DEGENERATE STABILITY OF SOME SOBOLEV INEQUALITIES

RUPERT L. FRANK

ABSTRACT. We show that on S!'(1/v/d—2) x S?"1(1) the conformally invariant
Sobolev inequality holds with a remainder term that is the fourth power of the dis-
tance to the optimizers. The fourth power is best possible. This is in contrast to the
more usual vanishing to second order and is motivated by work of Engelstein, Neu-
mayer and Spolaor. A similar phenomenon arises for subcritical Sobolev inequalities
on S?. Our proof proceeds by an iterated Bianchi-Egnell strategy.

1. INTRODUCTION AND MAIN RESULTS

1.1. Motivation. In a fundamental paper, Bianchi and Egnell [4] answer a question
by Brézis and Lieb [8] and show that the Sobolev inequality on R? holds with a
remainder term involving the distance to the optimizers. More precisely, for some
cq > 0 and all u € H'(R?),

IVullz = Sallullza/a—2 = ca fof IV (u = Q). (1)

Here S,; denotes the optimal constant in the Sobolev inequality on R? and Q the set
of its optimizers. Importantly, the right side in (1) involves the square of the distance
to the set of optimizers, and simple examples show that this is best possible, in the
sense that the inequality does not hold with a right side equal to a constant times
IVully infgeo [[V(u — Q)3 for a < 2.

In the last two decades there has been an abundance of stability results for vari-
ous functional inequalities. Examples include, for instance, isoperimetric inequalities
(31, 25, 17, 21], LP-Sobolev inequalities [11, 27, 37, 28], fractional Sobolev inequali-
ties [13], Gagliardo—Nirenberg inequalities [6], Brunn—Minkowski, concentration and
rearrangement inequalities [24, 23, 26, 15, 30], eigenvalue inequalities [36, 10, 7, 33, 1],
solutions to elliptic equations with critical exponents [12, 22, 18], Young’s inequality
[16], Hausdorff-Young inequality [14], etc. Many of these works use strategies inspired
by the paper of Bianchi—Egnell and in essentially all works (exceptions being [28, 23]
and one version of a refined Holder inequality in [10]) the remainder term is quadratic
in the distance to the optimizers.

Our work is motivated by the recent paper [20] of Engelstein, Neumayer and Spolaor
concerning a quantitative version of a Sobolev-type inequality in conformal geometry.
We recall that given a closed manifold M of dimension d > 3 and a class C of confor-
mally equivalent metrics, there is a constant Y (M,C) > —oo such that for all g € C
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and all u € HY(M),
Eglu] 2 Y (M, C)l|ull720/a-2 (a1, -

Here
Eglu] == Vol + 272 pu2)d 2
glu] = y [Vguly + 4(d—1) gU Ug (2)
with R, the scalar curvature of (M, g). The quantities (4(d — 1)/(d — 2))&,[u] and
|| ||iié(/‘(jd 22> (Miny) have the geometric meaning of the total scalar curvature and the

volume, respectlvely, of the metric u*/(4=?)g. The main result of [20] is that, if (M, C)
is not conformally equivalent to the round sphere, then there are constants ¢ > 0 and
a > 2, depending on (M, C), such that for all 0 < u € HY(M),

2 e lu = Qllgn
Eglul =Y (M, C)Jullzausia-2) a1,y 2 € i) W :

Remarkably, while generically (in a sense made precise in [20]) one can take a = 2,
there are examples in any dimension d > 3 where one needs to take some v > 4. The
simplest of these examples is

M =S' () x §*7(1) (3)

with its standard product metric. Here S"(r) C R""! denotes the n-dimensional
sphere of radius r > 0.

The proof in [20] proceeds via a Lojasiewicz inequality and, as far as we see, does
not easily provide a specific value of « for a given (M,C). Therefore we think it is of
interest to determine the optimal « in the example (3). It turns out that a = 4, so this
provides one of the few examples of a stability estimate with an optimal, nonquadratic
remainder term.

We believe that the underlying phenomenon and our way of handling it is of some
interest even beyond the concrete example (3). The basic reason for why there is
no quadratic stability is that the minimizer is degenerate in the sense that there is
a zero mode of the Hessian of the minimization problem that does not come from
symmetries of the set of minimizers. The reason for why there is quartic stability is
that a secondary nondegeneracy condition is satisfied. We stress that this reason for
degenerate stability is different from that in the case of the LP-Sobolev inequality for
2<p<d]l28].

The way we deal with the zero mode of the Hessian and the secondary nondegen-
eracy condition can be thought of as an iterated Bianchi-Egnell strategy. Namely,
while Bianchi and Egnell project on the nearest optimizer, we do the same, but then
zoom further in and project on the nearest zero-mode of the Hessian. This argument
bears some vague resemblance to how in [29] we handled an asymptotic minimization
situation where the expected leading term vanishes. We have not encountered this
kind of argument in the context of stability of functional inequalities and we hope
that it will be of use in related problems.
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The argument, except for the verifcation of the secondary nondegeneracy condition,
is of a general nature, but we refrain from trying to formulate it abstractly. Instead,
we illustrate it in three different circumstances of increasing technical difficulty.

1.2. Main results. We fix 2 < ¢ < oo and set

(2m)”

S = )
q—2

Then, for all u € H'(R/Z),

/01 ((W')* + Su?) dt > S (/01 |u|? dt) z/q. (4)

The constants in this inequality are optimal and equality holds if and only if w is
constant. These facts are well-known and we provide references before Lemma 4.

The following theorem answers the stability question for this inequality involving
the H! distance to the set of optimizers, that is, the set of constant functions.

Theorem 1. Let 2 < q¢ < oo. Then there is a constant ¢, > 0 such that for all
ue H(R/Z),

/01 ((W)?+ Su?) dt — S (/01 ‘u’thf/q - < ol((u')2+5 (u— f01Ud3)2) dt) |

fol((u’)2+Su2) dt

Remarks. (a) Note that

/01 ((u/)2+5 (u — fol uds>2> dt = gelﬂg /01 (((u—¢))? + S(u—c)?) dt,

so the right side in the theorem involves an H' distance of u to the set of optimizers.
(b) The right side is the fourth power of the distance to the set of optimizers. In
Remark 7 we show that the power four is best possible.

(c) Just like in the proof of the Bianchi-Egnell inequality (1) in [4], we will argue by
compactness and do not get a computable value of ¢,.

Our second result is a higher-dimensional version of Theorem 1. Let d > 2 and
2 < q<2d/(d—2). Then, for all u € H*(S%),

2/
IVul? + d u? ) dw > 4 |S9|1-2/4 |u|? dw q (5)
s q—2 T g2 s .

The constants in this inequality are optimal and equality holds if and only if u is
constant. We provide references for these facts before Lemma 12. Here is the analogue
of Theorem 1 for this inequality.
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Theorem 2. Let d > 2 and 2 < q < 2d/(d — 2). Then there is a constant cq, > 0
such that for all u € H*(S?),

d d 2/q
/ (’VU’Q + u2> dw — ——|S?)1=2/4 (/ || dw)
Sd q—2 q—2 Sd

<de <Wu|2 + 5 (=187 [ udw)Z) dw)2
fs«i <|VU|2 + q%qﬂ) dw '

2 Cd,q

Remarks. The same remarks (a), (b) and (c) on Theorem 1 are relevant here, too.
Optimality is proved in Remark 15.

Our third and final result concerns the example (3). In this case it is known and
implicitly contained in Schoen’s work [38] (see Lemma 8 below) that for all u € H' (M),

(d-2)/d
Elu] > Y < / |4/ (=2 dvg>
M

with optimal constant
(d—2)2 ( 2w |
4 Vd—2

Moreover, equality is attained if and only if u is a constant. Here &, is as in (2) and
we note that R, = (d — 1)(d — 2). Our stability result reads as follows.

Y =

2/d 9
-1 _ (d — 2) 2/d
s? |) = (Voly (M) /.

Theorem 3. Let d > 3 and let M = S'(7=) x 8" }(1) with its standard product
metric. Then there is a constant cq > 0 such that for alluw € H'(M),

Eul =Y (/M |24/ (4=2) dvg) e > ¢4 (Elu — (Volg(gj\g/f[i;_l [o wdvy)) ‘

Remarks. The same remarks (a), (b) and (c¢) on Theorem 1 are relevant here. In
particular, since Ry is a positive constant, &,[u] is equivalent to ||ul|,, and the infimum
of &lu — ¢] over all ¢ € R is attained for u = (Voly(M))™! [,, udv,. Optimality is
proved in Remark 11.

The remainder of this paper consists of three sections, devoted to the proofs of
Theorems 1, 3 and 2, respectively. We will provide all the details in the first case and
focus on the additional difficulties in the second and third case.

1.3. Acknowledgements. The author wishes to thank R. Neumayer for several dis-
cussions on the topic of this paper and her seminar talk in January 2021 at Caltech
which motivated this work. J. Dolbeault’s help with references is much appreciated.
Partial support through US National Science Foundation grants DMS-1363432 and
DMS-1954995 and through German Research Foundation grant EXC-2111- 390814868
is acknowledged.
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2. PROOF OF THEOREM 1

In this section we prove degenerate stability for the family of one-dimensional
Sobolev inequalities. The basic idea of the proof will be an iterated Bianchi-Egnell
strategy. We will work throughout in the real Hilbert space H'(R/Z) with the inner
product derived from the norm

Jul == ( / (@) 4 5w?) dt) " (6)

This norm depends through S on the fixed parameter 2 < ¢ < co. We abbreviate

1
H::/ wdt
0

and we denote the L%norm on R/Z by ||ull,.

Inequality (4) appears in an equivalent form involving an ultraspherical operator
in the work of Bakry and Emery [2, pp. 204-205]. Earlier, [32, Appendix B] (see
also [5, Corollary 6.2]) considered the Euler-Lagrange equation of the higher dimen-
sional analogue of (4). Their argument, which works and, in fact, simplifies in the
one-dimensional context, shows that equality holds only for constants; see also [19].
Inequality (4) also appears in [3, Theorem 4], where it is deduced from [34], and an
inspection of its proof again shows that equality holds only for constants.

Lemma 4. Let (u,) C H'(R/Z) be a sequence with ||u,||* = S and ||u,|l, — 1. Then,
along a subsequence,

Up = A (1 +75)
where A\, € R, r, € H'(R/Z) and, for a o € {+1,—1},

1
Moo, ] =0, /rndt:O. (7)
0

Proof. Since (u,) is bounded in H'(R/Z), it is bounded in C*/?(R/Z) and therefore
equicontinuous. Thus, after passing to a subsequence, (u,) converges weakly in H'
and uniformly to a function u € H*(R/Z). By lower semicontinuity, we have ||u* < S
and, by uniform convergence, ||ull, = lim,, o0 ||ts]l; = 1. Thus, necessarily, ||u/|* = S
and u,, converges strongly in H'(R/Z) to u. Moreover, u is a minimizer in the Sobolev
inequality and therefore, by the above discussion, w is constant. Since |lull, = 1, we
have u = o for a o € {+1,—1}. We now set

u
Ap =Ty, rpi=——1.
un
By the above mentioned convergence properties, A\, — ¢ and r,, — 0 in H'. ([l

In what follows an important role is played by the function

g(t) := cos(2t)
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and its translates. The reason for this is that ¢ is a zero mode of the Hessian of the
minimization problem.

Lemma 5. Let (u,) C H'(R/Z) be a sequence with ||u,||* =S and
[unll? = Slluall;

(|t — 2, ||?

—0. (8)

Then, along a subsequence,
Up = A (L4 pin (9(- — tn) + Ry))
where A\, un, € R, t, € R/Z, R, € H'(R/Z) and, for a o € {+1,—1},
An — 0, pn, — 0, |R,|| — 0

and

1 1 1
/ R, dt = / R, cos2m(t —t,)dt = / R,sin2n(t —t,)dt =0.
0 0 0

Proof. Since ||u, — u,||* = infoeg [Ju, — c|]* < ||un||* =5, assumption (8) implies that
||unll; = 1. Therefore the previous lemma is applicable and, along a subsequence, we
can decompose u, = \,(1 4 r,) as described there.

We now expand the terms in the Sobolev inequality to ‘quadratic order’. We use
the fact that, uniformly for 7 € R,

L4l =14 a7+ sala — D + O™ 0 ¢ [7]r).
Thus,
ol = Dol (1407 + G0 = D72+ O 59+ 1, 1))
and

1 1 .
[unllg = [Anl® <1 +54(a — 1)/ 2 dt + (9(||rn||;‘““{3’q})) .
0

(Here we used the fact that 7, has mean value zero and that ||r,||, — 0.) Thus,
1
Jonll2 =2 (14 0= 1) [ r2a+ Ol o) ).
0
On the other hand, again by the mean value zero property,
lunll* = X5 (S + [Irall?) -
Putting this together, we obtain

1
lunll® = Sllunllg = A (/0 ((7)* = Slg = 2)r) dt + 0(||7"n\|2“m{3"’})) .9

Since ||u, — Up||* = A2||7,||%, the expansion (9) shows that assumption (8) is equiv-

JE()? = S(g — 2)r2) dt

[l7al®

alent to

— 0.
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The kernel of the quadratic form in the numerator is spanned by g¢(t) = cos2nt
and sin 27¢t. On the orthogonal complement of this kernel and the negative direction
corresponding to constants the quadratic form is equivalent to ||+ ||*. Thus, if we define

1 1
Q, = 2/ rp, cos 2wt dt | By = 2/ rp, sin 27t dt |
0 0

and s, by
Tn = Qp cos 27t + (B, sin 27t + s, ,

then

1 1 1

/ sndt:/ Sncos%rtdt:/ Spsin2ntdt =0

0 0 0

and
9 1 2 2 2 2 HSnH2
Irall = 5 (@) +5) (034 62) + s, and 4P =0

We set

s
n = a2+ B2, R, = ——.
S NEE
The fact that ||r,|| — 0 implies p, — 0 and the fact that ||s,||/||rn|]| — 0 implies
||R.|| — 0. Finally, we choose t,, € R/Z such that

On cos 27t + Bn

ap + B Vg + 63

and obtain the claimed decomposition. ([l

sin 2wt = cos 27 (t — t,) = g(t — t,)

Lemma 6. Let (u,) C H'(R/Z) be a sequence with ||u,||* = S and ||u,||, — 1. Then

2 2_g9 2 —
ol (l? = STl?) (g + (g~ 2

(10)

The key point of this lemma is that the right side of (10) is strictly positive. While
the precise value of the constant is not important for the proof of Theorem 1, we will
show in Remark 7 that it is best possible.

Proof. Step 1. We pass to a subsequence along which the liminf in (10) is realized. By
Lemma 4 and its proof, |Ju, — || — 0. Therefore, if lim inf, o (||unl]®> = Sllunl2) /
|ty — Wy||? > 0, then the left side of (10) is equal to +o0o. Thus, in the following we
assume that liminf,, o (|[un]|* = Sllun2) /llun — T * = 0.

By Lemma 5, after passing to a subsequence, we can write

Up = A (14 1o (9(- — 1) + Ra)),

where \,, i,, t, and R, are as in that lemma. By translation invariance, we may also
assume that t,, = 0.
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Step 2. We now expand the terms in the Sobolev inequality to ‘quartic order’. We
use the fact that for all 7 € [1/2,3/2], say,
1 1 1
147)" = 1+gr+5alg =17+ zale= V(g =27+ 57a(a=1)(¢=2)(g=3)7" +O(=").
Since p,(g + R,) tends to zero in H'(R/Z) and therefore in L, for all sufficiently

large n, we have |u,(g + R,)| < 1/2 and therefore the above bound is applicable.
Recalling the orthogonality conditions, we obtain

1 1 1
lually = [Aalf (1 + 540 = D (19113 + 1 Ral3) + 3900 — D — 2, / g2, dt

1 .
3000 = D0 = 2Dla = dlgll + O FIRIE + o))

Here we estimated, using the Schwarz inequality,

1
uh / G Ry dt| = O PRI + [0al?)
0

Consequently,
1
lunlly = A% (1 + (g = Dpz, (gl + 1Rall3) + (g — 1)(a — 2)/5;/ 9°R, dt
0

+ (0= D~ 2)(a — 3w lalld — (g —2)(a — 17l

+ O(|/~Ln|3”RnH2 + |:un|5)) .
On the other hand, because of the orthogonality conditions,
lunll* = X5 (S + pllgll® + w1 Rall) -
Putting this together, we obtain

A (lunll® = Sluallg) = p (lgll* = S(a = Dllgll)
1
+ iy (IIRnII2 = 8(g = DIIRull = S(g — 1)(a — 2)un/0 9°Ry, dt)

b (50 =20 - PNl = 1550 - (o= 2)a = 3l

+ O(|Nn|3||Rn||2 + |:un|5) .

1 1 1 3
/ gdt =, / gtdt =,
0 2 0 8
we can simplify this expansion to
1
A2 (lunll* = Sllunll) = pn (HRnH2— S(g = DIIRallz —=S(a—1)(q - 2)Mn/0 9 Ry dt)

(¢+1)(q—1)(qg—2)
32

Using

+ Lt S+ Ol Rall® + |l -
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Step 3. It remains to get a lower bound on the term that is quadratic plus linear in
R,. We expand R,, into a Fourier series,

= Z (ay, cos 2Tkt + by sin 27kt) .
k=2

(For notational simplicity, we do not reflect the dependence of the a; and by on n.)
Note that by the orthogonality conditions there are no terms involving ag, a; or by.
We have

1 oo 1
R Y2 dt = E 21k)? (a2 + b2 and ¢*R, dt = 1@2.
0 2 0

Therefore,

1
I1RA|I* = S(q = DI Rallz — S(a — 1)(q—2)un/0 9" Ry dt — Clpan[| R ||*

— IS (k) - S(g—2) (a2 + ) - S(a— (g - 2%

4,una2

DO | —

ML

i 21k)* + S) (aj + b7)

k=2
- 1
—8 <Z — 1 + b2) — QTMTLCLQ

2

— O ; (k2 + q%) (af + bi))
= %s (((3 — Oy <4+ q%)) az — %unaz)
+ <3 — Ol (4 + qu2)) 2
+Z( — O (k2+ q_%)) (a2+bi)) :

Since p, — 0, we have for n large enough, uniformly in £ > 2,

(k* = 1) — C|pn) (k2+q—%) >0.

l\D

Under this assumption and abbreviating

1
pn =3 — C|uy| (4—1——) >0,
q—2
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we can bound

1
\IRn|!2—S(q—1)|!Rn||§—5(q—1)(q—2)un/o 9" Ry dt — Clpan[| R |*

2 2
q—2 s q—1 q—2 q—1 (q—1)" ,
>1 = B -1 Zg, _ ) -
= 9 (pna2 9 MTZGQ) 2 P Q2 4,0” 2 16 pg Hy,

> M= g E D=2 50 o).

To summarize, we have shown that

A (lanl? = Sln?) 2 sy (O N0=2) (0= DD o,

(¢+2)(¢—1)(g—2)
48
On the other hand, we have, by the orthogonality conditions,

= Sy, +O(| ) -

4 Hun _WHZL 4 s
" = w, — U | (14 0(1)).
= (TP ¥ TRAPE ~ (g = D | 1 (1 + o(1))

Inserting this into the previous bound, we get the claimed asymptotic inequality. [

Remark 7. The bound in Lemma 6 is best possible, both with respect to the power
four and with respect to the constant on the right side. Indeed, it is saturated as
e — 0 for u. = 1+ &g+ eh with h(t) := ((¢ — 1)/12) cos 4wt. In the notation of the
previous proof, this corresponds to pu. = € and R. = £(h + o(1)). The function h is
chosen in such a way that the square that is completed in the previous proof (Step 3)
vanishes to leading order.

We are finally in position to prove our first main result.

Proof of Theorem 1. We argue by contradiction and assume that for some fixed 2 <
q < 00, no such ¢, > 0 exists. Then there is a sequence (u,) C H'(R/Z) such that

nl® (lnl® = Sllunll7)

[ — |

0. (11)
By homogeneity we may assume that |u,||> = S, which implies |Ju,|, < 1.
Using ||u, — u,||* = inf. ||u, — c||* < ||un||* = S we obtain

unll? (llunll? = S||lunl?
ol (ol = S )

n—boo [

> lim inf (1= Juall?) -

Combining this with (11), we deduce that ||u,||, — 1. Therefore, Lemma 6 is appli-
cable and yields (10), which contradicts (11). O

Let us briefly review the previous proof and emphasize its main aspects. Lemma 4
is a standard ingredient in a Bianchi-Egnell-type proof. It decomposes a sequences as
an optimizer plus a small remainder. Lemma 5 is an iteration of this, where now the
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remainder 7, is decomposed as a main term, namely a zero mode, plus a secondary
remainder R,. The proof follows again the Bianchi-Egnell strategy of expanding to
second order, but the crucial difference now is that the linear operator that appears
has a kernel that is not due to symmetries of the set of optimizers. In Lemma 6 we
expand the ‘energy’ to fourth order. The key step is the completion of the square,
which determines the leading order of the remainder R,, in terms of the zero mode.
This is the function h in Remark 7. The problem-specific aspect of this proof is that
to order p2, the ‘energy gain’ by introducing R,,, namely, S(q—1)*(¢—2)/96 is strictly
smaller than the ‘energy loss’ due to presence of g, namely, S(g+1)(g—1)(¢—2)/32. We
think of this as a secondary nondegeneracy condition. By the validity of the Sobolev
inequality, we know that the gain is not larger than the loss. Since it is strictly
smaller, we obtain a stability inequality with a quartic remainder. If the secondary
nondegeneracy condition would not be satisfied and we had equality, we could try to
iterate again and to expand further. From this point of view the Lojasiewicz inequality
in the work [20] says that this procedure stops after finitely many iterations.

3. PROOF OF THEOREM 3
For d > 3 we consider the manifold
M =S (775) x S7H(1)
with its standard metric. Since R, = (d — )(d 2), we have

) 2w /\/d—
Jul® = / /
gd—-1

We will abbreviate ¢ = 2d/(d — 2) and denote the LI(M, dv,)-norm by ||ul|,.

We use intentionally the same symbols || - || and || - ||, as in the previous section.
We hope that this rather underlines the common features of the proofs than creates
confusion.

—92)2
—|— |Vea-1ul* + %M) dw ds.

Lemma 8. Let (u,) C H' (M) be a sequence with ||u,]|> =Y and ||lu,ll, — 1. Then,
along a subsequence,

Up = A (1 +75)
where \, € R, r, € HY(M) and, for a o € {+1,—1},

Mo = 0 (Vol, (M) Y2, [lrall = 0, / rdvy = 0.
M

This lemma can essentially be considered as known. Let us show how it can be
deduced from results in the literature.

Proof. We get an upper bound on the Yamabe constant by taking a constant trial
function. The resulting upper bound is strictly small than the Sobolev constant on
the sphere or equivalently on R¢, namely Sy in (1). Consequently, Lions’s theorem [35,
Theorem 4.1] is applicable and yields relative compactness in H'(M) of minimizing
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sequences. (Note the typo of the statement in [35, Theorem 4.1]; the relative com-
pactness requires a strict ‘binding’ inequality.) In particular, there is a minimizer. By
general arguments, any minimizer is either nonnegative or nonpositive. Without loss
of generality, we can restrict ourselves to nonnegative minimizers.

To complete the proof of the lemma, we need to show that the only minimizers
are constants. We consider the Euler-Lagrange equation satisfied by a minimizer and
follow Schoen [38]. By the maximum principle any nonnegative, nontrivial solution of
the Euler-Lagrange equation is positive. Then, as shown in [9] using the moving plane
method, any positive solution depends only on the variable s. Now an ODE analysis
shows that the only positive solutions are constants. It is at this last step that the
value 1/v/d — 2 of the radius of the sphere enters. O

Compared to the previous section, we slightly change the definition of g. Now it
denotes the function, depending only on the coordinate s in the first factor of M,

g(s) :=cos(Vd—2s).
Lemma 9. Let (u,) C H' (M) be a sequence with ||u,||* =Y and

[un* = Y |3

[[n =

Then, along a subsequence,
Un = An (L4 i (9(- = s0) + R2n))
where An, jin € R, 5, € R/(FSZ), R, € HY(M) and, for a o € {+1,-1},

2
A — o (Vol,(M)™ 4, p, —0, |R,|| — 0
and
/ R, dv, = / R, cosVd—2(s — s,)dv, = / R,sinvd—2(s —s,)dv, =0.
M M M

Proof. The proof of this lemma is essentially the same as that of Lemma 5. The
relevant quadratic form is now

(9t 2 oy~ -y (00 [,
= /M (IVgrl; = (d=2)r?) dv, .

Its kernel is spanned by g(s) = cos(v/d — 2s) and sin(v/d — 2s). Therefore we can
argue as before. O

Lemma 10. Let (u,) C H'(M) be a sequence with ||u,|> =Y and ||u,||, — 1. Then

unll? (Jlunll? = Y || ||? 2)(q — 2
g Ll ol = Yll) _ (0 +2)g 2
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Proof. Step 1. The proof for d = 3,4 follows exactly the lines of that of Lemma 6.
Indeed, in these dimensions one has ¢ = 2d/(d — 2) > 4 and therefore one can expand
|un|? to fourth order even without using the L convergence in Lemma 6. For d > 4,
however, one has ¢ = 2d/(d — 2) < 4 and therefore the quartic expansion of |u,|? is
problematic. To overcome this issue, we first decompose u,, as in Lemma 9 and then
we further decompose

R,=5,+T, with Sn(s) == |Sd_1|_1/ R, (s,w)dw.
§d—1

The function 7;, has the property that for any function ¢ of s alone,

/ w(s)T,, dvy = 0. (12)
M
By orthogonality,

IRAl* = 1ISull® + |1 T0ll?

so ||Ry,|| — 0 implies ||.S,,|| — 0 and consequently S,, — 0 in L>°. This will allow us to
argue for S, like we did in the proof of Lemma 6. But first we need to get rid of the
term T,,, and we do this by a spectral gap estimate.

Step 2. Let us set (assuming without loss of generality that s, = 0)
Up = Uy + AppinTh with Up := A (L + (g + Sn)) -

Then, by a quadratic estimate as in the proofs of Lemmas 5 and 9,

- 1 ~ _ min min
lnllf = Nl llg + 5a(a = DXosiz /M [T dvg + O(| A i BT T 7547

Note that the term linear in T;, cancels by (12) with ¢ = |i,|? ?@,. We also used the
fact that ||75.]l, S ||7%]] — 0. Consequently,

lunllg = |Iﬂn||§+(q—1)Aillﬂnllq‘q+2ui/M [t | T dvg + O (N i [ BB | T [0 54)

In order to simplify the term quadratic in 7}, we need some rough expansions of
Uy. Using ||g + Syll; S 1 one finds without much effort that
[An] ™t [§ = Volg (M) + O(|al)
and
Pl 02 [T by = [ T2 doy+ O T
M M
Thus,

i1+ /M [ |77 T dvg = (Voly (M) 7142/ /MTi dvg + O(|a[™™ 2 T, 7).

On the other hand, because of the orthogonality conditions,

lanll® = [lnll® + A 1Tl (13)
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Putting this together, we obtain
w (lnll® = Yllualls) = 222 (laal* = Yia.7)

I (I\TnIP ~ (g = DY (Vol,(30) 0 [ T2, + 0<|unrmm“’q2}r|m|2>> .

Just like in the proof of Lemma 9, the term quadratic in 7, involves the operator
—A, — (d —2). Since, by (12), T,, is orthogonal to its kernel, which is spanned by
g(s) = cos(v/d —2s) and sin(v/d — 2 s), and to its negative spectral subspace, which

is spanned by the constant function, we have
TP = (g = )Y (Vol, ) 4200 [ T2, 2 T,
M
with an implicit constant depending only on d. Thus, if n is large enough, the error
term O], | {1472 |T,||2) can be absorbed and we conclude that
lnl® = ¥ flunll > llanll* = Ylanll; -

Moreover, we note that

[tn = Wall* = (| — @nll* + An | Tl

Since

[t = @all® = Mgy (Ll + 19al1?) = Aapzllgl?
and ||T,[|> — 0, we conclude that

[l = Tl|* = [l — @n|* (1 + 0(1)) .
Finally, by (13), ||us|| > ||@,]|. To summarize, we have shown that

Un2 Un2_Yun2 'ELHZ an2_Yﬂ/n2
12 (1] | lwnllg) - Nl (Il l]17) (1+0(1).

(With more effort one can show that the o(1) error on the right side is not necessary,
but we will not need this.)

[ 2, — i

Step 3. From this point on, the proof is exactly the same as that of Lemma 6. In
fact, one does not even have redo that argument, one can simply argue by scaling.

Note that 1, are functions depending only on the variable s € S!( \/dlﬁ) If we set
Up(s) = vp(svd — 2/(2m)), then v, is one-periodic and

[7in |2 (11 [* = Y| 13) _ lloall? (lonl® = Sllvnll?)
[ [on — 0n* 7
where on the right side || - || stands for the norm (6) of functions in H'(R/Z) with
S = (27)?/(q — 2). The claimed bound now follows from that in Lemma 6. O

Remark 11. The bound in Lemma 10 is best possible, both with respect to the power
four and with respect to the constant on the right side. This follows from Remark 7
by the same scaling as at the end of the previous proof.
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Theorem 3 follows from Lemma 10 in the same way as Theorem 1 follows from
Lemma 6. We omit the details.

4. PROOF OF THEOREM 2

We fix d > 2 and 2 < ¢ < 2d/(d — 2) and abbreviate, in this section,
d
|ul|? == / (\Vu|2 + uz) dw
s q—2

d
Y = — |42
s

and

Moreover, [|ull; will denote the L?-norm on % and @ = [S~* [, u dw.

Let us briefly comment on the history of inequality (5). By symmetric decreasing
rearrangment, it suffices to prove the inequality for functions that depend only on wgy;
and the resulting inequality was shown in the work of Bakry and Emery [2, pp. 204—
205]. As mentioned before Lemma 4, the inequality appears explicitly in the work of
Bidaut-Véron and Véron [5, Corollary 6.2], who also show that equality holds only for
constant. Their work builds upon [32, Appendix B]. In addition, like (4), inequality
(5) appears in [3, Theorem 4], from which one can also deduce the cases of equality.

Lemma 12. Let (u,) C H'(S) be a sequence with ||u,||> =Y and ||u,||, — 1. Then,
along a subsequence,

Up, = A (1 +70)
where \, € R, r, € H'(S) and, for a o € {+1,—1},

Mo oSV il >0, /rndcu:().
Sd

Proof. The argument is the same as in the proof of Lemma 4, except that one replaces
the compactness theorem of Arzela—Ascoli by Rellich’s. We omit the details. 0J
Lemma 13. Let (u,) C HY(S?) be a sequence with |u,||> =Y and

[ [* = Y| 15

l|tn — W[

— 0.

Then, along a subsequence,
Up = Ap (1 + pin (€ - w+ Ry))
where Ay, pin, € R, e, €S, R, € H' (M) and, for a o € {+1,—1},
Ao = oSV, =0, |R,|| — 0
and, for all j=1,...,d+ 1,

/Rndw:/Rnwjdw:O.
s S
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Proof. The proof of this lemma is essentially the same as that of Lemmas 5 and 9.

The relevant quadratic form is now
2 d d 2 2 2
|Vr|® + r?)dw—(¢g—1)——= [ rPdw= [ (|Vr]*—dr?)dw.
Sd q—2 q—2 Jsa sd
The kernel of this quadratic form is spanned by spherical harmonics of degree one,
that is, by wy,...,wgr1. Therefore we can argue as before. O

Lemma 14. Let (u,) C H*(S?) be a sequence with |u,||* =Y and ||u,||, — 1. Then

g ol Qe =Yl ) (d+ 1)(g = 2)(2d = q(d —2))

i ol = 3d+ 2+ g 1) (1)

Note that the expression on the right side is positive since ¢ < 2d/(d — 2). Its
vanishing for ¢ = 2d/(d — 2) if d > 3 is consistent with the fact that in the Bianchi-
Egnell inequality (1) (and in its equivalent sphere version), one takes the infimum
over the (d+ 2)-dimensional manifold of optimizers, whereas for ¢ < 2d/(d —2) we are
taking the infimum only over the one-dimensional set of constants. Note also that the
constant in (14) coincides with the corresponding expression in Lemma 6 for d = 1.

Proof. Step 1. The proof is similar to those of Lemmas 6 and 14. As in those proofs
we can pass to a subsequence along which the liminf in (14) is realized and we may
assume that liminf,, o ([un]* = Y|un|2) /lJtn — U l* = 0.

By Lemma 13, after passing to a subsequence and after a rotation, we can write

Up = A (1 + pn (9 + Rn)), (15)
where \,, i, and R, are as in that lemma and g(w) = wy. 1.

Step 2. We now restrict ourselves to the simpler case where d = 2,3 and 4 < g <
2d/(d — 2). Then we can expand |1 + 7|9 to fourth order in 7 and obtain as in the
proof of Lemma 6, recalling the orthogonality conditions,

1 1
foally = 0l (18°)+ ata = 1 (1ol + 1RalB) + 50 — o~ 20 [ 57
1
#3000 = (0= 2)(a = 3)lall + Ol IR + 1ol ).
Consequently,
o2 = XIS/ (1-+ (g - D2 S (gl + IR

o= Dla =208 [ R
S

1 B 1 B
+ 5@ —Dle—2)a - 3)1n|SY N glls — 10— 2)(a- 1)1 1S* 729l

+ Ol Bl + |1al)) -
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On the other hand, because of the orthogonality conditions,

d
ol =22 (=5 1871+ 2101 + 211

Putting this together, we obtain

_ d(g—1
(= Ylonl2) = 2 (lo1? - 29Dl

dlg—1
i (Il = S g - v [ 57 0)

d _ d
vt (0= 0P8 Lol - 500~ Dl - Dl
4Ol IR + ).

Using

1 1 3
S VelPdw = | Pdw=——1s° / Yy ——°  igd 16
d/sd‘ gl dw /Sdg w=7750 9 (d+1)(d+3)| - (16)

we can simplify this expansion to
A (= Yl l2) = (-

4 dlqg—1)(q+d)
"2(d+ 1)2(d + 3)

Step 3. It remains to get a lower bound on the term that is quadratic plus linear in

d(g—1
A= DN ~dla - s [ Ao
- 3

+u S+ Ol Rall* + lptal”) -

R,. We expand R,, into spherical harmonics

Ru(t) =Y armYim -

=2 m

Here, for each ¢, (Y)m is an L?(S?)-orthonormal basis of (real) spherical harmonics
of degree ¢. The index m runs through a finite set whose cardinality depends on ¢,
but which will not be important for us. The only thing we will use is that the space
of spherical harmonics of degree zero is spanned by constant functions and that of
degree one by wy, ..., wW4i1-

For notational simplicity, we do not reflect the dependence of the ays,, on n. Note
that by the orthogonality conditions there are no terms involving ¢ = 0 and ¢ = 1.
We have

/Sd|VRn\2dw:eZ2;£(€+d—1)a§,m and /SdRidwz;Em:azm.

Moreover, since wj,; — 1/(d + 1) is a spherical harmonic of degree two and since, by
(16),

2 2 _ 2d d
/Sd(wd+1—1/(d+1)) o= s
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we can assume, without loss of generality, that

@+ 1)2Hd+3) [, 1
Yopo(w) = \/ 2d|S¢| (wd+1 - m) :

Thus, since R, = 0,

2d |S9|
2 nd :/ ; -1 d 1 — .
/Sd g Hn o sd (Wi /(d+1)) By do \/(d + 1)%(d + 3) 42,0

Therefore,

d(q—1)
(q—2)

N ) 24|
= Z;(€(€+d_ 1) —d)ay,, —d(q— 1)Mn\/(d+ 1)2(d+3)a2’0

1R 1 —

IRl = dla = Vo [ 2P = a2,

d ) 2d [S7]
<<d+2—C’|,un| ( (d+1) +m)) azo —d(q - 1)M"\/(d+1)2(d+3)a2’0

+3° (d+ 2 — O (2(d+ 1)+ q%)) i

m£2

22( “d—l)—d—(]lunI((€+d—1)+q%>)azm).

m

Since p, — 0, we have for n large enough, uniformly in ¢ > 2,
d
((l+d—1)—d—Cluy| < (€+d—1)+T2> >0.

Under this assumption and abbreviating

d
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we can bound

d(q—1)
(¢—2)

1R |I* — 1Rall3 = d(q — 1) /Sd 9" R dw — C'lpt || R ||*

2d S
> n 50— d(g—1 n
Z P a’2,0 (q )/"L \/(d+ 1)2<d+ 3) az 0

2
d(qg—1) 2d |S| P(g—1)% 2|8 2
= Pn a0 — 2 Hn | — 2 2 o,
20n, (d+1)%(d+3) 4p2  (d+1)%(d+3)

d?*(q — 1)? 2d |S? d?*(qg —1)? 2d |S?
> a1 L | py = — a-1) |2 | i+ O(| ) -
4p,  (d+1)%(d+3) 4(d+2) (d+1)2(d+3)

To summarize, we have shown that

—2 2 2 4 [ dlg—1)(g+4d) d*(q — 1) d
A (lunll* = Ylunllg) = p (2<d+ 1)2(d+3)  2(d+1)2(d+2)(d + 3)) 1571

+O(|ual®)
_ o dla=Ded—(d=2)0)
" 2(d+1)(d+2)(d+ 3)
On the other hand, we have, by the orthogonality conditions and (16),

= lun —W]* (d+1)
" ANlgl? IR (g =122

S+ Ol -

lun =]l (14 0(1)).

Inserting this into the previous bound, we get the claimed asymptotic inequality. This
completes the proof in the case 4 < ¢ < 2d/(d — 2).

Step 4. In the remainder of the proof we deal with the technical problems arising in
the case where ¢ < 4. Just like in the proof of Lemma 10, the problem is the expansion
of |1 + 7|9 to fourth order in 7, for which we need u,(g + R,,) to tend to zero in L.
While this may, in general, not be the case, in the proof of Lemma 10 we got around
this problem by noting that the L> convergence holds for the spherical mean and the
remainder can be controlled by a spectral gap estimate.

In the present situation we will try to adapt the same proof and also argue by inte-
grating out variables, but the new difficulty will be that the resulting one-dimensional
function does not converge in L uniformly over its interval of definition. This prob-
lem can be overcome by dealing with the boundary and the bulk separately.

To be more specific, consider w,, as in (15) and then further decompose

R,=05,+T, with Sp(way1) == |Sd_1|_1/ Rn(y/1 —wj 10, war)db.
d—1

S

In words, S, is obtained from R,, by averaging over the spheres {((1—w?,,)"/%0,wq1) €

S?: 6 € S¥1} orthogonal to the ey, -axis, parametrized by their height wgy;. The
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function 7,, has the property that for any function ¢ of wyy; alone,
/ O(wgy1) T dw = 0. (17)
Sd
By orthogonality,
1RAl* = 1ISull® + |1 T0lI*,

so | R,|| — 0 implies [|.S,|| — 0. The difficulty compared to the proof of Lemma 10 is
that this does not imply that [|S,|« — 0. To be more explicit,

151 = 1S*7] /0 <(39(Sn(0050)))2 - qiLQSn(COSQ)2> sin®~16 dg

and we note that the weight sin?~!' § degenerates at the boundary 6 € {0,7}. Before
dealing with this problem, we get rid of the term T, essentially in the same way as in
the proof of Lemma 10.

Step 5. Let us set
Up = Uy + Anpin Ty with Up = A (1 + pn(g+ Sn)) -
Then by an expansion to second order, similarly as before,

A2 (ol = ¥ a2) = 272 (il — ¥ 12
i (I = (0 = DY [ 72 ot O P02 T, ).

Just like in the proof of Lemma 13, the term quadratic in 7,, involves the operator
—Aga — d. The kernel of this operator is spanned by wy,...,wqy1 and its negative
spectral subspace is spanned by constants. We claim that 7;, is orthogonal to all these
functions. For constants and wgyq this follows from (17), and for wy, ... ,wy it follows
from the fact that both R, and S, are orthogonal to these. As a consequence of the
orthogonality relations, we have

TP = (a = YIS [ T2do 2 |T R

with an implicit constant depending only on d. Thus, if n is large enough, the error
term O(|p, ™ {1472|T, ||2) can be absorbed and we conclude that

lanll® = Yluallg = llaall* = Y[l -

Continuing to argue as in the proof of Lemma 10 we arrive at

len* (letn 1 = Yllnllg) Nl (l1n]* = Ylianl3)

(14 0(1)).

[n = wn* 142, — i

This accomplishes our goal of removing the term 7,.
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Step 6. It remains to deal with the failure of L* convergence of S,,. We first
assume that d > 2 to present the argument in the cleanest way. Then, for any
function v € H*(S?) that depends only on wg1,

lv(w)| < 6(w)~4D/2|jv||, where 6(w) := dist(w,{(0,...,0,41),(0,...,0,—=1)}. (18)

This follows, for instance, from the well-known inequality, valid for all radial w €
H'(RY),

w(z)| S |~ 22V,
Indeed, in obvious notation,

JOE ( [ s [Cwps ds) "

This implies (18) either by a localization argument or by stereographic projection.

As a consequence of (18), there is a constant C' > 0, depending only on d, such that if
§(w) > Clpn @2 then |, (g(w) + Sn(w))] < 1/2. (Here we also used ||g+ S, || < 1.)
Thus, if we set

w(r)| =

C={wes: §w)<Olu,|”“ 2},

then, by the same arguments as in the proof of Lemma 6,

B N 1
A q/ |, |9 dw = / (1 + qiin(g + ) + 5ala - Dy (g + Sn)2> dw
sd\¢ sd\¢

6 24
+ Ot 19all* + l12al®) -

On the other hand, in C we expand to second order,

N 1
])\n!_q/ |y |? dw = / (1 + qpn(g + Sn) + §q(q — 1)ui(g + Sn)z) dw
c c

-/ (1q<q S (g — 216+ 30250 + ~alg— 1)(g - 2)(q - 3>uig4) o
sd\c

e (|un|mm{3’q} [l sulm 59 o+ [+ sn|qdw> |
C C

Let us bound the remainder term. We let 1 < p < 2* = 2d/(d — 2). (We will later
choose p = min{3,¢} and p = ¢.) Using the fact that g is bounded and that H*
embeds into L?", we obtain

ltinl” [ g+ Sul? dw S [pal? ([ 1917 dw + [ [Sal? dw ) < Jpal” (IC] + |C
C C C

2%

(2*—p)/2*

S

5)

p
2%+

Sn

~ |:un|p+2* + |:un

Here we used |C| ~ |p,|?". A similar argument shows that

/C (éq(q — 1)(q —2)uy(9° +39°Sn) + 2—1461(q —1)(q—2)(q — 3)%9“) dw

= O™ + [ [ Sull2-)
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To summarize, we have

_ - 1
|/\n| q/C |un|qdw = /C (1 + q:un(g + Sn) + §Q(q - 1):“31(9 + Sn>2) dw
1

min{3
).

m ,q}+|ﬂn’2+2*
Adding this to the expansion on S\ C and using the orthogonality conditions, we
finally obtain

+ O(’un‘min{3,q}+2* + ’Nn 2%

Sn

S

o 1 1
An] 79T |2 = IS + 54(a - Dz (lgll3 + 1Sal3) + aa—1)(a - 2)ud /Sd 925, dw

1
+579la =g —2)(g - 3)unllglls
+ Ot P 11Sull® + [ ¥ 1S 3 1 [P 4 [pa [0 +27y

P2 Snller S lpnlPlSnl* +

S

Here we slightly simplified the error terms, using |u,
|12 and 1+ 2 2% > 5.
The upshot is that we have almost the same bound as in the case ¢ > 4, except that
28, I;in{&q} and
the remainder |, |° there is now replaced by |, |°+ |t . These replacements,
however, do not affect the proof. Indeed, the only thing that was important about
the first remainder was that it was o(u2)||R,||* and about the second remainder that
is was o(ul). This is satisfied in the present case and therefore one can proceed in the

same way as before.

the remainder |u,|||R,||* there is now replaced by |1, ||| Sull* + |ptn
|5 |min{3,q}+2*

Step 7. Finally, we briefly address the necessary changes for d = 2. In this case,
inequality (18) holds only with §(w)~® for arbitrarily small « > 0, but not with
a = 0. Moreover, H' is embedded into L" for arbitrary large » < oo, but not for
r = oo = 2*. Thus, if one follows the above proof, these two issues imply that the
remainder estimates in the expansion of [|7,[|? become worse by a factor |u,|™ for
arbitrarily small € > 0. This, however, is still enough to conclude the proof along the
same lines. 0J

Remark 15. The bound in Lemma 14 is best possible, both with respect to the power
four and with respect to the constant on the right side. Indeed, it is saturated as e — 0
for u. = 14 eg 4 e*h with h(wgs1) := (d(q — 1)/(2(d + 2))) (w3, —1/(d+1)). In the
notation of the previous proof, this corresponds to y. = ¢ and R. = ¢(h + o(1)). The
function h is chosen in such a way that the square that is completed in the previous
proof (Step 3) vanishes to leading order.

Theorem 2 follows from Lemma 14 in the same way as Theorem 1 follows from
Lemma 6. We omit the details.
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