

1 **The Role of Temperature Gradient and Soil Thermal Properties on Frost Heave**
2

3 **Md Fyaz Sadiq**

4 Graduate Research Assistant

5 Department of Civil and Environmental Engineering

6 Michigan State University, East Lansing, MI 48824

7 Email: sadiqmd@msu.edu

8 <https://orcid.org/0000-0002-1621-2943>

9 **Mohammad Wasif Naqvi**

10 Graduate Research Assistant

11 Department of Civil and Environmental Engineering

12 Michigan State University, East Lansing, MI 48824

13 Email: naqvim01@msu.edu

14 <https://orcid.org/0000-0001-9997-8196>

15 **Bora Cetin**

16 Associate Professor

17 Department of Civil and Environmental Engineering

18 Michigan State University, East Lansing, MI, 48824

19 Email: cetinbor@msu.edu

20 <https://orcid.org/0000-0003-0415-7139>

21 **John Daniels**

22 Professor

23 Department of Civil and Environmental Engineering

24 UNC Charlotte, Charlotte, NC 28223

25 Email: jodaniel@uncc.edu

26

27

28

29

30

1 ABSTRACT

2 In cold regions, the soil temperature gradient and depth of frost penetration can significantly impact
3 roadway performance due to frost heave and thaw settlement of the subgrade soils. The severity of the
4 damage depends on the soil index properties, temperature, and **availability of water**. While nominal
5 expansion occurs with the phase change from pore water to ice, heaving is derived primarily from a
6 continuous flow of water from the vadose zone to growing ice lenses. The temperature gradient within the
7 soil influences water migration towards the freezing front, where ice **nucleates, coalesces into** lenses and
8 **grows**. This study evaluates the frost heave potential of frost-susceptible soils from Iowa (IA-PC) **and**
9 North Carolina (NC-BO) under different temperature gradients. One-dimensional frost heave tests were
10 conducted with a free water supply under three different temperature gradients of $0.26^{\circ}\text{C}/\text{cm}$, $0.52^{\circ}\text{C}/\text{cm}$,
11 and $0.78^{\circ}\text{C}/\text{cm}$. Time-dependent measurements of frost penetration, water intake, and frost heave were
12 carried out. Results of the study suggested that frost heave and water intake are functions of the
13 temperature gradient within the soil. A lower temperature gradient of $0.26^{\circ}\text{C}/\text{cm}$ leads to the maximum
14 total heave of 18.28 mm (IA-PC) and 38.27 mm (NC-BO) for extended periods of freezing. Maximum
15 frost penetration rate of 16.47 mm/hour was observed for higher temperature gradient of $0.78^{\circ}\text{C}/\text{cm}$ and
16 soil with higher thermal diffusivity of $0.684\text{ mm}^2/\text{s}$. The results of this study can be used to validate
17 numerical models and develop engineered solutions that prevent frost damage.

18 **Keywords:** Frost susceptibility, frost heave, frost penetration, temperature gradient, ice lens

1 INTRODUCTION

2 In cold regions, repeated cycles of freezing and thawing (i.e., frost action) cause damage to
 3 transportation infrastructure, including pavements and granular roadways (1–3). During the freezing
 4 cycle, osmotic and matric suction increases at the leading edge of frost penetration and a hydraulic
 5 gradient is created. Water migrates from the unfrozen region to the frozen fringe where it coalesces with
 6 previously formed ice in the pore space or as discrete lenses. The migrated water causes the majority of
 7 overall frost heave deformation. The rate at which this water migrates is a function of the prevailing
 8 hydraulic gradient, temperature gradient, and hydraulic conductivity.

9 The primary factors governing water movement during freezing are temperature gradient,
 10 soil type, water potential, and unfrozen water content(4). Some water typically remains unfrozen in soils
 11 below the freezing point of water due to the capillarity and surface energy of soil particles(5). The
 12 unfrozen water content influences the soil's thermal and mechanical properties, which dictate the soil's
 13 water migration and frost heave(6). Water migration and frost heave processes have been studied under
 14 different scenarios in the past(7–10). Naqvi et al. (8) investigated the frost action of soils from different
 15 climatic regions and observed that soils with high silt and low clay content experienced the maximum
 16 frost heave. Zhang et al. (7) developed a model to predict the distribution of water content across the
 17 depth of the soil, as well as variations in water content with temperature in the unfrozen zone, frozen
 18 fringe, and frozen region. Loch and Kay (9) studied the water flux under different temperature gradients
 19 by freezing the specimen from the bottom and allowing access to water at both the top and bottom of the
 20 specimen. In the field, freezing usually occurs from the top downward and water migrates mostly from
 21 the unfrozen zone to the frozen zone **which is typically from bottom up**. Lai et al. (10) observed that the
 22 frost heave of saturated soil with a no-pressure water supply was greatly influenced by temperature
 23 gradients, overburden pressures, and cooling temperatures. Zhang et al. (11) observed the deformation in
 24 soil by applying different temperature gradients to silty clay soil. The maximum freezing temperature of
 25 4°C was used, and the heat was supplied from both the top and bottom of the specimen. In the field, soil
 26 experiences much lower freezing temperatures. Moreover, a temperature boundary of -1°C and $+1^{\circ}\text{C}$
 27 was used as the minimum temperature gradient. But several studies suggested the presence of unfrozen
 28 water at a temperature below -1°C and freezing point depression below 0°C for the soil-water
 29 system(6,12,13).

30 Several previous studies investigated the effect of temperature gradients by varying the
 31 temperatures at both the cold and warm ends. However, it is difficult to control **the** freezing temperature
 32 and temperature gradient when the top and bottom temperatures are independently altered, as the
 33 prevailing temperature regime, and therefore the amount of unfrozen water content will be different.
 34 Furthermore, higher freezing temperatures were used in comparison to the field in the previous
 35 studies(10,11). Therefore, an experimental program was carried out to study the effect of freezing
 36 temperature variation and temperature gradients on two different soils by applying a one-directional
 37 freezing condition with an external water supply. The cold end temperature at the top of the specimen was
 38 changed, while the bottom warm end temperature was kept constant. Frost heave tests were conducted at
 39 three different temperature gradients (0.26, 0.52, and $0.78^{\circ}\text{C}/\text{cm}$), **where** $0.78^{\circ}\text{C}/\text{cm}$ is the ASTM(14)
 40 suggested temperature gradient for the frost heave test. The advance rate of the freezing front was
 41 monitored with thermocouples under different temperatures. The soil's frost heave profile and water
 42 intake at different temperature gradients were studied during the experiment.

43 MATERIALS

44 Silty sand from U.S. 221 near Boone, North Carolina (NC-BO) and low plasticity clay from
 45 Pottawattamie County, Iowa (IA-PC), respectively, were collected for the experimental program of this
 46 study. These soils are subjected to different freeze-thaw conditions. The United States was divided into
 47 four climatic regions by the Long-Term Pavement Performance (LTPP) program depending on annual
 48 precipitation and freezing index parameters (15). Iowa has been classified as a Wet-Freeze (W.F.) region,
 49 and the North Carolina site location in the mountainous Western part of the state, is classified as a Wet,

1 Moderate Freeze region. The presence of high frost susceptible soil (silts) in this part and wet conditions
 2 can cause significant damage to the transportation infrastructure.

3 The grain size distribution of the soils was conducted following ASTM D 6913 (16) and
 4 presented in **Figure 1**. IA-PC and NC-BO soils have 86.2% and 34% silt contents, respectively, and clay
 5 contents of 12% and 4.6%. NC-BO soil has a substantially greater sand concentration of 56.4%,
 6 compared to 1.6% for IA-PC soil. **Table 1** summarizes the properties of both soils. According to the
 7 Unified Soil Classification System (USCS), IA-PC soil was classified as low-plasticity clays (CL), and
 8 NC-BO soil was classified as silty sand/clayey sand (SM/SC). NC-BO soil has a much higher hydraulic
 9 conductivity of 6.34×10^{-6} cm/s, compared to 5.02×10^{-8} cm/s for IA-PC. Thus, during frost action, water
 10 can flow considerably more easily through the pores of NC-BO soil than IA-PC soil. In addition, both
 11 soils fall within the F3 groups of the U.S. Army Corps of Engineers (17) frost susceptibility classification,
 12 which implies that both soils are frost-susceptible (medium to high).

13
Figure 1 Grain size distribution of the soils

14
METHODS

15 One-directional freezing experiments were performed under different temperature gradients with
 16 a water supply to evaluate the effect of temperature variation on the frost-susceptible soils. The collected
 17 soil samples were dried in an oven, sieved through a U.S. No. 4 sieve, and uniformly mixed at the
 18 corresponding optimum moisture content. Each specimen was compacted in six layers with a laboratory-
 19 designed mold and a Proctor compaction hammer. After compacting each layer with 33 blows, the
 20 prepared specimens were saturated for 24 hours according to the pressure-head schedule specified in
 21 ASTM D5918(14). Six acrylic rings and a latex membrane were placed around each specimen to provide
 22 lateral confinement. The dimensions of the specimens were 15.2 cm in height and 14.6 cm in diameter.
 23 The thermal properties of the soil specimens were measured using KD2 Pro (SH-1) after saturation.

24 The tests were carried out in a cooling chamber with a set temperature fixed at 4°C. To apply a
 25 freezing temperature, two heat exchanging plates were positioned at the top and bottom of each specimen.
 26 **Table 2** shows the temperature gradient and freezing temperature conditions for both soil specimens.
 27 Each test was conducted for 144 hours with 24 hours of initial conditioning at 1°C and a freezing duration
 28 of 120 hours. In case 1, a lower temperature gradient of 0.26°C/cm was applied with top and bottom plate
 29 temperatures of -4°C and 0°C, respectively. In case 2, a 0.52°C/cm temperature gradient was applied with
 30 -8°C and 0°C top and bottom plate temperatures, respectively. The third case involved a temperature
 31 gradient of 0.78°C/cm, with the top plate temperature set to -12°C and the bottom plate to 0°C. Two
 32 different programmable temperature-control circulating baths were used to regulate the temperature of the
 33 specimens. The circulating baths have an operating temperature range of -30°C to +200°C and a
 34 temperature stability of $\pm 0.005^\circ\text{C}$.

35 In addition, to simulate a field situation in which there is access to water (e.g., a relatively high
 36 groundwater table), water was supplied at the bottom of the specimens by connecting the base plate with
 37 Mariotte bottles using flexible hoses, and a constant pressure head of 1.27 cm was maintained. A separate
 38 Mariotte bottle was used for each specimen. A 5.5 kg (3.5 kPa) surcharge was applied to each specimen
 39 following ASTM D 5918 (14) to replicate the weight of granular roadway materials/pavement structure
 40 layers above the subgrade.

41 During the test, frost heave was measured using laser-displacement transducers. The laser had a
 42 measurement range of 5 cm and a resolution of 0.75 μm . Each specimen was equipped with eight
 43 thermocouples at depths of 0, 1.3, 3.8, 6.4, 8.9, 11.4, 14, and 15.2 cm to monitor temperature differences
 44 over the length of the specimens. Type T thermocouples were used with a measuring range of -250°C to
 45 +350°C, error limit of 1°C or 0.75% of the reading (whichever is greater) for above 0°C and 1°C or
 46 1.5% of the reading (whichever is greater) for below 0°C. During the experiment, a pressure transducer
 47 was mounted at the base of the Mariotte bottle to measure the volume of water entering the specimens.
 48 The Mariotte bottle's diameter was 7.62 cm, and each unit cm of water intake corresponds to 45.60 cm^3 in
 49 volume. The Campbell Scientific CR1000X data collection system was used to record the displacement,
 50
 51

1 temperature, and water intake at one-minute intervals. The test set up for frost heave testing following the
 2 ASTM D 5918 (14) is depicted in **Figure 2**. To reduce heat loss and prevent any outside influences, the
 3 cooling chamber was filled with packing peanuts, and all hoses from circulating bath to the specimens
 4 were thermally insulated.

5
 6 **Table 1 Physical properties of the soils**

Soil Properties	IA-PC	NC-BO
Specific Gravity, G_s (ASTM D854-14)(18)	2.80	2.67
Liquid Limit, LL (%) (ASTM D4318-17)(19)	37	38
Plasticity Index, PI (%) (ASTM D4318-17)(19)	13	NP
Silt content (%) (75 μm –2 μm)	86.2	34.0
Clay content (%) (< 2 μm)	12.0	4.6
Optimum Moisture Content (%) (ASTM D698-12)(20)	17.3	15.6
Max. Dry Unit Weight (kN/m ³) (ASTM D698-12)(20)	16.7	16.9
Saturated Hydraulic Conductivity (cm/s)	5.02×10^{-8}	6.34×10^{-6}
USCS Classification (ASTM D2847) (21)	CL	SM/SC
AASHTO Classification(22)	A-6	A-4
Frost Susceptibility Group ⁺ (17)	F3	F3

7 *N.P.- Non-Plastic

8 ⁺F1-Low frost susceptibility; F4-Very high frost susceptibility

9
 10 **Table 2 Testing conditions of the soil specimens**

Soil type	Case	Initial conditioning Temperature (°C)	Temperature Boundary(°C)		Temperature Gradient (°C/cm)	Freezing Duration (Hours)
			Bottom	Top		
IA-PC	1	+1	0	-4	0.26	120
	2	+1	0	-8	0.52	120
	3	+1	0	-12	0.78	120
NC-BO	1	+1	0	-4	0.26	120
	2	+1	0	-8	0.52	120
	3	+1	0	-12	0.78	120

11
 12 **Figure 2 Frost heave testing setup (23)**

13

14

15

16

1 RESULTS AND DISCUSSION

2 Temperature Distribution

3 The temperature distributions of IA-PC and NC-BO soil specimens for three different cases
 4 (**Table 2**) at various depths are shown in **Figure 3** and **Figure 4**, respectively. The freezing front (0°C
 5 isotherm) propagated down to the bottom of the specimen for all three cases of IA-PC specimens. In
 6 contrast to IA-PC specimens (**Figure 3**), the freezing front moved much more slowly for NC-BO
 7 specimens (**Figure 4**) and could not penetrate 8.9 cm from the top in case 1 **during the freezing duration**.
 8 The time required for the freezing front to reach different depths based on the temperature distribution is
 9 given in **Table 3**. The 0°C isotherm propagated significantly faster in the specimens with a higher
 10 temperature gradient in both soils due to the lower freezing temperatures. In case 1, the zero-degree
 11 isotherm for the IA-PC specimen reached 1.3 cm from the top almost immediately (0.53 hours), whereas
 12 it took the NC-BO specimen 20.12 hours to reach the same depth. Similarly, in case 3, the frost penetrated
 13 at 14 cm from the top in 8.5 hours for the IA-PC specimen, but it took three times longer (30.35 hours)
 14 for the NC-BO specimen.

15
 16 **Figure 3 Temperature profile of the IA-PC specimens at the depths of: (a) 14 cm; (b) 11.4 cm;**
 17 **(c) 8.9cm; (d) 1.3cm**

18
 19 **Figure 4 Temperature profile of the NC-BO specimens at the depths of: (a) 14 cm; (b) 11.4 cm;**
 20 **(c) 8.9cm; (d) 1.3cm**

21
 22 **TABLE 3 Time needed for frost penetration for different depths**

Soil Type	Case	Temperature Gradient (°C/cm)	Depth-1.3 cm	Depth-8.9 cm	Depth-11.4 cm	Depth-14 cm
			Time needed (h)	Time needed (h)	Time needed (h)	Time needed (h)
IA-PC	1	0.26	0.53	39.31	82.8	118.32
	2	0.52	0.53	3	3.68	20.38
	3	0.78	0.53	2.11	2.56	8.5
NC-BO	1	0.26	20.12	-	-	-
	2	0.52	0.65	27.88	40.67	48.61
	3	0.78	0.65	6.24	21.61	30.35

23
 24 Temperature propagation inside soil specimens behaves differently due to differences in the
 25 thermal properties of soil. Soil's thermal properties play a significant role in heat distribution and
 26 temperature changes within the soil matrix. The thermal properties of the specimens are shown in **Table**
 27 **4**. The thermal conductivity, i.e., the ability to conduct heat, of both soils is nearly identical. But the
 28 specific heat of each soil is different from the others. Specific heat is the amount of heat needed/released
 29 to change the temperature of unit mass by 1°C. Since the specific heat of NC-BO specimens (2.69 MJ/
 30 m³K) is higher than that of IA-PC specimens (2.29 MJ/m³K), more heat needs to be released to reduce the
 31 temperature of NC-BO. The temperature movement within the soil media depends on the soil's specific
 32 heat and thermal conductivity. Since temperature propagation depends on two different properties,
 33 thermal diffusivity has been introduced to simplify the explanation of temperature movement. Thermal
 34 diffusivity is a measure of how quickly a material reacts to temperature changes and is a function of
 35 specific heat and thermal conductivity(24). Thermal diffusivity can be expressed by **Equation 1**(25,26).
 36
 37

$$38 \quad \alpha = \frac{k}{\rho C_p} \quad (1)$$

39 where α is the thermal diffusivity, k is the thermal conductivity, ρ is density, and C_p is the specific heat.

1 A higher thermal diffusivity causes temperature change to occur more rapidly. Similar to thermal
 2 conductivity and specific heat, thermal diffusivity was measured using KD2 Pro (SH-1). The thermal
 3 diffusivity of the IA-PC specimen ($0.68 \text{ mm}^2/\text{s}$) is higher than that of the NC-BO specimen ($0.59 \text{ mm}^2/\text{s}$),
 4 so the frost front penetrated the IA-PC specimen more quickly. **Figure 5** shows the frost penetration rate
 5 for both soils. As discussed, the frost penetration rate for IA-PC is much higher than NC-BO, and case 3
 6 has the highest frost penetration rate for both specimens due to the higher freezing temperature. **These**
 7 **results are consistent with the general trend of increasing heat loss with larger values of thermal**
 8 **diffusivity(26). Increased heat loss corresponds to greater frost penetration although not necessarily**
 9 **greater ultimate heave, depending on the prevailing hydraulic conductivity and access to water.**

10
 11 **TABLE 4 Thermal Properties of the soil specimens**

Properties	IA-PC	NC-BO
Thermal conductivity W/(mK)	1.57	1.59
Specific Heat M.J./ (m ³ .K)	2.29	2.69
Thermal diffusivity (mm ² /s)	0.68	0.59

12
 13 **Figure 5 Frost penetration rate of soil specimens during freezing process**

14
 15 **Heave trends and water intake**

16 **Figure 6** and **Figure 7** show the frost heave time plots and water intake for three cases of IA-PC
 17 and NC-BO soils, respectively. The soil specimens' heaving nature is directly related to the water intake
 18 amounts and frost penetration depths. The water flows into the soil specimen due to the cryogenic suction
 19 at the ice-water interface and the temperature gradient (27,28). The temperature gradient in the frozen soil
 20 drives water flux in the direction of decreasing temperature, and the volume of water intake depends on
 21 the permeability of the soil specimen and the cryogenic suction.

22
 23 **Figure 6 Heave and water intake of the IA-PC specimens**

24
 25 For IA-PC (**Figure 6**), the zero-degree isotherm penetrated 14 cm of 15.2 specimen after 8.5
 26 hours of freezing for case 3. Since frost penetrated the entire specimen, there was no more water intake
 27 after 15 hours of freezing (39 hours from the start of the test) due to a significant drop in the hydraulic
 28 conductivity of frozen soil. The additional time for water intake after 8.5 hours was due to frost
 29 penetration to the lower 1.2 cm and the presence of unfrozen water at 0°C in the frozen fringe region. In
 30 the frozen fringe, the temperature is **slightly** below the bulk freezing point of water, between
 31 approximately 0 to -2°C , but no ice lenses are present(29). Since the ice lenses are not developed at that
 32 temperature, water can still migrate after penetration of the zero-degree isotherm. When the water
 33 movement ceased, the heaving of the samples likewise became stable. A similar phenomenon was
 34 observed in all three cases of both soils. Case 1, with the lowest temperature gradient, had the maximum
 35 heave (18.28 mm) for IA-PC since it took longer to freeze the entire sample and water migration
 36 continued until the ice lenses developed at the bottom of the specimen.

37
 38 **Figure 7 Heave and water intake of the NC-BO specimens**

39 For NC-BO (**Figure 7**), as anticipated, water intake ceased first in case 3. The higher freezing
 40 temperature in case 3 resulted in the faster formation of ice lenses at the bottom of the specimen
 41 compared to the other two cases. As the water inflow ceased, the frost heave stabilized earlier in case 3. In
 42 case 1, the freezing front did not propagate at the bottom of the specimen (**Figure 4**), so the water
 43 migration and heaving continued until the completion time of the test. During the test period, maximum
 44 heaving(**44.04 mm**) was observed in case 2. Heaving ceased at 76 hours in case 2. If the experiment

1 continued longer, maximum heaving would have been observed in case 1 (estimated to be 44.92 mm after
 2 192 hours), like IA-PC, as the entire specimen was not frozen and water was continuously moving into
 3 the specimen. In case 1, after 120 hours of freezing, approximately 6.35 cm of the 15.2 cm specimen was
 4 frozen. Water migration and heaving would have been continued until the specimen was completely
 5 frozen.

6 The amount of heave during the experiment for both specimens is shown in **Figure 8**. NC-BO
 7 specimens had much higher heave compared to IA-PC. In case 3, NC-BO had a total heave of 40.19 mm
 8 compared to the 5.35 mm heave of IA-PC. The saturated hydraulic conductivity (**Table 1**) of NC-BO was
 9 100 times higher than that of IA-PC, resulting in a larger volume of water intake, thus, more heaving. The
 10 heave rates for both specimens are presented in **Figure 9**. For both soils, the heave rate increased with the
 11 increase in temperature gradient. Larger temperature gradients extract more heat, create more ice and
 12 generate more cryogenic suction per unit time. Case 3, with the maximum temperature gradient, exhibited
 13 the highest heave rates for both IA-PC (6.73 mm/day) and NC-BO (23.71 mm/day).

15 **Figure 8 Total heave of both the soil specimens**

17 **Figure 9 Heave rate of both the soil specimens**

19 In this study, the total heave and heave rate of soil specimens are primarily influenced by the
 20 soil's temperature gradient. These results provide a basis for gradient selection and testing duration. While
 21 the two soils are significantly different (e.g., silt vs clay, a two-order of magnitude difference in hydraulic
 22 conductivity), a similar pattern is observed in terms of greater ultimate heave at lower temperature
 23 gradients. It can be anticipated from the test results that for any soil type, larger temperature gradients will
 24 result in higher rates of heaving. In contrast, smaller temperature gradients will result in larger total
 25 heaving if the freezing phenomenon persists for an extended period while there is access to water. If heat
 26 is removed too quickly, ice lense formation is limited and ultimate heaving is reduced. As such,
 27 laboratory-based testing with large temperature gradients may yield an underestimate of actual heave in
 28 the field. During subfreezing temperatures, the temperature gradient in the field typically ranges from
 29 0.15-0.35 °C/cm (30). While lower temperature gradients are more field-relevant they require longer
 30 laboratory testing time (e.g., weeks to a month as compared to a <2 days) for the 0°C isotherm to
 31 penetrate a typical (e.g. as tested) soil sample. The ultimate magnitude of heave can be estimated (by
 32 extrapolating from the trend of the heave curve) without waiting for full penetration of the 0°C isotherm
 33 into a sample. Instead, it may be based on the extent of heave from a partial penetration of the 0°C
 34 isotherm such that penetration is more than the thickness of frozen fringe as ice lens form above the
 35 fringe. In particular, we propose that laboratory-based efforts to estimate field heave use lower
 36 temperature gradients (0.15-0.35 °C/cm) while ensuring that the 0°C isotherm has penetrated at least 1/2
 37 of the specimen for a standard ASTM specified specimen of 15.2 cm height. The thickness of the frozen
 38 fringe is considered as asymptotically small ~1 cm (31,32).

40 **Moisture Profile**

41 Each specimen was split into six 2.54 cm-thick soil layers after thawing at the end of the frost
 42 heave experiment to evaluate soil moisture distribution throughout the soil depth. A moisture content
 43 sample was taken from the center of each layer. The moisture profiles of both soils are shown in **Figure**
 44 **10**. The moisture content of IA-PC was higher at the bottom of the specimens for case 1 as it took a
 45 longer duration (35 hours for freezing 11.4 to 14 cm) to freeze, and water was continuously entering
 46 during this period through this unfrozen soil region. For NC-BO, the specimen was not frozen at 8.9 cm
 47 in case 1 (**Figure 4**), so the water content was higher in that region because of the frozen fringe. The
 48 moisture profile was nearly uniform for case 2 for both soils, as the entire specimen was frozen rapidly
 49 due to higher freezing temperatures. **Figure 11** shows the pictures both soil specimens before and after
 50 the frost heave test following thawing for case 1. It was visually observed that the NC-BO specimen
 51 seemed wetter and retained heave considerably even after the thawing process is completed.

1 **Figure 10 Moisture profile of the soil specimens after frost heave test**

2
3 **Figure 11 Soil specimens before and after frost heave test a) IA-PC (before) b) IA-PC (after)**
4 **c) NC-BO (before) d) NC-BO (after)**

5
6 **CONCLUSIONS**

7 The temperature gradient plays a significant role during the frost heave phenomenon in soils by
8 driving the water flux toward decreasing temperature. Therefore, this study was conducted to evaluate the
9 effect of different temperature gradients and freezing temperatures on the frost heave potential of two
10 different soils. The essential conclusions of this study are summarized below.

- 12 • The penetration of the freezing front is dependent on the thermal diffusivity of the soil. Due to
13 higher thermal diffusivity of IA-PC soil, frost penetrated the IA-PC specimens faster than it did
14 with NC-BO soil. A higher frost penetration rate was observed at higher temperature gradients as
15 the heat was released rapidly due to lower freezing temperatures at the top of the specimens.
- 16 • Heaving is controlled by the extent to which water is available (open vs. closed system) and its
17 ability (hydraulic conductivity) to move through the soil. Heaving ceased when water no longer
18 entered the soil. The water intake, in turn, depends on frost penetration. As soon as the ice lens
19 formed at the bottom of the specimens, water migration stopped due to a significant drop in
20 hydraulic conductivity attributed to the presence of contiguous ice blocking subsequent water
21 flow.
- 22 • Results of this study show that when the freezing temperature is sustained for a longer period,
23 total heave and water intake are maximum for lower temperature gradients. Ice lenses are formed
24 at shorter depths, and water keeps migrating from the unfrozen zone to the frozen fringe.
- 25 • The heave rate of soils increased with an increase in temperature gradient. Larger temperature
26 gradients extract more heat, create more ice, and generate more cryogenic suction per unit time.
- 27 • Due to its high hydraulic conductivity, silty sand/silty clay (NC-BO) soil exhibited higher frost
28 heave and water intake volume than that of low plasticity clay (IA-PC). The NC-BO specimen
29 with the minimum temperature gradient had a higher moisture content close to the freezing front.

30
31 Temperature gradient and frost penetration rate can be considered as two major factors
32 contributing to the frost penetration depth. The frost penetration depth is very significant in deciding the
33 location of the treatment layer. The majority of the state agencies' frost mitigation guidelines suggest
34 removing frost-susceptible materials to more than 50 percent of the frost penetration depth. The findings
35 of this study will help in designing frost mitigation strategies for cold climates.

36 **ACKNOWLEDGMENTS**

37 The authors also gratefully acknowledge the funding support from Iowa Highway Research
38 Board (TR-783) and National Science Foundation (Award #1928813 and #1947009).

39 **AUTHOR CONTRIBUTIONS**

40 The authors confirm contribution to the paper as follows: study conception and design: M. Sadiq,
41 M. Naqvi, B. Cetin, J. Daniels ; data collection: M. Sadiq, M.Naqvi; analysis and interpretation of results:
42 M. Sadiq , M. Naqvi, B. Cetin ; draft manuscript preparation: M. Sadiq , M. Naqvi, B. Cetin, J. Daniels.
43 All authors reviewed the results and approved the final version of the manuscript.

44
45 **DECLARATION OF CONFLICTING INTERESTS**

46 The authors do not have any conflicts of interest to declare.

REFERENCES

1. Andersland OB, Ladanyi Branko. *Frozen Ground Engineering*, 2nd Edition. 2nd ed. Andersland OB, Ladanyi Branko, editors. Wiley; 2004.
2. Li S, Lai Y, Pei W, Zhang S, Zhong H. Moisture-temperature changes and freeze-thaw hazards on a canal in seasonally frozen regions. *Natural Hazards*. 2014;72(2):287–308.
3. Zhang S, Sheng D, Zhao G, Niu F, He. Z. Analysis of Frost Heave Mechanisms in a High-Speed Railway Embankment. *Can Geotechnical J*. 2016;55(3):520–529.
4. Bing H, He P, Zhang Y. Cyclic freeze–thaw as a mechanism for water and salt migration in soil. *Environ Earth Sci [Internet]*. 2015;74(1):675–81. Available from: <http://dx.doi.org/10.1007/s12665-015-4072-9>
5. Dash JG, Haiying Fu, Wettlaufer JS. The premelting of ice and its environmental consequences. *Reports on Progress in Physics*. 1995;58(1):115–67.
6. Li Z, Chen J, Sugimoto M. Pulsed NMR Measurements of Unfrozen Water Content in Partially Frozen Soil. *Journal of Cold Regions Engineering*. 2020;34(3):04020013.
7. Zhang Y, Xu F, Li B, Kim YS, Zhao W, Xie G, et al. Three phase heat and mass transfer model for unsaturated soil freezing process: Part 2 - Model validation. *Open Physics*. 2018;16(1):84–92.
8. Wasif N, Sadiq MdF, Cetin B, Uduebor M, Daniels J. Investigating the Frost Action in Soils. In: *Geo-Congress 2022 GSP 336*. 2022. p. 257–67.
9. Loch JPG, Kay BD. Water Redistribution in Partially Frozen, Saturated Silt Under Several Temperature Gradients and Overburden Loads. *Soil Science Society of America Journal*. 1978;42(3):400–6.
10. Lai Y, Pei W, Zhang M, Zhou J. Study on theory model of hydro-thermal-mechanical interaction process in saturated freezing silty soil. *Int J Heat Mass Transf [Internet]*. 2014;78:805–19. Available from: <http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.07.035>
11. Zhang M, Zhang X, Li S, Lu J, Pei W. Effect of Temperature Gradients on the Frost Heave of a Saturated Silty Clay with a Water Supply. *Journal of Cold Regions Engineering*. 2017;31(4):04017011.
12. Rosa MG, Cetin B, Edil TB, Benson CH. Development of a test procedure for freeze-thaw durability of geomaterials stabilized with fly ash. *Geotechnical Testing Journal*. 2016;39(6):938–53.
13. Zhang L, Yang C, Wang D, Zhang P, Zhang Y. Freezing point depression of soil water depending on its non-uniform nature in pore water pressure. *Geoderma [Internet]*. 2022;412(January):115724. Available from: <https://doi.org/10.1016/j.geoderma.2022.115724>
14. ASTM D 5918. Standard Test Methods For Frost Heave And Thaw Weakening Susceptibility Of Soils. West Conshohocken, PA: Annual Book of ASTM Standards; 2013.
15. FHWA. Long-Term Pavement Performance (LTPP) Program. Washington, D.C; 2015.

16. ASTM International. Standard Test Methods for Particle Size Distribution (Gradation) of Soils Using Sieve Analysis. Vol. 04. West Conshohocken, PA: ASTM International; 2014. 20–23 p.
17. US Army Corps of Engineers. Soils and geology – pavement design for frost conditions. Hanover, NH; 1965.
18. ASTM International. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. West Conshohocken, PA: ASTM International; 2014.
19. ASTM International. Standard Test Methods for Liquid Limit , Plastic Limit , and Plasticity Index of Soils. West Conshohocken, PA: ASTM International; 2017.
20. ASTM International. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort. West Conshohocken, PA: ASTM International; 2012.
21. ASTM International. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). West Conshohocken, PA: ASTM International; 2017.
22. AASHTO M145-91. Classification of soils and soil–aggregate mixtures for highway construction purposes. Washington, DC: AASHTO; 2012.
23. Mahedi M, Satvati S, Cetin B, Daniels JL. Chemically Induced Water Repellency and the Freeze–Thaw Durability of Soils. *Journal of Cold Regions Engineering*. 2020;34(3):04020017.
24. Speight JG. Unconventional gas. In: Natural Gas [Internet]. Second. Gulf Professional Publishing; 2019 [cited 2022 Aug 30]. p. 59–98. Available from: <https://linkinghub.elsevier.com/retrieve/pii/B9780128095706000035>
25. Fuchs S, Balling N, Förster A. Calculation of thermal conductivity, thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well logs. *Geophys J Int*. 2015;203(3):1977–2000.
26. Daniels JL, Lei S, Bian Z, Bowers BF. Air-Soil Relationships for Lime and Cement Stabilized Sub-grades. *Paving Materials and Pavement Analysis GSP 203*. 2010;341–6.
27. Perfect E, Williams PJ. Thermally induced water migration in frozen soils. *Cold Reg Sci Technol*. 1980;3(2–3):101–9.
28. Doré G. Development and validation of the thaw-weakening index. *International Journal of Pavement Engineering*. 2004;5(4):185–92.
29. Tiedje E. The Experimental Characterization and Numerical Modelling of Frost Heave [PhD Dissertation]. McMaster University; 2015.
30. Genc D, Ashlock JC, Cetin B, Ceylan H, Cetin K, Horton R. Comprehensive in-situ freeze-thaw monitoring under a granular-surfaced road system. *Transportation Geotechnics* [Internet]. 2022;34(June 2021):100758. Available from: <https://doi.org/10.1016/j.trgeo.2022.100758>
31. Fowler AC. Secondary Frost Heave in Freezing Soils. *SIAM J Appl Math*. 1989;49(4):991–1008.
32. Peppin SSL, Style RW. The Physics of Frost Heave and Ice-Lens Growth. *Vadose Zone Journal*. 2013;12(1):1–12.