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A B S T R A C T

COVID-19, induced by the SARS-CoV-2 infection, has caused an unprecedented pandemic in the world. New

variants of the virus have emerged and dominated the virus population. In this paper, we develop a multi-

strain model with asymptomatic transmission to study how the asymptomatic or pre-symptomatic infection

influences the transmission between different strains and control strategies that aim to mitigate the pandemic.

Both analytical and numerical results reveal that the competitive exclusion principle still holds for the model

with the asymptomatic transmission. By fitting the model to the COVID-19 case and viral variant data in the

US, we show that the omicron variants are more transmissible but less fatal than the previously circulating

variants. The basic reproduction number for the omicron variants is estimated to be 11.15, larger than that

for the previous variants. Using mask mandate as an example of non-pharmaceutical interventions, we show

that implementing it before the prevalence peak can significantly lower and postpone the peak. The time of

lifting the mask mandate can affect the emergence and frequency of subsequent waves. Lifting before the peak

will result in an earlier and much higher subsequent wave. Caution should also be taken to lift the restriction

when a large portion of the population remains susceptible. The methods and results obtained her e may be

applied to the study of the dynamics of other infectious diseases with asymptomatic transmission using other

control measures.
1. Introduction

Coronavirus disease-2019 (COVID-19) is a novel infectious disease

caused by the SARS-CoV-2 virus, which can be spread from person to

person (World Health Organization, 2022). This virus is highly conta-

gious and has swept the globe. Even though a lot of infected people are

asymptomatic, or only experience mild to moderate symptoms, some

develop a serious illness or even die, especially among older people

or those with underlying medical conditions. According to the World

Health Organization (WHO), more than 521 million confirmed cases of

COVID-19, including over 6 million deaths, have been reported by May

2022 (World Health Organization, 2022).

Since COVID-19 was first reported in December 2019 in Wuhan,

many effective control strategies have been adopted aiming to prevent

or slow down the transmission, such as mask mandate, social distanc-

ing, vaccination, travel restriction, lockdown, etc (Howard et al., 2021;

Mathieu et al., 2021; Tang, 2022). However, the pandemic is still going

on in many countries and has caused devastating damage to public
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health and the social economy. One of the reasons why COVID-19 is

hard to tackle is that many infected people are asymptomatic but they

can infect others without knowing it. Another reason is that the virus

continuously mutates. Multiple variants of SARS-CoV-2 have emerged

and have been circulating around the world since the beginning of the

COVID-19 pandemic, such as alpha, delta, omicron, etc (World Health

Organization, 2022). This has brought more challenges as the vaccines

or treatments are less effective for the new variants. As more vari-

ants appear, which strain might dominate the virus population? Does

asymptomatic transmission affect the competition between strains?

When should we impose or lift non-pharmaceutical interventions? Does

the time of starting or lifting the restrictions affect the spread of COVID-

19? The answers to these questions are still vague and need to be

further investigated.

Multi-strain mathematical models have been widely used to inves-

tigate the infectious disease dynamics (Massard et al., 2022; de León

et al., 2022; Li et al., 2021b; Rong et al., 2007, 2012; Li et al., 2021a,
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2013; Martcheva, 2009; Li et al., 2010; Saucedo and Martcheva, 2017;

ang et al., 2016; Duan et al., 2018; Cai et al., 2013; Martcheva and
Li, 2013; Martcheva, 2007; Thomasey and Martcheva, 2008; Iannelli
et al., 2005; Martcheva et al., 2007; Martcheva and Pilyugin, 2006;
Qiu et al., 2013; Martcheva et al., 2008; Arruda et al., 2021; Fudolig
and Howard, 2020; Murall et al., 2014; Poolman et al., 2008). Most
studied the existence and stability of the disease-free equilibrium (DFE),
strain-dominant equilibria and coexistence equilibria. The competi-
tive exclusion principle was also discussed in different circumstances
from between-host level to within-host level (Martcheva and Li, 2013;
Saucedo and Martcheva, 2017; Dang et al., 2016; Duan et al., 2018;
Cai et al., 2013; Rong et al., 2007, 2012). For example, from the
between-host level, Martcheva and Li showed that the competitive
exclusion principle holds in an infection-age structured model with
environmental transmission (Martcheva and Li, 2013). At the within-
host level, a multi-strain model was developed to explain the rapid
emergence of drug resistance in HCV patients and discussed which
strain(s) would dominate the virus population (Rong et al., 2012).
Vaccine-induced strain replacement is another topic investigated by
multi-strain models (Martcheva et al., 2008; Iannelli et al., 2005;
Thomasey and Martcheva, 2008; Murall et al., 2014; Poolman et al.,
2008). In Martcheva et al. (2008), Martcheva et al. reviewed this topic
and drew an analogy with ecological and evolutionary explanations for
competitive dominance and coexistence. They showed that both perfect
and imperfect vaccination may lead to type replacement.

Before the emergence of COVID-19, some papers have studied
asymptomatic infection using mathematical models (Saad-Roy et al.,
2020; Cai et al., 2017; Hsu and Hsieh, 2008; Robinson and Stilianakis,
2013; Al-Darabsah and Yuan, 2018; Chisholm et al., 2018). For exam-
ple, Saad-Roy et al. compared fully asymptomatic, less symptomatic,
and fully symptomatic first stages, and found bistability between zero
and maximal asymptomatic behavior (Saad-Roy et al., 2020). Bista-
bility was also found in Hsu and Hsieh (2008). Cai et al. discussed
optimal control of a malaria model with asymptomatic class and
superinfection (Cai et al., 2017). They showed that control strate-
gies would always decrease symptomatic infection but might increase
asymptomatic infection. Since COVID-19 started, a lot of studies have
addressed the asymptomatic infection (Massard et al., 2022; de León
et al., 2022; Li et al., 2021b; Knock et al., 2021; Sonabend et al.,
2021; Subramanian et al., 2021; Park et al., 2020; Musa et al., 2022;
Ngonghala et al., 2020; Shen et al., 2021a,b; He et al., 2021; Calleri
et al., 2021; Huo et al., 2021; Rocha Filho et al., 2021; Anggriani
et al., 2022; Srivastav et al., 2021; Ahmed et al., 2021; Bugalia et al.,
2020; Serhani and Labbardi, 2021; Ali et al., 2020), among which some
discussed the role of asymptomatic infection in the transmission of
COVID-19 (Subramanian et al., 2021; Park et al., 2020; Huo et al.,
2021; Ali et al., 2020). For example, Subramanian et al. found that
many infections are asymptomatic but they contribute substantially to
the community transmission of COVID-19 (Subramanian et al., 2021).
Similar results were shown in Huo et al. (2021). In addition, many stud-
ies discussed control strategies including vaccination, lockdown, mask
mandate etc (Knock et al., 2021; Sonabend et al., 2021; Ngonghala
et al., 2020; He et al., 2021; Shen et al., 2021a,b; Calleri et al., 2021;
Srivastav et al., 2021; Bugalia et al., 2020; Serhani and Labbardi, 2021).
Knock et al. found that to lift nonpharmaceutical interventions without
causing a resurgence of transmission, a high degree of protection and
high coverage would be needed for any vaccination campaign (Knock
et al., 2021). Ngonghala et al. showed that wearing face masks in public
would be very useful in minimizing community transmission of COVID-
19 (Ngonghala et al., 2020). In a previous paper (He et al., 2021),
we found that timely screening and detection in the early stage of
the infection could prevent the occurrence of a future wave. Besides,
reducing the size of the susceptible population is critical in mitigating
the outbreak of COVID-19.

There is little literature that investigates multi-strain models assum-
2

ing asymptomatic individuals are infectious. A recently published paper
formulated a multi-strain COVID-19 model and applied it to French
data (Massard et al., 2022). They found that beta and gamma variants
were more transmissible than the original virus and might result in
a large number of infections in France. Another paper studied a two-
strain model with vaccination (de León et al., 2022). They predicted the
rise of the alpha variant and obtained the minimum vaccine coverage
to decelerate the rise of a multi-strain pandemic. Using data from the
US, Li et al. also formulated a two-strain model considering infectious
asymptomatic class, vaccination, social distancing, face mask etc (Li
et al., 2021b). They found that if COVID-19 vaccines remain effective
against the SARS-CoV-2 variants, then 70% vaccination coverage would
be sufficient to restore social activities to a pre-pandemic level. All
these papers computed the reproduction number and did sensitivity
analysis. However, they did not conduct any other mathematical anal-
ysis for the models. In this paper, using the data from the US, we
will study a multi-strain model with infectious asymptomatic classes
to investigate the dynamic of COVID-19 transmission both analytically
and numerically. Specifically, we will mainly address the following
questions: (1) Will infectious asymptomatic class influence the com-
petition between different strains? (2) Will the way of implementing
control strategies affect the transmission of COVID-19? The model will
be formulated and analyzed in Sections 2 and 3, respectively. By fitting
the COVID-19 case and variant data from the US using our model,
we conduct a variety of simulations to investigate the competitive
exclusion principle and the impact of control strategies in Section 4.
Conclusions and discussions are followed in Section 5.

2. Model formulation

In this section, we formulate a multi-strain model to investigate the
competition between viral strains during the transmission of COVID-19.
The population is divided into 2𝑛 + 2 classes: susceptible individuals
(𝑆), asymptomatic/pre-symptomatic individuals infected with strain
𝑖 (𝐴𝑖, 𝑖 = 1, 2,… , 𝑛), symptomatic individuals infected with strain 𝑖
(𝐼𝑖, 𝑖 = 1, 2,… , 𝑛), and recovered individuals (𝑅). Asymptomatic/pre-
symptomatic infected individuals can also transmit the disease (He
et al., 2020; Subramanian et al., 2021). We assume that newborns
are susceptible to all COVID-19 strains and enter the susceptible com-
partment 𝑆 with the recruitment rate 𝛬. Susceptible individuals get
infected by strain 𝑖 with the force of infection 𝜆𝑖 and move to the
asymptomatic/pre-symptomatic infectious compartment 𝐴𝑖. Then they
may develop symptoms and move to the symptomatic infected class
𝐼𝑖 at a rate 𝛼𝑖. Both asymptomatic/pre-symptomatic infected individ-
uals in class 𝐴𝑖 and symptomatic infected individuals in class 𝐼𝑖 can
recover at rates 𝛾𝐴𝑖

and 𝛾𝐼𝑖 , respectively. All of them can leave their
compartments by a natural death at a rate 𝜇. In addition, symptomatic
infected individuals in class 𝐼𝑖 can die due to the disease at a rate 𝜔𝑖.
A flow chart of the model is shown in Fig. 1. The detailed descriptions
of variables and parameters are given in Table 1.

It is worth noting that we adopt the SAIR (susceptible-asymptomatic
infected-symptomatic infected-recovered) modeling framework in this
paper. The asymptomatic and pre-symptomatic individuals are grouped
into one class. Because we are more interested in studying the com-
petition between different strains and the impact of the way of im-
plementing control strategies, we use a simple modeling framework
and do not consider the exposed class, which was also ignored in
some other COVID-19 papers (Massard et al., 2022; Calleri et al.,
2021; Serhani and Labbardi, 2021). In view of the observation that
the breakthrough infection or reinfection only accounts for a small
portion of the total infection, we assume the acquired immunity to
be permanent after recovery, which was also the assumption in many
other papers of COVID-19 (Massard et al., 2022; Calleri et al., 2021;
Serhani and Labbardi, 2021; Huo et al., 2021; Musa et al., 2022; Shen
et al., 2021a,b; Li et al., 2021b). If we add more classes such as the
exposed class, the basic reproduction numbers and the dynamics of the

model will be slightly different from that obtained using the current
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Fig. 1. Flow diagram of the model of COVID-19 transmission. The population is divided into 2𝑛+2 classes: susceptible individuals (𝑆), asymptomatic/pre-symptomatic individuals
infected with strain i (𝐴𝑖, 𝑖 = 1, 2,… , 𝑛), symptomatic individuals infected with strain i (𝐼𝑖, 𝑖 = 1, 2,… , 𝑛), and recovered individuals (𝑅). Asymptomatic/pre-symptomatic infected

individuals can also transmit the disease. Descriptions of parameters are given in Table 1.
a



s

c
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model. For example, the prevalence peak will be slightly delayed when

including the exposed class. If we use the SAIRS modeling framework

by considering waning immunity after recovery, the basic reproduction

number will remain the same, but the prevalence peak will be earlier

and higher.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑆′(𝑡) = 𝛬 − 𝑆

𝑛∑
𝑖=1

𝜆𝑖 − 𝜇𝑆,

𝐴′
𝑖
(𝑡) = 𝜆𝑖𝑆 − (𝛼𝑖 + 𝛾𝐴𝑖

+ 𝜇)𝐴𝑖, 𝑖 = 1, 2,… , 𝑛,

𝐼 ′
𝑖
(𝑡) = 𝛼𝑖𝐴𝑖 − (𝜔𝑖 + 𝛾𝐼𝑖 + 𝜇)𝐼𝑖, 𝑖 = 1, 2,… , 𝑛,

𝑅′(𝑡) =
𝑛∑

𝑖=1
(𝛾𝐴𝑖

𝐴𝑖 + 𝛾𝐼𝑖 𝐼𝑖) − 𝜇𝑅.

(1)

The force of infection is given by

𝜆𝑖 = 𝛽𝐴𝑖
𝐴𝑖 + 𝛽𝐼𝑖 𝐼𝑖.

For convenience, we denote

𝛿𝐴𝑖
= 𝛼𝑖 + 𝛾𝐴𝑖

+ 𝜇, 𝛿𝐼𝑖 = 𝜔𝑖 + 𝛾𝐼𝑖 + 𝜇.

Taking the sum of equations in system (1), we get 𝑁 ′ ≤ 𝛬 − 𝜇𝑁 ,

here 𝑁 = 𝑆 +
∑𝑛

𝑖=1(𝐴𝑖 + 𝐼𝑖) +𝑅 is the total population. We define the

omain of the system (1) to be

𝛺 =
{
(𝑆,𝐴1, 𝐴2,… , 𝐴𝑛, 𝐼1, 𝐼2,… , 𝐼𝑛, 𝑅) ∈ ℜ2𝑛+2 ∶ 𝑆+

𝑛∑
𝑖=1

(𝐴𝑖+𝐼𝑖)+𝑅 ≤ 𝛬∕𝜇
}
.

Using a similar method as in our previous study (Gao et al., 2021), we

can verify that 𝛺 is positively invariant for system (1) and the model
is both epidemiologically and mathematically well-posed.
3. Analysis

3.1. Two-strain model

We first consider the two-strain case (𝑛 = 2). The system (1) can be

reduced to the following system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑆′(𝑡) = 𝛬 − 𝑆(𝜆1 + 𝜆2) − 𝜇𝑆,

𝐴′
1(𝑡) = 𝜆1𝑆 − 𝛿𝐴1

𝐴1,

𝐼 ′1(𝑡) = 𝛼1𝐴1 − 𝛿𝐼1𝐼1,

𝐴′
2(𝑡) = 𝜆2𝑆 − 𝛿𝐴2

𝐴2,

𝐼 ′2(𝑡) = 𝛼2𝐴2 − 𝛿𝐼2𝐼2,

𝑅′(𝑡) =
2∑

𝑖=1
(𝛾𝐴𝑖

𝐴𝑖 + 𝛾𝐼𝑖 𝐼𝑖) − 𝜇𝑅,

(2)

where 𝜆𝑖, 𝛿𝐴𝑖
and 𝛿𝐼𝑖 with 𝑖 = 1, 2 are defined the same as before.

3.1.1. Basic reproduction numbers and disease-free equilibrium

The system (2) always has a unique disease-free equilibrium (DFE)

𝐸∗
0 = (𝑆∗

0 , 0, 0, 0, 0, 0), where 𝑆∗
0 = 𝛬

𝜇
. Using the next-generation matrix

pproach Appendix A, we define the basic reproduction number to be

0 = max{0,1,0,2}

where 0,𝑖 = 𝐴
0,𝑖 +𝐼

0,𝑖 with

𝐴
0,𝑖 =

𝑆∗
0 𝛽𝐴𝑖

𝛿𝐴𝑖

, 𝐼
0,𝑖 =

𝑆∗
0 𝛽𝐼𝑖𝛼𝑖

𝛿𝐴𝑖
𝛿𝐼𝑖

, 𝑖 = 1, 2.

Considering the biological interpretation of 0,1, we set 𝐴1 to be 1

in the incidence term 𝛽𝐴1
𝑆𝐴1. Then 𝛽𝐴1

𝑆∗
0 represents the number of

econdary infections generated by one infectious individual who is in

lass 𝐴1 in an entirely susceptible population per unit of time. 1∕𝛿𝐴1
is the average time spent by an infectious individual in class 𝐴1. Thus,𝐴

0,1 represents the number of secondary infections generated by one in-

ectious individual when he/she is in class 𝐴 in an entirely susceptible
1
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Table 1
Descriptions of variables and parameters.

Symbol Description Baseline Unit Range Source

Variables
𝑆(𝑡) Susceptible population
𝐴𝑖(𝑡) Asymptomatic/pre-symptomatic population of strain 𝑖
𝐼𝑖(𝑡) Symptomatic population of strain 𝑖
𝑅(𝑡) Recovered population
𝑁(𝑡) Total population
𝜆𝑖(𝑡) Force of infection of strain 𝑖

Parameters
𝛬 Recruitment rate 11528 person/day Fixed See text
μ Natural death rate 1/(79*365) 1/day Fixed See text
𝛽𝐴𝑖

Asymptomatic transmission rate of strain i Fitted 1/(person∗day) Fitted
𝛽𝐼𝑖 Symptomatic transmission rate of strain i Fitted 1/(person∗day) Fitted
𝛼𝑖 Transition rate from 𝐴𝑖 to 𝐼𝑖 Fitted 1/day Fitted
𝛾𝐴𝑖

Recovery rate of 𝐴𝑖 Fitted 1/day Fitted
𝛾𝐼𝑖 Recovery rate of 𝐼𝑖 Fitted 1/day Fitted
𝜔𝑖 Disease-induced death rate of 𝐼𝑖 Fitted 1/day Fitted
𝑒 Mask efficacy Varied unitless [0, 1]
𝑐 Mask coverage Varied unitless [0, 1]
population. 𝛼1∕𝛿𝐴1
represents the fraction of infectious individuals who

survive from the asymptomatic/pre-symptomatic stage and move to the
class 𝐼1. Therefore, 𝐼

0,1 represents the number of secondary infections
generated by one infectious individual when he/she is in class 𝐼1 in
n entirely susceptible population. It follows that 0,1 represents the
umber of secondary infections generated by one infectious individ-
al of strain 1 during his/her whole infectious period in an entirely
usceptible population. 0,2 has the similar interpretation.

Since 0 is derived using the next generation matrix approach,
according to Van den Driessche and Watmough (2002), we have the
following local stability for the DFE:

Theorem 1. When 0 < 1 (i.e. 0,1 < 1 and 0,2 < 1), the DFE 𝐸∗
0 is

locally asymptotically stable; when 0 > 1 (i.e. 0,1 > 1 or 0,2 > 1), the
DFE 𝐸∗

0 is unstable.

We further have the global stability for the DFE as follows. The proof
is given in Appendix B.

Theorem 2. When 0 ≤ 1 (i.e. 0,1 ≤ 1 and 0,2 ≤ 1), the DFE 𝐸∗
0 is

globally asymptotically stable.

Recall that the basic reproduction number represents the number of
secondary infections generated by one infectious individual in a wholly
susceptible environment. The above two theorems indicate that if the
basic reproduction numbers for both strains are reduced to less than or
equal to 1, the disease will eventually die out no matter how many sus-
ceptible, asymptomatic, symptomatic, and recovered individuals there
are now. However, if the basic reproduction number of any strain is
greater than 1, the disease may not be eradicated.

3.1.2. Strain-dominant equilibrium
In this section, we consider the strain-dominant equilibria. The

results on their existence are shown in the following theorem with the
proof given in Appendix C.

Theorem 3. When 0,1 > 1, there exists a unique strain-1-dominant
equilibrium 𝐸∗

1 = (𝑆∗
1 , 𝐴

∗
1 , 𝐼

∗
1 , 0, 0, 𝑅

∗
1); When0,2 > 1, there exists a unique

strain-2-dominant equilibrium 𝐸∗
2 = (𝑆∗

2 , 0, 0, 𝐴
∗
2 , 𝐼

∗
2 , 𝑅

∗
2), where

𝑆∗
𝑖 = 𝛬

𝜇
1

0,𝑖
, 𝐴∗

𝑖 = 𝛬
𝛿𝐴𝑖

(

1 − 1
0,𝑖

)

,

∗
𝑖 =

𝛼𝑖
𝛿𝐼𝑖

𝐴∗
𝑖 , 𝑅∗

𝑖 = 1
𝜇

(

𝛾𝐴𝑖
+ 𝛾𝐼𝑖

𝛼𝑖
𝛿𝐼𝑖

)

𝐴∗
𝑖 ,

with 𝑖 = 1, 2.
4

Concerning the stability of the strain-dominant equilibria, we have
the following results with proofs given in Appendix D and Appendix E,
respectively.

Theorem 4. (i) Suppose that 0,1 > 1. When 0,1 > 0,2, the strain-1-
dominant equilibrium 𝐸∗

1 is locally asymptotically stable; when 0,1 < 0,2,
𝐸∗
1 is unstable.

(ii) Suppose that 0,2 > 1. When 0,2 > 0,1, the strain-2-dominant
equilibrium 𝐸∗

2 is locally asymptotically stable; when 0,2 < 0,1, 𝐸∗
2 is

unstable.

Theorem 5. (i) Suppose that 0,1 > 1. When 0,1 > 0,2, the strain-1-
dominant equilibrium 𝐸∗

1 is globally asymptotically stable.
(ii) Suppose that 0,2 > 1. When 0,2 > 0,1, the strain-2-dominant
equilibrium 𝐸∗

2 is globally asymptotically stable.

Theorems 3, 4, and 5 show that when an infected individual with
strain 𝑖 leads to more than one new infection, we have the strain-𝑖-
dominant steady state 𝐸∗

𝑖 , in which there is only the infection with
strain 𝑖 (𝑖 = 1 or 2). Furthermore, if an infected individual with strain 𝑖
leads to more infections than the other strain, this steady state 𝐸∗

𝑖 will
be the final state of the disease, no matter what the current infection
status is.

3.1.3. Interior or coexistence equilibrium
From the previous section, we can see that coexistence of the two

strains is not possible when 0,1 ≠ 0,2. In the special case 0,1 = 0,2,
we have the following result. The proof is given in Appendix F.

Theorem 6. When 0,1 = 0,2 > 1, there exist infinitely many interior
equilibria 𝐸∗.

This theorem shows that if the two strains have the same infection
ability and an infectious individual can induce more than one new
infection, there will be infinitely many steady states involving the
infection of both strains. Which steady state will be ended up with
depends on where the infection starts.

3.2. General case: 𝑛 strains

In this section, we consider the general case (i.e. the model with 𝑛
strains). System (1) always has a unique disease-free equilibrium

𝐸∗∗
0 =

(𝛬
𝜇
, 0,… , 0
⏟⏟⏟

)

.

2𝑛+1
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Similar to the two-strain case, by the next-generation matrix approach
we define the basic reproduction number for strain 𝑖 to be

0,𝑖 =
𝛬𝛽𝐴𝑖

𝜇𝛿𝐴𝑖

+
𝛬𝛼𝑖𝛽𝐼𝑖
𝜇𝛿𝐴𝑖

𝛿𝐼𝑖
, 𝑖 = 1, 2,… , 𝑛.

Then

0 = max
{

0,1,… ,0,𝑛
}

.

For the existence and stability of equilibria, we have the following
results. Since the proofs are similar to the two-strain case, we omit
them.

Theorem 7. When 0 ≤ 1 (i.e. 0,𝑖 ≤ 1 for all 𝑖 = 1, 2,…⋯ , 𝑛), the DFE
𝐸∗∗
0 is globally asymptotically stable; when 0 > 1 (i.e. 0,𝑖 > 1 for some

𝑖 = 1, 2,…⋯ , 𝑛), the DFE 𝐸∗∗
0 is unstable.

Theorem 8. When 0,𝑖 > 1 (𝑖 = 1, 2,… , 𝑛), there is a unique strain-𝑖-
dominant equilibrium 𝐸∗∗

𝑖 = (𝑆∗∗
𝑖 , 0,… , 0, 𝐴∗∗

𝑖 , 𝐼∗∗𝑖 , 0,… , 0, 𝑅∗∗
𝑖 ), where

𝑆∗∗
𝑖 = 𝛬

𝜇
1

0,𝑖
, 𝐴∗∗

𝑖 = 𝛬
𝛿𝐴𝑖

(

1 − 1
0,𝑖

)

,

𝐼∗∗𝑖 =
𝛼𝑖
𝛿𝐼𝑖

𝐴∗∗
𝑖 , 𝑅∗∗

𝑖 = 1
𝜇

(

𝛾𝐴𝑖
+ 𝛾𝐼𝑖

𝛼𝑖
𝛿𝐼𝑖

)

𝐴∗∗
𝑖 .

Theorem 9. Suppose that 0,𝑖 > 1 for some 𝑖. When 0,𝑖 > 0,𝑗 for all
𝑗 ≠ 𝑖 (i.e. 𝑗 = 1, 2,… , 𝑖 − 1, 𝑖 + 1,… , 𝑛), the strain-𝑖-dominant equilibrium

∗∗
𝑖 is locally and globally asymptotically stable; when 0,𝑖 < 0,𝑗 for some
≠ 𝑖, the strain-𝑖-dominant equilibrium 𝐸∗∗

𝑖 is unstable.

heorem 10.When 0,𝑖 are equal to each other for all 𝑖 = 1, 2,… , 𝑛, there
xist infinitely many interior equilibria 𝐸∗∗.

. Data fitting and numerical investigation

.1. Data

We collected COVID-19 daily cases and variant proportions for the
S from the Centers for Disease Control and Prevention (CDC) (Centers

or Disease Control and Prevention (CDC), 2022a). The variant pro-
ortions were reported weekly. The first data of omicron proportion
as for the week 11/21/2021–11/27/2021. We assigned this data to

he middle of the week, i.e. 11/24/2021. Similarly, we obtained the
ata of omicron proportions for each Wednesday from 11/24/2021 to
/12/2022. We also collected the daily cases for the same period. Since
ome states only reported daily cases during weekdays, we used the
-day average data. The data set is shown in Table 2. The reason we
hose this time range is that we are more interested in the transition
etween strains. Before or after this period, one strain dominates the
irus population. Both COVID-19 daily cases and omicron proportions
re used for model calibration.

.2. Parameter setting and model calibration

Since the life expectancy for the US population before the pandemic
s about 79 years (Centers for Disease Control and Prevention (CDC),
022b), we fix the natural death rate 𝜇 = 1∕(79 ∗ 365) day−1. The total
opulation in the US in 2021 is 𝑁0 = 332398949, which is relatively
table. Therefore, we assume that the birth rate is similar to the natural
eath rate and roughly estimate the recruitment rate 𝛬 = 𝑁0 ∗ 𝜇 with
nit 𝑝𝑒𝑟𝑠𝑜𝑛∕𝑑𝑎𝑦. The other parameter values and the initial conditions
f System (2) are calibrated using the data from Table 2.

We use the nonlinear least-squares approach to minimize the Root
ean Square Error (RMSE) between data and simulated results for
odel calibration. Reported data of COVID-19 daily cases and omicron
5

roportions in the US are used in this paper. These two types of data i
ave different orders of magnitude. Therefore, we normalize the data
ets by dividing them by the maximum value from each data set. In
ddition, we have 50 data points for daily cases but only 8 for omicron
roportions. Thus, we minimize the sum of the mean square errors for
he two data sets instead of the sum of two square errors. In this way,
he two data sets have the same weights in the data fitting procedure.
ence,

𝑀𝑆𝐸 =

√

√

√

√

√

𝑁1
∑

𝑖=1

(𝑥(𝑡𝑖) −𝑋𝑖)2

𝑁1
+

𝑁2
∑

𝑗=1

(𝑦(𝑡𝑗 ) − 𝑌𝑗 )2

𝑁2
,

where the first and the second terms under the square root correspond
to daily cases and omicron proportions, respectively. 𝑋𝑖, 𝑌𝑗 represent
normalized data values, and 𝑁1, 𝑁2 are the numbers of data points
n these two data sets, respectively. 𝑥(𝑡𝑖) and 𝑦(𝑡𝑗 ) are normalized
imulated values at the same time points corresponding to the data.
e use strain 1 and strain 2 to denote the omicron variants and other

ariants (mainly delta variants), respectively, as observed in the CDC
ata. It follows that

(𝑡𝑖) =

(

𝛽𝐴1
𝐴1(𝑡𝑖) + 𝛽𝐼1𝐼1(𝑡𝑖) + 𝛽𝐴2

𝐴2(𝑡𝑖) + 𝛽𝐼2𝐼2(𝑡𝑖)
)

𝑆(𝑡𝑖)

𝑋𝑚𝑎𝑥

nd

(𝑡𝑗 ) =

(

𝛽𝐴1
𝐴1(𝑡𝑗 ) + 𝛽𝐼1𝐼1(𝑡𝑗 )

)

𝑆(𝑡𝑗 )
(

𝛽𝐴1
𝐴1(𝑡𝑗 ) + 𝛽𝐼1𝐼1(𝑡𝑗 ) + 𝛽𝐴2

𝐴2(𝑡𝑗 ) + 𝛽𝐼2𝐼2(𝑡𝑗 )
)

𝑆(𝑡𝑗 )𝑌𝑚𝑎𝑥

,

here

𝑚𝑎𝑥 = max
1≤𝑖≤𝑁1

{𝑋𝑖}, 𝑌𝑚𝑎𝑥 = max
1≤𝑗≤𝑁2

{𝑌𝑗}.

The fitted parameter values and initial conditions are given in Table 3.
We can see that compared with the delta variants, the omicron variants
have a higher transmission rate, higher transition rate, similar recovery
rates, and lower disease-induced death rate. This indicates that the omi-
cron variants are more transmissible but less fatal than the previously
circulating delta variants.

Based on the fitting results from Table 3, we perturbed each param-
ter and initial condition to generate a band of curves. By conducting
everal simulations, we notice that those bands corresponding to about
% perturbation can describe the data variation well with small RMSE.
imilar to the procedure used in Li et al. (2021b), we randomly gen-
rate 100 small perturbation factors within the range [6%, 10%]. For
ach perturbation factor 𝑎%, we perturb every parameter and initial
ondition by a% in both positive and negative directions. According
o the Latin Hypercube Sampling (LHS) method, we randomly sample
000 parameter sets within their ranges, which correspond to a band
f curves. The number of data points covered by this band and their
MSE can be computed. Then we select the one with the smallest RMSE

hrough the 100 bands. For this selected band, we have 1000 curves,
hich are used to derive the 95% CI of the model simulation. The

esults are shown in Fig. 2. Even though the data set for daily cases
s within the 95% CI, the fitted line is higher than the real data at
he end of this period. There are several possible reasons. For example,
s COVID-19 cases arise, more and more people have chosen to get
accinated or take various non-pharmaceutical interventions, which are
ot considered explicitly in our model.

.3. Competition between strains

In Section 3, we derived the existence and global stability results
or the DFE and strain-dominant equilibria, which are summarized in
ig. 3(a). The circled equilibrium is stable in each region. However,
n the special case 0,1 = 0,2, we only have the existence for the
nterior equilibrium 𝐸∗. To numerically investigate the stability of 𝐸∗,
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Fig. 2. Model calibration by daily COVID-19 cases and omicron proportions in the US. The results for daily cases and omicron proportions are shown in (a) and (b), respectively.

The shaded regions denote the 95% confidence interval. The data set used here is listed in Table 2, which is collected from the US CDC website (Centers for Disease Control and

Prevention (CDC), 2022a).
Table 2

Data from the US CDC for model calibration (Centers for Disease Control and Prevention (CDC), 2022a).

Date Daily cases Omicron proportion Date Daily cases Omicron proportion

11/24/2021 94590 0.000652581 12/19/2021 138509

11/25/2021 88653 12/20/2021 150064

11/26/2021 83917 12/21/2021 162183

11/27/2021 85313 12/22/2021 176051 0.742894053

11/28/2021 88058 12/23/2021 193066

11/29/2021 80140 12/24/2021 203403

11/30/2021 82979 12/25/2021 208404

12/1/2021 86876 0.006183981 12/26/2021 223643

12/2/2021 97097 12/27/2021 254622

12/3/2021 107153 12/28/2021 282107

12/4/2021 108862 12/29/2021 317018 0.892975569

12/5/2021 108623 12/30/2021 362522

12/6/2021 121897 12/31/2021 394035

12/7/2021 122706 1/1/2022 416866

12/8/2021 122339 0.073683523 1/2/2022 444402

12/9/2021 121595 1/3/2022 510796

12/10/2021 119177 1/4/2022 558108

12/11/2021 118855 1/5/2022 590326 0.952672899

12/12/2021 119270 1/6/2022 618657

12/13/2021 119510 1/7/2022 674961

12/14/2021 119283 1/8/2022 694091

12/15/2021 121520 0.379368961 1/9/2022 702320

12/16/2021 124647 1/10/2022 756647

12/17/2021 128529 1/11/2022 768593

12/18/2021 131965 1/12/2022 789652 0.978338718
c
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Table 3

Fitted parameter values and initial conditions.

Initial condition Value Parameter Value

𝑆0 9.796 × 107 𝛽𝐴1
1.311 × 10−9

𝐴1,0 1000 𝛽𝐼1 4.334 × 10−9

𝐼1,0 300 𝛼1 0.330

𝐴2,0 9.550 × 105 𝜔1 0.017

𝐼2,0 8.000 × 105 𝛾𝐴1
0.094

𝑅0 2.327 × 108 𝛾𝐼1 0.094

𝛽𝐴2
1.626 × 10−10

𝛽𝐼2 6.703 × 10−10

𝛼2 0.200

𝜔2 0.021

𝛾𝐴2
0.091

𝛾𝐼2 0.091

we choose the fitted parameter values for strain 1 (see Table 3) and

set parameter values for strain 2 to be the same as strain 1. In this

case, 0,1 = 0,2 = 11.1505. In Fig. 3(b-d), we assign different initial

a

onditions. The results show that there are multiple stable interior

quilibria when 0,1 = 0,2.

In Fig. 4(a), we use the fitted parameter values (see Table 3) with

0,1 = 11.1505 and 0,2 = 1.5547. It shows that the strain-1-dominant
quilibrium 𝐸∗

1 exists and is stable. These numerical results support

he observation that the omicron variants outcompete the previously

irculating variants and dominate the virus population eventually as

t has a larger basic reproduction number. According to the analytical

esults of the deterministic model (2), the disease-free equilibrium is

nstable and the disease will persist when 0,1 > 1 or 0,2 > 1.
owever, this might not be the case in reality. One of the reasons is that

tochasticity can play an important role, especially at the beginning

f the outbreak. Using a corresponding stochastic model (Table 4),

e show that the system may approach the disease-free equilibrium

uickly even when 0,1 > 1 and 0,2 > 1 (Fig. 4(b)). Here we used the
ame parameter values and initial conditions as in the deterministic

odel (Fig. 4(a)). This indicates that although the disease spreads fast,

t may still have a chance to die out if intervention measures are
dministered quickly in the beginning.
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Fig. 3. (a): The existence and stability of the equilibria of model (2) with different values of 0,1 and 0,2. The circled equilibrium is stable in each region. (b–d): The prevalence
using the fitted parameter values for strain 1 (see Table 3) and setting parameter values for strain 2 to be the same as strain 1. Hence, 0,1 = 0,2 = 11.1505. The initial conditions used
in (b–d) are (𝑆0 , 𝐴1,0 , 𝐼1,0 , 𝐴2,0 , 𝐼2,0 , 𝑅0) = (1000, 5, 2, 15, 25, 100), (𝑆0 , 𝐴1,0 , 𝐼1,0 , 𝐴2,0 , 𝐼2,0 , 𝑅0) = (1000, 500, 100, 15, 25, 100) and (𝑆0 , 𝐴1,0 , 𝐼1,0 , 𝐴2,0 , 𝐼2,0 , 𝑅0) = (10000, 500, 100, 400, 120, 1000),
respectively. They show that there are multiple stable interior equilibrium points when 0,1 = 0,2.
Fig. 4. (a): The prevalence using the deterministic model (2). (b): A sample path of the corresponding stochastic model (Table 4). In both panels, the parameter values are from
Table 3 with 0,1 = 11.1505 and 0,2 = 1.5547, and the initial conditions are (𝑆0 , 𝐴1,0 , 𝐼1,0 , 𝐴2,0 , 𝐼2,0 , 𝑅0) = (1000, 5, 2, 15, 25, 100). (a) shows that the strain-1-dominant equilibrium 𝐸∗

1
exists and is stable. (b) shows that even though 0,1 > 1 and 0,2 > 1, the disease may die out within a relatively short period.
4.4. Control strategies

From the simulation in the last section, we know that control
strategies that reduce the transmission and consequently the basic
reproduction number would be important in mitigating the disease
spread, especially when the control measures are implemented early.
In this section, we use the mask mandate as an example to further
study the implementation of control strategies. We introduce two more
parameters, 𝑒 and 𝑐, to represent the mask efficacy and mask coverage,
respectively. Hence, the transmission rates 𝛽 and 𝛽 (𝑖 = 1, 2) are
7

𝐴𝑖 𝐼𝑖
lowered by multiplying by (1 − 𝑒𝑐), where both 𝑒 and 𝑐 are between 0
and 1. In this case, we have two corresponding control reproduction
numbers. We denote them as 𝑐,1 and 𝑐,2, respectively.

We first assume 𝑒 = 40%, 𝑐 = 75% and consider different starting
dates of the mask mandate. If it is implemented on day 20, 40, or 60
after the omicron variant appears, the outbreak peak for strain 1 will be
lowered and delayed compared with the baseline case in which there is
no mask mandate (𝑐 = 0). In these cases, the mask mandate is initiated
before the peak of strain 1. If we start the control on day 80 (after
the peak), the prevalence will only be slightly lowered (see Fig. 5(a)).
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Fig. 5. Prevalence of strain 1 (a) and strain 2 (b) with different starting dates of mask mandate. In all panels we assume the mask efficacy and coverage to be 40% and 75%,
respectively. The initial conditions and all the other parameter values are from Table 3. It shows that if we start the mask mandate early (before the infection peak), the peak
will be lowered and delayed. However, if we start late (after the peak), the prevalence will only be slightly lowered.
Table 4
A stochastic model corresponding to model (2).

Event Change Probability

Infection of strain 1 by 𝐴1 (𝑆,𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) → (𝑆 − 1, 𝐴1 + 1, 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) 𝛽𝐴1
𝑆𝐴1𝛥𝑡

Infection of strain 1 by 𝐼1 (𝑆,𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) → (𝑆 − 1, 𝐴1 + 1, 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) 𝛽𝐼1𝑆𝐼1𝛥𝑡
Infection of strain 2 by 𝐴2 (𝑆,𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) → (𝑆 − 1, 𝐴1 , 𝐼1 , 𝐴2 + 1, 𝐼2 , 𝑅) 𝛽𝐴2

𝑆𝐴2𝛥𝑡
Infection of strain 2 by 𝐼2 (𝑆,𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) → (𝑆 − 1, 𝐴1 , 𝐼1 , 𝐴2 + 1, 𝐼2 , 𝑅) 𝛽𝐼2𝑆𝐼2𝛥𝑡
Natural death for 𝑆 (𝑆,𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) → (𝑆 − 1, 𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) μ𝑆𝛥𝑡
Transition from 𝐴1 to 𝐼1 (𝑆,𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) → (𝑆,𝐴1 − 1, 𝐼1 + 1, 𝐴2 , 𝐼2 , 𝑅) 𝛼1𝐴1𝛥𝑡
Recovery from 𝐴1 (𝑆,𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) → (𝑆,𝐴1 − 1, 𝐼1 , 𝐴2 , 𝐼2 , 𝑅 + 1) 𝛾𝐴1

𝐴1𝛥𝑡
Natural death for 𝐴1 (𝑆,𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) → (𝑆,𝐴1 − 1, 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) μ𝐴1𝛥𝑡
Disease-induced death for 𝐼1 (𝑆,𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) → (𝑆,𝐴1 , 𝐼1 − 1, 𝐴2 , 𝐼2 , 𝑅) 𝜔1𝐼1𝛥𝑡
Recovery from 𝐼1 (𝑆,𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) → (𝑆,𝐴1 , 𝐼1 − 1, 𝐴2 , 𝐼2 , 𝑅 + 1) 𝛾𝐼1 𝐼1𝛥𝑡
Natural death for 𝐼1 (𝑆,𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) → (𝑆,𝐴1 , 𝐼1 − 1, 𝐴2 , 𝐼2 , 𝑅) μ𝐼1𝛥𝑡
Transition from 𝐴2 to 𝐼2 (𝑆,𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) → (𝑆,𝐴1 , 𝐼1 , 𝐴2 − 1, 𝐼2 + 1, 𝑅) 𝛼2𝐴2𝛥𝑡
Recovery from 𝐴2 (𝑆,𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) → (𝑆,𝐴1 , 𝐼1 , 𝐴2 − 1, 𝐼2 , 𝑅 + 1) 𝛾𝐴2

𝐴2𝛥𝑡
Natural death for 𝐴2 (𝑆,𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) → (𝑆,𝐴1 , 𝐼1 , 𝐴2 − 1, 𝐼2 , 𝑅) μ𝐴2𝛥𝑡
Disease-induced death for 𝐼2 (𝑆,𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) → (𝑆,𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 − 1, 𝑅) 𝜔2𝐼2𝛥𝑡
Recovery from 𝐼2 (𝑆,𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) → (𝑆,𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 − 1, 𝑅 + 1) 𝛾𝐼2 𝐼2𝛥𝑡
Natural death for 𝐼2 (𝑆,𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) → (𝑆,𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 − 1, 𝑅) μ𝐼2𝛥𝑡
Natural death for 𝑅 (𝑆,𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) → (𝑆,𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 , 𝑅 − 1) μ𝑅𝛥𝑡
Birth (𝑆,𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) → (𝑆 + 1, 𝐴1 , 𝐼1 , 𝐴2 , 𝐼2 , 𝑅) μ𝑁𝛥𝑡
Similar results are found for strain 2 (see Fig. 5(b)), in which they are
after the peak even for the baseline case.

We further study the impact of mask-wearing on the prevalence of
strain 1 and strain 2. Fig. 6(a) and (b) are contour maps for the con-
trol reproduction numbers 𝑐,1 and 𝑐,2 with different mask-wearing
strategies. We can see that as the mask coverage and efficacy increase,
both 𝑐,1 and 𝑐,2 decrease. However, to achieve 𝑐,1 < 1, we need a
high mask efficacy and coverage. For example, if the mask efficacy is as
high as 95%, we still need about 95% of the population to wear masks.
However, this high percentage of mask-wearing is hard to achieve
in practice. It implies that we need more control strategies, such as
vaccination, combined with the mask mandate to slow down the spread
of COVID-19.

In Fig. 6(c) and (d), we increase the mask efficacy to 70% and
consider the prevalence for strain 1 and strain 2 with different mask
coverages. As mask coverage increases, the prevalence will be reduced.
In addition, the infection peak will be lowered and delayed. Fig. 6(c)
also reveals that there will be several subsequent waves. However, we
observe a relatively long period with a low infection level between the
first and second peaks. One possible reason is that we assume natural
immunity to be permanent. If a large portion of the population has been
infected and the recruitment rate for susceptible individuals is not high
enough, the prevalence will stay at a low level for a while.

The mask mandate will be lifted at some point. We are interested in
the impact of the lifting date on the first and subsequent waves. If we
8

focus on a specific case in Fig. 6(c), i.e. 𝑐 = 0.6, the first peak is about
1.2×107 on day 140 and there are 3 peaks within the first 10,000 days.
Now we consider lifting the mask mandate on different dates and 10%
of the population will still wear masks after lifting. The baseline case
is no lifting. Fig. 7(a) shows that lifting the mask mandate before the
prevalence peak will result in an earlier and much higher first peak. In
contrast, lifting after the peak does not influence the prevalence much.
In Fig. 7(b) we can see that by lifting the mask mandate we could have
at least 4 peaks within the first 10,000 days. Interestingly, among these
five cases, the latest lifting leads to the earliest subsequent wave. The
reason could be that in this case, we have more susceptible individuals
once the mask mandate is lifted. Even though the lifting date affects
the time of the subsequent waves, it only has a minor influence on the
scale of the subsequent waves. Lifting at any time leads to an earlier
peak than that when the mask mandate is always required.

5. Conclusion and discussion

In this paper, we developed a multi-strain model with infectious
asymptomatic classes and applied it to the COVID-19 dynamics in the
US. Starting from a two-strain model, we obtained basic reproduction
numbers for the two strains and interpreted their biological meanings.
Rigorous analyses for the local and global stability of the DFE were
given. We also derived explicit formulas for two strain-dominant equi-
libria and analyzed their local and global stability. The existence of
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Fig. 6. (a–b): Contour maps for the control reproduction numbers 𝑐,1 and 𝑐,2 with different mask wearing strategies. (c–d): Prevalence of strain 1 and strain 2 with different

ask coverages. In (c) and (d), we assume mask efficacy is 70%. In all panels, the parameter values and initial conditions are from Table 3. (a) and (b) show that as the mask

fficacy and coverage increase, both 𝑐,1 and 𝑐,2 will decrease. However, to achieve 𝑐,1 < 1, we need a high mask efficacy and coverage. (c) and (d) show that as mask coverage

ncreases, the prevalence will be reduced. In addition, the infection peak will be lowered and delayed. (c) also reveals that there will be several subsequent waves.
Fig. 7. Prevalence of strain 1 with different lifting dates of mask mandate. In all panels, the mask efficacy is assumed to be 70%; the mask coverage is 60% before lifting and

0% after. The parameter values and initial conditions are from Table 3. (a) shows that lifting the mask mandate before the prevalence peak will result in an earlier and much

igher first peak. (b) illustrates the impact of lifting dates on subsequent waves.
2

the interior equilibrium was also given. Due to the complexity of the

model, the stability of the interior or coexistence equilibrium was only

numerically investigated. We expanded the analytical results from the

two-strain to the 𝑛-strain case. The analysis shows that only when the

asic reproduction numbers for all strains are less than one, the disease

s predicted to die out. Otherwise, the strain with the largest reproduc-

ion number will persist and the other strains will gradually disappear.

n the special case when the reproduction numbers are the same for
all strains, there will be infinitely many interior equilibria. This is

reasonable as no strain can invade others. This result implies that the

competitive exclusion principle still holds, which has been discussed in

other models without infectious asymptomatic classes (Martcheva and

Li, 2013; Saucedo and Martcheva, 2017; Dang et al., 2016; Duan et al.,

018; Cai et al., 2013; Rong et al., 2007, 2012). These results were

summarized and numerically shown in Figs. 3 and 4(a).
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We calibrated model (2) using the data of COVID-19 daily cases
nd omicron proportions in the US. The fitted parameter values and
nitial conditions were listed in Table 3. Fitting results with the 95%
onfidence interval (CI) were shown in Fig. 2. We found that the
micron variants are more transmissible but less fatal from the data
itting. Using the fitted parameter values, we calculated the basic repro-
uction number for the omicron variants as 11.1505. It is much larger
han that for the delta variants, which is 1.5547. Liu et al. also found
hat the basic reproduction number for the omicron variants is much
arger than the other variants (Liu and Rocklöv, 2022). They reviewed
everal papers and found the average basic reproduction number for
he omicron variants is 8.2, which is about 3.8 times that of the
riginal strain. Hibberd reckoned the basic reproduction number for the
micron variants could be as high as 10 (Burki, 2022). However, Khan
nd Atangana estimated this value to be 2.1107 in South Africa (Khan
nd Atangana, 2022). Regarding the reproduction number of the delta
ariants, our result is smaller compared with some other papers. For
xample, Zhang et al. estimated this value as 3.2 based on the data
rom China in May 2021 (Zhang et al., 2021). Head et al. estimated
t as 4.6 using data from the US in August 2021 (Head et al., 2022).

possible reason for this disparity may be the insufficient data used
o estimate the number. In many regions, the COVID-19 case data are
nderreported. Another reason might be due to the time difference of
ata sets. The data set chosen in this paper is from 11/24/2021 to
/12/2022, when the omicron variants emerged and outcompeted the
reviously circulating delta variants. In addition, different models focus
n specific questions without including all possible factors that may
ffect the estimation.

Using a stochastic model corresponding to the deterministic model,
e showed that even when the basic reproduction number is greater

han one, the disease could still die out within a short period, especially
uring the initial stage in which the infected population size is low (see
able 4 and Fig. 4(b)). Similar results were found in Srivastav et al.
2021). They also showed that stochasticity would play an important
ole in a small population. This implies that it is crucial to implement
ontrol strategies early. We used the mask mandate as an example to
urther address this problem. Fig. 4 showed that the prevalence peak
ill be lowered and delayed if we start the mask mandate before the
eak. However, if we start after the peak, the prevalence will only be
lightly reduced. The importance of implementing control strategies
arly was also demonstrated in some previous papers. In He et al.
2021), we found that to prevent a subsequent wave, timely screening
nd detection would be needed in the early stage of infection. In Shen
t al. (2021b), we showed that there would be more averted infections
nd deaths if the executive order was implemented earlier. Knock et al.
lso estimated that the mortality in England could be roughly halved
f the lockdown had been introduced one week earlier (Knock et al.,
021).

The lifting date of the mask mandate also affects the dynamics
f COVID-19 transmission. Fig. 7(a) showed that lifting the mask
andate before the prevalence peak would result in an earlier and
uch higher first peak. In contrast, lifting after the peak would not

nfluence the prevalence much. In addition, lifting dates would affect
he number and the time of the subsequent waves, but only have minor
nfluences on the scale of the subsequent waves (Fig. 7(b)). Similar
esults were also shown in Ngonghala et al. (2020). They found that
arly termination of the social-distancing measures could lead to a
evastating second wave with a disease burden similar to the scenario
ithout implementing the social-distancing measures. We also found

hat choosing the lifting date would be tricky if a large portion of the
opulation still remains susceptible. In a recent study, Sonabend et al.
howed that if the timing of non-pharmaceutical interventions (NPIs)
ould be carefully balanced against the vaccination coverage, the risk
f a large subsequent wave of COVID-19 hospitalization resulting from
10

ifting NPIs can be reduced (Sonabend et al., 2021). S
In this paper, we adopted the SAIR (susceptible-asymptomatic
nfected-symptomatic infected-recovered) modeling framework. The
symptomatic and pre-symptomatic individuals are grouped into one
lass. Because we are more interested in studying the competition
etween different strains and the impact of the way of implementing
ontrol strategies, we used a simple modeling framework and did not
onsider the exposed class, which was also ignored in some other
OVID-19 papers (Massard et al., 2022; Calleri et al., 2021; Serhani
nd Labbardi, 2021). In view of the observation that the breakthrough
nfection or reinfection only accounts for a small portion of the total
nfection, we assumed the acquired immunity to be permanent after
ecovery, which was also the assumption in many other papers of
OVID-19 (Massard et al., 2022; Calleri et al., 2021; Serhani and
abbardi, 2021; Huo et al., 2021; Musa et al., 2022; Shen et al.,
021a,b; Li et al., 2021b). If we add more classes such as the exposed
lass, the basic reproduction numbers and the dynamics of the model
ill be slightly different from that obtained using the model in this
aper. For example, the prevalence peak will be slightly delayed when
ncluding the exposed class. If we use the SAIRS modeling framework
y considering waning immunity after recovery, the basic reproduction
umber will remain the same but the prevalence peak will be earlier
nd higher.

Although asymptomatic transmission does not affect the competi-
ion between different strains, several studies have shown that asymp-
omatic infection plays an important role in COVID transmission, and
hat implementing control strategies targeting asymptomatic infected
ndividuals is critical. For example, Lovell-Read et al. found that inter-
entions targeting asymptomatic cases are important to prevent local
utbreaks (Lovell-Read et al., 2021). Hart et al. showed the importance
f continued contact tracing because of COVID’s high infectiousness
mmediately prior to symptom onset (Hart et al., 2021). The focus of
his paper is to study the competition between different strains and the
nfluence of the ways of implementing control strategies. For simplicity
f modeling, we did not include control strategies specifically targeting
symptomatic individuals. In addition, parameter identifiability analy-
is is important in data fitting and parameter estimation. It is used to
escribe whether it is possible to uniquely recover model parameters
rom a given set of data. Structural identifiability analysis is usually
erformed first, followed by practical identifiability analysis. A rigorous
nalysis can be challenging, if not impossible, for models involving
any variables and parameters with only limited data available. Here
e did not intend to obtain accurate estimates of model parameters in
iew of the model complexity and the available data. Instead, we fixed
ome parameters from the literature and allowed a few to vary to see if
he model prediction can quantitatively capture (at least the trend of)
he available data.

In summary, we developed a multi-strain model with infectious
symptomatic individuals to investigate the transmission of COVID-19.
ven though the data used here are from the US and we used the
ask mandate as an example of control measures, the analytical and
umerical results could be applied to other regions and other control
trategies. The results may help better understand the transmission
ynamics between different strains and provide useful information for
olicymakers to formulate guidelines of control strategies (Hart et al.,
021; Lovell-Read et al., 2021).

RediT authorship contribution statement

Shasha Gao: Conceptualization, Methodology, Formal analysis,
riting – original draft. Mingwang Shen: Methodology, Writing –

riginal draft. Xueying Wang: Conceptualization, Methodology, For-
al analysis, Writing – original draft. Jin Wang: Conceptualization,
ethodology, Writing – review & editing. Maia Martcheva: Method-

logy, Writing – review & editing. Libin Rong: Conceptualization,
ethodology, Writing – original draft, Writing – review & editing,
upervision.



Journal of Theoretical Biology 565 (2023) 111468S. Gao et al.

a
u

A

𝐿

I
e
(

𝐿

U

𝐿

W
a
K

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

M. Shen is supported by the National Natural Science Founda-
tion of China (12171387), China Postdoctoral Science Foundation
(2018M631134 and 2020T130095ZX), and the Young Talent Support
Program of Shaanxi University Association for Science and Technology
(20210307). X. Wang’s research is partially supported by a grant from
the Simons Foundation (960466). J. Wang is supported by the NSF
Grant DMS-1951345 and DMS-1913180. M. Martcheva is supported by
the NSF grant DMS-1951595. L. Rong is supported by the NSF Grant
DMS-1950254.

Appendix A. Basic reproduction number and the proof of Theo-
rem 1

Reordering variables as 𝑥 = (𝐴1, 𝐼1, 𝐴2, 𝐼2, 𝑆, 𝑅), we get the DFE of
system (2) 𝐸∗

0 = (0, 0, 0, 0, 𝑆∗
0 , 0), where 𝑆∗

0 = 𝛬
𝜇 . We rewrite system (2)

as 𝑥̇ = ℱ (𝑥) −𝒱 (𝑥), where

ℱ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜆1𝑆
0

𝜆2𝑆
0
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, 𝒱 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛿𝐴1
𝐴1

−𝛼1𝐴1 + 𝛿𝐼1𝐼1
𝛿𝐴2

𝐴2
−𝛼2𝐴2 + 𝛿𝐼2𝐼2

−𝛬 + 𝑆
∑2

𝑖=1 𝜆𝑖 + 𝜇𝑆
−
∑2

𝑖=1(𝛾𝐴𝑖
𝐴𝑖 + 𝛾𝐼𝑖𝐼𝑖) + 𝜇𝑅

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

with 𝜆𝑖 = 𝛽𝐴𝑖
𝐴𝑖 + 𝛽𝐼𝑖𝐼𝑖, 𝑖 = 1, 2. According to Van den Driessche and

Watmough (2002), we have to check the hypotheses A(1)-A(5). The
first four hypotheses are easy to verify. A(5) will be satisfied if all
eigenvalues of the matrix

𝐽 =
(

−𝑉 0
𝐽3 𝐽4

)

have negative real parts. Here

𝑉 =

⎛

⎜

⎜

⎜

⎜

⎝

𝛿𝐴1
0 0 0

−𝛼1 𝛿𝐼1 0 0
0 0 𝛿𝐴2

0
0 0 −𝛼2 𝛿𝐼2

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐽4 =
(

−𝜇 0
0 −𝜇

)

,

and 𝐽3 is a 2 × 4 matrix. Hence the hypothesis A(5) is satisfied.
Taking the Jacobian matrices of ℱ and 𝒱 around the 𝐸∗

0 , we get

𝐷ℱ (𝐸∗
0 ) =

(

𝐹 0
0 0

)

, 𝐷𝒱 (𝐸∗
0 ) =

(

𝑉 0
𝐽3 𝐽4

)

,

where

𝐹 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑆∗
0 𝛽𝐴1

𝑆∗
0 𝛽𝐼1 0 0

0 0 0 0
0 0 𝑆∗

0 𝛽𝐴2
𝑆∗
0 𝛽𝐼2

0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

,

𝑉 , 𝐽3 and 𝐽4 are the same as above. We have

𝐹𝑉 −1 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑎11 𝑎12 0 0
0 0 0 0
0 0 𝑎33 𝑎34
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

,

where

𝑎11 =
𝛬𝛽𝐴1

𝜇𝛿𝐴1

+
𝛬𝛼1𝛽𝐼1
𝜇𝛿𝐴1

𝛿𝐼1
, 𝑎12 =

𝜆𝛽𝐼1
𝜇𝛿𝐼1

,

𝑎33 =
𝛬𝛽𝐴2 +

𝛬𝛼2𝛽𝐼2 , 𝑎34 =
𝜆𝛽𝐼2 .
11

𝜇𝛿𝐴2
𝜇𝛿𝐴2

𝛿𝐼2 𝜇𝛿𝐼2
We denote 𝑎11, 𝑎33 by 0,1 and 0,2, respectively. It follows that

0 = 𝜌(𝐹𝑉 −1) = max
{

0,1,0,2
}

,

where 𝜌(𝐴) denotes the spectral radius of the matrix 𝐴.
Since 0 is derived using the next generation matrix method, by

Theorem 2 in Van den Driessche and Watmough (2002), 𝐸∗
0 is locally

symptotically stable when 0 < 1 (i.e. 0,1 < 1 and 0,2 < 1), and
nstable when 0 > 1 (i.e. 0,1 > 1 or 0,2 < 1).

ppendix B. Proof of Theorem 2

We define the following Lyapunov function

1 = 𝑆 − 𝑆∗
0 − 𝑆∗

0 ln
𝑆
𝑆∗
0
+ 𝐴1 + 𝐴2 +

2
∑

𝑖=1

𝑆∗
0 𝛽𝐼𝑖
𝛿𝐼𝑖

𝐼𝑖.

t is clear that 𝐿1 is radially unbounded and positive definite in the
ntire space 𝛺. The derivative of 𝐿1 along the trajectories of system
2) yields

̇1 =
(

1 −
𝑆∗
0
𝑆

)

𝑆′ +
2
∑

𝑖=1
𝐴′
𝑖 +

2
∑

𝑖=1

𝑆∗
0 𝛽𝐼𝑖
𝛿𝐼𝑖

𝐼 ′𝑖

=
(

1 −
𝑆∗
0
𝑆

)[

𝛬 − 𝑆
2
∑

𝑖=1
(𝛽𝐴𝑖

𝐴𝑖 + 𝛽𝐼𝑖𝐼𝑖) − 𝜇𝑆
]

+
2
∑

𝑖=1

[

𝑆(𝛽𝐴𝑖
𝐴𝑖 + 𝛽𝐼𝑖𝐼𝑖) − 𝛿𝐴𝑖

𝐴𝑖

]

+
2
∑

𝑖=1

𝑆∗
0 𝛽𝐼𝑖
𝛿𝐼𝑖

(𝛼𝑖𝐴𝑖 − 𝛿𝐼𝑖𝐼𝑖).

sing the equilibrium equation 𝛬 = 𝜇𝑆∗
0 , we get

̇1 = −
𝜇
𝑆
(𝑆 − 𝑆∗

0 )
2 + 𝑆∗

0

2
∑

𝑖=1
(𝛽𝐴𝑖

𝐴𝑖 + 𝛽𝐼𝑖𝐼𝑖)

−
2
∑

𝑖=1
𝛿𝐴𝑖

𝐴𝑖 +
2
∑

𝑖=1

𝑆∗
0 𝛽𝐼𝑖
𝛿𝐼𝑖

(𝛼𝑖𝐴𝑖 − 𝛿𝐼𝑖𝐼𝑖)

= −
𝜇
𝑆
(𝑆 − 𝑆∗

0 )
2 + 𝛿𝐴1

(0,1 − 1)𝐴1 + 𝛿𝐴2
(0,2 − 1)𝐴2.

hen 0 ≤ 1, we have 0,1 ≤ 1 and 0,2 ≤ 1. Then 𝐿̇1 ≤ 0
nd the only potential point for 𝐿̇1 = 0 is at the DFE. Therefore, by
rasovkii-LaSalle Theorem Martcheva (2015), the DFE 𝐸∗

0 is globally
asymptotically stable when 0 ≤ 1.

Appendix C. Proof of Theorem 3

We first consider the strain-1-dominant equilibrium, in which both
𝐴2 and 𝐼2 are zero. Setting the right hand side of the system (2) to zero,
we have
⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 = 𝛬 − 𝑆(𝛽𝐴1
𝐴1 + 𝛽𝐼1𝐼1) − 𝜇𝑆,

0 = 𝑆(𝛽𝐴1
𝐴1 + 𝛽𝐼1𝐼1) − 𝛿𝐴1

𝐴1,

0 = 𝛼1𝐴1 − 𝛿𝐼1𝐼1,

0 = 𝛾𝐴1
𝐴1 + 𝛾𝐼1𝐼1 − 𝜇𝑅.

(C.1)

From the third equation of (C.1), we get

𝐼1 =
𝛼1
𝛿𝐼1

𝐴1.

Substituting it into the last and second equation of (C.1), we get

𝑅 = 1
𝜇

(

𝛾𝐴1
+ 𝛾𝐼1

𝛼1
𝛿𝐼1

)

𝐴1,

and

𝑆
(

𝛽𝐴1
𝐴1 + 𝛽𝐼1

𝛼1 𝐴1

)

− 𝛿𝐴1
𝐴1 = 0.
𝛿𝐼1
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A

𝛬

H

𝐴

r

𝑆

𝐼

r

𝑆

𝐼

(
𝐸

𝐽

T

Since at strain-1-dominant equilibrium, 𝐴1 ≠ 0, we get

𝑆 =
𝛿𝐴1

𝛽𝐴1
+ 𝛽𝐼1

𝛼1
𝛿𝐼1

= 1
𝛽𝐴1
𝛿𝐴1

+
𝛽𝐼1 𝛼1
𝛿𝐴1 𝛿𝐼1

= 𝛬
𝜇

1
0,1

.

dding the first and second equations of (C.1), we get

− 𝜇𝑆 − 𝛿𝐴1
𝐴1 = 0.

ence,

1 =
𝜇
𝛿𝐴1

(

𝛬
𝜇

− 𝑆
)

= 𝛬
𝛿𝐴1

(

1 − 1
0,1

)

.

Therefore, when 0,1 > 1, we have a unique strain-1-dominant equilib-
ium 𝐸∗

1 = (𝑆∗
1 , 𝐴

∗
1 , 𝐼

∗
1 , 0, 0, 𝑅

∗
1), where

∗
1 = 𝛬

𝜇
1

0,1
, 𝐴∗

1 = 𝛬
𝛿𝐴1

(

1 − 1
0,1

)

,

∗
1 =

𝛼1
𝛿𝐼1

𝐴∗
1 , 𝑅∗

1 = 1
𝜇

(

𝛾𝐴1
+ 𝛾𝐼1

𝛼1
𝛿𝐼1

)

𝐴∗
1 .

Similarly, when 0,2 > 1, we have a unique strain-2-dominant equilib-
ium 𝐸∗

2 = (𝑆∗
2 , 0, 0, 𝐴

∗
2 , 𝐼

∗
2 , 𝑅

∗
2), where

∗
2 = 𝛬

𝜇
1

0,2
, 𝐴∗

2 = 𝛬
𝛿𝐴2

(

1 − 1
0,2

)

,

∗
2 =

𝛼2
𝛿𝐼2

𝐴∗
2,2, 𝑅∗

2 = 1
𝜇

(

𝛾𝐴2
+ 𝛾𝐼2

𝛼2
𝛿𝐼2

)

𝐴∗
2 .

Appendix D. Proof of Theorem 4

The Jacobian matrix of the system (2) (reorder variables as 𝑥 =
𝐴1, 𝐼1, 𝐴2, 𝐼2, 𝑆, 𝑅)𝑇 ) evaluated at the strain-1-dominant equilibrium
∗
1 is

(𝐸∗
1 ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑎11 𝑆∗
1 𝛽𝐼1 0 0 𝑎15 0

𝛼1 𝑎22 0 0 0 0
0 0 𝑎33 𝑆∗

1 𝛽𝐼2 0 0
0 0 𝛼2 𝑎44 0 0

−𝑆∗
1 𝛽𝐴1

−𝑆∗
1 𝛽𝐼1 −𝑆∗

1 𝛽𝐴2
−𝑆∗

1 𝛽𝐼2 𝑎55 0
𝛾𝐴1

𝛾𝐼1 0 0 0 −𝜇

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where

𝑎11 = 𝑆∗
1 𝛽𝐴1

− 𝛿𝐴1
, 𝑎15 = 𝛽𝐴1

𝐴∗
1 + 𝛽𝐼1𝐼

∗
1 , 𝑎22 = −𝛿𝐼1 ,

𝑎33 = 𝑆∗
1 𝛽𝐴2

− 𝛿𝐴2
, 𝑎44 = −𝛿𝐼2 , 𝑎55 = −(𝛽𝐴1

𝐴∗
1 + 𝛽𝐼1𝐼

∗
1 ) − 𝜇.

One eigenvalue is −𝜇 and the others satisfy
|

|

|

|

|

|

|

|

|

|

|

|

𝜆 − 𝑎11 −𝑆∗
1 𝛽𝐼1 0 0 −𝑎15

−𝛼1 𝜆 − 𝑎22 0 0 0
0 0 𝜆 − 𝑎33 −𝑆∗

1 𝛽𝐼2 0
0 0 −𝛼2 𝜆 − 𝑎44 0

𝑆∗
1 𝛽𝐴1

𝑆∗
1 𝛽𝐼1 𝑆∗

1 𝛽𝐴2
𝑆∗
1 𝛽𝐼2 𝜆 − 𝑎55

|

|

|

|

|

|

|

|

|

|

|

|

= 0.

Adding the first row to the last row, we get
|

|

|

|

|

|

|

|

|

|

|

|

𝜆 − 𝑎11 −𝑆∗
1 𝛽𝐼1 0 0 −𝑎15

−𝛼1 𝜆 − 𝑎22 0 0 0
0 0 𝜆 − 𝑎33 −𝑆∗

1 𝛽𝐼2 0
0 0 −𝛼2 𝜆 − 𝑎44 0

𝜆 + 𝛿𝐴1
0 𝑆∗

1 𝛽𝐴2
𝑆∗
1 𝛽𝐼2 𝜆 + 𝜇

|

|

|

|

|

|

|

|

|

|

|

|

= 0.

Expanding along the last column, we get

(𝜆 + 𝜇)𝐷1 − 𝑎15𝐷2 = 0,

where 𝐷1 = 𝐷3𝐷4 with

𝐷3 =
|

|

|

|

|

𝜆 − 𝑎11 −𝑆∗
1 𝛽𝐼1

−𝛼1 𝜆 − 𝑎22

|

|

|

|

|

, 𝐷4 =
|

|

|

|

|

𝜆 − 𝑎33 −𝑆∗
1 𝛽𝐼2

−𝛼2 𝜆 − 𝑎44

|

|

|

|

|

,

and 𝐷2 = −(𝜆 − 𝑎22)(𝜆 + 𝛿𝐴1
)𝐷4. Hence,

𝐷
[

(𝜆 + 𝜇)𝐷 + 𝑎 (𝜆 − 𝑎 )(𝜆 + 𝛿 )
]

= 0.
12
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Therefore, three eigenvalues satisfy

(𝜆 + 𝜇)𝐷3 + 𝑎15(𝜆 − 𝑎22)(𝜆 + 𝛿𝐴1
) = 0.

Using 𝐷3, 𝑎15 and 𝑎22, we get

(𝜆 + 𝜇)
[

(𝜆 − 𝑆∗
1 𝛽𝐴1

+ 𝛿𝐴1
)(𝜆 + 𝛿𝐼1 ) − 𝛼1𝑆

∗
1 𝛽𝐼1

]

+ (𝛽𝐴1
𝐴∗
1 + 𝛽𝐼1𝐼

∗
1 )(𝜆 + 𝛿𝐼1 )(𝜆 + 𝛿𝐴1

) = 0.

Collecting terms, we have

𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3 = 0,

where

𝑎1 =𝛿𝐴1
− 𝑆∗

1 𝛽𝐴1
+ 𝛿𝐼1 + 𝜇 + (𝛽𝐴1

𝐴∗
1 + 𝛽𝐼1𝐼

∗
1 ),

𝑎2 =(𝛿𝐴1
− 𝑆∗

1 𝛽𝐴1
)𝛿𝐼1 − 𝛼1𝑆

∗
1 𝛽𝐼1 + 𝜇(𝛿𝐴1

− 𝑆∗
1 𝛽𝐴1

+ 𝛿𝐼1 )

+ (𝛽𝐴1
𝐴∗
1 + 𝛽𝐼1𝐼

∗
1 )(𝛿𝐼1 + 𝛿𝐴1

),

𝑎3 =𝜇
[

(𝛿𝐴1
− 𝑆∗

1 𝛽𝐴1
)𝛿𝐼1 − 𝛼1𝑆

∗
1 𝛽𝐼1

]

+ (𝛽𝐴1
𝐴∗
1 + 𝛽𝐼1𝐼

∗
1 )𝛿𝐼1𝛿𝐴1

.

Using the equilibrium condition

𝑆∗
1 (𝛽𝐴1

𝐴∗
1 + 𝛽𝐼1𝐼

∗
1 ) = 𝛿𝐴1

𝐴∗
1 , 𝛼1𝐴

∗
1 = 𝛿𝐼1𝐼

∗
1 ,

we get

𝛿𝐴1
− 𝑆∗

1 𝛽𝐴1
=

𝑆∗
1 𝛽𝐼1𝐼

∗
1

𝐴∗
1

> 0

and

(𝛿𝐴1
− 𝑆∗

1 𝛽𝐴1
)𝛿𝐼1 − 𝛼1𝑆

∗
1 𝛽𝐼1 =

𝑆∗
1 𝛽𝐼1𝐼

∗
1

𝐴∗
1

𝛿𝐼1 − 𝛼1𝑆
∗
1 𝛽𝐼1 = 𝛼1𝑆

∗
1 𝛽𝐼1 − 𝛼1𝑆

∗
1 𝛽𝐼1 = 0.

herefore, 𝑎1 > 0, 𝑎2 > 0 and 𝑎3 > 0. In addition, 𝑎1 > 𝛿𝐼1 and
𝑎2 > (𝛽𝐴1

𝐴∗
1 + 𝛽𝐼1𝐼

∗
1 )𝛿𝐴1

. Thus,

𝑎1𝑎2 − 𝑎3 > 𝛿𝐼1 (𝛽𝐴1
𝐴∗
1 + 𝛽𝐼1𝐼

∗
1 )𝛿𝐴1

− 𝑎3 = 0.

According to the Routh–Hurwitz criterion, these three eigenvalues all
have negative real parts. The other two eigenvalues satisfy 𝐷4 = 0. It
follows that

𝜆2 + 𝑏𝜆 + 𝑐 = 0,

where

𝑏 = 𝛿𝐴2
− 𝑆∗

1 𝛽𝐴2
+ 𝛿𝐼2 ,

𝑐 = (𝛿𝐴2
− 𝑆∗

1 𝛽𝐴2
)𝛿𝐼2 − 𝛼2𝑆

∗
1 𝛽𝐼2 = 𝛿𝐴2

𝛿𝐼2

(

1 − 𝑆∗
1
𝜇
𝛬
0,2

)

= 𝛿𝐴2
𝛿𝐼2

(

1 −
0,2

0,1

)

.

When 0,2 < 0,1, we have 𝑐 > 0. To determine the sign for 𝑏, recall
that 𝑆∗

1 = 𝛬
𝜇

1
0,1

. Then

0,2 < 0,1 ⇔ 0,2
𝜇
𝛬
𝑆∗
1 < 1 ⇔ 𝑆∗

1 (𝛽𝐴2
𝛿𝐼2 + 𝛽𝐼2𝛼2) < 𝛿𝐴2

𝛿𝐼2
⇒ 𝑆∗

1 𝛽𝐴2
𝛿𝐼2 < 𝛿𝐴2

𝛿𝐼2 .

It follows that 𝑆∗
1 𝛽𝐴2

< 𝛿𝐴2
. Hence, 𝑏 > 0. Therefore, when 0,1 > 0,2,

these two eigenvalues have negative real parts. We can also see that
when 0,2 > 0,1, we have 𝑐 < 0, which implies that at least one
eigenvalue is positive. Therefore, in the case of 0,1 > 1, when 0,1 >
0,2, the strain-1-dominant equilibrium 𝐸∗

1 is locally asymptotically
stable; when 0,1 < 0,2, 𝐸∗

1 is unstable. Similarly, in the case of
0,2 > 1, when 0,2 > 0,1, the strain-2-dominant equilibrium 𝐸∗

2 is
locally asymptotically stable; when 0,2 < 0,1, 𝐸∗

2 is unstable.

Appendix E. Proof of Theorem 5

Assuming 0,1 > 1 and 0,1 > 0,2, we first consider the strain-1-
dominant equilibrium. We define the following Lyapunov function

𝐿2 = ∫

𝑆

∗

𝑥 − 𝑆∗
1 𝑑𝑥 + ∫

𝐴1

∗

𝑥 − 𝐴∗
1 𝑑𝑥 + 𝑐1 ∫

𝐼1

∗

𝑥 − 𝐼∗1 𝑑𝑥 + 𝐴2 + 𝑘𝑐2𝐼2,

𝑆1

𝑥 𝐴1
𝑥 𝐼1

𝑥
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where 𝑘 =
𝛿𝐴2
𝛼2

, and 𝑐1 and 𝑐2 are positive constants to be determined
ater.

It is clear that 𝐿2 is radially unbounded and positive definite in the
ntire space 𝛺. Differentiating 𝐿2 along solutions of system (2), we

have

𝐿̇2 =
𝑆 − 𝑆∗

1

𝑆
𝑆′ +

𝐴1 − 𝐴∗
1

𝐴1
𝐴′

1 + 𝑐1
𝐼1 − 𝐼∗

1

𝐼1
𝐼 ′
1 + 𝐴′

2 + 𝑘𝑐2𝐼
′
2

=
(

1 −
𝑆∗
1

𝑆

)

(

𝛬 − 𝑆
2
∑

𝑖=1

(

𝛽𝐴𝑖
𝐴𝑖 + 𝛽𝐼𝑖𝐼𝑖

)

− 𝜇𝑆

)

+
(

1 −
𝐴∗

1

𝐴1

)

[

𝑆(𝛽𝐴1
𝐴1 + 𝛽𝐼1𝐼1) − 𝛿𝐴1

𝐴1
]

+ 𝑐1

(

1 −
𝐼∗
1

𝐼1

)

(

𝛼1𝐴1 − 𝛿𝐼1𝐼1
)

+ 𝑆
(

𝛽𝐴2
𝐴2 + 𝛽𝐼2𝐼2

)

− 𝛿𝐴2
𝐴2 + 𝑘𝑐2

(

𝛼2𝐴2 − 𝛿𝐼2𝐼2
)

.

Using the equilibrium equations

𝛬 = 𝑆∗
1 (𝛽𝐴1

𝐴∗
1 + 𝛽𝐼1𝐼

∗
1 ) +𝜇𝑆∗

1 , 𝛿𝐴1
=

𝑆∗
1 (𝛽𝐴1

𝐴∗
1 + 𝛽𝐼1𝐼

∗
1 )

𝐴∗
1

, 𝛿𝐼1 =
𝛼1𝐴∗

1
𝐼∗1

,

e get

̇2 = − 𝜇𝑆
(

1 −
𝑆∗
1
𝑆

)2

+
(

1 −
𝑆∗
1
𝑆

)

×

[

𝑆∗
1
(

𝛽𝐴1
𝐴∗
1 + 𝛽𝐼1𝐼

∗
1
)

− 𝑆
2
∑

𝑖=1

(

𝛽𝐴𝑖
𝐴𝑖 + 𝛽𝐼𝑖𝐼𝑖

)

]

+
(

1 −
𝐴∗
1

𝐴1

)

[

𝑆
(

𝛽𝐴1
𝐴1 + 𝛽𝐼1𝐼1

)

−
𝑆∗
1
(

𝛽𝐴1
𝐴∗
1 + 𝛽𝐼1𝐼

∗
1
)

𝐴∗
1

𝐴1

]

+ 𝑐1

(

1 −
𝐼∗1
𝐼1

)

(𝛼1𝐴1 −
𝛼1𝐴∗

1
𝐼∗1

𝐼1)

+ 𝑆
(

𝛽𝐴2
𝐴2 + 𝛽𝐼2𝐼2

)

− 𝛿𝐴2
𝐴2 + 𝑘𝑐2

(

𝛼2𝐴2 − 𝛿𝐼2𝐼2
)

= − 𝜇𝑆
(

1 −
𝑆∗
1
𝑆

)2

+ 𝛽𝐴1
𝑆∗
1𝐴

∗
1

(

2 −
𝑆∗
1
𝑆

− 𝑆
𝑆∗
1

)

+ 𝛽𝐼1𝑆
∗
1 𝐼

∗
1

(

2 −
𝑆∗
1
𝑆

+
𝐼1
𝐼∗1

−
𝐴1
𝐴∗
1
−

𝑆𝐼1𝐴∗
1

𝑆∗
1 𝐼

∗
1𝐴1

)

+ 𝑐1𝛼1𝐴
∗
1

(

𝐴1
𝐴∗
1
−

𝐼1
𝐼∗1

−
𝐼∗1𝐴1

𝐼1𝐴∗
1
+ 1

)

+ 𝛿𝐴2
𝐴2

(

𝑆∗
1

𝛽𝐴2

𝛿𝐴2

+ 𝑐2 − 1

)

+ 𝑘𝛿𝐼2𝐼2

(

𝑆∗
1

𝛽𝐼2𝛼2
𝛿𝐴2

𝛿𝐼2
− 𝑐2

)

.

Since 𝑥 − 1 ≥ ln 𝑥 for 𝑥 > 0, we get

−
𝑆∗
1
𝑆

−
𝑆1𝐼1𝐴∗

1
𝑆∗
1 𝐼

∗
1𝐴1

≤ − ln
𝑆∗
1
𝑆

− ln
𝑆𝐼1𝐴∗

1
𝑆∗
1 𝐼

∗
1𝐴1

= ln
𝐼∗1
𝐼1

+ ln
𝐴1
𝐴∗
1

and

1 −
𝐼∗1𝐴1

𝐼1𝐴∗
1
≤ ln(

𝐼1
𝐼∗1

) + ln(
𝐴∗
1

𝐴1
).

t follows that

̇2 ≤ − 𝜇𝑆
(

1 −
𝑆∗
1
𝑆

)2

+ 𝛽𝐴1
𝑆∗
1𝐴

∗
1

(

2 −
𝑆∗
1
𝑆

− 𝑆
𝑆∗
1

)

+
(

𝛽𝐼1𝑆
∗
1 𝐼

∗
1 − 𝑐1𝛼1𝐴

∗
1
)

[(

𝐼1
𝐼∗1

− ln
𝐼1
𝐼∗1

)

−

(

𝐴1
𝐴∗
1
− ln

𝐴1
𝐴∗
1

)]

+ 𝛿𝐴2
𝐴2

(

𝐴
0,2

0,1
+ 𝑐2 − 1

)

+ 𝑘𝛿𝐼2𝐼2

(

𝐼
0,2

0,1
− 𝑐2

)

.

By the arithmetic–geometric mean inequality, we have
𝑆∗
1
𝑆

+ 𝑆
𝑆∗
1
≥ 2.

Choosing 𝑐1 =
𝛽𝐼1𝑆

∗
1 𝐼

∗
1

𝛼1𝐴∗
1

and 𝑐2 =
𝐼

0,2
0,1

, we get

𝐴
0,2 + 𝑐2 − 1 =

0,2 − 1 < 0.
13

0,1 0,1
Therefore, 𝐿̇2 ≤ 0. It is easy to check that 𝐿̇2 = 0 if and only if the
system is at 𝐸∗

1 . By Krasovkii-LaSalle Theorem Martcheva (2015), 𝐸∗
1 is

lobally asymptotically stable when 0,1 > max{1,0,2}. By a similar
roof, 𝐸∗

2 is globally asymptotically stable when 0,2 > max{1,0,1}.

Appendix F. Proof of Theorem 6

Setting the right-hand side of system (2) to zero, we have

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0 = 𝛬 − 𝑆
2
∑

𝑖=1
(𝛽𝐴𝑖

𝐴𝑖 + 𝛽𝐼𝑖𝐼𝑖) − 𝜇𝑆,

0 = 𝑆(𝛽𝐴1
𝐴1 + 𝛽𝐼1𝐼1) − 𝛿𝐴1

𝐴1,

0 = 𝛼1𝐴1 − 𝛿𝐼1𝐼1,

0 = 𝑆(𝛽𝐴2
𝐴2 + 𝛽𝐼2𝐼2) − 𝛿𝐴2

𝐴2,

0 = 𝛼2𝐴2 − 𝛿𝐼2𝐼2,

0 = 𝛾𝐴1
𝐴1 + 𝛾𝐼1𝐼1 + 𝛾𝐴2

𝐴2 + 𝛾𝐼2𝐼2 − 𝜇𝑅.

(F.1)

From the third and fifth equations of (F.1), we get

𝐼1 =
𝛼1
𝛿𝐼1

𝐴1, 𝐼2 =
𝛼2
𝛿𝐼2

𝐴2.

Substituting them into the last equation of (F.1), we get

𝑅 = 1
𝜇

(

𝛾𝐴1
+ 𝛾𝐼1

𝛼1
𝛿𝐼1

)

𝐴1 +
1
𝜇

(

𝛾𝐴2
+ 𝛾𝐼2

𝛼2
𝛿𝐼2

)

𝐴2.

eplacing 𝐼1 in the second equation of (F.1), we have
(

𝛽𝐴1
𝐴1 + 𝛽𝐼1

𝛼1
𝛿𝐼1

𝐴1

)

− 𝛿𝐴1
𝐴1 = 0.

At an interior equilibrium, 𝐴1 ≠ 0, we get

𝑆 =
𝛿𝐴1

𝛽𝐴1
+ 𝛽𝐼1

𝛼1
𝛿𝐼1

= 𝛬
𝜇

1
0,1

.

Similarly, from the fourth equation of (F.1), we have

𝑆 = 𝛬
𝜇

1
0,2

.

Since 0,1 = 0,2, the above results are valid and 𝑆∗ = 𝛬
𝜇

1
0,1

. It is
ossible to have an interior equilibrium only when 0,1 > 1. Because
1, 𝐼2 and 𝑅 can be written in terms of 𝐴1 and 𝐴2, we only need to
olve for 𝐴1 and 𝐴2. Adding the first, second, and fourth equations of
F.1), we get

𝐴1
𝐴1 + 𝛿𝐴2

𝐴2 = 𝛬 − 𝜇𝑆∗.

nce the above equation is satisfied, all the equations in system (F.1)
old. Therefore, there are infinitely many interior equilibria when
0,1 = 0,2 > 1.
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