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Abstract— We study a coverage and tour planning problem
wherein a robot with limited sensor coverage is assigned to serve
n known points in an environment. A location is served if it
is within the visibility range of the robot’s sensor. However,
the robot is equipped with a battery that powers the robot
to travel a maximum distance of B. Several charging stations
are placed in the environment so that the robot can charge
itself (if needed) to complete the mission. The objective is to
compute an energy-constrained tour that starts at a given start
location, visits a minimum set of service locations for serving
the n points of interest, and returns to the start location. We
also aim to minimize the distance traveled between any two
consecutive service locations in the tour via a subset of charging
stations. This problem has applications in search-and-rescue
and surveillance missions where such coverage and energy-
aware path planning are of utmost importance. We propose
a new algorithm for this problem and show its efficacy using
experiments with up to 1000 points of interest on a plane.
The running time of our algorithm for such a scenario was a
negligible 5.33 sec.

I. INTRODUCTION

In a real-world surveillance mission, human operators
move to a certain surveillance location, search nearby for
unexpected changes or targets, and move to the next service
location. The service locations might be decided based on
accessibility to the nearby regions or in an ad-hoc fashion.
In order to accomplish the same task using a mobile robot
with a given set of points of interest (POIs), the objective of
the robot is to plan a tour starting from location s, moving
through a set of service locations £ similar to the human
operator, before coming back to s again [3], [14]. Similar
applications can be found in search and rescue missions and
precision agriculture [20], [29]. However, planning such a
tour while traveling the shortest distance via the service loca-
tions exactly is known by the name TRAVELING SALESMAN
PROBLEM (TSP) and it is proved to be NP-hard [18], [15].

Often, robots have a visibility/sensor range r > 0, and
therefore, it does not need to visit every POI for providing
service. Thus, £ can be a set of locations different from the
set of POIs. Finding such a set £ that covers all POIs is
not straightforward since the environment is continuous and
consequently, there are infinite candidate locations to choose
from. Further, in order to minimize the total time taken to
complete the mission, £ should have the minimum size.
Note that this is different from sensor-based coverage [1],
[23] as our objective is not to cover all the points in
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the environment with the sensor footprint. Instead, we are
interested in covering the POI set only. On the other hand, in
real-world missions, the robot might have an onboard power
source such as a battery, which needs to be recharged after
the robot travels B distance. Therefore, if two consecutive
locations u, v in the above-mentioned surveillance tour have
a longer distance than B, the robot will not be able to move to
v from u. To avoid this, we assume that there are k charging
stations available in the environment, which the robot can
move to and get fully recharged instantaneously. However,
in this setting, the plan of traveling in a straight line from
point u to v becomes infeasible.

Fig. 1. In this figure, s denotes the robot’s start location. A gray disk
represents the area of visibility of the robot when it is located at the disk
center. The points of interest (POIs) are represented using red solid squares.
In this case, the set of four disk centers can be used to serve all POIs
inside the environment. The cross marks represent the charging stations. A
desired energy-constrained tour is shown that starts at s, visits the four disk
centers, and comes back to s via a subset of the charging stations such that
the distance between any two successive disk centers (service locations) is
minimized. Note that two disks may intersect and multiple POIs may belong
to such an intersection.

To this end, we propose a technique that 1) finds the
minimum number of unit disks on the plane such that all the
POIs are covered, 2) finds a TSP tour covering these disk
centers while the start and the endpoint of the tour being
s, and finally, 3) finds an energy-aware path for the robot to
travel between any two consecutive locations in the TSP tour
such that it never runs out of energy. An illustration of this
is presented in Fig. 1. Our energy-aware tour planning al-
gorithm always finds an optimal energy-aware path between
any two consecutive points on the tour. We have implemented
the proposed algorithms in environments consisting of up
to 1000 POIs. Results show that our coverage algorithm
is extremely fast — taking less than 0.3 microseconds for
such a 1000-POI set. On the other hand, the energy-aware
tour component of the proposed technique is understandably
slower — the maximum time to compute such a tour in the

978-1-6654-9042-9/22/$31.00 ©2022 |IEEE 2056
Authorized licensed use limited to: University of North Florida. Downloaded on July 08,2023 at 22:23:13 UTC from IEEE Xplore. Restrictions apply.



same environment is 5.33 seconds.
The primary contributions of our paper are as follows:

o To the best of our knowledge, this is the first study to
utilize the UNIT DiSK COVER problem to cover a set
of POIs on a plane while minimizing the number of
service locations that the robot has to travel to.

o We have proposed an energy-aware version of the TSP
routing problem such that the robot never runs out of
energy while traveling from one TSP point to the next.

o Numerical results show that our proposed technique
is highly scalable — taking about 5 seconds to plan
an energy-aware tour while covering 1000 points of
interest.

II. RELATED WORK

Coverage path planning and tour planning are popular
research topics in robotics [11], [19], [31], and there is a
large body of literature available. Therefore, in this section,
we only focus on the studies that are the most relevant to this
paper. In [30], the authors propose a technique for coverage
path planning with an energy-constrained robot. Their pro-
posed algorithm guarantees constant-factor approximation.
Unlike traditional coverage planning, we are interested in
covering a set of points on the plane, not necessarily all
possible points, assuming the robot can serve/cover all the
points in its vicinity. This is similar to the sensor-based
coverage problem in robotics [1]. For example, in [23],
the authors have used Generalized Voronoi diagram-based
graph modeling to guarantee complete coverage. We are
interested in minimizing such coverage points in the sensor-
based coverage problem and our points of interest might
not be scattered throughout the environment unlike such
coverage [1]. TSP is a popular choice in robotics for tour
planning [2], [4], [25], [27]. A survey of various routing
problems studied in robotics can be found in [19]. On the
other hand, a survey on TSP and its variants can be found
in [15]. Euclidean TSP with neighborhood (TSPN) on disks
is a generalization of the classic TSP where the points are
generalized to disks (possibly overlapping). Refer to [7], [8]
for approximation algorithms for TSPN on disks. Although
this problem may sound similar to our setup but is different
since, in our case, we need to find the disks (correspond-
ing to the service locations) and then use their centers in
energy-efficient path-planning. Although strictly not routing,
recently, Sotolongo et al. [24] have proposed an energy-
constrained path planning technique, where the robot’s goal
is to move from a start to a goal location while not violating
the given energy constraint. However, we cannot apply this
technique directly in this paper as we study a routing problem
and we only have charging stations as the nodes in our
underlying graph apart from the start and goal, but not any
other waypoints. Our studied problem also has similarities
with the Electric Vehicle Routing Problem (EVRP) [21] but
that does not consider minimal disk coverage like ours.

Two of the closest studies to our work in this paper are
[22], [26]. In [22], the authors have proposed an optimal
algorithm for the coverage path planning problem under

energy constraint. The main differences with our paper are 1)
the authors have considered the problem of visiting all the lo-
cations on a plane whereas we consider visiting only a subset
L, 2) the environment is discretized whereas our algorithm
works for a continuous plane, and finally, 3) there is assumed
to be a single charging station placed in the environment, but
in our paper, we can have k£ > 1 such stations. On the other
hand, in [26], the authors have proposed a technique for a
similar energy-aware tour problem. However, their proposed
technique 1) does not consider the robot’s visibility radius
r, and therefore, assumes the service locations to be readily
available unlike ours, and 2) their algorithm could scale only
up to 25 service locations and 5 charging stations whereas
ours scale up to more than 400 service locations and 175
charging stations.

III. PROBLEM SETUP

Let S be a set of n fixed points of interest, p1, pa, ..., Pn,
located inside a plane environment £, needing service from a
moving point robot equipped with a sensor that can serve all
the points of interest which are within a pre-specified radius
of r from its current location inside F. This implies, if a set
S’ C S of points of interest are located within r distance
units from the current location of the robot, it does not need
to travel to the locations in S’ in order to provide the desired
service. Clearly, it is quite possible that a point of interest
may get more than one opportunity to obtain service from
the robot. Refer to Fig. 1 for an illustration.

The robot must start at a specified location s € E\ S, serve
the n locations in S, and come back to the start location,
minimizing the overall distance traveled. Further, the robot
is powered by a battery that helps it to travel a distance of at
most B, after a single full charge. Thus, a set C' of k fixed
charging stations have been placed inside E to help it carry
out the task of serving the n target locations. Note that in our
case it is possible that S N C = (). The robot can use these
charging stations as many times as it needs to, during its
service tour. In this work, we assume that a single charging
takes a negligible amount of time and is thus not considered
in our computations.

The objective is to compute a set £ of a minimum number
of serving locations (not necessarily the same as the given
point of interests) inside F and a permutation of these
locations that the robot should visit starting and ending at
s in order to serve the m point of interests pi,pa,...,Dn,
minimizing the overall distance traveled using a battery that
powers it to travel a distance of at most B after a single
charge. Note that it is possible that £ NS = (. The tour to
be computed consists of locations in £ U {s}. In the cases,
where the distance between two successive locations in the
tour is larger than B, a set of nearby charging stations needs
to be added to the tour as well. Note that |£| < n since in the
worst-case if any two POIs are more than 27 distance units
away, the robot needs to use n service locations to serve the
n POIs.

When the distance between two successive service loca-
tions is much larger than B, the robot may need to charge
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itself several times before it can reach the next destination. In
doing so, the robot may deviate from the line segment joining
the two consecutive service locations since the charging
stations are spread throughout the environment E. In this
regard, we consider a practical optimizing constraint: for
every two consecutive serving locations in the solution,
minimize the total distance traveled by the robot via a subset
of the charging stations.

We define the objective of the energy-aware tour part of
the problem as follows: find a tour 77 that starts and ends at
s, serves all the locations in £ exactly once, does not violate
the energy constraint, and minimize the travel cost. The travel
cost of a tour is calculated by summing up the Euclidean
distances of its edges (an edge represents the straight-line
path between two successive locations). Throughout this
paper, the subscript e is used to denote energy awareness.

IV. ALGORITHMS

The algorithm section is broken down into three sub-
sections as follows. In Section IV-A, we show how to com-
pute L for serving the given n points of interest. Next, we
show how to compute an energy-constrained tour that starts
at s, visits every point in £, and ends at s; see Section IV-B.
Finally, in Section IV-C, we present an algorithm that returns
a feasible solution for the energy-aware problem.

A. Finding L using a covering algorithm

The geometric covering is a well-researched family of
problems in computational geometry where the objective
is to cover a given set X of geometric objects using the
minimum number of congruent copies of some fixed shape
Q. In our problem, X = S and @ is a closed disk of radius
r (visibility radius of the robot under consideration) since
a robot located at a disk center can serve all the points
of interest inside the disk having radius 7. This means to
minimize the size of £, we need to find the minimum number
of disks whose union covers S. This problem is popularly
known by the name UNIT DISK COVER problem and is being
researched for over three decades; refer to [6], [10], [13] for
a literature overview of this problem.

In the UNIT DISK COVER problem, r is assumed to be a
unit (as the name suggests) but the algorithms for it can
be easily scaled depending on the value of r used. The
problem is shown to be NP-Hard by Fowler et al. [9] back
in 1981 and consequently, a long series of approximation
algorithm has been designed having varied running times
and approximation, see [6], [13]. A fast practical algorithm is
proposed by Ghosh, Hicks, and Shevchenko [13], that gives
2.7-approximation! in practice and runs in O(n) time on
average where n = |S|. Using rigorous experiments, the
authors have showed that their algorithm is up to 61.63
times faster than some of the well-known algorithms for
the covering problem. Since path-planning computations are
expected to run fast in practice, we adapt this algorithm to

'In this case, the approximation factor implies that in the worst-case, 2.7
times the optimal number of disks may be placed by this algorithm.

Fig. 2. An illustration of the algorithm COVER-POIS. The environment
is denoted by E. In this figure, r is assumed to be a unit. The size of the
used square grid is /2, as required by the algorithm. A point p € & (3, j)
can be covered using the unit disk D(%, j) that circumscribes o (3, j). Note
that depending on the location of p, it can also be covered by some disk
in D(i—1,5),D(i+1,5),D(i,j5 — 1), D(4,j + 1). Thus, before placing
D(i,j) to cover p, we check if any one of the four disks is already covering
p and is placed previously to cover some other point of interest in S. For
instance, the point of interest p can be covered by the disk D(z, j) only and
consequently, we are forced to use D(4, 7). However, the point of interest g
belongs to D(z,5)ND(i+1, 7). Thus, when g is considered, first we check
if D(i + 1,7) is already placed previously for covering some other point
of interest. If yes, no action is necessary for ¢ since it is already covered,
otherwise, we place the disk D(i, j) to cover g.

generate the set of £. In the following we briefly describe
the algorithm.

We overlay a \/2-sized grid = on the environment F; see
Fig. 2. This will split E into v/2-sized square cells as shown
in the figure. We use o(i,j) to denote a cell in =, where
i,7 € Z. The cell o(i, ) is the intersection of the four half-
planes: > 2i,z < v2(i + 1),y > v2j,y < V2(j +1).
For every cell o(i, j) € E, there exists a unit disk D(¢, j) that
circumscribes o (i, 7). We say that D(i, j) is the grid-disk of
o(i, 7).

The points in S are considered sequentially. Let p =
(pz,py) be the point currently being considered. Since we
are using a v/2-sized grid, p belongs to the cell o(i,7), where
i = |p./V2], j = |p,/V2]. First, we check if p is covered
by some previously placed grid-disk in {D(i — 1, ), D(i +
1,7),D(i,5 —1),D(%,j + 1)}. If not, then we use the disk
D(i,j) that is centered at the center of the cell o(i,j) to
which the point belongs.

The centers of the grid-disks placed by this algorithm can
be used as the set £ of service locations for covering the n
points of interest. Refer to Algorithm 1 for a pseudo-code.

B. Finding a tour on LU {s}

Once the set of service locations £ is computed using
Algorithm 1, the next task is to find a minimum-weight cycle
that starts at s, visits every location in £ exactly once, and
comes back to s (a tour on £ U {s}). This is a folklore
problem in computing and is known by the name Metric
Traveling Salesman Problem (Metric TSP). In this version of
TSP, the input graph G is complete and is constructed on an
input point set. Further, the edge weights satisfy the triangle
inequality: for any three edges (u,v), (v,w), (u,w) in G,
weight((u,v)) + weight((v,w)) > weight((u,w)). In

2058
Authorized licensed use limited to: University of North Florida. Downloaded on July 08,2023 at 22:23:13 UTC from IEEE Xplore. Restrictions apply.



Algorithm 1: COVER-POIs(S)

Algorithm 3: CoMPUTE-ETOUR(T, B, C)

1: DISKS-PLACED = {J;

2: for p € S do

32 Leti= |ps/Vv2], j = |py/V2], where p,,p, are the =
and y-coordinates of p, respectively;

4:  if D(4,j) € DISKS-PLACED or there is a disk
D e {D(Z - 17.7)7D(7' + 17])7D(17] - 1)7D(Za] + 1)} n
DISK-PLACED such that D covers p then

5: continue;

6: else

7: DISKS-PLACED = DISKS-PLACED U D(4, j);
8: end if

9: end for

10: £ =0;

11:
12:
13:
14:

for every disk D € DISKS-PLACED do

L =LU{(z,y)} where (z,y) denotes the center of D;
end for
return £;

our case, the input graph G is a complete graph on £ U {s}
and the weight of an edge (u,v) is the Euclidean distance
between the two locations u,v € £ U {s}. Just like the
coverage problem, this is also NP-Hard [18]. In our case,
we use the famous Christofides algorithm [5], [28] that
gives 1.5-approximation’ and runs in O(|£|?) time. For
the Metric TSP problem, this polynomial-time algorithm
gives the best guarantee on the tour length till date. This
plays a very important role in path planning scenarios for
optimizing the time taken in completing missions. However,
recently, a slightly improved randomized algorithm has been
devised in [17], that gives 1.5 — e-approximation, for some
€ > 10735, We did not use this algorithm in our work since
to our knowledge, no experimental study is conducted on
this algorithm till date. See [12] for an experimental study
on Metric TSP. We present a pseudo-code of the Christofides
algorithm in Algorithm 2.

Algorithm 2: COMPUTE-TOUR(L U {s})

1: Let G be the complete graph on £ U {s};

2: Compute a minimum spanning tree M for G;

3: Let W be the set of vertices in G that have odd degree in M
and H be the subgraph of G induced by the vertices in W;

4: Compute a minimum-cost perfect matching P in H;

5: Combine the two graphs M and P to create a graph G'.
However, if an edge e belongs to both M and P, create two
copies of e in G’;

6: Compute an Eulerian circuit C in G';

7. Convert the circuit C' into a tour 7" by skipping over
previously visited vertices using shortcuts;

8: return 71

C. Energy-Aware Routing

Let D be a set of closed disks in the plane whose radii is
B. We define a-disk graph as the intersection graph of the
disks in D where every vertex corresponds to a disk in D and

2In the worst case, the Euclidean length of the tour returned by the
Christofides algorithm is 1.5 times that of an optimal tour.

1. T, =0

2: for all consecutive locations u,v € T do

3:  Let G. be a connected graph on {u,v} U C such that the
maximum edge weight is B; T, = A*(u,v) on Ge;

4:  if T! is not NULL then
5: T.=T.UT;

6: else

7: return NULL;

8: end if

9: end for

10: return 7;

an edge exists between two vertices if the corresponding two
disks intersect. In this section, we are tasked with planning
a path while following the tour 7" such that the robot never
runs out of energy. As two consecutive locations u,v € T
might be further apart than the budget B, the robot needs to
travel through one or more charging stations to reach v from
u. Let Go(Ve, E.,W,) be an a-disk graph where o = B,
the node set V. := {u,v} U C, W, denotes the weights of
the edges such that w, (vi, v?) is calculated by the Euclidean
distance between the node pair v, v! € V,, and E, denote
the edge set {{vl,v!}w.(vi,v]) < B},Voi, vl € V.. Next,
we call the popular A* algorithm [16] on every consecutive
pair of such nodes in 7" on GG, and the resulting tour (7%)
never violates the energy constraint. We have used Euclidean
distance as our admissible and consistent heuristic function
for A*. We present the pseudo-code in Algorithm 3. A
sample visualization by merging all the TSP pair paths is
presented in Fig. 3. Node 37 to 38 is an example of where
energy-awareness is important — there is no direct edge
between these two nodes, and therefore, the robot’s path is
routed via charging station 17. One should note that when an
A* path between two such consecutive nodes in 7" are being
calculated, only those two nodes from 7' are present in G,
and not all the TSP points. This is illustrated when the robot
calculates the path between nodes 27 and 28, which is routed
via node 1. Since A* is used to find energy-aware paths
between every two successive locations u,v in T, we get
optimal length paths between every u, v. The overall solution
pseudo-code is presented in Algorithm 4.

Algorithm 4: The Main Algorithm

Input: S: A set of POIs on a plane.
B: The robot’s energy budget.
C: A set of charging stations in the environment.
s: A start point for the energy-aware tour.
Output: 7¢: An energy-aware tour;

1 £ =COVER-POIs(S);

2 T =COMPUTE-TOUR(L U s);

3 T. = CoMPUTE-ETOUR(T, B, C);

4 return 7T,;
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Fig. 3. An illustration of an energy-aware tour T¢ is presented. The red
path indicates such a tour and the green nodes represent the points in 7"
The set of charging stations C' is represented using the black nodes. The
start location s is node 20.

V. EXPERIMENTS
A. Settings

We have implemented the proposed technique using C++
(Algorithm 1) and Java (Algorithms 2 and 3) programming
languages. The implementation and testings are performed
on a Ubuntu Linux 20.04 LTS desktop equipped with a
Ryzen 1600 processor runing at 3.2 GHz. Intel CPU and
8 GB RAM. For an implementation of the Christofides
algorithm, we have used Google’s OR-Tools. We have used
the GraphStream library for graph-related computations and
visualizations in Algorithms 2 and 3. The number of POIs
n has been varied between [100,1000] and these POIs
have been generated uniformly in a 50 x 50 unit? square
environment F, which has the center at (0,0). The center
is also set as the start location s. The energy budget of the
robot is varied between {8,10}% of the maximum distance
between any two points in the square environment, i.e., the
diagonal of the square. The number of charging stations
has been varied between {5, 7}% of the area of the square.
Numerical results for 10 valid runs are presented next where
the line plots indicate the average values and the error bars
represent the standard deviations. For ease of calculations, we
have set the visibility radius r to 1. However, as mentioned
earlier, our setup can be used for any positive value of r.

B. Results

In Fig. 4(a), we show how the runtime of the covering
algorithm varies with the increase in POIs. Since the covering
algorithm runs in O(n) time on average (as mentioned
earlier), we see almost a linear curve in this case. Next, in
Fig. 4(b), we show how the number of disks required to cover
the POIs vary with the increase of POIs. It is obvious with
the increase in the number of POIs, the required number of
disks will also increase.

Next, we are interested in investigating the effect of
varying the budget amount and the number of charging

Tour Length

Time (ms.)

x10*

©
a
S
S

= N
o N o

Number of Disks

=)
S

o
o
o

0 200 400 600

Number of POIs Number of POls
(a) (b)
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Fig. 5. Run time of Algorithms 2 and 3 with budget a) 8%, and b) 10%.

stations on the run time of the energy-aware tour planning
technique. Fig. 5 presents the results for the run time metric.
We observe three interesting trends: 1) the run time increases
with the number of POIs regardless of the budget and the
charging station count, 2) the run time is generally higher
with more charging stations in the environment, and 3) with
a higher budget, the run time increases. We can explain trend
(1) with the fact that as the number of POIs increases, the
number of disks increases (Fig. 4(b)) and so does the number
of points in the TSP tour. As our technique applies A* on
consecutive TSP locations, the more locations it involves,
the higher run time it will incur. The second observation (2)
is due to the fact that with more charging stations in the
environment, the size of the G, graph is larger, i.e., more
nodes and more edges to consider for every call of A*. We
can observe trend (3) because with a higher budget, more
nodes will share edges in GG, which consequently will make
G, denser. This will result in longer execution times for the
A* algorithm between any two consecutive points on the
TSP tour.

Budget = 8% Budget = 10%

1000

1000

900 900
800
700

600

800
700
600

—3—|C|=5% of n —3—|C|=5% of n

Tour Length

500 —4—[C|=7% of n 500 —3—[C|=7% of n
400 400
300 300
Q (]90 @Q bQQ %QQ ,\QQQ N q/QQ ng "OQQ %QQ @QQ
Number of POIs Number of POIs
(a) (b)

Fig. 6. Lengths of the energy-aware tours calculated by Algorithm 3 with
budget a) 8%, and b) 10%.

Next we analyze the tour lengths of the solutions that
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our algorithm has found. We observe that the tour costs are
usually higher with a lower number of charging stations in
the environment. If there are not many charging stations, then
the edge weights in the graph G, are higher as the stations
are more sparsely distributed while keeping GG. connected.
Therefore, the robot needs to travel longer distances to get
recharged. For example, with the number of charging stations
|C| set to 5 and 7%, B = 8%, and n = 200, the tour lengths
are 562.7 and 529.9 units respectively (Fig. 6.(a)). With an
increasing budget, however, this difference diminishes. For
example, with the same setting and budget increasing to
10%, these values are 514.5 and 513.5 units respectively.
Furthermore, we can observe that with more POIs present
in the environment, the difference between the tour costs
with |C| = 5 and 7% also reduces. If there are more POIs
in the environment, then there will be more disk centers,
and consequently, more points on the TSP tour (see Fig.
4(b) for reference). Therefore, the distances between two
consecutive TSP points also reduces due to the uniform POI
distribution. Thus, the tour lengths are shorter and they do
not rely significantly on the charging stations.

VI. CONCLUSIONS

We present a minimalist coverage and energy-aware tour
planning solution for an autonomous mobile robot. The robot
is assumed to have a fixed sensor radius and its goal is to
minimize the number of locations that it needs to visit to
provide service to a given set of points. Next, it calculates
a tour through this disk centers while starting and ending at
point s. However, as the robot might have limited energy, it
needs to stop at one or more charging stations in between
two successive points of the tour. Our proposed technique
is fast and efficient while easily scaling up to 1000 points
of interest. In some cases, the graph G. formed using
the charging stations and two disk centers can be dense.
Consequently, A* will run slow on G.. To speed up, in our
future work, we will investigate techniques for using linear-
sized subgraphs of G, instead by sacrificing the optimality
of the computed paths.
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