
Environmental Modelling and Software 167 (2023) 105760

Available online 18 June 2023
1364-8152/© 2023 Elsevier Ltd. All rights reserved.

Comparing containerization-based approaches for reproducible
computational modeling of environmental systems

Young-Don Choi a,b, Binata Roy a, Jared Nguyen c, Raza Ahmad d, Iman Maghami a,
Ayman Nassar e, Zhiyu Li f, Anthony M. Castronova g, Tanu Malik d, Shaowen Wang f,
Jonathan L. Goodall a,*

a Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, VA, USA
b AI Research Laboratory, R&D Management Department, K-water Research Institute, South Korea
c Department of Computer Science, University of Virginia, Charlottesville, VA, USA
d College of Computing and Digital Media, DePaul University, Chicago, IL, USA
e Department of Civil and Environmental Engineering, Utah Water Research Laboratory, Utah State University, Logan, UT, USA
f Department of Geography & Geographic Information Science, University of Illinois at Urbana-Champaign, IL, USA
g Consortium of Universities for the Advancement of Hydrological Science, Inc, Cambridge, MA, USA

A R T I C L E I N F O

Handling Editor: Daniel P Ames

Keywords:
Container technology
Cloud computing
Reproducibility
Cyberinfrastructure
Hydrologic modeling
Jupyter notebooks

A B S T R A C T

Creating online data repositories that follow Findable, Accessible, Interoperable, and Reusable (FAIR) principles
has been a significant focus in the research community to address the reproducibility crisis facing many
computational fields, including environmental modeling. However, less work has focused on another repro
ducibility challenge: capturing modeling software and computational environments needed to reproduce com
plex modeling workflows. Containerization technology offers an opportunity to address this need, and there are a
growing number of strategies being put forth that leverage containerization to improve the reproducibility of
environmental modeling. This research compares ten such approaches using a hydrologic model application as a
case study. For each approach, we use both quantitative and qualitative metrics for comparing the different
strategies. Based on the results, we discuss challenges and opportunities for containerization in environmental
modeling and recommend best practices across both research and educational use cases for when and how to
apply the different containerization-based strategies.

1. Introduction

The rapid advancement of computing offers both opportunities and
challenges for reproducibility in computational research (de Lusignan
and van Weel, 2006). On the one hand, new tools and technologies have
made possible complex physical modeling (Kerandi et al., 2018), deep
learning (Shen, 2018), and interdisciplinary modeling (Laniak et al.,
2013; Vogel et al., 2015). Additionally, with the possible exception of
non-deterministic modeling approaches that rely on unique random
seeds, there is some level of confidence that if the same input data and
model software are executed on "identical machine", it will result in the
same output, even when the modeling software is very complicated
(Sacks et al., 1989). On the other hand, creating “identical machines”
including both hardware and software on a machine is very difficult in

practice. When these computational models are moved to a new ma
chine, modelers often experience difficulties reproducing the same
model results (Baker, 2016; Essawy et al., 2020; Hothorn and Leisch,
2011; Wilson et al., 2017). This is because the way software is packaged,
installed, and executed on specific hardware to create "identical ma
chines" is often very complicated and difficult, even when these steps are
well documented (Garijo et al., 2013).

The rapid evolution of software versions is one key factor that makes
computational reproducibility so challenging (Epskamp, 2019; Yuan
et al., 2018), especially open-source software commonly used in many
scientific communities. Slight differences in the computational envi
ronment, including but not limited to software dependencies, can result
in unexpected errors in re-executing models (Stagge et al., 2019) and can
significantly influence the model outputs. As a result, researchers have

* Corresponding author. Department of Civil and Environmental Engineering, University of Virginia, 151 Engineers Way, P.O. Box 400747, Charlottesville, VA,
22904, USA.

E-mail address: goodall@virginia.edu (J.L. Goodall).

Contents lists available at ScienceDirect

Environmental Modelling and Software

journal homepage: www.elsevier.com/locate/envsoft

https://doi.org/10.1016/j.envsoft.2023.105760
Received 31 January 2023; Received in revised form 9 June 2023; Accepted 10 June 2023

mailto:goodall@virginia.edu
www.sciencedirect.com/science/journal/13648152
https://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2023.105760
https://doi.org/10.1016/j.envsoft.2023.105760
https://doi.org/10.1016/j.envsoft.2023.105760

Environmental Modelling and Software 167 (2023) 105760

2

been highlighting the difference between what might be thought of as
reproducible work such as simply sharing data and workflow docu
ments, and what is, in fact, required for reproducible work: sharing
computational environments and automated workflows (Beaulieu-Jones
and Greene, 2017; Chuah et al., 2020; Essawy et al., 2020; Kim et al.,
2018).

To overcome what might be called the “reproducibility gap,” re
searchers have presented not only high-level guidelines and principles
(Choi et al., 2021; Essawy et al., 2020; Gil et al., 2016; Wilkinson et al.,
2016) but also developed various software tools for specific tasks
required for computational reproducibility (Kurtzer et al., 2017; Merkel,
2014; That et al., 2017). For example, while online repositories that
follow FAIR (Findable, Accessible, Interoperable, Reusable) guiding
principles (Wilkinson et al., 2016) continue to mature, it has led not only
to a growing demand for sharing well-documented data, source code,
software, and workflows, but also with software for automatically
encapsulating computational environments and workflows using
containerization and literate programming (Kery et al., 2018; Knuth,
1984).

These new tools and concepts open the door to applying FAIR
guiding principles that are inclusive of not just data but also modeling
software. For example, Bast (2019) suggested that source code man
agement and containerization tools are needed to reproduce the
computational environments that underly computational models, while
Goble et al. (2020) suggested the FAIR principles are required for
end-to-end workflows to describe the execution of a computational
process such as data collection, data preparation, data analysis, and data
visualization. Researchers are beginning to create the cyberinfras
tructure needed for such approaches. Reproducibility of computational
environments and automated workflows have been shown to be critical
to filling the computational reproducibility gaps in practice (Piccolo and
Frampton, 2016; Rosenberg et al., 2020; Sandve et al., 2013). In hy
drology, Hutton et al. (2016) recommended an online repository to
easily find data and source code with unique persistent identifiers and
computational workflows to describe the precise procedure among data
and modeling processes. In addition, Hut et al. (2017) suggested the use
of containerization tools and open interfaces to complement the pres
ervation of computational environments suggested by Hutton et al.
(2016).

To discuss reproducible computational modeling, it is first important
to define and agree to the main software components used in environ
mental modeling studies. In this paper, we consider three main software
components: 1) the core model software (i.e., what could be thought of
as the model engine), 2) secondary software needed to support the
modeling application (i.e., software dependencies and support tools),
and 3) modeling workflows that capture the end-to-end modeling
application (i.e., from data preparation to analysis and visualization of
the model output). The core model software is often developed using a
compiled programming language and is optimized for computational
performance. The secondary software needed to support the modeling
application might include a Graphical User Interface (GUI) or an
Application Programming Interface (API) for creating and analyzing
input and output files associated with the core model software. Many
such model APIs now exist for different environmental models (Choi
et al., 2021; Lampert and Wu, 2015; McDonnell et al., 2020; Volk and
Turner, 2019) and offer a powerful way of programmatically creating
and interacting with the so-called model instances (Morsy et al., 2017).
Finally, modeling workflows are important to capture the entire
end-to-end process, using model APIs and scripting to link the entire
end-to-end process from raw data to publication-ready figures.

Despite progress in understanding and creating more reproducible
modeling studies across fields, many challenges remain (Reinecke et al.,
2022). We argue that a significant reason for these remaining challenges
is the required level of human expertise to install and configure
complicated computational modeling setups. Outside of a few
well-maintained and often commercial or government-backed

organizations, many model developers might understand the specific
requirements for reproducing their environmental models on other
computers, but documenting this procedure with enough detail for
others to follow can be challenging. The challenge resulting from the
increased complexity of software systems is not unique to environmental
modeling or even scientific modeling more generally; it is, in fact, a
common problem in software engineering. To address this challenge,
computer scientists and software engineers have developed sophisti
cated containerization tools to encapsulate complex software as a virtual
machine or environment (Bentaleb et al., 2022). Therefore, this paper
aims to compare various local and remote computational approaches to
advance reproducible environmental modeling (Hut et al., 2017; Choi
et al., 2021).

While these containerization tools offer an important opportunity, it
can be challenging for environmental modelers to know how best to
utilize them for different modeling use cases and applications. Many
containerization approaches exist, and the options for using these ap
proaches across different computational environments (e.g., the re
searcher’s personal computer to remote cloud-computing environments)
make the advantages and disadvantages of leveraging containerization
difficult to discern. Thus, the goal of this paper is to compare different
local and remote computational approaches for advancing reproducible
environmental modeling. We evaluate ten approaches, in total, using a
hydrologic modeling case study leveraging the Structure for Unifying
Multiple Modeling Alternative (SUMMA) (Clark et al., 2015a) modeling
framework and a set of quantitative and qualitative metrics. We discuss
the benefits and weaknesses of each approach and summarize recom
mended best practices for using the approaches to achieve different
modeling objectives. Finally, we discuss remaining knowledge gaps in
creating reproducible computational models that require future research
and development.

2. Methodology

2.1. The computational reproducibility approaches

The ten computational reproducibility approaches considered in this
study are given in Table 1. The approaches are first categorized as using
primarily local or remote computational resources for execution. For the
local approaches, a virtual machine (VM) in Virtual Box with specifi
cations typical of a personal computer was used for model execution. For

Table 1
Approaches for computational reproducibility through containerization
considered in the study.

Approach
No.

Local and Remote
Computational
Environments

Combination of Software Tools and Modeling
Workflows

1) Core
Model
Software

2) Secondary
Software

3)
Modeling
Workflow

1 L Virtual Box GNU Make Conda Virtual
Environment

Jupyter
Notebook 2 O Docker

3 C Docker
4 A Singularity
5 L Sciunit

6 R CUAHSI
JupyterHub

Docker Jupyter
Notebook

7 E CyberGIS-
Jupyter for
Water

Docker

8 M CUAHSI
JupyterHub

Sciunit

9 O CyberGIS-
Jupyter for
Water

Sciunit

10 T Binder Docker Jupyter
Notebook E

Y.-D. Choi et al.

Environmental Modelling and Software 167 (2023) 105760

3

the remote approaches, each approach leveraged JupyterHub but was
implemented using different cyberinfrastructures: Consortium of Uni
versities for the Advancement of Hydrologic Science, Inc. (CUAHSI)
JupyterHub, CyberGIS-Jupyter for Water (Yin et al., 2018), and Bind
erHub to build a Jupyter instance from a code repository.

The second categorization is based on what components of the end-
to-end modeling workflow are containerized and using which contain
erization technology. As stated earlier, we consider a computational
model consisting of three primary software components: 1) the core
model software, 2) secondary software, and 3) a modeling workflow.
Approaches for computational reproducibility through containerization
may address one or more of these components. Likewise, different
containerization technologies exist including Docker, Singularity, and
Sciunit. We did not test all combinations of component containerization
using different technologies, but rather we focused on logical combi
nations, which based on our judgement, would most likely be used by
environmental modelers. Finally, in the first two cases we used GNU
Make and a Python-based Virtual Environment (Conda VE) to include
approaches commonly used by modelers for comparison purposes.
While not directly using containerization, these approaches represent
ways for achieving more portable and reproducible environmental
modeling applications and represent a meaningful base case for
comparison.

The first five approaches in Table 1 all leverage local computing
resources, which means a VM on the modeler’s own workstation for
running the end-to-end modeling workflow. Approach 1 represents a
standard approach commonly used by modelers (Peckham et al., 2013)
in that the model software is compiled using GNU Make and the sec
ondary software, written in Python, is encapsulated in a Conda VE.
Approach 2 introduces formal containerization tools rather than only
encapsulation, but only for the core model software component using
Docker as the containerization solution. Approach 3 builds on Approach
2 by using containerization for not only the core model software, but
also the secondary software supporting the model, again using Docker as
the containerization tool. Approach 4 further builds on Approach 3 by
keeping the same containerization strategy but switching the contain
erization tool from Docker to Singularity. Finally, Approach 5 also builds
from Approach 3 but uses Sciunit rather than Docker or Singularity as
the containerization tool. Thus, across these five approaches, we begin
from a standard approach without direct use of containerization tech
nologies and build to an end-to-end modeling workflow leveraging three
containerization technologies: Docker, Singularity, and Sciunit.

Approaches 6–10 make use of remote computational resources to
compute the same end-to-end modeling workflow. Approach 6 uses the
CUAHSI JupyterHub (hereafter CJH), a cloud computing environment
on the Google Cloud Platform specifically designed to support research
and education in the water sciences. Approach 7 uses the CyberGIS-
Jupyter for Water platform (hereafter CJW), a CyberGIS-Jupyter
instance tailored to support data-intensive and reproducible research
in the environmental modeling community built on the Jetstream
computational resource (Yin et al., 2018). In both approaches, Docker is
used as a containerization technology. Approaches 8 and 9 again use
CJH and CJW, respectively, but with Sciunit in place of Docker as the
containerization tool. Singularity is not typically used in JupyterHub
environments (Prasad et al., 2020), so it was not considered for these
approaches. Approach 10 uses a containerization approach called
Binder that allows users to create a custom JupyterHub instance from a
code repository using Docker as the containerization technology
(Jupyter Project et al., 2018). Further detail about the specific proced
ures and characteristics of each approach is presented in the following
subsections.

2.1.1. Local approaches
For the five local approaches, we used Virtual Box to create a

consistent Linux virtual environment (Ubuntu 20.04 LDT) with a Win
dows operating system and a single-core processor (Table 2). We

considered this to be a typical personal computer used by modelers,
although we acknowledge many modelers would have access to work
stations with higher end computational and memory resources.

Fig. 1 shows the steps required to complete the five local approaches
from the perspective of a developer, that is the person setting up the
modeling workflow, and the user, that is the person executing the
workflow for a given input dataset. These steps are used to evaluate each
approach across a set of metrics which are described later in the paper.

As shown in Fig. 1a, to set up Approach 1 the developer must com
plete the following steps: 1) create a Makefile; 2) compile and build the
core software executable; and 3) share the source code and Makefile on
an online repository such as GitHub or HydroShare. Next, the Conda VE
is created to support the secondary software for the modeling workflow.
Finally, the Jupyter notebooks that document the end-to-end modeling
steps are created and shared. Once the end-to-end model workflow has
been captured, the developer’s job is complete, and a user can reproduce
the modeling study. The steps the user must take to execute Approach 1
are 1) download the source code and Makefile for building the envi
ronmental model; 2) edit the Makefile to set the paths to the configu
ration files and software dependencies for the environmental model
software on the user’s computer; and 3) compile and build the execut
able of core model software. Once these steps are complete, the user
must download the Jupyter notebooks that document, the end-to-end
workflow, including installing the required software, downloading
model input data, and executing the environmental model. Compared to
the developer work, the user work is simpler because the Jupyter
notebooks document the workflow, and the user’s task is focused mainly
on compiling the core model software and installing secondary software.

Fig. 1b shows the procedure for Approach 2 where the developer
must 1) create a Dockerfile, which has instructions to download and
build software, 2) create a Docker image from the Dockerfile, and 3)
share the Docker image on an online repository such as the DockerHub.
This process is often not a linear sequence of steps, but an interactive
process where creating the Docker image is time-consuming involving
testing and verification before the Docker image is finally shared. Once
this process is complete, however, the user only needs to install Docker
using the simple command “sudo apt install docker.io” to get the core
model operating correctly. The user must still obtain and run the Jupyter
notebooks representing the end-to-end workflow, including installing
required secondary software and input files, before executing the model.

For Approach 3 (Fig. 1c), the developer’s first step is creating Jupyter
notebooks to containerize workflows into a Docker container. Next, the
developer must create a Dockerfile that includes the commands needed
to containerize the core environmental model software, Python-based
model API, and modeling workflows. In this approach, users only need
to install Docker and run the Docker image because the Docker image
has the required dependencies. Then user can open and run the Jupyter
notebooks to reproduce the end-to-end workflow.

In Approach 4 (Fig. 1d), the developer will first create a Definition
file to create a Singularity image that includes a dependency list. Next,
the developer must make a “kernel.json” file to link a Jupyter kernel
with the Singularity image and Jupyter notebooks. Next, the developer
can share the Singularity image through online repositories including
Singularity Hub. Developers must also create and share Jupyter note
books and the model input for the modeling workflows. After the

Table 2
Specification of the base local computational environment.

Specification Descriptions

Processor Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz
RAM 15.6 GB
Base Operating System Windows 10
Linux Emulator VirtualBox 5.2.12
Linux Operating System Ubuntu 20.04 LDT
Number of CPU Cores 1

Y.-D. Choi et al.

Environmental Modelling and Software 167 (2023) 105760

4

developer’s work is complete, the user needs to download the Jupyter
notebooks first, then open and run the Jupyter notebooks. The Jupyter
notebooks handle the rest of the workflow including downloading the
Singularity image of the core environmental model software, creating
the Jupyter kernel to establish a link between the Singularity image and
Jupyter notebooks, downloading the model input data, and executing
the environmental model.

Finally, in Approach 5 (Fig. 1e), the developer first creates a Jupyter

notebook to encapsulate workflows using Sciunit (Essawy et al., 2018).
Next, the developer creates a Sciunit container using the programming
code and the Jupyter notebook. After that step is complete, the devel
oper can share the Sciunit container and the Jupyter notebook. Users
then can download the Sciunit container and Jupyter notebook and only
need to open and run the corresponding Jupyter notebook. Unlike other
approaches, users do not need to download the model input as the
Sciunit container includes the model input and all the software

Fig. 1. The steps required for the five local approaches from the developer and user perspectives.

Y.-D. Choi et al.

Environmental Modelling and Software 167 (2023) 105760

5

dependencies.

2.1.2. Remote approaches
Fig. 2 illustrates the steps required to complete the five remote ap

proaches from the perspective of the developer and the user. As with the
five local approaches, these steps are used to evaluate each approach
across a set of metrics that are described later in the paper.

As Fig. 2a shows, for Approaches 6 and 7 the developer must create a
Dockerfile, similar to Approaches 2 and 3. The user may use GitHub to
add a new Dockerfile as a pull request to the CJH or CJW GitHub re
pository. After sending a pull request to the GitHub repository of CJH or
CJW, the Dockerfile needs to be reviewed by CJH or CJW development
team to deploy a new Docker image. After finishing the developer’s
work, users only need to log into CJH or CJW and run Jupyter notebooks
because the modeling environments are preconfigured and shared
through the environmental profiles of CJH or Jupyter kernels of CJW.
Fig. 2b shows the general procedure of Approaches 8 and 9 that follow
the same steps as Approach 5 (Fig. 1e) using Sciunit, so they are not
explained further here.

Fig. 2c shows the general procedure of Approach 10. First, the
developer must create a configuration file that is supported by Binder to
encapsulate the environmental model software and Python-based model
APIs used by the model. Next, the developer must create Jupyter note
books to document the modeling workflow. Then, the developer shares
the configuration files and the Jupyter notebooks through an online
repository such as GitHub, Figshare, Zenodo, or HydroShare. After that,
the developer uses MyBinder to create a remote modeling environment

for the modeling setup. Finally, the developer can share the Binder URL
pointing to the remote modeling environment with end-users.

2.2. Evaluation of the approaches

We evaluated the ten approaches (five local and five remote) against
a set of quantitative and qualitative metrics using a hydrologic modeling
study as an example application. In this example application, we used
the SUMMA (Clark et al., 2015a) hydrologic model as the core model
software, pySUMMA (Choi et al., 2021) and other Python packages as
the secondary software, and Jupyter notebooks to orchestrate the
end-to-end modeling workflow. These three components are described
in further detail in the following subsection. We then describe the
quantitative and qualitative criteria used to evaluate the ten approaches.

2.2.1. Modeling application used for the evaluation
SUMMA was selected for the evaluation because it represents a

typical numerical computational model used in environmental studies.
It is, in fact, more of a modeling framework since it enables the
controlled and systematic evaluation of multiple model representations
of hydrologic processes and scaling behavior through a flexible hierar
chical spatial structure. SUMMA was developed in Fortran, and we used
the Fortran compiler "gfortran" to compile the source code. Also,
SUMMA requires the NetCDF (Network Common Data Form) and
LAPACK (Linear Algebra PACKage) libraries. The NetCDF library (lib
netcdff.*) supports creating, accessing, and sharing data stored in a
NetCDF format, the file format used by SUMMA. The LAPACK library

Fig. 2. The steps required for the five remote approaches from the developer and user perspectives.

Y.-D. Choi et al.

Environmental Modelling and Software 167 (2023) 105760

6

provides a series of routines for linear algebra operations, including
matrix solvers. These libraries are considered core software for the
model because they are required for the model to be compiled. SUMMA
Makefile and Dockerfiles are shared through the SUMMA GitHub re
pository to support compiling SUMMA source code and creating a
SUMMA Docker image. Also, the created SUMMA Docker image is
shared via DockerHub (SUMMA DockerHub, 2021).

Other secondary software, not required to compile SUMMA but
convenient for working with SUMMA input and output files, includes
pySUMMA, a Python-based SUMMA model API. pySUMMA allows
programmatic control of the model configuration, execution, and visu
alization of SUMMA models. Currently, pySUMMA can be installed from
either a Conda command (e.g., “conda install –c conda-forge pysumma”)
or a pip command (e.g., “pip install pysumma”). Users can also download
the pySUMMA source code from its pySUMMA GitHub repository and
install it manually using “environment.yml” for conda install or “setup.py”
for pip install. The “environment.yml” and “setup.py” files have the lists of
pySUMMA dependencies for each installation method, thus making it
possible to install the pySUMMA environment with dependencies on a
new machine.

Finally, for modeling workflows, we used Jupyter notebooks to
create modeling workflows through a mix of formatted text, mathe
matical equations, and executable code with in-line visualizations. We
created Jupyter notebooks for each of the ten reproducible approaches
described earlier to encapsulate reproducible artifacts and modeling
workflows. These notebooks are available as products of this research as
described in the Data and Software Availability section of this paper.

We used hydrologic modeling experiments described in Clark et al.
(2015b) in our evaluation. Based on these experiments, we created four
scenarios (Table 3) using two datasets to reproduce Figures 7, 8, and 9 in
Clark et al. (2015b). The first scenario is a single simulation for 15
months using the Simple Resistance method, as the stomatal resistance
parameterization in SUMMA. The second scenario includes nine
ensemble simulations for analyzing the impact on ET using 1) three
different stomatal resistance parameterizations, Simple Resistance,
Ball-Berry (Ball et al., 1987), and Jarvis (Jarvis, 1976), and 2) three
different values (1.0, 0.5, 0.25) of the root exponential distribution
parameter. The first and second scenarios aim to reproduce Figures 7
and 8 in Clark et al. (2015b) (included here as Figure A.1). The third
scenario is a single simulation for 75 months to analyze the impact of
using the 1d Richards method (Celia et al., 1990), which is one of the
lateral flow parameterizations in SUMMA, on runoff. The fourth and
final scenario is three ensemble simulations to analyze the impact of
using three different lateral flow parameterizations: 1d Richards, Lumped
Topmodel, and Distributed Topmodel (Duan and Miller, 1997) on runoff.
From the third and fourth scenarios, our aim is to reproduce Figure 9 in
Clark et al. (2015b) (included here as Figure A.2).

2.2.2. Quantitative performance metrics
The following quantitative measures were used to evaluate the ten

approaches. 1) Competency considers the level of effort in reproducing
each step in the approach and is an important metric for lessening the
burden of reproducibility work for researchers (Atmanspacher et al.,
2014). 2) The size of computational artifacts takes into account the
storage requirements for storing and sharing each approach, another
important factor in the adoption of reproducible approaches (Craig and
Victoria., 2020; Kovács, 2017). 3) The computational time measures the
wall time required to execute the approach, which can vary significantly
across approaches and impact the usability of the approach (Kozhir
bayev and Sinnott, 2017).

For the competency metric, we evaluated the level of skill required to
complete each step of the approach from both the developer and user
perspectives. We defined three levels: Minimal, Moderate, and Sub
stantial. Minimal means basic skills are required including downloading,
setting up, and running the code without any changes in the basic
workflow. Moderate means additional skills are needed including edit
ing and creating simple codes in the existing workflow. Finally, Sub
stantial means requiring expertise in coding and re-configuring the
existing workflow.

In order to give numerical scores to these categories, we scored
"Minimal Skill" as an integer between 1 and 3, "Moderate Skill" between
4 and 6, and "Substantial Skill" between 7 and 9. As this was done for
each step in an approach and an overall "total score" for the approach
was calculated as simply the sum of all steps in that approach. Since this
scoring can be subjective, we had six experts, all co-authors of this paper
and knowledgeable of the modeling steps as both users and developers,
complete the evaluation independently and report the range of scores in
the results section. The Appendix (Table A.1 – A.7) includes the ques
tionaries used to obtain the competency scores for the ten approaches.

For the size metric, we measured how much space is used to store all
digital artifacts associated with the reproducible approach. We only
considered the size metric for the five local approaches and not the five
remote approaches because the size of the preconfigured computational
artifacts in a remote environment will be determined by the specific
technical implementation in that remote environment and will have less
impact on the end user. Finally, for the computational time metric, we
measured the execution time across all ten reproducible approaches. In
this performance metric, we measured the wall time required to run the
end-to-end workflow for the approach.

2.2.3. Qualitative performance metrics
In terms of qualitative performance metrics, we first describe the

strengths and weaknesses of each approach through our experience
implementing each approach from both the developer and user per
spectives. We then considered two broad use cases for environmental
models: 1) education and 2) research. Based on the strengths and
weaknesses and with these two use cases in mind, we present recom
mendations for best practices when using each of the ten approaches.

3. Results

3.1. Quantitative evaluation

3.1.1. Required competency
The resulting competency metric scores, grouped by developer and

user work, are shown in Fig. 3. The boxplot depicts the range of the
scores across the experts who rated the competency needed to complete
each step of each approach. The total score for developer work was
consistently higher than the user work, indicating that the developer
work requires greater competency or effort than the user work. This is
expected as the competency was defined around coding and computing
skills rather than modeling skills. Interestingly, there was less variability
in scores when evaluating the user’s work compared to the developer’s
work, meaning there was more agreement among those who completed
the evaluation about the competency required for the user steps. To help
visualize the results for each approach, the median scores are depicted in

Table 3
SUMMA simulation scenarios for evaluating the ten reproducible approaches.

Scenario Descriptions

(a) Scenario
1

□ A single simulation (simple resistance method)
□ Simulation periods: 2006-07-01–2007-09-30 (15 months)

(b) Scenario
2

□ Ensemble simulations (9 simulations)
- 3 different parameterizations (Simple Resistance, Ball-Berry, and
Jarvis)
×□ 3 different parameters (Root Exponential values 1.0, 0.5, 0.25)
□ Simulation periods: 2006-07-01–2007-09-30 (15 months)

(c) Scenario
3

□ A single simulation (1d Richards)
□ Simulation periods: 2002-07-01–2008-09-30 (75 months)

(d) Scenario
4

□ Ensemble simulations (3 simulations)
3 different parameterizations (1d Richards, Lumped Topmodel, and
Distributed Topmodel)
□ Simulation periods: 2002-07-01–2008-09-30 (75 months)

Y.-D. Choi et al.

Environmental Modelling and Software 167 (2023) 105760

7

a spider plot (Fig. 4) to show how each approach ranks across the
developer and user competency metric scores.

In terms of developer work, Approach 1 (Score = 35) was scored as
the most complicated approach among the local approaches. In this
approach, the developer needs to reproduce every step individually as it
does not use containerization technology. In terms of user work, most
approaches have a low score compared to Approach 1. Approach 5 was
scored as the simplest local approach from both the developer (Score =
19) and user perspectives (Score = 3). For the remote approaches and in
terms of developer work, approaches 6 and 7 were judged to require a
high level of competency. Because Dockerfile must be programmed, it
requires a considerable amount of knowledge about the Docker platform
and its API, it can be a complex task for the model developers.
Furthermore, for cloud environments like CJH and CJW, developers
themselves cannot install new models until they are reviewed by the
larger CJH and CJW development teams. Approaches 8 and 9 were
judged to be the simplest remote approaches considering developer
(Score = 19) and user work (Score = 3). These approaches used Sciunit
which can containerize modeling environment and workflow into a
container by recording steps in the model execution code created with
no additional work. This allows users to easily reproduce published re
sults using Sciunit containers and commands in a Jupyter notebook.
Approaches 6, 7, and 10 are the simpler in part because dependencies for
the environmental modeling code are preconfigured into containers.

3.1.2. Size of reproducible artifacts
Fig. 5 shows the sizes of the digital artifacts for the five local

reproducible approaches. Approach 5 is the most lightweight and it is
ten times smaller than Approach 4, which is the second most light
weight. This is because Sciunit only encapsulates dependencies that are
used during modeling workflows, compared to other containerization
tools that containerize additional software and Python libraries that may
be stated for example in a Dockerfile but not directly used in the
workflow. Sciunit further uses content-based deduplication to determine
redundant file blocks across files used in a workflow (That et al., 2017;
Yuan et al., 2018). In addition, Approach 4 is lighter weight than Ap
proaches 1–3 because Singularity utilizes a flatter structure for files
within an image, meaning all files of an image are combined into a single
image format and compressed. In contrast, Docker uses a concept of
layering of files in which files are shared across multiple images. The
layered file system on disk, however, is not compressed as in Singularity
and thus the result in Fig. 5. We note that currently we have a single
model run and layering does not offer much space saving but can do so if
the developer is using multiple containers. We also anticipate that in
that case a compressed file system will offer more savings than layering
and the overall result trend will be the same. This concept used in
Docker is not helpful for a single model software run, but it will help
when researchers want to use multiple commands with layered images.
Finally, approach 1 and 2 do not use container tools and thus do not take
advantage of file system saving methods such as compression and
deduplication. The sizes required for each of the dependencies are given

Fig. 3. Competency metric scores for each approach for the steps completed by the Developer (D) and User (U). The box plots represent the range of scores across the
six individuals who rated the approach.

Fig. 4. The median competency metric scores for (a) local and (b) remote reproducible approaches for the developer and user work.

Y.-D. Choi et al.

Environmental Modelling and Software 167 (2023) 105760

8

in detail in Table A.8.

3.1.3. Workflow runtime
Fig. 6 shows the results of the workflow runtime comparison for the

approaches using (a) local and (b) remote compute resources across the
four modeling scenarios described in Table 3. When we compare the five
local approaches; it shows that Approach 5 is slightly slower than the
other approaches. However, the overall computing time is similar across
the five local reproducible approaches. For the remote approaches,
Approach 7 was the fastest approach even though the approach requires
additional time to submit jobs between CJW to distributed HPC re
sources and retrieve model output from such resources to CJW.
Although there are variations according to the status of memory use, the
rest of the remote reproducible approaches are similar to the local ones.
Due to how the model runs were set up using Dask, a Python library for
parallel computing (Rocklin, 2015), and because Dask automatically
allocates multiple cores for ensemble simulations, the Sciunit encapsu
lation of the ensemble simulations (Scenarios 2 and 4) were not
configured to take advantage of the multiple cores. Hence, the runtime
for Scenarios 2 and 4 were excluded from Fig. 6a. From the performance
test of computing time, for data-intensive modeling such as the simu
lation of fully distributed models and Contiguous United States (CONUS)
scale models, we can see the value of using remote environments that
can access HPC resource.

Overall, if we summarize the result of quantitative performance, we

find that the local reproducible approaches require more competency in
coding and computing skills, more computational time, and more space
compared to remote ones. For both local and remote approaches, the
developer work requires a remarkably higher level of effort than the user
work. If we compare different containerization tools across the local and
remote approaches, Docker was the heaviest weight and was judged to
require greater competency. On the other hand, Sciunit was the most
lightweight and required less competency to use compared to other
containerization tools. Finally, Singularity excelled as a containerization
approach for parallel computing. It is worth noting that the performance
of containerization-based approaches can vary based on the type (e.g.,
hydrologic model SUMMA vs. atmospheric model Weather Research and
Forecasting WRF) and scale of the environmental model (e.g., local vs.
global). For different types of models, the challenges lie in model
compilation difficulty and the developers’ competency. In terms of
modeling scale, factors such as model complexity and watershed scale
come into play, with the performance of approaches being influenced by
the memory size of the computer used.

3.2. Qualitative evaluation

3.2.1. Strengths and weaknesses of approaches
The strengths and weaknesses of the five local reproducible ap

proaches judged through this research are presented in Table 4. For
Approach 1 (Table 4a), a strength is that the GNU Make tool is a common

Fig. 5. Comparison of the size for reproducible artifacts for the local reproducible approaches.

Fig. 6. Comparison of computing time in the (a) local and (b) remote reproducible approaches.

Y.-D. Choi et al.

Environmental Modelling and Software 167 (2023) 105760

9

method to share model software and GNU Make itself is important
because within each containerization tool GNU Make must be run to
build the SUMMA executable. However, this approach is still difficult for
many model users as it requires a higher level of computational com
petency. Therefore, having the developer with the skills required to
complete this step and then sharing a containerized version of the model
software reduces the burden on the model user.

Table 4b presents the results of the qualitative performance evalu
ation for Approach 2. This approach uses Docker to containerize only the
core model software; therefore, users can easily reproduce SUMMA
using Docker from DockerHub. In addition, users can install and apply
new Python libraries as model APIs without any limitations. After
downloading the SUMMA Docker image and installing pySUMMA
within a Conda VE, users can execute SUMMA using the “docker” option
in the pySUMMA “run” method. Even if users have not downloaded the

SUMMA Docker image on the local computer, pySUMMA can auto
matically download it from DockerHub. However, sometimes when
users create the Conda VE, unexpected errors may occur, requiring the
user to create the Conda VE manually. Therefore, we recommend this
approach for model applications where the user requires flexibility in
what Python packages and other libraries are needed to complete the
application.

Table 4c presents the results of the qualitative performance evalua
tion for Approach 3. This approach containerizes every dependency into
a Docker image; therefore, the procedure is stable and consistent in that
it is unlikely that errors will occur across users. However, there is a
limitation when attempting to install new software or dependencies
because users must work inside a Docker image, even if users can install
new dependencies, they are temporary. Therefore, this approach is
helpful for offline education for practicing and reproducing published
results on local computers (public or personal computers) but is less
well-suited for use cases that require the extension of past work.

Table 4d presents the qualitative performance evaluation results for
Approach 4. It is lightweight compared to other reproducibility ap
proaches, except for Sciunit. Currently, Singularity is less widely used
than Docker, so sometimes researchers themselves need to create Sin
gularity definition files. In this scenario, we recommend researchers try
to find a Dockerfile first and then use the "docker2singularity" library to
convert the Dockerfile into a Singularity definition file.

Finally, Table 4e presents the qualitative performance evaluation
results for Approach 5. Sciunit has many advantages, such as being the
most simple and lightweight of the ten reproducible approaches
considered in this study. In addition, Sciunit is efficient in terms of
memory use for encapsulating modeling environments, workflows, and
data into one container. Due to its easy installation, Sciunit is helpful as
an educational setting where instructors can share reproducible
computational materials and students are asked to containerize their
own analyses. Thus, it is a powerful tool for reliable reproducible
research without requiring continuous version control. However, Sciunit
is still in active development as a research project and, in our experience
for complicated software with the GRASS GIS system, a dependency of
the workflows, it was unable to automatically encapsulate the system. In
other cases, Sciunit, being efficient in what it encapsulates by moni
toring what software is used in a workflow, may exclude related soft
ware not directly used but potentially helpful when extending a
workflow (e.g., plotting routines helpful to visualize model output but
not directly used in the encapsulated workflow). This is most often a
benefit, producing a highly optimized container, but requires the
modeler to carefully consider and include all software calls that may be
useful in later reuse of the container.

Table 5 highlights the strengths and weaknesses for the five remote
reproducibility approaches. Table 5a includes the qualitative perfor
mance evaluation results for Approaches 6 and 7. These approaches
allow users to use preconfigured modeling environments; therefore,
users can use environmental models straightforwardly without addi
tional software installation. In addition, CJW supports distributed HPC
resources for parallel computing. Also, CJH supports a custom Conda VE
to permanently install Python or other libraries, like Approach 2.
However, there is a limitation with installing new model software
because it requires an administrator for installation into CJH and CJW
due to security concerns. Therefore, it takes time to deploy new software
into CJH and CJW because the CJH and CJW development teams need a
certain amount of time to review and deploy the new software on CJH
and CJW. Consequently, we recommend this approach for online edu
cation and compute-intensive problem solving (CJW). Table 5b presents
the qualitative performance evaluation results for Approaches 8 and 9.
Considering the main usage of Sciunit, qualitative performance test re
sults are the same as Approach 5, except for offline use.

Finally, Table 5c presents the qualitative performance test results for
Approach 10. This approach allows developers to share modeling en
vironments online with users with a single click. Also, users can add new

Table 4
Qualitative evaluation of the strengths, weaknesses, and recommended usages
for the local approaches.

(a) Approach 1: Compiling the Core Model Software
Strengths □ [D, U] GNU Make itself is important because this tool has to

use in 10 reproducible approaches
□ [D] Efficient for model software developers to review and
apply their new and modified source code

Weaknesses □ [U] Difficult to apply Makefile configuration setting for
compiling model software

Recommended
usages

□ [Research] Model software development and management

(b) Approach 2: Containerizing the Core Model Software with Docker

Strengths □ [U] Easy to download and use Docker images for model
software via DockerHub
□ [U] Efficient to install new Python packages or other
libraries for various application research

Weaknesses □ [U] Unexpected errors may occur when users create Conda
VE manually

Recommended
usages

□ [Research] Model application with flexible application of
various Python packages and other libraries

(c) Approach 3: Containerizing All Software with Docker

Strengths □ [U] Easy to download and use Docker images for
environmental modeling via DockerHub
□ [U] Possible to use all required model software and other
software from a Docker image
□ [U] Stable steps to use environmental models

Weaknesses □ [U] Limitation to install new model software or other
software

Recommended
usages

□ [Education] Offline education requiring stable and
consistent reproducibility

(d) Approach 4: Containerizing All Software with Singularity

Strengths □ [D] Easy to convert Docker images to Singularity images
using "docker2singularity" library
□ [U] Lightweight than other reproducible approaches except
Sciunit

Weaknesses □ [U] Niche usage comparing to Docker
Recommended

usages
□ [Research] Models requiring HPC

(e) Approach 5: Containerizing All Software and Workflow with Sciunit

Strengths □ [D, U] The simplest complexity for reproducibility in both
developer and user perspective
□ [U] The most lightweight in ten reproducible approaches
□ [D, U] Easy to share Sciunit containers in a file format
□ [D, U] Possible to use Sciunit on local and remote
environments after installing it using pip install

Weaknesses □ [U] Niche usage comparing to Docker and Singularity
□ [U] Does not encapsulate automatic allocation of parallel
computing such as Dask

Recommended
usages

□ [Education] Offline education
□ [Research] Reliable reproducibility as Sciunit can
containerize all reproducible artifacts into a container without
significant memory use

[D] = Developer; [U] = User.

Y.-D. Choi et al.

Environmental Modelling and Software 167 (2023) 105760

10

software or libraries, though users first need to understand how to edit
Binder configuration files. Despite these conveniences, MyBinder has a
limitation in persistent sessions because it supports these online
modeling environments for free. Therefore, if users have no activity for
10 min, the Jupyter modeling environment is automatically shut down
without saving into a persistent data storage. Therefore, we recommend
this approach for online education use cases, but not for more sophis
ticated research applications unless Binder can be implemented with
persistent data storage. This approach is useful as a preliminary auditing
procedure for research applications to deploy new software or libraries
into Docker-based virtual research environments (Prasad et al., 2020)
such as CJH and CJW because both Binder and these cyberinfras
tructures are developed using Docker.

3.2.2. Recommended approaches for common use cases
Summarizing the qualitative metrics while also drawing on insights

from the quantitative evaluation, we recommend best practices for
leveraging containerization and computing environments to achieve
reproducible environmental modeling objectives. These recommenda
tions are provided in Tables 6 and 7 for the local and remote approaches,
respectively. We considered common use cases in environmental
modeling around two broad categories: education and research. Tradi
tionally, we conduct environmental modeling through classes and
workshops for educational purposes in an “offline” manner that requires
installing software on local computers. However, many educational in
stitutions are transitioning to remote or “online” compute environments
(Prasad et al., 2020). Therefore, we divide the objectives of education
into online and offline. For environmental modeling research, we can
generally divide the steps required to perform computational modeling
into 1) model installation, 2) model application, and 3) data analysis for
data-intensive computations using model-associated files (Addor et al.,
2020).

In the case of local approaches (Table 6), Approaches 3 and 5 are
recommended for educational use cases. One reason for this recom
mendation is because these approaches have low required competency
scores, suggesting they are less complexity to install and configure. Of
these two approaches, Approach 3 may prove a better choice as Docker
containerizes every dependency into Docker images. However, if users
want a more lightweight approach to distribute containerized images
without considering version control, Approach 5 that uses Sciunit may
be a preferred choice. For research purposes, especially for model
development, Approach 1 is the only approach to efficiently build new
or modified model software source code. Other approaches can only
create a container image using existing model software source code for
reproducibility. For the purpose of model application in research use
cases, Approach 2 is recommended because it has the flexibility to install
and apply new Python libraries for various analyses and visualizations.
For data analysis, remote approaches are preferred to local approaches
because of the space and time required for such data-intensive compu
tations within a local environment.

In the case of remote approaches (Table 7), for online education
purposes, approaches 6 and 7 are recommended approaches because
they offer the lowest required competency scores for users. These en
vironments support easy sharing via HydroShare and preconfigured
modeling environments. Sciunit also has the lowest required compe
tency; however, because Sciunit needs to encapsulate dependencies and
workflows together, sometimes creating Sciunit containers can be more
difficult compared to other approaches because they can only create a
container image using existing model software source code for repro
ducibility. For research purposes, especially for model development,
remote approaches are not recommended because source code changes
to the core model software are difficult to make in the remote ap
proaches. If the research application is primarily about performing
model runs instead of making changes to the core model software, then
Approach 6 is recommended among the remote approaches because it
has the flexibility to install and apply new Python libraries for various
analyses and visualizations. For the purpose of computationally

Table 5
Qualitative evaluation of the strengths, weaknesses, and recommended usages
for the five remote approaches.

(a) Approaches 6 and 7: Using CJH and CJW with Docker
Strengths □ [U] The lowest complexity for users, possible to use

preconfigured modeling environments
□ [U] Possible to use distributed HPC resources for scalable
model-ing work (CJW)
□ [U] Possible to install custom Conda VE (CUAHSI
JupyterHub)

Weaknesses □ [U] Impossible to install particular model software or
package that uses "sudo" command
□ [D] Requires a certain amount of time to review and deploy
a new software by CJH and CJW development team

Recommended
usages

□ [Education] Online education (CJH and CJW)
□ [Research] Computation- and/or data-intensive problem
solving (CJW)

(b) Approaches 8 and 9: Using CJH and CJW with Sciunit

Strengths □ [D, U] The lowest complexity for reproducibility in both
developer and user perspective
□ [U] The most lightweight in 10 reproducible approaches
□ [D, U] Easy to share Sciunit containers in a file format
□ [D, U] Possible to use Sciunit on local and remote
environments after installing it using pip install

Weaknesses □ [U] Niche usage comparing to Docker and Singularity
□ [U] Does not encapsulate automatic allocation of parallel
computing such as Dask

Recommended
usages

□ [Research] Reliable reproducibility as Sciunit can
containerize all reproducible artifacts into a container without
significant memory use

(c) Approach 10: Using Binder with Docker

Strengths □ [U] Easy to share modeling environments online
Weaknesses □ [U] Non-persistent sessions (automatically shut down if

there is no activity for 10 min)
Recommended

usages
□ [Education] Online education

[D] = Developer; [U] = User.

Table 6
Recommended best practices for reproducible approaches on local environments.

Objectives Best Practices

(a)
Education

(1) Online
(Class or Workshop)

–

(2) Offline
(Class or Workshop)

□ Containerizing All Software with Docker (AP-3) and Sciunit (AP-5)
→ The first (AP-5, score:3) and second (AP-3, score:5) lowest complexity for users, a more stable approach (AP-3),
and the most lightweight artifacts (AP-5)

(b) Research (3) Model
Installation

□ Compiling Model Software (AP-1)
→ The only approach to build new or modified model software source code

(4) Model
Application

□ Containerizing Core Model Software with Docker (AP-2)
→ Lower complexity than others (AP-2, score:4), flexibility to install and apply new Python libraries for various
analysis and visualization

(5) Computation- and/or Data-Intensive
Problem Solving

–

Y.-D. Choi et al.

Environmental Modelling and Software 167 (2023) 105760

11

intensive problem solving, Approach 7 is recommended because it takes
advantage of multiple cores and processors for parallel computing,
resulting in a lower runtime.

4. Discussion

4.1. Containerization as a means for promoting open and collaborative
environmental modeling

Containerization-based reproducible approaches are specifically
designed to meet the demanding needs of collaborative model devel
opment across varied software and hardware environments. By adopting
containerization, researchers can create container images that encap
sulate models, dependencies, and software configurations, ensuring a
unified and reproducible development environment. This allows mul
tiple researchers or institutions to work within the same software
environment and produce consistent results, regardless of their indi
vidual setups. Containerization also facilitates model portability across
different hardware environments, including local workstations, high-
performance computing clusters, and cloud infrastructure. It offers
flexibility for collaborators to utilize their preferred hardware setups
while maintaining compatibility and consistency. Additionally, collab
orative model development entails other aspects such as iterative
refining of the model, use of interactive development environments, and
efficient sharing of containers. Some use cases corresponding to these
aspects have been explored in Ahmad et al. (2022) that demonstrated
some necessary extensions to containers. Notably, "Sciunit-export" en
ables a seamless transition between Sciunit and other virtual environ
ments like Virtual Env and Conda, further enhancing collaborative
model development practices.

In the context of environmental modeling, the role of open-source
software and open data in promoting the adoption of reproducible ap
proaches and facilitating collaboration among researchers in the field of
environmental modeling is paramount. Open availability of software
and data reduces duplicated efforts and fosters higher quality science,
improves transparency, and encourages a stronger science-policy
boundary (Pfenninger et al., 2017). While there are valid reasons for
not openly sharing data and code, such as ethical and security concerns,
potential exposure of flawed code or data, additional workloads, and
institutional or personal inertia (Pfenninger et al., 2017), it is crucial to
understand the practicalities and importance of open code and data.
Open practices can be supported through measures like changing atti
tudes, requesting data-code-workflow-environments during manuscript
review process, initiating intellectual property rights/licenses, assigning
digital object identifiers (DOIs), and establishing distribution channels
for proper recognition. Adhering to these guidelines improves the
reproducibility of modeling results, enabling others to verify and build
upon the existing work. In the context of containerization, standardized
practices enhance interoperability among different containerized
models, facilitating their seamless integration into larger scientific
workflows and promoting collaboration among researchers. Notably,

there is currently a strong momentum for open-source data and software
across various scientific domains, including geology, energy, climate
modeling, and environmental modeling, extending beyond computer
science and data science (Knoth and Nüst, 2017; Fiore et al., 2019;
Pfenninger et al., 2017; Morsy et al., 2017; Essawy et al., 2018; Choi
et al., 2021).

4.2. Software licensing and security challenges associated with
containerization

Containerization approaches like Docker, Singularity, and Sciunit
run in the Linux operating system, which is Free and Open-Source
Software (FOSS). If there is proprietary and licensed software in the
Linux operating system, we can consider three specific limitations or
challenges. The first challenge is the possibility of containerizing the
software. To containerize the software, installation of software inside a
container requires using containerization configuration files, such as a
dockerfile for Docker and a definition file for Singularity, inside a
container. The second challenge is the possibility of process-based
containerization such as Sciunit. Sciunit extracts executed codes to
efficiently containerize the software. However, there is a possibility of
access limitations to the software to protect the software. Finally, a
limitation is the uses allowed by the software license and how the
software license is implemented. There are many types of licenses and
many implementations of licenses including a distributed offline
licensed key, a network license key, a subscription-based license, etc. For
sharing reproducible approaches, every approach requires an agreement
or permission from the owners of the software for any users or concur
rent users. Furthermore, there can be specific limitations or challenges
such as license compliance, cost, technical compatibility, version up
dates, dependencies etc. For example, the SUMMA model used in this
research is freely accessible under an open-source license, facilitating its
use and modification without licensing restrictions. In contrast, pro
prietary software like TUFLOW (Two-dimensional Unsteady FLOW) may
require users to obtain a license and potentially pay fees for certain
usage contexts or commercial purposes.

Related to license challenges are security challenges especially when
using remote approaches such as CJW and CJH with Docker, Singularity,
and Sciunit for environmental modeling. Some of these challenges
include data leakage, network security, and malicious containers. To
ensure data privacy and integrity, cyberinfrastructures generally use
strong authentication to prevent unauthorized access, update containers
and underlying software regularly, and verify the authenticity and
integrity of containers before deployment. For example, we need to use
verified "Hydroshare ID" to use the functionality of CJW and CJH plat
forms. Also, developers are unable to install new models in CJH and CJW
independently, without undergoing a review process conducted by the
larger CJH and CJW development teams, as mentioned earlier. Addi
tionally, both CJH and CJW undergo regular maintenance and security
measures to safeguard against potential security threats. By proactively
maintaining security, remote environments aim to protect the integrity

Table 7
Recommended best practices for reproducible approaches on remote environments.

Objectives Best Practices

(a)
Education

(1) Online
(Class or Workshop)

□ CJH and CJW with Docker (AP-6 and 7) and Binder with Docker (AP-10)
→ The lowest complexity for users (score:3), a flexible approach, and easy sharing

(2) Offline
(Class or Workshop)

–

(b) Research (3) Model
Installation

–

(4) Model Application □ CJH with Docker (AP-6)
→ Lower complexity than others (AP-6, score:3), flexibility to install and apply new Python libraries for various
analysis and visualization

(5) Computation- and/or Data-Intensive
Problem Solving

□ CJW with Docker (AP-7)
→ The first fastest computational time, possible to use multiple cores for parallel computing

Y.-D. Choi et al.

Environmental Modelling and Software 167 (2023) 105760

12

and privacy of the data and models hosted on their platforms, providing
a secure and reliable environment for researchers and users.

4.3. Opportunities for future research

4.3.1. Advancing sciunit for environmental modeling
Sciunit was shown to be lightweight and time-efficient in the

reproducible approaches considered in this study. Sciunit is a tailored
environment for geoscience modeling that is still in active development.
In its current implementation, Sciunit containerizes the workflow soft
ware including software and data dependencies into a single container.
Other containerization approaches, such as Docker and Singularity, are
aimed at a more general audience but do allow for the separation of the
computational modeling environment from the workflow itself. This
separation allows for more flexibility in applying different data pro
cessing workflows based on containerized computational environments.
Sciunit developers are working on adding functionality that could allow
a user to create a Docker image from a Sciunit container (Chuah et al.,
2020). Exploring such approaches to combine lightweight tailored
containerization tools that are specific to domains like environmental
modeling, alongside industry standard containerization approaches like
Docker, could provide a power approach for bring containerization
technology to environmental modeling.

4.3.2. Opportunities for hybrid containerization
Integrating or developing a hybrid approach that combines the

strengths of multiple containerization tools, like that just described be
tween Sciunit and Docker, is another promising research direction worth
exploring in the future. Such approaches can leverage the advantages of
different containerization technologies to address specific needs and
challenges in environmental modeling and resulting in a flexible and
efficient approach for managing and executing containerized applica
tions. By combining tools like Docker, Singularity, Sciunit, and Binder,
researchers can potentially benefit from a wider range of features and
capabilities. For example, Docker is a widely used interface and offers
broad community support, while Singularity focuses on high-
performance computing and compatibility with existing HPC systems.
Sciunit provides a lightweight, user-friendly framework for creating and
sharing scientific models and assessments for environmental research,
and Binder facilitates the creation of interactive and reproducible
computational environments. A hybrid approach could involve using
Docker or Singularity as the base containerization technology and
integrating Sciunit and Binder to enhance model accessibility, repro
ducibility, and collaboration. This combination can enable researchers
to package and distribute models using Docker or Singularity, while
leveraging the interactive and reproducible features of Sciunit and
Binder for easier model evaluation and sharing. Recently there has been
significant attention given to such an effort. Youngdahl et al. (2018)
demonstrated the use of an automatic hybrid containerization tool
called "Sciunit-Popper" for simplifying the sharing, porting, and repro
ducing of distributive and iterative experiments. Brown et al. (2019)
utilized a hybrid "Docker- Kubernetes" containerization approach by
initially using Docker for deploying GUI/GPU instances and later tran
sitioning to Kubernetes for scalability, deployment, and portability.
However, the application of such approaches in environmental
modeling is still limited, presenting an opportunity for further research
and exploration in the field. In our ongoing work, we are investigating
the potential of running distributed applications using a scheduler like
Kubernetes, which will be a part of our future endeavors.

4.3.3. Automating containerization and model execution using ML and AI
Another challenge requiring future research is automating contain

erization and model execution into end-to-end workflows with appro
priate resource allocation, scaling, workload balancing, and
performance monitoring. Such automation reduces manual effort, au
tomates decision-making, and improves efficiency. In the current study,

even though we presented guidelines for the best practices for different
modeling use cases, optimization of containerization and model execu
tion processes, potentially automating some aspects of model configu
ration and setup are still challenging. Recently, the integration of
machine learning (ML) and artificial intelligence (AI) has shown the
potential for code completion using tools like Github Copilot and large
language generative models such as ChatGPT (Ouyang et al., 2022).
While these tools have the potential to reduce work and speed up the
time required to build end-to-end workflows, research is needed to
explore the opportunities and limitations of ML and AI-based automa
tion in environmental modeling, given the unique challenges and the
importance of process understanding.

4.3.4. Real-time software reconfiguration of containerized workflows
Approaches 6 and 7 use a Jupyter interface, which has become a

widely used tool for providing access to preconfigured modeling envi
ronments (Prasad et al., 2020). However, such configurations that rely
on Jupyter interfaces can have challenges associated with allowing users
to install new software. Environmental modeling, because of the di
versity of models used within the community, would benefit from ap
proaches that allow for easy configuration of the software environment
behind the Jupyter interface. The “udocker” tool, which is a tool for
using Docker without privileges (Gomes et al., 2018), could be a solution
for allowing users to add new model software to a Docker image to
customize the environment for a particular modeling application.
Binder, included in Approach 10, is also a powerful tool to provide
customization of remote modeling environments with Jupyter in
terfaces. Using an implementation of Binder like MyBinder is possible
now, but being a general environment, it has limitations for environ
mental modeling. As stated earlier, in its current implementation if users
have no activity for 10 min, the MyBinder user session is automatically
shut down. MyBinder sessions on BinderHub are open to anybody,
anywhere, and anytime for free. Therefore, some time limits for Bind
erHub user session resources are inevitable to prevent misuse of re
sources. It is possible to automatically save a session when it is shut
down, which is a partial solution. Building a cyberinfrastructure system
to support environmental modeling that combines BinderHub with more
persistent data and compute resource to support reproducible environ
mental modeling seems like an especially promising future research
direction.

4.3.5. Education and training for reproducible environmental modeling
Common across all of the discussed approaches, education and

training plays a crucial role in promoting awareness and effective
implementation of reproducibility approaches in environmental
modeling. Part of this education is about the importance and challenges
associated with reproducibility specifically in the context of environ
mental modeling. Reproducibility of computational models has long
been cited as a challenge due to factors such as model complexity, size,
lack of incentives, focus on novelty, etc. (De Vos et al., 2011). Addi
tionally, the sharing of open data-code, and well-documented workflows
is still optional in the review and publication process for environmental
modeling (Stagge et al., 2019). For one reason, many model developers
and users are either unaware or lack the skills to implement these ap
proaches, which benefit greatly from a strong knowledge of container
ization techniques and computational skills (Stagge et al., 2019).
Scientific cyberinfrastructures like the ones discussed in this paper,
HydroShare, CyberGIS for Water, and CUAHSI Jupyterhub, along with
many others are working to overcome these challenges and lower the
barrier to reproducibility. Research is continuing to highlight the sig
nificance of reproducibility in environmental modeling and explore
various techniques and methodologies to ensure the production of
reproducible results (Morsy et al., 2017; Essawy et al., 2018; Choi et al.,
2021). There are also a growing number of opportunities for technical
training and demonstration of containerization tools and concepts
through conferences, workshops, and training sessions. These efforts

Y.-D. Choi et al.

Environmental Modelling and Software 167 (2023) 105760

13

aim to ensure that environmental model developers and users are aware
of reproducibility approaches and can effectively implement them in
their work, thereby promoting reproducibility in environmental
modeling and related fields.

5. Conclusions

Reproducibility is the cornerstone of science as it allows for accu
mulating knowledge by building on prior work. However, many have
highlighted the difficulties in achieving reproducible computational
research. For environmental modeling, knowledge gaps in achieving
reproducible computational modeling remain in understanding how to
effectively use modern software tools and practices to achieve this
desired outcome. To this aim, we explored ten approaches for achieving
reproducible modeling goals using a combination of different contain
erization tools on both local and remote computational environments
contrasting developer and user efforts. We assessed the ten approaches
using a hydrologic modeling application against both quantitative and
qualitative metrics. Based on this evaluation, our goal is to establish
guidelines for the best practices for different modeling use cases com
mon in the environmental modeling community.

For use cases where the objective is to develop new environmental
models and it is important to be able to recompile model source code on
a frequent basis, Approach 1 as that uses GNU Make and Conda VE may
be sufficient, or it may be effective to apply Approach 5 using Sciunit to
containerize the end-to-end modeling workflow for easier reproduc
ibility and portability. For cases where a given model is applied for a
specific system without changes to the core model source code, we
recommend approaches where the core model software is containerized
and used locally (e.g., Approach 2) or where users interact with the
model through a JuypyterHub environment, like CUAHSI JupyterHub
(Approach 6), assuming the Dockerized core model software can be
uploaded into the JupyterHub environment and made accessible to end
users. Of the ten approaches considered, the CyberGIS-Jupyter for Water
platform (Approach 7) is recommended for computationally intensive
applications given that the platform provides access to high performance
and high throughput computational resources, which resulted in rela
tively low runtimes in our scenarios. For educational use cases, the
recommended methods are those that take advantage of remote envi
ronments with Jupyter interfaces, like CUAHSI JupyterHub and
CyberGIS-Jupyter for Water or use Binder (Approaches 6, 7, and 10),
assuming making changes to the core model software are not part of the
learning objective. For cases where the educational objective includes
having students edit or extend the core model software, then using
Sciunit for containerizing the software (Approach 5) is recommended
because it offers a low required competency compared to more general
containerization approaches.

While this study considers ten approaches for reproducible envi
ronmental modeling, this is not an exhaustive list and new approaches
continue to be introduced. Given our review of these approaches and
considering their relative strengths and weaknesses, we can suggest
possible directions for future research and development. Although the
trend of environmental modeling appears to be moving to remote or
cloud computational environments, providing deployment flexibility of
such environments for environmental models remains a challenge. We
are encouraged by approaches like Binder that allow for on-demand
creation of remote virtual environments. A Binder-based environment
for environmental modeling that allows for more persistent sessions and
larger data storage solutions could be powerful. Furthermore, contain
erization approaches like Sciunit that are tailored for geoscience
modeling use cases provide benefits that larger, less tailored contain
erization technologies (e.g., Docker or Singularity) cannot provide.
However, merging of tailored and industry-standard containerization
strategies as hybrid approaches may be able to harness the strengths of
both approaches and provide solutions for environmental modelers
seeking to create more reproducible environmental studies. Ultimately,

these approaches can help to lower the barrier to fostering a “culture of
reproducibility” (Rosenberg et al., 2020) that supports open and
collaborative environmental modeling.

Data and software availability

The data and computational environments used in this study are
available as ten HydroShare resources and three GitHub repositories. We
published all data and computational environments with persistent
digital object identifiers (DOI) on HydroShare and shared them by a
collection resource (HS-1) in HydroShare (Choi et al., 2023). This
collection resource provides the links for all HydroShare resources as
“Collection Contents” and three GitHub repositories as “Related
Resource Reference.” The ten HydroShare resources consist of one
collection resource, two composite resources for SUMMA model inputs
(HS-2, HS-3), one composite resource for the Virtual Box image used
across the five local approaches (HS-4, Approaches 1–5), four composite
resources for Jupyter notebooks used in the four remote approaches
(HS-5~8, Approaches 6–9), and one composite resource for a Jupyter
notebook used to create Figs. 3–6 using performance results (HS-9) and
one composite resource for the Singularity image (HS-10). In addition,
three GitHub repositories were created to share Approach 10 and to
show how to create a Docker and a Singularity image for Approach-2, 3,
and 4.

List of relevant URLs

Binder: https://mybinder.org.
Binder Configuration: https://mybinder.readthedocs.io/en

/latest/using/config_files.html.
CSDMS: https://csdms.colorado.edu/wiki/Hydrological_Models.
CUAHSI JupyterHub: https://jupyterhub.cuahsi.org.
Docker recipes of CUAHSI JupyterHub: https://github.com/C

UAHSI/cuahsi-stacks.
CyberGIS-Jupyter for Water: http://go.illinois.edu/cybergis-jupy

ter-water.
Docker recipes of CyberGIS-Jupyter for water: https://github.com/c

ybergis/Jupyter-xsede/tree/master/singularity_def
docker2singularity: https://github.com/singularityhub/docker2si

ngularity.
Figshare: https://figshare.com.
GESIS Notebook: https://notebooks.gesis.org/binder.
GitHub: https://github.com.
Github Copilot: https://github.com/features/copilot/
Google Colab: https://colab.research.google.com.
GNU compilers (gfortran): https://gcc.gnu.org/fortran.
GNU compilers (GCC): https://gcc.gnu.org.
GNU builders (Make): https://www.gnu.org/software/make.
HydroShare: https://www.hydroshare.org.
Jupyter notebooks for pySUMMA tutorial: https://github.com/arbe

nnett/pysumma-tutorial.
Microsoft Azure: https://note books.azure.com.
NCAR, National Center for Atmospheric Research, HPC: https://

jupyterhub.ucar.edu.
Pip: https://pip.pypa.io
pySUMMA: https://github.com/UW-Hydro/pysumma.
Python: https://www.python.org.
R: https://www.r-project.org.
Rivanna, HPC at University of Virginia HPC: https://www.rc.vir

ginia.edu.
Sciunit: http://sciunit.run.
Singularity Hub: https://singularityhub.com.
SUMMA GitHub: https://github.com/NCAR/summa.
SUMMA DockerHub: https://hub.docker.com/r/uwhydro/summa.
Virtual Box: https://www.virtualbox.org.
Virtualenv: https://virtualenv.pypa.io.

Y.-D. Choi et al.

https://mybinder.org
https://mybinder.readthedocs.io/en/latest/using/config_files.html
https://mybinder.readthedocs.io/en/latest/using/config_files.html
https://csdms.colorado.edu/wiki/Hydrological_Models
https://jupyterhub.cuahsi.org
https://github.com/CUAHSI/cuahsi-stacks
https://github.com/CUAHSI/cuahsi-stacks
http://go.illinois.edu/cybergis-jupyter-water
http://go.illinois.edu/cybergis-jupyter-water
https://github.com/cybergis/Jupyter-xsede/tree/master/singularity_def
https://github.com/cybergis/Jupyter-xsede/tree/master/singularity_def
https://github.com/singularityhub/docker2singularity
https://github.com/singularityhub/docker2singularity
https://figshare.com
https://notebooks.gesis.org/binder
https://github.com
https://github.com/features/copilot/
https://colab.research.google.com
https://gcc.gnu.org/fortran
https://gcc.gnu.org
https://www
https://www.hydroshare.org
https://github.com/arbennett/pysumma-tutorial
https://github.com/arbennett/pysumma-tutorial
https://note
http://books.azure.com
https://jupyterhub.ucar.edu
https://jupyterhub.ucar.edu
https://pip.pypa.io
https://github.com/UW-Hydro/pysumma
https://www.python.org
https://www.r-project.org
https://www.rc.virginia.edu
https://www.rc.virginia.edu
http://sciunit.run
https://singularityhub.com
https://github.com/NCAR/summa
https://hub.docker.com/r/uwhydro/summa
https://www.virtualbox.org
https://virtualenv.pypa.io

Environmental Modelling and Software 167 (2023) 105760

14

XSEDE, an HPC resource on the Extreme Science and Engineering
Discovery Environment, https://www.xsede.org.

Zenodo: https://zenodo.org.

Declaration of competing interest

We declare that there are no known conflicts of interest associated
with this publication and there has been no significant financial support
for this work that could have influenced its outcome.

Data availability

The data and computational environments used in study are pub
lished with digital object identifiers (DOI) on HydroShare and are shared
through a collection resource in HydroShare (Choi et al., 2023).

Acknowledgments

This work was supported by the United States National Science
Foundation under collaborative grants ICER-1928369, ICER-1928315,
OAC-1664061, OAC-1664018, ICER-1639759, ICER-1661918, OAC-
2118329, and OAC-1664119. We acknowledge the work of the Repro
bench and HydroShare teams that made this research possible. We also
thank Natalie Thompson, and the consultants of the University of Vir
ginia Graduate Writing Lab for their helpful feedback in preparing the
manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.envsoft.2023.105760.

References

Addor, N., Do, H.X., Alvarez-Garreton, C., Coxon, G., Fowler, K., Mendoza, P.A., 2020.
Large-sample hydrology: recent progress, guidelines for new datasets and grand
challenges. Hydrol. Sci. J. 65 (5) https://doi.org/10.1080/
02626667.2019.1683182.

Ahmad, R., Choi, Y.D., Goodall, J.L., Tarboton, D., Nassar, A., Malik, T., 2022. Improving
reproducibility of geoscience models with Sciunit. Recent Advancement in
Geoinformatics and Data Science 2558 (7). https://doi.org/10.1130/2022.2558(07.

Atmanspacher, H., Bezzola Lambert, L., Folkers, G., Schubiger, P.A., 2014. Relevance
relations for the concept of reproducibility. J. R. Soc., Interface 11 (94). https://doi.
org/10.1098/rsif.2013.1030.

Baker, M., 2016. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454.
https://doi.org/10.1038/533452a. May 26.

Ball, J.T., Woodrow, I.E., Berry, J.A., 1987. A model predicting stomatal conductance
and its contribution to the control of photosynthesis under different environmental
conditions. In: Progress in Photosynthesis Research. Springer Netherlands,
Dordrecht, pp. 221–224. https://doi.org/10.1007/978-94-017-0519-6_48.

Bast, R., 2019. A FAIRer future. Nat. Phys. https://doi.org/10.1038/s41567-019-0624-3.
Beaulieu-Jones, B.K., Greene, C.S., 2017. Reproducibility of computational workflows is

automated using continuous analysis. Nat. Biotechnol. 35 (4) https://doi.org/
10.1038/nbt.3780.

Bentaleb, O., Belloum, A.S.Z., Sebaa, A., El-Maouhab, A., 2022. Containerization
technologies: taxonomies, applications and challenges. J. Supercomput. 78 (1),
1144–1181. https://doi.org/10.1007/s11227-021-03914-1.

Brown, M., Renambot, L., Long, L., Bargo, T., Johnson, A.E., 2019. COMPaaS DLV:
composable infrastructure for deep learning in an academic research environment.
In: Proceedings - International Conference on Network Protocols, ICNP, 2019-
October, 1–2. https://doi.org/10.1109/ICNP.2019.8888070.

Celia, M.A., Bouloutas, E.T., Zarba, R.L., 1990. A general mass-conservative numerical
solution for the unsaturated flow equation. Water Resour. Res. 26 (7) https://doi.
org/10.1029/WR026i007p01483.

Choi, Y.-D., Goodall, J.L., Sadler, J.M., Castronova, A.M., Bennett, A., Li, Z., et al., 2021.
Toward open and reproducible environmental modeling by integrating online data
repositories, computational environments, and model Application Programming
Interfaces. Environ. Model. Software 135. https://doi.org/10.1016/j.
envsoft.2020.104888.

Chuah, J., Deeds, M., Malik, T., Choi, Y., Goodall, J.L., 2020. Documenting computing
environments for reproducible experiments. Advances in Parallel Computing 36,
756–765. https://doi.org/10.3233/APC200106. September.

Clark, M.P., Nijssen, B., Lundquist, J.D., Kavetski, D., Rupp, D.E., Woods, R.A., et al.,
2015a. A Unified Approach for Process-Based Hydrologic Modeling: 1. Modeling
Concept. Water Resources Research. https://doi.org/10.1002/2015WR017198.

Clark, M.P., Nijssen, B., Lundquist, J.D., Kavetski, D., Rupp, D.E., Woods, R.A., Marks, D.
G., 2015b. A unified approach for process-based hydrologic modeling: 2. Model
implementation and case studies. Water Resources Research 51 (4). https://doi.org/
10.1002/2015WR017200.

Craig, W., Victoria, S., 2020. Trust but verify: how to leverage policies, workflows, and
infrastructure to ensure computational reproducibility in publication. Harvard Data
Science Review. https://doi.org/10.1162/99608f92.25982dcf.

de Lusignan, S., van Weel, C., 2006. The use of routinely collected computer data for
research in primary care: opportunities and challenges. Fam. Pract. https://doi.org/
10.1093/fampra/cmi106.

De Vos, M.G., Janssen, S.J.C., Van Bussel, L.G.J., Kromdijk, J., Van Vliet, J., Top, J.L.,
2011. Are Environmental Models Transparent and Reproducible Enough? MODSIM
2011 - 19th International Congress on Modelling and Simulation - Sustaining Our
Future: Understanding and Living with Uncertainty, pp. 2954–2961. December.

Duan, J., Miller, N.L., 1997. A generalized power function for the subsurface
transmissivity profile in TOPMODEL. Water Resour. Res. 33 (11) https://doi.org/
10.1029/97WR02186.

Epskamp, S., 2019. Reproducibility and replicability in a fast-paced methodological
world. Advances in Methods and Practices in Psychological Science 2 (2). https://
doi.org/10.1177/2515245919847421.

Essawy, B.T., Goodall, J.L., Zell, W., Voce, D., Morsy, M.M., Sadler, J., et al., 2018.
Integrating scientific cyberinfrastructures to improve reproducibility in
computational hydrology: example for HydroShare and GeoTrust. Environ. Model.
Software 105, 217–229. https://doi.org/10.1016/j.envsoft.2018.03.025.

Essawy, B.T., Goodall, J.L., Voce, D., Morsy, M.M., Sadler, J.M., Choi, Y.D., et al., 2020.
A Taxonomy for Reproducible and Replicable Research in Environmental Modelling.
Environmental Modelling & Software, 104753. https://doi.org/10.1016/j.
envsoft.2020.104753.

Fiore, S., Elia, D., Palazzo, C., Dranca, A., Antonio, F., Williams, D.N., et al., 2019.
Towards an open (data) science analytics-hub for reproducible multi-model climate
analysis at scale. In: Proceedings - 2018 IEEE International Conference on Big Data,
Big Data 2018, pp. 3226–3234. https://doi.org/10.1109/BigData.2018.8622205.

Garijo, D., Kinnings, S., Xie, L., Xie, L., Zhang, Y., Bourne, P.E., Gil, Y., 2013. Quantifying
reproducibility in computational biology: the case of the tuberculosis drugome. PLoS
One 8 (11). https://doi.org/10.1371/journal.pone.0080278.

Gil, Y., David, C.H., Demir, I., Essawy, B.T., Fulweiler, R.W., Goodall, J.L., et al., 2016.
Toward the Geoscience Paper of the Future: Best Practices for Documenting and
Sharing Research from Data to Software to Provenance, 3 Earth and Space Science §.
John Wiley & Sons, Ltd. https://doi.org/10.1002/2015EA000136.

Goble, C., Cohen-Boulakia, S., Soiland-Reyes, S., Garijo, D., Gil, Y., Crusoe, M.R., et al.,
2020. FAIR Computational Workflows. Data Intelligence. https://doi.org/10.1162/
dint_a_00033.

Gomes, J., Bagnaschi, E., Campos, I., David, M., Alves, L., Martins, J., et al., 2018.
Enabling rootless Linux Containers in multi-user environments: the udocker tool.
Comput. Phys. Commun. 232 https://doi.org/10.1016/j.cpc.2018.05.021.

Hothorn, T., Leisch, F., 2011. Case studies in reproducibility. Briefings Bioinf. 12 (3),
288–300. https://doi.org/10.1093/bib/bbq084.

Hut, R.W., van de Giesen, N.C., Drost, N., 2017. In: Comment on “Most computational
hydrology is not reproducible, so is it really science?” by Christopher Hutton et al.:
Let hydrologists learn the latest computer science by working with Research
Software Engineers (RSEs) and not reinvent the waterwheel our. Water Resources
Research. Blackwell Publishing Ltd. https://doi.org/10.1002/2017WR020665.

Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., Arheimer, B., 2016. Most
computational hydrology is not reproducible, so is it really science? Water Resour.
Res. 52 (10), 7548–7555. https://doi.org/10.1002/2016WR019285.

Jarvis, P., 1976. The interpretation of the variations in leaf water potential and stomatal
conductance found in canopies in the field. Trans. R. Soc. B 273 (927), 593–610.
https://doi.org/10.1098/rstb.1976.0035.

Kerandi, N., Arnault, J., Laux, P., Wagner, S., Kitheka, J., Kunstmann, H., 2018. Joint
atmospheric-terrestrial water balances for East Africa: a WRF-Hydro case study for
the upper Tana River basin. Theor. Appl. Climatol. https://doi.org/10.1007/s00704-
017-2050-8.

Kery, M.B., Radensky, M., Arya, M., John, B.E., Myers, B.A., 2018. The story in the
notebook: exploratory data science using a literate programming tool. In: Conference
on Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/
3173574.3173748, 2018-April.

Kim, Y.M., Poline, J.B., Dumas, G., 2018. Experimenting with reproducibility: a case
study of robustness in bioinformatics. GigaScience. https://doi.org/10.1093/
gigascience/giy077.

Knoth, C., Nüst, D., 2017. Reproducibility and practical adoption of GEOBIA with open-
source software in Docker containers. Rem. Sens. 9 (3) https://doi.org/10.3390/
rs9030290.

Knuth, D.E., 1984. Literate programming. Comput. J. https://doi.org/10.1093/comjnl/
27.2.97.

Kovács, Á., 2017. Comparison of different linux containers. In: 2017 40th International
Conference on Telecommunications and Signal Processing, TSP 2017. https://doi.
org/10.1109/TSP.2017.8075934, 2017-Janua.

Kozhirbayev, Z., Sinnott, R.O., 2017. A performance comparison of container-based
technologies for the Cloud. Future Generat. Comput. Syst. 68 https://doi.org/
10.1016/j.future.2016.08.025.

Kurtzer, G.M., Sochat, V., Bauer, M.W., 2017. Singularity: scientific containers for
mobility of compute. PLoS One 12 (5), e0177459. https://doi.org/10.1371/journal.
pone.0177459.

Lampert, D.J., Wu, M., 2015. Development of an open-source software package for
watershed modeling with the Hydrological Simulation Program in Fortran. Environ.
Model. Software 68, 166–174. https://doi.org/10.1016/J.ENVSOFT.2015.02.018.

Y.-D. Choi et al.

https://www.xsede.org
https://zenodo.org
https://doi.org/10.1016/j.envsoft.2023.105760
https://doi.org/10.1016/j.envsoft.2023.105760
https://doi.org/10.1080/02626667.2019.1683182
https://doi.org/10.1080/02626667.2019.1683182
https://doi.org/10.1130/2022.2558(07
https://doi.org/10.1098/rsif.2013.1030
https://doi.org/10.1098/rsif.2013.1030
https://doi.org/10.1038/533452a
https://doi.org/10.1007/978-94-017-0519-6_48
https://doi.org/10.1038/s41567-019-0624-3
https://doi.org/10.1038/nbt.3780
https://doi.org/10.1038/nbt.3780
https://doi.org/10.1007/s11227-021-03914-1
https://doi.org/10.1109/ICNP.2019.8888070
https://doi.org/10.1029/WR026i007p01483
https://doi.org/10.1029/WR026i007p01483
https://doi.org/10.1016/j.envsoft.2020.104888
https://doi.org/10.1016/j.envsoft.2020.104888
https://doi.org/10.3233/APC200106
https://doi.org/10.1002/2015WR017198
https://doi.org/10.1002/2015WR017200
https://doi.org/10.1002/2015WR017200
https://doi.org/10.1162/99608f92.25982dcf
https://doi.org/10.1093/fampra/cmi106
https://doi.org/10.1093/fampra/cmi106
http://refhub.elsevier.com/S1364-8152(23)00146-9/sref19
http://refhub.elsevier.com/S1364-8152(23)00146-9/sref19
http://refhub.elsevier.com/S1364-8152(23)00146-9/sref19
http://refhub.elsevier.com/S1364-8152(23)00146-9/sref19
https://doi.org/10.1029/97WR02186
https://doi.org/10.1029/97WR02186
https://doi.org/10.1177/2515245919847421
https://doi.org/10.1177/2515245919847421
https://doi.org/10.1016/j.envsoft.2018.03.025
https://doi.org/10.1016/j.envsoft.2020.104753
https://doi.org/10.1016/j.envsoft.2020.104753
https://doi.org/10.1109/BigData.2018.8622205
https://doi.org/10.1371/journal.pone.0080278
https://doi.org/10.1002/2015EA000136
https://doi.org/10.1162/dint_a_00033
https://doi.org/10.1162/dint_a_00033
https://doi.org/10.1016/j.cpc.2018.05.021
https://doi.org/10.1093/bib/bbq084
https://doi.org/10.1002/2017WR020665
https://doi.org/10.1002/2016WR019285
https://doi.org/10.1098/rstb.1976.0035
https://doi.org/10.1007/s00704-017-2050-8
https://doi.org/10.1007/s00704-017-2050-8
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1093/gigascience/giy077
https://doi.org/10.1093/gigascience/giy077
https://doi.org/10.3390/rs9030290
https://doi.org/10.3390/rs9030290
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1109/TSP.2017.8075934
https://doi.org/10.1109/TSP.2017.8075934
https://doi.org/10.1016/j.future.2016.08.025
https://doi.org/10.1016/j.future.2016.08.025
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1016/J.ENVSOFT.2015.02.018

Environmental Modelling and Software 167 (2023) 105760

15

Laniak, G.F., Olchin, G., Goodall, J., Voinov, A., Hill, M., Glynn, P., et al., 2013.
Integrated environmental modeling: a vision and roadmap for the future. Environ.
Model. Software 39, 3–23. https://doi.org/10.1016/j.envsoft.2012.09.006.

McDonnell, B., Ratliff, K., Tryby, M., Wu, J., Mullapudi, A., 2020. PySWMM: the Python
interface to stormwater management model (SWMM). J. Open Source Softw. 5 (52)
https://doi.org/10.21105/joss.02292.

Merkel, D., 2014. Docker: lightweight Linux containers for consistent development and
deployment. Linux J. 2014 (239), 2. https://doi.org/10.1097/01.
NND.0000320699.47006.a3.

Morsy, M.M., Goodall, J.L., Castronova, A.M., Dash, P., Merwade, V., Sadler, J.M., et al.,
2017. Design of a metadata framework for environmental models with an example
hydrologic application in HydroShare. Environ. Model. Software 93, 13–28. https://
doi.org/10.1016/j.envsoft.2017.02.028.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.L., Mishkin, P., et al., 2022.
Training Language Models to Follow Instructions with Human Feedback. NeurIPS).
Retrieved from. http://arxiv.org/abs/2203.02155.

Peckham, S.D., Hutton, E.W.H., Norris, B., 2013. A component-based approach to
integrated modeling in the geosciences: the design of CSDMS. Comput. Geosci. 53,
3–12. https://doi.org/10.1016/j.cageo.2012.04.002.

Pfenninger, S., DeCarolis, J., Hirth, L., Quoilin, S., Staffell, I., 2017. The importance of
open data and software: is energy research lagging behind? Energy Pol. 101,
211–215. https://doi.org/10.1016/j.enpol.2016.11.046. November 2016.

Piccolo, S.R., Frampton, M.B., 2016. Tools and techniques for computational
reproducibility. GigaScience. GigaScience. https://doi.org/10.1186/s13742-016-
0135-4.

Prasad, C., Nancy, W., Mark, M., Emre, H.B., 2020. Measuring success for a future vision:
defining impact in science gateways/virtual research environments. Concurrency
Comput. Pract. Ex. https://doi.org/10.1002/cpe.6099.

Reinecke, R., Trautmann, T., Wagener, T., Schüler, K., 2022. The critical need to foster
computational reproducibility. Environ. Res. Lett. 17 (4), 41005 https://doi.org/
10.1088/1748-9326/ac5cf8.

Rocklin, M., 2015. Dask: parallel computation with blocked algorithms and task
scheduling. In: Proceedings of the 14th Python in Science Conference. https://doi.
org/10.25080/majora-7b98e3ed-013.

Rosenberg, D.E., Filion, Y., Teasley, R., Sandoval-Solis, S., Hecht, J.S., van Zyl, J.E., et al.,
2020. The next frontier: making research more reproducible. J. Water Resour. Plann.
Manag. 146 (6), 01820002 https://doi.org/10.1061/(ASCE)WR.1943-
5452.0001215.

Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P., 1989. Design and analysis of computer
experiments. Stat. Sci. https://doi.org/10.1214/ss/1177012413.

Sandve, G.K., Nekrutenko, A., Taylor, J., Hovig, E., 2013. Ten simple rules for
reproducible computational research. PLoS Comput. Biol. https://doi.org/10.1371/
journal.pcbi.1003285.

Shen, C., 2018. A Transdisciplinary Review of Deep Learning Research and its Relevance
for Water Resources Scientists. Water Resources Research. https://doi.org/10.1029/
2018WR022643.

Stagge, J.H., Rosenberg, D.E., Abdallah, A.M., Akbar, H., Attallah, N.A., James, R., 2019.
Assessing data availability and research reproducibility in hydrology and water
resources. Sci. Data 6, 1–12. https://doi.org/10.1038/sdata.2019.30.

That, D.H.T., Fils, G., Yuan, Z., Malik, T., 2017. Sciunits: reusable research objects. In:
Proceedings - 13th IEEE International Conference on eScience. Institute of Electrical
and Electronics Engineers Inc, pp. 374–383. https://doi.org/10.1109/
eScience.2017.51. eScience 2017.

Vogel, R.M., Lall, U., Cai, X., Rajagopalan, B., Weiskel, P.K., Hooper, R.P., Matalas, N.C.,
2015. Hydrology: the interdisciplinary science of water. Water Resour. Res. 51 (6)
https://doi.org/10.1002/2015WR017049.

Volk, J.M., Turner, M.A., 2019. PRMS-Python: a Python framework for programmatic
PRMS modeling and access to its data structures. Environ. Model. Software. https://
doi.org/10.1016/j.envsoft.2019.01.006.

Wilkinson, M.D., Dumontier, M., Aalbersberg, Ij J., Appleton, G., Axton, M., Baak, A.,
et al., 2016. Comment: the FAIR Guiding Principles for Scientific Data Management
and Stewardship. Scientific Data. https://doi.org/10.1038/sdata.2016.18.

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., Teal, T.K., 2017. Good
enough practices in scientific computing. PLoS Comput. Biol. 13 (6) https://doi.org/
10.1371/journal.pcbi.1005510.

Yin, D., Liu, Y., Hu, H., Terstriep, J., Hong, X., Padmanabhan, A., Wang, S., 2018.
CyberGIS-Jupyter for reproducible and scalable geospatial analytics. Concurr.
Comput. https://doi.org/10.1002/cpe.5040.

Youngdahl, A., Yuan, Z., Hai, D., That, T., Malik, T., Jimenez, I., 2018. Semantically
Organized Containers for Reproducible Research Containers, pp. 1–4.

Yuan, Z., Ton That, D., Kothari, S., Fils, G., Malik, T., 2018. Utilizing provenance in
reusable research objects. Informatics 5 (1), 14. https://doi.org/10.3390/
informatics5010014.

Choi, Y., Goodall, J., Nguyen, J., Ahmad, R., Malik, T., Li, Z., Castronova, A.M., Wang, S.,
Maghami, I., Tarboton, D.. HS-1. Comparing Approaches to Achieve Reproducible
Computational Modeling for Hydrological and Environmental Systems, HydroShare.
http://www.hydroshare.org/resource/3a2686a69e6e4f07a85e4dcc4f017ba9.

Jupyter Project, Bussonnier, M., Forde, J., Freeman, J., Granger, B., Head, T., Holdgrafk,
C., Kelley, k., Nalvarte, G., Osheroff, A., Pacer, M., Pandak, Y., Perezk, F., Ragan-
Kelley, B., Willing, C. 2018. Binder 2.0 - Reproducible, interactive, sharable
environments for science at scale. In: Proceedings of the 17th Python in Science
Conference, (Scipy), 113–120. doi: 10.25080/majora-4af1f417-011.

Y.-D. Choi et al.

https://doi.org/10.1016/j.envsoft.2012.09.006
https://doi.org/10.21105/joss.02292
https://doi.org/10.1097/01.NND.0000320699.47006.a3
https://doi.org/10.1097/01.NND.0000320699.47006.a3
https://doi.org/10.1016/j.envsoft.2017.02.028
https://doi.org/10.1016/j.envsoft.2017.02.028
http://arxiv.org/abs/2203.02155
https://doi.org/10.1016/j.cageo.2012.04.002
https://doi.org/10.1016/j.enpol.2016.11.046
https://doi.org/10.1186/s13742-016-0135-4
https://doi.org/10.1186/s13742-016-0135-4
https://doi.org/10.1002/cpe.6099
https://doi.org/10.1088/1748-9326/ac5cf8
https://doi.org/10.1088/1748-9326/ac5cf8
https://doi.org/10.25080/majora-7b98e3ed-013
https://doi.org/10.25080/majora-7b98e3ed-013
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001215
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001215
https://doi.org/10.1214/ss/1177012413
https://doi.org/10.1371/journal.pcbi.1003285
https://doi.org/10.1371/journal.pcbi.1003285
https://doi.org/10.1029/2018WR022643
https://doi.org/10.1029/2018WR022643
https://doi.org/10.1038/sdata.2019.30
https://doi.org/10.1109/eScience.2017.51
https://doi.org/10.1109/eScience.2017.51
https://doi.org/10.1002/2015WR017049
https://doi.org/10.1016/j.envsoft.2019.01.006
https://doi.org/10.1016/j.envsoft.2019.01.006
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.1002/cpe.5040
http://refhub.elsevier.com/S1364-8152(23)00146-9/sref64
http://refhub.elsevier.com/S1364-8152(23)00146-9/sref64
https://doi.org/10.3390/informatics5010014
https://doi.org/10.3390/informatics5010014
http://www.hydroshare.org/resource/3a2686a69e6e4f07a85e4dcc4f017ba9

	Comparing containerization-based approaches for reproducible computational modeling of environmental systems
	1 Introduction
	2 Methodology
	2.1 The computational reproducibility approaches
	2.1.1 Local approaches
	2.1.2 Remote approaches

	2.2 Evaluation of the approaches
	2.2.1 Modeling application used for the evaluation
	2.2.2 Quantitative performance metrics
	2.2.3 Qualitative performance metrics

	3 Results
	3.1 Quantitative evaluation
	3.1.1 Required competency
	3.1.2 Size of reproducible artifacts
	3.1.3 Workflow runtime

	3.2 Qualitative evaluation
	3.2.1 Strengths and weaknesses of approaches
	3.2.2 Recommended approaches for common use cases

	4 Discussion
	4.1 Containerization as a means for promoting open and collaborative environmental modeling
	4.2 Software licensing and security challenges associated with containerization
	4.3 Opportunities for future research
	4.3.1 Advancing sciunit for environmental modeling
	4.3.2 Opportunities for hybrid containerization
	4.3.3 Automating containerization and model execution using ML and AI
	4.3.4 Real-time software reconfiguration of containerized workflows
	4.3.5 Education and training for reproducible environmental modeling

	5 Conclusions
	Data and software availability
	List of relevant URLs
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A Supplementary data
	References

