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ABSTRACT

A hydrological model incurs three types of uncertainties: measurement, structural and parametric uncertainty.
For instance, in rainfall-runoff models, measurement uncertainty exists due to errors in measurements of rainfall
and streamflow data. Structural uncertainty exists due to errors in mathematical representation of hydrological
processes. Parametric uncertainty is a consequence of our inability to measure effective model parameters,
limited data available to calibrate model parameters, and measurement and structural uncertainties. The exis-
tence of these predominantly epistemic uncertainties makes the model inference difficult. Limits-of-acceptability
(LOA) framework has been proposed in the literature for model inference under a rejectionist framework. LOAs
can be useful in model inference if they reflect the effect of errors in rainfall and streamflow measurements. In
this study, the usefulness of quantile random forest (QRF) algorithm has been explored for constructing LOAs.
LOAs obtained by QRF were compared to the uncertainty bounds obtained by rating-curve analysis and the LOAs
obtained by runoff ratio method. Rating curve analysis yields uncertainty in streamflow measurements only and
the runoff ratio method is expected to reflect uncertainty in rainfall and streamflow volume measurements. LOAs
obtained by using QRF were found to envelop the uncertainty bounds due to streamflow measurement errors.
LOAs obtained by QRF and runoff ratio methods were similar. Further, QRF LOAs were scrutinized in terms of
their ability to reflect the effect of rainfall uncertainty, both qualitatively and quantitatively. Results indicate that
QRF LOAs reflect the effect of rainfall uncertainty: increase in standard deviation with increase in mean
streamflow values and decrease in coefficient of variation with increase in mean streamflow values. A mathe-
matical analysis of the LOAs obtained by the QRF method is presented to provide a theoretical foundation.

1. Introduction
1.1. Background

In a generic hydrological model,

y=g(x,0)+38+e¢,

residual time series y — g(x, 6°).

If an appropriate probability distribution over § and & may be
assumed, the parameters of the distributions along with hydrologic
model parameters can be obtained by using Bayes theorem (Kennedy
and O’Hagan, 2001). However, the use of formal probability distribu-
tions has its own challenges (Beven and Smith, 2015). Often, a proba-
bility distribution over the sum of § and ¢ is assumed, such as Gaussian or
generalized Gaussian (Schoups and Vrugt, 2010; Ammann et al., 2019;

(€Y

& and ¢ denote the effect of structural and measurement errors (Beven,
2005) in the estimation of time series of observed hydrologic variables
(e.g., streamflow) y by the approximate model g. Here x denotes model
inputs such as rainfall and temperature, and 6 denotes the set of model
parameters. Measurement errors refer to errors in measurements of
rainfall and streamflow, while structural errors refer to errors in the
mathematical representation of hydrologic processes. Given a parameter
set 6, the structural and measurement errors are estimated based on the
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Smith et al., 2015). But the residual time series can yield only an
aggregate estimate of the effect of measurement and structural errors,
that is, the quantities 6 and € are individually unidentifiable (Renard
et al., 2010, 2011; Brynjarsdottir and O’'Hagan, 2014). Separate identi-
fication of structural and measurement errors is required to determine
what part of modeling exercise needs to be addressed to reduce total
uncertainty, the data or the model (e.g., Reichert and Mieleitner, 2009)
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and to facilitate rejection of bad models.

To identify structural uncertainty in a model, strong prior informa-
tion about measurement uncertainties is required (Renard et al., 2010;
McMillan et al., 2012; Brynjarsdéttir and O’'Hagan, 2014; McMillan
et al., 2018), and this information should be obtained before calibration
and independent of the hydrologic model being used. Given information
about measurement uncertainty and the residual time series corre-
sponding to a model (or model parameters), a Bayesian characterization
of structural uncertainty is possible in the sense that one can obtain a
probabilistic estimate of the effect of structural uncertainty conditioned
upon each possible realization of rainfall (and other inputs) and
streamflow time series. Priors over measurement uncertainty are typi-
cally constructed by making aleatoric assumptions about the nature of
these errors. For example, one can obtain information about random
measurement uncertainty in streamflow by using rating curve analysis
(Kiang et al., 2018; Petersen-@verleir et al., 2009; Reitan and Peter-
sen-Overleir, 2009; Le Coz et al., 2014) or other probabilistic methods
(de Oliveira and Vrugt, 2022). But epistemic uncertainties in stream-
flow, such as those introduced by extrapolation of rating curve to gauge
heights well above the observations, may not be knowable. Reliable
information about rainfall measurement uncertainty cannot be obtained
in most situations. For instance, one may estimate the uncertainty in
areal average rainfall by assuming that this uncertainty is dominated by
spatial variability of rainfall and neglecting temporal errors and biases
(Moulin et al., 2009; Renard et al., 2011). Spatial variability can be
modeled using a statistical model such as Kriging, provided that enough
data to estimate the parameters of the variogram are available. This is
further complicated as the parameters of the variogram will change from
event to event in unknown ways. Precipitation data also incur timing
errors which can be significant if the precipitation gauges are sparse or
are located outside the watershed.

If the observed event seem to violate the principle of mass balance (e.
g., Beven and Westerberg, 2011), one may expect errors in the mea-
surements of either rainfall data, or streamflow data, or both. Such
time-periods in rainfall-runoff time series are referred to as dis-
informative (Beven and Westerberg, 2011) which should be discarded
before model fitting. A disinformative event can introduce bias in the
modeling effort because it violates mass balance, and also because it
affects the antecedent conditions for subsequent events (Beven and
Smith, 2015). Disinformative periods in a rainfall-runoff dataset may be
identified as the ones with exceptionally high and low runoff ratios
(Beven and Westerberg, 2011) where runoff ratio of an event is defined
as the ratio of total event streamflow to total event rainfall. What is an
exceptionally high or low value of runoff ratio may be determined using
the knowledge about the rainfall-runoff response of the watershed.
Several other attempts have been made to characterize the uncertainty
in hydrologic data and hydrologic modeling (e.g., Kuczera and Parent,
1998; Kavetski et al., 2006a, 2006b; Gabellani et al., 2007; Gong et al.,
2013; McMillan et al., 2018), but it still remains an unsolved problem
because of dominantly epistemic nature of these errors. Recently, Gupta
and Govindaraju (2022) noted that several methods have been proposed
for uncertainty analysis in hydrology but there is no consensus on which
method should be used.

Recently, the runoff ratio method has been proposed to construct
limits-of-acceptability (LOA) bounds on streamflow that could then be
used to identify behavioral models (Beven, 2019). A model (or a model
parameter set) is considered behavioral if the streamflow simulated by it
falls within the LOA at some predefined timesteps (Beven et al., 2022)
depending on the purpose of the modeling exercise. It is clear that LOA
should be such as to encompass the uncertainty due to measurement
errors in rainfall and streamflow. Thus, a model that properly accounts
for streamflow dynamics within the margin of measurement errors
would not be rejected and will be considered behavioral.

LOAs have also been defined using flow duration curves (FDCs;
Westerberg et al., 2011). In this method, measurement uncertainty over
streamflow time series is obtained using rating-curve analysis.
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Measurement uncertainty in streamflow is converted to an uncertainty
bound over FDC. A model (or model parameter set) is considered
behavioral if the FDC simulated by it falls into the FDC uncertainty
bound. However, this method only compares the probability distribu-
tion of observed and simulated streamflows and removes the temporal
information from the streamflow time series. Also, it does not account
for rainfall measurement errors. In fact, most of the methods to derive
LOAs are based on streamflow uncertainty only and neglect rainfall
uncertainty (e.g., Krueger et al., 2010; Coxon et al., 2014). To the best of
author’s knowledge, the runoff ratio method is the only method that
constructs LOAs while acknowledging uncertainty in both streamflow
and rainfall measurements. The runoff ratio method also has some
limitations as discussed below.

Fundamentally, the LOA method has been proposed in a rejectionist
framework (Beven and Lane, 2019), which makes it different from
Bayesian methods wherein no models are explicitly rejected. Frequentist
statistics also provides a model rejection framework such as the likeli-
hood ratio test (Neyman and Pearson, 1933), Fisherian hypothesis
testing (Fisher, 1956) and, more recently, evidential testing (Royall,
2017; Lele, 2004). But these methods are based on aleatoric assumptions
(as are Bayesian methods) about various uncertainties and, therefore,
are difficult to justify in hydrologic applications. There have been a
relatively few attempts in hydrology to use rigorous frequentist methods
for model inference (but see Pande, 2013a, 2013b). The LOA framework
provides an alternative to the formal statistical frameworks, as it com-
bines the elements of Bayesian theory (parameter update as the models
are tested against more data) and frequentist statistics (model rejection).
LOA can also be applied in a purely Bayesian framework by defining an
appropriate LOA-based likelihood function (e.g., Krueger et al., 2010).
The aim of this study was to explore the potential of using machine
learning algorithms called decision tree (DT) and, in particular, quantile
random forest (QRF) in constructing LOAs in gauged and ungauged
locations.

1.2. Runoff ratio method, and decision trees

In runoff ratio method, the rainfall and streamflow time series are
divided into separate rainfall-runoff events. Then, the rainfall-runoff
events with similar characteristics are pooled together. The main idea
is that the two similar events should have similar runoff ratios. Of
course, no two events are exactly similar, and there would be some
differences in runoff ratios. But the large differences can be (at least
partly) attributed to either rainfall and/or streamflow measurement
errors. The differences between runoff-ratio values of two similar events
may also result from imperfections in the methodology to compute
runoff ratios. Multiplying a zero-loss streamflow event with runoff ratios
of all the similar events would result in an ensemble of corresponding
streamflow hydrographs. Zero-loss streamflow can be obtained by
dividing the observed hydrograph by the corresponding runoff ratio.
Beven (2019) suggested that the upper and lower bounds of these
hydrographs be used as LOA over the rainfall-runoff event in question.
The different hydrographs in the ensemble can be assigned a weight
based on the similarity of the corresponding event with the event for
which LOA is being constructed. This method is described in more detail
below.

The advantage of the runoff ratio method is that it allows to define a
distribution of streamflow hydrographs for a given rainfall event and
antecedent conditions based on available data. A limitation of this
method is that it is applicable to flashy watersheds only (Beven, 2019).
Also, this method cannot account for potential timing errors in precip-
itation — it only accounts for errors in precipitation and streamflow
volume and further can be applied only at an event timescale. Further,
this method cannot be used to construct LOAs at ungauged locations
where streamflow data are unavailable for computing runoff ratios.

These limitations can be addressed by using a Machine Learning
(ML) method, while retaining the advantage of the runoff ratio method.
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Fig. 1. Ohio river basin (ORB) and USGS streamflow stations (green dots). The watershed with red background is St. Joseph River Watershed (SJRW).

A direct mapping between relevant watershed attributes, meteorological
data, and streamflow can be created by using an ML algorithm (e.g.,
Govindaraju, 2000; Zhang and Govindaraju, 2000, 2003; lorgulescu and
Beven, 2004; Shortridge et al., 2016; Kratzert et al., 2019). ML can be
particularly useful in constructing LOAs for baseflow dominated wa-
tersheds where runoff ratio method is not applicable and to construct
LOAs at ungauged locations. Further, the ML approach allows defining
LOAs at the scale of available data. As discussed below, ML algorithms
called decision trees (DTs) are particularly well-suited in this regard.

Another advantage of the ML approach is that data from several
watersheds may be used to train the model and define LOAs. Data from
different watersheds, however, may introduce disinformation because of
watershed-specific epistemic uncertainties (Beven, 2020). But the hy-
drologically relevant information available from other watersheds may
still be useful, especially when LOAs are to be constructed for an
ungauged watershed. An ML algorithm such as DT will be able to
identify hydrologically similar watersheds based on available watershed
characteristics, albeit that watersheds characteristics are typically rep-
resented by spatially averaged indices neglecting their spatial variation.
Thus, DTs are natural candidates to consider for constructing LOAs as
discussed below.

The uncertainties in hydrological data are predominantly epistemic,
which may change from event to event in unknown ways, and the true
statistical behavior of uncertainties will not be generally represented by
the available data. Therefore, DT would either overpredict or under-
predict the effect of measurement errors. While overprediction is
acceptable, underprediction may be problematic in many applications.
Therefore, one needs to allow for outliers while validating the models
using the LOA method (as in Beven et al., 2022). Further, the DT model
would compensate for systematic biases. These systematic errors cannot
be detected by a statistical approach. A bias term can be introduced in
statistical models, but these models would not be able to differentiate
between the bias in the data and the bias in the model simulations.

The classical method of finding uncertainty in the measurement of a
phenomenon is to repeat the measurement process several times under

identical conditions. The repeated sampling method, however, is
impossible for the measurements of environmental phenomena such as
rainfall and streamflow (McMillan et al., 2012). But an approximate
repeated sampling method may be implemented for environmental
measurements. The main idea is to estimate the effect of measurement
uncertainty using observations of rainfall-streamflow events under
similar conditions across several different events and/or several different
watersheds. The runoff ratio and DT methods can be thought of as
approximate repeated sampling techniques.

Once the LOAs are obtained, either formal or informal Bayesian (Liu
et al., 2009; Krueger et al., 2010; Beven and Lane, 2022) methodologies
may be used for subsequent uncertainty analysis. In informal methods,
one may define behavioral models (and model parameters) as ones that
yield streamflow time series within the LOA. Thus, all the models with
an inferior structure will eventually be rejected as more and more data
are used (at least that is the expectation). One can also use the apparatus
of formal Bayesian theory for model (or parameter) inference using the
LOAs in Approximate Bayesian Computation framework (Nott et al.,
2012; Sadegh and Vrugt, 2013; Vrugt and Sadegh, 2013; Vrugt and
Beven, 2018).

1.3. Objectives

The objective of this study is to develop a method for constructing
LOAs that can account for both precipitation and streamflow measure-
ment errors and can be used for ungauged catchments. In this study, we
ask if a variant of DT called quantile random forest (QRF) may be used to
construct meaningful LOAs. A second question is if the LOAs obtained by
QRF algorithm are comparable to those obtained by the runoff ratio
method of Beven (2019).

The novelty of this study lies in using QRF model to construct LOAs
that account for measurement uncertainty based on available data. To
address the objective of this study, uncertainty bounds obtained by QRF
model are scrutinized to check if they can be used as LOAs. The un-
certainties in real world data are, however, unknown; therefore, it is
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Table 1

Predictor variables in machine learning models to estimate streamflow time
series at a station in a river-network. Exploratory statistics in the third column
represent (minimum, maximum, median, and mean).

Predictor variable ~ Description Exploratory

Statistics

Drainage area Cumulative drainage area of (7.74, 250260, 624,

(Km?) streamflow station 4187)
Impervious Area* Percentage of impervious area (1.92, 7.74, 6.36,
(%) 6.44)
Sand Percentage of sand content (6.34, 49.61, 20.97,
content™* (%) 19.78)
Clay content (%) Percentage of clay content (15.88, 45.12,
26.03, 27.58)
Conductivity Average hydraulic conductivity of the (0.01, 77.22, 0.19,
(pms’l) drainage area 3.51)
Permeability Average permeability of the drainage (1.02, 15.09, 3.87,
(emhr ™) area 4.82)
Rainfall*** Total daily rainfall during current and -
previous 1, 7, and 30 days
Snowfall Total Daily snowfall during currentand -
previous 1 and 30 days
Snow depth Daily snow depth during current and -
previous 1 and 30 days
Temperature Average daily maximum and minimum -

temperature at current day

" Land-use data were collected from NLCD database.

" Soil data were collected from STATSGO database.

" Climate data were collected from Global Historical Climatology Network
(GHCN) database.

Table 2
List of USGS stations used for testing the proposed method.
These stations are located St. Joseph River Watershed
(SJRW).

USGS station

Drainage Area (km?)

04180500 2745.40
04180000 699.30
04179520 233.62
04178000 1579.90

impossible to check if the uncertainty bounds obtained by any method
represent true uncertainties. Some characteristics of the uncertainties
can be obtained by using statistical methods based on aleatoric as-
sumptions; we test whether the QRF estimated LoAs reflect the effect of
these uncertainties or not.

Further, this paper presents a mathematical analysis of the proposed
hypothesis. The goal of the mathematical analysis is (1) to show how
decision trees such as QRF can be used to encompass measurement
uncertainties due to errors in rainfall and streamflow measurements,
and (2) to clarify the logic and assumptions behind the proposed
method.

In Section 2, the theory behind DTs and QRF algorithm are discussed
along with the methodology to empirically test the proposed method.
Section 3 discusses the results of the study. Section 4 presents a brief
mathematical analysis of the QRF method in terms of defining LOAs.
Section 5 concludes the paper.

2. Theory and methodology
2.1. Study area, data, and the models developed

In this study, data from Ohio river basin (ORB) were used to calibrate
and validate the QRF model. This basin contains 431 USGS streamflow
stations (Fig. 1). The streamflow data were downloaded from USGS
website for all the 431 stations. Data for these watersheds are available
from water year 2011 to 2020. Total drainage area of each USGS station
was delineated on the 30m x 30m resolution digital elevation model
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(Archuleta et al., 2017; U.S. Geological Survey, The National Map, 2017)
by using the ArcHydro toolbox. For each of the drainage areas, predictor
variables (listed in Table 1) were computed or collected. Climate data
were collected over the study area from Historical Climate Network
(HCN) stations available at National Centers for Environmental Infor-
mation (NCEI) website.

To test the capability of the QRF model in capturing rainfall and
streamflow measurement uncertainties, data from St. Joseph River
Watershed (SJRW) were used as test cases. SJRW is located just above
the ORB in Northwest as indicated in Fig. 1 (see also Figure B1 in Ap-
pendix B). The drainage areas of the SJRW watersheds are listed in
Table 2. Specifically, QRF models were used to generate LOAs at four
USGS streamflow stations located in SJTRW.

Three kinds of QRF models were developed:

(1) Gauged-single scenario: In this case, four individual QRF models
were developed for each of the four SIRW watersheds using data
from the watershed where the LOAs were to be constructed. For
example, to construct LOAs at station 04180500, the data from
only this station were used to train the QRF model. These models
are referred to as “gauged-single models”.

(2) Gauged scenario: In this case, a QRF model was trained using data
from both the ORB and the four SJRW watersheds. The model
thus trained is referred to as “gauged model”. Three kinds of
models were developed in this scenario: (2a) QRF was trained
using data from all the training watersheds (referred to ‘gauged
all’), (2b) QRF was trained using data from the 4 most similar
watersheds to the watershed where LOAs are to be constructed
(referred to ‘gauged 4'), and (2¢) QRF was trained using the data
from the 20 most similar watersheds (referred to ‘gauged 20").

(3) Ungauged scenario: In this case, a QRF model was trained using
data only from the ORB watersheds without using the SJRW data.
The model thus trained will be referred to as “ungauged model”.

Out of the 431 ORB stations, 80% of the stations were fixed for the
calibration of QRF and the remaining stations were fixed for validation.
Similar watersheds in the ‘gauged scenario’ were selected based on the
watershed static attributes and the mean climate (mean precipitation
and temperatures). The first two scenarios allow us to test the usefulness
of QRF approach in constructing LOAs at a gauged location and the third
scenario allows us to test the usefulness of the approach at ungauged
locations. The comparison of the first two and the third scenario allows
to test the usefulness of data across multiple watersheds in constructing
LOAs.

2.2. Machine learning models to map predictor variables to streamflow

The main idea behind ML algorithms is to create a mapping between
predictor and response variables (Friedman et al., 2001, chap. 2). For
most watershed scale rainfall-runoff models, the set of predictor vari-
ables constitutes meteorological data, soil data, land-use data, etc.
(Table 1), and the response variable typically is streamflow time series.
Available data are divided into calibration and validation sets. The
samples contained in calibration set are used to create a mapping such
that a loss function, which is a function of the mapping, is minimized,
and the samples contained in validation set are used to test the gener-
alizability of the created mapping.

In this study, QRF was used to create a mapping between predictor
and response variables (Breiman et al., 1984; Breiman, 2001). The basic
building block of QRF is another ML algorithm called regression trees
(Friedman et al., 2001, chap. 9; Iorgulescu and Beven, 2004). Regression
trees create a non-linear mapping between predictor and response var-
iables. In this method, the space of predictor variables is divided into S
(contiguous) subregions, and in each subregion, the response variable is
approximated by a unique function.

Let the set containing predictor and response variables be denoted by
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Notation: First number in the subscript
refers to iteration number and the

second number refers to training subset
number
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Training set

Training subsets after 15
iteration

Training subsets after 2!
iteration

Training subsets after 3'
iteration

Leaf nodes

Fig. 2. Illustration of regression tree. In this hypothetical example, only three iterations were carried out to divide the training set into smaller subsets.

. Each element of & represents a calibration/training sample. Let the
ih calibration sample be denoted by (x;y;), then & = {(x1,y1), (x2,¥2),
..., (*n,¥y~n)} where N is the total number of calibration samples. The
vector X; is a p-vector where p denotes the number of predictor variables,
that is, x; = (xj1,Xi2,..., Xjp), and y; is a scalar that denotes the response
variable corresponding to the ith sample. In this study, the ith response
variable is streamflow at the outlet of a watershed at a particular time-
step. The i" predictor vector includes static watershed attributes and
meteorological data at multiple lags (Table 1). The regression tree is
created using an iterative procedure. In the first iteration, the set & is
divided into two (or more) subsets based on a randomly selected jo
predictor variable. Let the two subsets be denoted by &1, and &3, then

g—/ll = {(xi7yi)|-xtj <xj.(hresh}> (2)
Fn= N\,

where Xjresh denotes a randomly chosen threshold for jth predictor
variable. In the second iteration, the subsets &1; and &1, are further
divided into smaller subsets, and so on for subsequent iterations. At the
end of the iterative procedure, S smaller subsets of 7 are obtained, and
each subset occupies a distinct region of the predictor space. Thus, the
regression tree algorithm divides the predictor space into S contiguous
subregions. This method is referred to as regression trees because the
process of division of training samples into S subsets can be visualized as
creating a tree (Fig. 2, see also Friedman et al., 2001, pp. 268). The tree
grows deeper with each iteration. Therefore, the number of iterations is
also referred to as tree depth. Typically, a maximum value of tree depth,
d, is assigned to avoid overfitting. The subsets obtained in the last iter-
ation are also referred to as leaf nodes. It is clear that there is a rela-
tionship between the number of leaf nodes S and maximum tree depth d:
an increase in d implies an increase in S. Note that once the tree is
created, each subregion can be identified by a set of rules on predictor
variables.

After the tree is created, response of a sample with predictor vector x
is obtained as follows. The first step is to identify the subregion of the
predictor space to which the vector x belongs. Suppose that xbelongs to
the ith subregion corresponding to ith training subset denoted by S;. Then
the response variable corresponding to x is estimated as the average
response of calibration samples contained in S;

1 &
y(x) = A ZY(xj)7 3
i T

where L; denotes the number of samples in S;. Regression trees are

developed so that the sum of square errors between observed and esti-
mated responses is minimized (with some regularization to avoid over-
fitting). The averaging of data in the leaf node, however, neglects the
variability in the data. Therefore, not just the average but the entire
distribution y(x;) for x; € S; were used to construct LOAs as explained
below.

The method of regression trees is particularly suitable for the pur-
pose of creating LOAs because it mimics the function of an approximate
repeated sampler by grouping similar calibration samples (similarity in
predictor space) together based on several watershed attributes, thus
enabling the accounting of measurement uncertainty due to errors in
response and predictor variables. Regression trees have to be regularized
to avoid overfitting; therefore, B regression trees are developed instead
of a single one. Each of the B regression trees is created by randomly
drawing K samples by bootstrapping from the calibration set . This,
yields an ensemble Y(x) = {y; (x),¥5(x), ..., ¥g(x)} of streamflow esti-
mates corresponding to the predictor variable x where the bMestimate
¥yp(x), obtained by Eq. (3), corresponds to the b tree. The average of
values in Y(x) is taken as the final estimate. This method is known as
random forest (RF). In this study, the RF algorithm was used to create a
mapping between predictor variables (listed in Table 1) and streamflow,
and the streamflow in each subregion of the predictor space was esti-
mated as the average streamflow of calibration samples in that subre-
gion (Eq. (3)). But as mentioned above, taking averages of data in the
leaf node neglects the variability in the leaf node which might contain
important information about uncertainties. Therefore, quantile random
forest (QRF) technique was used to construct LOAs, where quantiles
instead of averages are computed. In this technique, the ensemble Yogrp
is constructed by using the entire distribution of data in leaf nodes. If a
given predictor, say x, falls into the i leaf node of the b™" tree, denoted
by S?, then the distribution of response variable in S? can be represented
as:

Y (x) = {yly; €S/, }- C))

Thus, we will have a distribution Y? for each tree. Now, the data from
each Y* can be combined to form an ensemble Yore(x)

Yorr(x) = {yly; € Y*,b=1,2,...B}. 5)

Note that the y; values contained in Yggr are observed values not the
estimates. QRF estimates different quantiles of the response for a given x
by treating Yqgr as the distribution of response. In this study, 2.5M and
97.5M percentiles obtained by QRF were used as lower and upper LOAs.
We found that these percentiles were typically adequate for constructing
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Table 3

List of priors over rating curve parameters.
Parameter Prior
m 7/{1,2,3} — discrete uniform
logax #(0.,8)
bi 7(0.5,3.5)
ho1 2/(— 5, min)
hs‘k y/<hs.k—1 i hmﬂx)
hox #(— 5,hsx_1)
hsq % (ho1,hmax)
¢ 7 %(2,0.1)
i 7(—1,1)
¥ %(1/0.57,0.57)

7/ = Uniform; 2 = Gamma; .7 ¥ = Inverse Gamma
x
«

1
e’

Gamma distribution: f(x) =

LOAs in the sense that most of the observations were enveloped by the
LOAs but a few flow values could not be enveloped. Therefore, in
practical applications, more extreme percentiles might be appropriate
for creating LOAs.

If the premise ‘the ensemble of estimated streamflow represents only
measurement uncertainty’ were true, then in the absence of measure-
ment errors the different streamflow estimates in the ensemble would be
(approximately) identical. In practice, however, even in the absence of
measurement errors, the streamflow estimates in the ensemble would be
different because of several reasons:

(1) Imperfections in creating the regression trees: These imperfec-
tions include selection of appropriate values of B (number of
regression trees) and S (number of leaf nodes). A large value of S
(or large value of maximum tree depth d) may result in an over-
estimation of measurement errors and conversely for a small
value of S (or small value of d). In this study, optimal values of B
and d along with minimum number of samples in a leaf node were
estimated by computing the out-of-bag (OOB) error. The OOB
error is the prediction error of calibrated RF from the left-out
training set. An early stopping method searches for the optimal
values of these parameters with the minimal OOB error.

Small calibration set which is inadequate to represent the popu-
lation of measurement errors: Calibration sets should be large
enough such that the variability in measurement errors (in rain-
fall and streamflow) is captured. In this study, data from a total of
431 ORB stations plus 4 SJRW stations were used, out of which
data from a total of 344 stations were used for calibration.

The set of predictor variables used to train the ML algorithm is
incomplete: If a relevant predictor variable is missed in the set of
predictor variables, the uncertainty bound yielded by QRF would
also contain structural errors. The predictor variables used in this
study are listed in Table 1. Though these predictors variable are
incomplete; they are still good enough to estimate the streamflow
time series accurately in many watersheds, as evident by high
NSE for some of the test stations shown in the results section.

2

—

3

~

Even after taking all the precautions, the LOAs created by QRF
method would still contain structural errors. QRF would be able to
construct better LOAs as the sample size increases. When the LOAs are to
be constructed at a gauged location, the longer length of data at the
location will be more important than the data from other watersheds.
But data from other watersheds would be the only option when LOAs are
to be constructed at an ungauged location.

The LOAs obtained by QRF were compared against the bounds ob-
tained over streamflow measurements uncertainty which in turn were
obtained by rating curve analysis. If the LOAs obtained by QRF indeed
reflect the effects of measurement uncertainties in rainfall and stream-
flows, these should envelop the uncertainty bound obtained by rating
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curve analysis. Also, we compared the bounds obtained by runoff ratio
method to the bounds obtained by QRF method. Analysis of rating curve
and runoff ratio results was carried out at the four USGS streamflow
gauging stations within SJRW as indicated in Table 2. SJRW is located
immediately Northwest of ORB as indicated in Fig. 1.

Moreover, the QRF LOA should also reflect the effects of measure-
ment uncertainty in rainfall. In this study, the measurement uncertainty
in areal average rainfall was obtained using an empirical approach. One
challenge is that the rainfall uncertainty bounds cannot be directly
compared to the LOAs since rainfall is processed through the watersheds
in a highly non-linear fashion before it reaches the watershed outlet.
There is no exact way of translating measurement uncertainty in rainfall
to streamflow space. Therefore, in this study, the various realizations of
rainfall were processed through the SCS curve-number (CN) formula for
different values of CN to get an estimate of excess rainfall. Subsequently,
coefficient of variation of streamflow (CVg) were compared to the co-
efficient of variation of excess rainfall time series (CVR).

2.3. Rating curve analysis to quantify uncertainties in measured
streamflow

The streamflow at a river cross-section is estimated using the
observed relationship between measured gage heights at the cross-
section and corresponding measured discharges; this relationship is
referred to as rating curve (Herschy, 1993). Commonly, a rating curve is
modeled as multiple power law segments (Le Coz et al., 2014):

0, h < hoy,
loga; + bilog(h—hoy), hoy <h < hyy,

logaz + bleg(h - h0,2)7 hs.l S h S hs.Z,-

IOg(Qr(h)) = 6)

loga, + bulog(h— hon), s mr <.

In Eq. (6), Q; is the estimated streamflow, h is measured gage height,
ho1 is the cease-to-flow parameter of lowest power-law segment which
corresponds to height of riverbed with respect to datum, hg is the upper
bound of kthpower-law segment on h axis, hox is the cease-to-flow
parameter of kthsegment, ax and by are the multiplier and exponent pa-
rameters of the k'segment, and m is the number of rating curve seg-
ments. Typically, several gage heights are measured during a day which
are then converted to streamflow using the rating curve. Eq. (6) corre-
sponds to Manning equation (Sturm, 2001) for flow in open channels
(with the assumption that hydraulic radius is approximately equal to
depth; Le Coz et al., 2014) and is a frequently used relationship in hy-
draulic modeling. Errors in gage height measurements may be assumed
negligible (Reitan and Petersen-@verleir, 2009). Thus, uncertainties in
estimated streamflow are mainly due to errors in direct measurements of
streamflow that are used to construct the rating curve. In this study, the
following model was used to quantify the uncertainties in estimated
streamflow:

Q(h) = Qr(h) + €, (]

where Q.(h) is determined by Eq. (6), €, is the random measurement
error in observed streamflow and Q(h) is the observed streamflow.
Further, we assumed the &,’s at different time-steps to be distributed
independently as skewed exponential power distribution (Fernandez
and Steel, 1998). Also, Q(h) was truncated at zero which makes the
probability density of Q equal to

i () o (e) + £ (el ()}

po(Q) 1—®(0[Q:, ¢, 5,7)

Tj0.«)(0), (3

where y € (0, o) is the skew parameter, I denotes the indicator function,
®(0|Qy,¢, B, 7) is the probability that the value of untruncated Q is less
than zero, and f,, is the power exponential distribution with scale
parameter ¢ and shape parameter € ( — 1, 1],
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Table 4
Number of rainfall-runoff events for each of the USGS stations in the SJRW.

USGS station Number of rainfall-runoff events

04180500 138
04180000 148
04179520 139
04178000 146

1
2

€r

fule)=T" (1 +L)2<H&ﬂ> ¢ 'ex ( = m) 9)
e 1+p P ol )

The priors listed in Table 3 were used as weakly informative priors
over parameters of the models Q; and ¢, following Reitan and Peter-
sen-Overleir (2009). Strictly, uniform priors over the parameters of Q;
are not non-informative (Gupta et al., 2022). This difference, however,
would have minimal effect on our analysis as we are concerned only
with the width of uncertainty bounds over streamflow time series, not
the probabilities assigned to different realizations of streamflow time
series. Further, we have not imposed any upper limit on the distribution
of streamflow. Very low (practically zero) probability will be assigned
beyond a certain magnitude of Q (irrespective of the prior distribution
used) — the results obtained for the four SJRW stations confirm that
absence of upper limit does not have any effect on the obtained uncer-
tainty bounds. Validity of the error model of Eq. (8) was assessed
a-posteriori via QQ plots.

The aleatoric assumption made in the analysis may not be valid
during the peak events. It has been shown using hydraulic modeling that
uncertainty during peak events can be very high (Di Baldassarre and
Montanari, 2009). These uncertainties are epistemic in nature rather
than aleatoric, and, therefore, a formal statistical treatment of these
uncertainties is difficult. To test how well the QRF LOAs envelop the
streamflow uncertainty due to these epistemic sources, we computed the
fraction of peaks enveloped by the QRF LOAs, if the true peaks were
some multiple f of the observed peaks, with f varying from 1.1 to 2. We
refer to this analysis as the multiplier analysis in this study. Only the
peaks with flow values greater than 50-percentile were considered for
this analysis.

The posterior distribution over parameters was computed using
Delayed Rejection Adaptive Metropolis (DRAM) algorithm (Haario
et al.,, 2006) in an approximate Bayes setting (Nott et al., 2012). The
approximate Bayes computations facilitated faster convergence to a
posterior distribution. This method of rating curve analysis is same as
that of Reitan and Petersen-@verleir (2009) except that they used a
multiplicative error model instead of an additive error model. The
multiplicative error model was considered unsuitable in this case
because of the large range of streamflow values as opposed to that in
Reitan and Petersen-@verleir (2009) study: a multiplicative error model
would result in unrealistically high uncertainties at larger values of
observed streamflow. Additive error structure used in this study was
found to be appropriate (by the way of QQ plot test) in the examples
considered in this study. Convergence to posterior distribution was
confirmed using R-diagnostic statistic (Rg; Gelman and Rubin, 1992).
Markov chains were assumed to converge to posterior distribution if Rg
converged to a value below 1.1 and never increased on further simula-
tions of the chains. The posterior distribution was further processed to
remove the parameter sets that yielded large deviations between
observed and estimated streamflow: the deviation between observed
and estimated streamflow was measured using sum-of-square-errors.
The computed posterior distribution over parameters (of both Q,; and
g;) was used to simulate several streamflow time series that were
assumed to represent random uncertainty in measurements of stream-
flow, as obtained by the rating-curve method.
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2.4. Uncertainty bound in areal average rainfall

The uncertainty in areal average rainfall exists due to errors in
rainfall measurements at a gauging station and due to spatial interpo-
lation. Errors in rainfall measurements at a gauging station are difficult
to obtain due to lack of a simple error model. The errors due to spatial
interpolation are likely to dominate the total error in areal average
rainfall (e.g., Renard et al., 2011). Therefore, the errors in rainfall
measured at a gauging station are neglected in this study, and it is
assumed that the errors in areal average rainfall exist solely due to
spatial variability of rainfall. Several different models have been pro-
posed to capture the spatial variation of rainfall such as cluster point
Poisson processes (Waymire and Gupta, 1981a, b, c), random cascades
(Gupta and Waymire, 1993), Kriging (Moulin et al., 2009), and condi-
tional simulations (Renard et al., 2011). All these models treat rainfall as
arandom field in space-time domain. But most of these models are based
on strict assumptions about the covariance of spatial rainfall or error
structure which are not justifiable in practice. Even if the assumptions
are approximately true, the rain gauge density is typically too small to
reliably estimate the parameters of the covariance function. This issue is
further complicated as the covariance structure may vary from event to
event in unknown ways, depending upon the type of event. Therefore, in
this study, an empirical approach was used to get an estimate of the
uncertainty in areal average rainfall.

There were 6 rainfall gauging stations near the SJRW (locations on
these stations are shown in Fig. B1) at which daily timescale data were
available. Typically, data from the available rain gauges are used to
compute a single areal average rainfall time series using the Thiessen
polygon interpolation method. In this study, all the 63 = (26 — 1)
different combination of the 6 rain gauges were used to produce 63
realizations of areal average rainfall using the Thiessen polygon method.
These 63 realizations represent an estimate of uncertainty in areal
average rainfall.

2.5. Uncertainty bounds using runoff ratio method

The QRF method does not allow one to incorporate a hydrologists’
knowledge about a watershed to construct the measurement uncertainty
bounds. One method that allows incorporation of such knowledge was
proposed by Beven (2019) using runoff ratios of observed rainfall-runoff
events. In this method, only the observed rainfall-runoff data (along
with evaporation data) of the watershed in question are used to create
LOAs. This method was used to derive LOA estimates that were then
compared to the LOAs estimated by the QRF algorithm.

In the first step, the observed rainfall-runoff data were separated into
different rainfall-runoff events. This kind of hydrograph separation re-
quires estimation of the recession curve. To this end, the master reces-
sion curve (MRC) technique was used (Lamb and Beven, 1997) — MRC is
a characteristic recession curve of the watershed (Tallaksen, 1995).
Once an MRC is defined, the streamflow time series can be divided into
different rainfall-runoff events. In this study, a rainfall value below
1mmday ! was considered negligible, and a new rainfall event was
assumed to start if the rainfall was negligible for more than 7 consecu-
tive days. For example, a new rainfall event started at time-step t, if the
rainfall values at the time-steps t, _ 1, ..., and t; _ 7 were less than
1mmday . The streamflow hydrograph corresponding to each rainfall
event was assumed to start at the beginning of the rainfall event and end
just before the start of next rainfall period. Next, MRC was appropriately
appended at the end of the streamflow hydrograph for each
rainfall-runoff event. The number of rainfall-runoff events, thus ob-
tained for four of the stations in SJRW, are listed in Table 4.

In the second step, the runoff ratio of each event was computed as the
ratio of the total volume of event streamflow to the total volume of event
rainfall, where ‘event streamflow’ refers to streamflow time series ob-
tained after appending the MRC. This resulted in an ensemble of runoff
ratios. In the third step, LOAs were computed over each of the rainfall-
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Fig. 3. (a) Spatial distribution of NSE values for the test set including ORB and SJRW station, and (b) cumulative distribution function (CDF) of the test NSE values.

These NSE values were derived from ungauged model.
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Fig. 4. Observed vs. estimated streamflows at four stations in St. Joseph River Watershed (SJRW). The estimated streamflow values were derived from unga-

uged model.

runoff events in an iterative manner. To construct the LOAs over the i
event, the events in the ensemble similar to the it" event were identified
based on antecedent moisture condition and total volume of rainfall
during the event. As an estimate of the antecedent moisture conditions,
initial streamflow of the event was used. Thus, the events that were
closest to the i event were identified by using the Mahalanobis distance
between the events using these two variables (this is the k-nearest
neighbor approach used by Beven, 2019). Appropriate value of the
Mahalanobis distance to define the closeness of two events is a subjec-
tive decision. In this study, we first computed the Mahalanobis distance
of the i event from rest of the events, and, then normalized the distance

values to lie between 0 and 1. Now, events similar to the i’ event may be
defined as the events that are dy,y distance away from the ith event,
where dy n denotes normalized Mahalanobis distance. Several values of
dy,n were used to analyze the impact of this threshold on uncertainty
bound. After the completion of the third step, one obtains runoff ratios of
the i event and those of other N; events that are similar to the i" event.
In addition to the k-nearest neighbor approach, we also used decision
tree approach to group similar events again based on antecedent mois-
ture condition and total rainfall volume. In what follows, the abbrevi-
ations RR-KNN and RR-QRF will be used to refer to runoff ratio method
applied using k-nearest neighbor method and QRF method, respectively.
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Fig. 5. LOAs obtained by quantile random forest (QRF) in different gauged scenarios: using all the training watersheds (green band), 20 most similar watershed
including the four SJRW watersheds (blue lines), 4 SJRW watersheds (blue-dash lines), and gauged single model (orange-solid lines). Uncertainty bounds obtained by
rating curve analysis (black-dash), and observed streamflow (red dots), along with precipitation are also shown.

In the fourth step, the streamflow time series of the i event was
divided by its runoff ratio C;, thus yielding a zero-loss streamflow time
series of the i event that would have been observed if the runoff ratio of
the i event was equal to 1. The zero-loss streamflow time series was
then multiplied by the largest and smallest runoff ratios to obtain upper
and lower bounds of LOA. In RR-KNN method, the largest and smallest
runoff ratios were identified among the N; runoff ratios of the events

similar to the ievent. In RR-QRF approach, the largest and smallest
runoff ratios were the 100th and Oth percentiles in the leaf node to
which the i event belonged. RR-QRF approach is more objective than
the RR-KNN approach since the value of dyn needs to be specified
subjectively in the latter. However, specification of appropriate per-
centiles in RR-QRF incurs some subjectivity.
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Table 5
Fraction of observations enveloped by the QRF LOAs.

QRF ungauged QRF gauged QRF gauged-single
04180500 0.97 1.00 0.99
04180000 0.97 1.00 0.99
04179520 0.94 1.00 0.99
04178000 0.96 1.00 0.99

3. Experiments with rainfall-runoff data

3.1. An evaluation of decision tree (DTs) in terms of predicting
streamflow

Fig. 3 shows the NSE values obtained by the RF ungauged model for
the watersheds contained in the test set. NSE was greater than 0.60 for
55% of the watersheds and was greater than 0.5 for 80% of the test
watersheds. There were some systematic patterns in the spatial distri-
bution of NSE values. NSEs were typically higher in the eastern part of
the basin than those in the western part. Most watersheds in the eastern
ORB had NSEs greater than 0.5. For about 20% of all the test watersheds,
the NSE was less than 0.5. It is likely that the RF algorithm could not
identify the rainfall-runoff relationship in these watersheds, possibly
because the hydrological behavior of these watersheds is not repre-
sented in the data. Overall, the performance of the RF model was
deemed acceptable for majority of the watersheds for which NSE was
greater than 0.50. It captured the rainfall-runoff dynamics in the sense
that its response to input rainfall is hydrologically consistent. The term
‘hydrologically consistent’ is used to refer to an expected behavior of
hydrological models: increasing streamflow with increasing rainfall
under similar antecedent conditions. One question is if QRF model can
be used to construct LOAs in a watershed where the NSE is low. We note
that low NSE value can also be due to errors in streamflow or rainfall
data. But still the LOAs obtained for these watersheds may not be reli-
ably used for model inference. Fig. 4 shows the observed and predicted
streamflow for the four stations located in SJRW. NSE was close to 0.6
for the three of the stations but was poor (=0.36) for station 04178000.
These values seem adequate for constructing measurement uncertainty
bounds except for station 04178000.
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3.2. Limits-of-Acceptability (LOA) constructed by the QRF models

Fig. 5 shows the LOAs obtained by the QRF models trained under the
first two scenarios (gauged-single and gauged) along with the uncer-
tainty bounds obtained by the rating-curve analysis. Since rating curve
analysis yields uncertainty due to errors in streamflow measurements
only, LOAs obtained by QRF should envelop the uncertainty bound
obtained by rating curve analysis as shown in Fig. 5. A similar obser-
vation was made for the majority of the cases (Table 5). Among the
different QRF models (QRF-gauged-all, QRF-gauged-20, QRF-gauged-4,
QRF-single), the LOAs obtained by the QRF-gauged models were widest
and the LOAs obtained by the QRF-gauged-20 and QRF-gauged-4
models were typically close to each other. The QRF-single model
yields very narrow LOAs at the two peaks shown (at time-steps 410 and
438). These two peaks are among the highest flow values observed in
these watersheds implying that more data are required to construct
reliable LOAs for these peaks. This illustrates the practical difficulty in
constructing LOAs and highlights the need to allow for outliers when
LOAs are used for model inference. There would not be enough data to
estimate LOAs for events with return period greater than 2 to 10 years in
many instances. The LOAs obtained by the three QRF-gauged models
(QRF-gauged-all, QRF-gauged-20, QRF-gauged-4) were very similar
except at a few time steps. As mentioned above, the 4 and 20 most
similar watersheds to train the QRF model were identified using static
watershed attributes. These static attributes are already used by the QRF
method to partition the data into leaf nodes, which explains the simi-
larity of LOAs obtained by the three QRF-gauged models.

The uncertainty bound obtained by rating curve analysis was
significantly narrower at most of the time-steps indicating that errors in
rainfall measurements contribute more to measurement uncertainty
than do the errors in streamflow measurements. But the streamflow
uncertainty bounds shown in Fig. 5 were obtained by making aleatoric
assumptions. The peak streamflow values may contain larger un-
certainties. Fig. 6 shows the fraction of peaks enveloped by upper
bounds of LOAs if the observed peak magnitude were multiplied by a
factor f. As the multiplier f increases, the fraction of peaks enveloped by
the QRF uncertainty bound decreases. This decrease, however, occurs at
different rates for the three models. Interestingly, the fractions of
multiplied peaks enveloped by the LOAs were larger for the gauged-
single model than the ones obtained by the gauged-all model. This is
likely from timing errors in precipitation data as discussed below. The
typical errors in peak streamflow have been reported to be 20-40% (Di
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Fig. 7. Standard deviation of streamflow time series obtained by RF method plotted against observed streamflow data. The standard deviation increases with in-

crease in streamflow value.

Baldassarre and Montanari, 2009); Fig. 6 shows that more than 55% of
the peaks were enveloped in these ranges of errors by all the three
models. Even for 100% errors, more than 30% of the peaks are envel-
oped by the QRF LOAs across the three models.

One of the characteristics of the LOA by the QRF method (Fig. 5) is
that it is very wide at the time-steps corresponding to streamflow peaks
and narrow at the time-steps where streamflow is small. Although not
shown here, this pattern was visible throughout the study period. Fig. 7
shows the standard deviations of streamflow obtained by QRF method
plotted against streamflow. The standard deviation increases as
streamflow value increases in keeping with how rainfall uncertainty
typically propagates to streamflow uncertainty (Moulin et al., 2009;
Renard et al., 2011). These observations suggest that QRF is able to
account for the effect of uncertainty due to rainfall and streamflow
measurement errors.

One seeming discrepancy to the pattern discussed above is the wide
LOA obtained by the QRF-gauged method between time-steps 410 and
420 even when the streamflow time series is in recession phase (Fig. 5) —
this is especially the case for the stations 04180500 and 04178000. Data
show that some rain did fall over the watershed at these time-steps
(Fig. 5), and this rain event was similar in magnitude to the rain event
that generated the streamflow peak at time-step 424. One possibility is
that this rain event did not result in streamflow due to spatial location of
the event (rain event might be far from the watershed outlet). The sec-
ond possibility is that the rainfall measurement at the gauging station is
erroneous. The third source of error is the unknown true intensity of
rainfall: The observed rainfall data are at daily timescale and two events
with same intensity at the daily timescale may have very different in-
tensities at sub-daily timescales which will result in different hydro-
graphs. These are examples of epistemic errors, and the exact reason for

11

these errors is difficult to know. In fact, we do not even know whether
the measurement is actually erroneous. A good hydrological model
forced with this rain event and uninformed by true spatial distribution
and true intensity of rainfall will still generate a streamflow event (if the
antecedent conditions allow). It would be unwise to reject this model if
these errors indeed exist. This illustrates how QRF can account for
epistemic errors. Similarly, at time-step 450, a wide LOA was obtained
by the QRF method for three of the stations whereas streamflow time
series is in recession phase. Again, a rainfall event was observed at this
time-step which apparently did not result in a streamflow peak, and the
same arguments apply.

In some of the events, timing errors between observed peak and QRF
simulated peak were observed primarily in the LOAs created by the QRF-
gauged model. An example of such timing errors may be seen at time-
step 438 in Fig. 5. These timing errors occurred for less than 20 events
per watershed (see also Fig. 11 where LOAs for a few other time-steps
are also shown). For the five peak events shown in Fig. 5, timing error
occurs only for one event for the three stations 04180500, 04180000,
and 04179520. Out of the two major peaks at time-steps 410 and 438,
timing errors at time-step 438 are present for stations 04180500 and
04180000.

There seem to be two possibilities behind these timing errors: (1)
disinformation introduced by the data from other watersheds, or (2)
timing errors in rainfall data. For the stations 04180500 and 04180000,
there is zero lag between rainfall and QRF obtained streamflow peak at
time-step 410. Meanwhile at time-step 438, a lag of 1-2 days between
rainfall and streamflow peak is observed. Further, the rainfall event at
time-step 438 is more intense (at daily timescale) and one would expect
a smaller lag between rainfall and streamflow peaks for this event
compared to the lag observed for the event at time-step 410. Therefore,



A. Gupta et al.

60

(a) 04180500

50

40

30 1

20 A

10 4

436

(c) 04179520

Precipitation (mm)

50 1

40

30 A

20 A

10 1

430 432 434 436

438

438

Advances in Water Resources 178 (2023) 104486

60

(b) 04180000

50 A

40

30 1

20 A

10 A

436 438

(d) 04178000
50

40

30

20 -

10 A

0
430

432 434 436 438

Day since 1 Jan 2008
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it seems more likely that the computed areal average rainfall has timing
errors for this event. We note that it is also possible that the sub-daily
timescale intensity of the event at time-step 438 was low which would
justify the delay in peak. This is again an example of epistemic
uncertainty.

The same arguments apply for the timing errors observed at the
station 04178000, especially at time-step 424 where the lag between
computed areal rainfall peak and observed streamflow is 3 days. The
timing errors at the station 04178000 were more frequent which is
partly the reason for poor validation NSE value at this station (Fig. 4). It
is worth noting that the timing errors between LOAs constructed by
QRF-single model and observed streamflow were typically absent. It is
possible that the model has compensated for timing errors in
precipitation.

Potential for the timing errors in rainfall around time-step 438 is also
illustrated in Fig. 8 which shows all the different realizations of the areal
average rainfall. For the majority of the realizations, the second pre-
cipitation peak occurs at time-step 436 while for a few realizations the
second peak occurs at time-step 435. These realizations were con-
structed using six gauging stations which are located outside but near
the SJRW watershed (Fig. B1). If data from more stations were available,
some of the realization might have very well shown the second peak at
the time-step 437.
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It is worth noting that the information about consistent timing error
may not be revealed by QRF-single model as it will learn this as a
behavior of the watershed. Thus, this analysis illustrates the usefulness
of data from different watersheds in constructing LOAs. Further, the
analysis also illustrates how the LOAs constructed using decision trees
may potentially capture the effect of timing errors. It is possible that the
timing errors between the observed and QRF (gauged model) simulated
peaks occur because of disinformation introduced by data from other
watersheds. Therefore, it seems prudent to construct multiple LOAs
using data from different sets of watersheds and use a combination of
these LOAs for model inference.

Fig. 9 shows the CVgr (coefficient of variation) of areal average
rainfall obtained by using the empirical approach described above. The
CVg values decrease as areal average rainfall increases, at all the sta-
tions. At first one may attribute this behavior to standard deviation of
rainfall being constant irrespective of the mean rainfall value. However,
it was observed that standard deviation of areal average rainfall in-
creases with increasing mean rainfall values (now shown) similar to the
standard deviation of streamflow. The CV values of excess rainfall, ob-
tained by SCS-CN method, also follow the same pattern as areal average
rainfall. But the CVs corresponding to excess rainfall were typically
higher than the CVs corresponding to areal average rainfall. The dif-
ference between excess and areal average rainfall CVs become smaller
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for higher values of areal average rainfall. Many of the small non-zero
areal average rainfall values produce no excess rainfall; increased
number of zeros in excess rainfall increases the CV.

Fig. 9 shows that variation of CVq with streamflow follows the same
pattern as that of variation of CVy with mean areal average rainfall; CVg
decreases as mean streamflow increases. For all the four stations, the
magnitudes of CVs are of similar order for the areal average rainfall and
streamflow time series. Another pattern in CVg plots is that there is a
larger (smaller) scatter in these values when mean rainfall is small
(large). The same pattern can be seen in streamflow values also. The
rainfall time series is transformed non-linearly through a watershed to
yield streamflow. The same rainfall event can result in very different
streamflow hydrograph depending upon the spatial distribution of rain
within the watershed and antecedent moisture conditions. Thus, for a
given rainfall magnitude, many different values of streamflow are
possible which explains the larger scatter in CVq. Fig. 9 indicates that
the statistical structure of RF uncertainty bound reflects the effect of
rainfall uncertainty. Overall, these results combined with the results
discussed above indicate that the DTs could account for the effect of
uncertainty due to errors in rainfall and streamflow measurements.

Further, it can be argued that any model with heteroscedastic error
structure would result in uncertainty bounds as shown in Fig. 5. The QRF
method does not enforce heteroscedastic error structure, rather this
error structure was identified by the algorithm from the data. The ex-
periments with synthetic data showed (results not shown) that if the
errors are homoscedastic, QRF produces homoscedastic error structure,
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and if the errors are heteroscedastic, QRF produces a heteroscedastic
error structure. LOAs shown in Fig. 5 do not represent measurement
uncertainty only — it is likely that structural errors of QRF model are also
contributing to these bounds.

3.3. How do QRF LOAs compare to the LOAs obtained by the runoff ratio
method?

Fig. 10 shows the LOAs obtained by the runoff ratio method, along
with the ensemble of runoff ratios at four of the gauging stations in
SJRW. Ideally, the runoff ratios should lie between 0 and 1. The errors in
rainfall and streamflow measurements, and inexactness of hydrograph
separation method, however, may result in values of runoff ratios
greater than one (Beven and Westerberg, 2011). Indeed, a few
rainfall-runoff events had runoff ratio values greater than 2 which are
likely to have occurred due to significant biases in rainfall measure-
ments. These periods can be referred to as disinformative periods
(Beven and Westerberg, 2011) which should not be used for parameter
estimation and uncertainty analysis. In this study, however, these events
were kept for further analysis as the final aim is to compare the bounds
obtained by different methods. It may be noted that QRF will not
recognize such disinformative periods but it will yield appropriate un-
certainty bound for these events making it unlikely that a good model
will be rejected by using the LOAs obtained by the QRF algorithm even if
it includes disinformative periods. For example, if a rainfall event has
large negative bias, QRF will identify this event as similar to other events
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Fig. 10. LOAs obtained by runoff ratio method (left) and runoff ratios plotted against total rainfall of the each of the rainfall-runoff events (right).

with small rainfall and the LOAs for this event will span a large range of
streamflow values.

Fig. 10 shows the LOAs obtained by using the runoff ratio method
where similar events were selected using KNN method (with two
different distance thresholds dyn = 0.2and 0.3) and by using QRF
method. One expects the LOAs to envelop all the observations and the
uncertainty bounds to become wider as the value of dy y increases. This
is indeed observed in Fig. 10 with the following special case: the ob-
servations coincide with the upper LOA at a few time-steps for small dy;n
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values. These cases occur because of the small number of rainfall-runoff
events available at a station and even smaller number of similar rainfall-
runoff events; this prohibits the construction of robust LOAs. LOAs ob-
tained by RR-QRF method were typically wider than the those obtained
by the RR-KNN method which is partly a consequence of using 0% and
100% percentile values of data in the leaf node for defining these bounds
(see Section 2.5).

QRF-gauged algorithm yielded tigher LOAs compared to those ob-
tained by runoff ratio method for a few time-steps (Fig. 11). But at other
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times-steps, e.g., between 400 and 420, the QRF LOAs were wider. There uncertainty. If the patterns of LOAs obtained by QRF and runoff ratio
is one general similarity between the LOAs obtained by QRF and runoff method were significantly different, that would have disproved the
ratio method: the width of both LOAs increase or decrease almost syn- usefulness of QRF in constructing LOAs.

chronously in time (except for a few timing errors, see above for a dis-

cussion of this issue). This gives us further confidence that the LOAs

obtained by QRF are able to capture general patterns of measurement
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Fig. 12. Convergence properties of LOAs obtained by the QRF algorithm.

3.4. Convergence of LOAs obtained by QRF algorithm

To test the convergence properties of QRF estimated LOAs with
increasing length of data, several QRF models were developed using
different lengths of training data. In these experiments, data from only
that watershed where LOAs are to be constructed were used, i.e.,
gauged-single models were developed. For each of the four test water-
sheds, 12 different gauged-single models were developed using 1, 2, ...,
12 years of data. Fig. 12 shows the 97.5th percentiles of LOAs thus ob-
tained using different amounts of data. For three stations (04180500,
04180000, and 04178000), LOA estimates at high flow time-steps
started to converge when more than three years of data were used,
but there were a few high flow time-steps where LOAs did not converge.
At station 04179520, the convergence of LOAs seems to be much slower
than the convergence at other stations. LOAs appear to be converging for
low flows as well but more data are required to achieve the final bounds.

3.5. Limits-of-acceptability (LOA) created using the QRF ungauged model

One of the major advantages of the QRF algorithm is that it can be
used to construct LOAs at ungauged locations. Fig. 13 shows the LOAs
constructed by the QRF ungauged model, along with LOAs constructed
by the other models for comparison. The LOAs obtained by the QRF-
ungauged model were typically wider than the LOAs obtained by the
other models. The timing errors between LOAs and observed streamflow
can also be observed for the QRF-ungauged model.

At time step 406, there exists a widening of LOAs along with a very
small peak in observed streamflow, but the observed precipitation is
either zero or negligible. This is clearly because of an error in precipi-
tation magnitude. It is likely that there was a small amount of precipi-
tation in the watershed which was not recorded by the precipitation
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gauges. There were a few other such events where very small observed
precipitation corresponded to a significant observed streamflow result-
ing in very high runoff ratios (as discussed above). Therefore, depending
upon the precipitation magnitudes during current and previous time
steps, QRF predicts a peak in streamflow. Such peaks would not have
any impact on model inference in the sense that a hydrological model
would not produce streamflow peaks in the absence of rainfall and the
simulated streamflows would always be enveloped by the LOAs at these
time steps.

Fig. 6 shows that more than 60% of the multiplied peaks were
enveloped by the QRF LOA even for 100% errors (f = 2) for the unga-
uged model. The analysis suggests that LOAs obtained by the ungauged
model are very conservative. This is desirable when the LOAs are to be
constructed at an ungauged location so as to include a large number of
rainfall-runoff behaviors. The results of this analysis are encouraging in
terms of usefulness of QRF approach in creating LOAs at both gauged
and ungauged locations.

4. Logic behind the proposed method

In this section, a mathematical argument is presented for using DTs
for constructing LOAs. We hypothesize that if infinite amount of hy-
drological data are available, DT-estimated LOA will reflect the effect of
uncertainty due to errors in rainfall and streamflow measurements. This
is a hypothetical scenario (as infinite data are never available) but it
serves to illustrate the usefulness of DTs in constructing LOAs and pro-
vides a theoretical basis. In practical cases, the DTs would also reflect
variability due to other sources. As the number of calibration samples
approaches infinity, the error incurred by a DT approaches optimal Bayes
error (Denil et al., 2014) which is the irreducible part of the error due to
inherent variability in the process and due to measurement errors (both
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(orange), along with observed streamflow and precipitation.

epistemic and aleatoric). Assuming, for the sake of discussion, that there
is no inherent variability in the hydrological processes (more on this
below), then errors incurred by a decision tree approach measurement
error as the samples size increases. Thus, the results of Denil et al. (2014)
suggest that decision tree can be used to account for measurement un-
certainty, even if it holds only for the hypothetical case of infinite data.
However, it may not be immediately clear how the uncertainty bounds
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obtained by decision trees represent measurement uncertainty in case of
infinite sample size. Here, we answer this question and elucidate the
logic behind the proposed hypothesis. A formal analysis of the proposed
hypothesis is provided in Appendix A.

First, consider the case where only the streamflow measurements are
uncertain, and the rainfall measurements are free of errors. Further,
assume that the errors in streamflow measurements are unbiased. As the
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Fig. B1. Four sub watersheds located in St. Joseph River Watershed (SJRW) along with the precipitation gauges.

sample size increases, the diameter of each leaf node approaches zero,
that is, predictor vectors contained in a leaf node are approximately
equal (a formal proof of this statement is given in Appendix A). The true
streamflow values corresponding to predictor vectors contained in a leaf
node are approximately equal and any variations in the observed
streamflow would be due to measurement errors. Thus, given an infinite
sample, the minimum and maximum values contained in the leaf node
represent lower and upper bounds over streamflow, and the difference
between these bounds is due to measurement uncertainty. A formal
analysis of this case is given in Section A.1.

Second, consider the case where only the rainfall measurements are
uncertain, and the streamflow measurements are error free. In this case
also, the diameter of a leaf node would approach zero (for the same
reason as in the first case), and predictor vectors contained in a leaf node
would be near identical, as the sample size approaches infinite. But, due
to measurement errors, the underlying true values of predictor vectors
contained in a leaf node would be different (more precisely, the pro-
jections of predictor vectors on rainfall subspace will be different). Since
there exists a streamflow value corresponding to each true predictor
vector, the set of streamflow values corresponding to true predictor
vectors in a leaf node would represent the effect of measurement un-
certainty in predictor vector on streamflow. A formal analysis of the
second case is given in Section A.2.

Third, consider the case where both rainfall and streamflow mea-
surements are corrupted by errors. The logic behind this case is similar
to the logic discussed above for the first and second cases. A formal
analysis of this case is given in Section A.3.

Finally, we elaborate on inherent variability in hydrological pro-
cesses. The mathematical analyses provided above, and in the Appendix
A, implicitly assume that the predictors variables used to train the de-
cision tree are complete in the sense that predictor variables contain all
the information that is required to predict streamflow. This, however, is
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not possible since the physical structure of the watershed itself will be
changing continuously, albeit only slowly with intermittent large dis-
ruptions, which will change the hydrological response of the watershed.
This can be referred to as the inherent uncertainty in hydrological
processes which is irreducible. Therefore, given an infinite sample, de-
cision trees would also account for this inherent variability along with
the measurement uncertainty.

Both measurement uncertainty and inherent variability are generally
dominated by epistemic errors. Since, to construct LOAs, only the upper
and lower bounds on errors are required for a given rainfall-runoff
event, it is sufficient that the errors incurred in a given event fall in
the range of the errors incurred from other similar events. Further, since
the errors are epistemic and available data are finite in practice, it is
possible that the errors of some events do not fall in the range of errors
represented in the data; therefore, accommodation for such outliers
needs to be made while using LOAs for model inference. Typically, 5% of
the observations are allowed to fall outside the estimated uncertainty
bound. In hydrological applications, these 5% outliers might well
include the timesteps that one is most interested in (e.g., high flows for
flood modeling). Therefore, a posteriori analysis of outliers should be
carried out. A model can be declared unfit-for-purpose if all or most of
the 5% outliers belong to the timesteps of interest. It is possible that all
the models are rejected as unfit-for-purpose but nevertheless a model is
required for some urgent practical application; in this case, some of the
rejected models with least deviation from the LOAs might be used and
the inverse of the magnitude of deviation can be used as the weight of
that model in decision making. Alternatively, instead of defining frac-
tion of outliers beforehand, one can report the accepted models for
different fractions of outliers.
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5. Summary and conclusions

Separation of structural and measurement uncertainty was recog-
nized as one of the twenty-three unsolved problems in hydrology by
Bloschl et al. (2019). The only way to address this problem is to estimate
measurement uncertainty before model calibration. This is a difficult
task given that statistical properties of rainfall and streamflow mea-
surement uncertainty are poorly understood, especially those of rainfall
measurements. There exist two dominant philosophies to address this
problem: (1) to assume statistical distributions over measurement un-
certainty due to both rainfall and streamflow errors, and (2) to construct
limits-of-acceptability (LOA) that provide some bounds on measurement
uncertainty before any modeling exercise. LOA has been used within the
GLUE framework. However, both of these philosophies may also be
combined together in Approximate Bayes Computation (ABC) frame-
work. LOA can also be used in a purely Bayesian framework by defining
a likelihood function that penalizes the simulations based on their de-
viations from the LOA defined through a suitable metric. The aim of this
paper was to test the capability of decision tree algorithms in creating
LOAs that provide meaningful bounds on measurement uncertainty.

In this study, quantile random forest (QRF) method was used to
construct LOAs. The advantages of the QRF method are as follows: (1) it
can reflect the effect of both precipitation and streamflow measurement
uncertainty, (2) it can account for timing errors in precipitation, (3) it
can be applied at the timescale of available data, and (4) it can be used to
construct LOAs at ungauged catchments. The results show that the LOAs
obtained by using QRF enveloped the uncertainty bounds over stream-
flow observations. Measurement uncertainty in streamflow due to
aleatory variability was found to be very small. It was shown that the
statistical structure of QRF uncertainty bound was similar to an uncer-
tainty bound obtained by propagating rainfall uncertainty through a
hydrological model. Some observations include:

(1) Standard deviations of streamflow obtained by the QRF method
increase with increasing values of observed streamflow.

(2) CVs of simulated rainfall time series and QRF uncertainty bound
follow the same pattern: they decrease with increasing value of
rainfall and streamflow, respectively.

(3) The general pattern of increase and decrease of width of uncer-
tainty bound was similar for QRF and runoff ratio methods.

The QRF method does not contain any mechanism that induces the
uncertainty bounds to follow any pre-determined patterns. Therefore,
existence of these patterns suggests the QRF method is able to identify
some of the characteristics of measurement uncertainty from data. We
cannot conclude that all the characteristics of measurement uncertainty
were identified because QRF is unable to extract all the hydrological
information from available data for the four SJRW watersheds used as
test cases in this study. Indeed, this is likely to be the case for most
watersheds since data on all the factors determining the hydrological
response of a watershed are not available.

A timing error between observed streamflow and the LOAs obtained
by the QRF method was observed in all four test watersheds (Figs. 5 and
11) in gauged-all and ungauged cases. These timing errors are likely due
to timing errors in precipitation data. Figs. 5 and 11 show that QRF can
compensate for consistent precipitation timing errors in a watershed in
gauged-single case. Thus, data from other similar watersheds can be
useful in constructing LOAs that capture the effects of precipitation
timing errors. In general, the shorter the length of data available to
construct LOAs, the more the data from other similar watersheds will be
required. The issue of choosing similar watersheds is discussed below.
Another possible reason for timing errors in gauged-all case is that data
from other watersheds may have introduced disinformation into the
LOAs. Therefore, it appears that LOAs should be constructed using data
from several sets of watersheds so that the effect of both the potential
timing errors and disinformation can be accommodated. This will, in
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general, mean a larger number of behavioral models and higher pre-
dictive uncertainty. Overall, the results of this paper indicate potential
for the QRF approach for constructing LOAs at both gauged and unga-
uged locations.

In the hypothetical scenario, when infinite amount of hydrological
data are available, the QRF algorithm can actually reflect the effects of
measurement uncertainty as shown in the mathematical analysis in
Appendix A. This analysis used the following main assumptions to prove
the proposed hypothesis:

(1) The relationship between predictor and response variables is one-
to-one.

(2) The mapping between predictor and response variable is
continuous.

(3) The errors in predictor and response variables are unbiased but
otherwise the errors could be either aleatoric or epistemic.

(4) Error can be assumed independently and identically distributed
within a leaf node.

We note that assumption 1 was made for mathematical convenience.
A similar analysis can be carried out without this assumption. For a finite
sample size, the uncertainty bounds obtained by a decision tree include
contributions from structural uncertainty (of QRF method) along with
measurement uncertainty.

A major advantage of QRF method (and indeed the LOA approach) is
that it is a non-parametric approach for constructing LOAs and does not
resort to strong assumptions on the statistical nature of streamflow and
rainfall measurement errors. Overall, the QRF method offers promise as
a powerful tool in hydrological model inference.

Rainfall-runoff data may also contain disinformative periods. To
identify disinformation and biases, one requires physical understanding
of the rainfall-runoff processes. Runoff ratio method is an example of
using process-based knowledge to identify biases, but it is not applicable
for baseflow dominated catchments and cannot be applied at ungauged
locations. Moreover, runoff ratio method can identify the effect of errors
in streamflow and precipitation volume - it cannot identify precipitation
timing errors. QRF method addresses these limitations of the runoff ratio
method. QRF will not explicitly identify disinformative periods, but it
will likely define LOAs for the disinformative periods such that a good
model would not be rejected because of these periods.

Further, as noted, it is possible that data from other watersheds
introduce disinformation into the constructed LOAs. An interesting
future problem in this respect would be to combine QRF method with
catchment similarity analysis such that data from only the watersheds
which are known to be hydrologically similar to the parent watershed
(where LOAs are be constructed) are used. This would potentially reduce
the disinformation introduced by the data from other catchments while
yielding meaningful LOAs. This technique can be particularly useful for
prediction in ungauged basins. In this paper, catchment characteristics
(in the form of spatially averaged indices such as mean slope, mean soil
properties etc.) were used in the QRF method to identify similar catch-
ments. However, methods based on hydrological process understanding
(e.g., Wagener et al., 2007) may prove to be better at identifying similar
catchments.

One can also use other ML algorithms for creating LOAs in addition
to the QRF method. Given a finite amount of data in practical applica-
tions, different algorithms would extract different information from
available data and hence a different estimate of LOAs would be ob-
tained. A combination of these different LOAs will be more desirable for
model inference (a problem to be explored in future).
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Appendix A: Mathematical analysis of the proposed hypothesis

In this section, a heuristic mathematical analysis in the support of the proposed hypothesis is provided. The aim of the analysis is to clarify the
assumptions behind the hypothesis and limitations in practical implementation. Specifically, we show why the data in leaf nodes of a decision tree can
be used to capture measurement uncertainty and under what condition structural uncertainty would be small. The analysis is divided into three parts
for convenience: (1) when measurement errors occur in streamflow measurements only, (2) when measurement errors occur in rainfall measurements
only, and (3) when both rainfall and streamflow measurements incur errors. We note that the analysis provided below is valid for both aleatoric and
epistemic errors.

A.1. Case 1: Only streamflow measurements are uncertain
First, we provide the analysis of the proposed hypothesis under the restriction that only the streamflow measurements contain errors and rainfall

measurements are free of errors. Let 2" denote the predictor space, x € 2 denotes a point in the predictor space, and ./4(x) denote the d-neigh-
borhood of x in #” where d is a suitable distance metric. Further, let us define by 7 the set containing error-corrupted value of a response variable as

7 =Dk e 7} (A1)
Since y(x) is an error-corrupted value, it can be written as
y(x) = n(x) +e, (A2)

where y;(x) denotes the true but unobserved value of the response variable and € denotes the measurement error in y. Here, € represent a general error
term which can be a function of xand/or y.
The data contained in a leaf node of a decision tree may be approximated as a neighborhood of the points close to its center. For example, if a leaf

node constitutes the set 7, = {xi|x; € %’}f:l, and the point x,, € 2 is close to its center; then 7’ can be treated as a neighborhood of x;,. To define a
neighborhood, a distance metric is needed, and distance metric chosen defines the shape of neighborhood. In the analysis presented below, a different
distance metric might be required for different leaf nodes of the decision tree. This does not pose any challenge to the generality of the analysis. The
approximation of a leaf node by the d-neighborhood is made for the sake of mathematical convenience so that the analysis is manageable. Similar
assumptions have been made by other authors (e.g., Denil et al., 2014).

Assumption 1. The mapping between predictor and response variables is continuous.

Assumption 2. The relationship between probability distribution of € with x and y does not change significantly in a c-ball, %, (x),

Be(x) = {xi|d(x,x;) < c}, (A3)
where c is a sufficiently small number. In other words, the distribution of € changes slowly over 7.

Assumption 3. Without loss of generality, we assume that the relationship between true values of predictor and true values of response variables is
one-to-one. This assumption is also made for analytical convenience.

Assumption 4. The expected value of ¢ is zero.

Assumption 5. The response variable y varies smoothly with the predictor variable x. This is particularly true for rainfall runoff models where unit
increase in rainfall can result in a maximum of unit increase in streamflow, all else being equal.

For every x4 € ./'4(x), there exists a y; € 7/ by definition of 7/. By virtue of Eq. (A2), y4(xq) = y«(xq) + €. Define 7/, as
Y= {yalxa)lxa € 1 a(x)}, A4

and define 74, as
Z ap = ixa)lxa € 7 a(x)}, (A5)

20



A. Gupta et al. Advances in Water Resources 178 (2023) 104486

Further, define the quantity
_ 1
Yalx) = m/yd(x)dx (A6)

where Vol denotes volume.
Assertion 1. : The quantity ¥,(x), defined in Eq. (A6), approaches the true value y;(x) as the number of samples increases.

The proof of this assertion, along with technical conditions, can be found in Brieman et al., (1984) and Denil et al. (2014). These references do not
directly consider errors in measurement, but the proofs provided in these references are still valid provided assumption 4 holds. If assumption 4 is not
valid, then the prediction error obtained by a decision tree approaches the optimal Bayes error. Note that the discrete version of the Eq. (A6) is the
response variable estimated by the RF algorithm. Therefore, the structural errors in RF estimate would decrease arbitrarily as the sample size
increases.

Assertion 2. : The diameter of the 7/, is small, if the sample size is large. In other words, the maximum difference between the y; values contained
in 74, would be small. Let this difference be denoted by dia( 7/,,).

We note the following

e a decision tree aims to create leaf nodes so as to minimize some measure of prediction error (such as mean-square error) on test set,
o the estimated response by the decision tree is the average of the response values contained in a leaf node given by Eq. (A6), and
o the leaf nodes create a partition of the predictor space 7, i.e., the subsets created by the leaf nodes are disjoint and cover the predictor space.

These requirements are met only if the quantity dia( % 4,(x)) is small for each x. (Here, %, is denoted as a function of the argument x.) For,

consider n points x1,x2, ...,x, € 2 that constitute the training set with corresponding neighborhoods N4(x1),N4(x2),..., N4(x). Denote the number of
leaf nodes created by the decision tree by m. Clearly, m < n. Further, consider the expression for mean-square error,

1 n
MSE, =~ ; ) —5(x)), (A7)

where ¥(x;) is estimated response given by Equation (23). The expression (A7) is minimized when each term in the summation is minimized.

If m < n, there will be many out of n points that would fall into the same leaf node and, therefore, will have identical estimate of the response. Thus,
MSE, would not be minimized. This seems to imply that for MSE, to be minimized we need m = n. Due to measurement errors, however, minimization
of MSE, on training set may not result in minimization of MSE, on test set. And making m = n is likely to result in overfitting. Therefore, to satisfy the
three conditions above), the value of m must be less than n but not much smaller than n. As n increases, m should also increase; otherwise, m would
become much smaller than n. (Technically, this condition translates to the following: m — coand m/n — 0, as n — o). In decision tree language, as n
increases, the predictor space would be split into smaller and smaller partitioning subregions, i.e., diameter of the leaf nodes would become smaller
and smaller. Hence, it follows that dia(Ng) — 0, as n — co.

If diameter of Ny(x) is small, then by assumption 5 and the assumption that values in Ng(x) are error free, the dia(yd’l) is also small.

In summary, if the sample size is large, then the decision tree would be able to create small leaf nodes in order to minimize mean-square error. More
technically, forn > N,, and 6 > 0

dia(¥,,) <, (A8)

where N, is some arbitrary large value.

Theorem 1. The set 7/, approximately captures measurement uncertainty in response variable if the sample size is large.

Proof. The minimum value contained in %/, is greater than or equal to min( %/;,) + ¢; and the maximum value contained in 7/, is less than or equal
to max( %/4,) + €u. Here, ¢ denotes a value in the left tail of the distribution of ¢ such that probability of e taking a value less than or equal to ¢ is y1.
Similarly, e, denotes a value in the right tail of the distribution of e such that probability of e taking a value greater than or equal to &, is y,. Note that g
and g, are likely to be negative and positive quantities, respectively.

By assertion 2, the difference between max(%/;,) and min(%/,,) is small for large n, and, therefore,
min( %/, ) ~ max(%,, ) ~ n(x). (A9)

Using Eq. (A9), the minimum and maximum values contained in 7; may be approximated by y:(x) + & and y(x) + &,. These lower and upper
bounds represent the bounds on measurement uncertainty due to errors in streamflow measurements. As sample size increases, the probabilities y; and
vy would approach zero, the approximation (A9) would become more accurate, and, thus, the proposed hypothesis would become more accurate.

This completed the analysis of the 1st case.

In the preceding paragraph, we argued mathematically that as the sample size increases and the neighborhood . /"4(x) becomes smaller, the set 7,
represents measurement uncertainty in y more accurately. In reality, ./’4(x) cannot be arbitrarily small and the sample size is finite — thus 7/, rep-
resents both measurement and structural uncertainty. However, the structural uncertainty would still be small if the sample size is large enough so as
to create small leaf nodes (see Assertion 2 above and Eq. (A8)). Practically speaking, one can aim only for the modest goal of obtaining an uncertainty
bound where majority of width is due to measurement uncertainty. Fortunately, this is useful in practice in the construction of LOAs as it helps avoid
type-1 errors (rejecting models with good structures) at the cost of a few type-2 errors (accepting a few models with bad structures). This is a desirable
property of the LOAs (Beven, 2019).
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A.2. Case 2: Only rainfall measurements are uncertain

Let 2 denote the predictor space, x € #” denote a point in the predictor space, and ./"4(x) denote the d-neighborhood of x in #” where d is a
suitable distance metric. Here, x represents a vector containing rainfall and other relevant predictor variables. Let x; denote the component of x
containing error corrupted current and time-lagged rainfall values. x; can be written as

Xy =Xy + €xr, (A10)

where x;  is the true value and ey is the error in x;. Denote by 7/ the set containing y values as defined in Eq. (A1).

Assumption 6. The expected value of g4 is zero.

Assumption 7. We assume that the probability distribution of €4 varies slowly within ./"4(x). The probability distribution of ey can be assumed
independent and identically distributed within ./"4(x).

For each x € ./4(x), there exists a true value x; and corresponding to each x;, there exists a y; value. Thus, we can define a set 7/, similar to that
defined in Eq. (A4), only difference being that the x values are error corrupted in this case.

Assertion 3. : The diameter of Ny(x) approaches zero as the sample size increases.
This assertion follows from the proof of assertion 2.
Assertion 4. : The true value of the values contained in./4(x) approximate the probability distribution of x, for large sample large.

Following assertion 3, it is reasonable to assume that values contained in N4(x) are approximately equal, that is, any x4 € N4(x) is approximately
equal to x. But the values contained in N4(x) are error corrupted; therefore, the true value corresponding to any x4 € N4(x) can be written as

Xgp = Xq — €x = X — €. (All)
From Eq. (A11), it is clear that x4 is a random variable with mean value x and larger moments defined by &,. Hence, assertion 4 follows.

Corollary 1. The minimum and maximum values contained in ./ 4(x) can be approximated by x + €] and x + &y, respectively. Here, ey and e, are
defined similarly as € and €, are defined in theorem 1. Again, e and ey, are likely to be negative and positive quantities, respectively.

Assertion 5. : There exists a one-to-one mapping between Ny(x) and 7/,.

It can be seen from Eq. (A11) that there exists a unique true value corresponding to each x4z € Ng(x). For two values contained in Ng(x) to be
identical, the value of €, will have to be identical; but the probability of such an event is practically zero (less than some arbitrarily small § > 0 to be
more precise).

By assumption 3, there exists a one-to-one relationship between true value of predictor and response variables; therefore, there must exist a one-
one mapping between Ny(x) and 7/,.

Theorem 2. The set 7/ ; provides the effect of measurement uncertainty in rainfall on streamflow y(x).

The truth in this assertion stems from one-to-one mapping between the elements of .#’4(x) and %/, (Assertion 5). And since by assertion 4, ./ "4(x)
provides measurement uncertainty in x, 7/, yields the effect of measurement uncertainty in x on y(x).

The set N4(x) contains several elements with approximately the same value x. But these values are error corrupted; the underlying true values will
differ due to measurement uncertainty in x. For each unique true value in Ng(x), there exists a unique value of y in %/;. When we observe an error
corrupted value x, the corresponding response can be any value contained in 7; depending upon the error in x. Therefore, the LOA corresponding to x
should be (min( 74), max(%y))-

This completes the analysis of 2nd case.

The above analysis is valid in the case of large number of samples. With finite samples, 7/; would capture measurement uncertainty and structural
uncertainty because the diameter of N4(x) would not be small. But a sufficiently large number of samples would result in small structural uncertainty.

A.3. Case 3: Both streamflow and rainfall measurements are uncertain

Here, we consider the case where both the rainfall and streamflow measurements are corrupted by errors. This case is a combination of case 1 and
case 2. The notations and assumptions are same as in previous two cases. Consider x4 € Ng(x) and the corresponding response variable y; € 7. The
error corrupted x4 and y4 can be represented by Eqgs. (A2) and (A10), respectively.

Theorem 3. The set 7/, provides lower and upper measurement bounds due to errors in response measurements and the effect of errors in predictor mea-
surements, if the sample size is large.

From Theorem 2, clearly %/, would yield the effect of errors in predictor variable measurements. Here, %/, is defined asin Eq. (A5). Further, note
that since response measurement is also error-corrupted, the values contained in 7/; can be written as

Ya(Xa) = y(xa — €x) + (), (A12)

where x4 € Ng(x) and y; € 7/, are error-corrupted values, y; and x4 — &4 are true values of predictor and response variables, respectively. The term &
represents measurement error in response variable which is a function of y;. Here, € cannot be assumed independent of y; values since the variation of
ye within 7, is large in this case as opposed to that in case 1.

Denote the set containing true value y; corresponding to each true value in Ng(x) by 74, asin Eq. (A5). Then, the minimum and maximum values
contained in 7/, are min(%/4,) + e1(min( % 4,)) and max( % y,) + eu(max(7,,)). Here, e/(min(%/;,)) is the value of e(min(%/,;,)) in the left tail of the
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distribution such that probability of e(min(%/;,)) taking a value less than e|(min(7/4,)) is yi. The term ey(max(%/4,)) is defined similarly. For large
sample, the probability y; will approach 0. The quantities min(7/,,) + e1(min(7/,,)) and max(%/4,) + eu(max(%,,)) are lower and upper bounds of
total measurement uncertainty due to errors in predictor and response variables.

This completes the proof of case 3.
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