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A B S T R A C T   

Building cyberinfrastructure for the reuse and reproducibility of large-scale hydrologic modeling studies requires 
overcoming a number of data management and software architecture challenges. The objective of this research is 
to advance the cyberinfrastructure needed to overcome some of these challenges to make such computational 
hydrologic studies easier to reuse and reproduce. We present novel cyberinfrastructure capable of integrating 
HydroShare (an online data repository), CyberGIS-Jupyter for Water and high performance computing (HPC) 
resources (computational environments), and the Structure for Unifying Multiple Modeling Alternatives 
(SUMMA) hydrologic modeling framework through its application programming interface for orchestrating 
model runs. The cyberinfrastructure is demonstrated for a complex computational modeling study on a 
contiguous United States dataset. We present and discuss key capabilities of the cyberinfrastructure including (1) 
containerization for portability across compute environments, (2) Globus for large data transfers, (3) a Jupyter 
gateway to HPC environments, and (4) Jupyter notebooks for capturing the modeling workflows.   

1. Introduction 

Reproducibility, the ability to duplicate and verify previous findings, 
is a foundational principle in scientific research. In computational hy
drology, Melsen et al. (2017) highlighted two contrasting definitions of 
model reproducibility: (1) “bit-reproducibility” which is defined as exact 
replication of a study, including the exact same numbers forming the 
results, and (2) “conclusion-reproducibility” which focuses on repro
ducibility of the conclusions of a study as the conclusions are expected to 
hold if the same experimental approach is applied. They argue that 
“conclusion-reproducibility” (replicating a study’s conclusions) may be 
more important than “bit-reproducibility” (exactly replicating model 
runs) because hydrological theories need to be tested beyond 
bit-reproducibility by investigating conditions under which theories can 
be confirmed or falsified. Even so, conclusion-reproducibility itself goes 
beyond the simple sharing of code and data as open-source and online 
resources typically touted for achieving reproducibility. The code and 

data must be accompanied by well-documented workflows with read
able and reusable code (Chen et al., 2020; Mullendore et al., 2021; 
Simmonds et al., 2022). Reusable code requires providing open-source 
computational environments in which the code can be executed. 
Ensuring this reuse and reproducibility is a non-trivial task; it requires 
not only adopting new capabilities for handling complex software and 
big data, it also requires careful software engineering practices to inte
grate these new capabilities into well designed and built cyberinfras
tructure (Merkel, 2014). 

A growing body of researchers have been discussing and proposing 
guidelines and strategies for reproducible computational modeling (e.g., 
Bush et al., 2021; Choi et al., 2021; Knoben et al., 2022; Mullendore 
et al., 2021; Simmonds et al., 2022). In recent work, Knoben et el. (2022) 
presented a novel approach for creating a hydrologic model at any 
location or scale (local to global) by separating model-agnostic and 
model-specific configuration steps within cyberinfrastructure work
flows. Choi et al. (2021) described a general strategy for creating 
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modern cyberinfrastructure to support open and reproducible hydro
logic modeling as the integration of three components: (1) online data 
repositories; (2) computational environments leveraging containeriza
tion and self-documented computational notebooks; and (3) Application 
Programming Interfaces (APIs) that provide programmatic control of 
complex computational models. As an example of this general approach, 
Choi et al. (2021) also presented an implementation that used (1) 
HydroShare as the online repository, (2) two different Jupyter instances, 
one hosted by the Consortium of Universities for the Advancement of 
Hydrologic Science, Inc. (CUAHSI) and a second hosted by 
CyberGIS-Jupyter for Water, as the computational environments, and 
(3) pySUMMA, a Python wrapper for manipulating, running, managing, 
and analyzing of SUMMA (Structure for Unifying Multiple Modeling 
Alternatives), as the model API. 

While Choi et al. (2021) focused mainly on the system design and 
demonstrated their approach with a fairly simple modeling use case, 
reproducibility in computational hydrology can present some difficult 
challenges when dealing with large-scale hydrologic studies (Hutton 
et al., 2016). These challenges mostly pertain to the use of “big data” and 
computationally expensive and time-consuming resources needed for 
reproducibility of complex hydrologic modeling studies. Hutton et al. 
(2016) notes that in these cases, new techniques are needed to ensure 
scientific rigor. In this paper, we provide an example of the overall 
system design outlined by Choi et al. (2021) as applied to a complex 
hydrologic study by Van Beusekom et al. (2022) (hereafter referred to as 
the VB study). We develop the necessary cyberinfrastructure to repro
duce this study for selected sub-domains and discuss the challenges and 
opportunities in ensuring conclusion-reproducibility for complex hy
drologic studies. 

The VB study evaluated the effect of the temporal resolution of 
surface meteorological inputs (or forcings) on modeled hydrological 
fluxes and states for 671 basins across the contiguous United States 
(CONUS). It quantified the difference in hydrologic outcomes based on 
daily or sub-daily forcings for multiple model configurations and 
parameter values. Reproducibility of the VB study if one was given only 
the input data and model code would be challenging because it requires 
the installation and configuration of the modeling framework SUMMA 
(Clark et al., 2015a, 2015b), the data volumes are very large, and the 
model runs require High Performance Computing (HPC) resources. The 
complete VB study consisted of 704 6-year model runs for each of the 
671 basins (or 2.8 million model years). SUMMA was implemented with 
a single hydrologic response unit for each basin, resulting in a single 
output time series for each basin for each model configuration. For every 
model run, the output consisted of 14 hydrological variables, which 
required 6 MB per model simulation, or 2.834 TB for the entire study. 
While few researchers may be interested in reproducing the entire VB 
study, the more common use case and the focus of this study, would be to 
repeat or extend the VB study for a subset of the basins. We want to 
enable others to reproduce the VB study for subsets of the original 
domain as a basis for doing additional research enabling 
conclusion-reproducibility rather than the bit-reproducibility. For such 
an approach to be effective, it is not sufficient to provide the open-source 
SUMMA code and model input data; one must also provide the addi
tional components described by Choi et al. (2021), i.e., computational 
environments, models exposed through APIs, and documented model 
workflows to create a cyberinfrastructure that lowers the barrier to reuse 
and reproducibility. 

This research contributes to the growing literature advancing 
cyberinfrastructure for hydrology and other geoscience fields. Yang 
et al. (2010) illustrated the importance of using HPC in computationally 
intensive geospatial sciences and hydrologic modeling. Essawy et al. 
(2016) demonstrated server-side workflows for large-scale hydrologic 
data processing, although they did not make use of HPC in their appli
cation. Lyu et al. (2019) used containerization and combined compu
tational environments including HPC and High Throughput Computing 
(HTC) cyberinfrastructure to directly run the models using Jupyter 

notebooks. Gan et al. (2020), integrated a hydrologic data and modeling 
web service with HydroShare as a data sharing system to show how this 
integration leads to a findable and reproducible modeling framework. 
Gichamo et al. (2020) used web-based data services to prepare input 
data for hydrologic models. Kurtz et al. (2017) introduced a cloud-based 
real-time data assimilation and modeling framework and showed how 
parallel processing can be used for complex hydrologic models in the 
cloud. However, unlike the VB study, none of Lyu et al. (2019), Gan et al. 
(2020), Gichamo et al. (2020) and Kurtz et al. (2017) applied their 
methods on a computationally extensive complex hydrologic use case. 
Therefore, the challenges and opportunities of using cyberinfrastructure 
for reproducibility of complex, large-scale hydrologic modeling. for 
which HPC and big data approaches are required, remain largely 
unexplored. 

To address this research gap, we designed and implemented cyber
infrastructure to enable intuitive access to HPC computational envi
ronments and to support data transfers into and out of the HPC 
environment. Additionally, we provide a workflow that allows users to 
replicate parts of the study within their own computing environments. 
We also perform a workflow run-time performance analysis that com
pares different model scenarios by varying the size of simulations across 
different computing environments, providing users with a guide towards 
selection of the computing environment depending on the size of their 
simulations. The cyberinfrastructure provides a starting point for users 
to modify the hydrologic model setups, thus going beyond reproduc
ibility (i.e., the ability to duplicate and verify previous findings) into 
replication where one modeling methodology can be used to answer the 
same scientific research question but with new input data (as high
lighted by Essawy et al. (2020)). The cyberinfrastructure may also serve 
as an educational resource by providing an intuitive way for students to 
perform complex hydrologic modeling studies. The data and cyberin
frastructure are provided through HydroShare to run on any basin for 
which we provide a SUMMA setup to assist the modeler in analyzing 
basins individually. 

The remainder of this paper is organized as follows. In Section 2, we 
provide a brief overview of the VB study, the cyberinfrastructure, the 
model workflows, and the model scenarios used for a science use case 
subsetted from the VB study as well as the model workflows run-time 
performance analysis. Section 3 provides results and discussion. The 
results focus on the modeling use case and an analysis of the workflow 
run-time performance for different computing environments. The dis
cussion focuses on opportunities and challenges learned from our 
experience designing and building the cyberinfrastructure to support 
our modeling workflows. Finally, our conclusions and recommendations 
are provided in Section 4. 

2. Methods 

2.1. Overview of the VB study 

The VB study used 671 basins to study the effects of the temporal 
resolution of the meteorological forcings on hydrologic model simula
tions across the CONUS. The basins are part of the CAMELS dataset 
(Catchment Attributes and MEteorology for Large-sample Studies; 
Newman et al., 2015b) a large-sample hydrometeorological dataset 
across the CONUS consisting of input forcings, basin attributes, and 
relevant historical streamflow records. The VB study used SUMMA 
(Clark et al., 2015b) to configure multiple model instances for each 
basin, representing eight different model configurations and 11 different 
sets of model parameter values. In addition, eight forcing datasets were 
constructed. In each of these forcing datasets one of the meteorological 
inputs was modified so that the diurnal cycle was replaced by the mean 
value over that day. The VB study performed 704 (8 × 11 × 8 = 704) 
6-year model runs for each CAMELS basin, consisting of one year of 
model initialization and five years of actual simulation. Model outputs 
for 14 simulated variables were stored to evaluate the sensitivity of the 
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simulations to changes in model forcings, model configurations, and 
model parameters (Figure A1 and Table A1). The VB study results 
demonstrated that (1) the effect of each forcing input on each model 
output varies by model output and model location, (2) the use of a 
particular parameter set may not be critical in determining the most and 
least influential forcing variables, and (3) the choice of model physics (i. 
e., using different model configurations) could change the relative effect 
of each forcing input on model outputs. 

The VB study was run with scripts on the Cheyenne supercomputer (a 
5.34-petaflops, high-performance computer built for the National Cen
ter for Atmospheric Research; Computational and Information Systems 
Laboratory (2017)), and it took a few days to complete the runs. For 
each basin, the output size for a single 6-year run was 6 MB. Thus, 
reproducing the entire study is computationally expensive and also re
quires large amounts of storage (704 runs × 671 basins × 6 MB = 2.834 
TB). However, the cyberinfrastructure allows individual basins to be run 
independently. Here, we focus on a use case in which a researcher 
wishes to reproduce a subset of the VB study by analyzing one or a few 
basins within a cloud cyberinfrastructure environment to reach 
conclusion-reproducibility. The conclusion-reproducibility that we 
aimed in this study is solely a qualitative one and if the presented 
cyberinfrastructure can be successfully applied to studies differing from 
the original study, i.e., the VB study, the conclusion-reproducibility is 
achieved. 

2.2. Cyberinfrastructure design and implementation 

Following the approach described in Choi et al. (2021), we designed 
and implemented cyberinfrastructure (Fig. 1) to replicate the VB study 
by integrating (1) the HydroShare online data repository, (2) 
CyberGIS-Jupyter for Water Computing Gateway (CJW CG) and 
high-performance computational environments, and (3) a model API 
that can be utilized in scripts using Jupyter notebooks (here the 
pySUMMA API). Each of these three components is further explained in 
the following subsections. 

2.2.1. Online data repositories 
We used HydroShare, an online collaboration environment, as the 

online data repository (Horsburgh et al., 2016; Tarboton et al., 2014). A 
collection resource in HydroShare, which can be found at Choi et al. 
(2023a), contains three resources holding the data, computational 
environment, and models (Fig. 1). 

The HydroShare resource holding the data (Mizukami and Wood, 
2023) contains the forcing dataset for the 671 CAMELS basins. The 
forcings are based on the hourly NLDAS-2 (North American Land Data 
Assimilation System; NLDAS-2, 2014; NLDAS-2 is hereafter referred to 
as NLDAS). The original NLDAS hourly forcing data were created on a 
0.125 × 0.125◦ grid. To create hourly SUMMA model forcings, NLDAS 
outputs were spatially averaged over each of the 671 CAMELS basins 
and merged into one NetCDF file. With this format, an OPeNDAP server 
(OPeNDAP, 2021) can extract data for selected basins on the server, so 
that the user does not have to download the entire CONUS dataset to a 
local computer. HydroShare offers this capability via its THREDDS Data 
Server (Tarboton and Calloway, 2021). 

2.2.2. Computational environments 
The developed computational environments provide a consistent 

software environment that is independent of each user’s own operating 
system and software libraries, making it possible to study a computa
tionally expensive research problem. Fig. 2 shows each computational 
environments component, and the interoperability between the 
computational environments and HydroShare. One computational 
environment was implemented on the CJW CG cloud service for studies 
with limited computational demand, e.g., a study of only a few basins, or 
as an instructional tool, or for model debugging. A second computa
tional environment was developed on an HPC resource to reproduce a 
problem more representative of challenges posed by the use of big-data 
in the VB study. The HPC environment also allows the user to study a 
particular basin in greater detail. In this study, the CJW CG computa
tional environment is used to provide (1) the model execution envi
ronments configured as Docker images to enable execution of the 
SUMMA model for studies with limited computational demand (i.e., 
those need to use CJW CG Workflow), and (2) cyberinfrastructure for 

Fig. 1. The three primary components of the general cyberinfrastructure (following Choi et al., 2021) with seamless data transfers for open and reproducible 
environmental modeling. 
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preprocessing, postprocessing and data storage for both studies with 
limited computational demand (need to use CJW CG Workflow) and 
with high computational demand (i.e., those need to use HPC Workflow) 
(Fig. 2). The HPC computational environment is only used for providing 
model execution environments configured as Singularity containers to 
enable execution of the SUMMA model for studies with higher compu
tational demand. More details on each computational environment are 
provided in the rest of this section. 

CJW CG is a cloud computing environment interoperable with 
HydroShare. It is an instance of CyberGISX (Yin et al., 2017) that serves 
the data- and computation-intensive needs of the water and environ
mental communities. We used CJW CG because it is publicly available, is 
interoperable with advanced cyberinfrastructure resources (such as the 
HPC resource used in this study) and has been serving the water and 
environmental communities to support their modeling needs. 

Reproducibility was facilitated by using containerization of the 
SUMMA model and the pySUMMA API with Docker (Merkel, 2014) in 
the case of the CJW CG environment or Singularity in the case of the HPC 
environment (Kurtzer et al., 2017) along with a computational gateway 
interface to Jupyter notebooks (pySUMMA and the notebooks are 
described in a later section) (Fig. 2). Although using Docker is a common 
approach to containerize the model dependencies, we used Singularity 
in the HPC environment because it is designed to work seamlessly with 
existing batch job systems to support HPC applications. The container
ization and interface are hosted on the CJW scientific cloud service 
hosted on Jetstream cloud (Hancock et al., 2021; Stewart et al., 2015; 
Towns et al., 2014). The Dockerfile is hosted on a GitHub repository (Li, 
2021) with pre-built Docker images being shared on a Docker Hub re
pository. Singularity container used by the HPC environment is hosted 
on CyberGIS-Compute Service, a middleware platform allowing seam
less access to HPC resources via Python-based Software Development Kit 
and core middleware services (CyberGIS-Compute Service, 2021; Li 
et al., 2022). The singularity container was created through Docker 
images conversion. CyberGIS-Compute Service also handles submitting 
jobs to HPC as well as large data transfer from HPC through Globus (will 
be discussed in section 2.2.4). 

The Conda software package was used to manage the project specific 
computational environment on CJW, allowing the user to build a Python 
environment with the SUMMA model, pySUMMA API, and other 
computational dependencies. This was done by providing a kernel 
version for the project (CyberGIS Center HydroShare Development 
Team, 2022). Using this stable kernel, which captures all the required 
dependencies with their specific versions, ensures careful software 
version control. 

2.2.3. Model application programming interface (API) 
The model API pySUMMA was chosen to be part of the interactive 

tool. The pySUMMA API (Choi et al., 2021) wraps the SUMMA hydro
logic modeling framework (Clark et al., 2015a) and allows the user to 
script the use of the SUMMA model using Python. It facilitates model 
configuration and allows for local execution of the model by either using 
a Docker container or a locally compiled SUMMA executable (Choi et al., 
2021). With pySUMMA, a user can modify SUMMA input files and run 
SUMMA inside a Python script, as well as automatically parallelize runs 
and visualize output. In the simplest case the pySUMMA Simulation 
object wraps a single instance of a SUMMA simulation. 

For users who choose to analyze multiple basins at a time in the CJW 
CG environment instead of the HPC environment, the notebook auto
matically will configure a pySUMMA Distributed object, which provides 
an interface to spatially distributed simulations and handles parallelism 
and job management under the hood. In this study, multiple SUMMA 
simulations are run in each basin, so a pySUMMA Ensemble object is 
used to manage multiple runs with different configurations. In the HPC 
computational environment a custom backend was written to handle 
parallelism using Message Passing Interface (MPI), reducing the need for 
users to customize the configuration based on the type of job that they 
are running. A high-level description of pySUMMA is presented in Fig. 1. 
The simulation.py enables the execution of the SUMMA model and, 
along with file_manager.py, decisions.py, force-file_list, and out
put_control.py, allows for manipulating SUMMA configuration files. The 
distributed.py enables the parallel execution of SUMMA. 

2.2.4. Data management and transfer 
The input data for this study consists of the SUMMA configuration 

files and the forcing data for the 671 CAMELS basins. The configuration 
files (e.g., geometries information for the 671 CAMELS basins along with 
their attributes such as hru_id) are shared within each of the two 
HydroShare resources holding the Jupyter notebooks. The forcing data 
are provided in a HydroShare resource (Mizukami and Wood, 2023). 

The output files resulting from running the notebooks using the CJW 
CG and HPC computational environments are: (1) NetCDF output files 
generated by the SUMMA simulations, (2) a NetCDF file recording the 
model performance for each basin as measured by the Kling-Gupta Ef
ficiency (KGE) (Gupta et al., 2009), and (3) additional files created by 
the notebooks such as the figures that visualize the model results. 

In the case of the CJW CG environment, after running the notebooks, 
all files are saved in the CJW CG and are directly accessible to the user. 
In the case of the HPC environment, the KGE results and other files 
created by the notebooks (e.g., figures) are automatically transferred to 
the CJW CG, but the NetCDF output files remain within the HPC 

Fig. 2. CJW and HPC computational environments with model execution environments configured as Docker image or Singularity container to support concurrent 
model execution through Jupyter notebooks, and use of Globus to transfer model outputs from HPC. 
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environment to avoid transferring large volumes of model output (as a 
reminder, the size of the model output for the entire VB study was 2.834 
TB). 

However, if the user of the HPC environment wishes to transfer 
selected SUMMA NetCDF output files from the HPC to be directly 
accessible for further analysis and long-term storage, then the CyberGIS- 
Compute Service (Li et al., 2022) can be used for reliable 
high-performance large file transfers through the Globus service (Chard 
et al., 2016; Foster, 2011). As shown in Fig. 2, data is transferred from 
HPC to the CJW using Globus without going through the job submission 
server. Globus is a software as a service that enables the transfer of 
datasets of any size between different storage options (personal com
puters, HPC, etc.) without users being required to be constantly logged 
in and monitoring the data transfer (Chard et al., 2016). Technically, the 
CyberGIS-GIS Compute acts as a Globus app client holding a community 
Globus account that has access to both data endpoints on the Jupyter 
and target HPC. When data transfer is needed, CyberGIS-Compute ini
tiates a Globus task between the two endpoints and monitors the prog
ress. Users are updated with data transfer status in the notebooks 
environment during the entire process. 

2.3. Model workflows as Jupyter notebooks 

As mentioned earlier, the model workflows allow the user to repro
duce all or subsets of the VB study using either the CJW CG computa
tional resources (referred to later as CJW CG) or the HPC and CJW CG 
computational resources (referred to later as HPC). The CJW CG and 
HPC HydroShare resources can be found at Choi et al. (2023b) and Choi 
et al. (2023c), respectively. The model workflows are documented in 
three (for CJW CG) or four (for HPC) Jupyter notebooks. Table 1 shows 
the summary of the steps taken in each notebook, while Figure A2 - A5 
show more detailed information for notebooks 1–4. The first three 
notebooks for both the CJW CG and HPC environments focus on (1) 
selecting the study basins, simulation period, and model input forcings, 
(2) running the SUMMA model, and (3) exploring outputs to analyze the 
effect of each forcing variable in each basin. The HPC computational 
resource uses a fourth notebook to transfer large unprocessed output 
data from the HPC to CJW using Globus. Notebooks 1 and 3 are very 
similar between the two HydroShare resources, and both CJW CG and 
HPC HydroShare resources use CJW CG computational resources to run 
these two notebooks. The second notebook differs for the two environ
ments, and the difference is explained in Section 2.3.2. These notebooks 
assist a modeler in analyzing CAMELS basins individually, providing 
information on forcings and output variables that are the most/least 
sensitive in their basin. With some additional work, the CJW CG 
computational environment can also be hosted on other (non CJW) 
cloud services, but the HPC environment is more tailored to interact 
with the CJW cloud service used here. 

To use the HPC computational resource, the user must obtain access 
to the HPC by issuing a request through HydroShare to use CJW. Once 
this access is granted, users are automatically given free access to two 

alternative HPC resources: (1) the Virtual ROGER (Resourcing Open 
Geospatial Education and Research) HPC administered by the School of 
Earth, Society, and Environment at University of Illinois Urbana- 
Champaign (UIUC) which is integrated with the Keeling compute cluster 
at UIUC (“Virtual Roger User Guide,” 2022) and (2) the Expanse HPC, a 
much larger NSF XSEDE resource operated and managed by San Diego 
Supercomputer Center (SDSC) (“Expanse System Architecture,” 2022). 
In theory, the CyberGIS-Compute Service can support other HPCs as 
well, but we did not test other HPCs. In this study, among the provided 
HPC options, we only used Expanse to demonstrate the cyberinfras
tructure: in our initial experiments Expanse HPC performed faster than 
Virtual ROGER and the goal here was to show how a HPC can scale up a 
study by speeding up the modeling process compared to a non-HPC 
environment rather than an inter-comparison between different HPCs. 
Users who do not wish to use HPC computational resources can use CJW 
CG computational resources directly to run smaller modeling jobs. 

The hardware specifications of the CJW CG and the Expanse HPC are 
compared in Table 2. The CJW CG has only three compute nodes each of 
which has eight CPUs with 1.996 GHz Clock Speed and 30 GB DRAM. 
Each user can only use up to six CPUs and the CPUs can be shared among 
users. This means the maximum degree of parallelism for simulations 
using this computational resource is six. Thus, in case of running one 
basin from the VB study (704 runs) and using all the six available CPUs, 
each CPU will need to run 117.33 simulations (some of them 117 and 
others 118 simulations). The Expanse HPC has 728 AMD Rome standard 
compute nodes each of which is equipped with 256 GB DRAM and 128 
2.25 GHz CPUs (“Expanse User Guide,” 2022). The Expanse HPC allows 
the user to only use up to two nodes at a time, i.e., 256 CPUs or the 
maximum degree of parallelism for simulations. Thus, if a user is 
running one basin from the VB study (704 runs) and using all the 
available 256 CPUs, then each CPU will need to run 2.75 simulations 
(some of them two and others three). This shows how the HPC resource 
can scale up the model runs offering a high-performance tool. More 
details about the run-time performance of the notebooks are discussed in 
the results and discussion section. 

The following subsections discuss the general purpose of each 
notebook used to reproduce parts of the VB study. For specific coding 
details, refer to the notebooks in the HydroShare resources at Choi et al. 
(2023b) and Choi et al. (2023c). 

2.3.1. Data processing notebook 
The first notebook (JN 1: Preprocessing) processes the original 

CAMELS SUMMA files and the input forcing datasets (Table A2). The 
user can select one or more CAMELS basins (1–671 basins) but by 
selecting a higher number of basins the computational time and expense 
increases. Notebook 1 subsets the original CAMELS SUMMA files, pro
ducing SUMMA attributes, parameters, initial conditions, and hourly 
NLDAS forcing files for the selected basin(s). Then, additional forcing 
datasets for the hydrologic model sensitivity study are developed from 
the NLDAS data files (FORCINGS box in Figure A1) as discussed below. 

For each SUMMA-model setup, variations in 14 SUMMA-generated 
outputs, described in Table A1, are examined with respect to varia
tions in seven input forcings (air pressure (prs), air temperature (tmp), Table 1 

Overview of the notebook 1–4.  

# Notebook Name Goal CJW CG or HPC 

1 Preprocessing Prepares forcings, and sets 
study basins and simulation 
period 

Very similar between 
HPC and CJW CG 
environment 

2 SUMMA execution Runs the SUMMA model Different versions for 
HPC and CJW CG 
environment 

3 Post-processing Explores outputs to find out 
effect of each forcing 
variable in each basin 

Very similar between 
HPC and CJW CG 
environment 

4 Use Globus to 
transfer big data 

Transfer raw output from 
HPC to CJW using Globus 
service 

Only for HPC 
environment  

Table 2 
Hardware specifications of the computational environments.  

Computational 
Environment 

Node 
count 

Number of CPU cores 
per node (for parallel 
runs only) 

Clock 
Speed 
(GHz) 

DRAM/ 
node (GB) 

CJW CGa 3 8 1.996 30 
Expanse HPCb 728 128 2.25 256  

a AMD EPYC-Milan Processor. Each user can only up to 6 CPUs and the CPUs 
can be shared among users. 

b AMD Rome Standard Compute Nodes. Each user can only use up to 2 nodes, 
which means 256 CPUs, the maximum number of parallelism for simulations. 
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long wave radiation (lwr), precipitation rate (ppt), specific humidity 
(hum), shortwave radiation (swr), and wind speed (wnd)), under 
different model parameterizations and configurations. The SUMMA 
outputs generated with the 1-h NLDAS forcing dataset are considered 
the benchmark (NLDAS dataset 1; FORCINGS box in Figure A1). The rest 
of datasets (ppt to prs datasets; FORCINGS box in Figure A1) are devel
oped, holding each of the individual forcing variables constant over a 
24-h period while the other six forcing variables contain the original 
hourly NLDAS values. 

Figure A2 shows the steps taken in the first notebook. This notebook 
is the same for the CJW CG and HPC environments except that the 
simulation time period and basins to be explored are pre-populated 
differently. The user can change these setups in the third step of this 
notebook (step 1_3). In the last step of this notebook, users can visualize 
the individual forcing variables held constant over a 24-h period against 
the original hourly NLDAS values using hourly and cumulative plots. 

2.3.2. SUMMA execution notebook 
The second notebook (JN 2: Running SUMMA) executes the SUMMA 

model using the input data from the first notebook for four different sets 
of SUMMA basin runs, outlined in Figure A1 (RUNS box) and described 
in detail in The VB study. The first set of basin runs (DEFAULT; 8 
SUMMA runs per basin; RUNS box) uses the eight forcing datasets 
(FORCINGS box) combined with default parameters and a default 
SUMMA configuration. The SUMMA default configuration is set in the 
resource model decision file. 

The second set of basin runs (LHS; 88 SUMMA runs per basin; RUNS 
box in Figure A1) uses the eight forcing datasets combined with 11 
parameter sets and a default SUMMA configuration. The 11 parameter 
sets consist of the default parameter set and 10 additional parameter sets 
with 15 commonly calibrated parameters (Table A2). As detailed in the 
VB study, the parameters are sampled using Latin Hypercube Sampling 
(LHS) over their defined range. The pyDOE LHS function (Lee, 2014) is 
used to create unique 10 × 15 LHS sampling matrices for the selected 
basin. Then the LHS matrices are used to produce 10 parameter sets of 
the 15 parameters while considering the parameter constraints listed in 
Table 2. The choice of a different seed value will lead to different LHS 
sets (and these sets will be different from the ones used by the VB Study). 

The third set of basin runs (CONFIG; 64 SUMMA runs per basin; 
RUNS box in Figure A1) uses the eight forcing datasets combined with 
the default parameter set and eight SUMMA configurations. The eight 
SUMMA configurations, outlined in the CONFIGURATIONS box in 
Figure A1, test three model decisions (stomatal resistance (stomResist), 
choice of snow interception parameterization (snowIncept), and choice 
of canopy wind profile (windPrfile) with two options for each decision. 
Note the default configuration for this study is shown in bold in the 
CONFIGURATIONS box in Figure A1:BallBerry, lightSnow, and 
logBelowCanopy. 

The fourth set of basin runs (COMPREHENSIVE; 704 SUMMA runs 
per basin; RUNS box in Figure A1) includes the DEFAULT, LHS, and 
CONFIG basin runs, and is the only set that needs to be run to replicate a 
single basin sensitivity study following the VB study method (six years of 
simulation must be run for replication). For testing purposes, sets 1–3 
can also be run by themselves. The 10 parameter set files for the basin 
from the LHS sampling plus the default parameters (11 parameter sets) 
are run each with eight SUMMA configurations (CONFIGURATIONS box 
in Figure A1). 

Figure A3 shows the steps taken in the second notebook. The first two 
steps in this notebook are the same for the CJW CG and HPC environ
ments but the rest of the workflow differs. In the CJW CG notebook, the 
user can define the simulations by selecting the simulation period, 
model configuration, and/or parameter values. Depending on which run 
complexity choice (i.e., DEFAULT, LHS, CONFIG, COMPREHENSIVE in 
the RUNS box in Figure A1) is selected the notebook executes a specific 
set of code cells using a conditional statement logic (e.g., if user selects 
config_prob = = 1, step 2_7 is run which leads to CONFIG runs as shown 

in the RUNS box in Figure A1). Users need to carefully consider the 
number of basins and the length of the simulation period as the CJW CG 
environment is not powerful enough to run large simulations in a 
reasonable time. In the HPC notebook, we only provided the user with 
the option to run the most complex problem, i.e., lhs_config_prob, as the 
HPC is powerful enough to run the full problem making it unnecessary to 
allow for simpler problems. The user can still change the simulation 
period (in step 2_3 of the workflow in Figure A3). The other main dif
ference between the CJW CG and HPC notebooks is that the codes 
calculating KGE values for the HPC notebook are executed on the HPC 
(Step 2_8 in HPC branch in Figure A3) while for the CJW CG environ
ment, the KGE values are calculated locally on CJW CG (Step 2_9 in CJW 
CG branch in Figure A3). In the HPC environment, the KGE values are 
calculated on the HPC resource to prevent having to transfer large data 
volumes from the HPC to the CJW CG with the sole purpose of calcu
lating performance metrics. Users can use Globus to transfer selected 
output files from HPC to the CJW CG for additional analysis. Notebook 
4, which exists only in the HPC environment, was developed for this 
purpose and is discussed in section 2.3.4. 

A modified and scaled (range between −1 and 1) version of the KGE 
was used as an indicator of model output sensitivity to a change in input 
forcing based on the work of Clark et al. (2021) and Mathevet et al. 
(2006) and is described in the VB study. The KGE test compares hourly 
model outputs generated with the benchmark forcing dataset (NLDAS 
dataset 1; Table A2) with outputs generated with the forcing datasets 
with one forcing held constant (CNST datasets 2–8; Table A2). KGE 
values are ranked from low to high to determine relative order of forcing 
influence on model outputs with highest rankings associated with least 
influence of change to 24-h constant forcing. 

2.3.3. Post-processing notebook 
The third notebook (JN 3: Post-processing) produces visualizations 

of the sensitivity of SUMMA model output to the temporal resolution of 
the model forcing. Figure A4 shows the steps taken in the third note
book. The notebooks for CJW CG and HPC environments are the same. 
For the selected basin(s), eight plots are generated with Notebook 3 that 
follow the analysis in the VB study. The reader is referred to the sup
plementary materials and the VB study for a detailed explanation of each 
of the eight plots. In this paper, we only present the second figure 
generated by Notebook 3, i.e., KGE values for each output variable for all 
8 DEFAULT model runs. 

2.3.4. Model output transfer 
The fourth notebook (JN 4: Use Globus) is only included in the HPC 

resource (Figure A5) to transfer SUMMA output files from HPC to CJW 
on HydroShare. To retrieve the data from the HPC, this notebook needs a 
job ID submitted to the HPC and created in Notebook 2. While this 
notebook is running users can see the live status of the file transfer 
managed by the CyberGIS-Compute Service. Once running of this 
notebook is successfully finished, the user will be able to see the location 
of the transferred file on CJW. 

2.4. Performance analysis 

We tested the performance of the cyberinfrastructure using a number 
of model scenarios, using six years of simulation (to be consistent with 
the VB study) and varying the number of studied basins for each 
computational environment, described in Table 3. For the CJW CG 
environment, we tested the performance of notebooks 1–3 for three 
scenarios (Table 3, rows 1–3): (1) one basin (a total of six years of 
simulations), (2) four basins (a total of 24 years of simulations), and (3) 
six basins (a total of 36 years of simulations). We decided not to test the 
CJW CG environment for more basins as the CJW CG runs were slow and 
the HPC resource was available for larger simulations. 

For the HPC environment, we used Expense HPC, and tested the 
performance of notebooks 1–3 for 12 scenarios (Table 3, rows 4–15). In 
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these scenarios, we varied the number of allocated CPUs (128 or 256) for 
parallelism and the total number of basins ranging from one basin (a 
total of six years of simulations) to 20 basins (a total of 120 years of 
simulations, which equals about three percent of the total simulation 
years for the whole VB study). To test the performance of Notebook 4, 
transferring output files from HPC to the CJW, we only used scenarios 
HPC_256_1 to HPC_ 256_6 (rows 4–9 in Table 3) and repeated each 
transfer 5 times to obtain a range of run-time for each of the scenarios. 

3. Results and discussion 

In this section, we first briefly present results of the modeling case 
study that served as a motivating use case for the cyberinfrastructure. 
Then, we present results of the performance analysis focusing on con
trasting the CJW CG and HPC notebooks using a variety of model setups. 
Then, we summarize the resulting resources from this study that are 
shared on HydroShare. Finally, we discuss the resulting system 
including opportunities and challenges identified through this research 
that can be the focus of future research. 

3.1. Results of the modeling case study 

Four CAMELS basins with diverse characteristics (Table 4) were 
chosen as examples of the effect of basin characteristics on model re
sults. We specifically selected these four basins for this modeling case 
study because we found that they all show different patterns. For the 
four selected basins, Fig. 3 shows the KGE values for each SUMMA 
output variable using the DEFAULT (BIL; CONFIGURATIONS box in 
Figure A1) model configuration runs. The runs consist of one reference 
simulation in which all forcing variables vary on an hourly basis (NLDAS 
dataset 1; FORCINGS box in Figure A1) and seven simulations in which 

one forcing variable is held constant at the mean daily value throughout 
each day (the seven datasets ppt to prs; FORCINGS box in Figure A1). 
KGE values were calculated relative to the reference simulation for each 
of the seven simulations using five years of hourly model output from 
10/1/1991–9/30/1996. 

Fig. 3 demonstrates the variability in model output sensitivity to the 
temporal resolution of the forcing variables. The first three basins (gages 
01632900, 02212600, and 09378630) show a strong ppt temporal ag
gregation influence using DEFAULT, whereas gage 11264500 is more 
influenced by tmp, hum, and swr temporal aggregation. In other words, a 
higher temporal resolution is necessary for the aforementioned forcing 
variables in the given basins to capture the sub-daily hydrologic 
response shown by the reference simulation. The weaker influence of ppt 
temporal aggregation on the gage 11264500 compared to other gages 
can be attributed to its high fraction of precipitation falling as snow, 
0.91 as opposed to 0.1, 0.01, 0.5 (Table 4). 

Also in Fig. 3, we see varying ranges in KGE values for particular 
output variables. As an example, SurfaceRunoff is affected by constant 
hourly values of ppt for gages 01632900 and 09378630; ppt and hum for 

Table 3 
Model scenarios for notebooks run-time performance analysis.  

Row Model 
scenario 
name 

Number of 
CPU cores 
allocated 

Number 
of basins 

Simulation 
years 

Total 
simulation 
years 

1 CJWVM_1 6 1 6 6 
2 CJWVM_2 6 4 6 24 
3 CJWVM_3 6 6 6 36 
4 HPC_256_1 256 1 6 6 
5 HPC_256_2 256 4 6 24 
6 HPC_256_3 256 6 6 36 
7 HPC_256_4 256 10 6 60 
8 HPC_256_5 256 15 6 90 
9 HPC_256_6 256 20 6 120 
10 HPC_128_1 128 1 6 6 
11 HPC_128_2 128 4 6 24 
12 HPC_128_3 128 6 6 36 
13 HPC_128_4 128 10 6 60 
14 HPC_128_5 128 15 6 90 
15 HPC_128_6 128 20 6 120  

Table 4 
Basin descriptions for individual basin analysis.  

USGS 
Station ID 

Name CAMELS Attributes 

Drainage area 
(km2) 

Gage 
datum (m) 

Mean daily 
precipitation (mm/ 
day) 

Fraction of precipitation 
falling as snow 

Aridity Mean daily 
discharge (mm/ 
day) 

Runoff 
ratioa 

01632900 Smith Creek Near New 
Market, VA 

242 268 2.91 0.10 0.89 0.80 0.27 

02212600 Falling Creek near Juliette, 
GA 

187 1202 3.37 0.01 1.19 0.74 0.22 

09378630 Recapture Creek Near 
Blanding, UT 

10 2195 1.58 0.50 0.50 0.21 0.13 

11264500 Merced River at Happy Isles 
Bridge near Yosemite, CA 

469 1228 2.64 0.91 1.15 1.94 0.73  

a Annual runoff/annual precipitation. 

Fig. 3. KGE values using the DEFAULT model runs for each CNST dataset 
(datasets 2–8; Table A2), grouped by SUMMA output variable. 
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gage 02212600; and tmp, hum, swr, wnd, ppt, and prs (most to least 
dominant) for gage 11264500. This shows the forcing variables in each 
basin that need to have a higher temporal resolution to reproduce the 
SurfaceRunoff output in the reference simulation. In this section, we 
only presented one example of an inter-basin comparison to illustrate 
how different the results can be across different basins. Researchers can 
further explore the differences between individual basins using other 
plots that can be made using the interactive Jupyter notebooks, and also 
reproduce the results from the original VB study. 

3.2. Results from performance analysis 

Fig. 4 shows the run-time for the data processing notebook (Note
book 1) and the post-processing notebook (Notebook 3) for the 15 sce
narios listed in Table 3. Notebooks 1 and 3 are very similar between CJW 
CG and HPC computational environments. Notebooks 1 and 3 do not 
take a significant time to run because they are only preprocessing and 
output analysis notebooks, and no simulations are run. For scenarios 
with fewer than 30 simulation years, Notebook 1 takes longer than 
Notebook 3, but this changes for scenarios with more simulation years as 
the rate of run-time increase with simulation years is much higher with 
Notebook 3 than with Notebook 1. For the CJW CG environment, the 
average time to run Notebooks 1 and 3 across the tested scenarios only 
takes 0.6% of the entire time needed to run all Notebooks 1, 2, and 3. 
This means the time required to run data processing and post-processing 
notebooks is not a limiting factor for running the simulations. For the 
HPC environment, this ratio increases to 8.5% and 11.3% when using 
128 and 256 CPUs, respectively. This dramatic increase in the ratio is 
due to the significant decrease in run-time of Notebook 2 when using 
HPC. 

The run-time for the SUMMA execution notebook (Notebook 2) for 
the 15 model scenarios using different computation environments is 
shown in Fig. 5. The high rate of run-time increase with increasing 
simulation years for the CJW CG environment emphasizes that while the 
CJW CG environment is technically able to simulate smaller models, it 
might not be fast enough to run larger simulations. In the case of running 
six basins for six years, the HPC was 3.6 and 2.6 times faster than the 
CJW CG, when using 256 and 128 CPUs, respectively. HPC with 256 
CPUs (scenario HPC_256_6) could finish the simulations for 120 years 
(3% percent of the VB study) in 2nullh and 10nullmin while HPC with 
128 CPUs (scenario HPC_128_6) could run the same problem in 1.48 

times of the time need by HPC_256_6. Using the HPC with 256 CPUs, 
assuming a conservative linear extrapolation, the SUMMA simulations 
from Notebook 2 are expected to be done in about 75 hours for the entire 
VB study. In summary, HPC provides considerably faster simulations 
making them ideal to run for larger studies. 

When using the HPC resource and in the case of 120 years of simu
lation, dividing the number of the allocated CPUs by two led to about a 
50% increase in the run-time and not 100% as one might expect. This 
non-linear scaling can be mainly attributed to (1) communication 
overhead in the computational resource that reduces scaling, and (2) the 
fact that some parts of the codes in Notebook 2 did not utilize paral
lelism. For example, KGE values were only calculated after they were 
exported as NetCDF files instead of being calculated directly from the 
raw SUMMA output files. The rate of run-time increase for HPC with 128 
CPUs is higher compared to that for HPC with 256 CPUs. This may be 
attributed to the communication overhead because each CPU in the case 
of the HPC with 128 CPUs needs to run twice as many simulations 
compared to HPC with 256 CPUs. 

The run-time for transferring the SUMMA output files from Expanse 
HPC to CJW on HydroShare using the Globus service integrated by 
CyberGIS-Compute Service is shown in Fig. 6. Each transfer was 
repeated 5 times to obtain a range of run-time for each of the model 
simulations with a different total number of simulation years. The range 
of the transfer time for each total number of simulation years is small, 

Fig. 4. Notebook 1 (JN1) and 3 (JN3) run-time performance analysis for 
different model simulations (both JN1 and JN3 were run on CJW CG no matter 
whether the HPC or CJW CG environment was used for the modeling; therefore, 
we do not distinguish between the environments in this figure). 

Fig. 5. Notebook 2 run-time performance analysis for different model simula
tions using the CJW CG, or HPC (Expanse with 256 or 128 CPUs) options. 

Fig. 6. Boxplots for Notebook 4 run-time performance analysis for five 
different simulation years to transfer data from Expanse HPC to CJW on 
HydroShare. Each transfer was repeated five times to obtain a range of run-time 
for each of the model simulations with a different total number of simula
tion years. 
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indicating a consistent data transfer. For 120 years of simulation, it took 
14.5nullmin on average to transfer 118 GB of data from HPC to CJW, 
highlighting that the data transfer approach from HPC to CJW is fast and 
stable. The transfer rate (GB/min) is independent of data size (Fig. 6). 

3.3. Data organization in HydroShare 

The data for this study was pre-processed and the output post- 
processed by using existing Python packages. The study demonstrates 
the potential for using the online repository of HydroShare to not only 

Fig. 7. The HydroShare landing page for the collection resource developed by this study (Choi et al., 2023a).  
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store data and modeling code, but to also store computational envi
ronments, API version documentation, and container installation. 
HydroShare, as a hydrology-based repository service, facilitated this by 
allowing all the parts of the problem to be stored together as one 
resource. Furthermore, parts of the resource can be extracted and made 
into a new version of the resource (updated, revised, or modified), to 
promote collaboration. 

To this point, a HydroShare collection resource was created that 
contained three composite resources. These resources are published and 

have Digital Object Identifier (DOI) which makes them immutable and 
findable. Fig. 7 shows the landing page for the HydroShare collection 
resource that groups the three composite resources. The three composite 
resources that are contained by this collection resource are shown in 
dialogue box 1, the “Related Resources” in box 2 refers to this paper, and 
box 3 shows the information on how to cite this resource. Fig. 8 shows 
the landing page for the HydroShare composite resource holding the 
HPC notebooks. Box 1 shows the contents of the resource, most impor
tantly the four Jupyter notebooks and the readme.md file. The readme. 

Fig. 8. The HydroShare landing page for the HPC resource developed by this study (Choi et al., 2023c).  

I. Maghami et al.                                                                                                                                                                                                                                



Environmental Modelling and Software 164 (2023) 105689

11

md file (box 2) provides the user with the instructions on how to run the 
notebooks. Box 3 shows the information on how to cite this HydroShare 
resource. 

3.4. Opportunities and challenges 

This study demonstrated a real-world working implementation 
application of strategies for reproducible hydrologic modeling presented 
by Choi et al. (2021) to a large-scale hydrologic study (the VB study). 
This section discusses the opportunities and challenges of this imple
mentation. If one needs to adopt this cyberinfrastructure for studies 
significantly differing from the VB study, considerable changes or extra 
steps might be needed. For instance (1) if exploring non-CAMELS basins, 
then extra steps to prepare the inputs might be needed, or (2) if using 
hydrologic models other than SUMMA, then containerization of the 
model might be needed. Despite the plausible challenges when making 
these non-trivial extra steps, the intended main opportunity here is that 
the modeling community can learn from the presented open cyberin
frastructure considering the commonalities among the hydrologic 
models with regard to the input data, preprocessing, processing, and 
postprocessing steps needed by them (Knoben et al., 2022). 

Minimal changes in the notebooks are required to use the presented 
cyberinfrastructure to rerun parts or all of the VB study or to extend the 
experiments performed in that study for selected CAMELS basins. With 
these minimal changes, a user could use (1) different CAMELS basins, (2) 
different parameters in the LHS set, (3) different simulation periods, e.g., 
a drought period, (4) more than 10 LHS sets, e.g., a more thorough 
exploration of the parameter space, and (5) additional SUMMA model 
configurations. The last two changes, i.e., using a larger number of LHS 
sets and different model configuration/decisions, highlights a major 
challenge in reproducing a computationally complex study. Here, the 
limit on manageable data size was pushed, even when running a few 
basins. HPC computational power was required to run the full six years 
of simulation; expanding the parameter exploration space or adding 
model decisions would compound the data size. Thus, while this work is 
advancing cyberinfrastructure used for big data in hydrology, challenges 
remain. 

The second major challenge that is encountered is implementing 
version control. What if users need to run the Jupyter notebooks pre
sented in this study in their own computational environment (not 
deployed on CJW), or they need to install a newer version of a model 
API? How can they make sure they have a reproducible framework that 
is robust enough to tackle the version control problem? Because there 
are many individual pieces of software, it was challenging at times for 
the study team to keep all the software versions synchronized. We 
propose that future research should tackle the version control challenge 
by making the computational environment all documented and instal
lable via a Python environment file. The pySUMMA code, which is used 
for hydrology modeling, was installed via conda just as the rest of the 
infrastructure. In the future, Python package updates will break 
compatibility, but compatibility can be preserved by installing the older 
versions (as documented in the environment file), or the user under
standing the updates in order to manually work around the updated 
package incompatibility. If a researcher wants to use a newer (future) 
version of pySUMMA, then they may need to debug some parts of the 
Jupyter notebooks that are affected by the changes. While this is not an 
ideal way to handle version updates, at least the researcher has options 
of a working, albeit older, computational environment, from which to 
begin reproducing the study before updating to newer software. 

The specifics of the environment can be placed in a Python envi
ronment.yml file that can be shared as part of the online model and data 
repositories, and can be installed with an installation notebook inside 
the repository. This can use best practice for transparency about what 
dependencies the computational gateway interface notebooks need to 
run. The specifics of each dependency can be described in the installa
tion notebook, so that if in the future there are issues with the 

availability of that dependency, then a suitable substitute can be found. 
Version control issues can be thus addressed through this methodology, 
albeit an imperfect solution depending on possible user troubleshooting. 

In addition to the two major challenges described above, there are 
two additional challenges related to the use of the HPC environments: 
(1) large data transfers between computational environments, online 
data repositories, and a user’s personal computer and (2) allowing users 
to execute their workflows on different HPC environments based on 
their use case and access to HPC environments. There may be cases, for 
example, where users does not want to utilize HPC resources due to 
financial cost concerns and need to transfer a large amount of model 
outputs from an HPC environment’s temporary scratch directory to a 
Jupyter compute environment to further analyze the data using the 
Jupyter compute environment. Transferring large datasets, e.g., the 
entire output from VB study or even the four selected basins study 
explored in this paper, would be slow and unreliable using standard data 
transfer approaches, i.e., compress data into a big package and then 
transfer it. In this study, we used Globus to do this data transfer which 
can transfer multiple individual files in parallel without a need to 
compress data a big package, and other related cyberinfrastructures that 
do not currently use Globus or a related technology could benefit from 
doing so. Globus is not limited to data transfers between the HPC 
environment and the Jupyter compute environments (CJW in the case of 
this study), however. In fact, it is possible that the full or a large portion 
of the model output can be stored on an online data repository or even 
on a user’s own personal computer. In either case, the online data re
pository or the user’s personal computer, the outputs could be down
loaded using Globus if Globus is installed, and they become a Globus 
server. Making a user’s personal computer a Globus server may be the 
case that the user prefers to back up a model run not in an online data 
repository but at some other location. In this case, Globus could be used 
to connect directly with the HPC environment thereby bypassing both 
any Jupyter compute environments (CJW in the case of this study) as 
well as online data repositories (HydroShare in the case of this study) as 
an intermediate storage location. If the large data takes much of the 
space in the user’s personal computer, user may consider transferring it 
to external hard drives that offer larger capacity. To allow users to 
execute their workflows on different HPC environments, users would 
need to set up their own job submission service and configure the 
Jupyter environment (e.g., CJW) to the specific HPC environment that 
they have access to. Although the job submission software used in this 
study is open source, it is customized for the UIUC HPC used in the 
study, so it cannot be directly used for other HPCs. Future work could be 
for CJW to act as a connector to user supplied HPC environments. In this 
case, CJW would ask users to provide their own credentials and to their 
own HPC, rather than only using the UIUC HPC service. While not a 
simple task, standardization of job submission approaches across HPC 
environments makes this functionality possible. Generalizing the 
approach through future research could benefit users to access their own 
institutional HPCs and other HPCs at the national level that the user has 
access to. 

4. Conclusions 

The importance of reproducibility is broadly recognized across 
different scientific disciplines. When it comes to computational hy
drology, this can be a significant challenge. This research shows how an 
architecture that integrates the (1) online data repositories, (2) 
computational environments, and (3) model API can facilitate repro
duction of the components of modern and complex hydrologic studies. 
For this purpose, we used a recently published large-scale hydrologic 
study (VB study) as an example. We designed and built cyberinfras
tructure that utilized software components to enable intuitive, and on
line access to computational environments. This approach was used to 
remove the potential software inconsistencies from users’ differing 
personal software editions, as well as to make implementation easier 
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with pre-compiled software, with the added complication of a compu
tationally expensive research problem instead of a case study. This 
approach gave the user the option to use either the CJW CG or HPC 
computational environments, depending on how much they need to 
reproduce a problem more representative of the big-data problem. Using 
HydroShare as the data repository, and containerization of the 
pySUMMA API (with Docker or Singularity in the case of the HPC 
environment) along with a computational gateway interface of Jupyter 
notebooks both hosted on the CJW made this possible. Three Jupyter 
notebooks for the CJW CG environment and four Jupyter notebooks for 
HPC environment were developed. Notebooks 1–3 for both CJW CG and 
HPC environments enable, (1) preparing the forcing data, simulation 
period, and study CAMELS basins, (2) executing SUMMA hydrologic 
model, and (3) visualization of the results. Notebook 4, only developed 
for the HPC environment, enables transferring large data from HPC to 
the scientific cloud service (i.e., CJW) using Globus service integrated by 
CyberGIS-Compute in a reliable, high-performance and fast way. 

We presented a modeling case study subset from the VB study that 
served as a motivating use case for the cyberinfrastructure. The case 
study showed how four individual basins with different characteristics 
can lead to different patterns of temporal aggregation for each of the 
forcing variables given the same model setup. The case study served to 
show that the developed cyberinfrastructure enables others to reproduce 
the VB study for subsets of the original domain as a basis for doing 
additional research enabling conclusion-reproducibility beyond bit- 
reproducibility. 

We analyzed performance of the notebooks focusing on contrasting 
HPC and CJW CG notebooks using a variety of model scenarios. The HPC 
environments could perform significantly faster simulations compared 
to CJW CG, enabling users to explore a large number of basins and 
simulation periods. This clearly showed how the use of HPC from a 
Jupyter gateway could advance the reproducibility of modern and 
complex hydrologic studies. The run-time performance analysis for the 
big data transfer notebook for the HPC environment showed that the 
method used was stable, reliable and fast. Therefore, similar studies 
could easily benefit from the same approach for transferring large data 
between scientific cloud services. 

With the focus of this research was on conclusion-reproducibility 
over bit-reproducibility of the VB study, users can easily modify the 
notebooks to test different situations by varying the study basins and 
periods, parameterizations, and model configurations. These situations 
highlighted two major challenges. First, the complexity of the big-data 
problem eventually became large enough that it needed to be run 
using the HPC computation environment, which presented other smaller 
challenges of data transfer and portability of the HPC environment. 
Second, implementation of a version control system was needed (e.g., 
when a user needs to install a newer version of a model API or when a 
user needs to run these codes on their local machine rather than the used 
cloud-based computational environment). Sharing the dependencies of 
the computational environments as a Python environment yml file and 
an installation notebook that installs them was discussed as a future 
solution to tackle the version control issue. 

Finally, as a broader impact, the VB study methodology replicated 
with interactive codes could also serve as a valuable educational 
resource, allowing educators to present sophisticated modeling experi
ments for use within classrooms through online Python notebooks. 
Likewise, the basic approach could be extended to enable new water 
decision-support systems that take advantage of the SUMMA framework 
and HPC yet remain easy to interact with through notebooks. This can 
help to, for example, evaluate forcing sensitivity to a water resources 

management objective, or explore the parameter and model un
certainties of SUMMA using different algorithms such as Markov chain 
Monte Carlo (MCMC), and Bayesian model averaging (BMA) (Samadi 
et al., 2020) in a systematic manner. With more work to harden and 
improve the usability of the system presented here, these additional use 
cases can be possible.  

Resource Description Reference 

Original NLDAS forcings for the CAMELS basins can be 
obtained as a NetCDF file* 

Mizukami and Wood 
(2023) 

SUMMA Simulations using CAMELS Datasets on CyberGIS- 
Jupyter for Water** 

Choi et al. (2023b) 

SUMMA Simulations using CAMELS Datasets for HPC use 
with CyberGIS-Jupyter for Water** 

Choi et al. (2023c) 

*The data from the CAMELS dataset (Newman et al., 2015a) was consolidated 
into one NetCDF file taking advantage of OPeNDAP data services supported by 
the HydroShare THREDDS server and web application connector (Tarboton and 
Calloway, 2021). 
**The SUMMA setup for the CAMELS basins can be obtained from the sum
ma_camels folder of the HydroShare resources. 

List of relevant URLs 

CyberGIS-Jupyter for Water: https://go.illinois.edu//cybergis-jupy 
ter-water 
Docker: https://www.docker.com 
HydroShare REST API: https://www.hydroshare.org/hsapi/ 
Numpy: https://www.numpy.org 
Pandas: https://pandas.pydata.org 
pySUMMA: https://github.com/UW-Hydro/pysumma/releases/tag/ 
v3.0.3 
Seaborn: https://seaborn.pydata.org 
Singularity: https://sylabs.io 
SUMMA: https://github.com/CH-Earth/summa/releases/tag/v3.0.3 
xarray: http://xarray.pydata.org 
XSEDE: https://www.xsede.org 
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This section provides supplemental material to support our methods and results. The figures and tables are referred to in the main text. 
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Fig. A1. An overview of the forcing datasets (FORCINGS; yellow box), parameter sets (PARAMETERS; blue box), and model configurations (CONFIGURATIONS; 
green box) used in the 704 SUMMA model runs (RUNS; pink box) performed for each of the 671 CAMELS basins. Note the pink numbers that follow each forcing, 
parameter, and configuration refers to the SUMMA model run set as numbered in the pink RUNS box (e.g., the Default parameter set in the PARAMETERS box is used 
with SUMMA model runs 1, 2, 3 and 4 in the RUNS box) (source: modified from Van Beusekom et al., 2022). 

Fig. A2. The preprocessing notebook (JN1) diagram.   
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Fig. A3. Running SUMMA notebook (JN2) diagram.   
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Fig. A4. Post-processing notebook (JN3) diagram.  

Fig. A5. HPC Data transfer notebook (JN4) diagram.   

Table A1 
SUMMA output variables chosen for analysis (source: Van Beusekom et al., 2022).  

# Variable Type SUMMA Variable Name Description (units) 

1 liquid water fluxes for the soil domain SurfaceRunoff surface runoff (m s-1) 
2 AquiferBaseflow baseflow from the aquifer (m s-1) 
3 Infiltration infiltration of water into the soil profile (m s-1) 
4 RainPlusMelt rain plus melt (m s-1) 
5 SoilDrainage drainage from the bottom of the soil profile (m s-1) 
6 turbulent heat transfer LatHeatTotal latent heat from the canopy air space to the atmosphere (W m-2) 
7 SenHeatTotal sensible heat from the canopy air space to the atmosphere (W m-2) 
8 SnowSublimation snow sublimation/frost (below canopy or non-vegetated) (kg m-2 s-1) 
9 snow SWE snow water equivalent (kg m-2) 
10 vegetation CanopyWat mass of total water on the vegetation canopy (kg m-2) 
11 derived NetRadiation net radiation (W m-2) 
12 TotalET total evapotranspiration (kg m-2 s-1) 
13 TotalRunoff total runoff (m s-1) 
14 TotalSoilWat total mass of water in the soil (kg m-2)   

I. Maghami et al.                                                                                                                                                                                                                                



Environmental Modelling and Software 164 (2023) 105689

16

Table A2 
Parameters chosen for Latin Hypercube Sampling (source Van Beusekom et al., 2022).  

Parameter Name Minimum Maximum Default Constraints 

k_macropore 1.0d-7 0.1 0.0001  
k_soil 1.0d-7 1.0d-5 variable  
theta_sat 0.3 0.6 variable > critSoilTranspire; > fieldCapacity; > theta_res 
aquiferBaseflowExp 1 10 2.0  
aquiferBaseflowRate 0 0.1 0.1  
qSurfScale 1 100 50  
summerLAI 0.01 10 3  
frozenPrecipMultip 0.5 1.5 1  
heightCanopyTop 0.05 100 variable > heightCanopyBottom 
heightCanopyBottom 0 5 variable  
routingGammaShape 2 3 2.5  
routingGammaScale 1 100000 20000  
albedoRefresh 1 10 1.0  
tempCritRain 272.16 274.16 273.16  
windReductionParam 0 1 0.28   

The eight plots generated by Notebook 3 are described as follows:  

1. Location of the selected CAMELS basin.  
2. KGE values for each CNST forcing dataset (datasets 2–8; Table A2) by output variable using the DEFAULT model runs. This is a subset of Figure 9A 

from Van Beusekom et al. (2022) *.  
3. Boxplots depicting the range in the KGE values for each set of model runs (DEFAULT, LHS, CONFIG, and COMPREHENSIVE; Table A1) by output 

variable. Note, boxplots only appear for the model runs selected in Notebook 2. This is a subset of Figure 9B from Van Beusekom et al. (2022).  
4. Boxplots depicting the range in the KGE values for each set of model runs (DEFAULT, LHS, CONFIG, COMPREHENSIVE; Table A1) by CNST forcing 

dataset (datasets 2–8; Table A2). Note, boxplots only appear for the model runs executed in Notebook 2. This is a subset of Figure 9C from Van 
Beusekom et al. (2022).  

5. Ranks 1–7 stacked barplots depicting the relative basin KGE rank counts by CNST forcing dataset (datasets 2–8; Table A2) for the 14 SUMMA 
output variables. Note, bars on this plot will only appear if the COMPREHENSIVE basin runs are executed in Notebook 2. This is a subset of Fig. 8 
from Van Beusekom et al. (2022).  

6. Ranks 1–7 stacked barplots depicting the relative basin KGE rank counts by CNST forcing dataset (datasets 2–8; Table A2) for the eight SUMMA 
configurations. Note, the complete figure will only appear if the COMPREHENSIVE basin runs are executed in Notebook 2. A stacked bar for the 
default configuration (BlL) will be plotted if the LHS basin runs are executed in Notebook 2. This is a subset of Fig. 8 from Van Beusekom et al. 
(2022).  

7. Boxplots for each output variable depicting the range in the seven-summed KGE values (from CNST forcing datasets 2–8) for the eight SUMMA 
configurations, or for the default configuration if only the default configuration was run (DEFAULT or LHS basin runs in Notebook 2. This is a 
subset of Fig. 6 from Van Beusekom et al. (2022).  

8. Boxplots depicting the range in the summed SUMMA hourly output variables over the period of record produced using the benchmark (NLDAS) 
forcing dataset for the eight SUMMA configuration, or for the default configuration if only the default configuration was run (DEFAULT or LHS 
basin runs in Notebook 2). Note, a point will appear instead of a boxplot if only the default parameter set was run (DEFAULT or CONFIG basin runs 
in Notebook 2). This analysis is not in Van Beusekom et al. (2022); it is included in the interactive tool to supply users with potential SUMMA 
output variable ranges for their selected basin. 

* To reproduce the modeling case study presented in the current paper, the selected four basins need to be specified in Notebook 1 (Figure A2, “Step 
1_3_2 Select basins and simulation period”) and then Notebook 3 can be used to reproduce Fig. 3 (KGE values using the DEFAULT model runs for each 
CNST dataset (datasets 2–8; Table A2), grouped by SUMMA output variable). 
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