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Continuous double-strand break induction and their
differential processing sustain chiasma formation
during Caenorhabditis elegans meiosis
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Highlights

e Meiotic DSBs are formed continuously throughout the
pachytene stage in C. elegans

e DSBs formed at later meiotic stages are essential to generate
crossovers

e The nucleases DNA-2 and EXO-1 resect DNA ends
predominantly at later meiotic stages

e DNA-2/EXO-1 activity discourages hon-homologous end-
joining-dependent repair
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In brief

Meiotic chromosome segregation
requires Spo11-mediated break
induction and long end resection to form
crossovers. Hicks et al. show that break
formation occurs throughout pachytene
stage in C. elegans, and those formed
later are essential to generate crossovers.
DNA-2/EXO-1 activity mainly on later
breaks ensures homologous
recombination-dependent repair,
preventing non-homologous end joining.
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SUMMARY

Faithful chromosome segregation into gametes depends on Spol1-induced DNA double-strand breaks
(DSBs). These yield single-stranded 3’ tails upon resection to promote crossovers (COs). While early
Mre11-dependent end resection is the predominant pathway in most organisms, Exo1 or Dna2/BLM can
also contribute to the efficient processing of meiotic DSBs. Although its enzymatic activity has been thor-
oughly dissected, the temporal dynamics underlying Spo11 activity have remained mostly elusive. We
show that, in Caenorhabditis elegans, SPO-11-mediated DSB induction takes place throughout early meiotic
prophase | until mid-late pachynema. We find that late DSBs are essential for CO formation and are prefer-
entially processed by EXO-1 and DNA-2 in a redundant fashion. Further, EXO-1-DNA-2-mediated resection
ensures completion of conservative DSB repair and discourages activation of KU-dependent end joining.
Taken together, our data unveil important temporal aspects of DSB induction and identify previously un-

known functional implications for EXO-1-DNA-2-mediated resection activity in C. elegans.

INTRODUCTION

Sexual reproduction relies on the generation of haploid gametes
through meiosis, a highly regulated cell division mechanism
essential for the faithful transmission of the genetic information
across generations (Zickler and Kleckner, 1999, 2015). A crucial
and unique aspect of meiosis is the programmed formation of
DNA double-strand breaks (DSBs) carried out by the topoisom-
erase-like Spo11 (Keeney et al., 1997). These DSBs are in turn
resected to generate 3’ overhanging tails, which are ultimately
loaded with Rad51/RecA to promote inter-homolog recombina-
tion-mediated repair (HR) to yield crossovers (COs) (Borde,
2007). COs act as a physical tether between each pair of homo-
logs conferring the required tension upon which the forces of the
spindle fibers will exert their pulling action, eliciting migration of
one homolog to each cell pole. Failure in DSB formation prevents
execution of HR and consequently absence of COs, thereby
producing aneuploid gametes due to random chromosome
segregation (Dernburg et al., 1998; Keeney et al., 1997).

In most organisms, MRX/N complex (Mre11-Rad50-Xrs2/
Nbs1)-dependent resection occurs as an early event during
meiotic DSB processing and is required for the removal of
Spo11-DNA covalent adducts (Stracker and Petrini, 2011). Since
Mre11 cuts in proximity to Spo11, this is proposed to generate
short overhangs not sufficient for the execution of HR. Work in
yeast established that these short-range resection tracts are
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expanded to form long single-stranded DNA (ssDNA) by the
long-range resection (LRR) nucleases; predominantly by Exo1,
with some involvement of Dna2/BLM (Garcia et al., 2011; Man-
frini et al., 2010; Zakharyevich et al., 2010). In metazoans, Exo1
was shown to play a minor role in meiotic resection, and
identifying a role for Dna2 was challenging due to its essential
role during replication (Paiano et al., 2020; Yamada et al.,
2020). In Caenorhabditis elegans, MRE-11 is required for both
the induction and resection of meiotic DSBs (Chin and Ville-
neuve, 2001; Yin and Smolikove, 2013), while EXO-1 is dispens-
able for accurate DNA repair and establishment of COs but holds
more important roles in the absence of MRE-11-dependent
resection activity (Yin and Smolikove, 2013).

Importantly, while pro-DSB co-factors have greatly diverged
throughout evolution, Spo11 is instead highly conserved, and
its enzymatic activity is essential to generate DSBs across spe-
cies. Spo11-DNA complexes can be biochemically pulled down
and further processed to identify cutting sites in plants, yeast,
and mice models, describing in great detail the molecular mech-
anisms through which Spo11 exerts its activity (Johnson et al.,
2021; Lam et al., 2017; Lange et al., 2016; Prieler et al., 2021).
However, detection of this protein has proved difficult in different
model systems, and only in a few studies has cytological detec-
tion of SPO11 foci or localization along the chromosome axes
been shown (Choi et al., 2018; Romanienko and Camerini-
Otero, 2000; Vrielynck et al., 2021).
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Previous work in C. elegans revealed that pro-DSB co-factors
DSB-1-3 can be cytologically detected from transition zone to
mid-pachytene stage, and that they respond to impaired CO for-
mation by extending chromatin competency in undergoing DSB
formation (Hinman et al., 2021; Rosu et al., 2013; Stamper et al.,
2013). However, these proteins are also extensively loaded in
DSB-deficient backgrounds (i.e., spo-11 and him-17 nulls), indi-
cating that, while presumably operating in a “checkpoint”-like
fashion, they cannot be considered as a direct readout of DSB
execution per se. Moreover, other pro-DSB players, such as
HIM-17, XND-1, and MRE-11, are robustly loaded throughout
the gonad, including the pre-meiotic tip and the nucleoplasm
of diplotene and diakinesis cells (Janisiw et al., 2020; Reddy
and Villeneuve, 2004; Wagner et al., 2010), where no DSBs are
present. Thus, the localization of these proteins does not neces-
sarily overlap with break formation, and temporal assumptions
about DSB induction cannot be inferred from cytological locali-
zation of these factors.

In many species, SPO11 is required for chromosome synap-
sis, and Spo11 mutants exhibit meiotic arrest. Specifically,
mice mutants fail to progress beyond zygotene stage during
spermatogenesis (Romanienko and Camerini-Otero, 2000), indi-
cating that DSBs must be generated before pachytene entry to
successfully complete SC installation and meiotic progression.
However, these data do not disprove a model by which meiotic
DSBs are formed continually, and into later stages of meiosis.
Indeed, recombination intermediates (Dmc1/Rad51 labeled)
are gradually recruited throughout pachytene in many species,
suggesting that DSBs may be generated in later stages of
meiosis as well (Bishop, 1994; Kauppi et al., 2013; Mets and
Meyer, 2009; Roig et al., 2010; Sanchez-Moran et al., 2007;
Thacker et al., 2014). However, since DSB repair may not be syn-
chronous, these lingering intermediates may also reflect a delay
in DSB repair (Joshi et al., 2015), leaving the window of DSB for-
mation ambiguous.

By employing a functional auxin-inducible degron (AID)-tagged
line, we provide evidence that, during C. elegans meiosis, SPO-11-
mediated DSBs occur at multiple times during meiotic progres-
sion, bearing different functional implications for CO formation.
Our data are consistent with a wave of DSBs produced at meiosis
entry (transition zone); however, generation of breaks does not halt
as cells enter early pachytene stage but, rather, they are continu-
ously formed until mid-late pachytene stages. Moreover, we found
that DNA breaks formed at later stages are a substrate for EXO-1-
DNA-2-mediated resection, which acts redundantly to ensure that
processing of DSBs is efficiently accomplished to successfully
form inter-homolog COs and prevent activation of canonical
non-homologous end-joining (cNHEJ). Taken together, our work
provides major insights into understanding SPO-11 activity in
metazoans and further illuminates the resection-mediated pro-
cessing of meiotic DNA breaks in nematodes.

RESULTS
SPO-11 mediates DSB induction at early and later
stages of meiotic prophase I

The C. elegans gonad is organized as a syncytium, in which mul-
tiple nuclei share a common cytoplasm. The distal portion of the
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gonad contains progenitor cells, which continuously divide
before entering meiosis. Meiocytes are synchronized in the
different stages of meiotic prophase | and proceed through the
gonad at a pace of roughly one cell row per hour, allowing
the analysis of meiotic events with precise spatiotemporal reso-
lution (Figure 1A) (Hillers, 2017; Jaramillo-Lambert et al., 2007).
Further, thanks to easy exploitation of the AID system in worms,
it is possible to modulate the depletion of endogenous proteins
at different time windows to assess differential, stage-depen-
dent roles exerted by these factors (Zhang et al., 2015).

We employed an available functional spo-11::AID::3xFLAG
line to unravel the temporal dynamics of SPO-11 activity within
the germ line (Zhang et al., 2018). This line has been shown to
be functional, as, unlike spo-17 null mutants, it displays normal
levels of fertility and no defects in the establishment of chias-
mata. However, (1) we wanted to rule out that the spatiotemporal
progression of the meiotic germ cells in the gonad was not
altered compared with untagged wild-type controls, and, further,
(2) we wished to compare the progression rate in worms staged
as L4 or young adult when exposed to auxin started, since it has
been previously shown that the pace of nuclear progression
changes in an age-dependent manner (Jaramillo-Lambert
et al.,, 2007; Tolkin and Hubbard, 2021). To this end, spo-
11::AID::3xFLAG and wild-type worms were given a short pulse
of 5-Ethynyl-2’-deoxyuridine (EdU) (see STAR Methods) and
then placed on auxin-containing plates for 20 and 40 h. Detec-
tion of EdU-labeled cells revealed no major differences between
the spo-11::AID::3xFLAG and the untagged animals exposed to
auxin, as the percentage of cell rows traveled within the germ line
was nearly identical in the two backgrounds (Figures 1B-1D)
and, importantly, it recapitulated previous data (Almanzar
et al., 2022; Jaramillo-Lambert et al., 2007). We observed a
similar, slightly reduced pace in the L4 spo-11::AlD::3xFLAG an-
imals exposed to auxin for 40 h or young adults treated for 20 h
(~10%), and, although they are statistically significant, these dif-
ferences are unlikely to bear any biological relevance, given that
in both cases they encompass nuclei localized within the same
stage.

Having assessed that neither the genetic background, age,
nor the exposure to auxin have a major impact on the oocytes’
progression, we proceeded to investigate the temporal dy-
namics underlying SPO-11-mediated DSBs by analyzing the
loading of the recombinase RAD-51, since a direct marker for
DSBs in worms is currently lacking. RAD-51 has been shown
to engage/disengage from the chromatin with comparable
expression profiles across a multitude of studies, although the
average number of foci/nucleus is subject to some differences
due to different operators/staining protocols, as well as anti-
RAD-51 antibodies employed in the field.

Short pulses of 1 h exposure to auxin sufficed to elicit disap-
pearance of roughly half of the chromatin-associated RAD-51
foci throughout early to mid-pachytene stage in the spo-
11::AID::3xFLAG worms (Figure 2A, zones 3-5), and additional
exposure to auxin for 2 and 4 h, further reduced RAD-51 foci for-
mation throughout the gonad (Figures 2A, S1A, and S1B). We
also performed exposure to auxin for longer times (13 and 24
h), which only had a minor impact in further abrogating RAD-51
detection and suggesting that depletion of SPO-11 for as little
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(A) Schematic representation of spatiotemporal progression of the germ cells in the gonad.
(B) Age-matched worms exposed to auxin as L4s for different time windows display similar nuclear progression.
(C) Age-matched worms exposed to auxin as young adults (1 day post L4) for different time windows display similar nuclear progression. The x axes in (B) and

(C) represent the furthest position of the EdU-positive row divided by total number of nuclear rows.
(D) Representative images of EdU-stained gonads from differently staged animals at the indicated times. Scale bar, 20 um. All analyses were performed in at least
three gonads and in biological replicates. Data are shown as mean + SD. Asterisks indicate p<0.01 as calculated by Mann-Whitney test.

as 4 h is enough to nearly fully abrogate RAD-51 loading (Fig-
ure S2A). We reasoned that, if DSBs were only induced at early
meiosis onset, then we would have expected a disappearance
of RAD-51 only between transition zone and early pachytene,
whereas the fact that we found a dramatic reduction of foci
within only 4 h of exposure to auxin soundly corroborates that
DSB induction is an extended spatial process that undergoes
rapid processing. Therefore, the global impairment of foci that
we observe is more consistent with a broader window of SPO-
11 activity. Given that meiocytes progressed in the gonad only
for 1-4 h during the AID-induced depletion (roughly four cell
rows in total), we can infer that DSBs are generated across the
whole pachytene stage. Importantly, we monitored RAD-51
focus formation in identically treated wild-type animals, which
showed negligible effects (Figure S2C), ruling out possible arti-
facts due to the presence of auxin and confirming that reduced
detection was solely due to SPO-11 removal.

We also performed a recovery experiment, in which we
exposed the spo-11::AID::3xFLAG worms to auxin for 24 h and
then we allowed them to grow further for 24 h on plates without
auxin. Analysis of RAD-51 shows that, in nuclei where the SPO-
11 depletion had occurred at early meiosis onset (transition
zone-early pachytene), abundant foci are detectable (Figure 2B,
zones 5 and 6, and Figure S2B), while, surprisingly, we did not
observe a clear recovery of RAD-51 at earlier stages (zones 3-
4). This could suggest that the nuclei residing in the pre-meiotic
tip during depletion may fail in generating the recombination in-
termediates as SPO-11 loading could be promoted right before

entering the transition zone. These results imply that SPO-11
licensing requires passage through mitosis (see section “discus-
sion”). To test whether SPO-11 is recruited to DNA in mitotic
nuclei, we attempted to cytologically localize SPO-11::3xFLAG
and we also generated a functional spo-11::HA by CRISPR-
Cas9, but we were not successful in either case at visualizing
SPO-11 (Figure S3A).

Failure in DSB formation or homologous recombination elicits
activation of a surveillance system that detects unfinished
meiotic tasks and triggers extended phosphorylation of the nu-
clear envelope component SUN-1, prolonging a DSB-compe-
tent state (Rosu et al., 2013; Stamper et al., 2013; Woglar
et al., 2013) by delaying removal of pro-DSB co-factors DSB-
1/2/3 from the chromatin. We sought to monitor the checkpoint
response by assessing phosphorylated SUN-1 S8 staining, which
revealed prompt activation of the checkpoint, manifested by the
extended loading of pSUN-158 at the nuclear envelope as early
as 5 h of exposure to auxin (Figures 2C and S2D). After 24 h of
exposure to auxin, a further robust prolongation of pSUN-158
loading was observed, as was similarly found in the spo-
11(ok79) null allele (Woglar et al., 2013), indicating that impaired
RAD-51 loading stemming from abolished DSBs in the spo-
11::AID::3xFLAG worms exposed to auxin at 5 h is already suffi-
cient to elicit checkpoint activation in mid-late pachytene cells.
Importantly, the comparable phospho-SUN-158 prolongation in
the worms exposed to auxin was age-independent indicating,
once more, that exposure to auxin in L4s or young adults elicits
the same effects.
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Figure 2. SPO-11 mediates DSB induction at
different stages of meiotic prophase |
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closer to 20-22 h), as corroborated by
the fact that full rescue of bivalent forma-
tion in irradiated spo-77 nulls does not
occur until about 24 h have elapsed from
the time of irradiation (Dernburg et al.,
1998; Janisiw et al., 2020; Yokoo et al.,
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Preventing SPO-11 function at later stages abrogates
chiasmata formation

Next, we sought to investigate how modulating SPO-11 levels
would influence CO establishment. Establishment of chiasmata
is a multi-step process that proceeds through spatiotemporally
separated events in the gonad. In fact, upon completion of
RAD-51-mediated strand invasion by early to mid-pachytene
transition, early pro-CO factors RMH-1 and MSH-5 display
loading at presumably all recombination intermediates, followed
by reinforcement and designation of putative CO sites, which
then become proficient in COSA-1 loading at late pachytene stage
(Jagut et al., 2016; Yokoo et al., 2012). The cytological manifesta-
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late pachytene cells and how these trans-
late into establishment (or lack) of chias-
mata in diakinesis nuclei requires a
different temporal assessment in the two
gonad compartments (Figure 3).

We exposed OLLAS::cosa-1; spo-11::
AID::3xFLAG worms at different time win-
dows and analyzed both establishment of CO-designation sites
in late pachytene nuclei by monitoring COSA-1 recruitment to
chromatin foci, as well as DAPI bodies in diakinesis nuclei. Our
analysis revealed almost complete lack of CO sites when nuclei
are depleted in a time window corresponding to mid to late
pachytene (Figure 3). Nuclei that were only depleted earlier in
meiosis (24-h depletion + 24-h recovery for COSA-1, 24-h deple-
tion + 48-h recovery for diakinesis) did not show loss of chias-
mata. Most importantly, depletion for a short time window of
12 h (1.5 zones) was sufficient to elicit significant loss of chias-
mata, as long as that corresponded to mid to late pachytene
(12-h depletion + 6-h recovery for COSA-1, 12-h depletion +
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Figure 3. Preventing SPO-11 function in later stages abrogates chiasmata formation

(A) Schematic representation of the experimental setting employed for assessment of COSA-1. Gray areas indicate area of the gonad undergoing SPO-11
depletion at the indicated times.

(B) Quantification of COSA-1 foci at the indicated time points and conditions (auxin, non-auxin, or upon recovery on non-auxin plates). Asterisks indicate sta-
tistical significance as assessed by t test (***p < 0.0001; NS, not significant).

(legend continued on next page)
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28-h recovery for diakinesis). Induction of exogenous DSBs by
ionizing radiation triggered a robust rescue in chiasmata forma-
tion on worms grown on auxin plates for 48 h without recovery
(Figure S3B), confirming that absence of bivalents is due to a
lack of DSBs. These results further reinforce that formation of
SPO-11-dependent breaks occurs both at meiosis onset and
mid-late pachytene stage, and that, strikingly, DSBs generated
during mid-late pachytene stage are essential to yield COs. As
for DAPI body analysis, we confirmed that exposure to auxin
was not perturbing bivalent formation (Figure S2E).

To complement this analysis, we also monitored loading of
HA:RMH-1 (Janisiw et al., 2018, 2020) after 16-h exposure to
auxin, which revealed a severe impairment throughout the germ-
line and was largely, although not completely, restored after 28 h
of recovery (Figure 4A). This indicates that CO-designation sites
arising upon rescued DSB-dependent formation of recombina-
tion intermediates were established in both mid and late pachy-
tene and thus that SPO-11-mediated cleavage occurs at both
early and at later stages. Importantly, RMH-1 loading (which, un-
like COSA-1's, is triggered also at earlier stages during meiotic
progression; Jagut et al., 2016) was selectively recovered in
mid to late pachytene cells but not earlier on, as similarly
observed for RAD-51 (Figure 2B).

Absence of recombination intermediates arising from a lack of
DSBs prevents inter-homolog recombination and therefore CO
formation. It has been previously shown that establishment of
COs triggers chromosome remodeling, a process whereby the
central elements of the synaptonemal complex are retained on
the short arm of the bivalent (harboring the CO site), whereas
axes components define both the long and the short arm (i.e.,
HTP-3 and HIM-3) (Couteau et al., 2004; Goodyer et al., 2008)
or are only confined along the long arm (HTP-1/2) (Martinez-
Perez et al., 2008). If COs fail to form, both central and lateral el-
ements display an overlapping localization. Given the impaired
loading of RAD-51 and pro-CO factors, we wanted to assess
whether bivalent remodeling also failed to take place by
analyzing SYP-1 and HTP-1 staining. As shown in Figure 4B,
unlike in the controls, SYP-1 retraction to the short arm of the
bivalent did not occur in late pachytene and diplotene nuclei in
spo-11::AID::3xFLAG worms exposed to auxin, in which an
extensive co-localization with HTP-1 was instead observed.
This further corroborates that, in the nuclei where depletion of
SPO-11 occurred at mid-pachytene stage, recombination
intermediates are not formed and consequentially CO formation
is abrogated.

EXO-1/DNA-2 act redundantly in LRR

Next, we tested whether early and late breaks also associate
with distinct modes of DSB processing. While the role of
EXO-1 in LRR was previously examined via its effect on RAD-
51 localization (Lemmens et al., 2013; Yin and Smolikove,
2013), DNA-2's was not. DNA-2 is essential for mitotic replica-
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tion, so its knockout confers a complex phenotype due to an
accumulation of DNA damage in pre-meiotic germline nuclei
(Lee et al., 2003). To assess the role of LRR, we performed
auxin-mediated degradation of DNA-2 (Figures S4 and S5A),
by itself or in combination with knockout of exo-71 (Figures 5,
6A, S4B, S4C, and S5A). While removal of exo-1 leads to accu-
mulation of RAD-51 foci as previously reported (Lemmens et al.,
2013; Yin and Smolikove, 2013), depletion of DNA-2 reduced
both the number and intensity of RAD-51 foci, and double mu-
tants confer a stronger effect both on RAD-51 foci numbers
and intensity (Figures 5A-5C). These data are consistent with
both DNA-2 and EXO-1 acting in LRR, with DNA-2 playing a
more important role. Most importantly, we found that 4-h deple-
tion is sufficient to inhibit RAD-51 focus formation in zone 6 of
LRR mutant germlines (Figures 5A, S4C, and S5C). Taking into
account the rate of nuclear movement in the germline, most
DSBs that were impaired in resection originated in the same
zone in which they were processed, suggesting that meiotic
resection is a rapid process. The strong effect that is seen with
only 4-h depletion of DNA-2 at the late pachytene transition
agrees with the findings from our SPO-11 depletion experiments,
indicating that DSBs are formed at later than previously specu-
lated stages of meiosis.

EXO-1 and DNA-2 act predominantly on late meiotic
DSBs

Unlike what we observed for SPO-11 depletion, removing
DNA-2 and EXO-1 does not bear the same magnitude of effect
throughout prophase |; we observed a stronger effect on mid-
late pachytene (zone 6, 89% depletion and zone 7, 97%
depletion of RAD-51 foci) than mid-pachytene (zone 5, 39%
depletion of RAD-51 foci; Figure 5A) DSBs (Figures 5A and
S5A). The attenuated effect on early DSBs did not change
with longer exposures (Figures 6A and S5A), indicating that it
is not influenced by changes in DSB turnover. Moreover, if
the persistence of DSBs in zone 5 was due to delayed repair
(RAD-51 foci persistence), foci would remain in similar intensity.
However, we observed that foci in zone 5 become dimmer after
EXO-1 and DNA-2 depletion (~40% intensity of wild type;
Figure 5C). Thus, the differences between zone 5 and 6 likely
reflect reduced dependence on EXO-1 and DNA-2 in zone
5/MP.

The reduced dependence on EXO-1 and DNA-2 in prophase
may be reflected in the levels of their nuclear localization. Indeed,
while DNA-2 and EXO-1 did show localization to all germline
nuclei, the pattern changed throughout prophase in a specific
manner for these nucleases (Figures 6B-6E); DNA-2 was en-
riched at PMT and LP, while EXO-1 showed higher expression
in the distal germline. DNA-2 and EXO-1 localized throughout
the nucleus and did not form discrete foci corresponding to
the expected number of DSBs by RAD-51 focus analysis. This
property is shared with many other repair factors, including

(C) Representative images of nuclei analyzed for quantifications. Scale bar, 5 um.
(D) Schematic representation of the experimental setting employed for assessment of chiasmata.
(E) Quantification of DAPI bodies at the indicated time points and conditions (auxin, non-auxin or upon recovery on non-auxin plates). Asterisks indicate statistical

significance as assessed by t test (***p < 0.0001; NS, not significant).

(F) Representative images of nuclei analyzed for quantifications. Scale bar, 5 um. All analyses were performed in biological duplicates.
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sity of DNA-2 before and after auxin expo-
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MRE-11 (Harrell et al., 2021; Reichman et al., 2018), indicating
that the DSB-localized fraction is small compared with the total.
Nuclear localization levels of each of these nucleases were only
mildly affected by the absence of the other, indicating that they
likely act independently (Figures S5B-S5E). To examine whether
EXO-1 and DNA-2 localize to DSBs, we exposed the germline to
laser microirradiation (Harrell et al., 2018) (Figure 6F, 6G, and
S5I). Consistently, despite low levels of DNA-2 expression in
late pachytene, DNA-2 was recruited to DNA damage efficiently
(and comparably with pre-meiotic nuclei), whereas its recruit-
ment was impaired in early pachytene (Figures 6F and S5I).
Consistent with a minor role for EXO-1 in LRR, both EXO-1
expression level and its localization to DNA damage were not
increased in later meiotic stages (Figures 6G and S5F). These
data suggest that zone 5 and 6 likely reflect reduced activity of
EXO-1 and DNA-2, compensated for by an alternative, yet un-
identified, LRR resection pathway capable of generating limited
length of resection tracts (dimmer foci).

Last, we wanted to exclude that the differences observed in
RAD-51 foci numbers through the germline are due to variable
auxin-mediated degradation. Our experiments were done in

sure. DNA-2 levels were above back-
ground in both zones 5 and 6 without
auxin and 30 min post exposure, but fell
to background levels at later time points
(Figures 6H, S5G, and S5H). Importantly,
DNA-2 levels were equal or lower in
zone 5 compared with zone 6 throughout
the experiment, indicating that the attenu-
ated resection in zone 5 is not due to de-
layed degradation of DNA-2. Altogether,
this suggests that EXO-1 and DNA-2
play a more dominant role in late-DSB
processing and early LRR can be medi-
ated by an EXO-1 and DNA-2-indepen-
dent mechanism that produces shorter resection tracts (see sec-
tion “discussion”).

LRR is required but not essential for CO formation and
inhibition of cNHEJ

Abrogating LRR had a profound effect on DSB processing; how-
ever, based on RAD-51 foci number counts, about one-third of
DSBs were still resected (Figures 5A-5C). Based on estimated
levels of DSBs in wild type (Gao et al., 2015; Rosu et al., 2011),
these likely translate to about three DSBs per chromosome
that are resected to provide enough ssDNA for RAD-51 loading
to form a visible focus. Irradiation experiments have demon-
strated that similar levels of DSBs are sufficient to form an
obligatory CO (Yokoo et al., 2012). We hypothesized that DSB
resection is impaired but not abolished in LRR mutants; thus,
chiasma formation would still occur, even in oocytes from nuclei
depleted for LRR. Indeed, depleting LRR in mid- to late pachy-
tene did not lead to complete disruption of chiasmata, although
30%-39% of the oocytes depleted of LRR in pachytene showed
at least one abnormal DAPI body (Figures 7A and 7B). Depletion
of LRR in early pachytene led to smaller effects compared with
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Figure 5. LRR is required for resection in late meiotic prophase |
(A) Quantification of RAD-51 foci across the gonad in the indicated genotypes.
The x axis indicates the zones along the gonad and the y axis the average
number of foci in each zone. Asterisks indicate statistical significance calcu-
lated by Mann-Whitney test (“***p < 0.0001,”*p < 0.001,”p < 0.01, and
*p < 0.05) and reflect statistical comparison with wild type.

(B) Representative images from zone 6. Scale bar, 5 um.

(C) Quantification of RAD-51 focus intensity in the indicated genotypes (expo-
sure as in A). Each data point is a nucleus. Asterisks indicate statistical signifi-
cance calculated by Mann-Whitney test (***p < 0.0001,*p < 0.001,"*p < 0.01,
and *p < 0.05). All analyses were performed in at least three gonads and in
biological replicates.

mid- to late pachytene depletion, which is consistent with a more
dominant role for LRR in mid-late pachytene.

Abnormal DAPI bodies can be indicative of fusion events,
univalents, or fragmentation. While fusions lead to decreased
DAPI body counts, the latter two result in an increase in DAPI
body counts. To identify which mechanisms are responsible
for the abnormal DAPI bodies, we combined LRR mutants
with mutants that abrogate COs or cNHEJ (Figures 7C-7F).
Formation of bivalents was dependent on MSH-5 (with no
further increase in DAPI bodies numbers above the expected
12 univalents) (Figures 7C, 7D, and S6A), while formation of
DAPI bodies indicative of chromosomal fusions was depen-
dent on cKU-70 (Figures 7E and 7F). In agreement, cKU-80
levels slightly increased following auxin exposure in most
germline regions, while it has no effect on wild-type cells
(Figures 7G, 7H, and S6B). These data altogether indicate
that LRR-impaired mutants can support CO formation, but a
small fraction of DSBs that do not form COs are either not
engaged in any repair pathways (univalent) or are targeted
to repair by cNHEJ (chromosomal fusions).
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DISCUSSION

Studies in many organisms show that recombination intermedi-
ates (Dmc1/Rad51) persist through the pachytene stage (Bishop,
1994; Dernburg et al., 1998; Enguita-Marruedo et al., 2019). In
C. elegans, evidence for an extended DSB formation window
was attributed to localization of DSB licensing factors (DSB-1/
2/3) (Hinman et al., 2021; Rosu et al., 2013; Stamper et al.,
2013). However, this localization was not abolished in SPO-11
mutants, indicating that it is not a direct indication of DSB forma-
tion activity (Rosu et al., 2013; Stamperetal., 2013). Here we have
shown that RAD-51 foci turn over rapidly (less than 4 h) from
meiotic entry to mid- to late pachytene transition, providing direct
evidence for continuous DSB formation. These findings also
extend the proposed window of meiotic DSB formation in
C. elegans from ending in early pachytene to the late pachytene
transition, where the last SPO-11-induced DSBs are observed.

SPO-11-dependent DSBs are repaired as CO or NCOs. Early
studies using excision of transposable elements indicated that
CO and NCOs can both be generated in any stage of meiotic pro-
phase | (Rosu et al., 2011). However, breaks induced by such an
excision event are very different from SPO-11-induced breaks
(do not involve covalent binding of a protein to a break that is
coupled to resection; Richardson et al., 2006; Robert et al.,
2008). Our findings challenge the notion that meiotic DSBs
have similar fates; we found that late DSBs are required for CO
formation, while early DSBs are not. We suggest that the exten-
sion of the DSB proficient window serves a role in promoting CO
formation. A related phenomenon may be “scout DSBs” identi-
fied in yeast, which are somewhat analogous to early DSBs
(Joshi et al., 2015; Sandhu et al., 2020). Scout DSBs are DSBs
formed at meiotic entry, before homolog engagement, and
thus are repaired from the sister chromatid and not the homolog
as later DSBs are. However, one big difference is that yeast
scout DSBs are formed prior to homolog engagement, thus
these early DSBs cannot choose the homolog as a template
for repair, while most C. elegans early DSBs are formed in a
germline region where the synaptonemal complex is fully
assembled and there is no block of repair from the homologous
chromosomes. The mechanism channeling early DSBs to NCO
and late DSBS to CO is unknown.

Mutants in genes encoding for HR proteins activated a
checkpoint leading to ~50% extension of DSB-1/2/3 and
pSUN-1 window (Rosu et al., 2013; Woglar et al., 2013). A similar
effect is seen in our SPO-11 depletion. This checkpoint is
believed to increase DSB formation to attempt mitigation of the
recombination defects. Indeed, up to 2 h following SPO-11
depletion, but not later, RAD-51 foci persist in mid- to late pachy-
tene, consistent with upregulation of SPO-11 activity. It is
possible that such an effect is achieved in the short time frame
in which SPO-11 levels drop but are not fully eliminated. It is
important to note that these additional DSBs are formed on
top of the natural DSBs (non-checkpoint activated DSBs) that
are present in late pachytene, and these DSBs also disappear
in the 4-h window. Thus, all forms of SPO-11-induced RAD-51
foci turn over in less than 4 h.

When DSB repair is proficient, RAD-51-ssDNA filaments
persist until strand invasion (Carver and Zhang, 2021). Then
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Figure 6. Impaired LRR leads to formation of univalents and cNHEJ-mediated chromosomal fusions

(A) Quantification of RAD-51 foci across the gonad of dna-2::AID; exo-1 mutants at different exposure times in 1-day-old adults to auxin (red and pink bars) or
without (orange bar). The x axis indicates the zones along the gonad and the y axis the average number of foci in each zone. DNA-2 depleted in 4 h auxin, mostly in
the same zone it is counted at; 12 h auxin, in the same zone it is counted at and a zone before; 16 h auxin, in the same zone it is counted at and 1.5 zones before;
24 h auxin, in the same zone it is counted at and two zones before. Statistical analysis comparing with EtOH.

(B) Quantification of DNA-2 nuclear intensity (y axis) in the indicated genotypes throughout the germline. Each data point is a nucleus.

(C) Representative images of germline localization of DNA-2 under wild-type conditions. Scale bar, 40 um.

(D) Quantification of EXO-1 nuclear intensity (y axis) in the indicated genotypes throughout the germline.

(E) Representative images of germline localization of EXO-1 (bottom) under wild-type conditions. Scale bar, 40 um.

(F and G) Microirradiation-targeted nuclei with the indicated recovery times (x axis). The y axis indicates the percentage of targeted nuclei with (red) or without
(black) foci for DNA-2::FLAG (F) or EXO-1::GFP (G).

(H) DNA-2:FLAG in zone 5 and zone 6 (EP/MP and MP/LP, respectively) nuclei with the indicated exposure times to auxin (x axis). (A, B, D, and F-H) Asterisks
indicate statistical significance calculated by Mann-Whitney test (A, B, D) or Fisher’s exact test (F-H): **** p < 0.0001,**p < 0.001,**p < 0.01, and *p < 0.05. Data
are represented as mean + SEM. All analyses were performed in at least three gonads and in biological replicates.

RAD-51 is removed by proteins such as RAD-54, which
enables DNA synthesis, an obligatory step in any HR pathway.

of other forms of DNA damage (Hayashi et al., 2007; Koury et al.,
2018).

Thus, the time it takes for the RAD-51 foci to disappear in our
SPO-11 depletion experiments reflects the maximal time from
DSB formation to strand invasion (minus the 30-60 min to
degrade proteins using the AID system we use in our studies;
Ashley et al., 2021; Zhang et al., 2015). Our results are consistent
with a quick turnover of DSBs from the point of SPO-11 cutting to
strand invasion, suggesting that resection of meiotic DSBs oc-
cursin less than 3.5 h. Quick turnover is consistent with resection

Studies in yeast cells and in human germline cells suggest that
DSB formation and pre-meiotic replication are connected
events. In yeast, replication inhibition activates a checkpoint
that prevents DSB formation, and DSB-associated proteins
and replication origins locally compete on Cdc28(CDK-S) and
Cdc7 (Murakami and Keeney, 2008). In mice and humans, there
is a significant overlap between origins of replication and DSB
sites, suggesting that DSBs are established during replication
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Figure 7. DNA-2-EXO-1-mediated resection promotes chiasmata and prevents cNHEJ-mediated repair
(A) Quantification of DAPI bodies in diakinesis nuclei upon auxin exposure at the indicated times. Left: each data point is a diakinesis —1 oocyte.
(B) The same data divided into two categories as indicated. Representative images at bottom. Pink arrow heads, univalent; blue arrow heads, fusions. Scale bar,

5 um.
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(Pratto et al., 2021). We show that, following recovery from SPO-
11 depletion, early DSBs, unlike late DSBs, can be established
only in cells that passed through pre-meiotic replication. These
data suggest a conserved connection between passage through
replication and DSB formation licensing. This licensing may be
done through interactions with origins of replication or through
interaction with the meiotic axis, such as through HTP-3.
HTP-3 assembles on chromosomes in PMT, and is required for
DSB formation (Goodyer et al., 2008). The observed phenotypes
can also be due to differential regulation of spo-11, taking longer
to transcribe or translate SPO-11 in the early DSB region.

In somatic cells, both EXO1- and DNA-2/BLM are required for
resection (Cejka, 2015). During meiosis, both of these nucleases
play a role. However, while EXO-1 plays a major role in yeast, in
mice, exo-1 mutants show mild resection defects (Garcia et al.,
2011; Paiano et al., 2020; Yamada et al., 2020; Zakharyevich
et al., 2010). In our studies, we show that EXO-1 plays a role in
resection, as suggested in other studies, but DNA-2’s role is
more central. Thus, in metazoans, the roles of these two resection
pathways are flipped, with DNA-2 taking the lead role. Despite the
importance of EXO-1 and DNA-2/BLM to resection and prevent-
ing aberrant repair, resection is not completely inhibited, and
shorter resection tracts can support CO formation in most cells.

Our studies also provide an intriguing observation: in mid-
pachytene, a DNA-2/EXO-1-independent pathway ensues. This
pathway can generate ssDNA that loads RAD-51, but likely forms
shorter resection tracts than EXO-1/DNA-2 LRR (dim RAD-51
foci). This EXO-1/DNA-2-independent LRR pathway may involve
an as-yet unidentified nuclease, or it can involve a modified activ-
ity of a known nuclease: MRE-11. Resection tracts in meiosis are
atthe 1-to 2-kbrange. Given RAD-51 focus intensity in the dna-2;
exo-1 depletion conditions is ~40% of wild-type, we speculate
that the modified LRR mechanism can resect DSBs to a 0.4- to
0.8-kb length. This is close to the range of some Mre11 cut sites
in yeast meiosis (0.3 kb away from Spo11; Garcia et al., 2011).

To conclude, we found that meiotic DSBs occur throughout
most of meiotic prophase and turn over quickly. Moreover,
DSBs are not homogeneous: early and late DSBs are distinct
in terms of both their processing and their fated repair outcome.
Although it is tempting to connect these two observations, our
data do not directly provide a clear relationship. Our studies
do, however, reveal that the context of DSB formation plays a
pivotal role in the repair and sets the stage for future identifica-
tion of these regulatory mechanisms.

Limitations of the study
The limitations of these study are the following: (1) due
to different reagents employed for RAD-51 detection, the
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observed kinetics are not identical between experiments (as
found in other studies in the field) and should be compared
only within a specific experimental setting with its internal
controls; (2) the inability to detect SPO-11 can result in
over-estimation of the time required for DSB turnover; there-
fore, the actual time from DSB formation to strand invasion
may be shorter than our estimation of 4 h. Moreover, the
inability to detect SPO-11 prevents us from testing alternative
hypotheses to explain why SPO-11 recovery is inhibited in
early versus late prophase (differential expression, degrada-
tion, or maturation of SPO-11); (3) minor effects in the rate
of nuclear movement may not be detected by the EdU assay,
which may lead to small adjustment of the time windows of
NCO versus CO targeted breaks; (4) activation of pSUN-158
checkpoint can have unexpected effects, such as mis-regu-
lating repair pathway choice; (5) although our results are
consistent with limited effects of differential degradation
of DNA-2 along the gonad, we cannot rule out that other
processes may affect DNA-2 activity differently in the
germline.
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(C) Quantification of DAPI bodies in diakinesis nuclei upon 24-h auxin exposure in the indicated genotypes. Left: each data point is a diakinesis —1 oocyte. Right:

the same data divided into two categories as indicated.
(D) Representative images of diakinesis —1 oocytes in (C). Scale bar, 5 um.

(E) Quantification of DAPI bodies in diakinesis nuclei upon 24-h auxin exposure in the indicated genotypes. Left: each data point is a diakinesis —1 oocyte. Right:

the same data divided into two categories as indicated.
(F) Representative images of diakinesis —1 oocytes in (C). Scale bar, 5 um.

(G) Fluorescence intensity measurements of GFP::cKU-80 in dna-2::AID; exo-1 germlines. Each data point reflects a measurement in one nucleus.
(H) Representative image of late pachytene nuclei from (G). Scale bar, 4 um. (A-C) Asterisks indicate statistical significance calculated by Mann-Whitney test (left)
or Fisher’s exact test (right): ***p < 0.0001,*p < 0.001,"p < 0.01, and *p < 0.05. Data are represented as mean + SEM. Analyses were repeated at least twice and

in biological replicates.
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STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Monoclonal mouse anti-FLAG M2 (1:1,000) Sigma Cat. # F1804; RRID:AB_262044
Polyclonal rabbit anti-HA (1:1,000) Sigma Cat. # H6908; RRID:AB_260070
Polyclonal rabbit anti-OLLAS (1:1,500) Genscript Cat. # A01658; RRID:AB_2622186
Monoclonal rat anti-OLLAS (1:500) Thermofisher Cat. # MA5-16125 (RRID code unavailable)
Polyclonal rabbit anti-SYP-1 (1:1,000) Silva lab (Janisiw et al., 2020)

Polyclonal rat anti-SYP-1 (1:100) Silva lab This study

Polyclonal chicken anti-RAD-51 (1:1,000) Libuda lab Libuda Lab

Polyclonal rabbit anti-HTP-1 (1:400)
Polyclonal rabbit anti-RAD-51 (1:30,000)

Martinez-Perez lab
Smolikove lab

Martinez-Perez lab
Smolikove lab

Polyclonal guinea pig anti-phosphorylated Jantsch lab (Woglar et al., 2013)

SUN-1%8 (1:750)

Goat anti-rabbit Alexa Fluor 488 (1:500) Thermofisher Cat. # A32731; RRID:AB_2633280
Goat anti-rabbit Alexa Fluor 594 (1:500) Thermofisher Cat. # A-11037; RRID:AB_2534095
Goat anti-mouse Alexa Fluor 488 (1:500) Thermofisher Cat. # A-11029; RRID:AB_2534088
Goat anti-mouse Alexa Fluor 594 (1:500) Thermofisher Cat. # A-11032; RRID:AB_2534091
Goat anti-rat Alexa Fluor 488 (1:500) Thermofisher Cat. # A-11006; RRID:AB_2534074
Goat anti-rat Alexa Fluor 594 (1:500) Thermofisher Cat. # A-11007; RRID:AB_10561522
Goat anti-mouse HRP (1:8,000) Thermofisher Cat. # 31430 (RRID code unavailable)
Donkey anti-mouse AlexaFluor 488 (1:500) Thermofisher Cat. # A-21202; RRID:AB_141607
Donkey anti-mouse AlexaFluor 555 (1:500) Thermofisher Cat. # A-31570; RRID:AB_2536180
Donkey anti-rabbit AlexaFluor 488 (1:500) Thermofisher Cat. # A-21206; RRID:AB_2535792
Bacterial and virus strains

E. coli OP50 CGC OP50

Chemicals, peptides, and recombinant proteins

Auxin Sigma Cat. # 13750

4’ ,6-Diamidine-2’-phenylindole Roche Cat. #10236276001

dihydrochloride (DAPI)

VECTASHIELD Antifade Mounting Medium Vector Laboratories Cat. # H-1000
SYP-1 (DNFTIWVDAPTEAL Genscript SYP-1
IETPVDDQS)

Critical commercial assays

Click-iT EdU Cell Proliferation Kit for Thermofisher Cat. # C10338
Imaging, Alexa Fluor™ 555 dye

Experimental models: Organisms/strains

C. elegans/ mels8 II; spo-11(ie59[spo- CGC CA1423
11::AID::3xFLAG]) ieSi38 IV.

C. elegans/ cosa-1(ddr12[OLLAS::cosa-1]) Silva lab NSV97

.

C. elegans/ rmh-1(jf172 [HA::rmh-1]) I. Silva lab NSV240

C. elegans/ msh-5[ddr22(GFP::msh-5)] IV. Silva lab NSV129

C. elegans/ OLLAS::cosa-1 lll; spo- Silva lab NSV420
11::AID::3xFLAG ieSi38 IV.

C. elegans/ spo-11(ddr35[spo-11::HA)] IV. Silva lab NSV192

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER
C. elegans/ HA::rmh-1 |; OLLAS::cosa-1 IlI; Silva lab NSV435
spo-11::AlD::3xFLAG ie Si38 IV.

C. elegans/ brc-1(ddré[brc-1::HA)] lll. Silva lab NSV49
C. elegans/ syp-3(iow69[3xFLAG::syp-3]) | Smolikove lab SSM428
C. elegans/ dna-2(iow111[dna- Smolikove lab SSM540
2::degron::3XFLAG]) II; unc-119(ed3) IlI;

ieSi38 [sun-1p::TIR1::mRuby::sun-1

3°UTR + Cbr-unc-119(+)] IV.

C. elegans/ dna-2(iow111[dna- Smolikove lab SSM603
2::degron::3XFLAG]) II; exo-1(iow56[exo-

1::flag::GFP])]); unc-119(ed3) Ill; ieSi38

[sun-1p::TIR1::mRuby::sun-1 3’'UTR + Cbr-

unc-119(+)] IV.

C. elegans/ dna-2(iow111[dna- Smolikove lab SSM653
2::degron::3XFLAG]) Il, unc-119(ed3) IlI;

ieSi38 [sun-1p::TIR1::mRuby::sun-1

3’UTR + Cbr-unc-119(+)] IV; msh-5(me23)/

nT1 (IV,V).

C. elegans/ dna-2(iow111[dna- Smolikove lab SSM643
2::degron::3XFLAG]) Il, unc-119(ed3) IlI;

ieSi38 [sun-1p::TIR1::mRuby::sun-1

3°UTR + Cbr-unc-119(+)] IV; cku-

70(tm1524) exo-1(tm1842) Il

C. elegans/ exo-1(iow56[exo-1 Smolikove lab SSM399
:flag::GFP]) ll.

C. elegans/ dna-2(iow111[dna- Smolikove lab SSM590
2::degron::3XFLAG]) Il, unc-119(ed3)lll

ieSi38 [sun-1p::TIR1::mRuby::sun-1

3°UTR + Cbr-unc-119(+)] IV; gfp::cku-

80(jf150) exo-1(tm1842) llI

C. elegans/ cku-80(jf150[gfp::cku-80]) Il CGC Uv159
Wistar Rat Genscript N/A
Software and algorithms

Photoshop Adobe N/A
Softworx AppliedPrecision N/A
Office Microscoft N/A
ImageJ Fiji N/A
Prism GraphPad N/A
MetaMorph Molecular Devices N/A

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Nicola Silva

(siva@med.muni.cz).

Materials availability

Strains and reagents generated in this study will be available upon request without restrictions.

Data and code availability

@ All data reported in this paper will be shared by the Lead contact upon request.
® This paper does not report original code.

® Any additional information required to reanalyse the data reported in this work is available from the Lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Worm lines

All C. elegans strains employed in this study were maintained following standard conditions on NG medium plates at 20°C. Animals
were picked as L4 or young adult stage depending on the specific experimental requirements. The genotype of all mutant alleles and
tagged lines used in this study are reported in the key resources table.

Bacterial strains
E. coli OP50 strain (uracil auxotroph) was used as food source for C. elegans strains.

Rats
Wistar Rats were employed for the generation of the anti-SYP-1 antibody, whose handling and maintenance were carried out by Gen-
script (https://www.genscript.com/) following standard procedures.

METHOD DETAILS

C. elegans genetics
The strains were grown according to standard procedures (Brenner, 1974). The N2 Bristol was used as wild-type control animals and
worms were grown at 20°C for all experiments.

Auxin treatment

In Figure 1, worms of the indicated genotype and age were picked on NGM plates containing 1mM 3-Indoleacetic acid (Auxin) dis-
solved in absolute ethanol and maintained at 20°C for the specified times with minimal light exposure. For exposures in Figures 2A
and S1, worms were picked as synchronized young adults, and as L4s in Figures 2B, S2A, S2B, 3, and 4. For auxin exposure in Fig-
ures 5, 6, 7, S5C, and S6 synchronized young adults were used. Control plates (-auxin) were prepared in the same way by adding an
equal volume of absolute ethanol without auxin. For experiments in Figure S3B, worms were maintained on auxin plates for 48h
without exposure to IR or irradiated with 10 Gy after 24h of auxin-induced depletion and left on auxin-containing plates for further
24h. In recovery experiments in Figures 7A and 7B, worms were picked to auxin plates as described above and transferred to
NGM plates for 24h recovery.

Generation of SYP-1 antibody

The synthetic peptide “DNFTIWVDAPTEALIETPVDDQS” corresponding to the N-ter of C. elegans SYP-1 was used to immunize
three Rats according to standard procedures (Genscript). After four rounds of immunization, the raw serum from each animal was
pooled and affinity purified. Specificity of the antibody was assessed by immunofluorescence in WT worms subjected to
syp-1""*in which, unlike in the untreated animals, SYP-1 loading was largely absent.

Antibody staining

Worms were picked at L4 stage 20-24h prior to dissections unless otherwise indicated. For immunofluorescence, animals were
dissected in 1x PBS and fixed at room temperature for 5’ by adding an equal volume of 2% PFA diluted in 1x PBS except in Figures 5,
6, 7G, 7H, S5B, S5C, S6. In these experiments, dissection was performed in sperm salts and fixed at room temperature for 5’ by
adding an equal volume of 4% PFA diluted in 1X PBS. Slides were freeze-cracked in liquid nitrogen and immediately placed in meth-
anol at —20°C for at least 5'. For staining in Figures 5, 6, 7, and S4B-C, slides were flash frozen on dry ice and dipped in methanol at
—20°C for 2’ and acetone at —20°C for 10s. Washes were performed in 1x PBS with 0.1% Tween (1xPBST) and blocked in 1% BSA
dissolved in 1xPBST. In Figures 6, 7, S5D-F and S5I, S6 where a GFP-tagged line was dissected and imaged, no block or primary
antibody was applied. Incubation of primary antibodies was conducted over night at 4°C and the day after, three washes in 1xPBST
were performed before applying secondary antibodies for 2h at room temperature in the dark. Chromatin was counterstained with
60ul of 4',6-diamidino-2-phenylindole (DAPI, Roche, 2ng/ml) for 1/, except in Figures 5, 6, 7, and S4B-S6 where a 1:10,000 dilution of
5mg/mL DAPI stock (Sigma) in 1X PBST was used and slides were incubated for 10’ at room temperature in the dark. Slides were
washed in 1xPBST for 20’at room temperature in the dark. Slides were mounted in Vectashield and coverslips were sealed with
nail polish.

Image acquisition
Samples were in all but Figures 5, 6, 7, and S4B-S6 imaged with an Upright fluorescence microscope Zeiss Axiolmager.Z2-ZEN with
an Apochromat 100x /1.40 OIL and z-stacks were set at 0.24 um thickness. Images were then deconvolved with Zen Blue software
using the constrained iterative algorithm set with “maximum strength.” Full projections of deconvolved images were done in Fiji and
further processed in Photoshop, where some false coloring was applied.

Samples in Figures 5, 6, 7, S5, S6A, and S6B were imaged on a DeltaVision wide-field fluorescence microscope (GE Lifesciences)
with 100X/1.4 NA oil Olympus objective and z-stacks set at 0.2 um thickness. Images were deconvolved (using conservative ratio
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setting) and analyzed with softWoRx software (Applied Precision). Whole germline images in Figures 6C and E were taken on a Leica
DMi8 platform live-cell microscope at the 20X objective with z-stacks set at 1um thickness.

For quantification of OLLAS:COSA-1 foci, the last seven rows of nuclei prior diplotene entry were used; for HA::RMH-1 and RAD-51
foci counts, quantification was performed as in (Janisiw et al., 2020). Number of nuclei analysed for OLLAS::COSA-1, HA::RMH-1 and
RAD-51 are reported in the Table S1.

For quantification of phospho-SUN- staining, gonads were divided into 5 equal regions spanning the transition zone to the
pachytene exit. All nuclei in each region were counted and the % of positive nuclei/all nuclei was calculated.

138

Ethanol fixation

For experiments in Figures 6D, 6G, 7A-7F, S5D, E, F, | and S6, and S6E worms were picked as L4s and grown on NGM plates at 20°C
for 18-20h. Worms were then placed on an uncharged slide (Surgipath Leica) in a drop of M9 buffer and M9 was removed with What-
man filter paper. Worms were then fixed with 8L absolute ethanol, mounted with Vectashield+DAPI, and coverslips were sealed with
nail polish for imaging.

Western blot

To produce whole cell extracts, 200 worms at L4 stage of the untagged WT and dna-2::AID::3xFLAG backgrounds were selected and
20h later they were placed onto auxin-containing plates and —auxin plates for 4h. Worms were then picked in 1x TE buffer (10mM Tris,
1mM EDTA pH 8) containing 1x protease inhibitor cocktail (Roche), snap frozen in liquid nitrogen twice and then an equal amount of
2x Laemmli Buffer was added. Samples were boiled for 10’, spun for 30”at maximum speed and fully loaded on a 4%-20% precast
acrylamide gel (BioRad). Protein transfer was performed onto a nitrocellulose membrane for 90’ at 4°C and blocking was performed in
5% BSAin 1XTBST (1xTBS buffer with 0.1% Tween). Primary antibodies were diluted in the blocking buffer and left to probe the mem-
brane over night at 4°C. The following day, the membrane was washed extensively in 1XTBST, secondary antibodies were diluted in
5% milk dissolved in 1XTBST and left to incubate for 60" at room temperature. After removing the secondary antibodies, the blots
were extensively washed in 1XTBST and Clarity Max ECL (BioRad) was employed for detection of proteins by chemiluminescence
with a G:Box (Syngene).

UV laser microirradiation
The protocol outlined in (Harrell et al., 2018) for microirradiation of whole, live worms with recovery was used in Figures 6F, 6G, and
S6l. Worms were recovered to NGM plates for the notated time periods before fixation and imaging with the DeltaVision microscope.
In all microirradiation experiments, at least four worms were subjected to laser in both gonad arms and subsequent analysis. Anal-
ysis and deconvolution were performed in softWoRx software. DNA-2::FLAG foci in Figures 6F and S51 were counted in at least three
gonads for each condition listed and the number of microirradiated nuclei analysed were 18 (PMT 12min recovery), 30 (PMT 2h re-
covery), 42 (PMT 4h recovery), 18 (EP 12min recovery), 30 (EP 2h recovery), 30 (EP 4h recovery), 18 (MP 12min recovery), 18 (MP 4h
recovery), 18 (LP 12min recovery), 30 (LP 2h recovery), and 36 (LP 4h recovery). Worms in Figure 6G were fixed at the indicated times
by ethanol fixation. The number of laser-targeted EXO-1::GFP nuclei analysed was 18 (PMT 12min recovery), 24 (PMT 2h recovery),
24 (PMT 4h recovery), 18 (EP 12min recovery), 24 (EP 2h recovery), 24 (EP 4h recovery), 18 (MP 12min recovery), 18 (MP 4h recovery),
24 (LP 12min recovery), 24 (LP 2h recovery), and 24 (LP 4h recovery).

Fluorescence intensity

Measurements and analysis of nuclear fluorescence intensity in Figures 5C, 6B, 6D, 6H, 7G, S5 and S6 were performed using FIJI
ImagedJ software without deconvolution. All intensity measurements were calculated against average nuclear (Figure 5C) or cyto-
plasmic (6B, 6D, 6H, 7G, S7B-H) backgrounds and at least three germlines were analysed in each instance.

For RAD-51 focus intensity in Figure 5C, reported measurements were corrected against the average nuclear background and the
number of foci measured was 87 (wild type), 66 (dna-2::AID), and 19 (dna-2::AlD;exo-1).

For quantification of protein localization, the fluorescence intensity of the nucleus was taken and corrected against the average
cytoplasmic background. The number of nuclei analysed were 23 (PMT), 18 (TZ), 23 (MP), 19 (LP) in Figure 6B and 33 (PMT), 40
(TZ), 38 (MP), 28 (LP) in Figure 3E and 33 (PMT), 40 (TZ), 37 (MP), and 28 (LP) in Figure 6C.

In Figure 7G, 37 (PMT), 26 (PMT +auxin), 48 (TZ), 51 (TZ +auxin), 45 (MP), 59 (MP +auxin), 38 (LP), and 51 (LP +auxin) nuclei were
measured.

Wild-type nuclear fluorescence intensity measurements in Figures S5C and S5E are the same data points presented in Figures 6B
and 6D. For measurements in dna-2::AID::3XFLAG;exo-1 in Figure S5B, 33 (PMT), 34 (TZ), 35 (MP), and 26 (LP) nuclei were analysed.
For EXO-1::GFP localization in the dna-2 background, 37 (PMT), 37 (TZ), 40 (MP), and 32 (LP) nuclei were analysed. In Figure S5G, 42
(Untagged, zone 5), 71 (no auxin, zone 5), 40 (30m auxin, zone 5), 54 (2h auxin, zone 5), 59 (4h auxin, zone 5), 38 (untagged, zone 6), 42
(no auxin, zone 6), 59 (30m auxin, zone 6), 48 (2h auxin, zone 6), and 43 (4h auxin, zone 6) nuclei were measured. Data in Figure S5H
(No auxin-4h auxin) is the same as that of Figure 6H with 42 (untagged, zone 5), 59 (no auxin, zone 5), 68 (30m auxin, zone 5), 75 (2h
auxin, zone 5), 68 (4h auxin, zone 5), 38 (untagged, zone 6), 80 (no auxin, zone 6), 70 (30m auxin, zone 6), 59 (2h auxin, zone 6), and 58
(4h auxin, zone 6) nuclei measured.
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For GFP::cKU-80 localization in Figure S6B, 37 (PMT), 36 (PMT +auxin), 52 (TZ), 48 (TZ +auxin), 41 (MP), 71 (MP +auxin), 44 (LP),
and 45 (LP +auxin) nuclei were measured.

Meiotic progression with EdU
EdU staining was performed using the Click-iT™ EdU AlexaFluor Imaging Kit from Invitrogen. Synchronized young adults or L4s,
depending on the experiment (see figure legend Figures 1 and S1), were picked into M9 buffer with an equal volume of 1mM EdU
and incubated in the dark at 20°C for 15’. Worms were then recovered onto NGM plates for 15’ in the dark and then moved to auxin
plates for the times listed. Samples were dissected in 1X PBS and fixed with an equal volume of 7.4% PFA. Fixed slides were incu-
bated for 10’ at room temperature in the dark and then transferred to dry ice for 30°. Slides were then incubated in —20°C methanol for
20" and washed with 1X PBST 3 times for 10’ each. 100ul EdU processing solution was added to each sample, covered with a Par-
afilm strip, and rapidly moved to incubation in the dark at room temperature for 1h. Slides were then washed with 1X PBST 3 times for
10’ each and chromatin stained by incubating with a 1:10,000 dilution DAPI (5mg/ml stock) in 1X PBS for 20’ in the dark. Slides were
then mounted with Vectashield, and coverslips sealed with nail polish. EdU-stained gonads were imaged on the DeltaVision micro-
scope at 20X magnification with auxiliary magnification enabled.

Quantification of meiotic progression was calculated based on the nuclear row position of the most proximal EdU-positive nuclei
where at least 50% of the nuclei in the row were EdU-positive and 4 germlines were quantified.

CRISPR/Cas9 genome editing

CRISPR/Cas9 was used to generate the dna-2::degron::3xFLAG strain used in this study. Microinjection of 1-day-old adult worms
was performed on 3% agarose pads and worms were subsequently recovered to individual OP50-seeded plates the following day.
F1 progeny were screened for rol and dpy phenotypes generated by dpy-10 point mutation used by co-CRISPR injection marker,
adopted from (Paix et al., 2016). Wild-type siblings were singled to individual plates for screening by PCR and Sanger sequencing.
This microinjection was performed in two steps to accommodate size limitations in efficient CRISPR/Cas9 genome editing. tracrRNA,
crBNA, and ssODN were obtained from IDT and mixed in the following concentrations: 14.35uM Cas9-NLS (Berkeley MacroLab),
17.6 uM tracr-RNA, 1.5uM dpy70 crRNA, 0.5uM dpy10 ssODN, 16.2 uM target crRNA, and 6uM target ssODN.

QUANTIFICATION AND STATISTICAL ANALYSIS
Statistical analysis was performed with GraphPad Prism by using Two-tailed Mann-Whitney test, Chi-square or two-way ANOVA de-

pending on the experimental settings. All details regarding the statistical test employed, the size of the samples and P values are all
included in the figure legends.
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