
Minimalist Coverage and Energy-Aware Tour Planning

for a Mobile Robot

Anirban Ghosh, Ayan Dutta, Brian Sotolongo

Abstract— We study a coverage and tour planning problem
wherein a robot with limited sensor coverage is assigned to serve
n known points in an environment. A location is served if it
is within the visibility range of the robot’s sensor. However,
the robot is equipped with a battery that powers the robot
to travel a maximum distance of B. Several charging stations
are placed in the environment so that the robot can charge
itself (if needed) to complete the mission. The objective is to
compute an energy-constrained tour that starts at a given start
location, visits a minimum set of service locations for serving
the n points of interest, and returns to the start location. We
also aim to minimize the distance traveled between any two
consecutive service locations in the tour via a subset of charging
stations. This problem has applications in search-and-rescue
and surveillance missions where such coverage and energy-
aware path planning are of utmost importance. We propose
a new algorithm for this problem and show its efficacy using
experiments with up to 1000 points of interest on a plane.
The running time of our algorithm for such a scenario was a
negligible 5.33 sec.

I. INTRODUCTION

In a real-world surveillance mission, human operators

move to a certain surveillance location, search nearby for

unexpected changes or targets, and move to the next service

location. The service locations might be decided based on

accessibility to the nearby regions or in an ad-hoc fashion.

In order to accomplish the same task using a mobile robot

with a given set of points of interest (POIs), the objective of

the robot is to plan a tour starting from location s, moving

through a set of service locations L similar to the human

operator, before coming back to s again [3], [14]. Similar

applications can be found in search and rescue missions and

precision agriculture [20], [29]. However, planning such a

tour while traveling the shortest distance via the service loca-

tions exactly is known by the name TRAVELING SALESMAN

PROBLEM (TSP) and it is proved to be NP-hard [18], [15].

Often, robots have a visibility/sensor range r > 0, and

therefore, it does not need to visit every POI for providing

service. Thus, L can be a set of locations different from the

set of POIs. Finding such a set L that covers all POIs is

not straightforward since the environment is continuous and

consequently, there are infinite candidate locations to choose

from. Further, in order to minimize the total time taken to

complete the mission, L should have the minimum size.

Note that this is different from sensor-based coverage [1],

[23] as our objective is not to cover all the points in

The authors are with the School of Computing at the
University of North Florida, USA. {anirban.ghosh,
a.dutta,n01060290}@unf.edu.
A. Ghosh was partially supported by the NSF award CCF-1947887.

the environment with the sensor footprint. Instead, we are

interested in covering the POI set only. On the other hand, in

real-world missions, the robot might have an onboard power

source such as a battery, which needs to be recharged after

the robot travels B distance. Therefore, if two consecutive

locations u, v in the above-mentioned surveillance tour have

a longer distance than B, the robot will not be able to move to

v from u. To avoid this, we assume that there are k charging

stations available in the environment, which the robot can

move to and get fully recharged instantaneously. However,

in this setting, the plan of traveling in a straight line from

point u to v becomes infeasible.

r

r

r

r

s

Fig. 1. In this figure, s denotes the robot’s start location. A gray disk
represents the area of visibility of the robot when it is located at the disk
center. The points of interest (POIs) are represented using red solid squares.
In this case, the set of four disk centers can be used to serve all POIs
inside the environment. The cross marks represent the charging stations. A
desired energy-constrained tour is shown that starts at s, visits the four disk
centers, and comes back to s via a subset of the charging stations such that
the distance between any two successive disk centers (service locations) is
minimized. Note that two disks may intersect and multiple POIs may belong
to such an intersection.

To this end, we propose a technique that 1) finds the

minimum number of unit disks on the plane such that all the

POIs are covered, 2) finds a TSP tour covering these disk

centers while the start and the endpoint of the tour being

s, and finally, 3) finds an energy-aware path for the robot to

travel between any two consecutive locations in the TSP tour

such that it never runs out of energy. An illustration of this

is presented in Fig. 1. Our energy-aware tour planning al-

gorithm always finds an optimal energy-aware path between

any two consecutive points on the tour. We have implemented

the proposed algorithms in environments consisting of up

to 1000 POIs. Results show that our coverage algorithm

is extremely fast – taking less than 0.3 microseconds for

such a 1000-POI set. On the other hand, the energy-aware

tour component of the proposed technique is understandably

slower – the maximum time to compute such a tour in the

2022 IEEE 18th International Conference on Automation
Science and Engineering (CASE)
August 20-24, 2022. Mexico City, Mexico

978-1-6654-9042-9/22/$31.00 ©2022 IEEE 2056

2
0
2
2
 I

E
E

E
 1

8
th

 I
n
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 A

u
to

m
at

io
n
 S

ci
en

ce
 a

n
d
 E

n
g
in

ee
ri

n
g
 (

C
A

S
E

)
| 9

7
8
-1

-6
6
5
4
-9

0
4
2
-9

/2
2
/$

3
1
.0

0
 ©

2
0
2
2
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/C

A
S

E
4
9
9
9
7
.2

0
2
2
.9

9
2
6
5
4
6

Authorized licensed use limited to: University of North Florida. Downloaded on July 08,2023 at 22:23:13 UTC from IEEE Xplore. Restrictions apply.

same environment is 5.33 seconds.

The primary contributions of our paper are as follows:

• To the best of our knowledge, this is the first study to

utilize the UNIT DISK COVER problem to cover a set

of POIs on a plane while minimizing the number of

service locations that the robot has to travel to.

• We have proposed an energy-aware version of the TSP

routing problem such that the robot never runs out of

energy while traveling from one TSP point to the next.

• Numerical results show that our proposed technique

is highly scalable – taking about 5 seconds to plan

an energy-aware tour while covering 1000 points of

interest.

II. RELATED WORK

Coverage path planning and tour planning are popular

research topics in robotics [11], [19], [31], and there is a

large body of literature available. Therefore, in this section,

we only focus on the studies that are the most relevant to this

paper. In [30], the authors propose a technique for coverage

path planning with an energy-constrained robot. Their pro-

posed algorithm guarantees constant-factor approximation.

Unlike traditional coverage planning, we are interested in

covering a set of points on the plane, not necessarily all

possible points, assuming the robot can serve/cover all the

points in its vicinity. This is similar to the sensor-based

coverage problem in robotics [1]. For example, in [23],

the authors have used Generalized Voronoi diagram-based

graph modeling to guarantee complete coverage. We are

interested in minimizing such coverage points in the sensor-

based coverage problem and our points of interest might

not be scattered throughout the environment unlike such

coverage [1]. TSP is a popular choice in robotics for tour

planning [2], [4], [25], [27]. A survey of various routing

problems studied in robotics can be found in [19]. On the

other hand, a survey on TSP and its variants can be found

in [15]. Euclidean TSP with neighborhood (TSPN) on disks

is a generalization of the classic TSP where the points are

generalized to disks (possibly overlapping). Refer to [7], [8]

for approximation algorithms for TSPN on disks. Although

this problem may sound similar to our setup but is different

since, in our case, we need to find the disks (correspond-

ing to the service locations) and then use their centers in

energy-efficient path-planning. Although strictly not routing,

recently, Sotolongo et al. [24] have proposed an energy-

constrained path planning technique, where the robot’s goal

is to move from a start to a goal location while not violating

the given energy constraint. However, we cannot apply this

technique directly in this paper as we study a routing problem

and we only have charging stations as the nodes in our

underlying graph apart from the start and goal, but not any

other waypoints. Our studied problem also has similarities

with the Electric Vehicle Routing Problem (EVRP) [21] but

that does not consider minimal disk coverage like ours.

Two of the closest studies to our work in this paper are

[22], [26]. In [22], the authors have proposed an optimal

algorithm for the coverage path planning problem under

energy constraint. The main differences with our paper are 1)

the authors have considered the problem of visiting all the lo-

cations on a plane whereas we consider visiting only a subset

L, 2) the environment is discretized whereas our algorithm

works for a continuous plane, and finally, 3) there is assumed

to be a single charging station placed in the environment, but

in our paper, we can have k ≥ 1 such stations. On the other

hand, in [26], the authors have proposed a technique for a

similar energy-aware tour problem. However, their proposed

technique 1) does not consider the robot’s visibility radius

r, and therefore, assumes the service locations to be readily

available unlike ours, and 2) their algorithm could scale only

up to 25 service locations and 5 charging stations whereas

ours scale up to more than 400 service locations and 175
charging stations.

III. PROBLEM SETUP

Let S be a set of n fixed points of interest, p1, p2, . . . , pn,

located inside a plane environment E, needing service from a

moving point robot equipped with a sensor that can serve all

the points of interest which are within a pre-specified radius

of r from its current location inside E. This implies, if a set

S′ ⊆ S of points of interest are located within r distance

units from the current location of the robot, it does not need

to travel to the locations in S′ in order to provide the desired

service. Clearly, it is quite possible that a point of interest

may get more than one opportunity to obtain service from

the robot. Refer to Fig. 1 for an illustration.

The robot must start at a specified location s ∈ E\S, serve

the n locations in S, and come back to the start location,

minimizing the overall distance traveled. Further, the robot

is powered by a battery that helps it to travel a distance of at

most B, after a single full charge. Thus, a set C of k fixed

charging stations have been placed inside E to help it carry

out the task of serving the n target locations. Note that in our

case it is possible that S ∩ C = ∅. The robot can use these

charging stations as many times as it needs to, during its

service tour. In this work, we assume that a single charging

takes a negligible amount of time and is thus not considered

in our computations.

The objective is to compute a set L of a minimum number

of serving locations (not necessarily the same as the given

point of interests) inside E and a permutation of these

locations that the robot should visit starting and ending at

s in order to serve the n point of interests p1, p2, . . . , pn,

minimizing the overall distance traveled using a battery that

powers it to travel a distance of at most B after a single

charge. Note that it is possible that L ∩ S = ∅. The tour to

be computed consists of locations in L ∪ {s}. In the cases,

where the distance between two successive locations in the

tour is larger than B, a set of nearby charging stations needs

to be added to the tour as well. Note that |L| ≤ n since in the

worst-case if any two POIs are more than 2r distance units

away, the robot needs to use n service locations to serve the

n POIs.

When the distance between two successive service loca-

tions is much larger than B, the robot may need to charge

2057

Authorized licensed use limited to: University of North Florida. Downloaded on July 08,2023 at 22:23:13 UTC from IEEE Xplore. Restrictions apply.

itself several times before it can reach the next destination. In

doing so, the robot may deviate from the line segment joining

the two consecutive service locations since the charging

stations are spread throughout the environment E. In this

regard, we consider a practical optimizing constraint: for

every two consecutive serving locations in the solution,

minimize the total distance traveled by the robot via a subset

of the charging stations.

We define the objective of the energy-aware tour part of

the problem as follows: find a tour T ∗

e that starts and ends at

s, serves all the locations in L exactly once, does not violate

the energy constraint, and minimize the travel cost. The travel

cost of a tour is calculated by summing up the Euclidean

distances of its edges (an edge represents the straight-line

path between two successive locations). Throughout this

paper, the subscript e is used to denote energy awareness.

IV. ALGORITHMS

The algorithm section is broken down into three sub-

sections as follows. In Section IV-A, we show how to com-

pute L for serving the given n points of interest. Next, we

show how to compute an energy-constrained tour that starts

at s, visits every point in L, and ends at s; see Section IV-B.

Finally, in Section IV-C, we present an algorithm that returns

a feasible solution for the energy-aware problem.

A. Finding L using a covering algorithm

The geometric covering is a well-researched family of

problems in computational geometry where the objective

is to cover a given set X of geometric objects using the

minimum number of congruent copies of some fixed shape

Q. In our problem, X = S and Q is a closed disk of radius

r (visibility radius of the robot under consideration) since

a robot located at a disk center can serve all the points

of interest inside the disk having radius r. This means to

minimize the size of L, we need to find the minimum number

of disks whose union covers S. This problem is popularly

known by the name UNIT DISK COVER problem and is being

researched for over three decades; refer to [6], [10], [13] for

a literature overview of this problem.

In the UNIT DISK COVER problem, r is assumed to be a

unit (as the name suggests) but the algorithms for it can

be easily scaled depending on the value of r used. The

problem is shown to be NP-Hard by Fowler et al. [9] back

in 1981 and consequently, a long series of approximation

algorithm has been designed having varied running times

and approximation, see [6], [13]. A fast practical algorithm is

proposed by Ghosh, Hicks, and Shevchenko [13], that gives

2.7-approximation1 in practice and runs in O(n) time on

average where n = |S|. Using rigorous experiments, the

authors have showed that their algorithm is up to 61.63
times faster than some of the well-known algorithms for

the covering problem. Since path-planning computations are

expected to run fast in practice, we adapt this algorithm to

1In this case, the approximation factor implies that in the worst-case, 2.7
times the optimal number of disks may be placed by this algorithm.

σ(i, j)

E

σ(i+ 1, j)

σ(i, j − 1)

σ(i, j + 1)

σ(i− 1, j)

√

2

√

2

p

q

Fig. 2. An illustration of the algorithm COVER-POIS. The environment
is denoted by E. In this figure, r is assumed to be a unit. The size of the

used square grid is
√
2, as required by the algorithm. A point p ∈ σ(i, j)

can be covered using the unit disk D(i, j) that circumscribes σ(i, j). Note
that depending on the location of p, it can also be covered by some disk
in D(i− 1, j), D(i+1, j), D(i, j − 1), D(i, j +1). Thus, before placing
D(i, j) to cover p, we check if any one of the four disks is already covering
p and is placed previously to cover some other point of interest in S. For
instance, the point of interest p can be covered by the disk D(i, j) only and
consequently, we are forced to use D(i, j). However, the point of interest q
belongs to D(i, j)∩D(i+1, j). Thus, when q is considered, first we check
if D(i + 1, j) is already placed previously for covering some other point
of interest. If yes, no action is necessary for q since it is already covered,
otherwise, we place the disk D(i, j) to cover q.

generate the set of L. In the following we briefly describe

the algorithm.

We overlay a
√
2-sized grid Ξ on the environment E; see

Fig. 2. This will split E into
√
2-sized square cells as shown

in the figure. We use σ(i, j) to denote a cell in Ξ, where

i, j ∈ Z. The cell σ(i, j) is the intersection of the four half-

planes: x ≥
√
2i, x <

√
2(i + 1), y ≥

√
2j, y <

√
2(j + 1).

For every cell σ(i, j) ∈ Ξ, there exists a unit disk D(i, j) that

circumscribes σ(i, j). We say that D(i, j) is the grid-disk of

σ(i, j).
The points in S are considered sequentially. Let p =

(px, py) be the point currently being considered. Since we

are using a
√
2-sized grid, p belongs to the cell σ(i, j), where

i = bpx/
√
2c, j = bpy/

√
2c. First, we check if p is covered

by some previously placed grid-disk in {D(i− 1, j), D(i+
1, j), D(i, j − 1), D(i, j + 1)}. If not, then we use the disk

D(i, j) that is centered at the center of the cell σ(i, j) to

which the point belongs.

The centers of the grid-disks placed by this algorithm can

be used as the set L of service locations for covering the n
points of interest. Refer to Algorithm 1 for a pseudo-code.

B. Finding a tour on L ∪ {s}
Once the set of service locations L is computed using

Algorithm 1, the next task is to find a minimum-weight cycle

that starts at s, visits every location in L exactly once, and

comes back to s (a tour on L ∪ {s}). This is a folklore

problem in computing and is known by the name Metric

Traveling Salesman Problem (Metric TSP). In this version of

TSP, the input graph G is complete and is constructed on an

input point set. Further, the edge weights satisfy the triangle

inequality: for any three edges (u, v), (v, w), (u,w) in G,

weight((u, v)) + weight((v, w)) > weight((u,w)). In

2058

Authorized licensed use limited to: University of North Florida. Downloaded on July 08,2023 at 22:23:13 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: COVER-POIS(S)

1: DISKS-PLACED = ∅;
2: for p ∈ S do
3: Let i = bpx/

√
2c, j = bpy/

√
2c, where px, py are the x

and y-coordinates of p, respectively;
4: if D(i, j) ∈ DISKS-PLACED or there is a disk

D ∈ {D(i− 1, j), D(i+ 1, j), D(i, j − 1), D(i, j + 1)} ∩
DISK-PLACED such that D covers p then

5: continue;
6: else
7: DISKS-PLACED = DISKS-PLACED ∪D(i, j);
8: end if
9: end for

10: L = ∅;
11: for every disk D ∈ DISKS-PLACED do
12: L = L ∪ {(x, y)} where (x, y) denotes the center of D;
13: end for
14: return L;

our case, the input graph G is a complete graph on L∪ {s}
and the weight of an edge (u, v) is the Euclidean distance

between the two locations u, v ∈ L ∪ {s}. Just like the

coverage problem, this is also NP-Hard [18]. In our case,

we use the famous Christofides algorithm [5], [28] that

gives 1.5-approximation2 and runs in O(|L|3) time. For

the Metric TSP problem, this polynomial-time algorithm

gives the best guarantee on the tour length till date. This

plays a very important role in path planning scenarios for

optimizing the time taken in completing missions. However,

recently, a slightly improved randomized algorithm has been

devised in [17], that gives 1.5 − ε-approximation, for some

ε > 10−36. We did not use this algorithm in our work since

to our knowledge, no experimental study is conducted on

this algorithm till date. See [12] for an experimental study

on Metric TSP. We present a pseudo-code of the Christofides

algorithm in Algorithm 2.

Algorithm 2: COMPUTE-TOUR(L ∪ {s})

1: Let G be the complete graph on L ∪ {s};
2: Compute a minimum spanning tree M for G;
3: Let W be the set of vertices in G that have odd degree in M

and H be the subgraph of G induced by the vertices in W ;
4: Compute a minimum-cost perfect matching P in H;
5: Combine the two graphs M and P to create a graph G′.

However, if an edge e belongs to both M and P , create two
copies of e in G′;

6: Compute an Eulerian circuit C in G′;
7: Convert the circuit C into a tour T by skipping over

previously visited vertices using shortcuts;
8: return T ;

C. Energy-Aware Routing

Let D be a set of closed disks in the plane whose radii is

B. We define α-disk graph as the intersection graph of the

disks in D where every vertex corresponds to a disk in D and

2In the worst case, the Euclidean length of the tour returned by the
Christofides algorithm is 1.5 times that of an optimal tour.

Algorithm 3: COMPUTE-ETOUR(T,B,C)

1: Te = ∅;
2: for all consecutive locations u, v ∈ T do
3: Let Ge be a connected graph on {u, v} ∪ C such that the

maximum edge weight is B; T ′

e = A∗(u, v) on Ge;
4: if T ′

e is not NULL then
5: Te = Te ∪ T ′

e;
6: else
7: return NULL;
8: end if
9: end for

10: return Te;

an edge exists between two vertices if the corresponding two

disks intersect. In this section, we are tasked with planning

a path while following the tour T such that the robot never

runs out of energy. As two consecutive locations u, v ∈ T
might be further apart than the budget B, the robot needs to

travel through one or more charging stations to reach v from

u. Let Ge(Ve, Ee,We) be an α-disk graph where α = B,

the node set Ve := {u, v} ∪ C, We denotes the weights of

the edges such that we(v
i
e, v

j
e) is calculated by the Euclidean

distance between the node pair vie, v
j
e ∈ Ve, and Ee denote

the edge set {{vie, vje}|we(v
i
e, v

j
e) ≤ B}, ∀vie, vje ∈ Ve. Next,

we call the popular A∗ algorithm [16] on every consecutive

pair of such nodes in T on Ge and the resulting tour (Te)

never violates the energy constraint. We have used Euclidean

distance as our admissible and consistent heuristic function

for A∗. We present the pseudo-code in Algorithm 3. A

sample visualization by merging all the TSP pair paths is

presented in Fig. 3. Node 37 to 38 is an example of where

energy-awareness is important – there is no direct edge

between these two nodes, and therefore, the robot’s path is

routed via charging station 17. One should note that when an

A∗ path between two such consecutive nodes in T are being

calculated, only those two nodes from T are present in Ge,

and not all the TSP points. This is illustrated when the robot

calculates the path between nodes 27 and 28, which is routed

via node 1. Since A∗ is used to find energy-aware paths

between every two successive locations u, v in T , we get

optimal length paths between every u, v. The overall solution

pseudo-code is presented in Algorithm 4.

Algorithm 4: The Main Algorithm

Input: S: A set of POIs on a plane.
B: The robot’s energy budget.
C: A set of charging stations in the environment.
s: A start point for the energy-aware tour.
Output: Te: An energy-aware tour;

1 L =COVER-POIS(S);
2 T =COMPUTE-TOUR(L ∪ s);
3 Te = COMPUTE-ETOUR(T,B,C);
4 return Te;

2059

Authorized licensed use limited to: University of North Florida. Downloaded on July 08,2023 at 22:23:13 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. An illustration of an energy-aware tour Te is presented. The red
path indicates such a tour and the green nodes represent the points in T .
The set of charging stations C is represented using the black nodes. The
start location s is node 20.

V. EXPERIMENTS

A. Settings

We have implemented the proposed technique using C++

(Algorithm 1) and Java (Algorithms 2 and 3) programming

languages. The implementation and testings are performed

on a Ubuntu Linux 20.04 LTS desktop equipped with a

Ryzen 1600 processor runing at 3.2 GHz. Intel CPU and

8 GB RAM. For an implementation of the Christofides

algorithm, we have used Google’s OR-Tools. We have used

the GraphStream library for graph-related computations and

visualizations in Algorithms 2 and 3. The number of POIs

n has been varied between [100, 1000] and these POIs

have been generated uniformly in a 50 × 50 unit2 square

environment E, which has the center at (0, 0). The center

is also set as the start location s. The energy budget of the

robot is varied between {8, 10}% of the maximum distance

between any two points in the square environment, i.e., the

diagonal of the square. The number of charging stations

has been varied between {5, 7}% of the area of the square.

Numerical results for 10 valid runs are presented next where

the line plots indicate the average values and the error bars

represent the standard deviations. For ease of calculations, we

have set the visibility radius r to 1. However, as mentioned

earlier, our setup can be used for any positive value of r.

B. Results

In Fig. 4(a), we show how the runtime of the covering

algorithm varies with the increase in POIs. Since the covering

algorithm runs in O(n) time on average (as mentioned

earlier), we see almost a linear curve in this case. Next, in

Fig. 4(b), we show how the number of disks required to cover

the POIs vary with the increase of POIs. It is obvious with

the increase in the number of POIs, the required number of

disks will also increase.

Next, we are interested in investigating the effect of

varying the budget amount and the number of charging

0 200 400 600 800 1000

Number of POIs

0.5

1

1.5

2

2.5

3

T
im

e
 (

m
s

.)

10
-4

0 200 400 600 800 1000

Number of POIs

0

100

200

300

400

500

N
u

m
b

e
r

o
f

D
is

k
s

(a) (b)

Fig. 4. a) Run time to calculate disk centers using Algorithm 1; b) Number
of disk centers found by Algorithm 1 for various POI counts.

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Number of POIs

0

1

2

3

4

5

T
im

e
 (

s
e

c
.)

Budget = 8%

|C|=5% of n

|C|=7% of n

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Number of POIs

0

1

2

3

4

5

6

T
im

e
 (

s
e

c
.)

Budget = 10%

|C|=5% of n

|C|=7% of n

(a) (b)

Fig. 5. Run time of Algorithms 2 and 3 with budget a) 8%, and b) 10%.

stations on the run time of the energy-aware tour planning

technique. Fig. 5 presents the results for the run time metric.

We observe three interesting trends: 1) the run time increases

with the number of POIs regardless of the budget and the

charging station count, 2) the run time is generally higher

with more charging stations in the environment, and 3) with

a higher budget, the run time increases. We can explain trend

(1) with the fact that as the number of POIs increases, the

number of disks increases (Fig. 4(b)) and so does the number

of points in the TSP tour. As our technique applies A∗ on

consecutive TSP locations, the more locations it involves,

the higher run time it will incur. The second observation (2)

is due to the fact that with more charging stations in the

environment, the size of the Ge graph is larger, i.e., more

nodes and more edges to consider for every call of A∗. We

can observe trend (3) because with a higher budget, more

nodes will share edges in Ge, which consequently will make

Ge denser. This will result in longer execution times for the

A∗ algorithm between any two consecutive points on the

TSP tour.

0
20

0
40

0
60

0
80

0

10
00

Number of POIs

300

400

500

600

700

800

900

1000

T
o

u
r

L
e

n
g

th

Budget = 8%

|C|=5% of n

|C|=7% of n

0
20

0
40

0
60

0
80

0

10
00

Number of POIs

300

400

500

600

700

800

900

1000

T
o

u
r

L
e

n
g

th

Budget = 10%

|C|=5% of n

|C|=7% of n

(a) (b)

Fig. 6. Lengths of the energy-aware tours calculated by Algorithm 3 with
budget a) 8%, and b) 10%.

Next we analyze the tour lengths of the solutions that

2060

Authorized licensed use limited to: University of North Florida. Downloaded on July 08,2023 at 22:23:13 UTC from IEEE Xplore. Restrictions apply.

our algorithm has found. We observe that the tour costs are

usually higher with a lower number of charging stations in

the environment. If there are not many charging stations, then

the edge weights in the graph Ge are higher as the stations

are more sparsely distributed while keeping Ge connected.

Therefore, the robot needs to travel longer distances to get

recharged. For example, with the number of charging stations

|C| set to 5 and 7%, B = 8%, and n = 200, the tour lengths

are 562.7 and 529.9 units respectively (Fig. 6.(a)). With an

increasing budget, however, this difference diminishes. For

example, with the same setting and budget increasing to

10%, these values are 514.5 and 513.5 units respectively.

Furthermore, we can observe that with more POIs present

in the environment, the difference between the tour costs

with |C| = 5 and 7% also reduces. If there are more POIs

in the environment, then there will be more disk centers,

and consequently, more points on the TSP tour (see Fig.

4(b) for reference). Therefore, the distances between two

consecutive TSP points also reduces due to the uniform POI

distribution. Thus, the tour lengths are shorter and they do

not rely significantly on the charging stations.

VI. CONCLUSIONS

We present a minimalist coverage and energy-aware tour

planning solution for an autonomous mobile robot. The robot

is assumed to have a fixed sensor radius and its goal is to

minimize the number of locations that it needs to visit to

provide service to a given set of points. Next, it calculates

a tour through this disk centers while starting and ending at

point s. However, as the robot might have limited energy, it

needs to stop at one or more charging stations in between

two successive points of the tour. Our proposed technique

is fast and efficient while easily scaling up to 1000 points

of interest. In some cases, the graph Ge formed using

the charging stations and two disk centers can be dense.

Consequently, A∗ will run slow on Ge. To speed up, in our

future work, we will investigate techniques for using linear-

sized subgraphs of Ge instead by sacrificing the optimality

of the computed paths.

REFERENCES

[1] E. U. Acar, H. Choset, and J. Y. Lee. Sensor-based coverage with
extended range detectors. IEEE Transactions on Robotics, 22(1):189–
198, 2006.

[2] D. Bhadauria and V. Isler. Data gathering tours for mobile robots.
In 2009 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 3868–3873. IEEE, 2009.
[3] S. Bhattacharya, S. Candido, and S. Hutchinson. Motion strategies for

surveillance. In Robotics: Science and Systems. Citeseer, 2007.
[4] F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith. Dynamic

vehicle routing for robotic systems. Proceedings of the IEEE,
99(9):1482–1504, 2011.

[5] N. Christofides. Worst-case analysis of a new heuristic for the
travelling salesman problem. Technical report, Carnegie-Mellon Univ
Pittsburgh Pa Management Sciences Research Group, 1976.

[6] A. Dumitrescu, A. Ghosh, and C. D. Tóth. Online unit covering in
euclidean space. Theoretical Computer Science, 809:218–230, 2020.

[7] A. Dumitrescu and J. S. Mitchell. Approximation algorithms for tsp
with neighborhoods in the plane. Journal of Algorithms, 48(1):135–
159, 2003.

[8] A. Dumitrescu and C. D. Tóth. Constant-factor approximation for
tsp with disks. In A Journey Through Discrete Mathematics, pages
375–390. Springer, 2017.

[9] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing
and covering in the plane are np-complete. Information processing

letters, 12(3):133–137, 1981.
[10] R. Friederich, M. Graham, A. Ghosh, B. Hicks, and R. Shevchenko.

Experiments with unit disk cover algorithms for covering massive
pointsets. arXiv preprint arXiv:2205.01716, 2022.

[11] E. Galceran and M. Carreras. A survey on coverage path planning
for robotics. Robotics and Autonomous systems, 61(12):1258–1276,
2013.

[12] K. Genova and D. P. Williamson. An experimental evaluation of
the best-of-many christofides’ algorithm for the traveling salesman
problem. Algorithmica, 78(4):1109–1130, 2017.

[13] A. Ghosh, B. Hicks, and R. Shevchenko. Unit disk cover for massive
point sets. In International Symposium on Experimental Algorithms,
pages 142–157. Springer, 2019.

[14] B. Grocholsky, J. Keller, V. Kumar, and G. Pappas. Cooperative air
and ground surveillance. IEEE Robotics & Automation Magazine,
13(3):16–25, 2006.

[15] G. Gutin and A. P. Punnen. The traveling salesman problem and its

variations, volume 12. Springer Science & Business Media, 2006.
[16] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the

heuristic determination of minimum cost paths. IEEE transactions on

Systems Science and Cybernetics, 4(2):100–107, 1968.
[17] A. R. Karlin, N. Klein, and S. O. Gharan. A (slightly) improved

approximation algorithm for metric tsp. In Proceedings of the 53rd

Annual ACM SIGACT Symposium on Theory of Computing, pages 32–
45, 2021.

[18] R. M. Karp. Reducibility among combinatorial problems. In Com-

plexity of computer computations, pages 85–103. Springer, 1972.
[19] D. G. Macharet and M. F. Campos. A survey on routing problems

and robotic systems. Robotica, 36(12):1781–1803, 2018.
[20] T. Oksanen and A. Visala. Coverage path planning algorithms for

agricultural field machines. Journal of field robotics, 26(8):651–668,
2009.

[21] M. Schneider, A. Stenger, and D. Goeke. The electric vehicle-routing
problem with time windows and recharging stations. Transportation

science, 48(4):500–520, 2014.
[22] G. Sharma, A. Dutta, and J.-H. Kim. Optimal online coverage path

planning with energy constraints. In Proceedings of the 18th Inter-

national Conference on Autonomous Agents and MultiAgent Systems,
pages 1189–1197, 2019.

[23] A. Sipahioglu, G. Kirlik, O. Parlaktuna, and A. Yazici. Energy
constrained multi-robot sensor-based coverage path planning using
capacitated arc routing approach. Robotics and Autonomous Systems,
58(5):529–538, 2010.

[24] B. Sotolongo, A. Dutta, S. Sisley, and G. Sharma. Shortest path
planning with an energy-constrained robot. In 2021 IEEE International

Conference on Systems, Man and Cybernetics, SMC 2021. IEEE.
[25] F. Suárez-Ruiz, T. S. Lembono, and Q.-C. Pham. Robotsp–a fast

solution to the robotic task sequencing problem. In 2018 IEEE

International Conference on Robotics and Automation (ICRA), pages
1611–1616. IEEE, 2018.

[26] K. Sundar and S. Rathinam. Algorithms for routing an unmanned
aerial vehicle in the presence of refueling depots. IEEE Transactions

on Automation Science and Engineering, 11(1):287–294, 2013.
[27] O. Tekdas, V. Isler, J. H. Lim, and A. Terzis. Using mobile robots

to harvest data from sensor fields. IEEE Wireless Communications,
16(1):22–28, 2009.

[28] R. van Bevern and V. A. Slugina. A historical note on the 3/2-
approximation algorithm for the metric traveling salesman problem.
Historia Mathematica, 53:118–127, 2020.

[29] J. I. Vasquez-Gomez, J.-C. Herrera-Lozada, and M. Olguin-Carbajal.
Coverage path planning for surveying disjoint areas. In 2018 Inter-

national Conference on Unmanned Aircraft Systems (ICUAS), pages
899–904. IEEE, 2018.

[30] M. Wei and V. Isler. Coverage path planning under the energy
constraint. In 2018 IEEE International Conference on Robotics and

Automation (ICRA), pages 368–373. IEEE, 2018.
[31] J. Xie, L. R. G. Carrillo, and L. Jin. An integrated traveling salesman

and coverage path planning problem for unmanned aircraft systems.
IEEE control systems letters, 3(1):67–72, 2018.

2061

Authorized licensed use limited to: University of North Florida. Downloaded on July 08,2023 at 22:23:13 UTC from IEEE Xplore. Restrictions apply.

