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A B S T R A C T   

A hydrological model incurs three types of uncertainties: measurement, structural and parametric uncertainty. 
For instance, in rainfall-runoff models, measurement uncertainty exists due to errors in measurements of rainfall 
and streamflow data. Structural uncertainty exists due to errors in mathematical representation of hydrological 
processes. Parametric uncertainty is a consequence of our inability to measure effective model parameters, 
limited data available to calibrate model parameters, and measurement and structural uncertainties. The exis
tence of these predominantly epistemic uncertainties makes the model inference difficult. Limits-of-acceptability 
(LOA) framework has been proposed in the literature for model inference under a rejectionist framework. LOAs 
can be useful in model inference if they reflect the effect of errors in rainfall and streamflow measurements. In 
this study, the usefulness of quantile random forest (QRF) algorithm has been explored for constructing LOAs. 
LOAs obtained by QRF were compared to the uncertainty bounds obtained by rating-curve analysis and the LOAs 
obtained by runoff ratio method. Rating curve analysis yields uncertainty in streamflow measurements only and 
the runoff ratio method is expected to reflect uncertainty in rainfall and streamflow volume measurements. LOAs 
obtained by using QRF were found to envelop the uncertainty bounds due to streamflow measurement errors. 
LOAs obtained by QRF and runoff ratio methods were similar. Further, QRF LOAs were scrutinized in terms of 
their ability to reflect the effect of rainfall uncertainty, both qualitatively and quantitatively. Results indicate that 
QRF LOAs reflect the effect of rainfall uncertainty: increase in standard deviation with increase in mean 
streamflow values and decrease in coefficient of variation with increase in mean streamflow values. A mathe
matical analysis of the LOAs obtained by the QRF method is presented to provide a theoretical foundation.   

1. Introduction 

1.1. Background 

In a generic hydrological model, 

y = g(x, θ) + δ + ϵ, (1)  

δ and ε denote the effect of structural and measurement errors (Beven, 
2005) in the estimation of time series of observed hydrologic variables 
(e.g., streamflow) y by the approximate model g. Here x denotes model 
inputs such as rainfall and temperature, and θ denotes the set of model 
parameters. Measurement errors refer to errors in measurements of 
rainfall and streamflow, while structural errors refer to errors in the 
mathematical representation of hydrologic processes. Given a parameter 
set θs, the structural and measurement errors are estimated based on the 

residual time series y − g(x, θs). 
If an appropriate probability distribution over δ and ε may be 

assumed, the parameters of the distributions along with hydrologic 
model parameters can be obtained by using Bayes theorem (Kennedy 
and O’Hagan, 2001). However, the use of formal probability distribu
tions has its own challenges (Beven and Smith, 2015). Often, a proba
bility distribution over the sum of δ and ε is assumed, such as Gaussian or 
generalized Gaussian (Schoups and Vrugt, 2010; Ammann et al., 2019; 
Smith et al., 2015). But the residual time series can yield only an 
aggregate estimate of the effect of measurement and structural errors, 
that is, the quantities δ and ε are individually unidentifiable (Renard 
et al., 2010, 2011; Brynjarsdóttir and OʼHagan, 2014). Separate identi
fication of structural and measurement errors is required to determine 
what part of modeling exercise needs to be addressed to reduce total 
uncertainty, the data or the model (e.g., Reichert and Mieleitner, 2009) 
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and to facilitate rejection of bad models. 
To identify structural uncertainty in a model, strong prior informa

tion about measurement uncertainties is required (Renard et al., 2010; 
McMillan et al., 2012; Brynjarsdóttir and OʼHagan, 2014; McMillan 
et al., 2018), and this information should be obtained before calibration 
and independent of the hydrologic model being used. Given information 
about measurement uncertainty and the residual time series corre
sponding to a model (or model parameters), a Bayesian characterization 
of structural uncertainty is possible in the sense that one can obtain a 
probabilistic estimate of the effect of structural uncertainty conditioned 
upon each possible realization of rainfall (and other inputs) and 
streamflow time series. Priors over measurement uncertainty are typi
cally constructed by making aleatoric assumptions about the nature of 
these errors. For example, one can obtain information about random 
measurement uncertainty in streamflow by using rating curve analysis 
(Kiang et al., 2018; Petersen-Øverleir et al., 2009; Reitan and Peter
sen-Øverleir, 2009; Le Coz et al., 2014) or other probabilistic methods 
(de Oliveira and Vrugt, 2022). But epistemic uncertainties in stream
flow, such as those introduced by extrapolation of rating curve to gauge 
heights well above the observations, may not be knowable. Reliable 
information about rainfall measurement uncertainty cannot be obtained 
in most situations. For instance, one may estimate the uncertainty in 
areal average rainfall by assuming that this uncertainty is dominated by 
spatial variability of rainfall and neglecting temporal errors and biases 
(Moulin et al., 2009; Renard et al., 2011). Spatial variability can be 
modeled using a statistical model such as Kriging, provided that enough 
data to estimate the parameters of the variogram are available. This is 
further complicated as the parameters of the variogram will change from 
event to event in unknown ways. Precipitation data also incur timing 
errors which can be significant if the precipitation gauges are sparse or 
are located outside the watershed. 

If the observed event seem to violate the principle of mass balance (e. 
g., Beven and Westerberg, 2011), one may expect errors in the mea
surements of either rainfall data, or streamflow data, or both. Such 
time-periods in rainfall-runoff time series are referred to as dis
informative (Beven and Westerberg, 2011) which should be discarded 
before model fitting. A disinformative event can introduce bias in the 
modeling effort because it violates mass balance, and also because it 
affects the antecedent conditions for subsequent events (Beven and 
Smith, 2015). Disinformative periods in a rainfall-runoff dataset may be 
identified as the ones with exceptionally high and low runoff ratios 
(Beven and Westerberg, 2011) where runoff ratio of an event is defined 
as the ratio of total event streamflow to total event rainfall. What is an 
exceptionally high or low value of runoff ratio may be determined using 
the knowledge about the rainfall-runoff response of the watershed. 
Several other attempts have been made to characterize the uncertainty 
in hydrologic data and hydrologic modeling (e.g., Kuczera and Parent, 
1998; Kavetski et al., 2006a, 2006b; Gabellani et al., 2007; Gong et al., 
2013; McMillan et al., 2018), but it still remains an unsolved problem 
because of dominantly epistemic nature of these errors. Recently, Gupta 
and Govindaraju (2022) noted that several methods have been proposed 
for uncertainty analysis in hydrology but there is no consensus on which 
method should be used. 

Recently, the runoff ratio method has been proposed to construct 
limits-of-acceptability (LOA) bounds on streamflow that could then be 
used to identify behavioral models (Beven, 2019). A model (or a model 
parameter set) is considered behavioral if the streamflow simulated by it 
falls within the LOA at some predefined timesteps (Beven et al., 2022) 
depending on the purpose of the modeling exercise. It is clear that LOA 
should be such as to encompass the uncertainty due to measurement 
errors in rainfall and streamflow. Thus, a model that properly accounts 
for streamflow dynamics within the margin of measurement errors 
would not be rejected and will be considered behavioral. 

LOAs have also been defined using flow duration curves (FDCs; 
Westerberg et al., 2011). In this method, measurement uncertainty over 
streamflow time series is obtained using rating-curve analysis. 

Measurement uncertainty in streamflow is converted to an uncertainty 
bound over FDC. A model (or model parameter set) is considered 
behavioral if the FDC simulated by it falls into the FDC uncertainty 
bound. However, this method only compares the probability distribu
tion of observed and simulated streamflows and removes the temporal 
information from the streamflow time series. Also, it does not account 
for rainfall measurement errors. In fact, most of the methods to derive 
LOAs are based on streamflow uncertainty only and neglect rainfall 
uncertainty (e.g., Krueger et al., 2010; Coxon et al., 2014). To the best of 
author’s knowledge, the runoff ratio method is the only method that 
constructs LOAs while acknowledging uncertainty in both streamflow 
and rainfall measurements. The runoff ratio method also has some 
limitations as discussed below. 

Fundamentally, the LOA method has been proposed in a rejectionist 
framework (Beven and Lane, 2019), which makes it different from 
Bayesian methods wherein no models are explicitly rejected. Frequentist 
statistics also provides a model rejection framework such as the likeli
hood ratio test (Neyman and Pearson, 1933), Fisherian hypothesis 
testing (Fisher, 1956) and, more recently, evidential testing (Royall, 
2017; Lele, 2004). But these methods are based on aleatoric assumptions 
(as are Bayesian methods) about various uncertainties and, therefore, 
are difficult to justify in hydrologic applications. There have been a 
relatively few attempts in hydrology to use rigorous frequentist methods 
for model inference (but see Pande, 2013a, 2013b). The LOA framework 
provides an alternative to the formal statistical frameworks, as it com
bines the elements of Bayesian theory (parameter update as the models 
are tested against more data) and frequentist statistics (model rejection). 
LOA can also be applied in a purely Bayesian framework by defining an 
appropriate LOA-based likelihood function (e.g., Krueger et al., 2010). 
The aim of this study was to explore the potential of using machine 
learning algorithms called decision tree (DT) and, in particular, quantile 
random forest (QRF) in constructing LOAs in gauged and ungauged 
locations. 

1.2. Runoff ratio method, and decision trees 

In runoff ratio method, the rainfall and streamflow time series are 
divided into separate rainfall-runoff events. Then, the rainfall-runoff 
events with similar characteristics are pooled together. The main idea 
is that the two similar events should have similar runoff ratios. Of 
course, no two events are exactly similar, and there would be some 
differences in runoff ratios. But the large differences can be (at least 
partly) attributed to either rainfall and/or streamflow measurement 
errors. The differences between runoff-ratio values of two similar events 
may also result from imperfections in the methodology to compute 
runoff ratios. Multiplying a zero-loss streamflow event with runoff ratios 
of all the similar events would result in an ensemble of corresponding 
streamflow hydrographs. Zero-loss streamflow can be obtained by 
dividing the observed hydrograph by the corresponding runoff ratio. 
Beven (2019) suggested that the upper and lower bounds of these 
hydrographs be used as LOA over the rainfall-runoff event in question. 
The different hydrographs in the ensemble can be assigned a weight 
based on the similarity of the corresponding event with the event for 
which LOA is being constructed. This method is described in more detail 
below. 

The advantage of the runoff ratio method is that it allows to define a 
distribution of streamflow hydrographs for a given rainfall event and 
antecedent conditions based on available data. A limitation of this 
method is that it is applicable to flashy watersheds only (Beven, 2019). 
Also, this method cannot account for potential timing errors in precip
itation – it only accounts for errors in precipitation and streamflow 
volume and further can be applied only at an event timescale. Further, 
this method cannot be used to construct LOAs at ungauged locations 
where streamflow data are unavailable for computing runoff ratios. 

These limitations can be addressed by using a Machine Learning 
(ML) method, while retaining the advantage of the runoff ratio method. 
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A direct mapping between relevant watershed attributes, meteorological 
data, and streamflow can be created by using an ML algorithm (e.g., 
Govindaraju, 2000; Zhang and Govindaraju, 2000, 2003; Iorgulescu and 
Beven, 2004; Shortridge et al., 2016; Kratzert et al., 2019). ML can be 
particularly useful in constructing LOAs for baseflow dominated wa
tersheds where runoff ratio method is not applicable and to construct 
LOAs at ungauged locations. Further, the ML approach allows defining 
LOAs at the scale of available data. As discussed below, ML algorithms 
called decision trees (DTs) are particularly well-suited in this regard. 

Another advantage of the ML approach is that data from several 
watersheds may be used to train the model and define LOAs. Data from 
different watersheds, however, may introduce disinformation because of 
watershed-specific epistemic uncertainties (Beven, 2020). But the hy
drologically relevant information available from other watersheds may 
still be useful, especially when LOAs are to be constructed for an 
ungauged watershed. An ML algorithm such as DT will be able to 
identify hydrologically similar watersheds based on available watershed 
characteristics, albeit that watersheds characteristics are typically rep
resented by spatially averaged indices neglecting their spatial variation. 
Thus, DTs are natural candidates to consider for constructing LOAs as 
discussed below. 

The uncertainties in hydrological data are predominantly epistemic, 
which may change from event to event in unknown ways, and the true 
statistical behavior of uncertainties will not be generally represented by 
the available data. Therefore, DT would either overpredict or under
predict the effect of measurement errors. While overprediction is 
acceptable, underprediction may be problematic in many applications. 
Therefore, one needs to allow for outliers while validating the models 
using the LOA method (as in Beven et al., 2022). Further, the DT model 
would compensate for systematic biases. These systematic errors cannot 
be detected by a statistical approach. A bias term can be introduced in 
statistical models, but these models would not be able to differentiate 
between the bias in the data and the bias in the model simulations. 

The classical method of finding uncertainty in the measurement of a 
phenomenon is to repeat the measurement process several times under 

identical conditions. The repeated sampling method, however, is 
impossible for the measurements of environmental phenomena such as 
rainfall and streamflow (McMillan et al., 2012). But an approximate 
repeated sampling method may be implemented for environmental 
measurements. The main idea is to estimate the effect of measurement 
uncertainty using observations of rainfall-streamflow events under 
similar conditions across several different events and/or several different 
watersheds. The runoff ratio and DT methods can be thought of as 
approximate repeated sampling techniques. 

Once the LOAs are obtained, either formal or informal Bayesian (Liu 
et al., 2009; Krueger et al., 2010; Beven and Lane, 2022) methodologies 
may be used for subsequent uncertainty analysis. In informal methods, 
one may define behavioral models (and model parameters) as ones that 
yield streamflow time series within the LOA. Thus, all the models with 
an inferior structure will eventually be rejected as more and more data 
are used (at least that is the expectation). One can also use the apparatus 
of formal Bayesian theory for model (or parameter) inference using the 
LOAs in Approximate Bayesian Computation framework (Nott et al., 
2012; Sadegh and Vrugt, 2013; Vrugt and Sadegh, 2013; Vrugt and 
Beven, 2018). 

1.3. Objectives 

The objective of this study is to develop a method for constructing 
LOAs that can account for both precipitation and streamflow measure
ment errors and can be used for ungauged catchments. In this study, we 
ask if a variant of DT called quantile random forest (QRF) may be used to 
construct meaningful LOAs. A second question is if the LOAs obtained by 
QRF algorithm are comparable to those obtained by the runoff ratio 
method of Beven (2019). 

The novelty of this study lies in using QRF model to construct LOAs 
that account for measurement uncertainty based on available data. To 
address the objective of this study, uncertainty bounds obtained by QRF 
model are scrutinized to check if they can be used as LOAs. The un
certainties in real world data are, however, unknown; therefore, it is 

Fig. 1. Ohio river basin (ORB) and USGS streamflow stations (green dots). The watershed with red background is St. Joseph River Watershed (SJRW).  
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impossible to check if the uncertainty bounds obtained by any method 
represent true uncertainties. Some characteristics of the uncertainties 
can be obtained by using statistical methods based on aleatoric as
sumptions; we test whether the QRF estimated LoAs reflect the effect of 
these uncertainties or not. 

Further, this paper presents a mathematical analysis of the proposed 
hypothesis. The goal of the mathematical analysis is (1) to show how 
decision trees such as QRF can be used to encompass measurement 
uncertainties due to errors in rainfall and streamflow measurements, 
and (2) to clarify the logic and assumptions behind the proposed 
method. 

In Section 2, the theory behind DTs and QRF algorithm are discussed 
along with the methodology to empirically test the proposed method. 
Section 3 discusses the results of the study. Section 4 presents a brief 
mathematical analysis of the QRF method in terms of defining LOAs. 
Section 5 concludes the paper. 

2. Theory and methodology 

2.1. Study area, data, and the models developed 

In this study, data from Ohio river basin (ORB) were used to calibrate 
and validate the QRF model. This basin contains 431 USGS streamflow 
stations (Fig. 1). The streamflow data were downloaded from USGS 
website for all the 431 stations. Data for these watersheds are available 
from water year 2011 to 2020. Total drainage area of each USGS station 
was delineated on the 30m × 30m resolution digital elevation model 

(Archuleta et al., 2017; U.S. Geological Survey, The National Map, 2017) 
by using the ArcHydro toolbox. For each of the drainage areas, predictor 
variables (listed in Table 1) were computed or collected. Climate data 
were collected over the study area from Historical Climate Network 
(HCN) stations available at National Centers for Environmental Infor
mation (NCEI) website. 

To test the capability of the QRF model in capturing rainfall and 
streamflow measurement uncertainties, data from St. Joseph River 
Watershed (SJRW) were used as test cases. SJRW is located just above 
the ORB in Northwest as indicated in Fig. 1 (see also Figure B1 in Ap
pendix B). The drainage areas of the SJRW watersheds are listed in 
Table 2. Specifically, QRF models were used to generate LOAs at four 
USGS streamflow stations located in SJRW. 

Three kinds of QRF models were developed:  

(1) Gauged-single scenario: In this case, four individual QRF models 
were developed for each of the four SJRW watersheds using data 
from the watershed where the LOAs were to be constructed. For 
example, to construct LOAs at station 04180500, the data from 
only this station were used to train the QRF model. These models 
are referred to as “gauged-single models”.  

(2) Gauged scenario: In this case, a QRF model was trained using data 
from both the ORB and the four SJRW watersheds. The model 
thus trained is referred to as “gauged model”. Three kinds of 
models were developed in this scenario: (2a) QRF was trained 
using data from all the training watersheds (referred to ‘gauged 
all’), (2b) QRF was trained using data from the 4 most similar 
watersheds to the watershed where LOAs are to be constructed 
(referred to ‘gauged 4′), and (2c) QRF was trained using the data 
from the 20 most similar watersheds (referred to ‘gauged 20′).  

(3) Ungauged scenario: In this case, a QRF model was trained using 
data only from the ORB watersheds without using the SJRW data. 
The model thus trained will be referred to as “ungauged model”. 

Out of the 431 ORB stations, 80% of the stations were fixed for the 
calibration of QRF and the remaining stations were fixed for validation. 
Similar watersheds in the ‘gauged scenario’ were selected based on the 
watershed static attributes and the mean climate (mean precipitation 
and temperatures). The first two scenarios allow us to test the usefulness 
of QRF approach in constructing LOAs at a gauged location and the third 
scenario allows us to test the usefulness of the approach at ungauged 
locations. The comparison of the first two and the third scenario allows 
to test the usefulness of data across multiple watersheds in constructing 
LOAs. 

2.2. Machine learning models to map predictor variables to streamflow 

The main idea behind ML algorithms is to create a mapping between 
predictor and response variables (Friedman et al., 2001, chap. 2). For 
most watershed scale rainfall-runoff models, the set of predictor vari
ables constitutes meteorological data, soil data, land-use data, etc. 
(Table 1), and the response variable typically is streamflow time series. 
Available data are divided into calibration and validation sets. The 
samples contained in calibration set are used to create a mapping such 
that a loss function, which is a function of the mapping, is minimized, 
and the samples contained in validation set are used to test the gener
alizability of the created mapping. 

In this study, QRF was used to create a mapping between predictor 
and response variables (Breiman et al., 1984; Breiman, 2001). The basic 
building block of QRF is another ML algorithm called regression trees 
(Friedman et al., 2001, chap. 9; Iorgulescu and Beven, 2004). Regression 
trees create a non-linear mapping between predictor and response var
iables. In this method, the space of predictor variables is divided into S 
(contiguous) subregions, and in each subregion, the response variable is 
approximated by a unique function. 

Let the set containing predictor and response variables be denoted by 

Table 1 
Predictor variables in machine learning models to estimate streamflow time 
series at a station in a river-network. Exploratory statistics in the third column 
represent (minimum, maximum, median, and mean).  

Predictor variable Description Exploratory 
Statistics 

Drainage area 
(Km2) 

Cumulative drainage area of 
streamflow station 

(7.74, 250260, 624, 
4187) 

Impervious Area* 
(%) 

Percentage of impervious area (1.92, 7.74, 6.36, 
6.44) 

Sand 
content**(%) 

Percentage of sand content (6.34, 49.61, 20.97, 
19.78) 

Clay content (%) Percentage of clay content (15.88, 45.12, 
26.03, 27.58) 

Conductivity 
(μms−1) 

Average hydraulic conductivity of the 
drainage area 

(0.01, 77.22, 0.19, 
3.51) 

Permeability 
(cmhr−1) 

Average permeability of the drainage 
area 

(1.02, 15.09, 3.87, 
4.82) 

Rainfall*** Total daily rainfall during current and 
previous 1, 7, and 30 days 

– 

Snowfall Total Daily snowfall during current and 
previous 1 and 30 days 

– 

Snow depth Daily snow depth during current and 
previous 1 and 30 days 

– 

Temperature Average daily maximum and minimum 
temperature at current day 

–  

* Land-use data were collected from NLCD database. 
** Soil data were collected from STATSGO database. 
*** Climate data were collected from Global Historical Climatology Network 

(GHCN) database. 

Table 2 
List of USGS stations used for testing the proposed method. 
These stations are located St. Joseph River Watershed 
(SJRW).  

USGS station Drainage Area (km2) 

04180500 2745.40 
04180000 699.30 
04179520 233.62 
04178000 1579.90  
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D . Each element of D represents a calibration/training sample. Let the 
ith calibration sample be denoted by (xi,yi), then D = {(x1, y1), (x2, y2),

…, (xN, yN)} where N is the total number of calibration samples. The 
vector xi is a p-vector where p denotes the number of predictor variables, 
that is, xi = (xi1,xi2,…, xip), and yi is a scalar that denotes the response 
variable corresponding to the ith sample. In this study, the ith response 
variable is streamflow at the outlet of a watershed at a particular time- 
step. The ith predictor vector includes static watershed attributes and 
meteorological data at multiple lags (Table 1). The regression tree is 
created using an iterative procedure. In the first iteration, the set D is 
divided into two (or more) subsets based on a randomly selected jth 

predictor variable. Let the two subsets be denoted by D 11 and D 12, then 

D 11 =
{

(xi, yi)
⃒
⃒xij < xj,thresh

}
, (2)  

D 12= D \D 11,

where xj,thresh denotes a randomly chosen threshold for jth predictor 
variable. In the second iteration, the subsets D 11 and D 12 are further 
divided into smaller subsets, and so on for subsequent iterations. At the 
end of the iterative procedure, S smaller subsets of D are obtained, and 
each subset occupies a distinct region of the predictor space. Thus, the 
regression tree algorithm divides the predictor space into S contiguous 
subregions. This method is referred to as regression trees because the 
process of division of training samples into S subsets can be visualized as 
creating a tree (Fig. 2, see also Friedman et al., 2001, pp. 268). The tree 
grows deeper with each iteration. Therefore, the number of iterations is 
also referred to as tree depth. Typically, a maximum value of tree depth, 
d, is assigned to avoid overfitting. The subsets obtained in the last iter
ation are also referred to as leaf nodes. It is clear that there is a rela
tionship between the number of leaf nodes S and maximum tree depth d: 
an increase in d implies an increase in S. Note that once the tree is 
created, each subregion can be identified by a set of rules on predictor 
variables. 

After the tree is created, response of a sample with predictor vector x 
is obtained as follows. The first step is to identify the subregion of the 
predictor space to which the vector x belongs. Suppose that xbelongs to 
the ith subregion corresponding to ith training subset denoted by Si. Then 
the response variable corresponding to x is estimated as the average 
response of calibration samples contained in Si 

ŷ(x) =
1
Li

∑Li

j=1
y
(
xj

)
, (3)  

where Li denotes the number of samples in Si. Regression trees are 

developed so that the sum of square errors between observed and esti
mated responses is minimized (with some regularization to avoid over- 
fitting). The averaging of data in the leaf node, however, neglects the 
variability in the data. Therefore, not just the average but the entire 
distribution y(xj) for xj ∈ Si were used to construct LOAs as explained 
below. 

The method of regression trees is particularly suitable for the pur
pose of creating LOAs because it mimics the function of an approximate 
repeated sampler by grouping similar calibration samples (similarity in 
predictor space) together based on several watershed attributes, thus 
enabling the accounting of measurement uncertainty due to errors in 
response and predictor variables. Regression trees have to be regularized 
to avoid overfitting; therefore, B regression trees are developed instead 
of a single one. Each of the B regression trees is created by randomly 
drawing K samples by bootstrapping from the calibration set D . This, 
yields an ensemble Y(x) = {ŷ1(x), ŷ2(x), …, ŷB(x)} of streamflow esti
mates corresponding to the predictor variable x where the bthestimate 
yb(x), obtained by Eq. (3), corresponds to the bth tree. The average of 
values in Y(x) is taken as the final estimate. This method is known as 
random forest (RF). In this study, the RF algorithm was used to create a 
mapping between predictor variables (listed in Table 1) and streamflow, 
and the streamflow in each subregion of the predictor space was esti
mated as the average streamflow of calibration samples in that subre
gion (Eq. (3)). But as mentioned above, taking averages of data in the 
leaf node neglects the variability in the leaf node which might contain 
important information about uncertainties. Therefore, quantile random 
forest (QRF) technique was used to construct LOAs, where quantiles 
instead of averages are computed. In this technique, the ensemble YQRF 
is constructed by using the entire distribution of data in leaf nodes. If a 
given predictor, say x, falls into the ith leaf node of the bth tree, denoted 
by Sb

i , then the distribution of response variable in Sb
i can be represented 

as: 

Yb(x) =
{

yj|yj ∈ Sb
i ,

}
. (4) 

Thus, we will have a distribution Yb for each tree. Now, the data from 
each Ybs can be combined to form an ensemble YQRF(x) 

YQRF(x) =
{

yj|yj ∈ Yb, b = 1, 2, …B
}

. (5) 

Note that the yj values contained in YQRF are observed values not the 
estimates. QRF estimates different quantiles of the response for a given x 
by treating YQRF as the distribution of response. In this study, 2.5th and 
97.5th percentiles obtained by QRF were used as lower and upper LOAs. 
We found that these percentiles were typically adequate for constructing 

Fig. 2. Illustration of regression tree. In this hypothetical example, only three iterations were carried out to divide the training set into smaller subsets.  
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LOAs in the sense that most of the observations were enveloped by the 
LOAs but a few flow values could not be enveloped. Therefore, in 
practical applications, more extreme percentiles might be appropriate 
for creating LOAs. 

If the premise ‘the ensemble of estimated streamflow represents only 
measurement uncertainty’ were true, then in the absence of measure
ment errors the different streamflow estimates in the ensemble would be 
(approximately) identical. In practice, however, even in the absence of 
measurement errors, the streamflow estimates in the ensemble would be 
different because of several reasons: 

(1) Imperfections in creating the regression trees: These imperfec
tions include selection of appropriate values of B (number of 
regression trees) and S (number of leaf nodes). A large value of S 
(or large value of maximum tree depth d) may result in an over- 
estimation of measurement errors and conversely for a small 
value of S (or small value of d). In this study, optimal values of B 
and d along with minimum number of samples in a leaf node were 
estimated by computing the out-of-bag (OOB) error. The OOB 
error is the prediction error of calibrated RF from the left-out 
training set. An early stopping method searches for the optimal 
values of these parameters with the minimal OOB error. 

(2) Small calibration set which is inadequate to represent the popu
lation of measurement errors: Calibration sets should be large 
enough such that the variability in measurement errors (in rain
fall and streamflow) is captured. In this study, data from a total of 
431 ORB stations plus 4 SJRW stations were used, out of which 
data from a total of 344 stations were used for calibration.  

(3) The set of predictor variables used to train the ML algorithm is 
incomplete: If a relevant predictor variable is missed in the set of 
predictor variables, the uncertainty bound yielded by QRF would 
also contain structural errors. The predictor variables used in this 
study are listed in Table 1. Though these predictors variable are 
incomplete; they are still good enough to estimate the streamflow 
time series accurately in many watersheds, as evident by high 
NSE for some of the test stations shown in the results section. 

Even after taking all the precautions, the LOAs created by QRF 
method would still contain structural errors. QRF would be able to 
construct better LOAs as the sample size increases. When the LOAs are to 
be constructed at a gauged location, the longer length of data at the 
location will be more important than the data from other watersheds. 
But data from other watersheds would be the only option when LOAs are 
to be constructed at an ungauged location. 

The LOAs obtained by QRF were compared against the bounds ob
tained over streamflow measurements uncertainty which in turn were 
obtained by rating curve analysis. If the LOAs obtained by QRF indeed 
reflect the effects of measurement uncertainties in rainfall and stream
flows, these should envelop the uncertainty bound obtained by rating 

curve analysis. Also, we compared the bounds obtained by runoff ratio 
method to the bounds obtained by QRF method. Analysis of rating curve 
and runoff ratio results was carried out at the four USGS streamflow 
gauging stations within SJRW as indicated in Table 2. SJRW is located 
immediately Northwest of ORB as indicated in Fig. 1. 

Moreover, the QRF LOA should also reflect the effects of measure
ment uncertainty in rainfall. In this study, the measurement uncertainty 
in areal average rainfall was obtained using an empirical approach. One 
challenge is that the rainfall uncertainty bounds cannot be directly 
compared to the LOAs since rainfall is processed through the watersheds 
in a highly non-linear fashion before it reaches the watershed outlet. 
There is no exact way of translating measurement uncertainty in rainfall 
to streamflow space. Therefore, in this study, the various realizations of 
rainfall were processed through the SCS curve-number (CN) formula for 
different values of CN to get an estimate of excess rainfall. Subsequently, 
coefficient of variation of streamflow (CVQ) were compared to the co
efficient of variation of excess rainfall time series (CVR). 

2.3. Rating curve analysis to quantify uncertainties in measured 
streamflow 

The streamflow at a river cross-section is estimated using the 
observed relationship between measured gage heights at the cross- 
section and corresponding measured discharges; this relationship is 
referred to as rating curve (Herschy, 1993). Commonly, a rating curve is 
modeled as multiple power law segments (Le Coz et al., 2014): 

log(Qr(h)) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, h ≤ h0,1,

loga1 + b1log
(
h − h0,1

)
, h0,1 ≤ h ≤ hs,1,

loga2 + b2log
(
h − h0,2

)
, hs,1 ≤ h ≤ hs,2,

. .

. .

logam + bmlog
(
h − h0,m

)
, hs, m−1 ≤ h.

(6) 

In Eq. (6), Qr is the estimated streamflow, h is measured gage height, 
h0,1 is the cease-to-flow parameter of lowest power-law segment which 
corresponds to height of riverbed with respect to datum, hs,k is the upper 
bound of kthpower-law segment on h axis, h0,k is the cease-to-flow 
parameter of kthsegment, ak and bk are the multiplier and exponent pa
rameters of the kthsegment, and m is the number of rating curve seg
ments. Typically, several gage heights are measured during a day which 
are then converted to streamflow using the rating curve. Eq. (6) corre
sponds to Manning equation (Sturm, 2001) for flow in open channels 
(with the assumption that hydraulic radius is approximately equal to 
depth; Le Coz et al., 2014) and is a frequently used relationship in hy
draulic modeling. Errors in gage height measurements may be assumed 
negligible (Reitan and Petersen-Øverleir, 2009). Thus, uncertainties in 
estimated streamflow are mainly due to errors in direct measurements of 
streamflow that are used to construct the rating curve. In this study, the 
following model was used to quantify the uncertainties in estimated 
streamflow: 

Q(h) = Qr(h) + ϵr, (7)  

where Qr(h) is determined by Eq. (6), εr is the random measurement 
error in observed streamflow and Q(h) is the observed streamflow. 
Further, we assumed the εr’s at different time-steps to be distributed 
independently as skewed exponential power distribution (Fernández 
and Steel, 1998). Also, Q(h) was truncated at zero which makes the 
probability density of Q equal to 

pQ(Q) =

2
γ+γ−1

{
fϵr

(
ϵr
γ

)
I[0,∞)(ϵr) + fϵr (γϵr)I(−∞,0)(ϵr)

}

1 − Φ(0|Qr, ϕ, β, γ)
I[0,∞)(Q), (8)  

where γ ∈ (0, ∞) is the skew parameter, I denotes the indicator function, 
Φ(0|Qr,ϕ, β, γ) is the probability that the value of untruncated Q is less 
than zero, and fϵr is the power exponential distribution with scale 
parameter ϕ and shape parameter β ∈ ( − 1, 1], 

Table 3 
List of priors over rating curve parameters.  

Parameter Prior 

m U {1,2,3} – discrete uniform 
logak U (0, 8)

bk U (0.5, 3.5)

h0,1 U ( − 5, hmin)

hs,k U (hs,k−1, hmax)

h0,k U ( − 5, hs,k−1)

hs,1 U (h0,1, hmax)

ϕ I G (2,0.1)

β U ( − 1, 1)

γ G (1 /0.57, 0.57)

U = Uniform; G = Gamma; I G = Inverse Gamma 

Gamma distribution: f(x) =
1

Γ(α)βαxαe
−
x
β   
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fϵr (ϵr) = Γ−1
(

1 +
2

1 + β

)

2
−

(

1+ 2
1+β

)

ϕ−1exp
(

−
1
2

⃒
⃒
⃒
⃒
ϵr

ϕ

⃒
⃒
⃒
⃒

2
1+β

)

. (9) 

The priors listed in Table 3 were used as weakly informative priors 
over parameters of the models Qr and εr, following Reitan and Peter
sen-Øverleir (2009). Strictly, uniform priors over the parameters of Qr 
are not non-informative (Gupta et al., 2022). This difference, however, 
would have minimal effect on our analysis as we are concerned only 
with the width of uncertainty bounds over streamflow time series, not 
the probabilities assigned to different realizations of streamflow time 
series. Further, we have not imposed any upper limit on the distribution 
of streamflow. Very low (practically zero) probability will be assigned 
beyond a certain magnitude of Q (irrespective of the prior distribution 
used) – the results obtained for the four SJRW stations confirm that 
absence of upper limit does not have any effect on the obtained uncer
tainty bounds. Validity of the error model of Eq. (8) was assessed 
a-posteriori via QQ plots. 

The aleatoric assumption made in the analysis may not be valid 
during the peak events. It has been shown using hydraulic modeling that 
uncertainty during peak events can be very high (Di Baldassarre and 
Montanari, 2009). These uncertainties are epistemic in nature rather 
than aleatoric, and, therefore, a formal statistical treatment of these 
uncertainties is difficult. To test how well the QRF LOAs envelop the 
streamflow uncertainty due to these epistemic sources, we computed the 
fraction of peaks enveloped by the QRF LOAs, if the true peaks were 
some multiple f of the observed peaks, with f varying from 1.1 to 2. We 
refer to this analysis as the multiplier analysis in this study. Only the 
peaks with flow values greater than 50-percentile were considered for 
this analysis. 

The posterior distribution over parameters was computed using 
Delayed Rejection Adaptive Metropolis (DRAM) algorithm (Haario 
et al., 2006) in an approximate Bayes setting (Nott et al., 2012). The 
approximate Bayes computations facilitated faster convergence to a 
posterior distribution. This method of rating curve analysis is same as 
that of Reitan and Petersen-Øverleir (2009) except that they used a 
multiplicative error model instead of an additive error model. The 
multiplicative error model was considered unsuitable in this case 
because of the large range of streamflow values as opposed to that in 
Reitan and Petersen-Øverleir (2009) study: a multiplicative error model 
would result in unrealistically high uncertainties at larger values of 
observed streamflow. Additive error structure used in this study was 
found to be appropriate (by the way of QQ plot test) in the examples 
considered in this study. Convergence to posterior distribution was 
confirmed using R-diagnostic statistic (Rd; Gelman and Rubin, 1992). 
Markov chains were assumed to converge to posterior distribution if Rd 
converged to a value below 1.1 and never increased on further simula
tions of the chains. The posterior distribution was further processed to 
remove the parameter sets that yielded large deviations between 
observed and estimated streamflow: the deviation between observed 
and estimated streamflow was measured using sum-of-square-errors. 
The computed posterior distribution over parameters (of both Qr and 
εr) was used to simulate several streamflow time series that were 
assumed to represent random uncertainty in measurements of stream
flow, as obtained by the rating-curve method. 

2.4. Uncertainty bound in areal average rainfall 

The uncertainty in areal average rainfall exists due to errors in 
rainfall measurements at a gauging station and due to spatial interpo
lation. Errors in rainfall measurements at a gauging station are difficult 
to obtain due to lack of a simple error model. The errors due to spatial 
interpolation are likely to dominate the total error in areal average 
rainfall (e.g., Renard et al., 2011). Therefore, the errors in rainfall 
measured at a gauging station are neglected in this study, and it is 
assumed that the errors in areal average rainfall exist solely due to 
spatial variability of rainfall. Several different models have been pro
posed to capture the spatial variation of rainfall such as cluster point 
Poisson processes (Waymire and Gupta, 1981a, b, c), random cascades 
(Gupta and Waymire, 1993), Kriging (Moulin et al., 2009), and condi
tional simulations (Renard et al., 2011). All these models treat rainfall as 
a random field in space-time domain. But most of these models are based 
on strict assumptions about the covariance of spatial rainfall or error 
structure which are not justifiable in practice. Even if the assumptions 
are approximately true, the rain gauge density is typically too small to 
reliably estimate the parameters of the covariance function. This issue is 
further complicated as the covariance structure may vary from event to 
event in unknown ways, depending upon the type of event. Therefore, in 
this study, an empirical approach was used to get an estimate of the 
uncertainty in areal average rainfall. 

There were 6 rainfall gauging stations near the SJRW (locations on 
these stations are shown in Fig. B1) at which daily timescale data were 
available. Typically, data from the available rain gauges are used to 
compute a single areal average rainfall time series using the Thiessen 
polygon interpolation method. In this study, all the 63 = (26 − 1) 
different combination of the 6 rain gauges were used to produce 63 
realizations of areal average rainfall using the Thiessen polygon method. 
These 63 realizations represent an estimate of uncertainty in areal 
average rainfall. 

2.5. Uncertainty bounds using runoff ratio method 

The QRF method does not allow one to incorporate a hydrologists’ 
knowledge about a watershed to construct the measurement uncertainty 
bounds. One method that allows incorporation of such knowledge was 
proposed by Beven (2019) using runoff ratios of observed rainfall-runoff 
events. In this method, only the observed rainfall-runoff data (along 
with evaporation data) of the watershed in question are used to create 
LOAs. This method was used to derive LOA estimates that were then 
compared to the LOAs estimated by the QRF algorithm. 

In the first step, the observed rainfall-runoff data were separated into 
different rainfall-runoff events. This kind of hydrograph separation re
quires estimation of the recession curve. To this end, the master reces
sion curve (MRC) technique was used (Lamb and Beven, 1997) – MRC is 
a characteristic recession curve of the watershed (Tallaksen, 1995). 
Once an MRC is defined, the streamflow time series can be divided into 
different rainfall-runoff events. In this study, a rainfall value below 
1mmday−1 was considered negligible, and a new rainfall event was 
assumed to start if the rainfall was negligible for more than 7 consecu
tive days. For example, a new rainfall event started at time-step tn if the 
rainfall values at the time-steps tn − 1, …, and tn − 7 were less than 
1mmday−1. The streamflow hydrograph corresponding to each rainfall 
event was assumed to start at the beginning of the rainfall event and end 
just before the start of next rainfall period. Next, MRC was appropriately 
appended at the end of the streamflow hydrograph for each 
rainfall-runoff event. The number of rainfall-runoff events, thus ob
tained for four of the stations in SJRW, are listed in Table 4. 

In the second step, the runoff ratio of each event was computed as the 
ratio of the total volume of event streamflow to the total volume of event 
rainfall, where ‘event streamflow’ refers to streamflow time series ob
tained after appending the MRC. This resulted in an ensemble of runoff 
ratios. In the third step, LOAs were computed over each of the rainfall- 

Table 4 
Number of rainfall-runoff events for each of the USGS stations in the SJRW.  

USGS station Number of rainfall-runoff events 

04180500 138 
04180000 148 
04179520 139 
04178000 146  
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runoff events in an iterative manner. To construct the LOAs over the ith 

event, the events in the ensemble similar to the ith event were identified 
based on antecedent moisture condition and total volume of rainfall 
during the event. As an estimate of the antecedent moisture conditions, 
initial streamflow of the event was used. Thus, the events that were 
closest to the ith event were identified by using the Mahalanobis distance 
between the events using these two variables (this is the k-nearest 
neighbor approach used by Beven, 2019). Appropriate value of the 
Mahalanobis distance to define the closeness of two events is a subjec
tive decision. In this study, we first computed the Mahalanobis distance 
of the ith event from rest of the events, and, then normalized the distance 

values to lie between 0 and 1. Now, events similar to the ith event may be 
defined as the events that are dM,N distance away from the ith event, 
where dM,N denotes normalized Mahalanobis distance. Several values of 
dM,N were used to analyze the impact of this threshold on uncertainty 
bound. After the completion of the third step, one obtains runoff ratios of 
the ith event and those of other Ni events that are similar to the ith event. 
In addition to the k-nearest neighbor approach, we also used decision 
tree approach to group similar events again based on antecedent mois
ture condition and total rainfall volume. In what follows, the abbrevi
ations RR-KNN and RR-QRF will be used to refer to runoff ratio method 
applied using k-nearest neighbor method and QRF method, respectively. 

Fig. 3. (a) Spatial distribution of NSE values for the test set including ORB and SJRW station, and (b) cumulative distribution function (CDF) of the test NSE values. 
These NSE values were derived from ungauged model. 

Fig. 4. Observed vs. estimated streamflows at four stations in St. Joseph River Watershed (SJRW). The estimated streamflow values were derived from unga
uged model. 
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In the fourth step, the streamflow time series of the ith event was 
divided by its runoff ratio Ci, thus yielding a zero-loss streamflow time 
series of the ith event that would have been observed if the runoff ratio of 
the ith event was equal to 1. The zero-loss streamflow time series was 
then multiplied by the largest and smallest runoff ratios to obtain upper 
and lower bounds of LOA. In RR-KNN method, the largest and smallest 
runoff ratios were identified among the Ni runoff ratios of the events 

similar to the ithevent. In RR-QRF approach, the largest and smallest 
runoff ratios were the 100th and 0th percentiles in the leaf node to 
which the ith event belonged. RR-QRF approach is more objective than 
the RR-KNN approach since the value of dM,N needs to be specified 
subjectively in the latter. However, specification of appropriate per
centiles in RR-QRF incurs some subjectivity. 

Fig. 5. LOAs obtained by quantile random forest (QRF) in different gauged scenarios: using all the training watersheds (green band), 20 most similar watershed 
including the four SJRW watersheds (blue lines), 4 SJRW watersheds (blue-dash lines), and gauged single model (orange-solid lines). Uncertainty bounds obtained by 
rating curve analysis (black-dash), and observed streamflow (red dots), along with precipitation are also shown. 
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3. Experiments with rainfall-runoff data 

3.1. An evaluation of decision tree (DTs) in terms of predicting 
streamflow 

Fig. 3 shows the NSE values obtained by the RF ungauged model for 
the watersheds contained in the test set. NSE was greater than 0.60 for 
55% of the watersheds and was greater than 0.5 for 80% of the test 
watersheds. There were some systematic patterns in the spatial distri
bution of NSE values. NSEs were typically higher in the eastern part of 
the basin than those in the western part. Most watersheds in the eastern 
ORB had NSEs greater than 0.5. For about 20% of all the test watersheds, 
the NSE was less than 0.5. It is likely that the RF algorithm could not 
identify the rainfall-runoff relationship in these watersheds, possibly 
because the hydrological behavior of these watersheds is not repre
sented in the data. Overall, the performance of the RF model was 
deemed acceptable for majority of the watersheds for which NSE was 
greater than 0.50. It captured the rainfall-runoff dynamics in the sense 
that its response to input rainfall is hydrologically consistent. The term 
‘hydrologically consistent’ is used to refer to an expected behavior of 
hydrological models: increasing streamflow with increasing rainfall 
under similar antecedent conditions. One question is if QRF model can 
be used to construct LOAs in a watershed where the NSE is low. We note 
that low NSE value can also be due to errors in streamflow or rainfall 
data. But still the LOAs obtained for these watersheds may not be reli
ably used for model inference. Fig. 4 shows the observed and predicted 
streamflow for the four stations located in SJRW. NSE was close to 0.6 
for the three of the stations but was poor (=0.36) for station 04178000. 
These values seem adequate for constructing measurement uncertainty 
bounds except for station 04178000. 

3.2. Limits-of-Acceptability (LOA) constructed by the QRF models 

Fig. 5 shows the LOAs obtained by the QRF models trained under the 
first two scenarios (gauged-single and gauged) along with the uncer
tainty bounds obtained by the rating-curve analysis. Since rating curve 
analysis yields uncertainty due to errors in streamflow measurements 
only, LOAs obtained by QRF should envelop the uncertainty bound 
obtained by rating curve analysis as shown in Fig. 5. A similar obser
vation was made for the majority of the cases (Table 5). Among the 
different QRF models (QRF-gauged-all, QRF-gauged-20, QRF-gauged-4, 
QRF-single), the LOAs obtained by the QRF-gauged models were widest 
and the LOAs obtained by the QRF-gauged-20 and QRF-gauged-4 
models were typically close to each other. The QRF-single model 
yields very narrow LOAs at the two peaks shown (at time-steps 410 and 
438). These two peaks are among the highest flow values observed in 
these watersheds implying that more data are required to construct 
reliable LOAs for these peaks. This illustrates the practical difficulty in 
constructing LOAs and highlights the need to allow for outliers when 
LOAs are used for model inference. There would not be enough data to 
estimate LOAs for events with return period greater than 2 to 10 years in 
many instances. The LOAs obtained by the three QRF-gauged models 
(QRF-gauged-all, QRF-gauged-20, QRF-gauged-4) were very similar 
except at a few time steps. As mentioned above, the 4 and 20 most 
similar watersheds to train the QRF model were identified using static 
watershed attributes. These static attributes are already used by the QRF 
method to partition the data into leaf nodes, which explains the simi
larity of LOAs obtained by the three QRF-gauged models. 

The uncertainty bound obtained by rating curve analysis was 
significantly narrower at most of the time-steps indicating that errors in 
rainfall measurements contribute more to measurement uncertainty 
than do the errors in streamflow measurements. But the streamflow 
uncertainty bounds shown in Fig. 5 were obtained by making aleatoric 
assumptions. The peak streamflow values may contain larger un
certainties. Fig. 6 shows the fraction of peaks enveloped by upper 
bounds of LOAs if the observed peak magnitude were multiplied by a 
factor f. As the multiplier f increases, the fraction of peaks enveloped by 
the QRF uncertainty bound decreases. This decrease, however, occurs at 
different rates for the three models. Interestingly, the fractions of 
multiplied peaks enveloped by the LOAs were larger for the gauged- 
single model than the ones obtained by the gauged-all model. This is 
likely from timing errors in precipitation data as discussed below. The 
typical errors in peak streamflow have been reported to be 20–40% (Di 

Table 5 
Fraction of observations enveloped by the QRF LOAs.   

QRF ungauged QRF gauged QRF gauged-single 

04180500 0.97 1.00 0.99 
04180000 0.97 1.00 0.99 
04179520 0.94 1.00 0.99 
04178000 0.96 1.00 0.99  

Fig. 6. Fraction of the peaks enveloped by the QRF uncertainty bounds if the observed peaks were 10–100% greater.  
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Baldassarre and Montanari, 2009); Fig. 6 shows that more than 55% of 
the peaks were enveloped in these ranges of errors by all the three 
models. Even for 100% errors, more than 30% of the peaks are envel
oped by the QRF LOAs across the three models. 

One of the characteristics of the LOA by the QRF method (Fig. 5) is 
that it is very wide at the time-steps corresponding to streamflow peaks 
and narrow at the time-steps where streamflow is small. Although not 
shown here, this pattern was visible throughout the study period. Fig. 7 
shows the standard deviations of streamflow obtained by QRF method 
plotted against streamflow. The standard deviation increases as 
streamflow value increases in keeping with how rainfall uncertainty 
typically propagates to streamflow uncertainty (Moulin et al., 2009; 
Renard et al., 2011). These observations suggest that QRF is able to 
account for the effect of uncertainty due to rainfall and streamflow 
measurement errors. 

One seeming discrepancy to the pattern discussed above is the wide 
LOA obtained by the QRF-gauged method between time-steps 410 and 
420 even when the streamflow time series is in recession phase (Fig. 5) – 
this is especially the case for the stations 04180500 and 04178000. Data 
show that some rain did fall over the watershed at these time-steps 
(Fig. 5), and this rain event was similar in magnitude to the rain event 
that generated the streamflow peak at time-step 424. One possibility is 
that this rain event did not result in streamflow due to spatial location of 
the event (rain event might be far from the watershed outlet). The sec
ond possibility is that the rainfall measurement at the gauging station is 
erroneous. The third source of error is the unknown true intensity of 
rainfall: The observed rainfall data are at daily timescale and two events 
with same intensity at the daily timescale may have very different in
tensities at sub-daily timescales which will result in different hydro
graphs. These are examples of epistemic errors, and the exact reason for 

these errors is difficult to know. In fact, we do not even know whether 
the measurement is actually erroneous. A good hydrological model 
forced with this rain event and uninformed by true spatial distribution 
and true intensity of rainfall will still generate a streamflow event (if the 
antecedent conditions allow). It would be unwise to reject this model if 
these errors indeed exist. This illustrates how QRF can account for 
epistemic errors. Similarly, at time-step 450, a wide LOA was obtained 
by the QRF method for three of the stations whereas streamflow time 
series is in recession phase. Again, a rainfall event was observed at this 
time-step which apparently did not result in a streamflow peak, and the 
same arguments apply. 

In some of the events, timing errors between observed peak and QRF 
simulated peak were observed primarily in the LOAs created by the QRF- 
gauged model. An example of such timing errors may be seen at time- 
step 438 in Fig. 5. These timing errors occurred for less than 20 events 
per watershed (see also Fig. 11 where LOAs for a few other time-steps 
are also shown). For the five peak events shown in Fig. 5, timing error 
occurs only for one event for the three stations 04180500, 04180000, 
and 04179520. Out of the two major peaks at time-steps 410 and 438, 
timing errors at time-step 438 are present for stations 04180500 and 
04180000. 

There seem to be two possibilities behind these timing errors: (1) 
disinformation introduced by the data from other watersheds, or (2) 
timing errors in rainfall data. For the stations 04180500 and 04180000, 
there is zero lag between rainfall and QRF obtained streamflow peak at 
time-step 410. Meanwhile at time-step 438, a lag of 1–2 days between 
rainfall and streamflow peak is observed. Further, the rainfall event at 
time-step 438 is more intense (at daily timescale) and one would expect 
a smaller lag between rainfall and streamflow peaks for this event 
compared to the lag observed for the event at time-step 410. Therefore, 

Fig. 7. Standard deviation of streamflow time series obtained by RF method plotted against observed streamflow data. The standard deviation increases with in
crease in streamflow value. 
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it seems more likely that the computed areal average rainfall has timing 
errors for this event. We note that it is also possible that the sub-daily 
timescale intensity of the event at time-step 438 was low which would 
justify the delay in peak. This is again an example of epistemic 
uncertainty. 

The same arguments apply for the timing errors observed at the 
station 04178000, especially at time-step 424 where the lag between 
computed areal rainfall peak and observed streamflow is 3 days. The 
timing errors at the station 04178000 were more frequent which is 
partly the reason for poor validation NSE value at this station (Fig. 4). It 
is worth noting that the timing errors between LOAs constructed by 
QRF-single model and observed streamflow were typically absent. It is 
possible that the model has compensated for timing errors in 
precipitation. 

Potential for the timing errors in rainfall around time-step 438 is also 
illustrated in Fig. 8 which shows all the different realizations of the areal 
average rainfall. For the majority of the realizations, the second pre
cipitation peak occurs at time-step 436 while for a few realizations the 
second peak occurs at time-step 435. These realizations were con
structed using six gauging stations which are located outside but near 
the SJRW watershed (Fig. B1). If data from more stations were available, 
some of the realization might have very well shown the second peak at 
the time-step 437. 

It is worth noting that the information about consistent timing error 
may not be revealed by QRF-single model as it will learn this as a 
behavior of the watershed. Thus, this analysis illustrates the usefulness 
of data from different watersheds in constructing LOAs. Further, the 
analysis also illustrates how the LOAs constructed using decision trees 
may potentially capture the effect of timing errors. It is possible that the 
timing errors between the observed and QRF (gauged model) simulated 
peaks occur because of disinformation introduced by data from other 
watersheds. Therefore, it seems prudent to construct multiple LOAs 
using data from different sets of watersheds and use a combination of 
these LOAs for model inference. 

Fig. 9 shows the CVR (coefficient of variation) of areal average 
rainfall obtained by using the empirical approach described above. The 
CVR values decrease as areal average rainfall increases, at all the sta
tions. At first one may attribute this behavior to standard deviation of 
rainfall being constant irrespective of the mean rainfall value. However, 
it was observed that standard deviation of areal average rainfall in
creases with increasing mean rainfall values (now shown) similar to the 
standard deviation of streamflow. The CV values of excess rainfall, ob
tained by SCS-CN method, also follow the same pattern as areal average 
rainfall. But the CVs corresponding to excess rainfall were typically 
higher than the CVs corresponding to areal average rainfall. The dif
ference between excess and areal average rainfall CVs become smaller 

Fig. 8. Different realizations of areal average precipitation.  
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for higher values of areal average rainfall. Many of the small non-zero 
areal average rainfall values produce no excess rainfall; increased 
number of zeros in excess rainfall increases the CV. 

Fig. 9 shows that variation of CVQ with streamflow follows the same 
pattern as that of variation of CVR with mean areal average rainfall; CVQ 
decreases as mean streamflow increases. For all the four stations, the 
magnitudes of CVs are of similar order for the areal average rainfall and 
streamflow time series. Another pattern in CVR plots is that there is a 
larger (smaller) scatter in these values when mean rainfall is small 
(large). The same pattern can be seen in streamflow values also. The 
rainfall time series is transformed non-linearly through a watershed to 
yield streamflow. The same rainfall event can result in very different 
streamflow hydrograph depending upon the spatial distribution of rain 
within the watershed and antecedent moisture conditions. Thus, for a 
given rainfall magnitude, many different values of streamflow are 
possible which explains the larger scatter in CVQ. Fig. 9 indicates that 
the statistical structure of RF uncertainty bound reflects the effect of 
rainfall uncertainty. Overall, these results combined with the results 
discussed above indicate that the DTs could account for the effect of 
uncertainty due to errors in rainfall and streamflow measurements. 

Further, it can be argued that any model with heteroscedastic error 
structure would result in uncertainty bounds as shown in Fig. 5. The QRF 
method does not enforce heteroscedastic error structure, rather this 
error structure was identified by the algorithm from the data. The ex
periments with synthetic data showed (results not shown) that if the 
errors are homoscedastic, QRF produces homoscedastic error structure, 

and if the errors are heteroscedastic, QRF produces a heteroscedastic 
error structure. LOAs shown in Fig. 5 do not represent measurement 
uncertainty only – it is likely that structural errors of QRF model are also 
contributing to these bounds. 

3.3. How do QRF LOAs compare to the LOAs obtained by the runoff ratio 
method? 

Fig. 10 shows the LOAs obtained by the runoff ratio method, along 
with the ensemble of runoff ratios at four of the gauging stations in 
SJRW. Ideally, the runoff ratios should lie between 0 and 1. The errors in 
rainfall and streamflow measurements, and inexactness of hydrograph 
separation method, however, may result in values of runoff ratios 
greater than one (Beven and Westerberg, 2011). Indeed, a few 
rainfall-runoff events had runoff ratio values greater than 2 which are 
likely to have occurred due to significant biases in rainfall measure
ments. These periods can be referred to as disinformative periods 
(Beven and Westerberg, 2011) which should not be used for parameter 
estimation and uncertainty analysis. In this study, however, these events 
were kept for further analysis as the final aim is to compare the bounds 
obtained by different methods. It may be noted that QRF will not 
recognize such disinformative periods but it will yield appropriate un
certainty bound for these events making it unlikely that a good model 
will be rejected by using the LOAs obtained by the QRF algorithm even if 
it includes disinformative periods. For example, if a rainfall event has 
large negative bias, QRF will identify this event as similar to other events 

Fig. 9. Coefficients of variation (CV) of areal average rainfall (left), excess rainfall for different values of CN (middle), and the CV of streamflow obtained by RF in 
ungauged scenario (right). In the legend, Q refers to excess rainfall obtained by using SCS-CN method for different value of the parameter CN. Each row refers to 
one basin. 
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with small rainfall and the LOAs for this event will span a large range of 
streamflow values. 

Fig. 10 shows the LOAs obtained by using the runoff ratio method 
where similar events were selected using KNN method (with two 
different distance thresholds dM,N = 0.2and 0.3) and by using QRF 
method. One expects the LOAs to envelop all the observations and the 
uncertainty bounds to become wider as the value of dM,N increases. This 
is indeed observed in Fig. 10 with the following special case: the ob
servations coincide with the upper LOA at a few time-steps for small dM,N 

values. These cases occur because of the small number of rainfall-runoff 
events available at a station and even smaller number of similar rainfall- 
runoff events; this prohibits the construction of robust LOAs. LOAs ob
tained by RR-QRF method were typically wider than the those obtained 
by the RR-KNN method which is partly a consequence of using 0% and 
100% percentile values of data in the leaf node for defining these bounds 
(see Section 2.5).  

QRF-gauged algorithm yielded tigher LOAs compared to those ob
tained by runoff ratio method for a few time-steps (Fig. 11). But at other 

Fig. 10. LOAs obtained by runoff ratio method (left) and runoff ratios plotted against total rainfall of the each of the rainfall-runoff events (right).  
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times-steps, e.g., between 400 and 420, the QRF LOAs were wider. There 
is one general similarity between the LOAs obtained by QRF and runoff 
ratio method: the width of both LOAs increase or decrease almost syn
chronously in time (except for a few timing errors, see above for a dis
cussion of this issue). This gives us further confidence that the LOAs 
obtained by QRF are able to capture general patterns of measurement 

uncertainty. If the patterns of LOAs obtained by QRF and runoff ratio 
method were significantly different, that would have disproved the 
usefulness of QRF in constructing LOAs. 

Fig. 11. LOAs obtained by QRF-gauged-all (blue -solid), QRF-single (black-dash), and RR-QRF (green band) methods along with observed precipitation 
and streamflow. 
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3.4. Convergence of LOAs obtained by QRF algorithm 

To test the convergence properties of QRF estimated LOAs with 
increasing length of data, several QRF models were developed using 
different lengths of training data. In these experiments, data from only 
that watershed where LOAs are to be constructed were used, i.e., 
gauged-single models were developed. For each of the four test water
sheds, 12 different gauged-single models were developed using 1, 2, …, 
12 years of data. Fig. 12 shows the 97.5th percentiles of LOAs thus ob
tained using different amounts of data. For three stations (04180500, 
04180000, and 04178000), LOA estimates at high flow time-steps 
started to converge when more than three years of data were used, 
but there were a few high flow time-steps where LOAs did not converge. 
At station 04179520, the convergence of LOAs seems to be much slower 
than the convergence at other stations. LOAs appear to be converging for 
low flows as well but more data are required to achieve the final bounds. 

3.5. Limits-of-acceptability (LOA) created using the QRF ungauged model 

One of the major advantages of the QRF algorithm is that it can be 
used to construct LOAs at ungauged locations. Fig. 13 shows the LOAs 
constructed by the QRF ungauged model, along with LOAs constructed 
by the other models for comparison. The LOAs obtained by the QRF- 
ungauged model were typically wider than the LOAs obtained by the 
other models. The timing errors between LOAs and observed streamflow 
can also be observed for the QRF-ungauged model. 

At time step 406, there exists a widening of LOAs along with a very 
small peak in observed streamflow, but the observed precipitation is 
either zero or negligible. This is clearly because of an error in precipi
tation magnitude. It is likely that there was a small amount of precipi
tation in the watershed which was not recorded by the precipitation 

gauges. There were a few other such events where very small observed 
precipitation corresponded to a significant observed streamflow result
ing in very high runoff ratios (as discussed above). Therefore, depending 
upon the precipitation magnitudes during current and previous time 
steps, QRF predicts a peak in streamflow. Such peaks would not have 
any impact on model inference in the sense that a hydrological model 
would not produce streamflow peaks in the absence of rainfall and the 
simulated streamflows would always be enveloped by the LOAs at these 
time steps. 

Fig. 6 shows that more than 60% of the multiplied peaks were 
enveloped by the QRF LOA even for 100% errors (f = 2) for the unga
uged model. The analysis suggests that LOAs obtained by the ungauged 
model are very conservative. This is desirable when the LOAs are to be 
constructed at an ungauged location so as to include a large number of 
rainfall-runoff behaviors. The results of this analysis are encouraging in 
terms of usefulness of QRF approach in creating LOAs at both gauged 
and ungauged locations. 

4. Logic behind the proposed method 

In this section, a mathematical argument is presented for using DTs 
for constructing LOAs. We hypothesize that if infinite amount of hy
drological data are available, DT-estimated LOA will reflect the effect of 
uncertainty due to errors in rainfall and streamflow measurements. This 
is a hypothetical scenario (as infinite data are never available) but it 
serves to illustrate the usefulness of DTs in constructing LOAs and pro
vides a theoretical basis. In practical cases, the DTs would also reflect 
variability due to other sources. As the number of calibration samples 
approaches infinity, the error incurred by a DT approaches optimal Bayes 
error (Denil et al., 2014) which is the irreducible part of the error due to 
inherent variability in the process and due to measurement errors (both 

Fig. 12. Convergence properties of LOAs obtained by the QRF algorithm.  
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epistemic and aleatoric). Assuming, for the sake of discussion, that there 
is no inherent variability in the hydrological processes (more on this 
below), then errors incurred by a decision tree approach measurement 
error as the samples size increases. Thus, the results of Denil et al. (2014) 
suggest that decision tree can be used to account for measurement un
certainty, even if it holds only for the hypothetical case of infinite data. 
However, it may not be immediately clear how the uncertainty bounds 

obtained by decision trees represent measurement uncertainty in case of 
infinite sample size. Here, we answer this question and elucidate the 
logic behind the proposed hypothesis. A formal analysis of the proposed 
hypothesis is provided in Appendix A. 

First, consider the case where only the streamflow measurements are 
uncertain, and the rainfall measurements are free of errors. Further, 
assume that the errors in streamflow measurements are unbiased. As the 

Fig. 13. LOAs obtained by quantile random forest (QRF) in ungauged scenario (green), by QRF in gauged-all scenario (blue), by QRF in gauged-single scenario 
(orange), along with observed streamflow and precipitation. 
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sample size increases, the diameter of each leaf node approaches zero, 
that is, predictor vectors contained in a leaf node are approximately 
equal (a formal proof of this statement is given in Appendix A). The true 
streamflow values corresponding to predictor vectors contained in a leaf 
node are approximately equal and any variations in the observed 
streamflow would be due to measurement errors. Thus, given an infinite 
sample, the minimum and maximum values contained in the leaf node 
represent lower and upper bounds over streamflow, and the difference 
between these bounds is due to measurement uncertainty. A formal 
analysis of this case is given in Section A.1. 

Second, consider the case where only the rainfall measurements are 
uncertain, and the streamflow measurements are error free. In this case 
also, the diameter of a leaf node would approach zero (for the same 
reason as in the first case), and predictor vectors contained in a leaf node 
would be near identical, as the sample size approaches infinite. But, due 
to measurement errors, the underlying true values of predictor vectors 
contained in a leaf node would be different (more precisely, the pro
jections of predictor vectors on rainfall subspace will be different). Since 
there exists a streamflow value corresponding to each true predictor 
vector, the set of streamflow values corresponding to true predictor 
vectors in a leaf node would represent the effect of measurement un
certainty in predictor vector on streamflow. A formal analysis of the 
second case is given in Section A.2. 

Third, consider the case where both rainfall and streamflow mea
surements are corrupted by errors. The logic behind this case is similar 
to the logic discussed above for the first and second cases. A formal 
analysis of this case is given in Section A.3. 

Finally, we elaborate on inherent variability in hydrological pro
cesses. The mathematical analyses provided above, and in the Appendix 
A, implicitly assume that the predictors variables used to train the de
cision tree are complete in the sense that predictor variables contain all 
the information that is required to predict streamflow. This, however, is 

not possible since the physical structure of the watershed itself will be 
changing continuously, albeit only slowly with intermittent large dis
ruptions, which will change the hydrological response of the watershed. 
This can be referred to as the inherent uncertainty in hydrological 
processes which is irreducible. Therefore, given an infinite sample, de
cision trees would also account for this inherent variability along with 
the measurement uncertainty. 

Both measurement uncertainty and inherent variability are generally 
dominated by epistemic errors. Since, to construct LOAs, only the upper 
and lower bounds on errors are required for a given rainfall-runoff 
event, it is sufficient that the errors incurred in a given event fall in 
the range of the errors incurred from other similar events. Further, since 
the errors are epistemic and available data are finite in practice, it is 
possible that the errors of some events do not fall in the range of errors 
represented in the data; therefore, accommodation for such outliers 
needs to be made while using LOAs for model inference. Typically, 5% of 
the observations are allowed to fall outside the estimated uncertainty 
bound. In hydrological applications, these 5% outliers might well 
include the timesteps that one is most interested in (e.g., high flows for 
flood modeling). Therefore, a posteriori analysis of outliers should be 
carried out. A model can be declared unfit-for-purpose if all or most of 
the 5% outliers belong to the timesteps of interest. It is possible that all 
the models are rejected as unfit-for-purpose but nevertheless a model is 
required for some urgent practical application; in this case, some of the 
rejected models with least deviation from the LOAs might be used and 
the inverse of the magnitude of deviation can be used as the weight of 
that model in decision making. Alternatively, instead of defining frac
tion of outliers beforehand, one can report the accepted models for 
different fractions of outliers. 

Fig. B1. Four sub watersheds located in St. Joseph River Watershed (SJRW) along with the precipitation gauges.  
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5. Summary and conclusions 

Separation of structural and measurement uncertainty was recog
nized as one of the twenty-three unsolved problems in hydrology by 
Blöschl et al. (2019). The only way to address this problem is to estimate 
measurement uncertainty before model calibration. This is a difficult 
task given that statistical properties of rainfall and streamflow mea
surement uncertainty are poorly understood, especially those of rainfall 
measurements. There exist two dominant philosophies to address this 
problem: (1) to assume statistical distributions over measurement un
certainty due to both rainfall and streamflow errors, and (2) to construct 
limits-of-acceptability (LOA) that provide some bounds on measurement 
uncertainty before any modeling exercise. LOA has been used within the 
GLUE framework. However, both of these philosophies may also be 
combined together in Approximate Bayes Computation (ABC) frame
work. LOA can also be used in a purely Bayesian framework by defining 
a likelihood function that penalizes the simulations based on their de
viations from the LOA defined through a suitable metric. The aim of this 
paper was to test the capability of decision tree algorithms in creating 
LOAs that provide meaningful bounds on measurement uncertainty. 

In this study, quantile random forest (QRF) method was used to 
construct LOAs. The advantages of the QRF method are as follows: (1) it 
can reflect the effect of both precipitation and streamflow measurement 
uncertainty, (2) it can account for timing errors in precipitation, (3) it 
can be applied at the timescale of available data, and (4) it can be used to 
construct LOAs at ungauged catchments. The results show that the LOAs 
obtained by using QRF enveloped the uncertainty bounds over stream
flow observations. Measurement uncertainty in streamflow due to 
aleatory variability was found to be very small. It was shown that the 
statistical structure of QRF uncertainty bound was similar to an uncer
tainty bound obtained by propagating rainfall uncertainty through a 
hydrological model. Some observations include:  

(1) Standard deviations of streamflow obtained by the QRF method 
increase with increasing values of observed streamflow.  

(2) CVs of simulated rainfall time series and QRF uncertainty bound 
follow the same pattern: they decrease with increasing value of 
rainfall and streamflow, respectively. 

(3) The general pattern of increase and decrease of width of uncer
tainty bound was similar for QRF and runoff ratio methods. 

The QRF method does not contain any mechanism that induces the 
uncertainty bounds to follow any pre-determined patterns. Therefore, 
existence of these patterns suggests the QRF method is able to identify 
some of the characteristics of measurement uncertainty from data. We 
cannot conclude that all the characteristics of measurement uncertainty 
were identified because QRF is unable to extract all the hydrological 
information from available data for the four SJRW watersheds used as 
test cases in this study. Indeed, this is likely to be the case for most 
watersheds since data on all the factors determining the hydrological 
response of a watershed are not available. 

A timing error between observed streamflow and the LOAs obtained 
by the QRF method was observed in all four test watersheds (Figs. 5 and 
11) in gauged-all and ungauged cases. These timing errors are likely due 
to timing errors in precipitation data. Figs. 5 and 11 show that QRF can 
compensate for consistent precipitation timing errors in a watershed in 
gauged-single case. Thus, data from other similar watersheds can be 
useful in constructing LOAs that capture the effects of precipitation 
timing errors. In general, the shorter the length of data available to 
construct LOAs, the more the data from other similar watersheds will be 
required. The issue of choosing similar watersheds is discussed below. 
Another possible reason for timing errors in gauged-all case is that data 
from other watersheds may have introduced disinformation into the 
LOAs. Therefore, it appears that LOAs should be constructed using data 
from several sets of watersheds so that the effect of both the potential 
timing errors and disinformation can be accommodated. This will, in 

general, mean a larger number of behavioral models and higher pre
dictive uncertainty. Overall, the results of this paper indicate potential 
for the QRF approach for constructing LOAs at both gauged and unga
uged locations. 

In the hypothetical scenario, when infinite amount of hydrological 
data are available, the QRF algorithm can actually reflect the effects of 
measurement uncertainty as shown in the mathematical analysis in 
Appendix A. This analysis used the following main assumptions to prove 
the proposed hypothesis:  

(1) The relationship between predictor and response variables is one- 
to-one.  

(2) The mapping between predictor and response variable is 
continuous.  

(3) The errors in predictor and response variables are unbiased but 
otherwise the errors could be either aleatoric or epistemic.  

(4) Error can be assumed independently and identically distributed 
within a leaf node. 

We note that assumption 1 was made for mathematical convenience. 
A similar analysis can be carried out without this assumption. For a finite 
sample size, the uncertainty bounds obtained by a decision tree include 
contributions from structural uncertainty (of QRF method) along with 
measurement uncertainty. 

A major advantage of QRF method (and indeed the LOA approach) is 
that it is a non-parametric approach for constructing LOAs and does not 
resort to strong assumptions on the statistical nature of streamflow and 
rainfall measurement errors. Overall, the QRF method offers promise as 
a powerful tool in hydrological model inference. 

Rainfall-runoff data may also contain disinformative periods. To 
identify disinformation and biases, one requires physical understanding 
of the rainfall-runoff processes. Runoff ratio method is an example of 
using process-based knowledge to identify biases, but it is not applicable 
for baseflow dominated catchments and cannot be applied at ungauged 
locations. Moreover, runoff ratio method can identify the effect of errors 
in streamflow and precipitation volume – it cannot identify precipitation 
timing errors. QRF method addresses these limitations of the runoff ratio 
method. QRF will not explicitly identify disinformative periods, but it 
will likely define LOAs for the disinformative periods such that a good 
model would not be rejected because of these periods. 

Further, as noted, it is possible that data from other watersheds 
introduce disinformation into the constructed LOAs. An interesting 
future problem in this respect would be to combine QRF method with 
catchment similarity analysis such that data from only the watersheds 
which are known to be hydrologically similar to the parent watershed 
(where LOAs are be constructed) are used. This would potentially reduce 
the disinformation introduced by the data from other catchments while 
yielding meaningful LOAs. This technique can be particularly useful for 
prediction in ungauged basins. In this paper, catchment characteristics 
(in the form of spatially averaged indices such as mean slope, mean soil 
properties etc.) were used in the QRF method to identify similar catch
ments. However, methods based on hydrological process understanding 
(e.g., Wagener et al., 2007) may prove to be better at identifying similar 
catchments. 

One can also use other ML algorithms for creating LOAs in addition 
to the QRF method. Given a finite amount of data in practical applica
tions, different algorithms would extract different information from 
available data and hence a different estimate of LOAs would be ob
tained. A combination of these different LOAs will be more desirable for 
model inference (a problem to be explored in future). 
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Appendix A: Mathematical analysis of the proposed hypothesis 

In this section, a heuristic mathematical analysis in the support of the proposed hypothesis is provided. The aim of the analysis is to clarify the 
assumptions behind the hypothesis and limitations in practical implementation. Specifically, we show why the data in leaf nodes of a decision tree can 
be used to capture measurement uncertainty and under what condition structural uncertainty would be small. The analysis is divided into three parts 
for convenience: (1) when measurement errors occur in streamflow measurements only, (2) when measurement errors occur in rainfall measurements 
only, and (3) when both rainfall and streamflow measurements incur errors. We note that the analysis provided below is valid for both aleatoric and 
epistemic errors. 

A.1. Case 1: Only streamflow measurements are uncertain 

First, we provide the analysis of the proposed hypothesis under the restriction that only the streamflow measurements contain errors and rainfall 
measurements are free of errors. Let X denote the predictor space, x ∈ X denotes a point in the predictor space, and N d(x) denote the d-neigh
borhood of x in X where d is a suitable distance metric. Further, let us define by Y the set containing error-corrupted value of a response variable as 

Y = {y(x)|x ∈ X } (A1) 

Since y(x) is an error-corrupted value, it can be written as 

y(x) = yt(x) + ϵ, (A2)  

where yt(x) denotes the true but unobserved value of the response variable and ε denotes the measurement error in y. Here, ε represent a general error 
term which can be a function of xand/or y. 

The data contained in a leaf node of a decision tree may be approximated as a neighborhood of the points close to its center. For example, if a leaf 
node constitutes the set X k = {xi|xi ∈ X }

k
i=1, and the point xm ∈ X k is close to its center; then X k can be treated as a neighborhood of xm. To define a 

neighborhood, a distance metric is needed, and distance metric chosen defines the shape of neighborhood. In the analysis presented below, a different 
distance metric might be required for different leaf nodes of the decision tree. This does not pose any challenge to the generality of the analysis. The 
approximation of a leaf node by the d-neighborhood is made for the sake of mathematical convenience so that the analysis is manageable. Similar 
assumptions have been made by other authors (e.g., Denil et al., 2014). 

Assumption 1. The mapping between predictor and response variables is continuous. 

Assumption 2. The relationship between probability distribution of ε with x and y does not change significantly in a c-ball, B c(x), 

B c(x) = {xi|d(x, xi) ≤ c}, (A3)  

where c is a sufficiently small number. In other words, the distribution of ε changes slowly over X . 

Assumption 3. Without loss of generality, we assume that the relationship between true values of predictor and true values of response variables is 
one-to-one. This assumption is also made for analytical convenience. 

Assumption 4. The expected value of ε is zero. 

Assumption 5. The response variable y varies smoothly with the predictor variable x. This is particularly true for rainfall runoff models where unit 
increase in rainfall can result in a maximum of unit increase in streamflow, all else being equal. 

For every xd ∈ N d(x), there exists a yd ∈ Y by definition of Y . By virtue of Eq. (A2), yd(xd) = yt(xd) + ε. Define Y d as 

Y d = {yd(xd)|xd ∈ N d(x)}, (A4)  

and define Y d,t as 

Y d,t = {yt(xd)|xd ∈ N d(x)}, (A5) 
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Further, define the quantity 

yd(x) =
1

Vol{Nd(x)}

∫

yd(x)dx (A6)  

where Vol denotes volume. 

Assertion 1. : The quantity  yd(x), defined in Eq. (A6), approaches the true value yt(x) as the number of samples increases. 

The proof of this assertion, along with technical conditions, can be found in Brieman et al., (1984) and Denil et al. (2014). These references do not 
directly consider errors in measurement, but the proofs provided in these references are still valid provided assumption 4 holds. If assumption 4 is not 
valid, then the prediction error obtained by a decision tree approaches the optimal Bayes error. Note that the discrete version of the Eq. (A6) is the 
response variable estimated by the RF algorithm. Therefore, the structural errors in RF estimate would decrease arbitrarily as the sample size 
increases. 

Assertion 2. : The diameter of the Y d,t is small, if the sample size is large. In other words, the maximum difference between the yt values contained 
in Y d,t would be small. Let this difference be denoted by dia(Y d,t). 

We note the following  

• a decision tree aims to create leaf nodes so as to minimize some measure of prediction error (such as mean-square error) on test set,  
• the estimated response by the decision tree is the average of the response values contained in a leaf node given by Eq. (A6), and  
• the leaf nodes create a partition of the predictor space X , i.e., the subsets created by the leaf nodes are disjoint and cover the predictor space. 

These requirements are met only if the quantity dia(Y d,t(x)) is small for each x. (Here, Y d,t is denoted as a function of the argument x.) For, 
consider n points x1, x2, …, xn ∈ X that constitute the training set with corresponding neighborhoods Nd(x1),Nd(x2),…, Nd(xn). Denote the number of 
leaf nodes created by the decision tree by m. Clearly, m ≤ n. Further, consider the expression for mean-square error, 

MSEn =
1
n

∑n

i=1
{y(xi) − y(xi)}

2
, (A7)  

where  y(xi) is estimated response given by Equation (23). The expression (A7) is minimized when each term in the summation is minimized. 
If m ≪ n, there will be many out of n points that would fall into the same leaf node and, therefore, will have identical estimate of the response. Thus, 

MSEn would not be minimized. This seems to imply that for MSEn to be minimized we need m = n. Due to measurement errors, however, minimization 
of MSEn on training set may not result in minimization of MSEn on test set. And making m = n is likely to result in overfitting. Therefore, to satisfy the 
three conditions above), the value of m must be less than n but not much smaller than n. As n increases, m should also increase; otherwise, m would 
become much smaller than n. (Technically, this condition translates to the following: m → ∞and m/n → 0, as n → ∞). In decision tree language, as n 
increases, the predictor space would be split into smaller and smaller partitioning subregions, i.e., diameter of the leaf nodes would become smaller 
and smaller. Hence, it follows that dia(Nd) → 0, as n → ∞. 

If diameter of Nd(x) is small, then by assumption 5 and the assumption that values in Nd(x) are error free, the dia(Y d,t) is also small. 
In summary, if the sample size is large, then the decision tree would be able to create small leaf nodes in order to minimize mean-square error. More 

technically, for n > Na, and δ > 0 

dia
(
Y d,t

)
< δ, (A8)  

where Na is some arbitrary large value. 

Theorem 1. The set Y d approximately captures measurement uncertainty in response variable if the sample size is large. 

Proof. The minimum value contained in Y d is greater than or equal to min(Y d,t) + ϵl and the maximum value contained in Y d is less than or equal 
to max(Y d,t) + ϵu. Here, εl denotes a value in the left tail of the distribution of ε such that probability of ε taking a value less than or equal to εl is γl. 
Similarly, εu denotes a value in the right tail of the distribution of ε such that probability of ε taking a value greater than or equal to εu is γu. Note that εl 
and εuare likely to be negative and positive quantities, respectively. 

By assertion 2, the difference between max(Y d,t) and min(Y d,t) is small for large n, and, therefore, 

min
(
Y d,t

)
≈ max

(
Y d,t

)
≈ yt(x). (A9) 

Using Eq. (A9), the minimum and maximum values contained in Y d may be approximated by yt(x) + εl and yt(x) + εu. These lower and upper 
bounds represent the bounds on measurement uncertainty due to errors in streamflow measurements. As sample size increases, the probabilities γl and 
γu would approach zero, the approximation (A9) would become more accurate, and, thus, the proposed hypothesis would become more accurate. 

This completed the analysis of the 1st case. 
In the preceding paragraph, we argued mathematically that as the sample size increases and the neighborhood N d(x) becomes smaller, the set Y d 

represents measurement uncertainty in y more accurately. In reality, N d(x) cannot be arbitrarily small and the sample size is finite – thus Y d rep
resents both measurement and structural uncertainty. However, the structural uncertainty would still be small if the sample size is large enough so as 
to create small leaf nodes (see Assertion 2 above and Eq. (A8)). Practically speaking, one can aim only for the modest goal of obtaining an uncertainty 
bound where majority of width is due to measurement uncertainty. Fortunately, this is useful in practice in the construction of LOAs as it helps avoid 
type-1 errors (rejecting models with good structures) at the cost of a few type-2 errors (accepting a few models with bad structures). This is a desirable 
property of the LOAs (Beven, 2019). 
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A.2. Case 2: Only rainfall measurements are uncertain 

Let X denote the predictor space, x ∈ X denote a point in the predictor space, and N d(x) denote the d-neighborhood of x in X where d is a 
suitable distance metric. Here, x represents a vector containing rainfall and other relevant predictor variables. Let xr denote the component of x 
containing error corrupted current and time-lagged rainfall values. xr can be written as 

xr = xr,t + ϵx,r, (A10)  

where xr,t is the true value and εx is the error in xr. Denote by Y the set containing y values as defined in Eq. (A1). 

Assumption 6. The expected value of εx is zero. 

Assumption 7. We assume that the probability distribution of εx varies slowly within N d(x). The probability distribution of εx can be assumed 
independent and identically distributed within N d(x). 

For each x ∈ N d(x), there exists a true value xt and corresponding to each xt, there exists a yt value. Thus, we can define a set Y d similar to that 
defined in Eq. (A4), only difference being that the x values are error corrupted in this case. 

Assertion 3. : The diameter of Nd(x) approaches zero as the sample size increases. 

This assertion follows from the proof of assertion 2. 

Assertion 4. : The true value of the values contained in N d(x) approximate the probability distribution of x, for large sample large. 

Following assertion 3, it is reasonable to assume that values contained in Nd(x) are approximately equal, that is, any xd ∈ Nd(x) is approximately 
equal to x. But the values contained in Nd(x) are error corrupted; therefore, the true value corresponding to any xd ∈ Nd(x) can be written as 

xd,t = xd − ϵx = x − ϵx. (A11) 

From Eq. (A11), it is clear that xd,t is a random variable with mean value x and larger moments defined by εx. Hence, assertion 4 follows. 

Corollary 1. The minimum and maximum values contained in N d(x) can be approximated by x + εx,l and x + εx,u, respectively. Here, εx,l and εx,u are 
defined similarly as εl and εu are defined in theorem 1. Again, εx,l and εx,u are likely to be negative and positive quantities, respectively. 

Assertion 5. : There exists a one-to-one mapping between Nd(x) and Y d. 

It can be seen from Eq. (A11) that there exists a unique true value corresponding to each xd ∈ Nd(x). For two values contained in Nd(x) to be 
identical, the value of εx will have to be identical; but the probability of such an event is practically zero (less than some arbitrarily small δ > 0 to be 
more precise). 

By assumption 3, there exists a one-to-one relationship between true value of predictor and response variables; therefore, there must exist a one- 
one mapping between Nd(x) and Y d. 

Theorem 2. The set Y d provides the effect of measurement uncertainty in rainfall on streamflow yt(x). 

The truth in this assertion stems from one-to-one mapping between the elements of N d(x) and Y d (Assertion 5). And since by assertion 4, N d(x)

provides measurement uncertainty in x, Y d yields the effect of measurement uncertainty in x on y(x). 
The set Nd(x) contains several elements with approximately the same value x. But these values are error corrupted; the underlying true values will 

differ due to measurement uncertainty in x. For each unique true value in Nd(x), there exists a unique value of y in Y d. When we observe an error 
corrupted value x, the corresponding response can be any value contained in Y d depending upon the error in x. Therefore, the LOA corresponding to x 
should be (min(Y d), max(Y d)). 

This completes the analysis of 2nd case. 
The above analysis is valid in the case of large number of samples. With finite samples, Y d would capture measurement uncertainty and structural 

uncertainty because the diameter of Nd(x) would not be small. But a sufficiently large number of samples would result in small structural uncertainty. 

A.3. Case 3: Both streamflow and rainfall measurements are uncertain 

Here, we consider the case where both the rainfall and streamflow measurements are corrupted by errors. This case is a combination of case 1 and 
case 2. The notations and assumptions are same as in previous two cases. Consider xd ∈ Nd(x) and the corresponding response variable yd ∈ Y d. The 
error corrupted xd and yd can be represented by Eqs. (A2) and (A10), respectively. 

Theorem 3. The set Y d provides lower and upper measurement bounds due to errors in response measurements and the effect of errors in predictor mea
surements, if the sample size is large. 

From Theorem 2, clearly Y d,t would yield the effect of errors in predictor variable measurements. Here, Y d,t is defined as in Eq. (A5). Further, note 
that since response measurement is also error-corrupted, the values contained in Y d can be written as 

yd(xd) = yt(xd − ϵx) + ϵ(yt), (A12)  

where xd ∈ Nd(x) and yd ∈ Y d are error-corrupted values, yt and xd − εx are true values of predictor and response variables, respectively. The term ε 
represents measurement error in response variable which is a function of yt. Here, ε cannot be assumed independent of yt values since the variation of 
yt within Y d,t is large in this case as opposed to that in case 1. 

Denote the set containing true value yt corresponding to each true value in Nd(x) by Y d,t, as in Eq. (A5). Then, the minimum and maximum values 
contained in Y d are min(Y d,t) + ϵl(min(Y d,t)) and max(Y d,t) + ϵu(max(Y d,t)). Here, ϵl(min(Y d,t)) is the value of ϵ(min(Y d,t)) in the left tail of the 
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distribution such that probability of ϵ(min(Y d,t)) taking a value less than ϵl(min(Y d,t)) is γl. The term ϵu(max(Y d,t)) is defined similarly. For large 
sample, the probability γl will approach 0. The quantities min(Y d,t) + ϵl(min(Y d,t)) and max(Y d,t) + ϵu(max(Y d,t)) are lower and upper bounds of 
total measurement uncertainty due to errors in predictor and response variables. 

This completes the proof of case 3. 
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