Environmental Modelling and Software 164 (2023) 105689

Contents lists available at ScienceDirect

Environmental Modelling and Software

journal homepage: www.elsevier.com/locate/envsoft

ELSEVIER

Check for

Building cyberinfrastructure for the reuse and reproducibility of complex &
hydrologic modeling studies

Iman Maghami ®, Ashley Van Beusekom b Lauren Hay b Zhiyu Li, Andrew Bennett d )
YoungDon Choi?, Bart Nijssen ”, Shaowen Wang ¢, David Tarboton ¢, Jonathan L. Goodall

& Department of Engineering Systems & Environment, University of Virginia, Charlottesville, VA, USA

b Department of Civil & Environmental Engineering, University of Washington, Seattle, WA, USA

¢ Department of Geography & Geographic Information Science, University of Illinois at Urbana, Champaign, IL, USA

4 Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA

¢ Department of Civil and Environmental Engineering, Utah Water Research Laboratory, Utah State University, Logan, UT, USA

ARTICLE INFO ABSTRACT

Keywords: Building cyberinfrastructure for the reuse and reproducibility of large-scale hydrologic modeling studies requires
Reproducibility overcoming a number of data management and software architecture challenges. The objective of this research is
Computational hydrology to advance the cyberinfrastructure needed to overcome some of these challenges to make such computational
i;;pgter hydrologic studies easier to reuse and reproduce. We present novel cyberinfrastructure capable of integrating
Containerization HydroShare (an online data repository), CyberGIS-Jupyter for Water and high performance computing (HPC)

resources (computational environments), and the Structure for Unifying Multiple Modeling Alternatives
(SUMMA) hydrologic modeling framework through its application programming interface for orchestrating
model runs. The cyberinfrastructure is demonstrated for a complex computational modeling study on a
contiguous United States dataset. We present and discuss key capabilities of the cyberinfrastructure including (1)
containerization for portability across compute environments, (2) Globus for large data transfers, (3) a Jupyter

gateway to HPC environments, and (4) Jupyter notebooks for capturing the modeling workflows.

1. Introduction

Reproducibility, the ability to duplicate and verify previous findings,
is a foundational principle in scientific research. In computational hy-
drology, Melsen et al. (2017) highlighted two contrasting definitions of
model reproducibility: (1) “bit-reproducibility” which is defined as exact
replication of a study, including the exact same numbers forming the
results, and (2) “conclusion-reproducibility” which focuses on repro-
ducibility of the conclusions of a study as the conclusions are expected to
hold if the same experimental approach is applied. They argue that
“conclusion-reproducibility” (replicating a study’s conclusions) may be
more important than “bit-reproducibility” (exactly replicating model
runs) because hydrological theories need to be tested beyond
bit-reproducibility by investigating conditions under which theories can
be confirmed or falsified. Even so, conclusion-reproducibility itself goes
beyond the simple sharing of code and data as open-source and online
resources typically touted for achieving reproducibility. The code and

data must be accompanied by well-documented workflows with read-
able and reusable code (Chen et al., 2020; Mullendore et al., 2021;
Simmonds et al., 2022). Reusable code requires providing open-source
computational environments in which the code can be executed.
Ensuring this reuse and reproducibility is a non-trivial task; it requires
not only adopting new capabilities for handling complex software and
big data, it also requires careful software engineering practices to inte-
grate these new capabilities into well designed and built cyberinfras-
tructure (Merkel, 2014).

A growing body of researchers have been discussing and proposing
guidelines and strategies for reproducible computational modeling (e.g.,
Bush et al., 2021; Choi et al., 2021; Knoben et al., 2022; Mullendore
etal., 2021; Simmonds et al., 2022). In recent work, Knoben et el. (2022)
presented a novel approach for creating a hydrologic model at any
location or scale (local to global) by separating model-agnostic and
model-specific configuration steps within cyberinfrastructure work-
flows. Choi et al. (2021) described a general strategy for creating
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modern cyberinfrastructure to support open and reproducible hydro-
logic modeling as the integration of three components: (1) online data
repositories; (2) computational environments leveraging containeriza-
tion and self-documented computational notebooks; and (3) Application
Programming Interfaces (APIs) that provide programmatic control of
complex computational models. As an example of this general approach,
Choi et al. (2021) also presented an implementation that used (1)
HydroShare as the online repository, (2) two different Jupyter instances,
one hosted by the Consortium of Universities for the Advancement of
Hydrologic Science, Inc. (CUAHSI) and a second hosted by
CyberGIS-Jupyter for Water, as the computational environments, and
(3) pySUMMA, a Python wrapper for manipulating, running, managing,
and analyzing of SUMMA (Structure for Unifying Multiple Modeling
Alternatives), as the model API.

While Choi et al. (2021) focused mainly on the system design and
demonstrated their approach with a fairly simple modeling use case,
reproducibility in computational hydrology can present some difficult
challenges when dealing with large-scale hydrologic studies (Hutton
etal., 2016). These challenges mostly pertain to the use of “big data” and
computationally expensive and time-consuming resources needed for
reproducibility of complex hydrologic modeling studies. Hutton et al.
(2016) notes that in these cases, new techniques are needed to ensure
scientific rigor. In this paper, we provide an example of the overall
system design outlined by Choi et al. (2021) as applied to a complex
hydrologic study by Van Beusekom et al. (2022) (hereafter referred to as
the VB study). We develop the necessary cyberinfrastructure to repro-
duce this study for selected sub-domains and discuss the challenges and
opportunities in ensuring conclusion-reproducibility for complex hy-
drologic studies.

The VB study evaluated the effect of the temporal resolution of
surface meteorological inputs (or forcings) on modeled hydrological
fluxes and states for 671 basins across the contiguous United States
(CONUS). It quantified the difference in hydrologic outcomes based on
daily or sub-daily forcings for multiple model configurations and
parameter values. Reproducibility of the VB study if one was given only
the input data and model code would be challenging because it requires
the installation and configuration of the modeling framework SUMMA
(Clark et al., 2015a, 2015b), the data volumes are very large, and the
model runs require High Performance Computing (HPC) resources. The
complete VB study consisted of 704 6-year model runs for each of the
671 basins (or 2.8 million model years). SUMMA was implemented with
a single hydrologic response unit for each basin, resulting in a single
output time series for each basin for each model configuration. For every
model run, the output consisted of 14 hydrological variables, which
required 6 MB per model simulation, or 2.834 TB for the entire study.
While few researchers may be interested in reproducing the entire VB
study, the more common use case and the focus of this study, would be to
repeat or extend the VB study for a subset of the basins. We want to
enable others to reproduce the VB study for subsets of the original
domain as a basis for doing additional research enabling
conclusion-reproducibility rather than the bit-reproducibility. For such
an approach to be effective, it is not sufficient to provide the open-source
SUMMA code and model input data; one must also provide the addi-
tional components described by Choi et al. (2021), i.e., computational
environments, models exposed through APIs, and documented model
workflows to create a cyberinfrastructure that lowers the barrier to reuse
and reproducibility.

This research contributes to the growing literature advancing
cyberinfrastructure for hydrology and other geoscience fields. Yang
et al. (2010) illustrated the importance of using HPC in computationally
intensive geospatial sciences and hydrologic modeling. Essawy et al.
(2016) demonstrated server-side workflows for large-scale hydrologic
data processing, although they did not make use of HPC in their appli-
cation. Lyu et al. (2019) used containerization and combined compu-
tational environments including HPC and High Throughput Computing
(HTC) cyberinfrastructure to directly run the models using Jupyter
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notebooks. Gan et al. (2020), integrated a hydrologic data and modeling
web service with HydroShare as a data sharing system to show how this
integration leads to a findable and reproducible modeling framework.
Gichamo et al. (2020) used web-based data services to prepare input
data for hydrologic models. Kurtz et al. (2017) introduced a cloud-based
real-time data assimilation and modeling framework and showed how
parallel processing can be used for complex hydrologic models in the
cloud. However, unlike the VB study, none of Lyu et al. (2019), Gan et al.
(2020), Gichamo et al. (2020) and Kurtz et al. (2017) applied their
methods on a computationally extensive complex hydrologic use case.
Therefore, the challenges and opportunities of using cyberinfrastructure
for reproducibility of complex, large-scale hydrologic modeling. for
which HPC and big data approaches are required, remain largely
unexplored.

To address this research gap, we designed and implemented cyber-
infrastructure to enable intuitive access to HPC computational envi-
ronments and to support data transfers into and out of the HPC
environment. Additionally, we provide a workflow that allows users to
replicate parts of the study within their own computing environments.
We also perform a workflow run-time performance analysis that com-
pares different model scenarios by varying the size of simulations across
different computing environments, providing users with a guide towards
selection of the computing environment depending on the size of their
simulations. The cyberinfrastructure provides a starting point for users
to modify the hydrologic model setups, thus going beyond reproduc-
ibility (i.e., the ability to duplicate and verify previous findings) into
replication where one modeling methodology can be used to answer the
same scientific research question but with new input data (as high-
lighted by Essawy et al. (2020)). The cyberinfrastructure may also serve
as an educational resource by providing an intuitive way for students to
perform complex hydrologic modeling studies. The data and cyberin-
frastructure are provided through HydroShare to run on any basin for
which we provide a SUMMA setup to assist the modeler in analyzing
basins individually.

The remainder of this paper is organized as follows. In Section 2, we
provide a brief overview of the VB study, the cyberinfrastructure, the
model workflows, and the model scenarios used for a science use case
subsetted from the VB study as well as the model workflows run-time
performance analysis. Section 3 provides results and discussion. The
results focus on the modeling use case and an analysis of the workflow
run-time performance for different computing environments. The dis-
cussion focuses on opportunities and challenges learned from our
experience designing and building the cyberinfrastructure to support
our modeling workflows. Finally, our conclusions and recommendations
are provided in Section 4.

2. Methods
2.1. Overview of the VB study

The VB study used 671 basins to study the effects of the temporal
resolution of the meteorological forcings on hydrologic model simula-
tions across the CONUS. The basins are part of the CAMELS dataset
(Catchment Attributes and MEteorology for Large-sample Studies;
Newman et al., 2015b) a large-sample hydrometeorological dataset
across the CONUS consisting of input forcings, basin attributes, and
relevant historical streamflow records. The VB study used SUMMA
(Clark et al., 2015b) to configure multiple model instances for each
basin, representing eight different model configurations and 11 different
sets of model parameter values. In addition, eight forcing datasets were
constructed. In each of these forcing datasets one of the meteorological
inputs was modified so that the diurnal cycle was replaced by the mean
value over that day. The VB study performed 704 (8 x 11 x 8 = 704)
6-year model runs for each CAMELS basin, consisting of one year of
model initialization and five years of actual simulation. Model outputs
for 14 simulated variables were stored to evaluate the sensitivity of the



1. Maghami et al.

simulations to changes in model forcings, model configurations, and
model parameters (Figure Al and Table Al). The VB study results
demonstrated that (1) the effect of each forcing input on each model
output varies by model output and model location, (2) the use of a
particular parameter set may not be critical in determining the most and
least influential forcing variables, and (3) the choice of model physics (i.
e., using different model configurations) could change the relative effect
of each forcing input on model outputs.

The VB study was run with scripts on the Cheyenne supercomputer (a
5.34-petaflops, high-performance computer built for the National Cen-
ter for Atmospheric Research; Computational and Information Systems
Laboratory (2017)), and it took a few days to complete the runs. For
each basin, the output size for a single 6-year run was 6 MB. Thus,
reproducing the entire study is computationally expensive and also re-
quires large amounts of storage (704 runs x 671 basins x 6 MB = 2.834
TB). However, the cyberinfrastructure allows individual basins to be run
independently. Here, we focus on a use case in which a researcher
wishes to reproduce a subset of the VB study by analyzing one or a few
basins within a cloud cyberinfrastructure environment to reach
conclusion-reproducibility. The conclusion-reproducibility that we
aimed in this study is solely a qualitative one and if the presented
cyberinfrastructure can be successfully applied to studies differing from
the original study, i.e., the VB study, the conclusion-reproducibility is
achieved.

2.2. Cyberinfrastructure design and implementation

Following the approach described in Choi et al. (2021), we designed
and implemented cyberinfrastructure (Fig. 1) to replicate the VB study
by integrating (1) the HydroShare online data repository, (2)
CyberGIS-Jupyter for Water Computing Gateway (CJW CG) and
high-performance computational environments, and (3) a model API
that can be utilized in scripts using Jupyter notebooks (here the
pySUMMA API). Each of these three components is further explained in
the following subsections.

Online Data and Model Repository
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2.2.1. Online data repositories

We used HydroShare, an online collaboration environment, as the
online data repository (Horsburgh et al., 2016; Tarboton et al., 2014). A
collection resource in HydroShare, which can be found at Choi et al.
(2023a), contains three resources holding the data, computational
environment, and models (Fig. 1).

The HydroShare resource holding the data (Mizukami and Wood,
2023) contains the forcing dataset for the 671 CAMELS basins. The
forcings are based on the hourly NLDAS-2 (North American Land Data
Assimilation System; NLDAS-2, 2014; NLDAS-2 is hereafter referred to
as NLDAS). The original NLDAS hourly forcing data were created on a
0.125 x 0.125° grid. To create hourly SUMMA model forcings, NLDAS
outputs were spatially averaged over each of the 671 CAMELS basins
and merged into one NetCDF file. With this format, an OPeNDAP server
(OPeNDAP, 2021) can extract data for selected basins on the server, so
that the user does not have to download the entire CONUS dataset to a
local computer. HydroShare offers this capability via its THREDDS Data
Server (Tarboton and Calloway, 2021).

2.2.2. Computational environments

The developed computational environments provide a consistent
software environment that is independent of each user’s own operating
system and software libraries, making it possible to study a computa-
tionally expensive research problem. Fig. 2 shows each computational
environments component, and the interoperability between the
computational environments and HydroShare. One computational
environment was implemented on the CJW CG cloud service for studies
with limited computational demand, e.g., a study of only a few basins, or
as an instructional tool, or for model debugging. A second computa-
tional environment was developed on an HPC resource to reproduce a
problem more representative of challenges posed by the use of big-data
in the VB study. The HPC environment also allows the user to study a
particular basin in greater detail. In this study, the CJW CG computa-
tional environment is used to provide (1) the model execution envi-
ronments configured as Docker images to enable execution of the
SUMMA model for studies with limited computational demand (i.e.,
those need to use CJW CG Workflow), and (2) cyberinfrastructure for
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Fig. 1. The three primary components of the general cyberinfrastructure (following Choi et al., 2021) with seamless data transfers for open and reproducible

environmental modeling.
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Fig. 2. CJW and HPC computational environments with model execution environments configured as Docker image or Singularity container to support concurrent
model execution through Jupyter notebooks, and use of Globus to transfer model outputs from HPC.

preprocessing, postprocessing and data storage for both studies with
limited computational demand (need to use CJW CG Workflow) and
with high computational demand (i.e., those need to use HPC Workflow)
(Fig. 2). The HPC computational environment is only used for providing
model execution environments configured as Singularity containers to
enable execution of the SUMMA model for studies with higher compu-
tational demand. More details on each computational environment are
provided in the rest of this section.

CJW CG is a cloud computing environment interoperable with
HydroShare. It is an instance of CyberGISX (Yin et al., 2017) that serves
the data- and computation-intensive needs of the water and environ-
mental communities. We used CJW CG because it is publicly available, is
interoperable with advanced cyberinfrastructure resources (such as the
HPC resource used in this study) and has been serving the water and
environmental communities to support their modeling needs.

Reproducibility was facilitated by using containerization of the
SUMMA model and the pySUMMA API with Docker (Merkel, 2014) in
the case of the CJW CG environment or Singularity in the case of the HPC
environment (Kurtzer et al., 2017) along with a computational gateway
interface to Jupyter notebooks (pySUMMA and the notebooks are
described in a later section) (Fig. 2). Although using Docker is a common
approach to containerize the model dependencies, we used Singularity
in the HPC environment because it is designed to work seamlessly with
existing batch job systems to support HPC applications. The container-
ization and interface are hosted on the CJW scientific cloud service
hosted on Jetstream cloud (Hancock et al., 2021; Stewart et al., 2015;
Towns et al., 2014). The Dockerfile is hosted on a GitHub repository (Li,
2021) with pre-built Docker images being shared on a Docker Hub re-
pository. Singularity container used by the HPC environment is hosted
on CyberGIS-Compute Service, a middleware platform allowing seam-
less access to HPC resources via Python-based Software Development Kit
and core middleware services (CyberGIS-Compute Service, 2021; Li
et al.,, 2022). The singularity container was created through Docker
images conversion. CyberGIS-Compute Service also handles submitting
jobs to HPC as well as large data transfer from HPC through Globus (will
be discussed in section 2.2.4).

The Conda software package was used to manage the project specific
computational environment on CJW, allowing the user to build a Python
environment with the SUMMA model, pySUMMA API, and other
computational dependencies. This was done by providing a kernel
version for the project (CyberGIS Center HydroShare Development
Team, 2022). Using this stable kernel, which captures all the required
dependencies with their specific versions, ensures careful software
version control.

2.2.3. Model application programming interface (API)

The model API pySUMMA was chosen to be part of the interactive
tool. The pySUMMA API (Choi et al., 2021) wraps the SUMMA hydro-
logic modeling framework (Clark et al., 2015a) and allows the user to
script the use of the SUMMA model using Python. It facilitates model
configuration and allows for local execution of the model by either using
a Docker container or a locally compiled SUMMA executable (Choi et al.,
2021). With pySUMMA, a user can modify SUMMA input files and run
SUMMA inside a Python script, as well as automatically parallelize runs
and visualize output. In the simplest case the pySUMMA Simulation
object wraps a single instance of a SUMMA simulation.

For users who choose to analyze multiple basins at a time in the CJW
CG environment instead of the HPC environment, the notebook auto-
matically will configure a pySUMMA Distributed object, which provides
an interface to spatially distributed simulations and handles parallelism
and job management under the hood. In this study, multiple SUMMA
simulations are run in each basin, so a pySUMMA Ensemble object is
used to manage multiple runs with different configurations. In the HPC
computational environment a custom backend was written to handle
parallelism using Message Passing Interface (MPI), reducing the need for
users to customize the configuration based on the type of job that they
are running. A high-level description of pySUMMA is presented in Fig. 1.
The simulation.py enables the execution of the SUMMA model and,
along with file_manager.py, decisions.py, force-filelist, and out-
put_control.py, allows for manipulating SUMMA configuration files. The
distributed.py enables the parallel execution of SUMMA.

2.2.4. Data management and transfer

The input data for this study consists of the SUMMA configuration
files and the forcing data for the 671 CAMELS basins. The configuration
files (e.g., geometries information for the 671 CAMELS basins along with
their attributes such as hru_id) are shared within each of the two
HydroShare resources holding the Jupyter notebooks. The forcing data
are provided in a HydroShare resource (Mizukami and Wood, 2023).

The output files resulting from running the notebooks using the CJW
CG and HPC computational environments are: (1) NetCDF output files
generated by the SUMMA simulations, (2) a NetCDF file recording the
model performance for each basin as measured by the Kling-Gupta Ef-
ficiency (KGE) (Gupta et al., 2009), and (3) additional files created by
the notebooks such as the figures that visualize the model results.

In the case of the CJW CG environment, after running the notebooks,
all files are saved in the CJW CG and are directly accessible to the user.
In the case of the HPC environment, the KGE results and other files
created by the notebooks (e.g., figures) are automatically transferred to
the CJW CG, but the NetCDF output files remain within the HPC
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environment to avoid transferring large volumes of model output (as a
reminder, the size of the model output for the entire VB study was 2.834
TB).

However, if the user of the HPC environment wishes to transfer
selected SUMMA NetCDF output files from the HPC to be directly
accessible for further analysis and long-term storage, then the CyberGIS-
Compute Service (Li et al, 2022) can be used for reliable
high-performance large file transfers through the Globus service (Chard
et al., 2016; Foster, 2011). As shown in Fig. 2, data is transferred from
HPC to the CJW using Globus without going through the job submission
server. Globus is a software as a service that enables the transfer of
datasets of any size between different storage options (personal com-
puters, HPC, etc.) without users being required to be constantly logged
in and monitoring the data transfer (Chard et al., 2016). Technically, the
CyberGIS-GIS Compute acts as a Globus app client holding a community
Globus account that has access to both data endpoints on the Jupyter
and target HPC. When data transfer is needed, CyberGIS-Compute ini-
tiates a Globus task between the two endpoints and monitors the prog-
ress. Users are updated with data transfer status in the notebooks
environment during the entire process.

2.3. Model workflows as Jupyter notebooks

As mentioned earlier, the model workflows allow the user to repro-
duce all or subsets of the VB study using either the CJW CG computa-
tional resources (referred to later as CJW CG) or the HPC and CJW CG
computational resources (referred to later as HPC). The CJW CG and
HPC HydroShare resources can be found at Choi et al. (2023b) and Choi
et al. (2023c), respectively. The model workflows are documented in
three (for CJW CG) or four (for HPC) Jupyter notebooks. Table 1 shows
the summary of the steps taken in each notebook, while Figure A2 - A5
show more detailed information for notebooks 1-4. The first three
notebooks for both the CJW CG and HPC environments focus on (1)
selecting the study basins, simulation period, and model input forcings,
(2) running the SUMMA model, and (3) exploring outputs to analyze the
effect of each forcing variable in each basin. The HPC computational
resource uses a fourth notebook to transfer large unprocessed output
data from the HPC to CJW using Globus. Notebooks 1 and 3 are very
similar between the two HydroShare resources, and both CJW CG and
HPC HydroShare resources use CJW CG computational resources to run
these two notebooks. The second notebook differs for the two environ-
ments, and the difference is explained in Section 2.3.2. These notebooks
assist a modeler in analyzing CAMELS basins individually, providing
information on forcings and output variables that are the most/least
sensitive in their basin. With some additional work, the CJW CG
computational environment can also be hosted on other (non CJW)
cloud services, but the HPC environment is more tailored to interact
with the CJW cloud service used here.

To use the HPC computational resource, the user must obtain access
to the HPC by issuing a request through HydroShare to use CJW. Once
this access is granted, users are automatically given free access to two

Table 1
Overview of the notebook 1-4.

#  Notebook Name Goal CJW CG or HPC

1 Preprocessing Prepares forcings, and sets
study basins and simulation
period

Runs the SUMMA model

Very similar between
HPC and CJW CG
environment
Different versions for
HPC and CJW CG
environment

Very similar between
HPC and CJW CG

2 SUMMA execution

3 Post-processing Explores outputs to find out

effect of each forcing

variable in each basin environment
4 Use Globus to Transfer raw output from Only for HPC
transfer big data HPC to CJW using Globus environment

service
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alternative HPC resources: (1) the Virtual ROGER (Resourcing Open
Geospatial Education and Research) HPC administered by the School of
Earth, Society, and Environment at University of Illinois Urbana-
Champaign (UIUC) which is integrated with the Keeling compute cluster
at UIUC (“Virtual Roger User Guide,” 2022) and (2) the Expanse HPC, a
much larger NSF XSEDE resource operated and managed by San Diego
Supercomputer Center (SDSC) (“Expanse System Architecture,” 2022).
In theory, the CyberGIS-Compute Service can support other HPCs as
well, but we did not test other HPCs. In this study, among the provided
HPC options, we only used Expanse to demonstrate the cyberinfras-
tructure: in our initial experiments Expanse HPC performed faster than
Virtual ROGER and the goal here was to show how a HPC can scale up a
study by speeding up the modeling process compared to a non-HPC
environment rather than an inter-comparison between different HPCs.
Users who do not wish to use HPC computational resources can use CJW
CG computational resources directly to run smaller modeling jobs.

The hardware specifications of the CJW CG and the Expanse HPC are
compared in Table 2. The CJW CG has only three compute nodes each of
which has eight CPUs with 1.996 GHz Clock Speed and 30 GB DRAM.
Each user can only use up to six CPUs and the CPUs can be shared among
users. This means the maximum degree of parallelism for simulations
using this computational resource is six. Thus, in case of running one
basin from the VB study (704 runs) and using all the six available CPUs,
each CPU will need to run 117.33 simulations (some of them 117 and
others 118 simulations). The Expanse HPC has 728 AMD Rome standard
compute nodes each of which is equipped with 256 GB DRAM and 128
2.25 GHz CPUs (“Expanse User Guide,” 2022). The Expanse HPC allows
the user to only use up to two nodes at a time, i.e., 256 CPUs or the
maximum degree of parallelism for simulations. Thus, if a user is
running one basin from the VB study (704 runs) and using all the
available 256 CPUs, then each CPU will need to run 2.75 simulations
(some of them two and others three). This shows how the HPC resource
can scale up the model runs offering a high-performance tool. More
details about the run-time performance of the notebooks are discussed in
the results and discussion section.

The following subsections discuss the general purpose of each
notebook used to reproduce parts of the VB study. For specific coding
details, refer to the notebooks in the HydroShare resources at Choi et al.
(2023b) and Choi et al. (2023c).

2.3.1. Data processing notebook

The first notebook (JN 1: Preprocessing) processes the original
CAMELS SUMMA files and the input forcing datasets (Table A2). The
user can select one or more CAMELS basins (1-671 basins) but by
selecting a higher number of basins the computational time and expense
increases. Notebook 1 subsets the original CAMELS SUMMA files, pro-
ducing SUMMA attributes, parameters, initial conditions, and hourly
NLDAS forcing files for the selected basin(s). Then, additional forcing
datasets for the hydrologic model sensitivity study are developed from
the NLDAS data files (FORCINGS box in Figure A1) as discussed below.

For each SUMMA-model setup, variations in 14 SUMMA-generated
outputs, described in Table Al, are examined with respect to varia-
tions in seven input forcings (air pressure (prs), air temperature (tmp),

Table 2
Hardware specifications of the computational environments.
Computational Node Number of CPU cores  Clock DRAM/
Environment count per node (for parallel ~ Speed node (GB)
runs only) (GHz)
CJW CG* 3 8 1.996 30
Expanse HPC" 728 128 2.25 256

@ AMD EPYC-Milan Processor. Each user can only up to 6 CPUs and the CPUs
can be shared among users.

b AMD Rome Standard Compute Nodes. Each user can only use up to 2 nodes,
which means 256 CPUs, the maximum number of parallelism for simulations.
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long wave radiation (lwr), precipitation rate (ppt), specific humidity
(hum), shortwave radiation (swr), and wind speed (wnd)), under
different model parameterizations and configurations. The SUMMA
outputs generated with the 1-h NLDAS forcing dataset are considered
the benchmark (NLDAS dataset 1; FORCINGS box in Figure A1). The rest
of datasets (ppt to prs datasets; FORCINGS box in Figure Al) are devel-
oped, holding each of the individual forcing variables constant over a
24-h period while the other six forcing variables contain the original
hourly NLDAS values.

Figure A2 shows the steps taken in the first notebook. This notebook
is the same for the CJW CG and HPC environments except that the
simulation time period and basins to be explored are pre-populated
differently. The user can change these setups in the third step of this
notebook (step 1_3). In the last step of this notebook, users can visualize
the individual forcing variables held constant over a 24-h period against
the original hourly NLDAS values using hourly and cumulative plots.

2.3.2. SUMMA execution notebook

The second notebook (JN 2: Running SUMMA) executes the SUMMA
model using the input data from the first notebook for four different sets
of SUMMA basin runs, outlined in Figure A1 (RUNS box) and described
in detail in The VB study. The first set of basin runs (DEFAULT; 8
SUMMA runs per basin; RUNS box) uses the eight forcing datasets
(FORCINGS box) combined with default parameters and a default
SUMMA configuration. The SUMMA default configuration is set in the
resource model decision file.

The second set of basin runs (LHS; 88 SUMMA runs per basin; RUNS
box in Figure Al) uses the eight forcing datasets combined with 11
parameter sets and a default SUMMA configuration. The 11 parameter
sets consist of the default parameter set and 10 additional parameter sets
with 15 commonly calibrated parameters (Table A2). As detailed in the
VB study, the parameters are sampled using Latin Hypercube Sampling
(LHS) over their defined range. The pyDOE LHS function (Lee, 2014) is
used to create unique 10 x 15 LHS sampling matrices for the selected
basin. Then the LHS matrices are used to produce 10 parameter sets of
the 15 parameters while considering the parameter constraints listed in
Table 2. The choice of a different seed value will lead to different LHS
sets (and these sets will be different from the ones used by the VB Study).

The third set of basin runs (CONFIG; 64 SUMMA runs per basin;
RUNS box in Figure A1) uses the eight forcing datasets combined with
the default parameter set and eight SUMMA configurations. The eight
SUMMA configurations, outlined in the CONFIGURATIONS box in
Figure Al, test three model decisions (stomatal resistance (stomResist),
choice of snow interception parameterization (snowIncept), and choice
of canopy wind profile (windPrfile) with two options for each decision.
Note the default configuration for this study is shown in bold in the
CONFIGURATIONS box in Figure Al:BallBerry, lightSnow, and
logBelowCanopy.

The fourth set of basin runs (COMPREHENSIVE; 704 SUMMA runs
per basin; RUNS box in Figure Al) includes the DEFAULT, LHS, and
CONFIG basin runs, and is the only set that needs to be run to replicate a
single basin sensitivity study following the VB study method (six years of
simulation must be run for replication). For testing purposes, sets 1-3
can also be run by themselves. The 10 parameter set files for the basin
from the LHS sampling plus the default parameters (11 parameter sets)
are run each with eight SUMMA configurations (CONFIGURATIONS box
in Figure Al).

Figure A3 shows the steps taken in the second notebook. The first two
steps in this notebook are the same for the CJW CG and HPC environ-
ments but the rest of the workflow differs. In the CJW CG notebook, the
user can define the simulations by selecting the simulation period,
model configuration, and/or parameter values. Depending on which run
complexity choice (i.e., DEFAULT, LHS, CONFIG, COMPREHENSIVE in
the RUNS box in Figure A1) is selected the notebook executes a specific
set of code cells using a conditional statement logic (e.g., if user selects
config prob = = 1, step 2_7 is run which leads to CONFIG runs as shown
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in the RUNS box in Figure A1). Users need to carefully consider the
number of basins and the length of the simulation period as the CJW CG
environment is not powerful enough to run large simulations in a
reasonable time. In the HPC notebook, we only provided the user with
the option to run the most complex problem, i.e., lhs_config prob, as the
HPC is powerful enough to run the full problem making it unnecessary to
allow for simpler problems. The user can still change the simulation
period (in step 2_3 of the workflow in Figure A3). The other main dif-
ference between the CJW CG and HPC notebooks is that the codes
calculating KGE values for the HPC notebook are executed on the HPC
(Step 2_8 in HPC branch in Figure A3) while for the CJW CG environ-
ment, the KGE values are calculated locally on CJW CG (Step 2_9 in CJW
CG branch in Figure A3). In the HPC environment, the KGE values are
calculated on the HPC resource to prevent having to transfer large data
volumes from the HPC to the CJW CG with the sole purpose of calcu-
lating performance metrics. Users can use Globus to transfer selected
output files from HPC to the CJW CG for additional analysis. Notebook
4, which exists only in the HPC environment, was developed for this
purpose and is discussed in section 2.3.4.

A modified and scaled (range between —1 and 1) version of the KGE
was used as an indicator of model output sensitivity to a change in input
forcing based on the work of Clark et al. (2021) and Mathevet et al.
(2006) and is described in the VB study. The KGE test compares hourly
model outputs generated with the benchmark forcing dataset (NLDAS
dataset 1; Table A2) with outputs generated with the forcing datasets
with one forcing held constant (CNST datasets 2-8; Table A2). KGE
values are ranked from low to high to determine relative order of forcing
influence on model outputs with highest rankings associated with least
influence of change to 24-h constant forcing.

2.3.3. Post-processing notebook

The third notebook (JN 3: Post-processing) produces visualizations
of the sensitivity of SUMMA model output to the temporal resolution of
the model forcing. Figure A4 shows the steps taken in the third note-
book. The notebooks for CJW CG and HPC environments are the same.
For the selected basin(s), eight plots are generated with Notebook 3 that
follow the analysis in the VB study. The reader is referred to the sup-
plementary materials and the VB study for a detailed explanation of each
of the eight plots. In this paper, we only present the second figure
generated by Notebook 3, i.e., KGE values for each output variable for all
8 DEFAULT model runs.

2.3.4. Model output transfer

The fourth notebook (JN 4: Use Globus) is only included in the HPC
resource (Figure A5) to transfer SUMMA output files from HPC to CJW
on HydroShare. To retrieve the data from the HPC, this notebook needs a
job ID submitted to the HPC and created in Notebook 2. While this
notebook is running users can see the live status of the file transfer
managed by the CyberGIS-Compute Service. Once running of this
notebook is successfully finished, the user will be able to see the location
of the transferred file on CJW.

2.4. Performance analysis

We tested the performance of the cyberinfrastructure using a number
of model scenarios, using six years of simulation (to be consistent with
the VB study) and varying the number of studied basins for each
computational environment, described in Table 3. For the CJW CG
environment, we tested the performance of notebooks 1-3 for three
scenarios (Table 3, rows 1-3): (1) one basin (a total of six years of
simulations), (2) four basins (a total of 24 years of simulations), and (3)
six basins (a total of 36 years of simulations). We decided not to test the
CJW CG environment for more basins as the CJW CG runs were slow and
the HPC resource was available for larger simulations.

For the HPC environment, we used Expense HPC, and tested the
performance of notebooks 1-3 for 12 scenarios (Table 3, rows 4-15). In
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Table 3
Model scenarios for notebooks run-time performance analysis.

Row  Model Number of Number Simulation Total
scenario CPU cores of basins years simulation
name allocated years

1 CJWVM_1 6 1 6 6

2 CJWVM_2 6 4 6 24

3 CJWVM_3 6 6 6 36

4 HPC_256_1 256 1 6 6

5 HPC_256_2 256 4 6 24

6 HPC_256_3 256 6 6 36

7 HPC_256_4 256 10 6 60

8 HPC_256_5 256 15 6 90

9 HPC_256_6 256 20 6 120

10 HPC_128_1 128 1 6 6

11 HPC_128_2 128 4 6 24

12 HPC_128_3 128 6 6 36

13 HPC_ 128 4 128 10 6 60

14 HPC_128 5 128 15 6 90

15 HPC_128_6 128 20 6 120

these scenarios, we varied the number of allocated CPUs (128 or 256) for
parallelism and the total number of basins ranging from one basin (a
total of six years of simulations) to 20 basins (a total of 120 years of
simulations, which equals about three percent of the total simulation
years for the whole VB study). To test the performance of Notebook 4,
transferring output files from HPC to the CJW, we only used scenarios
HPC_256_1 to HPC_ 256_6 (rows 4-9 in Table 3) and repeated each
transfer 5 times to obtain a range of run-time for each of the scenarios.

3. Results and discussion

In this section, we first briefly present results of the modeling case
study that served as a motivating use case for the cyberinfrastructure.
Then, we present results of the performance analysis focusing on con-
trasting the CJW CG and HPC notebooks using a variety of model setups.
Then, we summarize the resulting resources from this study that are
shared on HydroShare. Finally, we discuss the resulting system
including opportunities and challenges identified through this research
that can be the focus of future research.

3.1. Results of the modeling case study

Four CAMELS basins with diverse characteristics (Table 4) were
chosen as examples of the effect of basin characteristics on model re-
sults. We specifically selected these four basins for this modeling case
study because we found that they all show different patterns. For the
four selected basins, Fig. 3 shows the KGE values for each SUMMA
output variable using the DEFAULT (BIL; CONFIGURATIONS box in
Figure A1) model configuration runs. The runs consist of one reference
simulation in which all forcing variables vary on an hourly basis (NLDAS
dataset 1; FORCINGS box in Figure A1) and seven simulations in which

Table 4
Basin descriptions for individual basin analysis.
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Fig. 3. KGE values using the DEFAULT model runs for each CNST dataset
(datasets 2-8; Table A2), grouped by SUMMA output variable.

one forcing variable is held constant at the mean daily value throughout
each day (the seven datasets ppt to prs; FORCINGS box in Figure Al).
KGE values were calculated relative to the reference simulation for each
of the seven simulations using five years of hourly model output from
10/1/1991-9/30/1996.

Fig. 3 demonstrates the variability in model output sensitivity to the
temporal resolution of the forcing variables. The first three basins (gages
01632900, 02212600, and 09378630) show a strong ppt temporal ag-
gregation influence using DEFAULT, whereas gage 11264500 is more
influenced by tmp, hum, and swr temporal aggregation. In other words, a
higher temporal resolution is necessary for the aforementioned forcing
variables in the given basins to capture the sub-daily hydrologic
response shown by the reference simulation. The weaker influence of ppt
temporal aggregation on the gage 11264500 compared to other gages
can be attributed to its high fraction of precipitation falling as snow,
0.91 as opposed to 0.1, 0.01, 0.5 (Table 4).

Also in Fig. 3, we see varying ranges in KGE values for particular
output variables. As an example, SurfaceRunoff is affected by constant
hourly values of ppt for gages 01632900 and 09378630; ppt and hum for

USGS Name CAMELS Attributes
Station ID R . , . . R
Drainage area  Gage Mean daily Fraction of precipitation  Aridity = Mean daily Runoff
(km?) datum (m) precipitation (mm/ falling as snow discharge (mm/ ratio”
day) day)
01632900 Smith Creek Near New 242 268 291 0.10 0.89 0.80 0.27
Market, VA
02212600 Falling Creek near Juliette, 187 1202 3.37 0.01 1.19 0.74 0.22
GA
09378630 Recapture Creek Near 10 2195 1.58 0.50 0.50 0.21 0.13
Blanding, UT
11264500 Merced River at Happy Isles 469 1228 2.64 0.91 1.15 1.94 0.73

Bridge near Yosemite, CA

# Annual runoff/annual precipitation.
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gage 02212600; and tmp, hum, swr, wnd, ppt, and prs (most to least
dominant) for gage 11264500. This shows the forcing variables in each
basin that need to have a higher temporal resolution to reproduce the
SurfaceRunoff output in the reference simulation. In this section, we
only presented one example of an inter-basin comparison to illustrate
how different the results can be across different basins. Researchers can
further explore the differences between individual basins using other
plots that can be made using the interactive Jupyter notebooks, and also
reproduce the results from the original VB study.

3.2. Results from performance analysis

Fig. 4 shows the run-time for the data processing notebook (Note-
book 1) and the post-processing notebook (Notebook 3) for the 15 sce-
narios listed in Table 3. Notebooks 1 and 3 are very similar between CJW
CG and HPC computational environments. Notebooks 1 and 3 do not
take a significant time to run because they are only preprocessing and
output analysis notebooks, and no simulations are run. For scenarios
with fewer than 30 simulation years, Notebook 1 takes longer than
Notebook 3, but this changes for scenarios with more simulation years as
the rate of run-time increase with simulation years is much higher with
Notebook 3 than with Notebook 1. For the CJW CG environment, the
average time to run Notebooks 1 and 3 across the tested scenarios only
takes 0.6% of the entire time needed to run all Notebooks 1, 2, and 3.
This means the time required to run data processing and post-processing
notebooks is not a limiting factor for running the simulations. For the
HPC environment, this ratio increases to 8.5% and 11.3% when using
128 and 256 CPUs, respectively. This dramatic increase in the ratio is
due to the significant decrease in run-time of Notebook 2 when using
HPC.

The run-time for the SUMMA execution notebook (Notebook 2) for
the 15 model scenarios using different computation environments is
shown in Fig. 5. The high rate of run-time increase with increasing
simulation years for the CJW CG environment emphasizes that while the
CJW CG environment is technically able to simulate smaller models, it
might not be fast enough to run larger simulations. In the case of running
six basins for six years, the HPC was 3.6 and 2.6 times faster than the
CJW CG, when using 256 and 128 CPUs, respectively. HPC with 256
CPUs (scenario HPC_256_6) could finish the simulations for 120 years
(3% percent of the VB study) in 2nullh and 10nullmin while HPC with
128 CPUs (scenario HPC_128_6) could run the same problem in 1.48

14
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Run-time (min)
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Simulation years (# of basin X each basin sim years)

Fig. 4. Notebook 1 (JN1) and 3 (JN3) run-time performance analysis for
different model simulations (both JN1 and JN3 were run on CJW CG no matter
whether the HPC or CJW CG environment was used for the modeling; therefore,
we do not distinguish between the environments in this figure).
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Fig. 5. Notebook 2 run-time performance analysis for different model simula-
tions using the CJW CG, or HPC (Expanse with 256 or 128 CPUs) options.

times of the time need by HPC_256_6. Using the HPC with 256 CPUs,
assuming a conservative linear extrapolation, the SUMMA simulations
from Notebook 2 are expected to be done in about 75 hours for the entire
VB study. In summary, HPC provides considerably faster simulations
making them ideal to run for larger studies.

When using the HPC resource and in the case of 120 years of simu-
lation, dividing the number of the allocated CPUs by two led to about a
50% increase in the run-time and not 100% as one might expect. This
non-linear scaling can be mainly attributed to (1) communication
overhead in the computational resource that reduces scaling, and (2) the
fact that some parts of the codes in Notebook 2 did not utilize paral-
lelism. For example, KGE values were only calculated after they were
exported as NetCDF files instead of being calculated directly from the
raw SUMMA output files. The rate of run-time increase for HPC with 128
CPUs is higher compared to that for HPC with 256 CPUs. This may be
attributed to the communication overhead because each CPU in the case
of the HPC with 128 CPUs needs to run twice as many simulations
compared to HPC with 256 CPUs.

The run-time for transferring the SUMMA output files from Expanse
HPC to CJW on HydroShare using the Globus service integrated by
CyberGIS-Compute Service is shown in Fig. 6. Each transfer was
repeated 5 times to obtain a range of run-time for each of the model
simulations with a different total number of simulation years. The range
of the transfer time for each total number of simulation years is small,
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Fig. 6. Boxplots for Notebook 4 run-time performance analysis for five
different simulation years to transfer data from Expanse HPC to CJW on
HydroShare. Each transfer was repeated five times to obtain a range of run-time

for each of the model simulations with a different total number of simula-
tion years.



1. Maghami et al.

indicating a consistent data transfer. For 120 years of simulation, it took
14.5nullmin on average to transfer 118 GB of data from HPC to CJW,
highlighting that the data transfer approach from HPC to CJW is fast and
stable. The transfer rate (GB/min) is independent of data size (Fig. 6).
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3.3. Data organization in HydroShare

The data for this study was pre-processed and the output post-
processed by using existing Python packages. The study demonstrates
the potential for using the online repository of HydroShare to not only
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store data and modeling code, but to also store computational envi-
ronments, API version documentation, and container installation.
HydroShare, as a hydrology-based repository service, facilitated this by
allowing all the parts of the problem to be stored together as one
resource. Furthermore, parts of the resource can be extracted and made
into a new version of the resource (updated, revised, or modified), to
promote collaboration.

To this point, a HydroShare collection resource was created that
contained three composite resources. These resources are published and

SUMMA Simulations using CAMELS Datasets for HPC use with

CyberGIS-Jupyter for Water
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have Digital Object Identifier (DOI) which makes them immutable and
findable. Fig. 7 shows the landing page for the HydroShare collection
resource that groups the three composite resources. The three composite
resources that are contained by this collection resource are shown in
dialogue box 1, the “Related Resources” in box 2 refers to this paper, and
box 3 shows the information on how to cite this resource. Fig. 8 shows
the landing page for the HydroShare composite resource holding the
HPC notebooks. Box 1 shows the contents of the resource, most impor-
tantly the four Jupyter notebooks and the readme.md file. The readme.
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Datasets for HPC use with CyberGIS-Jupyter for Water, HydroShare, https://doi.org/10.4211/hs.9d73d61696ee4f6b9c9al1e21cd44e24

1B Copy

Select a license @
Creative Commons Attribution CC BY

Statement
This resource is shared under the Creative Commons Attribution CC BY.
url

http:/creativecommons.org/licenses/by/4.0/

Fig. 8. The HydroShare landing page for the HPC resource developed by this study (Choi et al., 2023c).
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md file (box 2) provides the user with the instructions on how to run the
notebooks. Box 3 shows the information on how to cite this HydroShare
resource.

3.4. Opportunities and challenges

This study demonstrated a real-world working implementation
application of strategies for reproducible hydrologic modeling presented
by Choi et al. (2021) to a large-scale hydrologic study (the VB study).
This section discusses the opportunities and challenges of this imple-
mentation. If one needs to adopt this cyberinfrastructure for studies
significantly differing from the VB study, considerable changes or extra
steps might be needed. For instance (1) if exploring non-CAMELS basins,
then extra steps to prepare the inputs might be needed, or (2) if using
hydrologic models other than SUMMA, then containerization of the
model might be needed. Despite the plausible challenges when making
these non-trivial extra steps, the intended main opportunity here is that
the modeling community can learn from the presented open cyberin-
frastructure considering the commonalities among the hydrologic
models with regard to the input data, preprocessing, processing, and
postprocessing steps needed by them (Knoben et al., 2022).

Minimal changes in the notebooks are required to use the presented
cyberinfrastructure to rerun parts or all of the VB study or to extend the
experiments performed in that study for selected CAMELS basins. With
these minimal changes, a user could use (1) different CAMELS basins, (2)
different parameters in the LHS set, (3) different simulation periods, e.g.,
a drought period, (4) more than 10 LHS sets, e.g., a more thorough
exploration of the parameter space, and (5) additional SUMMA model
configurations. The last two changes, i.e., using a larger number of LHS
sets and different model configuration/decisions, highlights a major
challenge in reproducing a computationally complex study. Here, the
limit on manageable data size was pushed, even when running a few
basins. HPC computational power was required to run the full six years
of simulation; expanding the parameter exploration space or adding
model decisions would compound the data size. Thus, while this work is
advancing cyberinfrastructure used for big data in hydrology, challenges
remain.

The second major challenge that is encountered is implementing
version control. What if users need to run the Jupyter notebooks pre-
sented in this study in their own computational environment (not
deployed on CJW), or they need to install a newer version of a model
API? How can they make sure they have a reproducible framework that
is robust enough to tackle the version control problem? Because there
are many individual pieces of software, it was challenging at times for
the study team to keep all the software versions synchronized. We
propose that future research should tackle the version control challenge
by making the computational environment all documented and instal-
lable via a Python environment file. The pySUMMA code, which is used
for hydrology modeling, was installed via conda just as the rest of the
infrastructure. In the future, Python package updates will break
compatibility, but compatibility can be preserved by installing the older
versions (as documented in the environment file), or the user under-
standing the updates in order to manually work around the updated
package incompatibility. If a researcher wants to use a newer (future)
version of pySUMMA, then they may need to debug some parts of the
Jupyter notebooks that are affected by the changes. While this is not an
ideal way to handle version updates, at least the researcher has options
of a working, albeit older, computational environment, from which to
begin reproducing the study before updating to newer software.

The specifics of the environment can be placed in a Python envi-
ronment.yml file that can be shared as part of the online model and data
repositories, and can be installed with an installation notebook inside
the repository. This can use best practice for transparency about what
dependencies the computational gateway interface notebooks need to
run. The specifics of each dependency can be described in the installa-
tion notebook, so that if in the future there are issues with the
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availability of that dependency, then a suitable substitute can be found.
Version control issues can be thus addressed through this methodology,
albeit an imperfect solution depending on possible user troubleshooting.

In addition to the two major challenges described above, there are
two additional challenges related to the use of the HPC environments:
(1) large data transfers between computational environments, online
data repositories, and a user’s personal computer and (2) allowing users
to execute their workflows on different HPC environments based on
their use case and access to HPC environments. There may be cases, for
example, where users does not want to utilize HPC resources due to
financial cost concerns and need to transfer a large amount of model
outputs from an HPC environment’s temporary scratch directory to a
Jupyter compute environment to further analyze the data using the
Jupyter compute environment. Transferring large datasets, e.g., the
entire output from VB study or even the four selected basins study
explored in this paper, would be slow and unreliable using standard data
transfer approaches, i.e., compress data into a big package and then
transfer it. In this study, we used Globus to do this data transfer which
can transfer multiple individual files in parallel without a need to
compress data a big package, and other related cyberinfrastructures that
do not currently use Globus or a related technology could benefit from
doing so. Globus is not limited to data transfers between the HPC
environment and the Jupyter compute environments (CJW in the case of
this study), however. In fact, it is possible that the full or a large portion
of the model output can be stored on an online data repository or even
on a user’s own personal computer. In either case, the online data re-
pository or the user’s personal computer, the outputs could be down-
loaded using Globus if Globus is installed, and they become a Globus
server. Making a user’s personal computer a Globus server may be the
case that the user prefers to back up a model run not in an online data
repository but at some other location. In this case, Globus could be used
to connect directly with the HPC environment thereby bypassing both
any Jupyter compute environments (CJW in the case of this study) as
well as online data repositories (HydroShare in the case of this study) as
an intermediate storage location. If the large data takes much of the
space in the user’s personal computer, user may consider transferring it
to external hard drives that offer larger capacity. To allow users to
execute their workflows on different HPC environments, users would
need to set up their own job submission service and configure the
Jupyter environment (e.g., CJW) to the specific HPC environment that
they have access to. Although the job submission software used in this
study is open source, it is customized for the UIUC HPC used in the
study, so it cannot be directly used for other HPCs. Future work could be
for CJW to act as a connector to user supplied HPC environments. In this
case, CJW would ask users to provide their own credentials and to their
own HPC, rather than only using the UIUC HPC service. While not a
simple task, standardization of job submission approaches across HPC
environments makes this functionality possible. Generalizing the
approach through future research could benefit users to access their own
institutional HPCs and other HPCs at the national level that the user has
access to.

4. Conclusions

The importance of reproducibility is broadly recognized across
different scientific disciplines. When it comes to computational hy-
drology, this can be a significant challenge. This research shows how an
architecture that integrates the (1) online data repositories, (2)
computational environments, and (3) model API can facilitate repro-
duction of the components of modern and complex hydrologic studies.
For this purpose, we used a recently published large-scale hydrologic
study (VB study) as an example. We designed and built cyberinfras-
tructure that utilized software components to enable intuitive, and on-
line access to computational environments. This approach was used to
remove the potential software inconsistencies from users’ differing
personal software editions, as well as to make implementation easier
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with pre-compiled software, with the added complication of a compu-
tationally expensive research problem instead of a case study. This
approach gave the user the option to use either the CJW CG or HPC
computational environments, depending on how much they need to
reproduce a problem more representative of the big-data problem. Using
HydroShare as the data repository, and containerization of the
pySUMMA API (with Docker or Singularity in the case of the HPC
environment) along with a computational gateway interface of Jupyter
notebooks both hosted on the CJW made this possible. Three Jupyter
notebooks for the CJW CG environment and four Jupyter notebooks for
HPC environment were developed. Notebooks 1-3 for both CJW CG and
HPC environments enable, (1) preparing the forcing data, simulation
period, and study CAMELS basins, (2) executing SUMMA hydrologic
model, and (3) visualization of the results. Notebook 4, only developed
for the HPC environment, enables transferring large data from HPC to
the scientific cloud service (i.e., CJW) using Globus service integrated by
CyberGIS-Compute in a reliable, high-performance and fast way.

We presented a modeling case study subset from the VB study that
served as a motivating use case for the cyberinfrastructure. The case
study showed how four individual basins with different characteristics
can lead to different patterns of temporal aggregation for each of the
forcing variables given the same model setup. The case study served to
show that the developed cyberinfrastructure enables others to reproduce
the VB study for subsets of the original domain as a basis for doing
additional research enabling conclusion-reproducibility beyond bit-
reproducibility.

We analyzed performance of the notebooks focusing on contrasting
HPC and CJW CG notebooks using a variety of model scenarios. The HPC
environments could perform significantly faster simulations compared
to CJW CG, enabling users to explore a large number of basins and
simulation periods. This clearly showed how the use of HPC from a
Jupyter gateway could advance the reproducibility of modern and
complex hydrologic studies. The run-time performance analysis for the
big data transfer notebook for the HPC environment showed that the
method used was stable, reliable and fast. Therefore, similar studies
could easily benefit from the same approach for transferring large data
between scientific cloud services.

With the focus of this research was on conclusion-reproducibility
over bit-reproducibility of the VB study, users can easily modify the
notebooks to test different situations by varying the study basins and
periods, parameterizations, and model configurations. These situations
highlighted two major challenges. First, the complexity of the big-data
problem eventually became large enough that it needed to be run
using the HPC computation environment, which presented other smaller
challenges of data transfer and portability of the HPC environment.
Second, implementation of a version control system was needed (e.g.,
when a user needs to install a newer version of a model API or when a
user needs to run these codes on their local machine rather than the used
cloud-based computational environment). Sharing the dependencies of
the computational environments as a Python environment yml file and
an installation notebook that installs them was discussed as a future
solution to tackle the version control issue.

Finally, as a broader impact, the VB study methodology replicated
with interactive codes could also serve as a valuable educational
resource, allowing educators to present sophisticated modeling experi-
ments for use within classrooms through online Python notebooks.
Likewise, the basic approach could be extended to enable new water
decision-support systems that take advantage of the SUMMA framework
and HPC yet remain easy to interact with through notebooks. This can
help to, for example, evaluate forcing sensitivity to a water resources
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management objective, or explore the parameter and model un-
certainties of SUMMA using different algorithms such as Markov chain
Monte Carlo (MCMC), and Bayesian model averaging (BMA) (Samadi
et al., 2020) in a systematic manner. With more work to harden and
improve the usability of the system presented here, these additional use
cases can be possible.

Resource Description Reference

Original NLDAS forcings for the CAMELS basins can be
obtained as a NetCDF file*

SUMMA Simulations using CAMELS Datasets on CyberGIS-
Jupyter for Water**

SUMMA Simulations using CAMELS Datasets for HPC use
with CyberGIS-Jupyter for Water**

Mizukami and Wood
(2023)
Choi et al. (2023b)

Choi et al. (2023c)

*The data from the CAMELS dataset (Newman et al., 2015a) was consolidated
into one NetCDF file taking advantage of OPeNDAP data services supported by
the HydroShare THREDDS server and web application connector (Tarboton and
Calloway, 2021).

**The SUMMA setup for the CAMELS basins can be obtained from the sum-
ma_camels folder of the HydroShare resources.

List of relevant URLs

CyberGIS-Jupyter for Water: https://go.illinois.edu//cybergis-jupy
ter-water

Docker: https://www.docker.com

HydroShare REST APL: https://www.hydroshare.org/hsapi/
Numpy: https://www.numpy.org

Pandas: https://pandas.pydata.org

pySUMMA: https://github.com/UW-Hydro/pysumma/releases/tag/
v3.0.3

Seaborn: https://seaborn.pydata.org

Singularity: https://sylabs.io

SUMMA: https://github.com/CH-Earth/summa/releases/tag/v3.0.3
xarray: http://xarray.pydata.org

XSEDE: https://www.xsede.org
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FORCINGS
8 Forcing Datasets (F)

NLDAS 1234
NLDAS-2 hourly forcings
ppt1234
Precipitation rate
tmp1234

Air temperature
hum1234
Specific humidity
swr1234
Shortwave radiation
wr1234
Longwave radiation
wnd 1234
Wind speed
prs1234

Air pressure

All F datasets based on the NLDAS-2 hourly data. For datasets 2-8, the
hourly values for the i iatic

CONFIGURATIONS
T 8 Model Configurations (C)
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PARAMETERS
11 Parametersets (P} | | g4, RUNS

e Default 1234 | gy 454, | 4sets of SUMMA model runs

o LHS1 2 4 Default (704 unique runs per basin)
BSE 3 4 1. DEFAULT
e LHS224 * &F x 1P (Default) x 1C (BIL) = 8 runs
o LHS324 SRR ESLEG 2. LHS (includes DEFAULT runs)
o LHS424 e JEZ4 8F x 1P (Default & LHS1-10) x 1C (BIL) = 88 runs
e JIL34 3. CONFIG (includes DEFAULT runs)
e LHS524 8F x 1P (Default) x 8C = 64 runs
o LHSB24 O dEEu 4. COMPREHENSIVE
e LHS724 e JsL34 8F x 11P (Default & LHS1-10) x 8C = 704 runs
. LHS8 2 4 The 3-letter abbreviations define the 2 model decision options

for the 3 model decisions tested (Table 1):
. LHS9 2 4 stomResist: BallBerry (B) or Jarvis (J)
'snowlncept: lightSnow (1) or stickySnow (s)

e LHS1024 windPrfile: Exponential (E) or LogBelowCanopy (L)

The Latin Hypercube Sampling (LHS) sampled 15 parameters 10 times
over their defined ranges (Table 3)

the daily mean NLDAS value over each local time zone day

forcing (3-letter are set to

Fig. Al. An overview of the forcing datasets (FORCINGS; yellow box), parameter sets (PARAMETERS; blue box), and model configurations (CONFIGURATIONS;
green box) used in the 704 SUMMA model runs (RUNS; pink box) performed for each of the 671 CAMELS basins. Note the pink numbers that follow each forcing,
parameter, and configuration refers to the SUMMA model run set as numbered in the pink RUNS box (e.g., the Default parameter set in the PARAMETERS box is used

with SUMMA model runs 1, 2, 3 and 4 in the RUNS box) (source: modified from Van Beusekom et al., 2022).

JN 1: Preprocessing
Prepares forcings, and sets study basin(s) and simulation
period

1_1 Preliminary step
1_1_1 Check the environment
1

1_1_ 2 Import libraries

1_2 Set up paths to SUMMA configuration
files for CAMELS basins

1_2_1 Unzip the folder contatining SUMMA CAMELS
configurations

1_2_2 Set up paths to SUMMA configuration files

:

1_3 Select basins and simlaution period
1_3_1 Retrieve the meteorological forcings

1_3_2 Select basins and simulation period

1_3_3 Slice the forcings to selected basins and
simulaiotn period

1_3_4 Slice the SUMMA CAMELS shapefile to selected
basins

1_3_5 Show the selected basins in map

1_3_6 Slice the SUMMA CAMELS paramters abd
attributes files to selected basins

1_3_7 Make constant intiail conditions

{

1_4 Create forcing files with constant daily
values at their daily means

1_4_1 Write and save the truth forcing

1_4_2 Shifting to local time zones using longitude values
1_4_3 Downsample hourly time-series data to daily data

1_4_4 Upsample back to hourly data and undo time zone
changes

1_4_5 Scale constant SW radiation

1_4 6 Create files with only one variable constant at

their mean daily values

Fig. A2. The preprocessing notebook (JN1) diagram.

1_5 Check processed forcing files through
plotting

1_5_1 Hourly plots of the forcings

1_5_2 Cummulative plots
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JN 2: Running SUMMA

Running the SUMMA model
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2_1 Preliminary step

2_1_1 Check the environment

2_1_2 Import libraries

2_1_3 Choose HPC machine (only for HPC notebook)

[

2_2 Set up paths to SUMMA configuration
files for CAMELS basins
2_2_1 Set up paths to SUMMA configuration files

HPC CJW CG

—config_prob == ¢

:

2_3 Make problem complexity choices

- One of default_prob, lhs_prob, config_prob, or
Ihs_config_prob can be == 1

- Simulation period can be selected same as/within the
range defined in 1_3_2 (conditions applied)

- Initialization days (conditions applied)

Y

2_4 Interacting with SUMMA via the

Distributed object

2_3 Make problem complexity choices

- Only Ihs_config_prob can be == 1

- Simulation period can be selected same as/within the
range defined in 1_3_2 (conditions applied)

- Initialization days (conditions applied)

v

2_4 Set up HPC
Set the executable, writing the start and end files to the
filemanager, and set up workspaces on the HPC

v

2_5 Exploring the parameter calibration
space with a Latin Hypercube Sampling
Make parameter sets selected by using a Latin
Hypercube Sampling to get 10 different parameter sets
for every HRU, in order to explore the calibration space

2_6 Manipulating the configuration of the
pPYSUMMA Objects

Run the parameter space with other model
configurations, to see if the results seen on the default

configuration hold true across the parameter space

2_7 Run the full problem

2_7_1 Cobmine the decisions sets

2_7_2 HPC setup

2_7_3 Submit model to HPC using CyberGIS-Compute
Service

L]

2_8 Compute KGE error on outputs

- Amodified and scaled (range between -1 and 1) version
of the KGE was used

- All KGE codes were moved over to the job submission
service and execute on HPC

Ihs_config_prob

default_prob ==

2_5 Default runs
2_5_1 Run problem with truth forcing
2_5_2 Run problem with constant forcing

v

2_6 Exploring the parameter calibration
space with a Latin Hypercube Sampling
Make parameter sets selected by using a Latin
Hypercube Sampling to get 10 different parameter sets
for every HRU, in order to explore the calibration space

v

2_7 Manipulating the configuration of the
pySUMMA Objects

Run the parameter space with other model
configurations, to see if the results seen on the default
configuration hold true across the parameter space

_8 Run the full problem
2_8_1 Run the truth problem
2_8_2 Plot cumulative ouput for one HRU
2_8_3 Run all the forcings
2_8_4 Debug model

L]

2_9 Compute KGE error on outputs
A modified and scaled (range between -1 and 1) version
of the KGE was used

Fig. A3. Running SUMMA notebook (JN2) diagram.
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Table Al

JN 3: Postprocessing
Explore outputs to find out effect of each fording varible in
each basin

3_1 Preliminary steps
3_1_1 Import libraries

v

3_2 Set up paths to SUMMA configuration
files for CAMELS basins
3_2_1 Set up paths to SUMMA configuration files

!

3_3 Make problem complexity choices
- Suggested to choose the most complex problem ran in

JN2. DO NOT choose one of these to be "1" here, if you
did not choose it or a more complex option to equal "1" in

JN2
v

3_4 Summary statistics of KGE error on
outputs

3_4_1 Divide the decision set

3_4_2 Get the forcing and output names, and find the
HRUs and their locations

3_4_3 Summarize KGE error

v

3_5 Make the results plots
3_5_1 Setup plots

3_5_2 The first set of plots

3_5_3 The second set of plots

Fig. A4. Post-processing notebook (JN3) diagram.

JN 4: Use Globus to Transfer Big Data

Transfer raw output from HPC to CJW using Globus service

4 1 Preliminary step
4_1_1 Enter SUMMA job
4_1_2 Import libraries

'

4 _2 Set up paths to the download folder
Create folders for the raw outputs that will be transfered

over

4 3 Communicate with CyberGIS-
Compute Service SDK

4_3_1 Create session and upload model folder
4_3_2 Submit and monitor the job

4_3_3 Locate the downloaded raw outputs on CIW

Fig. A5. HPC Data transfer notebook (JN4) diagram.

SUMMA output variables chosen for analysis (source: Van Beusekom et al., 2022).

Environmental Modelling and Software 164 (2023) 105689

# Variable Type SUMMA Variable Name Description (units)

1 liquid water fluxes for the soil domain SurfaceRunoff surface runoff (m s-1)

2 AquiferBaseflow baseflow from the aquifer (m s-1)

3 Infiltration infiltration of water into the soil profile (m s-1)

4 RainPlusMelt rain plus melt (m s-1)

5 SoilDrainage drainage from the bottom of the soil profile (m s-1)

6 turbulent heat transfer LatHeatTotal latent heat from the canopy air space to the atmosphere (W m-2)

7 SenHeatTotal sensible heat from the canopy air space to the atmosphere (W m-2)
8 SnowSublimation snow sublimation/frost (below canopy or non-vegetated) (kg m-2 s-1)
9 snow SWE snow water equivalent (kg m-2)

10 vegetation CanopyWat mass of total water on the vegetation canopy (kg m-2)

11 derived NetRadiation net radiation (W m-2)

12 TotalET total evapotranspiration (kg m-2 s-1)

13 TotalRunoff total runoff (m s-1)

14 TotalSoilWat total mass of water in the soil (kg m-2)
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Table A2

Environmental Modelling and Software 164 (2023) 105689

Parameters chosen for Latin Hypercube Sampling (source Van Beusekom et al., 2022).

Parameter Name Minimum Maximum Default Constraints
k_macropore 1.0d-7 0.1 0.0001

k_soil 1.0d-7 1.0d-5 variable

theta_sat 0.3 0.6 variable > critSoilTranspire; > fieldCapacity; > theta_res
aquiferBaseflowExp 1 10 2.0

aquiferBaseflowRate 0 0.1 0.1

qSurfScale 1 100 50

summerLAI 0.01 10 3

frozenPrecipMultip 0.5 1.5 1

heightCanopyTop 0.05 100 variable > heightCanopyBottom
heightCanopyBottom 0 5 variable

routingGammaShape 2 3 2.5

routingGammaScale 1 100000 20000

albedoRefresh 1 10 1.0

tempCritRain 272.16 274.16 273.16

windReductionParam 0 1 0.28

The eight plots generated by Notebook 3 are described as follows:

1. Location of the selected CAMELS basin.

2. KGE values for each CNST forcing dataset (datasets 2-8; Table A2) by output variable using the DEFAULT model runs. This is a subset of Figure 9A
from Van Beusekom et al. (2022) *.

. Boxplots depicting the range in the KGE values for each set of model runs (DEFAULT, LHS, CONFIG, and COMPREHENSIVE; Table A1) by output
variable. Note, boxplots only appear for the model runs selected in Notebook 2. This is a subset of Figure 9B from Van Beusekom et al. (2022).

. Boxplots depicting the range in the KGE values for each set of model runs (DEFAULT, LHS, CONFIG, COMPREHENSIVE; Table A1) by CNST forcing
dataset (datasets 2-8; Table A2). Note, boxplots only appear for the model runs executed in Notebook 2. This is a subset of Figure 9C from Van
Beusekom et al. (2022).

. Ranks 1-7 stacked barplots depicting the relative basin KGE rank counts by CNST forcing dataset (datasets 2-8; Table A2) for the 14 SUMMA
output variables. Note, bars on this plot will only appear if the COMPREHENSIVE basin runs are executed in Notebook 2. This is a subset of Fig. 8
from Van Beusekom et al. (2022).

. Ranks 1-7 stacked barplots depicting the relative basin KGE rank counts by CNST forcing dataset (datasets 2-8; Table A2) for the eight SUMMA
configurations. Note, the complete figure will only appear if the COMPREHENSIVE basin runs are executed in Notebook 2. A stacked bar for the
default configuration (BIL) will be plotted if the LHS basin runs are executed in Notebook 2. This is a subset of Fig. 8 from Van Beusekom et al.
(2022).

. Boxplots for each output variable depicting the range in the seven-summed KGE values (from CNST forcing datasets 2-8) for the eight SUMMA
configurations, or for the default configuration if only the default configuration was run (DEFAULT or LHS basin runs in Notebook 2. This is a
subset of Fig. 6 from Van Beusekom et al. (2022).

. Boxplots depicting the range in the summed SUMMA hourly output variables over the period of record produced using the benchmark (NLDAS)
forcing dataset for the eight SUMMA configuration, or for the default configuration if only the default configuration was run (DEFAULT or LHS
basin runs in Notebook 2). Note, a point will appear instead of a boxplot if only the default parameter set was run (DEFAULT or CONFIG basin runs
in Notebook 2). This analysis is not in Van Beusekom et al. (2022); it is included in the interactive tool to supply users with potential SUMMA
output variable ranges for their selected basin.

* To reproduce the modeling case study presented in the current paper, the selected four basins need to be specified in Notebook 1 (Figure A2, “Step

1_3_2 Select basins and simulation period™) and then Notebook 3 can be used to reproduce Fig. 3 (KGE values using the DEFAULT model runs for each
CNST dataset (datasets 2-8; Table A2), grouped by SUMMA output variable).
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