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AbstractÐThe increasing popularity of video streaming and
conferencing services have altered the nature of Internet traffic.
In this paper, we take a first step toward quantifying the impact
of this changing nature of traffic on the Quality of Experience
(QoE) of popular video streaming and conferencing applications.
We first analyze the traffic characteristics of these applications
and of backbone links, and show how simple multipath routing
may adversely impact application QoE. To mitigate this problem,
we propose a new routing path selection approach, inspired by the
TCP timeout computation algorithm, that uses both the average
and variation of path load. Preliminary results show that this
approach improves application QoE by on average 14% and
packet latency by 11% for video streaming and conferencing
applications, respectively.1

I. INTRODUCTION

Internet Service Providers (ISPs) have traditionally lever-

aged intra-domain routing protocol weights or MultiProtocol

Label Switching (MPLS) for traffic engineering [1]. Traffic

engineering operations between the ingress and egress points

of an ISP are typically performed over relatively long time

scales. Equal Cost MultiPath (ECMP) routing has been an

important component of shorter time-scale traffic engineering

and load balancing in both the wide-area [2], [3] and data

center [4], [5], [6], [7] contexts. ECMP is attractive due to its

simple implementation. The ultimate goal of this work is to

augment ECMP for better traffic engineering and application

QoE in the wide area.

An important development that impacts traffic engineering

is that video streaming and conferencing applications now

constitute a majority of traffic [8], [9]. The traffic charac-

teristics and Quality of Experience (QoE) requirements of

these applications should therefore play a major role in traffic

engineering. This is because application QoE is an important

indicator of customer satisfaction. For instance, the Video

Multi-Method Assessment Fusion (VMAF) metric [10], pro-

posed by Netflix, assesses perceptual video quality. In addition

to traditional metrics such as link utilization, packet loss,

end-to-end delay and jitter, an ISP needs to ensure that its

customers have high QoE for the most popular applications.

Motivated by this observation, we strive to understand the

factors that impact the QoE of video streaming and confer-

encing applications. In addition to the load on the links on the

path that the traffic traverses, we posit that the burstiness of

the background traffic on these links must also play a key role

in traffic engineering.

1This work has been supported in part by a gift from Juniper Networks.
The authors would like to thank George Cybenko (Dartmouth College) and
Kieran Milne (Juniper Networks) for discussions of this work.

Significant research has been conducted on evaluating traffic

burstiness [11], [12], [13], [14], [15]. ªSelf-similarityº of

traffic at different time scales and at different levels of flow

aggregation has been the subject of major debate in the

1990s [16], [17] and into the 21st century [18], [19]. Based

on the importance of these burstiness measures, we design a

path selection approach that considers both average load and

background traffic variation on a network path when selecting

among multiple, equal-cost, paths for routing traffic of video

streaming or conferencing applications.

This paper makes the following contributions: (1) We ex-

amine the traffic characteristics of popular applications (Sec-

tions II) and backbone links (Section III). (2) We describe

two path selection approaches, one solely based on average

load and another that incorporates both the average and

variation of the load (Section IV). (3) We conduct a series

of experiments to compare these two approaches with basic

ECMP routing (Sections V and VI), focusing on the impact of

path selection and background traffic burstiness on application

QoE. Section VII summarizes related work, and Section VIII

discusses directions for future work.

II. STREAMING AND CONFERENCING TRAFFIC

To understand the traffic characteristics of increasingly-

popular conferencing and streaming, we measure seven confer-

encing services (Zoom, Cisco WebEx, Slack, Microsoft Teams,

Skype, Discord, and Google Meet), and five video streaming

services (Disney+, HBO Max, Hulu, Peacock, and Prime).

Our data collection process involves two users in West

Lafayette, IN, USA: user-1 connects via a cellular network on

T-Mobile with iPhone XS, whereas user-2 connects to a Wi-

Fi network on Comcast-Xfinity using a Windows-10 desktop.

The packets travel through different autonomous systems and

different access networks. We analyze both control and data

plane messages, and experiment with combinations of audio,

video, and screen share feeds for conferencing services. We

attempt to keep the audio, video, and screen share content

largely similar across our experiments (of duration 15 minutes

each), which we conducted in March±April 2022.

We find that conferencing services create at least three

bidirectional UDP flows, regardless of enabled feeds. This

ensures that if a user enables a new feed during a session, the

service can start data transfer right away. Teams and WebEx

always create four bidirectional flows instead of three. Google

with screen sharing creates four bidirectional flows.

Analysis of streaming traffic reveals that applications, once

authorized and have obtained the URL for the media, create a



TABLE I: Characteristics of conferencing traffic

Service Mbps Loss % Disp. Kurtosis Skewness Prom.

Discord 1.9 0.041 31.44 1288 -1.22 268

Google 1.64 0.002 11.54 2113 -3.14 117

Skype 3.36 0.09 31.21 57071 -0.68 360

Slack 1.7 - 7.69 1193 -3.29 256

Teams 4.3 0.018 40.19 5171 -2.12 458

WebEx 0.79 0.018 5.43 49 -1.09 104

Zoom 1.73 - 16.92 15076 -3.5 177

TABLE II: Characteristics of streaming traffic

Service Mbps Dispersion Kurtosis Skewness Prominence

Disney 4.66 7000 4584 2.71 3876

HBO 8.56 3902 4610 1.39 3943

Hulu 3.02 3611 10031 2.41 1228

Peacock 8.44 9370 25375 1.79 2449

Prime 2.52 655 420 4.28 2381

single TCP flow at a time to download the video in ªchunks.º

Differences in throughput values between Tables I and II imply

that a routing path would be more highly utilized by a single

large streaming flow, compared to the small media flows of

conferencing applications.

Our findings confirm that application sessions comprise

ªmiceº flows (audio and control signaling) and ªelephantº

flows (video). These flows vary not only in total bytes

transferred and number of packets sent, but also in the time

between successive packets. Therefore, we take each 5-tuple-

based unidirectional flow and study the time series of the inter-

packet times and the packets sent per second. Flow pictures

(FlowPics) [20] such as those depicted in Fig. 1 show the

packet-size distribution over time. Characteristics of such flow

time series data have been studied in previous work, which

computes the dispersion [11] and kurtosis [13] for the inter-

packet times, and the skewness [12], [14] and prominence [15]

for the packets-per-second time series.

We observe that conferencing services send UDP real-

time traffic, yielding lower dispersion in their inter-packet

times (Table I) than TCP-based streaming (Table II). Kurtosis

measures the outliers in the inter-packet times [13]. Table I

reveals that Skype traffic and Zoom traffic have the highest

number of outliers among conferencing services; other traffic

appears to have been paced or shaped. Conferencing services

have negative skew, whereas streaming services have positive

skew, since they send significant traffic at the start of a session.

Prominence values denote the maximum number of packets

sent in a burst. TCP behavior in streaming services results in

higher prominence than conferencing services, which deliver

data at approximately constant bit rate.

We posit that an ISP that considers such time series charac-

teristics can ensure that a service can be accommodated with

high QoE on a given path. For example, sending video stream-

ing flows via a path with already multiple high-prominence

flows, and hence high burstiness, can adversely impact QoE.

We validate this hypothesis in Section VI.
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Fig. 1: Zoom (left) and Disney+ (right) flow pictures [20]

show the smoothness of conferencing traffic compared to the

bursty nature of streaming traffic.

III. BACKBONE TRAFFIC

We now study the traffic characteristics of backbone links

which include aggregates of conferencing and streaming traf-

fic, as well as other applications. We find that many (but not

all) of our results are consistent with earlier findings [16],

[17], [18], [19]. We begin by visualizing the traffic traces and

autocorrelation functions across different time scales. Next,

we calculate the Hurst parameter to understand the intensity

of long-range dependence (LRD). Finally, we show the im-

portance of selecting an appropriate time scale by computing

the same characteristics as in Section II.

We use seven publicly available traffic traces, each lasting

15 minutes. These traces are obtained from the WIDE back-

bone [21] and represent a day of network activity for each day

of the week between March 6 and March 12, 2023.

Similar to previous research [16], [19], we explore two

possible metrics for aggregating time series data: the number

of bytes or the number of packets per time unit. We find

that both metrics yield comparable results. Therefore, for

the remainder of this section, we focus on aggregating the

number of packets transferred over a designated time interval.

Specifically, we count the number of packets every millisecond

in the original time series.

Fig. 2 displays the number of packets sent at various time

scales for the trace SF09, with each plot comprising 1500

data points. We find that traffic is not smooth even at large

time scales, and exhibits burstiness across all time scales.

The autocorrelation coefficients (ACFs) for the entire trace are

depicted in Fig. 3 (left). The autocorrelation is non-summable.

If the time series is wide sense stationary, the process becomes

LRD.

We employ rescaled range (R/S) analysis and variance-time

methods to calculate the Hurst parameter as a measure of long-

term memory in time series [16]. Our results indicate strong

LRD across all traces, with the Hurst parameter H > 0.85 at

both small and large time scales. Notably, we do not observe

obvious change points within the millisecond to second range,

which differs from findings reported in previous studies [18],

[19]. This is expected due to the increase in long-lived sessions

such as video streaming and conferencing (Section II), as a

percentage of overall backbone traffic, over the past decade.

This finding also augments the evidence that the burstiness of

the traffic is scale-invariant.



TABLE III: Characteristics of backbone link traffic

Trace
Period

(JST)

Packets

(M)

Avg

Rate

(Mbps)

Link

Utilization

(%)

Dispersion Kurtosis Skewness Prominence

SF06 Mar 6, 23 108.73 871.77 87.18 3.38 5.11 0.46 72736

SF07 Mar 7, 23 105.41 900.06 90.01 3.27 5.85 0.05 89979

SF08 Mar 8, 23 104.59 788.01 78.80 3.50 7.87 0.59 97163

SF09 Mar 9, 23 115.02 839.18 83.92 3.56 7.22 0.47 85781

SF10 Mar 10, 23 116.78 895.41 89.54 3.55 7.29 0.32 111914

SF11 Mar 11, 23 53.60 324.19 32.42 2.99 12.63 1.11 64091

SF12 Mar 12, 23 52.88 309.43 30.94 3.25 13.82 1.03 63752
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prominence (right) computed over different time aggregation

levels m (in ms) for trace SF09

Table III summarizes traffic characteristics of the seven

traces we studied, calculated using the same methods and 1 s

interval, as a comparison to Section II. Unsurprisingly, a much

larger number of flows implies lower dispersion and kurtosis

and higher prominence, compared to the single flow results in

Tables I and II. We also analyze skewness and prominence,

which are calculated based on packets per millisecond across

different time aggregation levels in Fig. 3 (right). We find

that both skewness and prominence values vary with time

scale. This finding underscores the importance of selecting

an appropriate time scale in routing path selection algorithms.

IV. PATH SELECTION APPROACHES

Motivated by our observations above, we compare two

simple approaches for balancing the load across multiple,

equal-cost (ECMP) routing paths.

First, we experiment with the most straightforward policy:

selecting the least loaded outgoing path for a new incoming

long-lived application, such as a streaming or conferencing

session. The simplest definition of least loaded uses a single

load metric. We use path load, computed every time interval

∆. Load can be replaced by another metric, such as end-

to-end path latency or packet loss. The algorithm can also

randomize its choice among paths with ªsimilarº loads. In our

experiments, we use the following values for the time interval

over which to compute load: ∆ = {0.05, 0.5, 1, 2, 5} seconds.

Second, we again experiment with a least loaded policy,

but we now use a slightly more complex load metric, based

on a combination of the mean and variation of path load.

Combining measures of mean and variation is a popular

strategy that is used in the TCP protocol for retransmission

timeout (RTO) computation [22]. Similar strategies are also

used for estimating burst sizes for CPU scheduling.

TCP computes its RTO as the sum of a smoothed round-

trip time (RTT) value and a factor (typically four) times a

smoothed value of the deviation of the latest RTT sample

from the smoothed RTT value [22]. Smoothed values are

computed using exponentially weighted moving averages. We

use a similar idea in Algorithm 1 to periodically update an

estimate of the load value, Load, that we use in our least

loaded policy. In our experiments, we set α = 1

8
, β = 1

4
,

K = 4, and vary ∆ as discussed above. Note that the load

value must be normalized if capacities are different.

Algorithm 1 Compute Load, given CurrBytes, the number of

bytes transmitted during the past interval ∆.

Initialization: SBW← CurrBytes/∆;

DevBW← SBW/2; PrevBytes← 0

1: DiffBytes← CurrBytes− PrevBytes
2: CurrBW← DiffBytes/∆
3: NewSBW← (1− α)× SBW + α× CurrBW
4: NewDevBW = (1− β)× DevBW + β × |SBW− CurrBW|
5: SBW← NewSBW
6: DevBW← NewDevBW
7: PrevBytes← CurrBytes
8: Load← SBW +K × DevBW

The inputs to the two algorithms, e.g., counts of bytes sent

per time period, are not difficult to obtain in practice. For

instance, in Juniper Session Smart Routing [23], significant

changes in path qualities can be conveyed to routers that make

session routing decisions.

V. EXPERIMENTAL SETUP

We conduct experiments using Mininet on a CloudLab [24]

server of type rs630, which has an Intel Xeon E5-2660

processor with x86 64 architecture consisting of 40 CPUs

with maximum speed of 2.6 GHz. The server runs 5.15.0-

67-generic kernel with Ubuntu 22.04 and Mininet v2.3.1b1.

A. Topology

We use the simplest possible multipath topology: a topology

with two parallel paths. Switch S1 acts as an ingress switch

that can reach S4 through either intermediate switch S2 or

intermediate switch S3. For unidirectional data traffic from
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Fig. 4: Simple two-path topology

switch S1 to S4, paths S1-S2-S4 and S1-S3-S4 represent two

equal-cost paths. Switch S1 executes the multipath routing

algorithm. The bandwidth of links between hosts and switches

is set to 100 Mbps with delay of 5 ms. The delay of inter-

switch links is 20 ms and we vary the bandwidth below.

B. Applications

We consider the two types of applications we studied in

Section II. An adaptive video streaming service involves

a server (H3) that transmits a 200-second video using four-

second video ªchunksº to a client (H4) over TCP. The qual-

ity of each chunk is determined based on the buffer-based

rate adaptation algorithm. We extend the DASH streaming

client [25] to compute the QoE as given in [26] (Section V-D).2

A video conferencing service leverages the WebRTC [27]

framework between hosts H3 and H4. Both users send a pre-

recorded video of a talking head containing audio and video

for a duration of 210 seconds. We extend the implementation

in [28] to save the streamed video on H3 and the received

video on H4 in order to compute QoE (Section V-D). Since

Mininet creates different network namespaces and isolates the

networks, STUN/TURN capabilities are restricted. Therefore,

an independent TURN server is also configured on H3 so that

media packets can be directly exchanged between H3 and H4.3

C. Background Traffic

From Sections II and III, we must experiment with different

background traffic patterns. Host H1 acts as a sender and

H2 acts as a receiver for UDP-based background traffic. We

use ITG [29] to generate on/off traffic. The ªonº period (ton)

represents the time during which traffic is sent with specified

inter-departure times. No traffic is sent during ªoffº periods

(toff ).

We compute the number of packets per second (pps) to

send during an ªonº period as pps = ⌊
tput× (ton + toff )

(psize× 8× ton)
⌋.

We use an average throughput, tput, of 2 Mbps and a packet

size, psize, of 1024 bytes in our experiments. Table IV lists

the values of ton and toff in seconds (and the corresponding

prominence values) for the sample background traffic patterns

we use in the next section.

D. Evaluation Metrics

We consider both the perspective of the customer, who

ultimately cares about application QoE, and the perspective

2Our changes to the python-based DASH player are available at https:
//github.com/UmakantKulkarni/dash-client.

3Our changes to the WebRTC framework are available at https://github.
com/UmakantKulkarni/WebRTC-App.

TABLE IV: Background traffic patterns

Streaming Conferencing
Pattern ton toff Prominence ton toff Prominence

1 2 0.5 512 3 4 1361

2 2 2 1165 2 4.4 1677

3 2 6 2012 0.8 4.8 2413

of the ISP. We repeat each experiment five times and show

the 95% confidence intervals for our results.

a) QoE Metrics: Streaming QoE: We use the QoE

metric described in [26] which considers the video quality of

a chunk, variation in chunk quality w.r.t. the previous chunk,

rebuffering time, and startup delay. QoE is computed for each

video chunk and normalized against the best possible QoE

value. We average the normalized QoE for all chunks to obtain

the QoE for a given session.

Conferencing QoE: We obtain sender and receiver videos

of the WebRTC session in webm format. Frame numbers are

extracted from both sender and receiver videos, and used for

synchronization. We feed the raw videos to the libvmaf module

of FFmpeg [30] to compare the sender and receiver videos,

frame by frame, and compute the VMAF [10], PSNR, and

SSIM [31] metrics, as was done in [32].

b) ISP Metrics: We examine link utilization, packet loss,

packet end-to-end latency and jitter, since they impact the

service-level agreements that the ISP can support, and the cost

to the ISP. We also note router CPU and memory utilization,

to ensure that path selection algorithms can be implemented

on today’s switches and routers.

VI. EXPERIMENTAL RESULTS

Our goals are to quantify the impact of background traffic

on the QoE of video streaming and conferencing applications,

and to gain a preliminary insight into the benefits of leveraging

this information for multipath routing.

A. Impact of Background Traffic on Application QoE

In our experiments, the video streaming application band-

width varies from 0.5 to 4.6 Mbps whereas the maximum

bandwidth for the conferencing service is 9.5 Mbps. We sys-

tematically increase the link bandwidth between the switches

S1-S2, S1-S3, S2-S4 and S3-S4, and observe application QoE.

We route two background traffic flows, f1 and f2, with

average bandwidths of 2 Mbps on links S1-S2 and S1-S3,

respectively. Flow f1 is an on/off flow as given in Table IV,

whereas flow f2 has constant packet inter-departure times.

The average bandwidth required to stream video at the

highest quality while accommodating the background flow

without any packet loss is 4.6 + 2 = 6.6 Mbps. Therefore,

link bandwidth on the x-axis in Fig. 5 includes cases when

the link is undersubscribed (< 6.6 Mbps) or oversubscribed

(> 6.6 Mbps). Application QoE decreases as burstiness in-

creases in Fig. 5. This behavior is observed even when the

capacity exceeds the sum of average throughput values of the

video streaming flow and background flow. For example, when
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TABLE V: Background traffic

vs. QoE (conferencing)

Pattern D K S QoE

1 1047 1606 0.31 0.89

2 1351 1430 0.82 0.85

3 1693 1153 1.59 0.69

D = Dispersion, K = Kurtosis,
S = Skewness

the bandwidth is 7, 7.5 or 8 Mbps, the QoE still degrades as

burstiness increases.

The reason for the reduction in QoE lies behind how ECMP

selects a path for each flow. ECMP hashes the 5-tuple of each

incoming flow and uses round robin across equal-cost egress

links. Therefore, background flows f1 and f2 use paths S1-

S2 and S1-S3, respectively. The video streaming flow then

uses S1-S2 which has the on/off background traffic. The TCP-

based video streaming flow reduces its congestion window size

during the ªonº periods, reducing the QoE.

We also observe a difference in QoE in case of real-

time video conferencing, as shown in Fig. 6. The real-time

traffic uses RTP/UDP with the Google Congestion Control

(GCC) algorithm [33], which adjusts the media sending rate

when congestion is detected. The on/off background UDP

flow causes the conferencing application to reduce its video

resolution from the default 1920× 1080.

B. Comparison of Path Selection Approaches

Fig. 7 and 8 depict the QoE of the streaming and confer-

encing applications with baseline ECMP, least-loaded based

on a simple average, and least-loaded with Algorithm 1. We

use background traffic pattern 3 and ∆ = 0.05 s in these

experiments. For undersubscribed cases, the use of deviation in

Algorithm 1 shows a clear benefit, especially for video stream-

ing applications which are more bursty in nature (Table II and

Fig. 1, right). Fig. 10 confirms that indeed more traffic can

egress S1 in this case, reducing the cost to the ISP, which can

now better utilize its links.

Fig. 9 examines the impact of the value of ∆ on the

two algorithms for the case when inter-switch link bandwidth

is 7 Mbps. As expected, using a simple average is highly

sensitive to the value of ∆ since it does not consider traffic

burstiness, which is observed in Internet traffic at multiple time

scales as discussed in Section III. In contrast, Algorithm 1

yields a high streaming QoE for different values of ∆.

With Algorithm 1, the streaming and conferencing applica-

tions experience lower data-rate variation, thus sending their

traffic at relatively high and stable bitrates. This reduces

packet end-to-end latency and jitter (Fig. 11) and increases

network utilization for undersubscribed cases (Fig. 10). This

is desirable from the ISP perspective.

VII. RELATED WORK

With the increasing deployment of Software-Defined Net-

works (SDNs), as well as Multi-Path TCP (MPTCP) and QUIC

that enable applications to exploit multiple concurrent paths,

there has been a resurgence of interest in traffic engineer-

ing and load balancing across multiple paths. For example,

Hedera [5] is a centralized load balancing algorithm for

data centers. CONGA [4] balances flowlets (bursts of packets

followed by a relatively long period of inactivity) in data

center networks based on collected congestion information.

Weighted-ECMP (W-ECMP) [34] uses weights assigned based

on active probing of links to determine the routing probability

for each path in P4 switches. WCMP [6] is another weighted

ECMP algorithm for tolerance to failures and changing topolo-

gies in data center networks.

Solutions such as CONGA [4] and W-ECMP [34] add

methods to actively collect congestion information from a data

center network. We only use passive measurements without

active probing, and we do not restrict our work to data center

networks. Additionally, most existing solutions [5], [34], [6]

require SDN support. In contrast, our approach can be used

with or without SDN, through integrating it with any switch or

router, and any telemetry or measurement service. Our work

also considers video streaming and conferencing QoE and

traffic burstiness, on which prior work had not focused.



VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we analyze traffic burstiness of popular

applications and backbone traffic at different time scales.

Motivated by this analysis, we propose a routing path selection

approach that uses both the average and variation of path load.

We compare this approach to ECMP and simple average-

based approaches in a variety of scenarios, and find that it

shows promise in increasing application QoE and ISP resource

utilization. We believe that this work serves as a first but

important step in understanding the impact of background

traffic characteristics and routing path selection on application

QoE and resource usage.

We are currently experimenting with background traffic with

different distributions of inter-packet times. Our preliminary

results (Table V) show that certain characteristics of the

background traffic time series can be proportional or inversely

proportional to video conferencing QoE. As future work, we

plan to explore machine learning models for predicting the

path yielding the best QoE for a given application type.

Additionally, we plan to conduct extensive experiments with

real ISP topologies and settings.
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