Anirban Ghosh, Matthew Graham, Brian Hicks, and Ronald Shevchenko. 2023. Experiments with

unit disk cover algorithms for covering massive pointsets. Computational Geometry 109 (2023), 101925.

[30] Anirban Ghosh, Brian Hicks, and Ronald Shevchenko. 2019. Unit disk cover for massive point sets. In Proceedings of

the International Symposium on Experimental Algorithms. 142–157.

[31] Itinerant Games. 2014. A 2D Procedural Galaxy with C++. Retrieved February 8, 2023 from https://itinerantgames.

tumblr.com/post/78592276402/a-2d-procedural-galaxy-with-c.

[32] Iyad Kanj, Ljubomir Perkovic, and Duru Türkoǧlu. 2017. Degree four plane spanners: Simpler and better. Journal of

Computational Geometry 8, 2 (2017), 3–31.

[33] Iyad A. Kanj, Ljubomir Perković, and Ge Xia. 2010. On spanners and lightweight spanners of geometric graphs. SIAM

Journal on Computing 39, 6 (2010), 2132–2161.

[34] Iyad A. Kanj and Ge Xia. 2012. Improved local algorithms for spanner construction. Theoretical Computer Science

453 (2012), 54–64.

[35] Rolf Klein, Martin Kutz, and Rainer Penninger. 2015. Most finite point sets in the plane have dilation > 1. Discrete &

Computational Geometry 53, 1 (2015), 80–106.

[36] Xiang-Yang Li and Yu Wang. 2004. Efficient construction of low weighted bounded degree planar spanner. Interna-

tional Journal of Computational Geometry & Applications 14, 01n02 (2004), 69–84.

[37] Wolfgang Mulzer. 2004. Minimum Dilation Triangulations for the Regular n-Gon. Master’s Thesis. Freie Universität

Berlin, Germany.

[38] Giri Narasimhan and Michiel Smid. 2000. Approximating the stretch factor of Euclidean graphs. SIAM Journal on

Computing 30, 3 (2000), 978–989.

[39] Giri Narasimhan and Michiel Smid. 2007. Geometric Spanner Networks. Cambridge University Press.

[40] Giri Narasimhan and Martin Zachariasen. 2001. Geometric minimum spanning trees via well-separated pair decom-

positions. Journal of Experimental Algorithmics 6 (2001), 6–es.

[41] The CGAL Project. 2021. CGAL User and Reference Manual (5.3 ed.). CGAL Editorial Board. https://doc.cgal.org/5.3/

Manual/packages.html.

[42] Csaba D. Toth, Joseph O’Rourke, and Jacob E. Goodman. 2017. Handbook of Discrete and Computational Geometry.

Chapman & Hall/CRC.

[43] TSP. 2022. Traveling Salesman Problem. Retrieved December 8, 2022 from https://www.math.uwaterloo.ca/tsp/.

[44] Christian Wulff-Nilsen. 2010. Computing the maximum detour of a plane geometric graph in subquadratic time.

Journal of Computational Geometry 1, 1 (2010), 101–122.

[45] Ge Xia. 2013. The stretch factor of the Delaunay triangulation is less than 1.998. SIAM Journal on Computing 42,

4 (2013), 1620–1659.

Received 5 May 2022; revised 7 November 2022; accepted 6 December 2022

ACM Journal of Experimental Algorithmics, Vol. 28, No. 1, Article 1.1. Publication date: April 2023.

