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Abstract. We are interested in sharp functional inequalities for the coherent state

transform related to the Wehrl conjecture and its generalizations. This conjecture

was settled by Lieb in the case of the Heisenberg group and then by Lieb and Solovej

for SU(2) and by Kulikov for SU(1,1) and the affine group. In this paper, we give

alternative proofs and characterize, for the first time, the optimizers in the general

case. We also extend the recent Faber–Krahn-type inequality for Heisenberg coherent

states, due to Nicola and Tilli, to the SU(2) and SU(1,1) cases. Finally, we prove a

family of reverse Hölder inequalities for polynomials, conjectured by Bodmann.

1. Introduction and main results

Coherent states appear in various areas of pure and applied mathematics, includ-

ing mathematical physics, signal and image processing, semiclassical and microlocal

analysis. Some background can be found, for instance, in [33, 40, 39]. Here we are

interested in sharp functional inequalities for coherent state transforms.

To motivate the questions we are interested in let us recall Wehrl’s conjecture [44]

and its resolution by Lieb [23]. Following Schrödinger, Bargmann, Segal, Glauber,

Klauder and others we consider a certain family of normalized Gaussian functions

ψp,q P L2pRq, parametrized by p, q P R. Explicitly,

ψp,qpxq :“ pπ~q´ 1

4 e´ 1

2~
px´qq2` 1

~
ipx for all x P R ,

where ~ ą 0 is a fixed constant. For a nonnegative operator ρ in L2pRq with Tr ρ “ 1

one considers the function

pp, qq ÞÑ xψp,q, ρψp,qy ,
known as Husimi function, covariant symbol or lower symbol. Thus, to a quantum

state ρ in L2pRq one associates a function defined on the classical phase space R
2.
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Wehrl [44] was interested in the entropy-like quantity

´
ĳ

RˆR

xψp,q, ρψp,qy lnxψp,q, ρψp,qy dp dq ,

showed that it is positive and conjectured that its minimum value occurs when ρ “
|ψp0,q0yxψp0,q0 | for some p0, q0 P R. That this is indeed the case was shown in an

celebrated paper by Lieb [23]. Lieb’s proof was based on the sharp forms of the

Young and the Hausdorff–Young inequalities and showed more generally that, for

power functions Φpsq “ sr with r ě 1, the quantity
ĳ

RˆR

Φpxψp,q, ρψp,qyq dp dq (1)

is maximal for ρ as above. The result for Φpsq “ s ln s then follows by differentiating

at r “ 1, noting that the value for Φpsq “ s is a constant independent of ρ.

In [10] Carlen gave an alternative proof of Lieb’s result, both for Φpsq “ sr, r ě 1,

and Φpsq “ s ln s, and characterized the cases of equality. He also extended the

result to Φpsq “ ´sr with 0 ă r ă 1, again including a characterization of cases of

equality. Carlen’s proof is based on the logarithmic Sobolev inequality and an identity

for analytic functions. For yet another proof in the logarithmic case see [27]. For an

interesting recent generalization of Lieb’s result see [13].

In [24], Lieb and Solovej extended the earlier results and showed what they called the

generalized Wehrl conjecture. Namely, for any convex function Φ on r0, 1s the quantity
(1) is maximal if ρ “ |ψp0,q0yxψp0,q0 | for some p0, q0 P R. The Lieb–Solovej proof

proceeds by a limiting argument, based on sharp inequalities for SU(2) coherent states

discussed below. Because of the limiting process, it does not provide a characterization

of the cases of equality. Carlen’s analysis is based on differentiating the power function

Φpsq “ sr with respect to the exponent r and using the logarithmic Sobolev inequality

for the resulting quantity. We do not know how to adopt this method to deal with

general convex functions Φ.

Our first main result in this paper gives an alternative proof of the theorem of Lieb

and Solovej and includes a new characterization of the cases of equality.

Theorem 1. Let Φ : r0, 1s Ñ R be convex. Then

sup

$

&

%

ĳ

RˆR

Φp|xψp,q, ψy|2q dp dq : ψ P L2pRq , }ψ}L2pRq “ 1

,

.

-

“ 2π~

ż

1

0

Φpsq ds
s

and the supremum is attained for ψ “ eiθψp0,q0 with some p0, q0 P R, θ P R{2πZ. If Φ

is not linear and if the supremum is finite, then it is attained only for such ψ.

Note that the value of the double integral with ψ “ eiθψp0,q0 does not depend on

p0, q0 P R, θ P R{2πZ. It may or may not be finite, depending on Φ. For finiteness it

is necessary that limsÑ0` Φpsq “ 0.
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Under a slightly stronger assumption on Φ, we can extend the characterization of

cases of equality to density matrices.

Corollary 2. Let Φ : r0, 1s Ñ R be convex. Then

sup

$

&

%

ĳ

RˆR

Φpxψp,q, ρψp,qyq dp dq : ρ ě 0 on L2pRq , Tr ρ “ 1

,

.

-

“ 2π~

ż

1

0

Φpsq ds
s

and the supremum is attained for ρ “ |ψp0,q0yxψp0,q0 | with some p0, q0 P R. If Φ is

strictly convex and if the supremum is finite, then it is attained only for such ρ.

Remark 3. The statement and proof of Theorem 1 and Corollary 2 extend, with minor

changes, to the case of higher dimensions. We omit the details.

Coherent states are often closely related to representations of an underlying Lie

group. The coherent states discussed so far are related to the Heisenberg group.

In his paper containing the proof of Wehrl’s conjecture, Lieb conjectured that the

analogue of Wehrl’s conjecture also holds for Bloch coherent states, that is, for a

family of coherent states related to SU(2). After some partial results in [38, 9], this

conjecture was finally solved by Lieb and Solovej in [24]; see also [25] for a partially

alternate proof. Again, they prove a generalized version of Lieb’s conjecture involving

general convex functions Φ. However, they employ a limiting argument and therefore

their paper does not characterize the cases of equality. Our second main result settles

this open question by showing that, indeed, equality is only attained by rank one

projections onto a coherent state.

Let us be more specific. As is well known (see, e.g., [19, Chapter II] and [41,

Section VIII.4]), the nontrivial irreducible representations of SU(2) are labeled by

J P 1

2
N, where 2J ` 1 is the dimension of the representation and N “ t1, 2, 3, . . .u. Let

H be a p2J ` 1q-dimensional representation space. Then there are operators S1, S2, S3

on H satisfying rS1, S2s “ iS3 and cyclically, representing the generators of SU(2).

For any ω “ pω1, ω2, ω3q P S
2 Ă R

3, the operator ω ¨ S “ ω1S1 ` ω2S2 ` ω3S3 has

minimal eigenvalue ´J and this eigenvalue is nondegenerate. We choose ψω P H

as a corresponding normalized eigenvector. It is uniqe up to a phase, but since we

are only interested in the state |ψωyxψω|, this choice of the phase is irrelevant for us.

This defines the Bloch coherent states. (We follow here the convention in [33]; other

definitions are based on the maximal eigenvalue `J , but this leads to the same family

of coherent states, just interchanging ω and ´ω.)
Theorem 4. Let J P 1

2
N and consider an irreducible p2J ` 1q-dimensional represen-

tation of SUp2q on H. Let Φ : r0, 1s Ñ R be convex. Then

sup

"
ż

S2

Φp|xψω, ψy|2q dω : ψ P H , }ψ}H “ 1

*

“ 4π

2J

ż

1

0

Φpsqs 1

2J
´1 ds

and the supremum is attained for ψ “ eiθψω0
with some ω0 P S

2, θ P R{2πZ. If Φ is

not affine linear, then it is attained only for such ψ.
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Note that the value of the integral with ψ “ eiθψω0
does not depend on ω0 P S

2,

θ P R{2πZ. Since Φ is bounded, the supremum in the theorem is always finite, in

contrast to the situation of Theorem 1.

Corollary 5. Let J P 1

2
N and consider an irreducible p2J ` 1q-dimensional represen-

tation of SUp2q on H. Let Φ : r0, 1s Ñ R be convex. Then

sup

"
ż

S2

Φpxψω, ρψωyq dω : ρ ě 0 on H , Tr ρ “ 1

*

“ 4π

2J

ż

1

0

Φpsqs 1

2J
´1 ds

and the supremum is attained for ρ “ |ψω0
yxψω0

| with some ω0 P S
2. If Φ is strictly

convex, then it is attained only for such ρ.

Our third main result concerns coherent states for certain representations of SU(1,1).

After initial results in [3, 26, 6], the analogue of Wehrl’s conjecture was settled recently

by Kulikov in [20], again for general convex functions Φ. (In fact, slightly less than

convexity is required in [20].) Kulikov [20, Remark 4.3] also characterizes optimizers

in the case where Φ is strictly convex. We extend this to the case where Φ is not

linear.

All nontrivial representations of SU(1,1) are infinite-dimensional. Its nontrivial

irreducible unitary representations consist of discrete, principal and complementary

series, as well as limits of the discrete series; see, e.g., [19, Chapters II and XVI; also

(2.20)]. Here we are only interested in one of the two discrete series. The results for

the other one can be deduced from the results below by complex conjugation at the

appropriate places.

Following the notation in [5], the discrete series representation under consideration

is labeled by K P 1

2
Nzt1

2
u “ t1, 3

2
, 2, . . .u. Let H be a corresponding representation

space. The generators of the Lie algebra of SU(1,1) give rise to operators K0, K1, K2

in H satisfying

rK1, K2s “ ´iK0 , rK2, K0s “ iK1 , rK0, K1s “ iK2 .

Moreover, one has

K2

0
´ K2

1
´ K2

2
“ KpK ´ 1q ,

where K is the number labeling the representations. (There are also representations of

SU(1,1) corresponding to K “ 1

2
, called limits of the discrete series, but their coherent

state transforms are in some sense degenerate; see Subsection 4.4. We also briefly

discuss the case of arbitrary real K ą 1

2
after Corollary 7.)

For any pn0, n1, n2q P R
3 with n2

0
´ n2

1
´ n2

2
“ 1 and n0 ą 0 the operator n0K0 ´

n1K1 ´ n2K2 has minimal eigenvalue K and this eigenvalue is simple. Therefore we

can choose a corresponding normalized eigenvector (which is unique up to a phase).

It is convenient to label this vector not by pn0, n1, n2q by rather by z P D, the open

unit disk in C, using the parametrization

pn0, n1 ` in2q “ p1`|z|2

1´|z|2
, 2z
1´|z|2

q .
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In this way we obtain a family of vectors ψz, z P D, giving rise to coherent states for

a discrete series representation of SU(1,1).

In what follows, we denote by dApzq “ dx dy the two-dimensional Lebesgue measure

on C.

Theorem 6. Let K P 1

2
Nzt1

2
u and consider the irreducible discrete series representa-

tion of SUp1, 1q on H corresponding to K. Let Φ : r0, 1s Ñ R be convex. Then

sup

"
ż

D

Φp|xψz, ψy|2q dApzq
p1 ´ |z|2q2 : ψ P H , }ψ}H “ 1

*

“ π

2K

ż

1

0

Φpsqs´ 1

2K
´1 ds

and the supremum is attained for ψ “ eiθψz0 with some z0 P D, θ P R{2πZ. If Φ is

not linear and if the supremum is finite, then it is attained only for such ψ.

Note that the value of the integral with ψ “ eiθψz0 does not depend on z0 P D,

θ P R{2πZ. It may or may not be finite, depending on Φ. For finiteness it is necessary

that limsÑ0` Φpsq “ 0.

Theorem 6 proves the uniqueness part of a conjecture of Lieb and Solovej [26,

Conjecture 5.2]. As we mentioned before, the inequality part is due to Kulikov [20].

Corollary 7. Let K P 1

2
Nzt1

2
u and consider the irreducible discrete series representa-

tion of SUp1, 1q on H corresponding to K. Let Φ : r0, 1s Ñ R be convex. Then

sup

"
ż

D

Φpxψz, ρψzyq dApzq
p1 ´ |z|2q2 : ρ ě 0 on H , Tr ρ “ 1

*

“ π

2K

ż

1

0

Φpsqs´ 1

2K
´1 ds

and the supremum is attained for ρ “ |ψz0yxψz0 | with some z0 P D. If Φ is strictly

convex and if the supremum is finite, then it is attained only for such ρ.

For every real K ą 1

2
, there is an irreducible representations of the Lie algebra gen-

erated by K0, K1, K2 satisfying the above relations. For K R 1

2
N such a representation

does not come from the Lie group SU(1,1) – recall that this group is not simply con-

nected. It does come, however, from a representation of the covering group of SU(1,1)

[32] and we could prove sharp inequalities for the corresponding coherent states. From

an analytic point of view this would lead to the same problem as coherent states for

the affine group, which we discuss next.

The affine group (in one space dimension), also known as the paX ` bq-group, has
two nontrivial irreducible unitary representations [2, 12]. Again, we focus on a single

one since the results for the other one can be obtained by appropriate complex conju-

gations. What distinguishes the affine group from the above cases of the Heisenberg

group, SU(2) and SU(1,1) is that different choices of an extremal weight vector lead

to inequivalent coherent state transforms.

We fix a parameter β ą 1

2
, emphasizing that this parameter does not label the

representation, but rather the choice of the extremal weight vector. We consider the

following family of normalized functions ψa,b P L2pR`q, R` “ p0,8q, parametrized by
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a P R`, b P R,

ψa,bpxq :“ 2βΓp2βq´ 1

2 aβxβ´ 1

2 e´ax`ibx for all x P R` .

(Here we follow the convention in [12]. What we call β is called α´ 1

2
in [26] and they

do not normalize ψa,b in L
2pR`q, but choose a different, natural normalization.)

Theorem 8. Let β ą 1

2
and let Φ : r0, 1s Ñ R be convex. Then

sup

$

&

%

ĳ

R`ˆR

Φp|xψa,b, ψy|2q da db
a2

: ψ P L2pR`q , }ψ}L2pR`q “ 1

,

.

-

“ 2π

β

ż

1

0

Φpsqs´ 1

2β
´1
ds

and the supremum is attained for ψ “ eiθψa0,b0 with some a0 P R`, b0 P R, θ P R{2πZ.
If Φ is not linear and if the supremum is finite, then it is attained only for such ψ.

Note that the value of the double integral with ψ “ eiθψa0,b0 does not depend on

a0 P R`, b0 P R, θ P R{2πZ. It may or may not be finite, depending on Φ. For

finiteness it is necessary that limsÑ0` Φpsq “ 0.

Theorem 8 settles the equality part of a conjecture of Lieb and Solovej [26, Conjec-

ture 3.1]. For strictly convex Φ it had been settled earlier in [20, Remark 4.3]. Clearly,

the assumption of Φ not being linear is optimal, since otherwise the supremum is

attained for any ψ P L2pR`q.
We note that Theorem 8 has a version for β “ 1

2
; see Remark 20.

Corollary 9. Let β ą 1

2
and let Φ : r0, 1s Ñ R be convex. Then

sup

$

&

%

ĳ

R`ˆR

Φpxψa,b, ρψa,byq da db
a2

: ρ ě 0 on L2pRq , Tr ρ “ 1

,

.

-

“ 2π

β

ż

1

0

Φpsqs´ 1

2β
´1
ds

and the supremum is attained for ρ “ |ψa0,b0yxψa0,b0 | with some a0 P R`, b0 P R. If Φ

is strictly convex and if the supremum is finite, then it is attained only for such ρ.

This concludes the description of our main results, but we would like to draw the

reader’s attention also to Sections 3 and 5 where we prove, respectively, sharp reverse

Hölder inequalities for analytic functions, thereby settling a conjecture of Bodmann

[9], and optimal Faber–Krahn-type inequalities for coherent state transforms.

The method that we will be using is that from a recent beautiful paper by Kulikov

[20]. He developed this method to solve the Lieb–Solovej conjectures for SU(1,1) and

the affine group. Here we show that it can be adapted to deal with the Heisenberg

and the SU(2) case. We also push the characterization of optimizers a bit further than

in [20], thus leading to the optimal results in Theorems 1, 4, 6 and 8.

Kulikov’s paper in turn seems to be inspired by an equally beautiful recent paper by

Nicola and Tilli [29]. They were the first, as far as we know, to use the isoperimetric

inequality in connection with the coherent state transform to obtain optimal functional

inequalities. (Talenti [43] used a closely related method for comparison theorems for
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solutions of PDEs.) Kulikov proved his results by using instead the isoperimetric

inequality in hyperbolic space and we will prove Theorem 4 by using that on the

sphere. While it is tempting to try to use the same method for more general groups,

an obstacle will have to be overcome; see Subsection 4.6.

Nicola and Tilli proved Faber–Krahn-type inequalities for the Heisenberg coherent

states. We will show that their main result (at least without the characterization of the

cases of equality) follows from Theorem 1 and we will use this idea to prove analogues

of their results for coherent states based on SU(2), SU(1,1) and the affine group; see

Section 5. For further developments started by [29] see, for instance, [35, 30, 18].

After this paper was submitted for publication, we learned that Aleksei Kulikov,

Fabio Nicola, Joaquim Ortega-Cerdà and Paolo Tilli have independently obtained sim-

ilar results with similar techniques. These results have appeared in preprint form [21].

Thanks are due to Eric Carlen, Elliott Lieb and Jan Philip Solovej for many dis-

cussions on the topics of this paper.

It is my pleasure to dedicate this paper to David Jerison on the occasion of his 70th

birthday. His papers have been an inspiration for me, those on sharp inequalities [17]

and others. I am particularly indebted to him for his remarks in the fall of 2008, which

indirectly were a great motivation for work that eventually led to [14].

2. Inequalities for analytic functions

The main ingredient behind the results in the previous section are sharp inequalities

for analytic functions and the characterization of their optimizers, which we discuss

in the present section.

2.1. Definitions and main result. There are three different types of inequalities,

corresponding to the cases of the Heisenberg group, SU(2) and SU(1,1). We refer to

these different scenarios as Cases 1, 2 and 3. In Cases 2 and 3, there is a parameter

J P 1

2
N and α ą 1, respectively, that is fixed in what follows.

In Case 1, we consider functions from the Fock space F2pCq, that is, entire functions
f satisfying

}f}F2 :“
ˆ
ż

C

|fpzq|2e´π|z|2 dApzq
˙1{2

ă 8 .

We recall that we write dApzq “ dx dy for the two-dimensional Lebesgue measure. In

Case 2, we consider functions in P2J , that is, polynomials f of degree ď 2J endowed

with the norm

}f}P2J
:“

ˆ

2J ` 1

π

ż

C

|fpzq|2 p1 ` |z|2q´2J´2 dApzq
˙1{2

.
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This norm is finite for any f P P2J . In Case 3, we consider functions from the weighted

Bergman space A2

αpDq, that is, analytic functions f on the disk D satisfying

}f}A2
α
:“

ˆ

α ´ 1

π

ż

D

|fpzq|2p1 ´ |z|2qα´2 dApzq
˙1{2

ă 8 .

To treat all cases simultaneously, we set

H :“

$

’

’

&

’

’

%

F2pCq in Case 1 ,

P2J in Case 2 ,

A2

αpDq in Case 3 ,

and denote the norm in H by ~ ¨ ~.
Thus, the set on which the relevant functions are defined is

Ω :“
#

C in Cases 1 and 2 ,

D in Case 3 ,

and the relevant measure is

dmpzq :“

$

’

’

&

’

’

%

dApzq in Case 1 ,

π´1p1 ` |z|2q´2 dApzq in Case 2 ,

π´1p1 ´ |z|2q´2 dApzq in Case 3 .

To a function f P H, we associate a function uf on Ω, defined by

uf pzq :“

$

’

’

&

’

’

%

|fpzq|e´π
2

|z|2 in Case 1 ,

|fpzq|p1 ` |z|2q´J in Case 2 ,

|fpzq|p1 ´ |z|2qα{2 in Case 3 .

(2)

The problem that we are interested in is to maximize, given a convex function Φ,

the quantity
ż

Ω

Φpuf pzq2q dmpzq

over all f P H with ~f~ “ 1. Our main result will characterize the set of f ’s for which

this supremum is attained. This set M Ă tf P H : ~f~ “ 1u is defined as follows. In

Case 1, we consider the functions Fw, parametrized by w P C, given by

Fwpzq :“ e´π
2

|w|2`πwz for all z P C ,

and set

M :“
 

eiθ Fw : w P C , θ P R{2πZ
(

.

In Case 2, we consider the functions Fw, parametrized by w P C Y t8u, given by

Fwpzq :“ p1 ` wzq2J
p1 ` |w|2qJ , w ‰ 0 , F8pzq :“ z2J for all z P C ,

and set

M :“
 

eiθ Fw : w P C Y t8u , θ P R{2πZ
(

.
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In Case 3, we consider the function Fw, parametrized by w P D, given by

Fwpzq :“ p1 ´ |w|2qα
2

p1 ´ wzqα for all z P D ,

and set

M :“
 

eiθ Fw : w P D , θ P R{2πZ
(

.

In each case it can be verified that Fw P H and that ~Fw~ “ 1 for all w in the

respective index set. Indeed, this can be seen by a direct computation for w “ 0. For

a general w we use the fact that the functions uFw
are equimeasurable, that is, for

every κ ą 0, the measure mptuFw
ą κuq is independent of w. As a consequence of

the equimeasurability the norm in H is independent of w. The equimeasurability in

turn is a consequence of the fact that Fw is obtained from, say, F0 by the action of

the Heisenberg group, SU(2) or SU(1,1) in the respective cases and of the invariance

of the measure m under this action.

The following is the main result of this section.

Theorem 10. Let Φ : r0, 1s Ñ R be convex. Then

sup

"
ż

Ω

Φpuf pzq2q dmpzq : f P H , ~f~ “ 1

*

“

$

’

’

&

’

’

%

ş

1

0
Φpsqs´1 ds in Case 1 ,

p2Jq´1
ş

1

0
Φpsqs 1

2J
´1 ds in Case 2 ,

α´1
ş

1

0
Φpsqs´ 1

α
´1 ds in Case 3 ,

and the supremum is attained in M. If Φ is not affine linear and if the supremum is

finite, then it is attained only in M.

We will prove this theorem in the next subsection, after establishing some lemmas.

2.2. Proof of Theorem 10. We begin the proof of Theorem 10 by recalling a simple

and well-known bound on the supremum of uf . This bound shows that uf ď 1 for

~f~ “ 1, so Φpu2f q appearing in the theorem is well defined for Φ defined on r0, 1s.
The characterization of the cases of equality in the inequality uf ď 1 will eventually

lead to the corresponding characterization in Theorem 10.

Lemma 11. Let f P H. Then

}uf}L8pΩq ď ~f~
with equality if and only if either f “ 0 or ~f~´1f P M.

Proof. In Case 1, this is essentially [29, Proposition 2.1]. Indeed, there the inequality

in the lemma is proved and it is shown that uf tends to zero at infinity. The latter fact,

together with continuity, implies that there is a z P C such that }uf}L8pCq “ uf pzq,
and then [29, Proposition 2.1] implies ~f~´1f P M, provided f ‰ 0.
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In Case 2, the inequality is mentioned in [9, Paragraph after Remark 3.2]. Since

the function uf extends continuously to a function on the Riemann sphere C Y t8u,
there is a z P CY t8u such that }uf}L8pCq “ uf pzq, and then one obtains the equality

condition from that in the Cauchy–Schwarz inequality.

In Case 3, the inequality and the fact that uf tends to zero as |z| Ñ 1 is mentioned

in [20, (1.1) and the paragraph thereafter]. As in the other cases, from the latter fact

one can deduce the equality condition. Let us add some details concerning the facts

mentioned in [20]. To carry out the proof of the inequality, one can, for instance, use

[6, (5)] and argue as in [29, Proposition 2.1]. To deduce the vanishing of uf on BD,
one can observe that this is true when f is a polynomial and that those are dense in

A2

αpDq by [6, (5)]. �

We now come to the core of the proof of Theorem 10, which concerns a certain

monotonicity of the measure of superlevel sets of uf . In Case 3, the following lemma

and its proof are a special case of [20, Theorem 2.1]. Our contribution is to extend

the reasoning to Cases 1 and 2. (Indeed, similar arguments in the setting of Case 1

have already appeared in [29, Theorem 3.1]; in particular, inequality (3) is the same as

[29, (3.17) combined with (3.10)]. Note, however, that the authors of [29] use Lieb’s

inequality as an ingredient and do not reprove it using their method, in contrast

to what we do here; see, in particular, [29, Theorem 5.2].) We also point out that

arguments of this type are reminiscent of those of Talenti in [43].

Lemma 12. Let f P H and µpκq :“ mptuf ą κuq for κ ą 0. Then the function

κ ÞÑ

$

’

’

&

’

’

%

´2 lnκ ´ µpκq in Case 1 ,

κ´ 1

J p1 ´ µpκqq in Case 2 ,

κ
2

α p´1 ´ µpκqq in Case 3 ,

is nondecreasing on p0, }uf}8q. Moreover, if f P M, then this function is constant.

Proof. WritingM :“ }uf}L8pΩq for brevity, we observe that, by Sard’s theorem (noting

that uf is real analytic on Ω viewed as a subset of R2), for almost every κ P p0,Mq,
tuf “ κu is a smooth curve (or, possibly, union thereof). Denote one-dimensional

Hausdorff measure on this curve by |dz|, we have, by the co-area formula,

ż

Ω

gpx, yq|∇uf | dApzq “
ż t0

0

ż

tuf“κu

gpx, yq |dz| dτ .

Let

ωpzq :“ dmpzq
dApzq “

$

’

’

&

’

’

%

1 in Case 1 ,

π´1p1 ` |z|2q´2 in Case 2 ,

π´1p1 ´ |z|2q´2 in Case 3 .
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Taking g “ |∇uf |´1ω✶tufąκu✶t|∇uf |‰0u and noting that mpt|∇uf | “ 0uq “ 0 by real

analyticity, we find, for any κ P p0,Mq,

µpκq “
ż M

κ

ż

tuf“κu

|∇uf |´1ω |dz| dτ .

Thus, µ is absolutely continuous on compact subintervals of p0,M s and for almost

every κ P p0,Mq,
µ1pκq “ ´

ż

tuf“κu

|∇uf |´1ω |dz| .

For a curve γ in Ω let us set

ℓpγq :“
ż

γ

?
ω |dz| .

In particular, for the level set tuf “ κu we obtain, by the Schwarz inequality,

ℓptuf “ κuq2 ď
ż

tuf“κu

|∇uf |´1ω |dz|
ż

tuf“κu

|∇uf ||dz| .

As we argued before, the first term on the right side is ´µ1pκq. Let us consider the

second term. Since the outer unit normal vector field ν to tuf ą κu on the boundary

tuf “ κu is given by ´∇uf{|∇uf |, we have |∇uf | “ ´κν ¨ ∇pln uf q and therefore, by

Green’s theorem,
ż

tuf“κu

|∇uf ||dz| “ ´κ
ż

tufąκu

∆ ln uf dApzq .

To compute the Laplacian of ln uf we recall that f is a positive weight times the

absolute value of an analytic function. On the set tuf ą κu the analytic function

does not have zeros, so the logarithm of its absolute value is harmonic there. Thus,

the Laplacian of ln uf coincides with the Laplacian of the logarithm of the weight.

Explicitly,

∆ ln uf “

$

’

’

&

’

’

%

´π
2
∆|z|2 “ ´2π in Case 1 ,

´j∆ lnp1 ` |z|2q “ ´4jp1 ` |z|2q´2 in Case 2 ,
α
2
∆ lnp1 ´ |z|2q “ ´2αp1 ´ |z|2q´2 in Case 3 .

Note that the right side is equal to a constant multiple of ω and therefore

ż

tuf“κu

|∇uf ||dz| “

$

’

’

&

’

’

%

2πκµpκq in Case 1

4πjκµpκq in Case 2 ,

2πακµpκq in Case 3 .

To summarize, we have shown that

ℓptuf “ κuq2 ď

$

’

’

&

’

’

%

´2πκµ1pκqµpκq in Case 1

´4πjκµ1pκqµpκq in Case 2 ,

´2πακµ1pκqµpκq in Case 3 .
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We now use the isoperimetric inequality to bound the left side from below; for refer-

ences in the spherical and hyperbolic case see, for instance, [31, (4.23)], as well as [8],

[22, Third part, Chapter IV], [34, 36, 37]. We have

ℓpBAq2 ě

$

’

’

&

’

’

%

4πmpAq in Case 1 ,

4πmpAqp1 ´ mpAqq in Case 2 ,

4πmpAqp1 ` mpAqq in Case 3 .

Using these inequalities with A “ tuf ą κu, dividing by µpκq (which is nonzero

for κ ă M) and combining the resulting inequality with the above upper bound on

ℓptuf “ κuq2 we obtain
$

’

’

&

’

’

%

2 ď ´κµ1pκq in Case 1 ,

1 ´ µpκq ď ´jκµ1pκq in Case 2 ,

1 ` µpκq ď ´α
2
κµ1pκq in Case 3 .

(3)

These inequalities are equivalent to the monotonicity assertions in the lemma.

It remains to verify that this function is constant if f P M. By the equimeasurability

discussed before the statement of Theorem 10 it suffices to prove this for f “ F0 P M.

For all κ ď 1 we have

mptuF0
ą κuq “

$

’

’

&

’

’

%

ş

C
✶pe´π

2
|z|2 ą κq dApzq “ ´2 lnκ in Case 1 ,

π´1
ş

C
✶pp1 ` |z|2q´J ą κq dApzq

p1`|z|2q2
“ 1 ´ κ

1

J in Case 2 ,

π´1
ş

D
✶pp1 ´ |z|2qα

2 ą κq dApzq
p1´|z|2q2

“ κ´ 2

α ´ 1 in Case 3 .

It follows that for f “ F0 the function in Lemma 12 is, indeed, constant. �

The last ingredient in the proof of Theorem 10 is an inequality due to Chebyshev [11];

see also [16, Theorems 43 and 236]. For a proof of the following lemma, with a slightly

weaker assumption than monotonicity of one of the functions see [20, Lemma 4.1].

Lemma 13. Let t0 ą 0 and let w, h be nondecreasing functions on r0, t0s. Then
ż t0

0

hptqwptq dt ě t´1

0

ż t0

0

hptq dt
ż t0

0

wptq dt .

We are finally in position to prove the main result of this section.

Proof of Theorem 10. We begin with some preliminary remarks concerning convex

functions Φ on r0, 1s. We first argue that without loss of generality we may assume

that Φ is continuous on r0, 1s. By convexity, it is continuous on p0, 1q, so we only need

to discuss the endpoints. It is elementary that Φp0`q :“ limsÑ0` Φpsq and Φp1´q :“
limsÑ1´ Φpsq exist and are finite. (Note that these limits are ď Φp0q and ď Φp1q,
respectively, so in particular they are not `8.) By analyticity, mptuf “ 0uq “
mptf “ 0uq “ 0, so on this set we may replace Φp0q by Φp0`q without changing the

value of the integral. Similarly, by Lemma 11 and its proof, tuf “ 1u consists at most
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of one point, so on this set we may replace Φp1q by Φp1´q without changing the value

of the integral. Thus, we may assume that Φ is continuous on r0, 1s.
Next, we argue that we may assume that Φp0q “ 0. In Case 2, m is a finite measure,

so this can be accomplished by replacing Φ by Φ ´ Φp0q, which has a trivial effect on

the supremum. In Cases 1 and 3, we take f P M and see from the explicit form that

uf pzq Ñ 0 as |z| Ñ 8 in Case 1 and |z| Ñ 1 in Case 3. (In fact, this holds for any

f P H, as discussed in the proof of Lemma 11, but this is not needed here.) It follows

that, if Φp0q ‰ 0, then the supremum is equal to `8 and this value is achieved by all

f P M, so the assertion of the theorem is true in this case. Thus, in what follows we

may assume that Φp0q “ 0.

After these preliminaries we begin with the main part of the argument. Let f P H

with ~f~ “ 1. We define uf by (2) and set

s0 :“ }uf}2L8pΩq .

Then the quantity we are interested in can be written as
ż

Ω

Φpuf pzq2q dmpzq “
ż s0

0

mptu2f ą suqΦ1psq ds .

Here Φ1 denotes either the left or the right-sided derivative of Φ, which are known

to exist everywhere and to coincide outside of a countable set [42, Theorem 1.26].

We also used the facts that Φ is absolutely continuous [42, Theorem 1.28] and that

Φp0q “ 0.

We now write the quantity on the right side as
$

’

’

’

&

’

’

’

%

şs0

0

´

´ ln s ´ gps 1

2 q
¯

Φ1psq ds in Case 1 ,
şs0

0

´

1 ´ s
1

2J gps 1

2 q
¯

Φ1psq ds in Case 2 ,
şs0

0

´

´1 ´ s
1

α gps 1

2 q
¯

Φ1psq ds in Case 3 ,

where, according to Lemma 12, κ ÞÑ gpκq is nondecreasing on p0, s
1

2

0
q. In particular,

when Φ is the identity, we obtain, in view of the normalization of f ,

1 “ ~f~2 “

$

’

’

’

&

’

’

’

%

şs0

0

´

´ ln s ´ gps 1

2 q
¯

ds in Case 1 ,

p2J ` 1q
şs0

0

´

1 ´ s
1

2J gps 1

2 q
¯

ds in Case 2 ,

pα ´ 1q
şs0

0

´

´1 ´ s´ 1

α gps 1

2 q
¯

ds in Case 3 .

(4)

Let us set

t0 :“

$

’

’

&

’

’

%

s0 in Case 1 ,

s
2J`1

2J

0
in Case 2 ,

s
α´1

α

0
in Case 3 ,



14 RUPERT L. FRANK

and, for 0 ď t ď t0,

hptq :“

$

’

’

&

’

’

%

gpt 12 q in Case 1 ,

gpt j

2J`1 q in Case 2 ,

gpt
α

2pα´1q q in Case 3 .

Then the normalization (4) can be equivalently written as

1 “

$

’

’

&

’

’

%

şt0

0
p´ ln t ´ hptqq dt in Case 1 ,

2J
şt0

0

´

t´
1

2J`1 ´ hptq
¯

dt in Case 2 ,

α
şt0

0

´

´t 1

α´1 ´ hptq
¯

dt in Case 3 ,

while the quantity to be maximized is

ż

Ω

Φpuf pzq2q dmpzq “

$

’

’

&

’

’

%

şt0

0
p´ ln t ´ hptqqwptq dt in Case 1 ,

2J
şt0

0

´

t´
1

2J`1 ´ hptq
¯

wptq dt in Case 2 ,

α
şt0

0

´

´t 1

α´1 ´ hptq
¯

wptq dt in Case 3 ,

(5)

where, for 0 ď t ď t0,

wptq :“

$

’

’

&

’

’

%

Φ1ptq in Case 1 ,

Φ1pt 2J
2J`1 q in Case 2 ,

Φ1pt α
α´1 q in Case 3 .

Since Φ is convex, Φ1 is nondecreasing and therefore w is nondecreasing as well. Also,

h is nondecreasing since g is. Thus, Lemma 13 is applicable and, for given t0, an upper

bound on the right side of (5) is obtained by replacing the function h by the constant

t´1

0

şt0

0
hptq dt. According to the normalization, we have

t´1

0

ż t0

0

hptq dt “ Cpt0q ,

where, for τ P p0, 1s,

Cpτq :“

$

’

’

&

’

’

%

´τ´1 ´ τ´1
şτ

0
ln t dt in Case 1 ,

´p2Jq´1τ´1 ` τ´1
şτ

0
t´

1

2J`1 dt in Case 2 ,

´α´1τ´1 ´ τ´1
şτ

0
t

1

α´1 dt in Case 3 .

Thus, we have shown the upper bound

ż

Ω

Φpuf pzq2q dmpzq ď Apt0q (6)
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where, for τ P p0, 1s,

Apτq :“

$

’

’

&

’

’

%

şτ

0
p´ ln t ´ Cpτqqwptq dt in Case 1 ,

2J
şτ

0

´

t´
1

2J`1 ´ Cpτq
¯

wptq dt in Case 2 ,

α
şτ

0

´

´t 1

α´1 ´ Cpτq
¯

wptq dt in Case 3 .

Our goal now is to show that A is nondecreasing in p0, 1s. Since, by Lemma 11,

t0 ď 1, inserting this into (6) gives us the upper bound Ap1q. Later, we will argue

that this is the claimed optimal bound and discuss the cases of equality.

In order to prove the monotonicity of A, we first compute

Cpτq “

$

’

’

&

’

’

%

´τ´1 ´ ln τ ` 1 in Case 1 ,

´p2Jq´1τ´1 ` 2J`1

2J
τ´ 1

2J`1 in Case 2 ,

´α´1τ´1 ´ α´1

α
τ

1

α´1 in Case 3 .

From these expressions one easily deduces that C 1 ą 0 in p0, 1q. Another consequence
that we will use soon is that

0 “

$

’

’

&

’

’

%

´ ln τ ´ Cpτq ´ C 1pτqτ in Case 1 ,

τ´ 1

2J`1 ´ Cpτq ´ C 1pτqτ in Case 2 ,

´τ 1

α´1 ´ Cpτq ´ C 1pτqτ in Case 3 .

(7)

We now compute

A1pτq “

$

’

’

&

’

’

%

p´ ln τ ´ Cpτqqwpτq ´ C 1pτq
şτ

0
wptq dt in Case 1 ,

2J
´

τ´ 1

2J`1 ´ Cpτq
¯

wpτq ´ 2JC 1pτq
şτ

0
wptq dt in Case 2 ,

α
´

´τ 1

α´1 ´ Cpτq
¯

wpτq ´ αC 1pτq
şτ

0
wptq dt in Case 3 .

Since w is nondecreasing, we have
şτ

0
wptq dt ď τwpτq. This, together with C 1pτq ě 0,

implies

A1pτq ě

$

’

’

&

’

’

%

p´ ln τ ´ Cpτqqwpτq ´ C 1pτqτwpτq in Case 1 ,

2J
´

τ´ 1

2J`1 ´ Cpτq
¯

wpτq ´ 2JC 1pτqτwpτq in Case 2 ,

α
´

´τ 1

α´1 ´ Cpτq
¯

wpτq ´ αC 1pτqτwpτq in Case 3 .

According to (7), the right side is equal to zero in all cases. This proves that A1 ě 0

in p0, 1s.
As mentioned before, the monotonicity of A allows us to replace Apt0q by Ap1q in

(6). We claim that this bound is optimal. Indeed, if f P M, then, by the second

part of Lemma 12, g is constant. Thus, also h is constant and nothing was lost when

applying Lemma 13. This proves that in this case (6) is an equality and, since t0 “ 1

by Lemma 11, we have shown the claimed optimality.

Finally, assume that Ap1q ă 8 and that Φ is not affine linear. Then Φ1 is not

constant and neither is w. We deduce that there is an ε ą 0 such that the inequality
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şτ

0
wptq dt ď τwpτq is strict for all τ P p1 ´ ε, 1s. This, together with the fact that

C 1pτq ą 0 for all τ P p0, 1q implies that A1pτq ą 0 for all τ P p1 ´ ε, 1q. In particular,

Apτq ă Ap1q if τ P r0, 1q.
As a consequence, if f P H with ~f~ “ 1 attains the supremum in Theorem 10,

then necessarily t0 “ 1. Then, by Lemma 11, f P M, as claimed. This completes the

proof of Theorem 10, except for the explicit value of the supremum.

To compute the latter, we may choose an arbitrary element inM and it is convenient

to take f “ F0 “ 1. Then we obtain, by integrating in radial coordinates,

ż

Ω

ΦpuF0
pzq2q dz “

$

’

’

&

’

’

%

2π
ş8

0
Φpe´πr2q r dr in Case 1 ,

2
ş8

0
Φpp1 ` r2q´2Jqp1 ` r2q´2r dr in Case 2 ,

2
ş

1

0
Φpp1 ´ r2qαqp1 ´ r2q´2r dr in Case 3 .

Changing variables s “ e´πr2 , s “ p1 ` r2q´2J and s “ p1 ` r2qα in the three cases we

easily arrive at the claimed formulas. �

2.3. Extension to density matrices. In this subsection we generalize the inequality

in Theorem 10 and, under a slightly stronger assumption on Φ, we characterize the

cases of equality. We use an argument similar to [23, Lemma 2].

Given an operator ρ ě 0 with Tr ρ “ 1 on one of the Hilbert spaces H, we define a

function uρ on Ω as follows. We can write

ρ “
ÿ

n

pn|fnyxfn| with
ÿ

n

pn “ 1 , pn ě 0 , xfn, fmy “ δn,m .

We then set

uρpzq :“
˜

ÿ

n

pnufnpzq2
¸

1

2

.

It is easily checked that this is well-defined. (Note, in particular, the nonuniqueness

of the above decomposition of ρ in the case of a degenerate eigenvalue.) Moreover, for

ρ “ |fyxf |, this definition of uρ coincides with the earlier one of uf .

Corollary 14. Let Φ : r0, 1s Ñ R be convex. Then

sup

"
ż

Ω

Φpuρpzq2q dmpzq : ρ ě 0 on H , Tr ρ “ 1

*

“

$

’

’

&

’

’

%

ş

1

0
Φpsqs´1 ds in Case 1 ,

p2Jq´1
ş

1

0
Φpsqs 1

2J
´1 ds in Case 2 ,

p2Kq´1
ş

1

0
Φpsqs´ 1

2K
´1 ds in Case 3 ,

and the supremum is attained for ρ “ |F yxF | with F P M. If, moreover, Φ is strictly

convex and if the supremum is finite, then it is attained only for such ρ.
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Proof. We use the above expansion of ρ. By convexity of Φ, for any z P Ω,

Φpuρpzq2q “ Φp
ÿ

n

pnufnpzq2q ď
ÿ

n

pnΦpufnpzq2q .

Thus, with S denoting the supremum in Theorem 10,
ż

Ω

Φpuρpzq2q dmpzq ď
ÿ

n

pn

ż

Ω

Φpufnpzq2q dmpzq ď
ÿ

n

pnS “ S .

Since, by Theorem 10, S is attained for ρ “ |F yxF | with F P M, we obtain the first

assertion in the corollary.

Now assume that S ă 8 and that equality is achieved for some ρ. If Φ is not linear,

then, by Theorem 10, fn P M for each n. (Throughout we restrict ourselves to values

of n for which pn ą 0.) Moreover,

Φp
ÿ

n

pnufnpzq2q “
ÿ

n

pnΦpufnpzq2q for a.e. z P Ω .

Assuming now that Φ is strictly convex, we deduce that ufnpzq2 “ uf1pzq2 for a.e.

z P Ω and every n. Thus, by continuity, |fnpzq| “ |f1pzq| for all z P Ω and all n. By

analyticity, there are θn P R{2πZ such that fnpzq “ eiθnf1pzq for all z P Ω. (Indeed, by

the maximum modulus principle fn{f1 is equal to a constant in Ω without the zeros

of f1 and then by continuity in all of Ω.) Since xfn, f1y “ δn,1, we conclude that there

is only a single index n, namely, n “ 1. �

2.4. Another inequality of Kulikov. For later purposes, in this subsection we

record another inequality from [20] which corresponds, in some sense, to the limiting

case α “ 1 in Theorem 10.

The underlying Hilbert space is the Hardy space H2pDq consisting of all analytic

functions f in D such that

}f}H2pDq :“
ˆ

sup
0ără1

p2πq´1

ż π

´π

|fpreiϕq|2 dϕ
˙1{2

ă 8 .

To emphasize the analogy with Theorem 10 we denote this space by H and its norm

by ~ ¨ ~. We also use the same notation Ω and dmpzq as in Case 3. The function uf is

defined by (2) with α “ 1. The functions Fw are defined as in Case 3 with α “ 1 and

one easily checks that they are normalized. The set M is defined as before.

Proposition 15. Let Φ : r0, 1s Ñ R be nondecreasing. Then

sup

"
ż

Ω

Φpuf pzq2q dmpzq : f P H , ~f~ “ 1

*

“
ż

1

0

Φpsqs´2 ds

and the supremum is attained in M. If Φ is strictly increasing near 1 and if the

supremum is finite, then it is attained only in M.

By Φ being ‘strictly increasing near 1’ we mean that Φpsq ă Φp1´q for all s ă 1,

where Φp1´q :“ limsÑ1´ Φpsq. We will see in the proof that uf ď 1, so the quantity in

the supremum is well defined.
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Proof. The first part is a special case of [20, Theorem 1.1]. The second part can be

obtained by an inspection of the proof of the first part, but, since this is not explicitly

stated in [20], we provide some details. As in the proof of Theorem 10, we may assume

that Φp0q “ limsÑ0` Φpsq “ 0. Then
ż

Ω

Φpuf pzq2q dmpzq “
ż s0

0

µps 1

2 q dΦpsq ,

where s0 :“ }uf}2L8pΩq. By an analogue of Lemma 11, we have s0 ď 1 [20, (1.2)] with

equality if and only if f P M. The argument for the latter assertion is essentially

the same as in Lemma 11, using the fact that uf pzq Ñ 0 as |z| Ñ 1, stated in

[20, paragraph after (1.2)], and the cases of equality in the Schwarz inequality for a

reproducing kernel (see also the proof of Proposition 19 below).

As shown in [20, Theorem 3.1], we have µpκq ď pκ´2 ´ 1q` for all κ ą 0 and this

bound is an equality if f P M. Thus,
ż s0

0

µps 1

2 q dΦpsq ď
ż

1

0

ps´1 ´ 1q dΦpsq ´
ż

1

s0

ps´1 ´ 1q dΦpsq ,

where the first term on the right side corresponds to the value of the supremum. Thus,

if this term is finite and f attains the supremum, then the second term on the right

sides has to vanish. If Φ is strictly increasing near 1, then the measure dΦpsq does not
vanish on any interval p1 ´ ε, 1q with ε ą 0 and therefore, necessarily, s0 “ 1. By the

above, this means f P M, as claimed.

To compute the value of the supremum we can proceed exactly as in Case 3 of

Theorem 10, setting α “ 1 in that calculation. This proves the proposition. �

3. Reverse Hölder inequalities for analytic functions

The material in this section is an extension of that in the previous section. It is not

relevant for the proof of the results in Section 1.

In Theorem 10 we were working under a constraint on a Hilbertian norm. It turns

out that this is an unnecessary restriction. We will now prove a generalization of

Theorem 10 with a constraint on a more general norm or quasinorm. This will allow

us to settle a conjecture by Bodmann [9, Conjecture 3.5].

We continue to use the notation of Section 2. For 0 ă p ă 8, we define

~f~p :“

$

’

’

&

’

’

%

´

p

2

ş

C
|fpzq|pe´pπ

2
|z|2 dApzq

¯1{p

in Case 1 ,
`

pJ`1

π

ş

C
|fpzq|pp1 ` |z|2q´pJ´2 dApzq

˘1{p
in Case 2 ,

`

αp´2

2π

ş

D
|fpzq|pp1 ´ |z|2qpα

2
´2 dApzq

˘1{p
in Case 3 .

This is a norm for p ě 1 and a quasinorm for p ă 1. The prefactors are chosen such

that ~1~p “ 1. We still assume that J P 1

2
N in Case 2 and now α ą 2

p
in Case 3. We

denote by X p the space of all analytic functions f on Ω such that ~f~p ă 8. In Case

2 we require, in addition, that f is a polynomial of degree ď 2J . The function uf for

f P X p is defined as before. We note that every F P M satisfies ~F~p “ 1. Indeed,
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we have already noted that this holds for F “ F0 “ 1 and for general F P M it follows

from the equimeasurability of uFw
for different w, discussed before Theorem 10.

Theorem 16. Let 0 ă p ă 8 and let Φ : r0, 1s Ñ R be convex. Then

sup

"
ż

Ω

Φpuf pzqpq dmpzq : f P X p , ~f~p “ 1

*

“

$

’

’

&

’

’

%

2

p

ş

1

0
Φpsqs´1 ds in Case 1 ,

ppJq´1
ş

1

0
Φpsqs 1

pJ
´1
ds in Case 2 ,

2

αp

ş

1

0
Φpsqs´ 2

αp
´1
ds in Case 3 ,

and the supremum is attained in M. If Φ is not affine linear and if the supremum is

finite, then it is attained only in M.

For p “ 2 this theorem reduces to Theorem 10. In Case 3 it reduces to [20, Theorem

1.2 and Remark 4.3], except that our equality statement allows for more general Φ.

In Cases 1 and 2 the theorem seems to be new.

Taking Φpsq “ s
q

p with q ą p we obtain the following reverse Hölder inequalities.

Corollary 17. Let 0 ă p ă q ă 8. Then, for any f P X p,

~f~q ď ~f~p

with equality if and only if f “ 0 or ~f~´1

p f P M.

This corollary in Case 1 is due to Carlen [10, Theorem 2]. In fact, Carlen proves a

more general inequality including an additional parameter. Carlen’s method of proof

depends on the logarithmic Sobolev inequality and an identity for analytic functions.

It is different from ours. Corollary 17 in Case 2 has been conjectured by Bodmann [9,

Conjecture 3.5], who proved it in the special case where q “ p ` J´1n where n P N

and p ą J´1. Bodmann’s proof relies on a sharp Sobolev inequality and an analogue

of Carlen’s identity. Corollary 17 in Case 3 is due to Kulikov [20, Corollary 1.3]. The

special case q “ p ` 2α´1 with p ě 2, αp ą 4 was proved earlier by Bandyopadhyay

in [3, Corollary 3.3] using the method of Carlen and Bodmann. (Note that in [3] it is

assumed that α P Nzt1u – in her notation α “ 2k –, but this seems to be irrelevant

for [3, Section 3].)

We turn now to the proof of Theorem 16. The main new ingredient is the following

generalization of Lemma 11. In Case 3 this is well known [20, (1.1)] and probably also

in Case 1, but in Case 2 it might be new.

Lemma 18. Let 0 ă p ă 8 and let f P X p. Then

}uf}L8pΩq ď ~f~p .

with equality if and only if either f “ 0 or ~f~´1

p f P M.
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Proof. We begin by showing that

uf p0q ď ~f~p . (8)

with equality if and only if ~f~´1

p f “ eiθF0 for some θ P R{2πZ (provided f ‰ 0).

Since ln |f | is subharmonic in Ω, we have, for any r P p0, Rq, where R :“ 8 in Cases 1

and 2 and R :“ 1 in Case 3,

ln |fp0q| ď p2πq´1

ż π

´π

ln |fpreiϕq dϕ .

We multiply by re´pπ
2
r2 , rp1 ` r2q´pJ´2 and rp1 ´ r2qpα

2
´2 in the different cases and

integrate with respect to r P p0, Rq. In this way, we obtain

ln |fp0q| ď
ż

Ω

ln |fpzq|wpzq dApzq ,

where

wpzq :“

$

’

’

&

’

’

%

p

2
e´pπ

2
|z|2 in Case 1 ,

pJ`1

π
p1 ` |z|2q´pJ´2 in Case 2 ,

αp´2

2π
p1 ´ |z|2qpα

2
´2 in Case 3 .

The measure wpzq dApzq is a probability measure. Multiplying the inequality by p we

can write it as

|fp0q|p ď exp

ˆ
ż

Ω

lnp|fpzq|pqwpzq dApzq
˙

ď
ż

Ω

|fpzq|pwpzq dApzq “ ~f~pp ,

where the second inequality comes from Jensen’s inequality. Since the exponential

function is strictly convex, Jensen’s inequality is strict unless lnp|f |pq is almost every-

where constant. Since f is continuous, this happens if and only |f | is constant and,

by the maximum modulus principle if and only f is constant. This proves the claim.

We now claim that for any z P Ω,

uf pzq ď ~f~p (9)

if and only if ~f~´1

p f “ eiθFz for some θ P R{2πZ (provided f ‰ 0). In Case 2, the

same inequality remains valid for z “ 8, recalling that uf extends continuously to this

point. Indeed, inequality (9) and its equality statement follow from the corresponding

assertions concerning (8), by applying an element of the Heisenberg group, SU(2) or

SU(1,1) to move the point z to the point 0 and by noting that ~ ¨ ~p is invariant

under this group action. The latter fact follows from the equimeasurability property

discussed before Theorem 10.

Inequality (9) implies the inequality in the lemma. Now assume that f ‰ 0 achieves

equality in this inequality. We claim that uf pzq Ñ 0 as |z| Ñ 8 or |z| Ñ 1 in Cases 1

and 3. This, together with the continuity of uf in Ω in Cases 1 and 3 and in CYt8u in

Case 2, implies that there is a z such that uf pzq “ }uf}L8pΩq. The equality statement

in (9) then implies the equality statement in the lemma.
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Thus, it suffices to prove the asymptotic vanishing of uf in Cases 1 and 3. In both

cases, this is clear when f is a polynomial and follows in the general case from the

fact that polynomials are dense with respect to ~ ¨ ~p and the inequality in the lemma.

This completes the proof. �

Proof of Theorem 16. Given Lemma 18, which replaces Lemma 11, the proof is a

minor variation of that of Theorem 10. We only sketch the major steps. The task is

to maximize
ż s0

0

mptupf ą suqΦ1psq ds “
ż s0

0

µps 1

p qΦ1psq ds

under the constraint

ż s0

0

mptupf ą suq ds “
ż s0

0

µps 1

p q ds “

$

’

’

&

’

’

%

2

p
in Case 1 ,

1

pJ`1
in Case 2 ,

2

αp´2
in Case 3 ,

with s0 :“ }uf}p
L8pΩq and µ as in Lemma 12. The latter lemma allows us to write µps 1

p q
as the sum of a fixed piece and one that involves the nondecreasing function gps 1

p q. We

pass from the variable s to a variable t so that for the resulting nondecreasing function

h the constraint can be written as an integral with respect to the unweighted measure

dt. Then we can use Chebyshev’s bound (Lemma 13) to replace h by its average. This

leads to a certain bound Apt0q and a computation, similarly as for p “ 2, shows that

A is nondecreasing. Moreover, if Φ is not affine linear, then A is strictly increasing.

This concludes the sketch of the proof of Theorem 16. �

4. Proof of the main results

In this section we prove the main results stated in the introduction. In each case

we will work with a concrete representation of the group action that involves analytic

functions. The inequalities will then be deduced from Theorem 10.

4.1. Proof of Theorem 1. By scaling, it suffices to prove the theorem for a single

value of ~ and it is convenient to choose ~ “ p2πq´1. Then, given ψ P L2pRq, we can

write

xψp,q, ψy “ e´π
2

pq2`p2qeiπqpfpq ´ ipq
with

fpzq :“ 2
1

4

ż

R

e2πzx´
π
2
z2´πx2ψpxq dx for all z P C .

It is well known and easy to see that f is entire and that

}f}2
F2 “

ĳ

RˆR

|xψp,q, ψy|2 dp dq “ }ψ}2L2pRq ,
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where the last identity is the completeness relation of the coherent states. In particular,

f P F2pCq. Moreover,

uf pq ´ ipq “ |xψp,q, ψy| ,
so Theorem 1 follows immediately from Theorem 10 in Case 1. Similarly, Corollary 2

follows from Corollary 14.

4.2. Proof of Theorem 4. Let J P 1

2
N. We consider the representation of SU(2) on

functions f on C given by

πUpfqpzq :“ pβz ` αq2J fpαz´β
βz`α

q for all z P C ,

where

U “
ˆ

α β

´β α

˙

P SUp2q , that is, α, β P C with |α|2 ` |β|2 “ 1 .

This representation restricted to P2J is irreducible and unitary for the norm defined

above. In this representation,

S1 “ 1

2

ˆ

p´z2 ` 1q d
dz

` 2Jz

˙

, S2 “ 1

2i

ˆ

p´z2 ´ 1q d
dz

` 2Jz

˙

, S3 “ z
d

dz
´ J .

We may choose the space H in Theorem 4 as P2J . By an explicit computation one

sees that the functions Fw are eigenvectors of the operator Spwq ¨ S corresponding to

the eigenvalue ´J , where we used the stereographic projection S : C ÞÑ S
2, given by

S1pwq ` iS2pwq :“ 2w

1 ` |w|2 , S3pwq :“ 1 ´ |w|2
1 ` |w|2 .

Consequently, the phases of the ψω, ω P S
2, can be chosen such that these functions

coincide with the functions Fw, w P CY t8u. Thus, using the explicit form of the Fw,

xψSpwq, ψy “ p1 ` |w|2q´Jfpwq

with

fpwq :“ 2J ` 1

π

ż

C

p1 ` wzq2Jψpzqp1 ` |z|2q´2J´2 dApzq .

Since ψ is a polynomial of degree ď 2J , the reproducing property of the kernel implies

that fpwq “ ψpwq for all w P C. Moreover,

uf pwq “ |xψSpwq, ψy|

and so, by a change of variables,

π´1

ż

C

Φpuf pwq2q dApwq
p1 ` |w|2q2 “ p4πq´1

ż

S2

Φp|xψω, ψy|2q dω .

Thus, Theorem 4 follows immediately from Theorem 10 in Case 2. Similarly, Corol-

lary 5 follows from Corollary 14.
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4.3. Proof of Theorem 6. Let K P 1

2
Nzt1

2
u. We consider the representation of

SU(1,1) on functions f on D given by

πUpfqpzq :“ pβz ` αq´2K fpαz`β
βz`α

q for all z P C ,

where

U “
ˆ

α β

β α

˙

P SUp1, 1q , that is, α, β P C with |α|2 ´ |β|2 “ 1 .

This representation restricted toA2

2KpDq is irreducible and unitary for the norm defined

above. In this representation,

K0 “ z
d

dz
` K , K1 “ 1

2i

ˆ

pz2 ´ 1q d
dz

` 2Kz

˙

, K2 “ ´1

2

ˆ

pz2 ` 1q d
dz

` 2Jz

˙

.

We may choose the space H in Theorem 6 as A2

2KpDq. By an explicit computation

one sees that the functions Fw are eigenvectors of the operator n0K0 ´ n1K1 ´ n2K2

corresponding to the eigenvalueK. Here pn0, n1, n2q is related to w as in the discussion

before the statement of Theorem 6. Consequently, we can choose the phases in such

a way that ψw “ Fw for all w P D. Thus, using the explicit form of the Fw,

xψw, ψy “ p1 ` |w|2qKfpwq
with

fpwq :“ 2K ´ 1

π

ż

D

p1 ` wzq´2Kψpzqp1 ` |z|2q2K´2 dApzq .

Since ψ P A2

2KpDq, the reproducing property of the kernel implies that fpwq “ ψpwq
for all w P D. Moreover,

uf pwq “ |xψw, ψy| ,
so Theorem 6 follows immediately from Theorem 10 in Case 3. Similarly, Corollary 7

follows from Corollary 14.

4.4. The limit of the discrete series. Two other irreducible unitary representations

of SU(1,1) are not in the discrete series, but are closely related to it, the so-called limits

of discrete series [19, Chapter II]. They are typically not considered in the context of

coherent states, since they are not square-integrable, but the questions discussed in

this paper make perfectly sense for them and can be completely answered.

We restrict our attention to one of the limits of the discrete series, since the results

for the other one can be deduced by appropriate complex conjugation. The construc-

tion of the coherent states is verbatim the same as for the discrete series, except that

the value of K now is 1

2
.

Proposition 19. Consider the irreducible limit of the discrete series representation

of SUp1, 1q on H. Let Φ : r0, 1s Ñ R be nondecreasing. Then

sup

"
ż

D

Φp|xψz, ψy|2q dApzq
p1 ´ |z|2q2 : ψ P H , }ψ}H “ 1

*

“ π

ż

1

0

Φpsqs´2 ds
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and the supremum is attained for ψ “ eiθψz0 with some z0 P D, θ P R{2πZ. If Φ is

strictly increasing near 1 and if the supremum is finite, then it is attained only for

such ψ.

Note that the value of the integral with ψ “ eiθψz0 does not depend on z0 P D,

θ P R{2πZ. It may or may not be finite, depending on Φ. For finiteness it is necessary

that limsÑ0` s´1Φpsq “ 0. In particular, the function Φpsq “ s leads to an infinite

supremum, which reflects the non-squareintegrability of the representation.

Proof of Proposition 19. We consider the same representation of SU(1,1) on functions

on D as in the proof of Theorem 6 but with K “ 1

2
. This representation is irreducible

when restricted to the Hardy space H2pDq and unitary for the norm defined above;

see [19, Section II.6]. We choose the representation space H “ H2pDq. The functions

Fw were defined before Proposition 15 and one verifies that, by an appropriate choice

of phases, ψw “ Fw. It is well known that functions in the Hardy space have radial

boundary values in L2pBDq and that in their norm it suffices to consider this boundary

value. Thus, using the explict form of the Fw,

xψw, ψy “ p2πq´1

ż π

´π

Fwpeiϕqψpeiϕq dϕ “ p1 ` |w|2q 1

2fpwq

with

fpwq :“ p2πq´1

ż π

´π

p1 ´ we´iϕq´1ψpeiϕq dϕ .

By the reproducing property of the kernel (seen, for instance, by expanding both

functions in the integrand into a Fourier series), we see that fpwq “ ψpwq for all

w P D. Moreover,

uf pwq “ |xψw, ψy| ,
so Proposition 19 follows from Proposition 15. �

There is also an analogue of Corollary 7 extending Proposition 19 (with convex Φ)

to density matrices, but we omit it for the sake of brevity.

4.5. Proof of Theorem 8. Given ψ P L2pR`q, we can write

xψa,b, ψy “ aβfpia ´ bq

with

fpzq :“ 2βΓp2βq´ 1

2

ż 8

0

xβ´ 1

2 eizxψpxq dx .

It is easy to see and known that f is analytic in C` “ tz P C : Im z ą 0u and that

β ´ 1

2

2π

ż

C`

|fpzq|2pIm zq2β´2 dApzq “ β ´ 1

2

2π

ĳ

R`ˆR

|xψa,b, ψy|2 da db
a2

“ }ψ}2L2pR`q ,
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where the last identity is the completeness relation of the coherent states [12, (2.10)].

Consider the conformal map Σ : C` Ñ D,

Σpzq “ z ´ i

´iz ` 1
for z P C` , Σ´1pζq “ ζ ` i

iζ ` 1
for ζ P D .

Setting

gpζq :“ piζ ` 1q´2βfp ζ`i
iζ`1

q for all ζ P D ,

we find that g is analytic in D and, using dApζq “ |Σ1pzq|2 dApzq for ζ “ Σpzq,
β ´ 1

2

2π

ż

C`

|fpzq|2pIm zq2β´2 dApzq “ 2β ´ 1

π

ż

D

|gpζq|2p1 ´ |ζ|2q2β´2 dApζq “ }g}2A2βpDq .

Moreover, after a simple computation,

ugpΣpia ´ bqq “ |xψa,b, ψy|
and therefore

ĳ

R`ˆR

Φp|xψa,b, ψy|2q da db
a2

“ 4π

ż

D

Φpugpζq2q dmpζq .

Also, the coherent states ψa,b, pa, bq P R` ˆ R, are in one-to-one correspondence with

the functions Fw, w P D. Indeed, a straightforward computation shows that the f

corresponding to ψ “ ψ1,0 is fpzq “ p2i{pz ` iqq2β, which corresponds to gpζq “ 1 “
F0pζq. The result in the general case follows from the facts that every pa, bq can be

moved to p1, 0q by an aX ` b-action, every point w P D can be moved to 0 by the

action of a subgroup of SU(1,1) isomorphic to aX ` b (see, e.g., [26, equation after

(1.3)]) and that Σ relates these actions to each other.

Thus, Theorem 8 follows immediately from Theorem 10 in Case 3 with α “ 2β and,

similarly Corollary 9 follows from Corollary 14.

Remark 20. The functions ψa,b are also well defined for β P p0, 1
2
s. In this case,

the coherent state transform cannot be normalized to be an isometry to a subset of

L2pR` ˆ R, a´2da dbq, but the optimization problem in Theorem 8 still makes sense.

We claim that, for β “ 1

2
, Theorem 8 remains valid, replacing the assumptions ‘convex’

and ‘not linear’ on Φ by ‘nondecreasing’ and ‘strictly increasing near 1’, respectively.

Indeed, in this case the function f in the previous proof belongs to the Hardy space

H2pC`q and, by Plancherel, its norm in that space is equal to }ψ}L2pR`q. Mapping

C` to D via Σ, we can deduce the assertion from Proposition 15. We do not know

whether Theorem 8 extends to β P p0, 1
2
q.

4.6. Limitations of the method. In this paper we have discussed the cases of the

Heisenberg group, SU(2), SU(1,1) and the affine group. It is a natural question,

potentially of relevance for representation theory, to which extent the results can be

generalized to arbitrary Lie groups.

While the method of the present paper is able to treat various cases in a unified

way, it will probably not be able to deal with the general case, as we argue now. One
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of the key ingredients in the argument is Lemma 12, whose proof uses the fact that

the superlevel sets of the overlap of two coherent states are isoperimetric set. This

may fail in general, as we are going to show.

Following Lieb and Solovej [25], we consider the case of symmetric representations

of SU(N). We fix N ě 3. The relevant representations are labeled by M P N and we

choose the representation space H to be the symmetric subspace of the tensor product

bM
C
N . Coherent states are defined through elements of the form bMz with z P C

N ,

|z| “ 1. Note that if two z’s differ by a phase, then the corresponding vectors bMz

in H also differ by a phase and correspond to the same state. Thus, we will label the

coherent states by points z in the complex projective space

CPN´1 “
 

z P C
N : |z| “ 1

(

{ „
where z „ w if z “ eiθw for some θ P R{2πZ. We denote integration with respect to

the natural SU(N)-invariant probability measure on CPN´1 by dz.

Lieb and Solovej have solved the corresponding problem and shown that, for any

convex Φ : r0, 1s Ñ R,

sup

"
ż

CPN´1

Φp|xbMz, ψy|2q dz : ψ P H , }ψ}H “ 1

*

is attained for coherent states.

If we tried to reprove this through the method in the present paper, we would

consider the measure of the superlevel sets of the function z ÞÑ |xbMz, ψy| and try

to prove some monotonicity properties of it. This monotonicity property should be

saturated if ψ is of the form bMz0. In this special case, the level sets are of the form
 

z P CPN´1 : |z˚z0|M ą κ
(

These are geodesic balls (see, e.g., [15, Example 2.110]) and, if we want to use the

method based on an isoperimetric inequality, they should be optimizers for the isoperi-

metric inequality. (More precisely, this should hold for all κ for which their measure

is ď 1

2
; for κ such that their measure is ě 1

2
their complements should be optimizers.)

This, however, is not the case for all κ, at least not for N “ 4, as pointed out in [4,

Appendix]; see also [28, Remark 4.2]. For the solution of the isoperimetric problem in

CPN´1 see also [28, Theorem 4.1]. The isoperimetric sets are expected to transition

from geodesic balls for small volumes to tubes around some CPM´1 Ă CPN´1 for

intermediate volumes.

5. Faber–Krahn-type inequalities for the coherent state transform

The main result of the recent paper [29] by Nicola and Tilli states that, for any

measurable set E Ă R
2 of finite measure,

ĳ

E

|xψp,q, ψy|2 dp dq ď 2π~
´

1 ´ e´p2π~q´1|E|
¯

(10)
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with equality if and only if ψ “ eiθψp0,q0 for some p0, q0 P R, θ P R{2πZ and E is equal

to a ball centered at pp0, q0q (up to sets of measure zero). (We restrict ourselves here

to the one-dimensional case of their result. Since the proof of Theorem 1 extends to

higher dimensions, the discussion in this subsection does so as well.)

We claim that the inequality (10) follows by abstract arguments from Theorem 1. Of

course, this is not too surprising, since Kulikov’s arguments, which we have adapted to

yield a proof of Theorem 1, are inspired by those in [29]. Nevertheless, this observation

will allow us to derive an analogue of the Nicola–Tilli results in the SU(2), SU(1,1)

and aX ` b cases.

Proof of (10) given Theorem 1. Fixing p0, q0 P R and ψ P L2pRq with }ψ}L2pRq “ 1,

we can write the first assertion of Theorem 1 as the statement that
ĳ

RˆR

Φp|xψp,q, ψy|2q dp dq ď
ĳ

RˆR

Φp|xψp,q, ψp0,q0y|2q dp dq

for any convex function Φ on r0, 1s. By Hardy–Littlewood majorization theory (see,

e.g., [16, Theorems 108, 249, 250], [1, Corollary 2.1], [42, Theorem 15.27] and also [7,

Chapter 2, Propsition 3.3]), this is equivalent to the fact that
ĳ

E

|xψp,q, ψy|2 dp dq ď sup
|F |“|E|

ĳ

F

|xψp,q, ψp0,q0y|2 dp dq

for any measurable set E Ă R
2 of finite measure. By an explicit computation,

|xψp,q, ψp0,q0y| “ e´ 1

4~
ppq´q0q2`pp´p0q2q .

This is symmetric decreasing around pp0, q0q and therefore the supremum above is

attained if (and only if) F is a ball centered at pp0, q0q (up to sets of measure zero).

In this case, the right side can be computed to be 1 ´ e´p2π~q´1|E|, yielding (10). �

By going carefully through the majorization argument it should be possible to de-

duce from the equality statement in Theorem 1 the equality statment by Nicola and

Tilli, but we omit this here.

Obviously, the above argument can be generalized to the SU(2), SU(1,1) and aX`b

cases. For the sake of brevity, we leave out a statement about the cases of equality.

Theorem 21. Let J P 1

2
N and consider an irreducible p2J ` 1q-dimensional repre-

sentation of SUp2q on H. Then, for any ψ P H with }ψ}H “ 1 and any measurable

E Ă S
2,

ż

E

|xψω, ψy|2 dω ď 4π

2J ` 1

ˆ

1 ´
´

1 ´ |E|
4π

¯2J`1
˙

.

Equality is attained if ψ “ eiθψω0
with some ω0 P S

2, θ P R{2πZ and E is a spherical

cap centered at ω0.
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Theorem 22. Let K P 1

2
Nzt1

2
u and consider the irreducible discrete series represen-

tation of SUp1, 1q on H corresponding to K. Then, for any ψ P H with }ψ}H “ 1 and

any measurable E Ă D,
ż

E

|xψz, ψy|2 dApzq
p1 ´ |z|2q2 ď π

2K ´ 1

`

1 ´ p1 ` mpEqq´2K`1
˘

,

where dmpzq “ π´1p1 ´ |z|2q´2 dApzq. Equality is attained if ψ “ eiθψz0 with some

z0 P D, θ P R{2πZ and E is a hyperbolic ball centered at z0.

Theorem 23. Let β ą 1

2
. Then, for any ψ P L2pR`q with }ψ}L2pR`q “ 1 and any

measurable E Ă R` ˆ R,
ĳ

E

|xψa,b, ψy|2 da db
a2

ď 4π

2β ´ 1

`

1 ´ p1 ` p4πq´1µpEqq´2β`1
˘

,

where dµpa, bq “ a´2da db. Equality is attained if ψ “ eiθψa0,b0 with some a0 P R`,

b0 P R, θ P R{2πZ and E is a hyperbolic ball centered at pa0, b0q.

In Theorems 22 and 23 by a ‘hyperbolic ball’ we mean a geodesic ball with respect

to the hyperbolic metric on D and C` (identified with R` ˆ R), respectively.

Theorem 23, including a characterization of equality cases, has recently been proved

in [35] by a direct adaptation of the method in [29]. Our proof, based on Theorem 8,

is different.

Proof of Theorems 21, 22 and 23. As above, one can show that the left sides in the

theorems are bounded by the supremum of the integral of |xψα, ψα0
y|2 over sets F of

the same measure as E. Here the index α labels ω P S
2, z P D and pa, bq P R` ˆ R in

the three cases, respectively, and α0 is a fixed such index. By the bathtub principle,

the supremum over F is attained at a set of the form t|xψα, ψα0
y| ą κ0u YG, where G

is a measurable subset of t|xψα, ψα0
y| “ κ0u.

To complete the proof we will need some explicit knowledge about the function

|xψα, ψα0
y|. We choose the representation space H in Theorems 21 and 22 in the same

way as in the proofs of Theorems 4 and 6, namely as P2J and A2

2KpDq, respectively.
Then, as shown there, |xψα, ψα0

y| “ uFw
pzq where α “ Spzq and α “ z in the first

two cases and, similarly, α0 “ Spwq and α0 “ w. In the third case, if α “ pa, bq,
then z “ Σpia ´ bq and similarly for α0 and w. In particular, w “ 0 if we choose α0

to be ω0 “ p0, 0, 1q, z “ 0 and pa0, b0q “ p1, 0q in the different cases. The explicit

definition of uf then shows that t|xψα, ψα0
y| ą κ0u is a spherical cap in the first case

or a hyperbolic ball in the last two cases and that in all cases t|xψα, ψα0
y| “ κ0u has

measure zero. Thus the set G above can be ignored and we have identified the optimal

set in the case of a special choice of α0.

This, in fact, yields the shape for an arbitrary choice of α0. Indeed, as discussed

before Theorem 10, the functions α ÞÑ xψα, ψα0
y are equimeasurable for different

α0’s and one such function can be obtained from another by the action of SU(2) or
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SU(1,1). Since this action maps spherical caps to spherical caps, or hyperbolic balls

to hyperbolic balls, we obtain that the supremum is attained for any α0 at such a set.

It remains to compute the supremum. It is convenient to do this in terms of the

functions uf . The second case and the third case can be treated together with the

convention that α “ 2K in the second and α “ 2β in the third case. We have with

an arbitrary F P M

ż

tuF ąκ0u

uF pzq2 dmpzq “
#

p4πq´1
ş

t|xψω ,ψω0
y|ąκ0u

|xψω, ψω0
y|2dω ,

π´1
ş

t|xψz ,ψz0
y|ąκ0u

|xψz, ψz0y|2 dApzq
p1´|z|2q2

.

Meanwhile, by the layer cake formula,
ż

tuF ąκ0u

uF pzq2 dmpzq “ 2

ż κ0

0

mptuF ą κ0uqκ dκ ` 2

ż κ0

0

mptuF ą κuqκ dκ

“
ż

Ω

uF pzq2 dmpzq ´ 2

ż κ0

0

pmptuF ą κuq ´ mptuF ą κ0uqqκ dκ .
(11)

The first term on the right side is equal to
ż

Ω

uF pzq2 dmpzq “ c~F~2 “ c

with c “ p2J ` 1q´1 and c “ pα ´ 1q´1 in the different cases. For the second term on

the right side of (11) we use the explicit expressions for mptuF ą κuq from the proof

of Lemma 12 and get, after a computation,

2

ż κ0

0

pmptuF ą κuq ´ mptuF ą κ0uqqκ dκ “

$

&

%

c κ
2J`1

J

0
,

c κ
2pα´1q

α

0
.

(12)

This gives the expression of the supremum in terms of κ0. The parameter κ0 satisfies

mptuF ą κ0uq “

$

’

’

&

’

’

%

p4πq´1|E| in the case of Theorem 21 ,

mpEq in the case of Theorem 22 ,

p4πq´1µpEq in the case of Theorem 23 .

(13)

(In the last case, we used the fact that p4πq´1µpEq “ mpΣpẼqq, where Σ is the

conformal map from C` to D from the proof of Theorem 8 and Ẽ Ă C` is obtained

from E by identifying pa, bq P R` ˆR with ia´b P C`.) Using (13) and the expressions

from the proof of Lemma 12, we can express κ0 in terms of the measure of E. Inserting

this into (12) gives an expression for the second term on the right side of (11). This

leads to the claimed explicit form of the upper bound. �
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[8] F. Bernstein, Über die isoperimetrische Eigenschaft des Kreises auf der Kugeloberfläche und in
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tionskörper im n-dimensionalen sphärischen Raum. Math. Z. 46 (1940), 743–794.

[38] P. Schupp, On Lieb’s conjecture for the Wehrl entropy of Bloch coherent states. Comm. Math.

Phys. 207 (1999), no. 2, 481–493.

[39] P. Schupp, Wehrl entropy, coherent states and quantum channels. In: The Physics and Mathe-

matics of Elliott Lieb, Vol. II, 329–344, EMS Press, Berlin, 2022.

[40] B. Simon, The classical limit of quantum partition functions. Comm. Math. Phys. 71 (1980),

no. 3, 247–276.

[41] B. Simon Representations of finite and compact groups. Graduate Studies in Mathematics, 10.

American Mathematical Society, Providence, RI, 1996.

[42] B. Simon, Convexity. An analytic viewpoint. Cambridge Tracts in Mathematics, 187. Cambridge

University Press, Cambridge, 2011.

[43] G. Talenti, Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3

(1976), no. 4, 697–718.

[44] A. Wehrl, On the relation between classical and quantum-mechanical entropy. Rep. Math. Phys.

16 (1979), no. 3, 353–358.

(Rupert L. Frank)Mathematisches Institut, Ludwig-Maximilans Universität München,

Theresienstr. 39, 80333 München, Germany, and Munich Center for Quantum Science

and Technology, Schellingstr. 4, 80799 München, Germany, and Mathematics 253-37,

Caltech, Pasadena, CA 91125, USA

Email address: r.frank@lmu.de


