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COVID-19, induced by the SARS-CoV-2 infection, has caused an unprecedented pandemic in the world. New
variants of the virus have emerged and dominated the virus population. In this paper, we develop a multi-
strain model with asymptomatic transmission to study how the asymptomatic or pre-symptomatic infection
influences the transmission between different strains and control strategies that aim to mitigate the pandemic.
Both analytical and numerical results reveal that the competitive exclusion principle still holds for the model
with the asymptomatic transmission. By fitting the model to the COVID-19 case and viral variant data in the
US, we show that the omicron variants are more transmissible but less fatal than the previously circulating
variants. The basic reproduction number for the omicron variants is estimated to be 11.15, larger than that
for the previous variants. Using mask mandate as an example of non-pharmaceutical interventions, we show
that implementing it before the prevalence peak can significantly lower and postpone the peak. The time of
lifting the mask mandate can affect the emergence and frequency of subsequent waves. Lifting before the peak
will result in an earlier and much higher subsequent wave. Caution should also be taken to lift the restriction
when a large portion of the population remains susceptible. The methods and results obtained her e may be
applied to the study of the dynamics of other infectious diseases with asymptomatic transmission using other

control measures.

1. Introduction

Coronavirus disease-2019 (COVID-19) is a novel infectious disease
caused by the SARS-CoV-2 virus, which can be spread from person to
person (World Health Organization, 2022). This virus is highly conta-
gious and has swept the globe. Even though a lot of infected people are
asymptomatic, or only experience mild to moderate symptoms, some
develop a serious illness or even die, especially among older people
or those with underlying medical conditions. According to the World
Health Organization (WHO), more than 521 million confirmed cases of
COVID-19, including over 6 million deaths, have been reported by May
2022 (World Health Organization, 2022).

Since COVID-19 was first reported in December 2019 in Wuhan,
many effective control strategies have been adopted aiming to prevent
or slow down the transmission, such as mask mandate, social distanc-
ing, vaccination, travel restriction, lockdown, etc (Howard et al., 2021;
Mathieu et al., 2021; Tang, 2022). However, the pandemic is still going
on in many countries and has caused devastating damage to public
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health and the social economy. One of the reasons why COVID-19 is
hard to tackle is that many infected people are asymptomatic but they
can infect others without knowing it. Another reason is that the virus
continuously mutates. Multiple variants of SARS-CoV-2 have emerged
and have been circulating around the world since the beginning of the
COVID-19 pandemic, such as alpha, delta, omicron, etc (World Health
Organization, 2022). This has brought more challenges as the vaccines
or treatments are less effective for the new variants. As more vari-
ants appear, which strain might dominate the virus population? Does
asymptomatic transmission affect the competition between strains?
When should we impose or lift non-pharmaceutical interventions? Does
the time of starting or lifting the restrictions affect the spread of COVID-
19? The answers to these questions are still vague and need to be
further investigated.

Multi-strain mathematical models have been widely used to inves-
tigate the infectious disease dynamics (Massard et al., 2022; de Le6n
et al., 2022; Li et al., 2021b; Rong et al., 2007, 2012; Li et al., 2021a,
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2013; Martcheva, 2009; Li et al., 2010; Saucedo and Martcheva, 2017;
Dang et al., 2016; Duan et al., 2018; Cai et al., 2013; Martcheva and
Li, 2013; Martcheva, 2007; Thomasey and Martcheva, 2008; Iannelli
et al.,, 2005; Martcheva et al., 2007; Martcheva and Pilyugin, 2006;
Qiu et al., 2013; Martcheva et al., 2008; Arruda et al., 2021; Fudolig
and Howard, 2020; Murall et al., 2014; Poolman et al., 2008). Most
studied the existence and stability of the disease-free equilibrium (DFE),
strain-dominant equilibria and coexistence equilibria. The competi-
tive exclusion principle was also discussed in different circumstances
from between-host level to within-host level (Martcheva and Li, 2013;
Saucedo and Martcheva, 2017; Dang et al., 2016; Duan et al., 2018;
Cai et al.,, 2013; Rong et al., 2007, 2012). For example, from the
between-host level, Martcheva and Li showed that the competitive
exclusion principle holds in an infection-age structured model with
environmental transmission (Martcheva and Li, 2013). At the within-
host level, a multi-strain model was developed to explain the rapid
emergence of drug resistance in HCV patients and discussed which
strain(s) would dominate the virus population (Rong et al., 2012).
Vaccine-induced strain replacement is another topic investigated by
multi-strain models (Martcheva et al.,, 2008; Iannelli et al., 2005;
Thomasey and Martcheva, 2008; Murall et al., 2014; Poolman et al.,
2008). In Martcheva et al. (2008), Martcheva et al. reviewed this topic
and drew an analogy with ecological and evolutionary explanations for
competitive dominance and coexistence. They showed that both perfect
and imperfect vaccination may lead to type replacement.

Before the emergence of COVID-19, some papers have studied
asymptomatic infection using mathematical models (Saad-Roy et al.,
2020; Cai et al., 2017; Hsu and Hsieh, 2008; Robinson and Stilianakis,
2013; Al-Darabsah and Yuan, 2018; Chisholm et al., 2018). For exam-
ple, Saad-Roy et al. compared fully asymptomatic, less symptomatic,
and fully symptomatic first stages, and found bistability between zero
and maximal asymptomatic behavior (Saad-Roy et al., 2020). Bista-
bility was also found in Hsu and Hsieh (2008). Cai et al. discussed
optimal control of a malaria model with asymptomatic class and
superinfection (Cai et al., 2017). They showed that control strate-
gies would always decrease symptomatic infection but might increase
asymptomatic infection. Since COVID-19 started, a lot of studies have
addressed the asymptomatic infection (Massard et al., 2022; de Le6n
et al., 2022; Li et al.,, 2021b; Knock et al., 2021; Sonabend et al.,
2021; Subramanian et al., 2021; Park et al., 2020; Musa et al., 2022;
Ngonghala et al., 2020; Shen et al., 2021a,b; He et al., 2021; Calleri
et al., 2021; Huo et al., 2021; Rocha Filho et al., 2021; Anggriani
et al., 2022; Srivastav et al., 2021; Ahmed et al., 2021; Bugalia et al.,
2020; Serhani and Labbardi, 2021; Ali et al., 2020), among which some
discussed the role of asymptomatic infection in the transmission of
COVID-19 (Subramanian et al., 2021; Park et al., 2020; Huo et al.,
2021; Ali et al., 2020). For example, Subramanian et al. found that
many infections are asymptomatic but they contribute substantially to
the community transmission of COVID-19 (Subramanian et al., 2021).
Similar results were shown in Huo et al. (2021). In addition, many stud-
ies discussed control strategies including vaccination, lockdown, mask
mandate etc (Knock et al., 2021; Sonabend et al., 2021; Ngonghala
et al., 2020; He et al., 2021; Shen et al., 2021a,b; Calleri et al., 2021;
Srivastav et al., 2021; Bugalia et al., 2020; Serhani and Labbardi, 2021).
Knock et al. found that to lift nonpharmaceutical interventions without
causing a resurgence of transmission, a high degree of protection and
high coverage would be needed for any vaccination campaign (Knock
etal., 2021). Ngonghala et al. showed that wearing face masks in public
would be very useful in minimizing community transmission of COVID-
19 (Ngonghala et al., 2020). In a previous paper (He et al., 2021),
we found that timely screening and detection in the early stage of
the infection could prevent the occurrence of a future wave. Besides,
reducing the size of the susceptible population is critical in mitigating
the outbreak of COVID-19.

There is little literature that investigates multi-strain models assum-
ing asymptomatic individuals are infectious. A recently published paper
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formulated a multi-strain COVID-19 model and applied it to French
data (Massard et al., 2022). They found that beta and gamma variants
were more transmissible than the original virus and might result in
a large number of infections in France. Another paper studied a two-
strain model with vaccination (de Leén et al., 2022). They predicted the
rise of the alpha variant and obtained the minimum vaccine coverage
to decelerate the rise of a multi-strain pandemic. Using data from the
US, Li et al. also formulated a two-strain model considering infectious
asymptomatic class, vaccination, social distancing, face mask etc (Li
et al., 2021b). They found that if COVID-19 vaccines remain effective
against the SARS-CoV-2 variants, then 70% vaccination coverage would
be sufficient to restore social activities to a pre-pandemic level. All
these papers computed the reproduction number and did sensitivity
analysis. However, they did not conduct any other mathematical anal-
ysis for the models. In this paper, using the data from the US, we
will study a multi-strain model with infectious asymptomatic classes
to investigate the dynamic of COVID-19 transmission both analytically
and numerically. Specifically, we will mainly address the following
questions: (1) Will infectious asymptomatic class influence the com-
petition between different strains? (2) Will the way of implementing
control strategies affect the transmission of COVID-19? The model will
be formulated and analyzed in Sections 2 and 3, respectively. By fitting
the COVID-19 case and variant data from the US using our model,
we conduct a variety of simulations to investigate the competitive
exclusion principle and the impact of control strategies in Section 4.
Conclusions and discussions are followed in Section 5.

2. Model formulation

In this section, we formulate a multi-strain model to investigate the
competition between viral strains during the transmission of COVID-19.
The population is divided into 2n + 2 classes: susceptible individuals
(S), asymptomatic/pre-symptomatic individuals infected with strain
i (A, i = 1,2,...,n), symptomatic individuals infected with strain i
(I;, i = 1,2,...,n), and recovered individuals (R). Asymptomatic/pre-
symptomatic infected individuals can also transmit the disease (He
et al.,, 2020; Subramanian et al., 2021). We assume that newborns
are susceptible to all COVID-19 strains and enter the susceptible com-
partment .S with the recruitment rate A. Susceptible individuals get
infected by strain i with the force of infection 4; and move to the
asymptomatic/pre-symptomatic infectious compartment A;. Then they
may develop symptoms and move to the symptomatic infected class
I; at a rate a;. Both asymptomatic/pre-symptomatic infected individ-
uals in class A; and symptomatic infected individuals in class I; can
recover at rates y, and y;, respectively. All of them can leave their
compartments by a natural death at a rate x. In addition, symptomatic
infected individuals in class I; can die due to the disease at a rate ;.
A flow chart of the model is shown in Fig. 1. The detailed descriptions
of variables and parameters are given in Table 1.

It is worth noting that we adopt the SAIR (susceptible-asymptomatic
infected-symptomatic infected-recovered) modeling framework in this
paper. The asymptomatic and pre-symptomatic individuals are grouped
into one class. Because we are more interested in studying the com-
petition between different strains and the impact of the way of im-
plementing control strategies, we use a simple modeling framework
and do not consider the exposed class, which was also ignored in
some other COVID-19 papers (Massard et al., 2022; Calleri et al.,
2021; Serhani and Labbardi, 2021). In view of the observation that
the breakthrough infection or reinfection only accounts for a small
portion of the total infection, we assume the acquired immunity to
be permanent after recovery, which was also the assumption in many
other papers of COVID-19 (Massard et al., 2022; Calleri et al., 2021;
Serhani and Labbardi, 2021; Huo et al., 2021; Musa et al., 2022; Shen
et al., 2021a,b; Li et al., 2021b). If we add more classes such as the
exposed class, the basic reproduction numbers and the dynamics of the
model will be slightly different from that obtained using the current
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Fig. 1. Flow diagram of the model of COVID-19 transmission. The population is divided into 2n+2 classes: susceptible individuals (.S), asymptomatic/pre-symptomatic individuals
infected with strain i (4;, i = 1,2,...,n), symptomatic individuals infected with strain i (I,, i = 1,2,...,n), and recovered individuals (R). Asymptomatic/pre-symptomatic infected

individuals can also transmit the disease. Descriptions of parameters are given in Table 1.

model. For example, the prevalence peak will be slightly delayed when
including the exposed class. If we use the SAIRS modeling framework
by considering waning immunity after recovery, the basic reproduction
number will remain the same, but the prevalence peak will be earlier

and higher.

n
S =A=SY 4 —uS,
i=1

Al =4S — (@ + 74, + WA, i=12,....n,

@
L) = A — (@ +y, + w0, i=1,2,....n,

n
R(n)= Z(YAiAi + v, 1) — uR.

i=1

The force of infection is given by
A = PaAi + Br
For convenience, we denote

Op, =y, +us by, =+, + 1

Taking the sum of equations in system (1), we get N’ < A — uN,
where N =S+ Y (4; +1,) + R is the total population. We define the
domain of the system (1) to be

n
Q= {(S,A],Az, s A I, Ly T, R) € R¥™2 S+Z(A,.+I,.)+R < A/ﬂ}.

i=1

Using a similar method as in our previous study (Gao et al., 2021), we
can verify that Q is positively invariant for system (1) and the model
is both epidemiologically and mathematically well-posed.

3. Analysis
3.1. Two-strain model

We first consider the two-strain case (n = 2). The system (1) can be
reduced to the following system:

S'()=A=SA +4y) —pusS,
A1) = 1S =84, Ay,
O =a Ay =6, 1,

A1) = 28 = 84, Ay, 2)
L0 = ayAy =6, 1,
2

R()= Y (ra A +7,1) - uR,

i=1

where 4;, 6, and §; with i = 1,2 are defined the same as before.

3.1.1. Basic reproduction numbers and disease-free equilibrium

The system (2) always has a unique disease-free equilibrium (DFE)
E(’)‘ =(5%,0,0,0,0,0), where S(’)‘ =4, Using the next-generation matrix
approach Appendix A, we define tﬁe basic reproduction number to be

Ry =max{R;,Rg,}
where R,; = R, + R/} with
SgﬂAi _ Sgﬂ’iaf

R4 = , RI = , i=1,2.
0,i §A 0,i 5/4[5[[ L

i

Considering the biological interpretation of R ;, we set A; to be 1
in the incidence term f,, SA,. Then f,, S; represents the number of
secondary infections generated by one infectious individual who is in
class A; in an entirely susceptible population per unit of time. 1/6,,
is the average time spent by an infectious individual in class A;. Thus,
RA represents the number of secondary infections generated by one in-

0,1
fectious individual when he/she is in class A, in an entirely susceptible
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Table 1

Descriptions of variables and parameters.
Symbol Description Baseline Unit Range Source
Variables
S Susceptible population
A (1) Asymptomatic/pre-symptomatic population of strain i
I(t) Symptomatic population of strain i
R(1) Recovered population
N(1) Total population
A1) Force of infection of strain i
Parameters
A Recruitment rate 11528 person/day Fixed See text
N Natural death rate 1/(79%365) 1/day Fixed See text
Ba, Asymptomatic transmission rate of strain i Fitted 1/(person:day) Fitted
B, Symptomatic transmission rate of strain i Fitted 1/(person=day) Fitted
@ Transition rate from A; to I, Fitted 1/day Fitted
7a, Recovery rate of A; Fitted 1/day Fitted
71, Recovery rate of I, Fitted 1/day Fitted
; Disease-induced death rate of I, Fitted 1/day Fitted
e Mask efficacy Varied unitless [0,1]
c Mask coverage Varied unitless [0,1]

population. a; /6, represents the fraction of infectious individuals who
survive from the asymptomatic/pre-symptomatic stage and move to the
class I,. Therefore, R(’)’1 represents the number of secondary infections
generated by one infectious individual when he/she is in class I, in
an entirely susceptible population. It follows that R, represents the
number of secondary infections generated by one infectious individ-
ual of strain 1 during his/her whole infectious period in an entirely
susceptible population. R, has the similar interpretation.

Since R, is derived using the next generation matrix approach,
according to Van den Driessche and Watmough (2002), we have the
following local stability for the DFE:

Theorem 1. When R, < 1 (ie. Ry, < 1 and Ry, < 1), the DFE Ej is
locally asymptotically stable; when Ry > 1 (i.e. Ry > 1 or R, > 1), the
DFE Ej is unstable.

We further have the global stability for the DFE as follows. The proof
is given in Appendix B.

Theorem 2. When R, < 1 (ie. Ry, < 1 and Ry, < 1), the DFE Ej is
globally asymptotically stable.

Recall that the basic reproduction number represents the number of
secondary infections generated by one infectious individual in a wholly
susceptible environment. The above two theorems indicate that if the
basic reproduction numbers for both strains are reduced to less than or
equal to 1, the disease will eventually die out no matter how many sus-
ceptible, asymptomatic, symptomatic, and recovered individuals there
are now. However, if the basic reproduction number of any strain is
greater than 1, the disease may not be eradicated.

3.1.2. Strain-dominant equilibrium

In this section, we consider the strain-dominant equilibria. The
results on their existence are shown in the following theorem with the
proof given in Appendix C.

Theorem 3. When R,; > 1, there exists a unique strain-1-dominant
equilibrium ET = (S*, AT, I ;* 0,0, R’I*); When R, > 1, there exists a unique

strain-2-dominant equilibrium Ez* =(5%,0,0, A;, I;, R’z‘ ), where

=4l we A
H RO,i 5A, RO,i
o 1 e "
Ii)k = 5_I,A:k’ R:k = ; <yAi + }/115_,1>Ai’
withi=1,2.

Concerning the stability of the strain-dominant equilibria, we have
the following results with proofs given in Appendix D and Appendix E,
respectively.

Theorem 4. (i) Suppose that R, > 1. When Ry, > R, the strain-1-
dominant equilibrium E is locally asymptotically stable; when Ry ;| < Ry,
E} is unstable.

(i) Suppose that R,, > 1. When Ry, > R, the strain-2-dominant
equilibrium EJ is locally asymptotically stable; when R, < Rq, Ej is
unstable.

Theorem 5. (i) Suppose that R, > 1. When R,; > R, the strain-1-
dominant equilibrium E7 is globally asymptotically stable.

(i) Suppose that R,, > 1. When Ry, > R, the strain-2-dominant
equilibrium E is globally asymptotically stable.

Theorems 3, 4, and 5 show that when an infected individual with
strain i leads to more than one new infection, we have the strain-i-
dominant steady state E;, in which there is only the infection with
strain i (i = 1 or 2). Furthermore, if an infected individual with strain i
leads to more infections than the other strain, this steady state E; will
be the final state of the disease, no matter what the current infection
status is.

3.1.3. Interior or coexistence equilibrium

From the previous section, we can see that coexistence of the two
strains is not possible when R ; # R ,. In the special case R\ ; = R,
we have the following result. The proof is given in Appendix F.

Theorem 6. When R, = R\, > 1, there exist infinitely many interior
equilibria E*.

This theorem shows that if the two strains have the same infection
ability and an infectious individual can induce more than one new
infection, there will be infinitely many steady states involving the
infection of both strains. Which steady state will be ended up with
depends on where the infection starts.

3.2. General case: n strains

In this section, we consider the general case (i.e. the model with n
strains). System (1) always has a unique disease-free equilibrium

Eyr=(20....0).
u

——
2n+1
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Similar to the two-strain case, by the next-generation matrix approach
we define the basic reproduction number for strain i to be

APs,  Aafy,
0, = + N =1,2,., ,n
Uy, HO G,
Then
Ry = maX{Royl, 7R0,n}'

For the existence and stability of equilibria, we have the following
results. Since the proofs are similar to the two-strain case, we omit
them.

Theorem 7. When Ry <1 (ie. Ry; <1 foralli=1,2,...--,n), the DFE
E* is globally asymptotically stable; when R > 1 (i.e. Ry; > 1 for some
i=1,2,...+,n), the DFE E(’;* is unstable.

Theorem 8. When R(; > 1 (i = 1,2,....n), there is a unique strain-i-
dominant equilibrium Ef* =(S/,0,...,0,A7, 17,0,...,0, R7), where

H A; 0,i
a; 1 a;
I= <A, R¥=—|ys +r,— |A
i 51 i i " <}/Ai }’[[ 511 1

i

Theorem 9. Suppose that R,; > 1 for some i. When R,; > R, ; for all
j#iGe j=12,...,i—1,i+1,...,n), the strain-i-dominant equilibrium
E;* is locally and globally asymptotically stable; when R,; < R ; for some
Jj # i, the strain-i-dominant equilibrium E** is unstable.

Theorem 10. When Ry, are equal to each other forall i = 1,2, ..., n, there
exist infinitely many interior equilibria E**.

4. Data fitting and numerical investigation
4.1. Data

We collected COVID-19 daily cases and variant proportions for the
US from the Centers for Disease Control and Prevention (CDC) (Centers
for Disease Control and Prevention (CDC), 2022a). The variant pro-
portions were reported weekly. The first data of omicron proportion
was for the week 11/21/2021-11/27/2021. We assigned this data to
the middle of the week, i.e. 11/24/2021. Similarly, we obtained the
data of omicron proportions for each Wednesday from 11/24/2021 to
1/12/2022. We also collected the daily cases for the same period. Since
some states only reported daily cases during weekdays, we used the
7-day average data. The data set is shown in Table 2. The reason we
chose this time range is that we are more interested in the transition
between strains. Before or after this period, one strain dominates the
virus population. Both COVID-19 daily cases and omicron proportions
are used for model calibration.

4.2. Parameter setting and model calibration

Since the life expectancy for the US population before the pandemic
is about 79 years (Centers for Disease Control and Prevention (CDC),
2022b), we fix the natural death rate u = 1/(79 % 365) day~!. The total
population in the US in 2021 is N, = 332398949, which is relatively
stable. Therefore, we assume that the birth rate is similar to the natural
death rate and roughly estimate the recruitment rate A = N,  u with
unit person/day. The other parameter values and the initial conditions
of System (2) are calibrated using the data from Table 2.

We use the nonlinear least-squares approach to minimize the Root
Mean Square Error (RMSE) between data and simulated results for
model calibration. Reported data of COVID-19 daily cases and omicron
proportions in the US are used in this paper. These two types of data
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have different orders of magnitude. Therefore, we normalize the data
sets by dividing them by the maximum value from each data set. In
addition, we have 50 data points for daily cases but only 8 for omicron
proportions. Thus, we minimize the sum of the mean square errors for
the two data sets instead of the sum of two square errors. In this way,
the two data sets have the same weights in the data fitting procedure.
Hence,

Ni
RMSE = z

i=1

(1) = X)P G O —Y)?
Ny " 2 N,

j=1
where the first and the second terms under the square root correspond
to daily cases and omicron proportions, respectively. X;, ¥; represent
normalized data values, and N,;, N, are the numbers of data points
in these two data sets, respectively. x(+;) and y(r;) are normalized
simulated values at the same time points corresponding to the data.
We use strain 1 and strain 2 to denote the omicron variants and other
variants (mainly delta variants), respectively, as observed in the CDC
data. It follows that

<ﬂA1A1(f,‘) + B L1 (t) + Pa, Ay (1) + ﬂ,zlz(t[)>S(t,»)

X(ti) - Xmax
and
(ﬂAlAl(lj)+ﬁ1111(fj))5(1j)
Y(tj) = ,
<ﬂA1 A (@) + P 1(1) + By, Ao(t)) + ﬁlﬂz(ﬁ)) S )Y pax
where
Xoax = lgggl{X,-}, Yax = lg}ggzn’j}.

The fitted parameter values and initial conditions are given in Table 3.
We can see that compared with the delta variants, the omicron variants
have a higher transmission rate, higher transition rate, similar recovery
rates, and lower disease-induced death rate. This indicates that the omi-
cron variants are more transmissible but less fatal than the previously
circulating delta variants.

Based on the fitting results from Table 3, we perturbed each param-
eter and initial condition to generate a band of curves. By conducting
several simulations, we notice that those bands corresponding to about
8% perturbation can describe the data variation well with small RMSE.
Similar to the procedure used in Li et al. (2021b), we randomly gen-
erate 100 small perturbation factors within the range [6%, 10%]. For
each perturbation factor a%, we perturb every parameter and initial
condition by a% in both positive and negative directions. According
to the Latin Hypercube Sampling (LHS) method, we randomly sample
1000 parameter sets within their ranges, which correspond to a band
of curves. The number of data points covered by this band and their
RMSE can be computed. Then we select the one with the smallest RMSE
through the 100 bands. For this selected band, we have 1000 curves,
which are used to derive the 95% CI of the model simulation. The
results are shown in Fig. 2. Even though the data set for daily cases
is within the 95% CI, the fitted line is higher than the real data at
the end of this period. There are several possible reasons. For example,
as COVID-19 cases arise, more and more people have chosen to get
vaccinated or take various non-pharmaceutical interventions, which are
not considered explicitly in our model.

4.3. Competition between strains

In Section 3, we derived the existence and global stability results
for the DFE and strain-dominant equilibria, which are summarized in
Fig. 3(a). The circled equilibrium is stable in each region. However,
in the special case R,; = R ,, we only have the existence for the
interior equilibrium E*. To numerically investigate the stability of E*,
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Fig. 2. Model calibration by daily COVID-19 cases and omicron proportions in the US. The results for daily cases and omicron proportions are shown in (a) and (b), respectively.
The shaded regions denote the 95% confidence interval. The data set used here is listed in Table 2, which is collected from the US CDC website (Centers for Disease Control and

Prevention (CDC), 2022a).

Table 2

Data from the US CDC for model calibration (Centers for Disease Control and Prevention (CDC), 2022a).

Date Daily cases Omicron proportion Date Daily cases Omicron proportion
11/24/2021 94590 0.000652581 12/19/2021 138509
11/25/2021 88653 12/20/2021 150064
11/26/2021 83917 12/21/2021 162183
11/27/2021 85313 12/22/2021 176051 0.742894053
11/28/2021 88058 12/23/2021 193066
11/29/2021 80140 12/24/2021 203403
11/30/2021 82979 12/25/2021 208404
12/1/2021 86876 0.006183981 12/26/2021 223643
12/2/2021 97097 12/27/2021 254622
12/3/2021 107153 12/28/2021 282107
12/4/2021 108862 12/29/2021 317018 0.892975569
12/5/2021 108623 12/30/2021 362522
12/6/2021 121897 12/31/2021 394035
12/7/2021 122706 1/1/2022 416866
12/8/2021 122339 0.073683523 1/2/2022 444402
12/9/2021 121595 1/3/2022 510796
12/10/2021 119177 1/4/2022 558108
12/11/2021 118855 1/5/2022 590326 0.952672899
12/12/2021 119270 1/6/2022 618657
12/13/2021 119510 1/7/2022 674961
12/14/2021 119283 1/8/2022 694091
12/15/2021 121520 0.379368961 1/9/2022 702320
12/16/2021 124647 1/10/2022 756647
12/17/2021 128529 1/11/2022 768593
12/18/2021 131965 1/12/2022 789652 0.978338718
Table 3 conditions. The results show that there are multiple stable interior
Fitted parameter values and initial conditions. equlhbrla when RO,I = 7?'0,2'
Initial condition Value Parameter Value
- " In Fig. 4(a), we use the fitted parameter values (see Table 3) with
Sy 9.796 x 10 Ba, 1.311x10 B B h hat the strain-1-dominant
Aro 1000 g, 4334 % 10- R0,1' = {1.1505 and' Ron = 1'.5547. It shows that tl c'e strain-1-dominani
I 300 @ 0.330 equilibrium E} exists and is stable. These numerical results support
Ay 9.550 x 10° o, 0.017 the observation that the omicron variants outcompete the previously
Do 8.000x 10° T4, 0.094 circulating variants and dominate the virus population eventually as
R 2327 10° "n 0.094 it has a larger basic reproduction number. According to the analytical
B, re6x 100 8 epro - Arcoraing fo the and yuea
by 6.703 x 1010 results of the deterministic model (2), the disease-free equilibrium is
@ 0.200 unstable and the disease will persist when Rpy > lor Ry, > 1.
) 0.021 However, this might not be the case in reality. One of the reasons is that
Ya, g-gzi stochasticity can play an important role, especially at the beginning
148 .

2

we choose the fitted parameter values for strain 1 (see Table 3) and
set parameter values for strain 2 to be the same as strain 1. In this
case, Ry, = Ry, = 11.1505. In Fig. 3(b-d), we assign different initial

of the outbreak. Using a corresponding stochastic model (Table 4),
we show that the system may approach the disease-free equilibrium
quickly even when R ; > 1 and R, > 1 (Fig. 4(b)). Here we used the
same parameter values and initial conditions as in the deterministic
model (Fig. 4(a)). This indicates that although the disease spreads fast,
it may still have a chance to die out if intervention measures are
administered quickly in the beginning.
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Fig. 3. (a): The existence and stability of the equilibria of model (2) with different values of R,, and R,. The circled equilibrium is stable in each region. (b-d): The prevalence
using the fitted parameter values for strain 1 (see Table 3) and setting parameter values for strain 2 to be the same as strain 1. Hence, R,,; = R, = 11.1505. The initial conditions used
in (b-d) are (Sy, A0, 19, Az, I20, Ry) = (1000,5,2,15,25,100), (Sp, Ay, 11, Aggs I, Ry) = (1000,500, 100,15,25,100) and (Sy, A, g, 11, Ay I, Ry) = (10000,500, 100,400, 120, 1000),
respectively. They show that there are multiple stable interior equilibrium points when R, = R,.
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Fig. 4. (a): The prevalence using the deterministic model (2). (b): A sample path of the corresponding stochastic model (Table 4). In both panels, the parameter values are from
Table 3 with R, = 11.1505 and R, = 1.5547, and the initial conditions are (Sy, A4, o, 1}, A2, 10, Ry) = (1000,5,2, 15,25,100). (a) shows that the strain-1-dominant equilibrium E}
exists and is stable. (b) shows that even though R,, > I and R, > 1, the disease may die out within a relatively short period.

4.4. Control strategies

From the simulation in the last section, we know that control
strategies that reduce the transmission and consequently the basic
reproduction number would be important in mitigating the disease
spread, especially when the control measures are implemented early.
In this section, we use the mask mandate as an example to further
study the implementation of control strategies. We introduce two more
parameters, e and c, to represent the mask efficacy and mask coverage,
respectively. Hence, the transmission rates Ba, and By, (i = 1,2) are

lowered by multiplying by (1 — ec), where both e and ¢ are between 0
and 1. In this case, we have two corresponding control reproduction
numbers. We denote them as R, | and R, ,, respectively.

We first assume e = 40%, ¢ = 75% and consider different starting
dates of the mask mandate. If it is implemented on day 20, 40, or 60
after the omicron variant appears, the outbreak peak for strain 1 will be
lowered and delayed compared with the baseline case in which there is
no mask mandate (¢ = 0). In these cases, the mask mandate is initiated
before the peak of strain 1. If we start the control on day 80 (after
the peak), the prevalence will only be slightly lowered (see Fig. 5(a)).
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Fig. 5. Prevalence of strain 1 (a) and strain 2 (b) with different starting dates of mask mandate. In all panels we assume the mask efficacy and coverage to be 40% and 75%,
respectively. The initial conditions and all the other parameter values are from Table 3. It shows that if we start the mask mandate early (before the infection peak), the peak
will be lowered and delayed. However, if we start late (after the peak), the prevalence will only be slightly lowered.

Table 4

A stochastic model corresponding to model (2).
Event Change Probability
Infection of strain 1 by A4, (S,A,1,A), I,,R) > (S—1,A, + 1,1,A,,1,,R) Ba, SA A
Infection of strain 1 by I, (S, AL 1,A), 1,,R) > (S—=1,A, +1,1},A;,I,,R) B, ST At
Infection of strain 2 by A4, (S,A,1,A),1,,R) > (S—1,A,,1,A, +1,I,,R) Ba, SA A
Infection of strain 2 by I, (S,A,1,Ay, I,,R) > (S—1,A,1,A, + 1,1,,R) B, SLAt

Natural death for §
Transition from A, to I,
Recovery from A,

Natural death for A,
Disease-induced death for I,
Recovery from I,

Natural death for I,
Transition from A, to I,
Recovery from A,

Natural death for A,

(S, A1 Ay, L R) = (S = 1, A Iy, Ay, I, R) uS At
(S,A,1,A,,I,,R) > (S,A - 1,1, + 1,A,,1,,R)
(S,A,1,Ay, I,,R) = (S,A — 1,1,A,,1,,R+1)
(S,A,1,Ay, I,,R) > (S, A - 1,1,A,,I,, R) pA, At
(S,A,1,,A,,1,,R) = (S,A,.I, —1,A,,1,,R)

(S,A1,Ay, 1),R) = (S, A, I, —1,A,,1,,R+1)
(S,A,1,,A,,1,,R) = (S,A,,I, - 1,A,,1,,R) wil, At
(S,A,1,Ay, 1,,R) = (S,A,I,A) - 1,1, + 1,R)
(S,A.I,,A),I,,R) = (S,A,I,,A, - 1,I,,R+1)
(S, A I Ay, L R) = (S, Ay I, Ay = 1,1, R) A, At

a A At
Y, A1 At

w, I, 4t
y,IIIAt

a, Ay At
4, Ay At

Disease-induced death for I, (S,A,1,A5, I,,R) > (S, A, 1,,A,, I, - 1LR) w, I, At
Recovery from I, (S A1, Ay I, R) = (S, A, I,, Ay, I, — 1, R+ 1) 1, LAt
Natural death for I, (S,A,1,A5,I,,R) > (S, A, 1,,A,, I, - 1,LR) ul, At
Natural death for R (S,A,1,,A,,1,,R) = (S,A,.1,,A,,I,,R-1) pRAt
Birth (S, A, 1, Ay, I,,R) > (S +1,A,,1,, Ay, I, R) UN At

Similar results are found for strain 2 (see Fig. 5(b)), in which they are
after the peak even for the baseline case.

We further study the impact of mask-wearing on the prevalence of
strain 1 and strain 2. Fig. 6(a) and (b) are contour maps for the con-
trol reproduction numbers R, ; and R, with different mask-wearing
strategies. We can see that as the mask coverage and efficacy increase,
both R, and R, decrease. However, to achieve R, < 1, we need a
high mask efficacy and coverage. For example, if the mask efficacy is as
high as 95%, we still need about 95% of the population to wear masks.
However, this high percentage of mask-wearing is hard to achieve
in practice. It implies that we need more control strategies, such as
vaccination, combined with the mask mandate to slow down the spread
of COVID-19.

In Fig. 6(c) and (d), we increase the mask efficacy to 70% and
consider the prevalence for strain 1 and strain 2 with different mask
coverages. As mask coverage increases, the prevalence will be reduced.
In addition, the infection peak will be lowered and delayed. Fig. 6(c)
also reveals that there will be several subsequent waves. However, we
observe a relatively long period with a low infection level between the
first and second peaks. One possible reason is that we assume natural
immunity to be permanent. If a large portion of the population has been
infected and the recruitment rate for susceptible individuals is not high
enough, the prevalence will stay at a low level for a while.

The mask mandate will be lifted at some point. We are interested in
the impact of the lifting date on the first and subsequent waves. If we

focus on a specific case in Fig. 6(c), i.e. ¢ = 0.6, the first peak is about
1.2x 107 on day 140 and there are 3 peaks within the first 10,000 days.
Now we consider lifting the mask mandate on different dates and 10%
of the population will still wear masks after lifting. The baseline case
is no lifting. Fig. 7(a) shows that lifting the mask mandate before the
prevalence peak will result in an earlier and much higher first peak. In
contrast, lifting after the peak does not influence the prevalence much.
In Fig. 7(b) we can see that by lifting the mask mandate we could have
at least 4 peaks within the first 10,000 days. Interestingly, among these
five cases, the latest lifting leads to the earliest subsequent wave. The
reason could be that in this case, we have more susceptible individuals
once the mask mandate is lifted. Even though the lifting date affects
the time of the subsequent waves, it only has a minor influence on the
scale of the subsequent waves. Lifting at any time leads to an earlier
peak than that when the mask mandate is always required.

5. Conclusion and discussion

In this paper, we developed a multi-strain model with infectious
asymptomatic classes and applied it to the COVID-19 dynamics in the
US. Starting from a two-strain model, we obtained basic reproduction
numbers for the two strains and interpreted their biological meanings.
Rigorous analyses for the local and global stability of the DFE were
given. We also derived explicit formulas for two strain-dominant equi-
libria and analyzed their local and global stability. The existence of
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Fig. 7. Prevalence of strain 1 with different lifting dates of mask mandate. In all panels, the mask efficacy is assumed to be 70%; the mask coverage is 60% before lifting and
10% after. The parameter values and initial conditions are from Table 3. (a) shows that lifting the mask mandate before the prevalence peak will result in an earlier and much

higher first peak. (b) illustrates the impact of lifting dates on subsequent waves.

the interior equilibrium was also given. Due to the complexity of the
model, the stability of the interior or coexistence equilibrium was only
numerically investigated. We expanded the analytical results from the
two-strain to the n-strain case. The analysis shows that only when the
basic reproduction numbers for all strains are less than one, the disease
is predicted to die out. Otherwise, the strain with the largest reproduc-
tion number will persist and the other strains will gradually disappear.
In the special case when the reproduction numbers are the same for

all strains, there will be infinitely many interior equilibria. This is
reasonable as no strain can invade others. This result implies that the
competitive exclusion principle still holds, which has been discussed in
other models without infectious asymptomatic classes (Martcheva and
Li, 2013; Saucedo and Martcheva, 2017; Dang et al., 2016; Duan et al.,
2018; Cai et al., 2013; Rong et al., 2007, 2012). These results were
summarized and numerically shown in Figs. 3 and 4(a).
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We calibrated model (2) using the data of COVID-19 daily cases
and omicron proportions in the US. The fitted parameter values and
initial conditions were listed in Table 3. Fitting results with the 95%
confidence interval (CI) were shown in Fig. 2. We found that the
omicron variants are more transmissible but less fatal from the data
fitting. Using the fitted parameter values, we calculated the basic repro-
duction number for the omicron variants as 11.1505. It is much larger
than that for the delta variants, which is 1.5547. Liu et al. also found
that the basic reproduction number for the omicron variants is much
larger than the other variants (Liu and Rocklov, 2022). They reviewed
several papers and found the average basic reproduction number for
the omicron variants is 8.2, which is about 3.8 times that of the
original strain. Hibberd reckoned the basic reproduction number for the
omicron variants could be as high as 10 (Burki, 2022). However, Khan
and Atangana estimated this value to be 2.1107 in South Africa (Khan
and Atangana, 2022). Regarding the reproduction number of the delta
variants, our result is smaller compared with some other papers. For
example, Zhang et al. estimated this value as 3.2 based on the data
from China in May 2021 (Zhang et al., 2021). Head et al. estimated
it as 4.6 using data from the US in August 2021 (Head et al., 2022).
A possible reason for this disparity may be the insufficient data used
to estimate the number. In many regions, the COVID-19 case data are
underreported. Another reason might be due to the time difference of
data sets. The data set chosen in this paper is from 11/24/2021 to
1/12/2022, when the omicron variants emerged and outcompeted the
previously circulating delta variants. In addition, different models focus
on specific questions without including all possible factors that may
affect the estimation.

Using a stochastic model corresponding to the deterministic model,
we showed that even when the basic reproduction number is greater
than one, the disease could still die out within a short period, especially
during the initial stage in which the infected population size is low (see
Table 4 and Fig. 4(b)). Similar results were found in Srivastav et al.
(2021). They also showed that stochasticity would play an important
role in a small population. This implies that it is crucial to implement
control strategies early. We used the mask mandate as an example to
further address this problem. Fig. 4 showed that the prevalence peak
will be lowered and delayed if we start the mask mandate before the
peak. However, if we start after the peak, the prevalence will only be
slightly reduced. The importance of implementing control strategies
early was also demonstrated in some previous papers. In He et al.
(2021), we found that to prevent a subsequent wave, timely screening
and detection would be needed in the early stage of infection. In Shen
et al. (2021b), we showed that there would be more averted infections
and deaths if the executive order was implemented earlier. Knock et al.
also estimated that the mortality in England could be roughly halved
if the lockdown had been introduced one week earlier (Knock et al.,
2021).

The lifting date of the mask mandate also affects the dynamics
of COVID-19 transmission. Fig. 7(a) showed that lifting the mask
mandate before the prevalence peak would result in an earlier and
much higher first peak. In contrast, lifting after the peak would not
influence the prevalence much. In addition, lifting dates would affect
the number and the time of the subsequent waves, but only have minor
influences on the scale of the subsequent waves (Fig. 7(b)). Similar
results were also shown in Ngonghala et al. (2020). They found that
early termination of the social-distancing measures could lead to a
devastating second wave with a disease burden similar to the scenario
without implementing the social-distancing measures. We also found
that choosing the lifting date would be tricky if a large portion of the
population still remains susceptible. In a recent study, Sonabend et al.
showed that if the timing of non-pharmaceutical interventions (NPIs)
could be carefully balanced against the vaccination coverage, the risk
of a large subsequent wave of COVID-19 hospitalization resulting from
lifting NPIs can be reduced (Sonabend et al., 2021).
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In this paper, we adopted the SAIR (susceptible-asymptomatic
infected-symptomatic infected-recovered) modeling framework. The
asymptomatic and pre-symptomatic individuals are grouped into one
class. Because we are more interested in studying the competition
between different strains and the impact of the way of implementing
control strategies, we used a simple modeling framework and did not
consider the exposed class, which was also ignored in some other
COVID-19 papers (Massard et al., 2022; Calleri et al., 2021; Serhani
and Labbardi, 2021). In view of the observation that the breakthrough
infection or reinfection only accounts for a small portion of the total
infection, we assumed the acquired immunity to be permanent after
recovery, which was also the assumption in many other papers of
COVID-19 (Massard et al.,, 2022; Calleri et al.,, 2021; Serhani and
Labbardi, 2021; Huo et al., 2021; Musa et al., 2022; Shen et al.,
2021a,b; Li et al., 2021b). If we add more classes such as the exposed
class, the basic reproduction numbers and the dynamics of the model
will be slightly different from that obtained using the model in this
paper. For example, the prevalence peak will be slightly delayed when
including the exposed class. If we use the SAIRS modeling framework
by considering waning immunity after recovery, the basic reproduction
number will remain the same but the prevalence peak will be earlier
and higher.

Although asymptomatic transmission does not affect the competi-
tion between different strains, several studies have shown that asymp-
tomatic infection plays an important role in COVID transmission, and
that implementing control strategies targeting asymptomatic infected
individuals is critical. For example, Lovell-Read et al. found that inter-
ventions targeting asymptomatic cases are important to prevent local
outbreaks (Lovell-Read et al., 2021). Hart et al. showed the importance
of continued contact tracing because of COVID’s high infectiousness
immediately prior to symptom onset (Hart et al., 2021). The focus of
this paper is to study the competition between different strains and the
influence of the ways of implementing control strategies. For simplicity
of modeling, we did not include control strategies specifically targeting
asymptomatic individuals. In addition, parameter identifiability analy-
sis is important in data fitting and parameter estimation. It is used to
describe whether it is possible to uniquely recover model parameters
from a given set of data. Structural identifiability analysis is usually
performed first, followed by practical identifiability analysis. A rigorous
analysis can be challenging, if not impossible, for models involving
many variables and parameters with only limited data available. Here
we did not intend to obtain accurate estimates of model parameters in
view of the model complexity and the available data. Instead, we fixed
some parameters from the literature and allowed a few to vary to see if
the model prediction can quantitatively capture (at least the trend of)
the available data.

In summary, we developed a multi-strain model with infectious
asymptomatic individuals to investigate the transmission of COVID-19.
Even though the data used here are from the US and we used the
mask mandate as an example of control measures, the analytical and
numerical results could be applied to other regions and other control
strategies. The results may help better understand the transmission
dynamics between different strains and provide useful information for
policymakers to formulate guidelines of control strategies (Hart et al.,
2021; Lovell-Read et al., 2021).
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Appendix A. Basic reproduction number and the proof of Theo-
rem 1

Reordering variables as x = (4;,1,,4,,1,, S, R), we get the DFE of
system (2) Eg =(0,0,0,0,S5*,0), where Sg = % We rewrite system (2)

as x = F(x) — 7'(x), where
54 A
[ J - A+ 51111
1S Gp,As
0 —a Ay + 6,1 ’
0 “A+SYE A+ uS
0 _Z?:](yAiAi +r 1)+ uR

with 4; = 4 A; + B, 1;, i = 1,2. According to Van den Driessche and
Watmough (2002), we have to check the hypotheses A(1)-A(5). The
first four hypotheses are easy to verify. A(5) will be satisfied if all
eigenvalues of the matrix

-V 0
J=
<Js J4>
have negative real parts. Here
5, 0 0 0
|- 8, 0 0 (-u 0
V‘ooaA 0’J4_0—,4’
0 0 -a &

2
and J; is a 2 x 4 matrix. Hence the hypothesis A(5) is satisfied.
Taking the Jacobian matrices of # and 7" around the Ej, we get

F 0 vV o0
DF;(E{;):( ) D%(Ep:(J3 )

0 0 Jy
where
SS‘/}AI Sgﬂ,l 0 0
F= 0 0 0 0
0 0 Seba,  Sobr, ’
0 0 0 0

V, J; and J, are the same as above. We have

ay;  ap 0 0
pyio|0 0 0 o]

0 0 a3 ay

0 0 0 0
where
o APy, N Aay fy, o = /W_I,
U usy, T mes 6y 2wy,

ABy,  Aayfp, APy,

3= HEay, MO8y, = uéy,
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We denote a;;, az; by R, and R, ,, respectively. It follows that
Ro = p(FV™') = max{Rg 1, Rg2}

where p(A) denotes the spectral radius of the matrix A.

Since R is derived using the next generation matrix method, by
Theorem 2 in Van den Driessche and Watmough (2002), E(’; is locally
asymptotically stable when R, < 1 (i.e. Ry; < 1 and R, < 1), and
unstable when R, > 1 (i.e. Ry; > 1 or Ry, < 1).

Appendix B. Proof of Theorem 2

We define the following Lyapunov function

ﬂ]
S +A1+A2+Z 0

Li=S-8;-8:n=
So =1 L

It is clear that L, is radially unbounded and positive definite in the
entire space 2. The derivative of L, along the trajectories of system
(2) yields

S 2 2 S*ﬂ

: 0 01
L, =<1 - §>5' SEDY 5l

i=1 i=1 i

5 2
=<1 - %) [/\ - S;(ﬁA,Ai +ﬁ1,li)_”s]

+ 22: [S(ﬂA,»Ai + 0,1~ 5/“'Ai]
i=1

2 *
Sgbr
+ 2
i= I;

~(a;A; = 51 1))

Using the equilibrium equation A = uS*, we get

2
Ly == (S = S02 + S5 3 (Ba, Ay + By, 1)

i=1
—Z&AA +Z

Sy b,
= E(S - S;;)2 + (SAI(RQ1 = DA} +64,(Rgs — DA,

(a,A 65,1

When Ry < 1, we have Ry, < 1 and Ry, < 1. Then L, < 0

and the only potential point for L, = 0 is at the DFE. Therefore, by
Krasovkii-LaSalle Theorem Martcheva (2015), the DFE E(’)‘ is globally
asymptotically stable when R < 1.

Appendix C. Proof of Theorem 3

We first consider the strain-1-dominant equilibrium, in which both
A, and I, are zero. Setting the right hand side of the system (2) to zero,
we have

0= A= S(Ba, Ay +Pr, 1) — uS.
0=SB4, A1+ B, 1)) — 64, Ay,
O=a1 Ay —6p 14,
0=y4A1+71 1 —uR.

(C1

From the third equation of (C.1), we get

Substituting it into the last and second equation of (C.1), we get

1
R= M(}’A1+7115 >A1,

and

o
S(ﬁAlAl +ﬁ,lEA1> ~ 64 A =0.
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Since at strain-1-dominant equilibrium, A; # 0, we get

04, 1 A1

S = = = .
a
Ba, + B, # Pay + Iy n Ry
U Ba, | Bayap,

Adding the first and second equations of (C.1), we get
A=uS =54 A =0.

Hence,

u (A > A< 1)
Aj=—(=-85)="—(1-=—).
! 5A,<Il 5,4, Ro1

Therefore, when R, ; > 1, we have a unique strain-1-dominant equilib-

rium Ef = (S*,A’I*,I;",O, 0, RT), where

Similarly, when R, > 1, we have a unique strain-2-dominant equilib-

rium E;‘ = (S;,O, 0, A;, 12*, R;), where

s AL A(l_;),
U Rop 5A2 Roa

. an
* _ 2 4%
]2 - F] AZ,Z’
I

Appendix D. Proof of Theorem 4
The Jacobian matrix of the system (2) (reorder variables as x =

(A, 1}, A5, 1, S, R)7T) evaluated at the strain-1-dominant equilibrium
E* is
1

ap SY By, 0 0 as 0
a; ay 0 0 0 0
JED = 0 0 az sip, 0 of
0 0 a, Qy4 0 0
=S1Ba,  —STBy,  —S{Ba, —S{B, ass O
YA, 7y 0 0 0 —u
where
ay = S7Pa, =64, ajs = fa AT+ B 1T, ay = =6y,

ass = —(Pa, A} + B I7) — p.

One eigenvalue is —u and the others satisfy

* =
az3 = S; P, =64, a4q = =6,

A—ay  =STh 0 0 —ays
—a A—ay 0 0 0
0 0 A—ay  —Sp 0 =0.
0 0 —a, A—ay 0
StBa,  S{Br,  STBa, S{B, A-ass
Adding the first row to the last row, we get
A—ap —S;‘ﬁ,l 0 0 —ays
—a; A—ay 0 0 0
0 0 A-ay =S, 0 |=0.
0 0 —a, A—ay 0
A+dy 0 SiBa,  SB,  Atu
Expanding along the last column, we get
(A+ w)D —a;5sD, =0,
where D, = D;D, with
Dy = A—ay —SfﬁlI D, = A—az —Sfﬁlz
—a A—ay |’ —a, A—ay |’

and D, = —(4 — ay)(4 +84,)D,. Hence,

D4 [+ 1Dy + 150 = ax)i+ )] = 0.
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Therefore, three eigenvalues satisfy
(+ WD3 + ays(A — axn)(i+84,) = 0.
Using Ds, a;5 and a,,, we get
G+ W)|(A= STPa, +64 )0+ 8p,) —alSl*ﬂll]
+ (B, A+ By I+ 8, )(A+6,) =0.
Collecting terms, we have
2 +al/12+a2/1+a3 =0,
where
ay =64, = S{fa, + 6, +u+(Ba AT+ B 1D,
ay =84, — S} P )81, — ay TPy +u(Ba, — SiPa, +67,)
+ (Ba, AT + B, I, +84,)s
as :M[(aA] = SEa )81, — ay STBr |+ (Ba, AT+ By 116, 6y,

Using the equilibrium condition

ST(Ba AL+ Br 1) = 64, A7, a A} =6y I,
we get
S*p, I*
s _ Sifnn
6, = S1ba, = a
and
S0 1

(64, = STBa)81, — oy STA, = 8, —ay S{py, = S{py, — o STh, =0.

Therefore, a; > 0, a; > 0 and a3 > 0. In addition, a; > 6, and
ay > (By, AT + B, 184, - Thus,

ajay —az > 8y, (B, A7 + P, 1184, — a3 =0.

According to the Routh-Hurwitz criterion, these three eigenvalues all

have negative real parts. The other two eigenvalues satisfy D, = 0. It
follows that

P +bi+c=0,
where
b=, —SiBy, +5,.

. . M Roa
¢ = (Bn, = 5184, )81, — S}y, = 84,0, (1= 8] TR0, ) =5,,6,, (1= 7 ).
0,1
When R\, < R, we have ¢ > 0. To determine the sign for b, recall
that $* = 2 _L_ Then
I u Ry

U
Roz < Ry & Rop ST < 16 S7(8y,01, + B1,@) < 54,61,
= S7Pa, 81, < 84,60,

It follows that S}, < &4, Hence, b > 0. Therefore, when R > Ry,
these two eigenvalues have negative real parts. We can also see that
when Ry, > R, we have ¢ < 0, which implies that at least one
eigenvalue is positive. Therefore, in the case of R,; > 1, when R, >
Ry, the strain-1-dominant equilibrium Ej is locally asymptotically
stable; when R(; < Ry,, E| is unstable. Similarly, in the case of
Ry, > 1, when R, > R, the strain-2-dominant equilibrium EJ is
locally asymptotically stable; when R, < R, E; is unstable.

Appendix E. Proof of Theorem 5

Assuming R,; > 1 and R(; > R,, we first consider the strain-1-
dominant equilibrium. We define the following Lyapunov function

S x- 87 Al x — A} I x=1If
L2=/ dx+/ dx+cl/ dx + Ay + key I,
seoX A x Pox

1
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where k = iﬂ, and ¢, and ¢, are positive constants to be determined
later. ’

It is clear that L, is radially unbounded and positive definite in the
entire space Q. Differentiating L, along solutions of system (2), we
have

: S_ST ’ AI_AT ’ 11_11* ’ ’ ’
L,= S S+ 1, A+ T 1+ A + key I

s 2
— <1 _ ?1) (A—S; (ﬁA[Ax +ﬁ1,1i) _”S>

A I
<1 - A-) [SBs Ay + By 1) — 84, Af] +¢ (1 - I-) (@A =6, 1))
1 1

+ S (ﬁAZAZ +ﬂ1212)
Using the equilibrium equations
_ SiBa, AT+ B 1D

1 * ’
Al 1

— 84, Ay +key (@ Ay = 8;, 1) -

A= SEBg AT+ B D) + S, 6,

we get
, S\ ? s
b (1-5) 4 (1-5)
2
X [sf(ﬂAlA’;Jrﬁ,lI;‘)—SZ(ﬂAiA,.+ﬂ,i1i)]
i=1
A* S*(By, AT+ By I¥)
+ (1 - A_i> [S(ﬁAIA, +0,1)) - %A]

Iy ay A}
<l——>(a1A| I_I])
1

1
+ S(Pay s+ 1, 1a) = ay Ay + ey (ardy = 51,1 )

SN ‘g Si s
=_ﬂs<1—?> +/3A1S1A1<2—?—S—T>
- I A SLAy
+ﬂllSlII <2— ————m>
A
+c1a1A <A*

ﬂAz Br,a
+5A2A2 STaﬁ-Cz—l +k51212 Srm
2 2 12

Since x — 1 > Inx for x > 0, we get

|2

ST SIIIA’Ik S;‘ SIIA’Ik I;* A
-———<-h—-Ih——=In—+In—
*TFA, — S S*IFA I A*
S Sl 11 17171 1 1
and
>|< A*
1- <In(—=)+ In(—
1 A* ( )+ n( )

It follows that
L, < SISTZ S*A*ZS]*S
e I A e I
1, Ay Ay
+ (ﬁ,lSi*Iik —clalA’lk) [([—1* —1In I—f) - <A—T —lnA—T
RA R!
0,2 0,2
+5A2A2<R—m+C2—1>+k51212<R—m—02>.

By the arithmetic-geometric mean inequality, we have

ST s
— 4+ = >2.
S S* -
3 _ by Sy R{)’z
Choosing ¢, = A* and ¢, = Ror’ we get
A
02 Roo
— 4 -l=—=—-1<0.
Ro,1 Ro,1
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Therefore, L, < 0. It is easy to check that L, = 0 if and only if the
system is at E;‘. By Krasovkii-LaSalle Theorem Martcheva (2015), Ei* is
globally asymptotically stable when R, ; > max{l,R,}. By a similar

proof, EJ is globally asymptotically stable when R, > max{1, R }.
Appendix F. Proof of Theorem 6

Setting the right-hand side of system (2) to zero, we have

2

0=A=5 DBy, A+ 1) — S,
i=1

0=S0Ba, A1+ B, 1)) — 64, Ay,

0=a1A, =6, 1. (F.1)
0=S(B4, A2+ B, 1) — 64, 4s,
O=aA; - 61,15,
O=y4,A1+v1, I + 74,4 + v, I — uR.
From the third and fifth equations of (F.1), we get
I, =—24,, IL,=-2A4,
5,1 512
Substituting them into the last equation of (F.1), we get
R= 1 A 1 A
u Y4, +71, 5 1+ YA, +}’12 5 2
Replacing I, in the second equation of (F.l), we have
L
S| Ba, AL+ B, gAl — 04,4, =0.
1
At an interior equilibrium, A; # 0, we get
o
so—m___AL
Pa, + B 5= # Ro
I
Similarly, from the fourth equation of (F.1), we have
=41
H Ry,
Since R(; = Ry,, the above results are valid and §* = ﬁn; It is

possible to have an interior equilibrium only when R;; > 1. Because
I, I, and R can be written in terms of A; and A,, we only need to
solve for A, and A,. Adding the first, second, and fourth equations of
(F.1), we get

84, Ay +84,Ar = A= pS*,

Once the above equation is satisfied, all the equations in system (F.1)
hold. Therefore, there are infinitely many interior equilibria when
Ro1=Rpp > 1.
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