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ABSTRACT. We are interested in sharp functional inequalities for the coherent state
transform related to the Wehrl conjecture and its generalizations. This conjecture
was settled by Lieb in the case of the Heisenberg group and then by Lieb and Solovej
for SU(2) and by Kulikov for SU(1,1) and the affine group. In this paper, we give
alternative proofs and characterize, for the first time, the optimizers in the general
case. We also extend the recent Faber-Krahn-type inequality for Heisenberg coherent
states, due to Nicola and Tilli, to the SU(2) and SU(1,1) cases. Finally, we prove a
family of reverse Holder inequalities for polynomials, conjectured by Bodmann.

1. INTRODUCTION AND MAIN RESULTS

Coherent states appear in various areas of pure and applied mathematics, includ-
ing mathematical physics, signal and image processing, semiclassical and microlocal
analysis. Some background can be found, for instance, in [33, 40, 39]. Here we are
interested in sharp functional inequalities for coherent state transforms.

To motivate the questions we are interested in let us recall Wehrl's conjecture [44]
and its resolution by Lieb [23]. Following Schrédinger, Bargmann, Segal, Glauber,
Klauder and others we consider a certain family of normalized Gaussian functions
U4 € L*(R), parametrized by p, ¢ € R. Explicitly,

Vpq(T) 1= (7Th)7i e~z (@=a)* +ipe forall z e R,

where 1 > 0 is a fixed constant. For a nonnegative operator p in L*(R) with Trp = 1
one considers the function

(p,q) — <¢p,q7 pwp,q> )

known as Husimi function, covariant symbol or lower symbol. Thus, to a quantum
state p in L*(R) one associates a function defined on the classical phase space R2.
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Wehrl [44] was interested in the entropy-like quantity

] W 00 0 0> d

RxR

showed that it is positive and conjectured that its minimum value occurs when p =
Vpo.00)Wpo.qo| fOr some pg,qo € R. That this is indeed the case was shown in an
celebrated paper by Lieb [23]. Lieb’s proof was based on the sharp forms of the
Young and the Hausdorff~Young inequalities and showed more generally that, for
power functions ®(s) = s” with r > 1, the quantity

] @ pv) o 1)

RxR

is maximal for p as above. The result for ®(s) = sln s then follows by differentiating
at r = 1, noting that the value for ®(s) = s is a constant independent of p.

In [10] Carlen gave an alternative proof of Lieb’s result, both for ®(s) = s", r > 1,
and ®(s) = slns, and characterized the cases of equality. He also extended the
result to ®(s) = —s" with 0 < r < 1, again including a characterization of cases of
equality. Carlen’s proof is based on the logarithmic Sobolev inequality and an identity
for analytic functions. For yet another proof in the logarithmic case see [27]. For an
interesting recent generalization of Lieb’s result see [13].

In [24], Lieb and Solovej extended the earlier results and showed what they called the
generalized Wehrl conjecture. Namely, for any convex function ® on [0, 1] the quantity
(1) is maximal if p = (V.0 Upo.qo] for some po,qo € R. The Lieb-Solovej proof
proceeds by a limiting argument, based on sharp inequalities for SU(2) coherent states
discussed below. Because of the limiting process, it does not provide a characterization
of the cases of equality. Carlen’s analysis is based on differentiating the power function
®(s) = s" with respect to the exponent r and using the logarithmic Sobolev inequality
for the resulting quantity. We do not know how to adopt this method to deal with
general convex functions .

Our first main result in this paper gives an alternative proof of the theorem of Lieb
and Solovej and includes a new characterization of the cases of equality.

Theorem 1. Let @ : [0,1] — R be convez. Then

1
ds
i [[ 800 3P s 2 22R). Vil 1| 20 [ 3%
RxR 0
and the supremum is attained for v = eiepr’qO with some po,qo € R, 0 € R/2xZ. If ®

15 not linear and if the supremum is finite, then it is attained only for such 1.

Note that the value of the double integral with ¢ = €“1),, ,, does not depend on
Do, qo € R, 8 € R/2x7Z. Tt may or may not be finite, depending on ®. For finiteness it
is necessary that lim, ¢+ ®(s) = 0.
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Under a slightly stronger assumption on ®, we can extend the characterization of
cases of equality to density matrices.

Corollary 2. Let @ : [0,1] — R be convez. Then

! ds

sup H ((Wpgs Ppg))dpdq = p=0 on L*(R), Trp=1p = Wif ®(s) —
0
RxR

and the supremum is attained for p = |Vpy g0 WUpo.qol With some po,qo € R. If ® is
strictly convex and if the supremum is finite, then it is attained only for such p.

Remark 3. The statement and proof of Theorem 1 and Corollary 2 extend, with minor
changes, to the case of higher dimensions. We omit the details.

Coherent states are often closely related to representations of an underlying Lie
group. The coherent states discussed so far are related to the Heisenberg group.
In his paper containing the proof of Wehrl’s conjecture, Lieb conjectured that the
analogue of Wehrl’s conjecture also holds for Bloch coherent states, that is, for a
family of coherent states related to SU(2). After some partial results in [38, 9], this
conjecture was finally solved by Lieb and Solovej in [24]; see also [25] for a partially
alternate proof. Again, they prove a generalized version of Lieb’s conjecture involving
general convex functions ®. However, they employ a limiting argument and therefore
their paper does not characterize the cases of equality. Our second main result settles
this open question by showing that, indeed, equality is only attained by rank one
projections onto a coherent state.

Let us be more specific. As is well known (see, e.g., [19, Chapter II] and [41,
Section VIIL.4]), the nontrivial irreducible representations of SU(2) are labeled by
J € %N, where 2.J + 1 is the dimension of the representation and N = {1,2,3,...}. Let
H be a (2J + 1)-dimensional representation space. Then there are operators Sy, Sa, S3
on H satisfying [S;, 93] = iS5 and cyclically, representing the generators of SU(2).
For any w = (w;,ws,ws) € S? < R3, the operator w - S = w1 S; + weSs + w3S3 has
minimal eigenvalue —J and this eigenvalue is nondegenerate. We choose i, € H
as a corresponding normalized eigenvector. It is unige up to a phase, but since we
are only interested in the state |1, )(1,]|, this choice of the phase is irrelevant for us.
This defines the Bloch coherent states. (We follow here the convention in [33]; other
definitions are based on the mazimal eigenvalue +.J, but this leads to the same family
of coherent states, just interchanging w and —w.)

Theorem 4. Let J € %N and consider an irreducible (2J + 1)-dimensional represen-
tation of SU(2) on H. Let ® : [0,1] — R be convezx. Then
2 4 (* 1 _q
sup{ [ @a P dos ver -1} = 5 [ ot

and the supremum is attained for v = e, with some wy € S?, 0 € R/27Z. If  is
not affine linear, then it is attained only for such 1.
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Note that the value of the integral with 1 = e, does not depend on wy € S?,
0 € R/2nZ. Since ® is bounded, the supremum in the theorem is always finite, in
contrast to the situation of Theorem 1.

Corollary 5. Let J e %N and consider an irreducible (2J + 1)-dimensional represen-
tation of SU(2) on H. Let ® : [0,1] — R be convezx. Then

1
sup{f (W, ph))dw: p=0onH, Trp= 1} = ;l—;f @(S)Sﬁfl ds
s2 0

and the supremum is attained for p = |tu > Wu,| with some wy € S®. If ® is strictly
convez, then it is attained only for such p.

Our third main result concerns coherent states for certain representations of SU(1,1).
After initial results in [3, 26, 6], the analogue of Wehrl’s conjecture was settled recently
by Kulikov in [20], again for general convex functions ®. (In fact, slightly less than
convexity is required in [20].) Kulikov [20, Remark 4.3] also characterizes optimizers
in the case where ® is strictly convex. We extend this to the case where ® is not
linear.

All nontrivial representations of SU(1,1) are infinite-dimensional. Its nontrivial
irreducible unitary representations consist of discrete, principal and complementary
series, as well as limits of the discrete series; see, e.g., [19, Chapters II and XVI; also
(2.20)]. Here we are only interested in one of the two discrete series. The results for
the other one can be deduced from the results below by complex conjugation at the
appropriate places.

Following the notation in [5], the discrete series representation under consideration
is labeled by K € iN\{3} = {1,2,2,...}. Let M be a corresponding representation
space. The generators of the Lie algebra of SU(1,1) give rise to operators Ky, K, K
in H satisfying

K1, Ks| = —iKy, [Ki Ko| =ik, [Ko, K| =iK,.

Moreover, one has

K;— K} —K}=K(K-1),
where K is the number labeling the representations. (There are also representations of
SU(1,1) corresponding to K = %, called limits of the discrete series, but their coherent
state transforms are in some sense degenerate; see Subsection 4.4. We also briefly
discuss the case of arbitrary real K > % after Corollary 7.)

For any (ng,ni,ns) € R? with n2 — n? —n3 = 1 and ng > 0 the operator noKy —
ni1 K7 — ny Ky has minimal eigenvalue K and this eigenvalue is simple. Therefore we
can choose a corresponding normalized eigenvector (which is unique up to a phase).
It is convenient to label this vector not by (ng,ni,n2) by rather by z € D, the open
unit disk in C, using the parametrization

. 2
(no,ma + in2) = (132, 1252) -
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In this way we obtain a family of vectors v, z € D, giving rise to coherent states for
a discrete series representation of SU(1,1).
In what follows, we denote by dA(z) = dz dy the two-dimensional Lebesgue measure

on C.

Theorem 6. Let K € iN\{1} and consider the irreducible discrete series representa-
tion of SU(1,1) on H corresponding to K. Let ® : [0,1] — R be convex. Then

sup { [ (e G20 v em tulhe= 1} = 7 otk i

and the supremum is attained for 1 = €, with some 2 € D, 0 € R/2rZ. If ® is
not linear and if the supremum is finite, then it is attained only for such 1.

Note that the value of the integral with 1 = €%, does not depend on z, € D,
0 € R/2xZ. It may or may not be finite, depending on ®. For finiteness it is necessary
that lim, ¢+ ®(s) = 0.

Theorem 6 proves the uniqueness part of a conjecture of Lieb and Solovej [26,
Conjecture 5.2]. As we mentioned before, the inequality part is due to Kulikov [20].

Corollary 7. Let K € 1N\{1} and consider the irreducible discrete series representa-
tion of SU(1,1) on H corresponding to K. Let ® : [0,1] — R be convex. Then

supUD@«wZ,pw)%: p>0o0nH, Trp—l} QKJ )53k ds

and the supremum is attained for p = |1, )XW, | with some zo € D. If ® is strictly
convex and if the supremum is finite, then it is attained only for such p.

For every real K > %, there is an irreducible representations of the Lie algebra gen-
erated by Ky, K1, K, satisfying the above relations. For K ¢ %N such a representation
does not come from the Lie group SU(1,1) — recall that this group is not simply con-
nected. It does come, however, from a representation of the covering group of SU(1,1)
[32] and we could prove sharp inequalities for the corresponding coherent states. From
an analytic point of view this would lead to the same problem as coherent states for
the affine group, which we discuss next.

The affine group (in one space dimension), also known as the (X + b)-group, has
two nontrivial irreducible unitary representations [2, 12]. Again, we focus on a single
one since the results for the other one can be obtained by appropriate complex conju-
gations. What distinguishes the affine group from the above cases of the Heisenberg
group, SU(2) and SU(1,1) is that different choices of an extremal weight vector lead
to inequivalent coherent state transforms.

We fix a parameter 5 > %, emphasizing that this parameter does not label the
representation, but rather the choice of the extremal weight vector. We consider the
following family of normalized functions v, € L*(R, ), R, = (0,0), parametrized by
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aeR,,beR,
Yap() 1= 26F(25)_% aP Pz emartibe for all z e R, .

(Here we follow the convention in [12]. What we call 3 is called o — § in [26] and they
do not normalize v, in L*(R, ), but choose a different, natural normalization.)

Theorem 8. Let § > 5 and let ® : [0,1] — R be convex. Then

da db 2r (* 1
e DR Wl =1 = o | () ds

supd [ @(lwas o))

R+ xR

and the supremum is attained for 1 = €1y, 4, with some ag € Ry, by € R, 6 € R/277Z.
If ® is not linear and if the supremum s finite, then it is attained only for such .

Note that the value of the double integral with 1 = €¥4),,, does not depend on
ap € Ry, bp € R, 0 € R/277Z. It may or may not be finite, depending on ®. For
finiteness it is necessary that lim, o+ ®(s) = 0.

Theorem 8 settles the equality part of a conjecture of Lieb and Solovej [26, Conjec-
ture 3.1]. For strictly convex @ it had been settled earlier in [20, Remark 4.3]. Clearly,
the assumption of ® not being linear is optimal, since otherwise the supremum is
attained for any 1 € L?(R,).

We note that Theorem 8 has a version for g = %; see Remark 20.

Corollary 9. Let 3> 1 and let ® : [0,1] — R be convex. Then

da db

a?

D) 1
:p=0o0nL*R), Trp=1 :%J @(s)s_ﬁ_lds
0

sup f f (o pthas))

R+ xR

and the supremum is attained for p = |Vay o) Wagpo| With some ag € Ry, by € R. If &
15 strictly conver and if the supremum is finite, then it is attained only for such p.

This concludes the description of our main results, but we would like to draw the
reader’s attention also to Sections 3 and 5 where we prove, respectively, sharp reverse
Holder inequalities for analytic functions, thereby settling a conjecture of Bodmann
9], and optimal Faber-Krahn-type inequalities for coherent state transforms.

The method that we will be using is that from a recent beautiful paper by Kulikov
[20]. He developed this method to solve the Lieb—Solovej conjectures for SU(1,1) and
the affine group. Here we show that it can be adapted to deal with the Heisenberg
and the SU(2) case. We also push the characterization of optimizers a bit further than
in [20], thus leading to the optimal results in Theorems 1, 4, 6 and 8.

Kulikov’s paper in turn seems to be inspired by an equally beautiful recent paper by
Nicola and Tilli [29]. They were the first, as far as we know, to use the isoperimetric
inequality in connection with the coherent state transform to obtain optimal functional
inequalities. (Talenti [43] used a closely related method for comparison theorems for
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solutions of PDEs.) Kulikov proved his results by using instead the isoperimetric
inequality in hyperbolic space and we will prove Theorem 4 by using that on the
sphere. While it is tempting to try to use the same method for more general groups,
an obstacle will have to be overcome; see Subsection 4.6.

Nicola and Tilli proved Faber—Krahn-type inequalities for the Heisenberg coherent
states. We will show that their main result (at least without the characterization of the
cases of equality) follows from Theorem 1 and we will use this idea to prove analogues
of their results for coherent states based on SU(2), SU(1,1) and the affine group; see
Section 5. For further developments started by [29] see, for instance, [35, 30, 18].

After this paper was submitted for publication, we learned that Aleksei Kulikov,
Fabio Nicola, Joaquim Ortega-Cerda and Paolo Tilli have independently obtained sim-
ilar results with similar techniques. These results have appeared in preprint form [21].

Thanks are due to Eric Carlen, Elliott Lieb and Jan Philip Solovej for many dis-
cussions on the topics of this paper.

It is my pleasure to dedicate this paper to David Jerison on the occasion of his 70th
birthday. His papers have been an inspiration for me, those on sharp inequalities [17]
and others. I am particularly indebted to him for his remarks in the fall of 2008, which
indirectly were a great motivation for work that eventually led to [14].

2. INEQUALITIES FOR ANALYTIC FUNCTIONS

The main ingredient behind the results in the previous section are sharp inequalities
for analytic functions and the characterization of their optimizers, which we discuss
in the present section.

2.1. Definitions and main result. There are three different types of inequalities,
corresponding to the cases of the Heisenberg group, SU(2) and SU(1,1). We refer to
these different scenarios as Cases 1, 2 and 3. In Cases 2 and 3, there is a parameter
J e %N and « > 1, respectively, that is fixed in what follows.

In Case 1, we consider functions from the Fock space F?(C), that is, entire functions
f satisfying

£l = ( [ it dA<z>>”2 .

We recall that we write dA(z) = dz dy for the two-dimensional Lebesgue measure. In
Case 2, we consider functions in Py, that is, polynomials f of degree < 2J endowed
with the norm

1/2
T (2‘” L[ 1R 0y dA<z>) .

™
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This norm is finite for any f € Pyy. In Case 3, we consider functions from the weighted
Bergman space A2(DD), that is, analytic functions f on the disk D satisfying

1£]Laz = (“ — [ rra =y dA<z>)l/2 <o

™

To treat all cases simultaneously, we set

F*(C) in Casel,
H =< Py in Case 2,
A%2(D) in Case 3,
and denote the norm in #H by || - |-
Thus, the set on which the relevant functions are defined is
Q.- {C in Cases 1 and 2,
D in Case 3,

and the relevant measure is
dA(z) in Case 1,
dm(z) = S 711+ |2*)"2dA(z) in Case 2,
7711 —|2]*)72dA(2) in Case 3.
To a function f € H, we associate a function uy on €2, defined by

|f(2)|e"31F in Case 1,
up(z) == [f(2)|(1+|z[*)~/ in Case 2, (2)
1£(2)|(1 = [2]?)*? in Case 3.

The problem that we are interested in is to maximize, given a convex function @,
the quantity

f D(ug(2)?) dm(2)
Q

over all f € H with || f|| = 1. Our main result will characterize the set of f’s for which
this supremum is attained. This set M < {f € H : || f]| = 1} is defined as follows. In
Case 1, we consider the functions F),, parametrized by w € C, given by

Fu(2) := e 2P+ forall ze C,
and set
M:={"F,: weC, §eR/2nZ}.
In Case 2, we consider the functions F,,, parametrized by w € C u {0}, given by

1 — \2J
Fy(2) = %, w# 0, Fo(z):=2*  forall zeC,
w
and set

M:={e"F,: weCu{w}, 0eR/2rZ}.
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In Case 3, we consider the function F,,, parametrized by w € D, given by

(1w

Fulz) := (1 —wz)

forall ze D,

and set
M:={e"F,: weD, 0eR/2rZ}.

In each case it can be verified that F,, € H and that ||F,|| = 1 for all w in the
respective index set. Indeed, this can be seen by a direct computation for w = 0. For
a general w we use the fact that the functions up, are equimeasurable, that is, for
every £ > 0, the measure m({ur, > k}) is independent of w. As a consequence of
the equimeasurability the norm in H is independent of w. The equimeasurability in
turn is a consequence of the fact that F,, is obtained from, say, Fy by the action of
the Heisenberg group, SU(2) or SU(1,1) in the respective cases and of the invariance
of the measure m under this action.
The following is the main result of this section.

Theorem 10. Let ® : [0,1] — R be convex. Then

sup { [ @uste)dmtz) s g, 111 -1

Sé P(s)sds in Case 1,
=<2t Sé ®(s)s2r L ds in Case 2,
a~! Sé ®(s)s~aLds in Case 3,

and the supremum is attained in M. If ® is not affine linear and if the supremum is
finite, then it is attained only in M.

We will prove this theorem in the next subsection, after establishing some lemmas.

2.2. Proof of Theorem 10. We begin the proof of Theorem 10 by recalling a simple
and well-known bound on the supremum of u;. This bound shows that u; < 1 for
Ifll = 1, so ®(u}) appearing in the theorem is well defined for ® defined on [0, 1].
The characterization of the cases of equality in the inequality u; < 1 will eventually
lead to the corresponding characterization in Theorem 10.

Lemma 11. Let f € H. Then

[ugllz=@ < Il

with equality if and only if either f =0 or ||f||~'f € M.

Proof. In Case 1, this is essentially [29, Proposition 2.1]. Indeed, there the inequality
in the lemma is proved and it is shown that u; tends to zero at infinity. The latter fact,
together with continuity, implies that there is a z € C such that |uy| ;=) = ug(2),
and then [29, Proposition 2.1] implies || f||~'f € M, provided f # 0.
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In Case 2, the inequality is mentioned in [9, Paragraph after Remark 3.2]. Since
the function uy extends continuously to a function on the Riemann sphere C u {0},
there is a z € C U {00} such that |us| o) = us(2), and then one obtains the equality
condition from that in the Cauchy—Schwarz inequality.

In Case 3, the inequality and the fact that u; tends to zero as |z| — 1 is mentioned
in [20, (1.1) and the paragraph thereafter|. As in the other cases, from the latter fact
one can deduce the equality condition. Let us add some details concerning the facts
mentioned in [20]. To carry out the proof of the inequality, one can, for instance, use
6, (5)] and argue as in [29, Proposition 2.1]. To deduce the vanishing of u; on oD,
one can observe that this is true when f is a polynomial and that those are dense in
A2(D) by [6, (5)]. O

We now come to the core of the proof of Theorem 10, which concerns a certain
monotonicity of the measure of superlevel sets of uy. In Case 3, the following lemma
and its proof are a special case of [20, Theorem 2.1]. Our contribution is to extend
the reasoning to Cases 1 and 2. (Indeed, similar arguments in the setting of Case 1
have already appeared in [29, Theorem 3.1]; in particular, inequality (3) is the same as
29, (3.17) combined with (3.10)]. Note, however, that the authors of [29] use Lieb’s
inequality as an ingredient and do not reprove it using their method, in contrast
to what we do here; see, in particular, [29, Theorem 5.2].) We also point out that
arguments of this type are reminiscent of those of Talenti in [43].

Lemma 12. Let f € H and (k) := m({uy > K}) for k > 0. Then the function

—2Ink —p(k) in Case 1,
k> <k 7(1—p(k)  in Case 2,
ka(—1—p(k)) in Case 3,

is nondecreasing on (0, |uf|w). Moreover, if f € M, then this function is constant.

Proof. Writing M := |uy| 1= (q) for brevity, we observe that, by Sard’s theorem (noting
that uy is real analytic on Q viewed as a subset of R?), for almost every x € (0, M),
{uy = K} is a smooth curve (or, possibly, union thereof). Denote one-dimensional
Hausdorff measure on this curve by |dz|, we have, by the co-area formula,

to
jg@wwwwmazjj' o(e,y) |dz| dr
Q 0 J{us=r}

Let
dm(2) 1 in Case 1,
L AmE) ) 2)—2 :
w(z) : JA(2) (1 +|2]%) in Case 2,
71— |2)*)? in Case 3.
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Taking g = [Vuy|'wly,>ry1{jvu,20; and noting that m({|Vus| = 0}) = 0 by real
analyticity, we find, for any x € (0, M),

M
(k) = J J |Vuy | w|dz| dr .
K {up=r}

Thus, p is absolutely continuous on compact subintervals of (0, M] and for almost
every k € (0, M),

p = [ el
{up=r}
For a curve v in € let us set
€)= | Violdzl.
8!
In particular, for the level set {uy = k} we obtain, by the Schwarz inequality,

g =P < | Vg wldel | (9l

{up=r} {uy=r}

As we argued before, the first term on the right side is —pu/(k). Let us consider the
second term. Since the outer unit normal vector field v to {u; > x} on the boundary
{uy = K} is given by —Vuy/|Vuy|, we have |Vuys| = —kv - V(Inuy) and therefore, by
Green’s theorem,

f{ } |Vugl||dz| = —/-@f AlnusdA(z).
'U,f:K/

{up>r}
To compute the Laplacian of Inu; we recall that f is a positive weight times the
absolute value of an analytic function. On the set {u; > &} the analytic function
does not have zeros, so the logarithm of its absolute value is harmonic there. Thus,
the Laplacian of Inuy coincides with the Laplacian of the logarithm of the weight.
Explicitly,

—ZAJz|? = =27 in Case 1,
Alnuy = ¢ —jAIn(1 + [z|*) = —45(1 + |2]*) 2 in Case 2,
SAIn(1 — [z*) = —2a(1 — |2]*) 2 in Case 3.
Note that the right side is equal to a constant multiple of w and therefore
21k p(K) in Case 1
J \Vuy||ldz| = < dmjrp(s) in Case 2,
tuy =l 2rakp(k) in Case 3.
To summarize, we have shown that
=21k (k) (k) in Case 1
(({uy = K})* < —dnjrp (k)p(k) in Case 2,

—2makp (K)p(k) in Case 3.
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We now use the isoperimetric inequality to bound the left side from below; for refer-
ences in the spherical and hyperbolic case see, for instance, [31, (4.23)], as well as [§],
[22, Third part, Chapter IV], [34, 36, 37]. We have

47rm(A) in Case 1,
((0A)? = < drm(A)(1 — m(A)) in Case 2,
47rm( )(1+m(A)) in Case 3.

Using these inequalities with A = {u; > rx}, dividing by p(x) (which is nonzero
for Kk < M) and combining the resulting inequality with the above upper bound on
(({uy = K})?* we obtain

2 < —rp/(K) in Case 1,
1 —p(k) < —jri (k) in Case 2, (3)
L+ p(k) < =5k (k) in Case 3.

These inequalities are equivalent to the monotonicity assertions in the lemma.

It remains to verify that this function is constant if f € M. By the equimeasurability
discussed before the statement of Theorem 10 it suffices to prove this for f = F € M.
For all Kk < 1 we have

§oL(e 3P > k) dA(z) = —2lnk in Case 1,
m({up, > K}) =<7 L1+ [2]2)77 > k) (1‘1?;2))2 =1— k7 in Case 2,
7, 11— [2?) 2>m)%=m_%—l in Case 3.

It follows that for f = F{ the function in Lemma 12 is, indeed, constant. O

The last ingredient in the proof of Theorem 10 is an inequality due to Chebyshev [11];
see also [16, Theorems 43 and 236|. For a proof of the following lemma, with a slightly
weaker assumption than monotonicity of one of the functions see [20, Lemma 4.1].

Lemma 13. Let to > 0 and let w, h be nondecreasing functions on [0,ty]. Then

fo h(Hw(t)dt = ty" Jto h(t) dt fo w(t) dt .

0 0 0

We are finally in position to prove the main result of this section.

Proof of Theorem 10. We begin with some preliminary remarks concerning convex
functions ® on [0,1]. We first argue that without loss of generality we may assume
that @ is continuous on [0, 1]. By convexity, it is continuous on (0, 1), so we only need
to discuss the endpoints. It is elementary that ®(0%) := lim, o+ ®(s) and ®(17) :=
lim, ;- ®(s) exist and are finite. (Note that these limits are < ®(0) and < (1),
respectively, so in particular they are not +oc0.) By analyticity, m({uy = 0}) =

m({f = 0}) = 0, so on this set we may replace ®(0) by ®(0*) without changing the
value of the integral. Similarly, by Lemma 11 and its proof, {uy = 1} consists at most
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of one point, so on this set we may replace ®(1) by ®(1~) without changing the value
of the integral. Thus, we may assume that ® is continuous on [0, 1].

Next, we argue that we may assume that (0) = 0. In Case 2, m is a finite measure,
so this can be accomplished by replacing ® by ® — ®(0), which has a trivial effect on
the supremum. In Cases 1 and 3, we take f € M and see from the explicit form that
uf(z) = 0 as |z| - o in Case 1 and |z| — 1 in Case 3. (In fact, this holds for any
f € H, as discussed in the proof of Lemma 11, but this is not needed here.) It follows
that, if ®(0) # 0, then the supremum is equal to +0o and this value is achieved by all
f € M, so the assertion of the theorem is true in this case. Thus, in what follows we
may assume that ®(0) = 0.

After these preliminaries we begin with the main part of the argument. Let f e H
with [|f|| = 1. We define uy by (2) and set

S0 += H“fH%w(Qy

Then the quantity we are interested in can be written as

S0
JQ ®(uys(2)?) dm(z) = L m({u} > s})®(s)ds.
Here @' denotes either the left or the right-sided derivative of ®, which are known
to exist everywhere and to coincide outside of a countable set [42, Theorem 1.26].
We also used the facts that ® is absolutely continuous [42, Theorem 1.28] and that
®(0) = 0.
We now write the quantity on the right side as

o) (—Ins — g(s%)> ’(s) ds in Case 1,
o (1= s%g(s%)> d'(s)ds in Case 2,
o (—1— sig(sé)> '(s)ds in Case 3,

1
where, according to Lemma 12, k — ¢(x) is nondecreasing on (0, s¢). In particular,
when @ is the identity, we obtain, in view of the normalization of f,

5o <— Ins — g(s%)> ds in Case 1,
L=|fIP =3 @2J+1)§° <1 - s%g(s%)> ds in Case 2, (4)
(a—1)§° (—1 — s‘ég(s%)> ds in Case 3.
Let us set
S0 in Case 1,
2J+1
lo =1 s5*’ in Case 2,
a—1

Sp® in Case 3,
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and, for 0 <t < t,

g(t2) in Case 1,
h(t) :== < g(tz 27T T) in Case 2,
g(t7aD) in Case 3.

Then the normalization (4) can be equivalently written as

éo (—Int — h(t))dt in Case 1,
1={2J§" (t_ﬁ - h(t)) dt in Case 2,
o (t)o (—tﬁ - h(t)> dt in Case 3,

while the quantity to be maximized is

(t]o (—Int — h(t)) w(t)dt in Case 1,
J D(us(2)?)dm(z) = < 2J Sto <t T — h(t) )w t)dt in Case 2, (5)
? « ( toT — (t)) w(t) dt in Case 3,
where, for 0 <t < t,
d'(t) in Case 1,
w(t) = (D’(tﬁi T) in Case 2,
P'(ta-1) in Case 3.

Since @ is convex, @’ is nondecreasing and therefore w is nondecreasing as well. Also,
h is nondecreasing since ¢ is. Thus, Lemma 13 is applicable and, for given ¢y, an upper
bound on the right side of (5) is obtained by replacing the function h by the constant
ty! S t)dt. According to the normalization, we have

i fo h(t)dt = C(to),

0

where, for 7 € (0, 1],

—r ' — 7t {{ Intdt in Case 1,
C(r) =< —2J) trt + 771 ST ¢ 27 in Case 2,
—a~tr b=t 7 taT dt in Case 3.

Thus, we have shown the upper bound

L B(ug(=)?) dim(z) < Alto) (6)
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where, for 7 € (0,1],

§o (—Int — )) (t)dt in Case 1,
A(T) = QJSO (t 7 — >w t)dt in Case 2,

af] (—tﬁ —O(r )) w(t) dt in Case 3.

Our goal now is to show that A is nondecreasing in (0,1]. Since, by Lemma 11,
to < 1, inserting this into (6) gives us the upper bound A(1). Later, we will argue
that this is the claimed optimal bound and discuss the cases of equality.

In order to prove the monotonicity of A, we first compute

—rt—Int+1 in Case 1,
C(r) =< =) 11+ 2‘];17' 7 in Case 2,
N = in Case 3.

«

From these expressions one easily deduces that C’ > 0 in (0,1). Another consequence
that we will use soon is that

—Int—-C(r) - C'(7)7 in Case 1,
"(T)T in Case 2, (7)

T in Case 3.

We now compute

(—In7 —C(1))w(r) = C'(1) [ w(t)d in Case 1,
A(r) = {27 (777 = C(0) wir) - 20C'(r go in Case 2,
a (—Tﬁ - C(T)) w(r) —al’(7) § w(t )dt in Case 3.

Since w is nondecreasing, we have § w(t) dt < Tw(r). This, together with C'(7) > 0,
implies

(—In7 —10(7)) w(r) — C'(1)Tw(T) in Case 1,
Aty =<2J (T_m — C(T)) w(t) —2JC"(1)Tw(T) in Case 2,
a <—Tﬁ - C’(T)) w(r) — aC'(T)Tw(T) in Case 3.

According to (7), the right side is equal to zero in all cases. This proves that A’ > 0
n (0, 1].

As mentioned before, the monotonicity of A allows us to replace A(ty) by A(1) in
(6). We claim that this bound is optimal. Indeed, if f € M, then, by the second
part of Lemma 12, ¢ is constant. Thus, also A is constant and nothing was lost when
applying Lemma 13. This proves that in this case (6) is an equality and, since ¢ty = 1
by Lemma 11, we have shown the claimed optimality.

Finally, assume that A(1) < oo and that ® is not affine linear. Then @’ is not
constant and neither is w. We deduce that there is an € > 0 such that the inequality
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§ow(t)dt < Tw(r) is strict for all 7 € (1 —&,1]. This, together with the fact that
C'(1) > 0 for all 7 € (0,1) implies that A’(7) > 0 for all 7 € (1 —¢,1). In particular,
A(r) < A1) if T € [0,1).

As a consequence, if f € H with || f|| = 1 attains the supremum in Theorem 10,
then necessarily to = 1. Then, by Lemma 11, f € M, as claimed. This completes the
proof of Theorem 10, except for the explicit value of the supremum.

To compute the latter, we may choose an arbitrary element in M and it is convenient
to take f = Fy = 1. Then we obtain, by integrating in radial coordinates,

27 SSO (e ™) rdr in Case 1,
J D(up,(2)*)dz = {257 @((1+ 7)) (1 +r?)2rdr in Case 2,
. 2§ D((1— 1)) (1 — )2 dr in Case 3.

Changing variables s = ™, s = (1 + r2)">/ and s = (1 + 7%)* in the three cases we
easily arrive at the claimed formulas. 0

2.3. Extension to density matrices. In this subsection we generalize the inequality
in Theorem 10 and, under a slightly stronger assumption on ®, we characterize the
cases of equality. We use an argument similar to [23, Lemma 2].

Given an operator p = 0 with Tr p = 1 on one of the Hilbert spaces H, we define a
function u, on 2 as follows. We can write

p:an|fn><fn| with anzla anO, <fn7fm>:5n7m~

We then set

2

u(z) = <2pnufn<z>2>

It is easily checked that this is well-defined. (Note, in particular, the nonuniqueness
of the above decomposition of p in the case of a degenerate eigenvalue.) Moreover, for
p = |f){f], this definition of u, coincides with the earlier one of u;.

Corollary 14. Let @ : [0,1] — R be convex. Then

sup {L ®(u,(2)?)dm(z): p=0onH, Trp= 1}

Sé P(s)sds in Case 1,
=< (2J)! Sé ®(s)s21 " ds in Case 2,
(2K)7'§; ®(s)s~ o ds in Case 3,

and the supremum is attained for p = |F)(F| with F € M. If, moreover, ® is strictly
convex and if the supremum is finite, then it is attained only for such p.
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Proof. We use the above expansion of p. By convexity of ®, for any z € €Q,
B(uy(2)?) = Y paug, (2)°) < D pa®luy, (2)%).
Thus, with S denoting the supremum in Theorem 10,
L D (uy(2)?) dm(2) < 3 pa L D(uy, (2)?) dm(z) < Y puS = 5.

Since, by Theorem 10, S is attained for p = |F)(F| with F' € M, we obtain the first
assertion in the corollary.

Now assume that S < oo and that equality is achieved for some p. If ® is not linear,
then, by Theorem 10, f,, € M for each n. (Throughout we restrict ourselves to values
of n for which p,, > 0.) Moreover,

@(anufn(z)Q) = Epnq)(ufn(z)Q) for a.e. z € Q.

Assuming now that @ is strictly convex, we deduce that uy, (2)? = uy,(2)* for a.e.
z € Q and every n. Thus, by continuity, |f,(2)| = |fi(2)| for all z € 2 and all n. By
analyticity, there are ,, € R/27Z such that f,(z) = € f1(2) for all z € Q. (Indeed, by
the maximum modulus principle f,,/f; is equal to a constant in 2 without the zeros
of fi and then by continuity in all of ©.) Since {(f,, fi) = d,.1, we conclude that there
is only a single index n, namely, n = 1. ([l

2.4. Another inequality of Kulikov. For later purposes, in this subsection we
record another inequality from [20] which corresponds, in some sense, to the limiting
case a = 1 in Theorem 10.

The underlying Hilbert space is the Hardy space H?(ID) consisting of all analytic
functions f in D such that

™ ' 1/2
) = (sup<2w>—1f uxréWM2d¢) <.

O<r<1 —
To emphasize the analogy with Theorem 10 we denote this space by H and its norm
by || - ||. We also use the same notation 2 and dm(z) as in Case 3. The function uy is
defined by (2) with @ = 1. The functions F,, are defined as in Case 3 with o = 1 and
one easily checks that they are normalized. The set M is defined as before.

Proposition 15. Let @ : [0,1] — R be nondecreasing. Then

wp{L®WA@%dm@>:feH,HfH=1}:Jq¢@w*ds

0
and the supremum is attained in M. If ® is strictly increasing near 1 and if the
supremum is finite, then it is attained only in M.

By ® being ‘strictly increasing near 1’ we mean that ®(s) < ®(17) for all s < 1,
where ®(17) := lim,_,;- ®(s). We will see in the proof that uy < 1, so the quantity in
the supremum is well defined.
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Proof. The first part is a special case of [20, Theorem 1.1]. The second part can be
obtained by an inspection of the proof of the first part, but, since this is not explicitly
stated in [20], we provide some details. As in the proof of Theorem 10, we may assume
that ®(0) = lim, o+ ®(s) = 0. Then

S0

| e amtz) = | st aogs).

0
where sg 1= HufH%OC(Q)' By an analogue of Lemma 11, we have so < 1 [20, (1.2)] with
equality if and only if f € M. The argument for the latter assertion is essentially
the same as in Lemma 11, using the fact that us(2) — 0 as |z| — 1, stated in
20, paragraph after (1.2)], and the cases of equality in the Schwarz inequality for a
reproducing kernel (see also the proof of Proposition 19 below).

As shown in [20, Theorem 3.1], we have u(x) < (k72 — 1) for all K > 0 and this

bound is an equality if f € M. Thus,
1

fo 1(sH) dd(s) < f(s—l 1) dd(s) — f (571 — 1) dd(s),

0 0 S0

where the first term on the right side corresponds to the value of the supremum. Thus,
if this term is finite and f attains the supremum, then the second term on the right
sides has to vanish. If ® is strictly increasing near 1, then the measure d®(s) does not
vanish on any interval (1 — ¢, 1) with £ > 0 and therefore, necessarily, sy = 1. By the
above, this means f € M, as claimed.

To compute the value of the supremum we can proceed exactly as in Case 3 of
Theorem 10, setting a@ = 1 in that calculation. This proves the proposition. 0

3. REVERSE HOLDER INEQUALITIES FOR ANALYTIC FUNCTIONS

The material in this section is an extension of that in the previous section. It is not
relevant for the proof of the results in Section 1.

In Theorem 10 we were working under a constraint on a Hilbertian norm. It turns
out that this is an unnecessary restriction. We will now prove a generalization of
Theorem 10 with a constraint on a more general norm or quasinorm. This will allow
us to settle a conjecture by Bodmann [9, Conjecture 3.5].

We continue to use the notation of Section 2. For 0 < p < o0, we define

<§ S(c ‘f(z)|pefp%|z|2 dA(z)>1/p in Case 1,
171l =y (B 5L 1 £(2) (1 + |21 P2 dA(2)) " in Case 2,
(S22 5, £ ()P (L — |22p5 2 dA(2)) 7 in Case 3.

This is a norm for p > 1 and a quasinorm for p < 1. The prefactors are chosen such
that [[1]|, = 1. We still assume that J € 1N in Case 2 and now « > % in Case 3. We
denote by X? the space of all analytic functions f on € such that [|f||, < c0. In Case
2 we require, in addition, that f is a polynomial of degree < 2J. The function uy for
f € AP is defined as before. We note that every F' € M satisfies ||F||, = 1. Indeed,
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we have already noted that this holds for F' = Fy = 1 and for general F' € M it follows
from the equimeasurability of up, for different w, discussed before Theorem 10.

Theorem 16. Let 0 < p < o and let ® : [0,1] — R be conver. Then

sup{ [ @usePyam): rear, sl - 1f

> Sé P(s)sds in Case 1,
=< (pJ)™! Sé @(s)sz’%_l ds in Case 2,
2
2 Sé D(s)s o 'ds in Case 3,
ap

and the supremum is attained in M. If ® is not affine linear and if the supremum is
finite, then it is attained only in M.

For p = 2 this theorem reduces to Theorem 10. In Case 3 it reduces to [20, Theorem
1.2 and Remark 4.3], except that our equality statement allows for more general ®.
In Cases 1 and 2 the theorem seems to be new.

Taking ®(s) = s with q > p we obtain the following reverse Holder inequalities.

Corollary 17. Let 0 < p < q < . Then, for any f € X?,

£ llg < Wf Il
with equality if and only if f =0 or || f||;' f e M.

This corollary in Case 1 is due to Carlen [10, Theorem 2]. In fact, Carlen proves a
more general inequality including an additional parameter. Carlen’s method of proof
depends on the logarithmic Sobolev inequality and an identity for analytic functions.
It is different from ours. Corollary 17 in Case 2 has been conjectured by Bodmann [9,
Conjecture 3.5], who proved it in the special case where ¢ = p + J~'n where n € N
and p > J~!. Bodmann’s proof relies on a sharp Sobolev inequality and an analogue
of Carlen’s identity. Corollary 17 in Case 3 is due to Kulikov [20, Corollary 1.3]. The
special case ¢ = p + 2a~! with p > 2, ap > 4 was proved earlier by Bandyopadhyay
in [3, Corollary 3.3] using the method of Carlen and Bodmann. (Note that in [3] it is
assumed that a € N\{1} — in her notation o = 2k —, but this seems to be irrelevant
for [3, Section 3].)

We turn now to the proof of Theorem 16. The main new ingredient is the following
generalization of Lemma 11. In Case 3 this is well known [20, (1.1)] and probably also
in Case 1, but in Case 2 it might be new.

Lemma 18. Let 0 < p < o0 and let f € XP. Then

luslz=@) < I fll-

with equality if and only if either f =0 or || f|| ' f € M.
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Proof. We begin by showing that

ur(0) < I f1l»- (8)

with equality if and only if || f[|;'f = e®F, for some 6 € R/2nZ (provided f # 0).
Since In | f| is subharmonic in €, we have, for any r € (0, R), where R := o0 in Cases 1
and 2 and R := 1 in Case 3,

™

In |£(0)] < (27?)_1f In | f(re'®) dip.

—T

We multiply by re?2"", r(1 +72)™»/=2 and (1 — r?)?2~2 in the different cases and
integrate with respect to r € (0, R). In this way, we obtain

nlfO)] < [ WlfEu()dAe).

where
ge’p%|z|2 in Case 1,
w(z) = 4 BLEL(1 + [2]?) P72 in Case 2,
G2(] — |z[2)ps 2 in Case 3.

The measure w(z) dA(z) is a probability measure. Multiplying the inequality by p we
can write it as

10 <o ([ mlrePe ) < [ rEreeaac - 1.

where the second inequality comes from Jensen’s inequality. Since the exponential

function is strictly convex, Jensen’s inequality is strict unless In(|f|?) is almost every-

where constant. Since f is continuous, this happens if and only |f| is constant and,

by the maximum modulus principle if and only f is constant. This proves the claim.
We now claim that for any z € €Q,

up(z) < 11l (9)

if and only if [|f[|;'f = € F. for some 6 € R/2xZ (provided f # 0). In Case 2, the
same inequality remains valid for z = o0, recalling that u; extends continuously to this
point. Indeed, inequality (9) and its equality statement follow from the corresponding
assertions concerning (8), by applying an element of the Heisenberg group, SU(2) or
SU(1,1) to move the point z to the point 0 and by noting that || - ||, is invariant
under this group action. The latter fact follows from the equimeasurability property
discussed before Theorem 10.

Inequality (9) implies the inequality in the lemma. Now assume that f # 0 achieves
equality in this inequality. We claim that us(z) — 0 as |z| — o or |z| — 1 in Cases 1
and 3. This, together with the continuity of us in 2 in Cases 1 and 3 and in Cu {c0} in
Case 2, implies that there is a z such that u(2) = |uy| ). The equality statement
in (9) then implies the equality statement in the lemma.
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Thus, it suffices to prove the asymptotic vanishing of uy in Cases 1 and 3. In both
cases, this is clear when f is a polynomial and follows in the general case from the
fact that polynomials are dense with respect to || - ||, and the inequality in the lemma.
This completes the proof. 0

Proof of Theorem 16. Given Lemma 18, which replaces Lemma 11, the proof is a
minor variation of that of Theorem 10. We only sketch the major steps. The task is

to maximize
50

|t = sp@syds = [ ntshies as

0 0
under the constraint

2 in Case 1,
S0 S0 1 p
J m({u} > s})ds = J p(sv)ds = { o= in Case 2,
0 0
2 in Case 3
ap—2 ’
with sg := Huin%(Q) and p as in Lemma 12. The latter lemma allows us to write ,u(s%)

as the sum of a fixed piece and one that involves the nondecreasing function g(s%). We
pass from the variable s to a variable ¢ so that for the resulting nondecreasing function
h the constraint can be written as an integral with respect to the unweighted measure
dt. Then we can use Chebyshev’s bound (Lemma 13) to replace h by its average. This
leads to a certain bound A(tp) and a computation, similarly as for p = 2, shows that
A is nondecreasing. Moreover, if ® is not affine linear, then A is strictly increasing.
This concludes the sketch of the proof of Theorem 16. 0

4. PROOF OF THE MAIN RESULTS

In this section we prove the main results stated in the introduction. In each case
we will work with a concrete representation of the group action that involves analytic
functions. The inequalities will then be deduced from Theorem 10.

4.1. Proof of Theorem 1. By scaling, it suffices to prove the theorem for a single
value of I and it is convenient to choose i = (2r)~!. Then, given ¢ € L*(R), we can
write

<¢p7q7 ¢> _ e*%(‘12+p2)e”qpf(q _ z’p)
with

2 2

f(z) = 21 f i T () dx for all ze C.

R
It is well known and easy to see that f is entire and that

|W%=HW%WW@@ﬂMhM

RxR
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where the last identity is the completeness relation of the coherent states. In particular,
f € F*(C). Moreover,

ur(q = ip) = Kibp.gr )|

so Theorem 1 follows immediately from Theorem 10 in Case 1. Similarly, Corollary 2
follows from Corollary 14.

4.2. Proof of Theorem 4. Let J € 1N. We consider the representation of SU(2) on
functions f on C given by

w0 (f)(2) i= (Bz + @) f(28)  forall z€ C,

where

U= (_O% g) e SU(2), that is, a, B e C with |a* + 8> = 1.
This representation restricted to Py is irreducible and unitary for the norm defined
above. In this representation,

1 d 1 d d
Si=—((-22+1)—+2Jz), So=—|((-2>—1)—+2J Sy =z2——J.
! 2(( : )dz+ Z) Y <( ‘ )dz+ )T
We may choose the space H in Theorem 4 as Ps;. By an explicit computation one
sees that the functions F,, are eigenvectors of the operator S(w) - S corresponding to

the eigenvalue —.J, where we used the stereographic projection S : C — S2, given by

2w 1= Jw]?

= TW’ Sg(U)) :

Si(w) +iSa(w) - el

Consequently, the phases of the 1),,, w € S?, can be chosen such that these functions
coincide with the functions F,,, w € C u {o0}. Thus, using the explicit form of the F,,,

sy, ¥y = (1 + [w?) ™ f(w)

with
_ 2J +1

™

f(w) : L(l +w2)*P(2)(1 + |22 22 dA(2).

Since 1 is a polynomial of degree < 2.J, the reproducing property of the kernel implies
that f(w) = ¥ (w) for all w € C. Moreover,

up(w) = [(Ys), V)|
and so, by a change of variables,

o | @tustw

Thus, Theorem 4 follows immediately from Theorem 10 in Case 2. Similarly, Corol-
lary 5 follows from Corollary 14.

_dAWw) -
T = Um | (P .
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4.3. Proof of Theorem 6. Let K € IN\{3}. We consider the representation of
SU(1,1) on functions f on D given by

mo(f)(z) = Bz +a) 2K f(2£8)  forallzeC,

Bz+a

where
U= (% g) e SU(1,1), that is, o, € C with |a*> — |3 = 1.

This representation restricted to A3, (D) is irreducible and unitary for the norm defined
above. In this representation,

K, :zéu(, K, = % ((z2—1)d%+2f(z) . Ky = —% ((z2+1)d%+2Jz) :

We may choose the space H in Theorem 6 as A2, (D). By an explicit computation
one sees that the functions F), are eigenvectors of the operator ngKy — ny K — no Ky
corresponding to the eigenvalue K. Here (ng, ny,nz) is related to w as in the discussion
before the statement of Theorem 6. Consequently, we can choose the phases in such
a way that ¢, = F,, for all w e ID. Thus, using the explicit form of the F,,,

oy = (14 [w]*)* f(w)

with
2K -1

™

fw) :

Since 1) € A2, (D), the reproducing property of the kernel implies that f(w) = ¥ (w)
for all w € D. Moreover,

fDu W) () (1 + 222 dA(z)

up(w) = [w, )l

so Theorem 6 follows immediately from Theorem 10 in Case 3. Similarly, Corollary 7
follows from Corollary 14.

4.4. The limit of the discrete series. Two other irreducible unitary representations
of SU(1,1) are not in the discrete series, but are closely related to it, the so-called limits
of discrete series [19, Chapter II]. They are typically not considered in the context of
coherent states, since they are not square-integrable, but the questions discussed in
this paper make perfectly sense for them and can be completely answered.

We restrict our attention to one of the limits of the discrete series, since the results
for the other one can be deduced by appropriate complex conjugation. The construc-
tion of the coherent states is verbatim the same as for the discrete series, except that

the value of K now is %

Proposition 19. Consider the irreducible limit of the discrete series representation
of SU(1,1) on H. Let ® : [0,1] — R be nondecreasing. Then

sup { [ 0o G20 v e o =1} = [ 00057

(1—lzP)? 0
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and the supremum is attained for 1 = €, with some 2o € D, 6 € R/2xZ. If ® is
strictly increasing near 1 and if the supremum 1is finite, then it is attained only for
such .

Note that the value of the integral with 1 = €%, does not depend on z, € D,
0 € R/27Z. Tt may or may not be finite, depending on ®. For finiteness it is necessary
that lim, .o+ s'®(s) = 0. In particular, the function ®(s) = s leads to an infinite
supremum, which reflects the non-squareintegrability of the representation.

Proof of Proposition 19. We consider the same representation of SU(1,1) on functions
on D as in the proof of Theorem 6 but with K = % This representation is irreducible
when restricted to the Hardy space H?(D) and unitary for the norm defined above;
see [19, Section I1.6]. We choose the representation space H = H?(D). The functions
F,, were defined before Proposition 15 and one verifies that, by an appropriate choice
of phases, ¥, = F,,. It is well known that functions in the Hardy space have radial
boundary values in L?(0D) and that in their norm it suffices to consider this boundary
value. Thus, using the explict form of the F,,

U

(s ) = (27)7 j Fole?)b(c#) dg = (11 |w]?)} f(w)

—T

with

Yy

f(w) = (2m) f (1= we )1 (e®) do.

By the reproducing property of the kernel (seen, for instance, by expanding both
functions in the integrand into a Fourier series), we see that f(w) = ¥ (w) for all
w € D. Moreover,

up(w) = [{w, Pl

so Proposition 19 follows from Proposition 15. O

There is also an analogue of Corollary 7 extending Proposition 19 (with convex @)
to density matrices, but we omit it for the sake of brevity.

4.5. Proof of Theorem 8. Given ¢ € L*(R, ), we can write
(ap ¥y = a” f(ia —b)
with
1 © 1 .
f(z) = 26F(2B)2J P2 ) (x) da .

0
It is easy to see and known that f is analytic in C; = {z € C: Imz > 0} and that

[ eramepaae) - £

C, 2

da db

a?

= Hd}”%?(ﬂh) )

[ 16

R+ xR
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where the last identity is the completeness relation of the coherent states [12, (2.10)].
Consider the conformal map X : C, — D,

z—1 B '
Z<Z>:—iz+1 for ze C, , El(g)zig+1 for (e D.

Setting
g(Q) = (IC+1)Hf(SEY  forall CeD,

iC+1

we find that g is analytic in D and, using dA(¢) = |¥'(2)|* dA(z) for ¢ = 3(z),

B—3 _ 28— 1 B

2| REPam P ) = T [ 9P IGPPA) = 9l
T Jc, Q D

Moreover, after a simple computation,

ug(X(ia = b)) = [(Yap, V)|

and therefore
da db
= 4r

a?

] et o

R+XR

| 2@ amc).

Also, the coherent states 1,5, (a,b) € Ry x R, are in one-to-one correspondence with
the functions F,,, w € . Indeed, a straightforward computation shows that the f
corresponding to 1 = 11 is f(z) = (2i/(z + i))?*, which corresponds to g(¢) = 1 =
Fy(¢). The result in the general case follows from the facts that every (a,b) can be
moved to (1,0) by an aX + b-action, every point w € D can be moved to 0 by the
action of a subgroup of SU(1,1) isomorphic to aX + b (see, e.g., [26, equation after
(1.3)]) and that X relates these actions to each other.

Thus, Theorem 8 follows immediately from Theorem 10 in Case 3 with a = 23 and,
similarly Corollary 9 follows from Corollary 14.

Remark 20. The functions v,; are also well defined for g e (0, %] In this case,
the coherent state transform cannot be normalized to be an isometry to a subset of
L*(R, x R,a 2dadb), but the optimization problem in Theorem 8 still makes sense.
We claim that, for § = %, Theorem 8 remains valid, replacing the assumptions ‘convex’
and ‘not linear’ on ® by ‘nondecreasing’ and ‘strictly increasing near 1°, respectively.
Indeed, in this case the function f in the previous proof belongs to the Hardy space
H?*(Cy) and, by Plancherel, its norm in that space is equal to |¢]z2r,). Mapping
C, to D via X, we can deduce the assertion from Proposition 15. We do not know

whether Theorem 8 extends to § € (0, 1).

4.6. Limitations of the method. In this paper we have discussed the cases of the
Heisenberg group, SU(2), SU(1,1) and the affine group. It is a natural question,
potentially of relevance for representation theory, to which extent the results can be
generalized to arbitrary Lie groups.

While the method of the present paper is able to treat various cases in a unified
way, it will probably not be able to deal with the general case, as we argue now. One



26 RUPERT L. FRANK

of the key ingredients in the argument is Lemma 12, whose proof uses the fact that
the superlevel sets of the overlap of two coherent states are isoperimetric set. This
may fail in general, as we are going to show.

Following Lieb and Solovej [25], we consider the case of symmetric representations
of SU(N). We fix N > 3. The relevant representations are labeled by M € N and we
choose the representation space H to be the symmetric subspace of the tensor product
QM CN. Coherent states are defined through elements of the form ®"z with z € CV,
|z] = 1. Note that if two 2’s differ by a phase, then the corresponding vectors @ »
in H also differ by a phase and correspond to the same state. Thus, we will label the
coherent states by points z in the complex projective space

CPN_lz{zeCN: \z]=1}/~

where z ~ w if z = e”w for some # € R/27Z. We denote integration with respect to
the natural SU(N)-invariant probability measure on CPY~! by dz.

Lieb and Solovej have solved the corresponding problem and shown that, for any
convex ® : [0,1] — R,

sw{ [ a@ )z ven, -1}

is attained for coherent states.

If we tried to reprove this through the method in the present paper, we would
consider the measure of the superlevel sets of the function z — [{®z,¢)| and try
to prove some monotonicity properties of it. This monotonicity property should be
saturated if 1) is of the form ® zy. In this special case, the level sets are of the form

{zeCP"': %20/ > K}

These are geodesic balls (see, e.g., [15, Example 2.110]) and, if we want to use the
method based on an isoperimetric inequality, they should be optimizers for the isoperi-
metric inequality. (More precisely, this should hold for all x for which their measure
is < %; for k such that their measure is > 1 their complements should be optimizers.)
This, however, is not the case for all x, at least not for N = 4, as pointed out in [4,
Appendix]; see also [28, Remark 4.2]. For the solution of the isoperimetric problem in
CPY=1 see also [28, Theorem 4.1]. The isoperimetric sets are expected to transition
from geodesic balls for small volumes to tubes around some CPY~! < CPN~! for
intermediate volumes.

5. FABER-KRAHN-TYPE INEQUALITIES FOR THE COHERENT STATE TRANSFORM

The main result of the recent paper [29] by Nicola and Tilli states that, for any
measurable set £ < R? of finite measure,

ﬂ |[Yp.gs )| dp dg < 27 (1 — e*‘Q’”‘L’”'E') (10)
E



SHARP INEQUALITIES FOR COHERENT STATES — March 6, 2023 27

with equality if and only if ¢ = €4, ,, for some py, o € R, 0 € R/277Z and E is equal
to a ball centered at (po,qo) (up to sets of measure zero). (We restrict ourselves here
to the one-dimensional case of their result. Since the proof of Theorem 1 extends to
higher dimensions, the discussion in this subsection does so as well.)

We claim that the inequality (10) follows by abstract arguments from Theorem 1. Of
course, this is not too surprising, since Kulikov’s arguments, which we have adapted to
yield a proof of Theorem 1, are inspired by those in [29]. Nevertheless, this observation
will allow us to derive an analogue of the Nicola-Tilli results in the SU(2), SU(1,1)
and aX + b cases.

Proof of (10) given Theorem 1. Fixing po,qo € R and ¢ € L*(R) with [¢|2r®) = 1,
we can write the first assertion of Theorem 1 as the statement that

[ #0092t < [[ #0000 o

RxR RxR

for any convex function ® on [0,1]. By Hardy-Littlewood majorization theory (see,
e.g., [16, Theorems 108, 249, 250], [1, Corollary 2.1}, [42, Theorem 15.27] and also [7,
Chapter 2, Propsition 3.3]), this is equivalent to the fact that

Lj|<¢p,q>¢>|2dpdq< sup £J’<¢p,qa¢po,qo>!2dpdq

|F|=|E|

for any measurable set £ < R? of finite measure. By an explicit computation,

— L ((g—ap)2 )2
1<%p.as Loo.and| = € 17 ((a=q0)"+(p—p0)*)

This is symmetric decreasing around (pg,qp) and therefore the supremum above is
attained if (and only if) F is a ball centered at (pg, o) (up to sets of measure zero).
In this case, the right side can be computed to be 1 — e=@™ Bl vielding (10). O

By going carefully through the majorization argument it should be possible to de-
duce from the equality statement in Theorem 1 the equality statment by Nicola and
Tilli, but we omit this here.

Obviously, the above argument can be generalized to the SU(2), SU(1,1) and a X +b
cases. For the sake of brevity, we leave out a statement about the cases of equality.

Theorem 21. Let J € %N and consider an irreducible (2J + 1)-dimensional repre-
sentation of SU(2) on H. Then, for any v € H with ||[¢|x = 1 and any measurable

Ec§?
47 2J+1
2 _ (1= &

Equality is attained if 1 = e“1),, with some wy € S?, § € R/277Z and E is a spherical
cap centered at wy.
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Theorem 22. Let K € 1N\{1} and consider the irreducible discrete series represen-
tation of SU(1,1) on H corresponding to K. Then, for any 1» € H with ||y =1 and
any measurable E < I,

2 A(z) m _ m —2K+1
| 1ol 5 < g (1= (e m() ),

where dm(z) = 7711 — |2|2)"2dA(2). Equality is attained if ¢ = €., with some
20 €D, 0 € R/27Z and E is a hyperbolic ball centered at z.

Theorem 23. Let § > %
measurable £ < R, x R,

ﬂ (s )P 7 5 (1= (1 (4m) () )

Then, for any v € L*(Ry) with || 2r,) = 1 and any

where du(a,b) = a=2dadb. Equality is attained if 1 = €1y, with some ag € R,
boe R, 0 € R/2nZ and E is a hyperbolic ball centered at (ag, by).

In Theorems 22 and 23 by a ‘hyperbolic ball’ we mean a geodesic ball with respect
to the hyperbolic metric on D and C, (identified with R, x R), respectively.

Theorem 23, including a characterization of equality cases, has recently been proved
in [35] by a direct adaptation of the method in [29]. Our proof, based on Theorem 8,
is different.

Proof of Theorems 21, 22 and 23. As above, one can show that the left sides in the
theorems are bounded by the supremum of the integral of |[(¥g, 1q,>|* over sets F of
the same measure as E. Here the index « labels w € §?, 2 € D and (a,b) e R, x R in
the three cases, respectively, and ag is a fixed such index. By the bathtub principle,
the supremum over F is attained at a set of the form {|(ty, Vo, )| > Ko} U G, where G
is a measurable subset of {|[{(1, Va,)| = Ko}

To complete the proof we will need some explicit knowledge about the function
[, Ve |- We choose the representation space H in Theorems 21 and 22 in the same
way as in the proofs of Theorems 4 and 6, namely as Pp; and A3, (D), respectively.
Then, as shown there, [(¢q, Vo, )| = up,(z) where @ = S(2) and o = z in the first
two cases and, similarly, oy = S(w) and ay = w. In the third case, if a« = (a,b),
then z = ¥(ia — b) and similarly for ag and w. In particular, w = 0 if we choose ag
to be wy = (0,0,1), z = 0 and (ag,by) = (1,0) in the different cases. The explicit
definition of uy then shows that {[(t4,¥a,)| > Ko} is a spherical cap in the first case
or a hyperbolic ball in the last two cases and that in all cases {|{¥n, ¥ay| = Ko} has
measure zero. Thus the set G above can be ignored and we have identified the optimal
set in the case of a special choice of ay.

This, in fact, yields the shape for an arbitrary choice of ay. Indeed, as discussed
before Theorem 10, the functions a — (¥, %,y are equimeasurable for different
ap’s and one such function can be obtained from another by the action of SU(2) or
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SU(1,1). Since this action maps spherical caps to spherical caps, or hyperbolic balls
to hyperbolic balls, we obtain that the supremum is attained for any aq at such a set.

It remains to compute the supremum. It is convenient to do this in terms of the
functions uy. The second case and the third case can be treated together with the
convention that o = 2K in the second and o = 25 in the third case. We have with
an arbitrary F' € M

(2)2dm(z) = (A7) 7§ o oot [ W Y[
up(z) dm(z . e
{UF>/€O} ™ S{|<wz,wzo>‘>ﬂo} |<77Z)Z7¢Z0>| (1*‘Z|2)_2 .

Meanwhile, by the layer cake formula,

0] RO

J{UF>HO}UF(Z)2 dm(z) = QL m({ur > Ko} )k dr + QL m({up > &}k dk

_ JQ up(2)2 dm(z) — 2L (m({ur > K}) — m({ur > Ko})) # dr.
(11)

The first term on the right side is equal to

|, etz dmez) = clpE -

with ¢ = (2J +1)7! and ¢ = (o — 1)} in the different cases. For the second term on
the right side of (11) we use the explicit expressions for m({ur > x}) from the proof
of Lemma 12 and get, after a computation,

2J+1

QLHO(m({uF > k}) —m({ur > Kko})) kdk = MQ(;U’ (12)

This gives the expression of the supremum in terms of xy. The parameter kg satisfies

(47) Y E| in the case of Theorem 21,
m({up > Ko}) = { m(E) in the case of Theorem 22, (13)
(4m) " tu(E) in the case of Theorem 23.

(In the last case, we used the fact that (47) 'u(E) = m(X(E)), where ¥ is the
conformal map from C. to D from the proof of Theorem 8 and E < C, is obtained
from E by identifying (a,b) € R, xR with ia—b € C,..) Using (13) and the expressions
from the proof of Lemma 12, we can express kg in terms of the measure of . Inserting
this into (12) gives an expression for the second term on the right side of (11). This
leads to the claimed explicit form of the upper bound. ([l
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