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A B S T R A C T   

Creating online data repositories that follow Findable, Accessible, Interoperable, and Reusable (FAIR) principles 
has been a significant focus in the research community to address the reproducibility crisis facing many 
computational fields, including environmental modeling. However, less work has focused on another repro
ducibility challenge: capturing modeling software and computational environments needed to reproduce com
plex modeling workflows. Containerization technology offers an opportunity to address this need, and there are a 
growing number of strategies being put forth that leverage containerization to improve the reproducibility of 
environmental modeling. This research compares ten such approaches using a hydrologic model application as a 
case study. For each approach, we use both quantitative and qualitative metrics for comparing the different 
strategies. Based on the results, we discuss challenges and opportunities for containerization in environmental 
modeling and recommend best practices across both research and educational use cases for when and how to 
apply the different containerization-based strategies.   

1. Introduction 

The rapid advancement of computing offers both opportunities and 
challenges for reproducibility in computational research (de Lusignan 
and van Weel, 2006). On the one hand, new tools and technologies have 
made possible complex physical modeling (Kerandi et al., 2018), deep 
learning (Shen, 2018), and interdisciplinary modeling (Laniak et al., 
2013; Vogel et al., 2015). Additionally, with the possible exception of 
non-deterministic modeling approaches that rely on unique random 
seeds, there is some level of confidence that if the same input data and 
model software are executed on "identical machine", it will result in the 
same output, even when the modeling software is very complicated 
(Sacks et al., 1989). On the other hand, creating “identical machines” 
including both hardware and software on a machine is very difficult in 

practice. When these computational models are moved to a new ma
chine, modelers often experience difficulties reproducing the same 
model results (Baker, 2016; Essawy et al., 2020; Hothorn and Leisch, 
2011; Wilson et al., 2017). This is because the way software is packaged, 
installed, and executed on specific hardware to create "identical ma
chines" is often very complicated and difficult, even when these steps are 
well documented (Garijo et al., 2013). 

The rapid evolution of software versions is one key factor that makes 
computational reproducibility so challenging (Epskamp, 2019; Yuan 
et al., 2018), especially open-source software commonly used in many 
scientific communities. Slight differences in the computational envi
ronment, including but not limited to software dependencies, can result 
in unexpected errors in re-executing models (Stagge et al., 2019) and can 
significantly influence the model outputs. As a result, researchers have 
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been highlighting the difference between what might be thought of as 
reproducible work such as simply sharing data and workflow docu
ments, and what is, in fact, required for reproducible work: sharing 
computational environments and automated workflows (Beaulieu-Jones 
and Greene, 2017; Chuah et al., 2020; Essawy et al., 2020; Kim et al., 
2018). 

To overcome what might be called the “reproducibility gap,” re
searchers have presented not only high-level guidelines and principles 
(Choi et al., 2021; Essawy et al., 2020; Gil et al., 2016; Wilkinson et al., 
2016) but also developed various software tools for specific tasks 
required for computational reproducibility (Kurtzer et al., 2017; Merkel, 
2014; That et al., 2017). For example, while online repositories that 
follow FAIR (Findable, Accessible, Interoperable, Reusable) guiding 
principles (Wilkinson et al., 2016) continue to mature, it has led not only 
to a growing demand for sharing well-documented data, source code, 
software, and workflows, but also with software for automatically 
encapsulating computational environments and workflows using 
containerization and literate programming (Kery et al., 2018; Knuth, 
1984). 

These new tools and concepts open the door to applying FAIR 
guiding principles that are inclusive of not just data but also modeling 
software. For example, Bast (2019) suggested that source code man
agement and containerization tools are needed to reproduce the 
computational environments that underly computational models, while 
Goble et al. (2020) suggested the FAIR principles are required for 
end-to-end workflows to describe the execution of a computational 
process such as data collection, data preparation, data analysis, and data 
visualization. Researchers are beginning to create the cyberinfras
tructure needed for such approaches. Reproducibility of computational 
environments and automated workflows have been shown to be critical 
to filling the computational reproducibility gaps in practice (Piccolo and 
Frampton, 2016; Rosenberg et al., 2020; Sandve et al., 2013). In hy
drology, Hutton et al. (2016) recommended an online repository to 
easily find data and source code with unique persistent identifiers and 
computational workflows to describe the precise procedure among data 
and modeling processes. In addition, Hut et al. (2017) suggested the use 
of containerization tools and open interfaces to complement the pres
ervation of computational environments suggested by Hutton et al. 
(2016). 

To discuss reproducible computational modeling, it is first important 
to define and agree to the main software components used in environ
mental modeling studies. In this paper, we consider three main software 
components: 1) the core model software (i.e., what could be thought of 
as the model engine), 2) secondary software needed to support the 
modeling application (i.e., software dependencies and support tools), 
and 3) modeling workflows that capture the end-to-end modeling 
application (i.e., from data preparation to analysis and visualization of 
the model output). The core model software is often developed using a 
compiled programming language and is optimized for computational 
performance. The secondary software needed to support the modeling 
application might include a Graphical User Interface (GUI) or an 
Application Programming Interface (API) for creating and analyzing 
input and output files associated with the core model software. Many 
such model APIs now exist for different environmental models (Choi 
et al., 2021; Lampert and Wu, 2015; McDonnell et al., 2020; Volk and 
Turner, 2019) and offer a powerful way of programmatically creating 
and interacting with the so-called model instances (Morsy et al., 2017). 
Finally, modeling workflows are important to capture the entire 
end-to-end process, using model APIs and scripting to link the entire 
end-to-end process from raw data to publication-ready figures. 

Despite progress in understanding and creating more reproducible 
modeling studies across fields, many challenges remain (Reinecke et al., 
2022). We argue that a significant reason for these remaining challenges 
is the required level of human expertise to install and configure 
complicated computational modeling setups. Outside of a few 
well-maintained and often commercial or government-backed 

organizations, many model developers might understand the specific 
requirements for reproducing their environmental models on other 
computers, but documenting this procedure with enough detail for 
others to follow can be challenging. The challenge resulting from the 
increased complexity of software systems is not unique to environmental 
modeling or even scientific modeling more generally; it is, in fact, a 
common problem in software engineering. To address this challenge, 
computer scientists and software engineers have developed sophisti
cated containerization tools to encapsulate complex software as a virtual 
machine or environment (Bentaleb et al., 2022). Therefore, this paper 
aims to compare various local and remote computational approaches to 
advance reproducible environmental modeling (Hut et al., 2017; Choi 
et al., 2021). 

While these containerization tools offer an important opportunity, it 
can be challenging for environmental modelers to know how best to 
utilize them for different modeling use cases and applications. Many 
containerization approaches exist, and the options for using these ap
proaches across different computational environments (e.g., the re
searcher’s personal computer to remote cloud-computing environments) 
make the advantages and disadvantages of leveraging containerization 
difficult to discern. Thus, the goal of this paper is to compare different 
local and remote computational approaches for advancing reproducible 
environmental modeling. We evaluate ten approaches, in total, using a 
hydrologic modeling case study leveraging the Structure for Unifying 
Multiple Modeling Alternative (SUMMA) (Clark et al., 2015a) modeling 
framework and a set of quantitative and qualitative metrics. We discuss 
the benefits and weaknesses of each approach and summarize recom
mended best practices for using the approaches to achieve different 
modeling objectives. Finally, we discuss remaining knowledge gaps in 
creating reproducible computational models that require future research 
and development. 

2. Methodology 

2.1. The computational reproducibility approaches 

The ten computational reproducibility approaches considered in this 
study are given in Table 1. The approaches are first categorized as using 
primarily local or remote computational resources for execution. For the 
local approaches, a virtual machine (VM) in Virtual Box with specifi
cations typical of a personal computer was used for model execution. For 

Table 1 
Approaches for computational reproducibility through containerization 
considered in the study.  

Approach 
No. 

Local and Remote 
Computational 
Environments 

Combination of Software Tools and Modeling 
Workflows 

1) Core 
Model 
Software 

2) Secondary 
Software 

3) 
Modeling 
Workflow 

1 L Virtual Box GNU Make Conda Virtual 
Environment 

Jupyter 
Notebook 2 O  Docker 

3 C  Docker 
4 A  Singularity 
5 L  Sciunit 

6 R CUAHSI 
JupyterHub 

Docker Jupyter 
Notebook 

7 E CyberGIS- 
Jupyter for 
Water 

Docker 

8 M CUAHSI 
JupyterHub 

Sciunit 

9 O CyberGIS- 
Jupyter for 
Water 

Sciunit 

10 T Binder Docker Jupyter 
Notebook E  
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the remote approaches, each approach leveraged JupyterHub but was 
implemented using different cyberinfrastructures: Consortium of Uni
versities for the Advancement of Hydrologic Science, Inc. (CUAHSI) 
JupyterHub, CyberGIS-Jupyter for Water (Yin et al., 2018), and Bind
erHub to build a Jupyter instance from a code repository. 

The second categorization is based on what components of the end- 
to-end modeling workflow are containerized and using which contain
erization technology. As stated earlier, we consider a computational 
model consisting of three primary software components: 1) the core 
model software, 2) secondary software, and 3) a modeling workflow. 
Approaches for computational reproducibility through containerization 
may address one or more of these components. Likewise, different 
containerization technologies exist including Docker, Singularity, and 
Sciunit. We did not test all combinations of component containerization 
using different technologies, but rather we focused on logical combi
nations, which based on our judgement, would most likely be used by 
environmental modelers. Finally, in the first two cases we used GNU 
Make and a Python-based Virtual Environment (Conda VE) to include 
approaches commonly used by modelers for comparison purposes. 
While not directly using containerization, these approaches represent 
ways for achieving more portable and reproducible environmental 
modeling applications and represent a meaningful base case for 
comparison. 

The first five approaches in Table 1 all leverage local computing 
resources, which means a VM on the modeler’s own workstation for 
running the end-to-end modeling workflow. Approach 1 represents a 
standard approach commonly used by modelers (Peckham et al., 2013) 
in that the model software is compiled using GNU Make and the sec
ondary software, written in Python, is encapsulated in a Conda VE. 
Approach 2 introduces formal containerization tools rather than only 
encapsulation, but only for the core model software component using 
Docker as the containerization solution. Approach 3 builds on Approach 
2 by using containerization for not only the core model software, but 
also the secondary software supporting the model, again using Docker as 
the containerization tool. Approach 4 further builds on Approach 3 by 
keeping the same containerization strategy but switching the contain
erization tool from Docker to Singularity. Finally, Approach 5 also builds 
from Approach 3 but uses Sciunit rather than Docker or Singularity as 
the containerization tool. Thus, across these five approaches, we begin 
from a standard approach without direct use of containerization tech
nologies and build to an end-to-end modeling workflow leveraging three 
containerization technologies: Docker, Singularity, and Sciunit. 

Approaches 6–10 make use of remote computational resources to 
compute the same end-to-end modeling workflow. Approach 6 uses the 
CUAHSI JupyterHub (hereafter CJH), a cloud computing environment 
on the Google Cloud Platform specifically designed to support research 
and education in the water sciences. Approach 7 uses the CyberGIS- 
Jupyter for Water platform (hereafter CJW), a CyberGIS-Jupyter 
instance tailored to support data-intensive and reproducible research 
in the environmental modeling community built on the Jetstream 
computational resource (Yin et al., 2018). In both approaches, Docker is 
used as a containerization technology. Approaches 8 and 9 again use 
CJH and CJW, respectively, but with Sciunit in place of Docker as the 
containerization tool. Singularity is not typically used in JupyterHub 
environments (Prasad et al., 2020), so it was not considered for these 
approaches. Approach 10 uses a containerization approach called 
Binder that allows users to create a custom JupyterHub instance from a 
code repository using Docker as the containerization technology 
(Jupyter Project et al., 2018). Further detail about the specific proced
ures and characteristics of each approach is presented in the following 
subsections. 

2.1.1. Local approaches 
For the five local approaches, we used Virtual Box to create a 

consistent Linux virtual environment (Ubuntu 20.04 LDT) with a Win
dows operating system and a single-core processor (Table 2). We 

considered this to be a typical personal computer used by modelers, 
although we acknowledge many modelers would have access to work
stations with higher end computational and memory resources. 

Fig. 1 shows the steps required to complete the five local approaches 
from the perspective of a developer, that is the person setting up the 
modeling workflow, and the user, that is the person executing the 
workflow for a given input dataset. These steps are used to evaluate each 
approach across a set of metrics which are described later in the paper. 

As shown in Fig. 1a, to set up Approach 1 the developer must com
plete the following steps: 1) create a Makefile; 2) compile and build the 
core software executable; and 3) share the source code and Makefile on 
an online repository such as GitHub or HydroShare. Next, the Conda VE 
is created to support the secondary software for the modeling workflow. 
Finally, the Jupyter notebooks that document the end-to-end modeling 
steps are created and shared. Once the end-to-end model workflow has 
been captured, the developer’s job is complete, and a user can reproduce 
the modeling study. The steps the user must take to execute Approach 1 
are 1) download the source code and Makefile for building the envi
ronmental model; 2) edit the Makefile to set the paths to the configu
ration files and software dependencies for the environmental model 
software on the user’s computer; and 3) compile and build the execut
able of core model software. Once these steps are complete, the user 
must download the Jupyter notebooks that document, the end-to-end 
workflow, including installing the required software, downloading 
model input data, and executing the environmental model. Compared to 
the developer work, the user work is simpler because the Jupyter 
notebooks document the workflow, and the user’s task is focused mainly 
on compiling the core model software and installing secondary software. 

Fig. 1b shows the procedure for Approach 2 where the developer 
must 1) create a Dockerfile, which has instructions to download and 
build software, 2) create a Docker image from the Dockerfile, and 3) 
share the Docker image on an online repository such as the DockerHub. 
This process is often not a linear sequence of steps, but an interactive 
process where creating the Docker image is time-consuming involving 
testing and verification before the Docker image is finally shared. Once 
this process is complete, however, the user only needs to install Docker 
using the simple command “sudo apt install docker.io” to get the core 
model operating correctly. The user must still obtain and run the Jupyter 
notebooks representing the end-to-end workflow, including installing 
required secondary software and input files, before executing the model. 

For Approach 3 (Fig. 1c), the developer’s first step is creating Jupyter 
notebooks to containerize workflows into a Docker container. Next, the 
developer must create a Dockerfile that includes the commands needed 
to containerize the core environmental model software, Python-based 
model API, and modeling workflows. In this approach, users only need 
to install Docker and run the Docker image because the Docker image 
has the required dependencies. Then user can open and run the Jupyter 
notebooks to reproduce the end-to-end workflow. 

In Approach 4 (Fig. 1d), the developer will first create a Definition 
file to create a Singularity image that includes a dependency list. Next, 
the developer must make a “kernel.json” file to link a Jupyter kernel 
with the Singularity image and Jupyter notebooks. Next, the developer 
can share the Singularity image through online repositories including 
Singularity Hub. Developers must also create and share Jupyter note
books and the model input for the modeling workflows. After the 

Table 2 
Specification of the base local computational environment.  

Specification Descriptions 

Processor Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz 
RAM 15.6 GB 
Base Operating System Windows 10 
Linux Emulator VirtualBox 5.2.12 
Linux Operating System Ubuntu 20.04 LDT 
Number of CPU Cores 1  
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developer’s work is complete, the user needs to download the Jupyter 
notebooks first, then open and run the Jupyter notebooks. The Jupyter 
notebooks handle the rest of the workflow including downloading the 
Singularity image of the core environmental model software, creating 
the Jupyter kernel to establish a link between the Singularity image and 
Jupyter notebooks, downloading the model input data, and executing 
the environmental model. 

Finally, in Approach 5 (Fig. 1e), the developer first creates a Jupyter 

notebook to encapsulate workflows using Sciunit (Essawy et al., 2018). 
Next, the developer creates a Sciunit container using the programming 
code and the Jupyter notebook. After that step is complete, the devel
oper can share the Sciunit container and the Jupyter notebook. Users 
then can download the Sciunit container and Jupyter notebook and only 
need to open and run the corresponding Jupyter notebook. Unlike other 
approaches, users do not need to download the model input as the 
Sciunit container includes the model input and all the software 

Fig. 1. The steps required for the five local approaches from the developer and user perspectives.  
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dependencies. 

2.1.2. Remote approaches 
Fig. 2 illustrates the steps required to complete the five remote ap

proaches from the perspective of the developer and the user. As with the 
five local approaches, these steps are used to evaluate each approach 
across a set of metrics that are described later in the paper. 

As Fig. 2a shows, for Approaches 6 and 7 the developer must create a 
Dockerfile, similar to Approaches 2 and 3. The user may use GitHub to 
add a new Dockerfile as a pull request to the CJH or CJW GitHub re
pository. After sending a pull request to the GitHub repository of CJH or 
CJW, the Dockerfile needs to be reviewed by CJH or CJW development 
team to deploy a new Docker image. After finishing the developer’s 
work, users only need to log into CJH or CJW and run Jupyter notebooks 
because the modeling environments are preconfigured and shared 
through the environmental profiles of CJH or Jupyter kernels of CJW. 
Fig. 2b shows the general procedure of Approaches 8 and 9 that follow 
the same steps as Approach 5 (Fig. 1e) using Sciunit, so they are not 
explained further here. 

Fig. 2c shows the general procedure of Approach 10. First, the 
developer must create a configuration file that is supported by Binder to 
encapsulate the environmental model software and Python-based model 
APIs used by the model. Next, the developer must create Jupyter note
books to document the modeling workflow. Then, the developer shares 
the configuration files and the Jupyter notebooks through an online 
repository such as GitHub, Figshare, Zenodo, or HydroShare. After that, 
the developer uses MyBinder to create a remote modeling environment 

for the modeling setup. Finally, the developer can share the Binder URL 
pointing to the remote modeling environment with end-users. 

2.2. Evaluation of the approaches 

We evaluated the ten approaches (five local and five remote) against 
a set of quantitative and qualitative metrics using a hydrologic modeling 
study as an example application. In this example application, we used 
the SUMMA (Clark et al., 2015a) hydrologic model as the core model 
software, pySUMMA (Choi et al., 2021) and other Python packages as 
the secondary software, and Jupyter notebooks to orchestrate the 
end-to-end modeling workflow. These three components are described 
in further detail in the following subsection. We then describe the 
quantitative and qualitative criteria used to evaluate the ten approaches. 

2.2.1. Modeling application used for the evaluation 
SUMMA was selected for the evaluation because it represents a 

typical numerical computational model used in environmental studies. 
It is, in fact, more of a modeling framework since it enables the 
controlled and systematic evaluation of multiple model representations 
of hydrologic processes and scaling behavior through a flexible hierar
chical spatial structure. SUMMA was developed in Fortran, and we used 
the Fortran compiler "gfortran" to compile the source code. Also, 
SUMMA requires the NetCDF (Network Common Data Form) and 
LAPACK (Linear Algebra PACKage) libraries. The NetCDF library (lib
netcdff.*) supports creating, accessing, and sharing data stored in a 
NetCDF format, the file format used by SUMMA. The LAPACK library 

Fig. 2. The steps required for the five remote approaches from the developer and user perspectives.  
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provides a series of routines for linear algebra operations, including 
matrix solvers. These libraries are considered core software for the 
model because they are required for the model to be compiled. SUMMA 
Makefile and Dockerfiles are shared through the SUMMA GitHub re
pository to support compiling SUMMA source code and creating a 
SUMMA Docker image. Also, the created SUMMA Docker image is 
shared via DockerHub (SUMMA DockerHub, 2021). 

Other secondary software, not required to compile SUMMA but 
convenient for working with SUMMA input and output files, includes 
pySUMMA, a Python-based SUMMA model API. pySUMMA allows 
programmatic control of the model configuration, execution, and visu
alization of SUMMA models. Currently, pySUMMA can be installed from 
either a Conda command (e.g., “conda install –c conda-forge pysumma”) 
or a pip command (e.g., “pip install pysumma”). Users can also download 
the pySUMMA source code from its pySUMMA GitHub repository and 
install it manually using “environment.yml” for conda install or “setup.py” 
for pip install. The “environment.yml” and “setup.py” files have the lists of 
pySUMMA dependencies for each installation method, thus making it 
possible to install the pySUMMA environment with dependencies on a 
new machine. 

Finally, for modeling workflows, we used Jupyter notebooks to 
create modeling workflows through a mix of formatted text, mathe
matical equations, and executable code with in-line visualizations. We 
created Jupyter notebooks for each of the ten reproducible approaches 
described earlier to encapsulate reproducible artifacts and modeling 
workflows. These notebooks are available as products of this research as 
described in the Data and Software Availability section of this paper. 

We used hydrologic modeling experiments described in Clark et al. 
(2015b) in our evaluation. Based on these experiments, we created four 
scenarios (Table 3) using two datasets to reproduce Figures 7, 8, and 9 in 
Clark et al. (2015b). The first scenario is a single simulation for 15 
months using the Simple Resistance method, as the stomatal resistance 
parameterization in SUMMA. The second scenario includes nine 
ensemble simulations for analyzing the impact on ET using 1) three 
different stomatal resistance parameterizations, Simple Resistance, 
Ball-Berry (Ball et al., 1987), and Jarvis (Jarvis, 1976), and 2) three 
different values (1.0, 0.5, 0.25) of the root exponential distribution 
parameter. The first and second scenarios aim to reproduce Figures 7 
and 8 in Clark et al. (2015b) (included here as Figure A.1). The third 
scenario is a single simulation for 75 months to analyze the impact of 
using the 1d Richards method (Celia et al., 1990), which is one of the 
lateral flow parameterizations in SUMMA, on runoff. The fourth and 
final scenario is three ensemble simulations to analyze the impact of 
using three different lateral flow parameterizations: 1d Richards, Lumped 
Topmodel, and Distributed Topmodel (Duan and Miller, 1997) on runoff. 
From the third and fourth scenarios, our aim is to reproduce Figure 9 in 
Clark et al. (2015b) (included here as Figure A.2). 

2.2.2. Quantitative performance metrics 
The following quantitative measures were used to evaluate the ten 

approaches. 1) Competency considers the level of effort in reproducing 
each step in the approach and is an important metric for lessening the 
burden of reproducibility work for researchers (Atmanspacher et al., 
2014). 2) The size of computational artifacts takes into account the 
storage requirements for storing and sharing each approach, another 
important factor in the adoption of reproducible approaches (Craig and 
Victoria., 2020; Kovács, 2017). 3) The computational time measures the 
wall time required to execute the approach, which can vary significantly 
across approaches and impact the usability of the approach (Kozhir
bayev and Sinnott, 2017). 

For the competency metric, we evaluated the level of skill required to 
complete each step of the approach from both the developer and user 
perspectives. We defined three levels: Minimal, Moderate, and Sub
stantial. Minimal means basic skills are required including downloading, 
setting up, and running the code without any changes in the basic 
workflow. Moderate means additional skills are needed including edit
ing and creating simple codes in the existing workflow. Finally, Sub
stantial means requiring expertise in coding and re-configuring the 
existing workflow. 

In order to give numerical scores to these categories, we scored 
"Minimal Skill" as an integer between 1 and 3, "Moderate Skill" between 
4 and 6, and "Substantial Skill" between 7 and 9. As this was done for 
each step in an approach and an overall "total score" for the approach 
was calculated as simply the sum of all steps in that approach. Since this 
scoring can be subjective, we had six experts, all co-authors of this paper 
and knowledgeable of the modeling steps as both users and developers, 
complete the evaluation independently and report the range of scores in 
the results section. The Appendix (Table A.1 – A.7) includes the ques
tionaries used to obtain the competency scores for the ten approaches. 

For the size metric, we measured how much space is used to store all 
digital artifacts associated with the reproducible approach. We only 
considered the size metric for the five local approaches and not the five 
remote approaches because the size of the preconfigured computational 
artifacts in a remote environment will be determined by the specific 
technical implementation in that remote environment and will have less 
impact on the end user. Finally, for the computational time metric, we 
measured the execution time across all ten reproducible approaches. In 
this performance metric, we measured the wall time required to run the 
end-to-end workflow for the approach. 

2.2.3. Qualitative performance metrics 
In terms of qualitative performance metrics, we first describe the 

strengths and weaknesses of each approach through our experience 
implementing each approach from both the developer and user per
spectives. We then considered two broad use cases for environmental 
models: 1) education and 2) research. Based on the strengths and 
weaknesses and with these two use cases in mind, we present recom
mendations for best practices when using each of the ten approaches. 

3. Results 

3.1. Quantitative evaluation 

3.1.1. Required competency 
The resulting competency metric scores, grouped by developer and 

user work, are shown in Fig. 3. The boxplot depicts the range of the 
scores across the experts who rated the competency needed to complete 
each step of each approach. The total score for developer work was 
consistently higher than the user work, indicating that the developer 
work requires greater competency or effort than the user work. This is 
expected as the competency was defined around coding and computing 
skills rather than modeling skills. Interestingly, there was less variability 
in scores when evaluating the user’s work compared to the developer’s 
work, meaning there was more agreement among those who completed 
the evaluation about the competency required for the user steps. To help 
visualize the results for each approach, the median scores are depicted in 

Table 3 
SUMMA simulation scenarios for evaluating the ten reproducible approaches.  

Scenario Descriptions 

(a) Scenario 
1 

□ A single simulation (simple resistance method) 
□ Simulation periods: 2006-07-01–2007-09-30 (15 months) 

(b) Scenario 
2 

□ Ensemble simulations (9 simulations) 
- 3 different parameterizations (Simple Resistance, Ball-Berry, and 
Jarvis) 
×□ 3 different parameters (Root Exponential values 1.0, 0.5, 0.25) 
□ Simulation periods: 2006-07-01–2007-09-30 (15 months) 

(c) Scenario 
3 

□ A single simulation (1d Richards) 
□ Simulation periods: 2002-07-01–2008-09-30 (75 months) 

(d) Scenario 
4 

□ Ensemble simulations (3 simulations)  
3 different parameterizations (1d Richards, Lumped Topmodel, and 
Distributed Topmodel) 
□ Simulation periods: 2002-07-01–2008-09-30 (75 months)  
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a spider plot (Fig. 4) to show how each approach ranks across the 
developer and user competency metric scores. 

In terms of developer work, Approach 1 (Score = 35) was scored as 
the most complicated approach among the local approaches. In this 
approach, the developer needs to reproduce every step individually as it 
does not use containerization technology. In terms of user work, most 
approaches have a low score compared to Approach 1. Approach 5 was 
scored as the simplest local approach from both the developer (Score =
19) and user perspectives (Score = 3). For the remote approaches and in 
terms of developer work, approaches 6 and 7 were judged to require a 
high level of competency. Because Dockerfile must be programmed, it 
requires a considerable amount of knowledge about the Docker platform 
and its API, it can be a complex task for the model developers. 
Furthermore, for cloud environments like CJH and CJW, developers 
themselves cannot install new models until they are reviewed by the 
larger CJH and CJW development teams. Approaches 8 and 9 were 
judged to be the simplest remote approaches considering developer 
(Score = 19) and user work (Score = 3). These approaches used Sciunit 
which can containerize modeling environment and workflow into a 
container by recording steps in the model execution code created with 
no additional work. This allows users to easily reproduce published re
sults using Sciunit containers and commands in a Jupyter notebook. 
Approaches 6, 7, and 10 are the simpler in part because dependencies for 
the environmental modeling code are preconfigured into containers. 

3.1.2. Size of reproducible artifacts 
Fig. 5 shows the sizes of the digital artifacts for the five local 

reproducible approaches. Approach 5 is the most lightweight and it is 
ten times smaller than Approach 4, which is the second most light
weight. This is because Sciunit only encapsulates dependencies that are 
used during modeling workflows, compared to other containerization 
tools that containerize additional software and Python libraries that may 
be stated for example in a Dockerfile but not directly used in the 
workflow. Sciunit further uses content-based deduplication to determine 
redundant file blocks across files used in a workflow (That et al., 2017; 
Yuan et al., 2018). In addition, Approach 4 is lighter weight than Ap
proaches 1–3 because Singularity utilizes a flatter structure for files 
within an image, meaning all files of an image are combined into a single 
image format and compressed. In contrast, Docker uses a concept of 
layering of files in which files are shared across multiple images. The 
layered file system on disk, however, is not compressed as in Singularity 
and thus the result in Fig. 5. We note that currently we have a single 
model run and layering does not offer much space saving but can do so if 
the developer is using multiple containers. We also anticipate that in 
that case a compressed file system will offer more savings than layering 
and the overall result trend will be the same. This concept used in 
Docker is not helpful for a single model software run, but it will help 
when researchers want to use multiple commands with layered images. 
Finally, approach 1 and 2 do not use container tools and thus do not take 
advantage of file system saving methods such as compression and 
deduplication. The sizes required for each of the dependencies are given 

Fig. 3. Competency metric scores for each approach for the steps completed by the Developer (D) and User (U). The box plots represent the range of scores across the 
six individuals who rated the approach. 

Fig. 4. The median competency metric scores for (a) local and (b) remote reproducible approaches for the developer and user work.  

Y.-D. Choi et al.                                                                                                                                                                                                                                 



Environmental Modelling and Software 167 (2023) 105760

8

in detail in Table A.8. 

3.1.3. Workflow runtime 
Fig. 6 shows the results of the workflow runtime comparison for the 

approaches using (a) local and (b) remote compute resources across the 
four modeling scenarios described in Table 3. When we compare the five 
local approaches; it shows that Approach 5 is slightly slower than the 
other approaches. However, the overall computing time is similar across 
the five local reproducible approaches. For the remote approaches, 
Approach 7 was the fastest approach even though the approach requires 
additional time to submit jobs between CJW to distributed HPC re
sources and retrieve model output from such resources to CJW. 
Although there are variations according to the status of memory use, the 
rest of the remote reproducible approaches are similar to the local ones. 
Due to how the model runs were set up using Dask, a Python library for 
parallel computing (Rocklin, 2015), and because Dask automatically 
allocates multiple cores for ensemble simulations, the Sciunit encapsu
lation of the ensemble simulations (Scenarios 2 and 4) were not 
configured to take advantage of the multiple cores. Hence, the runtime 
for Scenarios 2 and 4 were excluded from Fig. 6a. From the performance 
test of computing time, for data-intensive modeling such as the simu
lation of fully distributed models and Contiguous United States (CONUS) 
scale models, we can see the value of using remote environments that 
can access HPC resource. 

Overall, if we summarize the result of quantitative performance, we 

find that the local reproducible approaches require more competency in 
coding and computing skills, more computational time, and more space 
compared to remote ones. For both local and remote approaches, the 
developer work requires a remarkably higher level of effort than the user 
work. If we compare different containerization tools across the local and 
remote approaches, Docker was the heaviest weight and was judged to 
require greater competency. On the other hand, Sciunit was the most 
lightweight and required less competency to use compared to other 
containerization tools. Finally, Singularity excelled as a containerization 
approach for parallel computing. It is worth noting that the performance 
of containerization-based approaches can vary based on the type (e.g., 
hydrologic model SUMMA vs. atmospheric model Weather Research and 
Forecasting WRF) and scale of the environmental model (e.g., local vs. 
global). For different types of models, the challenges lie in model 
compilation difficulty and the developers’ competency. In terms of 
modeling scale, factors such as model complexity and watershed scale 
come into play, with the performance of approaches being influenced by 
the memory size of the computer used. 

3.2. Qualitative evaluation 

3.2.1. Strengths and weaknesses of approaches 
The strengths and weaknesses of the five local reproducible ap

proaches judged through this research are presented in Table 4. For 
Approach 1 (Table 4a), a strength is that the GNU Make tool is a common 

Fig. 5. Comparison of the size for reproducible artifacts for the local reproducible approaches.  

Fig. 6. Comparison of computing time in the (a) local and (b) remote reproducible approaches.  
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method to share model software and GNU Make itself is important 
because within each containerization tool GNU Make must be run to 
build the SUMMA executable. However, this approach is still difficult for 
many model users as it requires a higher level of computational com
petency. Therefore, having the developer with the skills required to 
complete this step and then sharing a containerized version of the model 
software reduces the burden on the model user. 

Table 4b presents the results of the qualitative performance evalu
ation for Approach 2. This approach uses Docker to containerize only the 
core model software; therefore, users can easily reproduce SUMMA 
using Docker from DockerHub. In addition, users can install and apply 
new Python libraries as model APIs without any limitations. After 
downloading the SUMMA Docker image and installing pySUMMA 
within a Conda VE, users can execute SUMMA using the “docker” option 
in the pySUMMA “run” method. Even if users have not downloaded the 

SUMMA Docker image on the local computer, pySUMMA can auto
matically download it from DockerHub. However, sometimes when 
users create the Conda VE, unexpected errors may occur, requiring the 
user to create the Conda VE manually. Therefore, we recommend this 
approach for model applications where the user requires flexibility in 
what Python packages and other libraries are needed to complete the 
application. 

Table 4c presents the results of the qualitative performance evalua
tion for Approach 3. This approach containerizes every dependency into 
a Docker image; therefore, the procedure is stable and consistent in that 
it is unlikely that errors will occur across users. However, there is a 
limitation when attempting to install new software or dependencies 
because users must work inside a Docker image, even if users can install 
new dependencies, they are temporary. Therefore, this approach is 
helpful for offline education for practicing and reproducing published 
results on local computers (public or personal computers) but is less 
well-suited for use cases that require the extension of past work. 

Table 4d presents the qualitative performance evaluation results for 
Approach 4. It is lightweight compared to other reproducibility ap
proaches, except for Sciunit. Currently, Singularity is less widely used 
than Docker, so sometimes researchers themselves need to create Sin
gularity definition files. In this scenario, we recommend researchers try 
to find a Dockerfile first and then use the "docker2singularity" library to 
convert the Dockerfile into a Singularity definition file. 

Finally, Table 4e presents the qualitative performance evaluation 
results for Approach 5. Sciunit has many advantages, such as being the 
most simple and lightweight of the ten reproducible approaches 
considered in this study. In addition, Sciunit is efficient in terms of 
memory use for encapsulating modeling environments, workflows, and 
data into one container. Due to its easy installation, Sciunit is helpful as 
an educational setting where instructors can share reproducible 
computational materials and students are asked to containerize their 
own analyses. Thus, it is a powerful tool for reliable reproducible 
research without requiring continuous version control. However, Sciunit 
is still in active development as a research project and, in our experience 
for complicated software with the GRASS GIS system, a dependency of 
the workflows, it was unable to automatically encapsulate the system. In 
other cases, Sciunit, being efficient in what it encapsulates by moni
toring what software is used in a workflow, may exclude related soft
ware not directly used but potentially helpful when extending a 
workflow (e.g., plotting routines helpful to visualize model output but 
not directly used in the encapsulated workflow). This is most often a 
benefit, producing a highly optimized container, but requires the 
modeler to carefully consider and include all software calls that may be 
useful in later reuse of the container. 

Table 5 highlights the strengths and weaknesses for the five remote 
reproducibility approaches. Table 5a includes the qualitative perfor
mance evaluation results for Approaches 6 and 7. These approaches 
allow users to use preconfigured modeling environments; therefore, 
users can use environmental models straightforwardly without addi
tional software installation. In addition, CJW supports distributed HPC 
resources for parallel computing. Also, CJH supports a custom Conda VE 
to permanently install Python or other libraries, like Approach 2. 
However, there is a limitation with installing new model software 
because it requires an administrator for installation into CJH and CJW 
due to security concerns. Therefore, it takes time to deploy new software 
into CJH and CJW because the CJH and CJW development teams need a 
certain amount of time to review and deploy the new software on CJH 
and CJW. Consequently, we recommend this approach for online edu
cation and compute-intensive problem solving (CJW). Table 5b presents 
the qualitative performance evaluation results for Approaches 8 and 9. 
Considering the main usage of Sciunit, qualitative performance test re
sults are the same as Approach 5, except for offline use. 

Finally, Table 5c presents the qualitative performance test results for 
Approach 10. This approach allows developers to share modeling en
vironments online with users with a single click. Also, users can add new 

Table 4 
Qualitative evaluation of the strengths, weaknesses, and recommended usages 
for the local approaches.  

(a) Approach 1: Compiling the Core Model Software 
Strengths □ [D, U] GNU Make itself is important because this tool has to 

use in 10 reproducible approaches 
□ [D] Efficient for model software developers to review and 
apply their new and modified source code 

Weaknesses □ [U] Difficult to apply Makefile configuration setting for 
compiling model software 

Recommended 
usages 

□ [Research] Model software development and management 

(b) Approach 2: Containerizing the Core Model Software with Docker 

Strengths □ [U] Easy to download and use Docker images for model 
software via DockerHub 
□ [U] Efficient to install new Python packages or other 
libraries for various application research 

Weaknesses □ [U] Unexpected errors may occur when users create Conda 
VE manually 

Recommended 
usages 

□ [Research] Model application with flexible application of 
various Python packages and other libraries 

(c) Approach 3: Containerizing All Software with Docker 

Strengths □ [U] Easy to download and use Docker images for 
environmental modeling via DockerHub 
□ [U] Possible to use all required model software and other 
software from a Docker image 
□ [U] Stable steps to use environmental models 

Weaknesses □ [U] Limitation to install new model software or other 
software 

Recommended 
usages 

□ [Education] Offline education requiring stable and 
consistent reproducibility 

(d) Approach 4: Containerizing All Software with Singularity 

Strengths □ [D] Easy to convert Docker images to Singularity images 
using "docker2singularity" library 
□ [U] Lightweight than other reproducible approaches except 
Sciunit 

Weaknesses □ [U] Niche usage comparing to Docker 
Recommended 

usages 
□ [Research] Models requiring HPC 

(e) Approach 5: Containerizing All Software and Workflow with Sciunit 

Strengths □ [D, U] The simplest complexity for reproducibility in both 
developer and user perspective 
□ [U] The most lightweight in ten reproducible approaches 
□ [D, U] Easy to share Sciunit containers in a file format 
□ [D, U] Possible to use Sciunit on local and remote 
environments after installing it using pip install 

Weaknesses □ [U] Niche usage comparing to Docker and Singularity 
□ [U] Does not encapsulate automatic allocation of parallel 
computing such as Dask 

Recommended 
usages 

□ [Education] Offline education 
□ [Research] Reliable reproducibility as Sciunit can 
containerize all reproducible artifacts into a container without 
significant memory use 

[D] = Developer; [U] = User. 
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software or libraries, though users first need to understand how to edit 
Binder configuration files. Despite these conveniences, MyBinder has a 
limitation in persistent sessions because it supports these online 
modeling environments for free. Therefore, if users have no activity for 
10 min, the Jupyter modeling environment is automatically shut down 
without saving into a persistent data storage. Therefore, we recommend 
this approach for online education use cases, but not for more sophis
ticated research applications unless Binder can be implemented with 
persistent data storage. This approach is useful as a preliminary auditing 
procedure for research applications to deploy new software or libraries 
into Docker-based virtual research environments (Prasad et al., 2020) 
such as CJH and CJW because both Binder and these cyberinfras
tructures are developed using Docker. 

3.2.2. Recommended approaches for common use cases 
Summarizing the qualitative metrics while also drawing on insights 

from the quantitative evaluation, we recommend best practices for 
leveraging containerization and computing environments to achieve 
reproducible environmental modeling objectives. These recommenda
tions are provided in Tables 6 and 7 for the local and remote approaches, 
respectively. We considered common use cases in environmental 
modeling around two broad categories: education and research. Tradi
tionally, we conduct environmental modeling through classes and 
workshops for educational purposes in an “offline” manner that requires 
installing software on local computers. However, many educational in
stitutions are transitioning to remote or “online” compute environments 
(Prasad et al., 2020). Therefore, we divide the objectives of education 
into online and offline. For environmental modeling research, we can 
generally divide the steps required to perform computational modeling 
into 1) model installation, 2) model application, and 3) data analysis for 
data-intensive computations using model-associated files (Addor et al., 
2020). 

In the case of local approaches (Table 6), Approaches 3 and 5 are 
recommended for educational use cases. One reason for this recom
mendation is because these approaches have low required competency 
scores, suggesting they are less complexity to install and configure. Of 
these two approaches, Approach 3 may prove a better choice as Docker 
containerizes every dependency into Docker images. However, if users 
want a more lightweight approach to distribute containerized images 
without considering version control, Approach 5 that uses Sciunit may 
be a preferred choice. For research purposes, especially for model 
development, Approach 1 is the only approach to efficiently build new 
or modified model software source code. Other approaches can only 
create a container image using existing model software source code for 
reproducibility. For the purpose of model application in research use 
cases, Approach 2 is recommended because it has the flexibility to install 
and apply new Python libraries for various analyses and visualizations. 
For data analysis, remote approaches are preferred to local approaches 
because of the space and time required for such data-intensive compu
tations within a local environment. 

In the case of remote approaches (Table 7), for online education 
purposes, approaches 6 and 7 are recommended approaches because 
they offer the lowest required competency scores for users. These en
vironments support easy sharing via HydroShare and preconfigured 
modeling environments. Sciunit also has the lowest required compe
tency; however, because Sciunit needs to encapsulate dependencies and 
workflows together, sometimes creating Sciunit containers can be more 
difficult compared to other approaches because they can only create a 
container image using existing model software source code for repro
ducibility. For research purposes, especially for model development, 
remote approaches are not recommended because source code changes 
to the core model software are difficult to make in the remote ap
proaches. If the research application is primarily about performing 
model runs instead of making changes to the core model software, then 
Approach 6 is recommended among the remote approaches because it 
has the flexibility to install and apply new Python libraries for various 
analyses and visualizations. For the purpose of computationally 

Table 5 
Qualitative evaluation of the strengths, weaknesses, and recommended usages 
for the five remote approaches.  

(a) Approaches 6 and 7: Using CJH and CJW with Docker 
Strengths □ [U] The lowest complexity for users, possible to use 

preconfigured modeling environments 
□ [U] Possible to use distributed HPC resources for scalable 
model-ing work (CJW) 
□ [U] Possible to install custom Conda VE (CUAHSI 
JupyterHub) 

Weaknesses □ [U] Impossible to install particular model software or 
package that uses "sudo" command 
□ [D] Requires a certain amount of time to review and deploy 
a new software by CJH and CJW development team 

Recommended 
usages 

□ [Education] Online education (CJH and CJW) 
□ [Research] Computation- and/or data-intensive problem 
solving (CJW) 

(b) Approaches 8 and 9: Using CJH and CJW with Sciunit 

Strengths □ [D, U] The lowest complexity for reproducibility in both 
developer and user perspective 
□ [U] The most lightweight in 10 reproducible approaches 
□ [D, U] Easy to share Sciunit containers in a file format 
□ [D, U] Possible to use Sciunit on local and remote 
environments after installing it using pip install 

Weaknesses □ [U] Niche usage comparing to Docker and Singularity 
□ [U] Does not encapsulate automatic allocation of parallel 
computing such as Dask 

Recommended 
usages 

□ [Research] Reliable reproducibility as Sciunit can 
containerize all reproducible artifacts into a container without 
significant memory use 

(c) Approach 10: Using Binder with Docker 

Strengths □ [U] Easy to share modeling environments online 
Weaknesses □ [U] Non-persistent sessions (automatically shut down if 

there is no activity for 10 min) 
Recommended 

usages 
□ [Education] Online education 

[D] = Developer; [U] = User. 

Table 6 
Recommended best practices for reproducible approaches on local environments.  

Objectives Best Practices 

(a) 
Education 

(1) Online 
(Class or Workshop) 

– 

(2) Offline 
(Class or Workshop) 

□ Containerizing All Software with Docker (AP-3) and Sciunit (AP-5) 
→ The first (AP-5, score:3) and second (AP-3, score:5) lowest complexity for users, a more stable approach (AP-3), 
and the most lightweight artifacts (AP-5) 

(b) Research (3) Model 
Installation 

□ Compiling Model Software (AP-1) 
→ The only approach to build new or modified model software source code 

(4) Model 
Application 

□ Containerizing Core Model Software with Docker (AP-2) 
→ Lower complexity than others (AP-2, score:4), flexibility to install and apply new Python libraries for various 
analysis and visualization 

(5) Computation- and/or Data-Intensive 
Problem Solving 

–  
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intensive problem solving, Approach 7 is recommended because it takes 
advantage of multiple cores and processors for parallel computing, 
resulting in a lower runtime. 

4. Discussion 

4.1. Containerization as a means for promoting open and collaborative 
environmental modeling 

Containerization-based reproducible approaches are specifically 
designed to meet the demanding needs of collaborative model devel
opment across varied software and hardware environments. By adopting 
containerization, researchers can create container images that encap
sulate models, dependencies, and software configurations, ensuring a 
unified and reproducible development environment. This allows mul
tiple researchers or institutions to work within the same software 
environment and produce consistent results, regardless of their indi
vidual setups. Containerization also facilitates model portability across 
different hardware environments, including local workstations, high- 
performance computing clusters, and cloud infrastructure. It offers 
flexibility for collaborators to utilize their preferred hardware setups 
while maintaining compatibility and consistency. Additionally, collab
orative model development entails other aspects such as iterative 
refining of the model, use of interactive development environments, and 
efficient sharing of containers. Some use cases corresponding to these 
aspects have been explored in Ahmad et al. (2022) that demonstrated 
some necessary extensions to containers. Notably, "Sciunit-export" en
ables a seamless transition between Sciunit and other virtual environ
ments like Virtual Env and Conda, further enhancing collaborative 
model development practices. 

In the context of environmental modeling, the role of open-source 
software and open data in promoting the adoption of reproducible ap
proaches and facilitating collaboration among researchers in the field of 
environmental modeling is paramount. Open availability of software 
and data reduces duplicated efforts and fosters higher quality science, 
improves transparency, and encourages a stronger science-policy 
boundary (Pfenninger et al., 2017). While there are valid reasons for 
not openly sharing data and code, such as ethical and security concerns, 
potential exposure of flawed code or data, additional workloads, and 
institutional or personal inertia (Pfenninger et al., 2017), it is crucial to 
understand the practicalities and importance of open code and data. 
Open practices can be supported through measures like changing atti
tudes, requesting data-code-workflow-environments during manuscript 
review process, initiating intellectual property rights/licenses, assigning 
digital object identifiers (DOIs), and establishing distribution channels 
for proper recognition. Adhering to these guidelines improves the 
reproducibility of modeling results, enabling others to verify and build 
upon the existing work. In the context of containerization, standardized 
practices enhance interoperability among different containerized 
models, facilitating their seamless integration into larger scientific 
workflows and promoting collaboration among researchers. Notably, 

there is currently a strong momentum for open-source data and software 
across various scientific domains, including geology, energy, climate 
modeling, and environmental modeling, extending beyond computer 
science and data science (Knoth and Nüst, 2017; Fiore et al., 2019; 
Pfenninger et al., 2017; Morsy et al., 2017; Essawy et al., 2018; Choi 
et al., 2021). 

4.2. Software licensing and security challenges associated with 
containerization 

Containerization approaches like Docker, Singularity, and Sciunit 
run in the Linux operating system, which is Free and Open-Source 
Software (FOSS). If there is proprietary and licensed software in the 
Linux operating system, we can consider three specific limitations or 
challenges. The first challenge is the possibility of containerizing the 
software. To containerize the software, installation of software inside a 
container requires using containerization configuration files, such as a 
dockerfile for Docker and a definition file for Singularity, inside a 
container. The second challenge is the possibility of process-based 
containerization such as Sciunit. Sciunit extracts executed codes to 
efficiently containerize the software. However, there is a possibility of 
access limitations to the software to protect the software. Finally, a 
limitation is the uses allowed by the software license and how the 
software license is implemented. There are many types of licenses and 
many implementations of licenses including a distributed offline 
licensed key, a network license key, a subscription-based license, etc. For 
sharing reproducible approaches, every approach requires an agreement 
or permission from the owners of the software for any users or concur
rent users. Furthermore, there can be specific limitations or challenges 
such as license compliance, cost, technical compatibility, version up
dates, dependencies etc. For example, the SUMMA model used in this 
research is freely accessible under an open-source license, facilitating its 
use and modification without licensing restrictions. In contrast, pro
prietary software like TUFLOW (Two-dimensional Unsteady FLOW) may 
require users to obtain a license and potentially pay fees for certain 
usage contexts or commercial purposes. 

Related to license challenges are security challenges especially when 
using remote approaches such as CJW and CJH with Docker, Singularity, 
and Sciunit for environmental modeling. Some of these challenges 
include data leakage, network security, and malicious containers. To 
ensure data privacy and integrity, cyberinfrastructures generally use 
strong authentication to prevent unauthorized access, update containers 
and underlying software regularly, and verify the authenticity and 
integrity of containers before deployment. For example, we need to use 
verified "Hydroshare ID" to use the functionality of CJW and CJH plat
forms. Also, developers are unable to install new models in CJH and CJW 
independently, without undergoing a review process conducted by the 
larger CJH and CJW development teams, as mentioned earlier. Addi
tionally, both CJH and CJW undergo regular maintenance and security 
measures to safeguard against potential security threats. By proactively 
maintaining security, remote environments aim to protect the integrity 

Table 7 
Recommended best practices for reproducible approaches on remote environments.  

Objectives Best Practices 

(a) 
Education 

(1) Online 
(Class or Workshop) 

□ CJH and CJW with Docker (AP-6 and 7) and Binder with Docker (AP-10) 
→ The lowest complexity for users (score:3), a flexible approach, and easy sharing 

(2) Offline 
(Class or Workshop) 

– 

(b) Research (3) Model 
Installation 

– 

(4) Model Application □ CJH with Docker (AP-6) 
→ Lower complexity than others (AP-6, score:3), flexibility to install and apply new Python libraries for various 
analysis and visualization 

(5) Computation- and/or Data-Intensive 
Problem Solving 

□ CJW with Docker (AP-7) 
→ The first fastest computational time, possible to use multiple cores for parallel computing  
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and privacy of the data and models hosted on their platforms, providing 
a secure and reliable environment for researchers and users. 

4.3. Opportunities for future research 

4.3.1. Advancing sciunit for environmental modeling 
Sciunit was shown to be lightweight and time-efficient in the 

reproducible approaches considered in this study. Sciunit is a tailored 
environment for geoscience modeling that is still in active development. 
In its current implementation, Sciunit containerizes the workflow soft
ware including software and data dependencies into a single container. 
Other containerization approaches, such as Docker and Singularity, are 
aimed at a more general audience but do allow for the separation of the 
computational modeling environment from the workflow itself. This 
separation allows for more flexibility in applying different data pro
cessing workflows based on containerized computational environments. 
Sciunit developers are working on adding functionality that could allow 
a user to create a Docker image from a Sciunit container (Chuah et al., 
2020). Exploring such approaches to combine lightweight tailored 
containerization tools that are specific to domains like environmental 
modeling, alongside industry standard containerization approaches like 
Docker, could provide a power approach for bring containerization 
technology to environmental modeling. 

4.3.2. Opportunities for hybrid containerization 
Integrating or developing a hybrid approach that combines the 

strengths of multiple containerization tools, like that just described be
tween Sciunit and Docker, is another promising research direction worth 
exploring in the future. Such approaches can leverage the advantages of 
different containerization technologies to address specific needs and 
challenges in environmental modeling and resulting in a flexible and 
efficient approach for managing and executing containerized applica
tions. By combining tools like Docker, Singularity, Sciunit, and Binder, 
researchers can potentially benefit from a wider range of features and 
capabilities. For example, Docker is a widely used interface and offers 
broad community support, while Singularity focuses on high- 
performance computing and compatibility with existing HPC systems. 
Sciunit provides a lightweight, user-friendly framework for creating and 
sharing scientific models and assessments for environmental research, 
and Binder facilitates the creation of interactive and reproducible 
computational environments. A hybrid approach could involve using 
Docker or Singularity as the base containerization technology and 
integrating Sciunit and Binder to enhance model accessibility, repro
ducibility, and collaboration. This combination can enable researchers 
to package and distribute models using Docker or Singularity, while 
leveraging the interactive and reproducible features of Sciunit and 
Binder for easier model evaluation and sharing. Recently there has been 
significant attention given to such an effort. Youngdahl et al. (2018) 
demonstrated the use of an automatic hybrid containerization tool 
called "Sciunit-Popper" for simplifying the sharing, porting, and repro
ducing of distributive and iterative experiments. Brown et al. (2019) 
utilized a hybrid "Docker- Kubernetes" containerization approach by 
initially using Docker for deploying GUI/GPU instances and later tran
sitioning to Kubernetes for scalability, deployment, and portability. 
However, the application of such approaches in environmental 
modeling is still limited, presenting an opportunity for further research 
and exploration in the field. In our ongoing work, we are investigating 
the potential of running distributed applications using a scheduler like 
Kubernetes, which will be a part of our future endeavors. 

4.3.3. Automating containerization and model execution using ML and AI 
Another challenge requiring future research is automating contain

erization and model execution into end-to-end workflows with appro
priate resource allocation, scaling, workload balancing, and 
performance monitoring. Such automation reduces manual effort, au
tomates decision-making, and improves efficiency. In the current study, 

even though we presented guidelines for the best practices for different 
modeling use cases, optimization of containerization and model execu
tion processes, potentially automating some aspects of model configu
ration and setup are still challenging. Recently, the integration of 
machine learning (ML) and artificial intelligence (AI) has shown the 
potential for code completion using tools like Github Copilot and large 
language generative models such as ChatGPT (Ouyang et al., 2022). 
While these tools have the potential to reduce work and speed up the 
time required to build end-to-end workflows, research is needed to 
explore the opportunities and limitations of ML and AI-based automa
tion in environmental modeling, given the unique challenges and the 
importance of process understanding. 

4.3.4. Real-time software reconfiguration of containerized workflows 
Approaches 6 and 7 use a Jupyter interface, which has become a 

widely used tool for providing access to preconfigured modeling envi
ronments (Prasad et al., 2020). However, such configurations that rely 
on Jupyter interfaces can have challenges associated with allowing users 
to install new software. Environmental modeling, because of the di
versity of models used within the community, would benefit from ap
proaches that allow for easy configuration of the software environment 
behind the Jupyter interface. The “udocker” tool, which is a tool for 
using Docker without privileges (Gomes et al., 2018), could be a solution 
for allowing users to add new model software to a Docker image to 
customize the environment for a particular modeling application. 
Binder, included in Approach 10, is also a powerful tool to provide 
customization of remote modeling environments with Jupyter in
terfaces. Using an implementation of Binder like MyBinder is possible 
now, but being a general environment, it has limitations for environ
mental modeling. As stated earlier, in its current implementation if users 
have no activity for 10 min, the MyBinder user session is automatically 
shut down. MyBinder sessions on BinderHub are open to anybody, 
anywhere, and anytime for free. Therefore, some time limits for Bind
erHub user session resources are inevitable to prevent misuse of re
sources. It is possible to automatically save a session when it is shut 
down, which is a partial solution. Building a cyberinfrastructure system 
to support environmental modeling that combines BinderHub with more 
persistent data and compute resource to support reproducible environ
mental modeling seems like an especially promising future research 
direction. 

4.3.5. Education and training for reproducible environmental modeling 
Common across all of the discussed approaches, education and 

training plays a crucial role in promoting awareness and effective 
implementation of reproducibility approaches in environmental 
modeling. Part of this education is about the importance and challenges 
associated with reproducibility specifically in the context of environ
mental modeling. Reproducibility of computational models has long 
been cited as a challenge due to factors such as model complexity, size, 
lack of incentives, focus on novelty, etc. (De Vos et al., 2011). Addi
tionally, the sharing of open data-code, and well-documented workflows 
is still optional in the review and publication process for environmental 
modeling (Stagge et al., 2019). For one reason, many model developers 
and users are either unaware or lack the skills to implement these ap
proaches, which benefit greatly from a strong knowledge of container
ization techniques and computational skills (Stagge et al., 2019). 
Scientific cyberinfrastructures like the ones discussed in this paper, 
HydroShare, CyberGIS for Water, and CUAHSI Jupyterhub, along with 
many others are working to overcome these challenges and lower the 
barrier to reproducibility. Research is continuing to highlight the sig
nificance of reproducibility in environmental modeling and explore 
various techniques and methodologies to ensure the production of 
reproducible results (Morsy et al., 2017; Essawy et al., 2018; Choi et al., 
2021). There are also a growing number of opportunities for technical 
training and demonstration of containerization tools and concepts 
through conferences, workshops, and training sessions. These efforts 
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aim to ensure that environmental model developers and users are aware 
of reproducibility approaches and can effectively implement them in 
their work, thereby promoting reproducibility in environmental 
modeling and related fields. 

5. Conclusions 

Reproducibility is the cornerstone of science as it allows for accu
mulating knowledge by building on prior work. However, many have 
highlighted the difficulties in achieving reproducible computational 
research. For environmental modeling, knowledge gaps in achieving 
reproducible computational modeling remain in understanding how to 
effectively use modern software tools and practices to achieve this 
desired outcome. To this aim, we explored ten approaches for achieving 
reproducible modeling goals using a combination of different contain
erization tools on both local and remote computational environments 
contrasting developer and user efforts. We assessed the ten approaches 
using a hydrologic modeling application against both quantitative and 
qualitative metrics. Based on this evaluation, our goal is to establish 
guidelines for the best practices for different modeling use cases com
mon in the environmental modeling community. 

For use cases where the objective is to develop new environmental 
models and it is important to be able to recompile model source code on 
a frequent basis, Approach 1 as that uses GNU Make and Conda VE may 
be sufficient, or it may be effective to apply Approach 5 using Sciunit to 
containerize the end-to-end modeling workflow for easier reproduc
ibility and portability. For cases where a given model is applied for a 
specific system without changes to the core model source code, we 
recommend approaches where the core model software is containerized 
and used locally (e.g., Approach 2) or where users interact with the 
model through a JuypyterHub environment, like CUAHSI JupyterHub 
(Approach 6), assuming the Dockerized core model software can be 
uploaded into the JupyterHub environment and made accessible to end 
users. Of the ten approaches considered, the CyberGIS-Jupyter for Water 
platform (Approach 7) is recommended for computationally intensive 
applications given that the platform provides access to high performance 
and high throughput computational resources, which resulted in rela
tively low runtimes in our scenarios. For educational use cases, the 
recommended methods are those that take advantage of remote envi
ronments with Jupyter interfaces, like CUAHSI JupyterHub and 
CyberGIS-Jupyter for Water or use Binder (Approaches 6, 7, and 10), 
assuming making changes to the core model software are not part of the 
learning objective. For cases where the educational objective includes 
having students edit or extend the core model software, then using 
Sciunit for containerizing the software (Approach 5) is recommended 
because it offers a low required competency compared to more general 
containerization approaches. 

While this study considers ten approaches for reproducible envi
ronmental modeling, this is not an exhaustive list and new approaches 
continue to be introduced. Given our review of these approaches and 
considering their relative strengths and weaknesses, we can suggest 
possible directions for future research and development. Although the 
trend of environmental modeling appears to be moving to remote or 
cloud computational environments, providing deployment flexibility of 
such environments for environmental models remains a challenge. We 
are encouraged by approaches like Binder that allow for on-demand 
creation of remote virtual environments. A Binder-based environment 
for environmental modeling that allows for more persistent sessions and 
larger data storage solutions could be powerful. Furthermore, contain
erization approaches like Sciunit that are tailored for geoscience 
modeling use cases provide benefits that larger, less tailored contain
erization technologies (e.g., Docker or Singularity) cannot provide. 
However, merging of tailored and industry-standard containerization 
strategies as hybrid approaches may be able to harness the strengths of 
both approaches and provide solutions for environmental modelers 
seeking to create more reproducible environmental studies. Ultimately, 

these approaches can help to lower the barrier to fostering a “culture of 
reproducibility” (Rosenberg et al., 2020) that supports open and 
collaborative environmental modeling. 

Data and software availability 

The data and computational environments used in this study are 
available as ten HydroShare resources and three GitHub repositories. We 
published all data and computational environments with persistent 
digital object identifiers (DOI) on HydroShare and shared them by a 
collection resource (HS-1) in HydroShare (Choi et al., 2023). This 
collection resource provides the links for all HydroShare resources as 
“Collection Contents” and three GitHub repositories as “Related 
Resource Reference.” The ten HydroShare resources consist of one 
collection resource, two composite resources for SUMMA model inputs 
(HS-2, HS-3), one composite resource for the Virtual Box image used 
across the five local approaches (HS-4, Approaches 1–5), four composite 
resources for Jupyter notebooks used in the four remote approaches 
(HS-5~8, Approaches 6–9), and one composite resource for a Jupyter 
notebook used to create Figs. 3–6 using performance results (HS-9) and 
one composite resource for the Singularity image (HS-10). In addition, 
three GitHub repositories were created to share Approach 10 and to 
show how to create a Docker and a Singularity image for Approach-2, 3, 
and 4. 

List of relevant URLs 

Binder: https://mybinder.org. 
Binder Configuration: https://mybinder.readthedocs.io/en 

/latest/using/config_files.html. 
CSDMS: https://csdms.colorado.edu/wiki/Hydrological_Models. 
CUAHSI JupyterHub: https://jupyterhub.cuahsi.org. 
Docker recipes of CUAHSI JupyterHub: https://github.com/C 

UAHSI/cuahsi-stacks. 
CyberGIS-Jupyter for Water: http://go.illinois.edu/cybergis-jupy 

ter-water. 
Docker recipes of CyberGIS-Jupyter for water: https://github.com/c 

ybergis/Jupyter-xsede/tree/master/singularity_def 
docker2singularity: https://github.com/singularityhub/docker2si 

ngularity. 
Figshare: https://figshare.com. 
GESIS Notebook: https://notebooks.gesis.org/binder. 
GitHub: https://github.com. 
Github Copilot: https://github.com/features/copilot/ 
Google Colab: https://colab.research.google.com. 
GNU compilers (gfortran): https://gcc.gnu.org/fortran. 
GNU compilers (GCC): https://gcc.gnu.org. 
GNU builders (Make): https://www.gnu.org/software/make. 
HydroShare: https://www.hydroshare.org. 
Jupyter notebooks for pySUMMA tutorial: https://github.com/arbe 

nnett/pysumma-tutorial. 
Microsoft Azure: https://note books.azure.com. 
NCAR, National Center for Atmospheric Research, HPC: https:// 

jupyterhub.ucar.edu. 
Pip: https://pip.pypa.io 
pySUMMA: https://github.com/UW-Hydro/pysumma. 
Python: https://www.python.org. 
R: https://www.r-project.org. 
Rivanna, HPC at University of Virginia HPC: https://www.rc.vir 

ginia.edu. 
Sciunit: http://sciunit.run. 
Singularity Hub: https://singularityhub.com. 
SUMMA GitHub: https://github.com/NCAR/summa. 
SUMMA DockerHub: https://hub.docker.com/r/uwhydro/summa. 
Virtual Box: https://www.virtualbox.org. 
Virtualenv: https://virtualenv.pypa.io. 
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XSEDE, an HPC resource on the Extreme Science and Engineering 
Discovery Environment, https://www.xsede.org. 

Zenodo: https://zenodo.org. 
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