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Abstract. AI Forensics is a novel research field that aims at provid-
ing techniques, mechanisms, processes, and protocols for an AI failure
investigation. In this paper, we pave the way towards further exploring
a sub-domain of AI forensics, namely AI model forensics, and introduce
AI model ballistics as a subfield inspired by forensic ballistics. AI model
forensics studies the forensic investigation process, including where avail-
able evidence can be collected, as it applies to AI models and systems.

We elaborate on the background and nature of AI model develop-
ment and deployment, and highlight the fact that these models can be
replaced, trojanized, gradually poisoned, or fooled by adversarial input.

The relationships and the dependencies of our newly proposed sub-
domain draws from past literature in software, cloud, and network foren-
sics. Additionally, we share a use-case mini-study to explore the pecu-
liarities of AI model forensics in an appropriate context. Blockchain is
discussed as a possible solution for maintaining audit trails. Finally, the
challenges of AI model forensics are discussed.
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1 Introduction

The rapid integration of Artificial Intelligence (AI) in modern technologies, ser-
vices, and industries is leading AI to become a fundamental part of daily life. AI
applications are found in video games [23], autonomous vehicles [18], healthcare
[13], and cybersecurity [19]. While AI exists to benefit society, it is not without
its challenges, which led to the development of the AI safety field [2]. Further
exploration is necessary in the realm of forensics concerning AI, particularly how
forensics will apply to the AI domain, to contribute to overall AI safety. This
new discipline has been coined as AI Forensics [3].

AI Forensics is a subfield of digital forensics and is defined as “Scientific
and legal tools, techniques, and protocols for the extraction, collection, analysis,
and reporting of digital evidence pertaining to failures in AI-enabled systems”
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[3]. Within this domain is the subdomain of AI Model Forensics, which narrows
the forensic focus of failures in AI-enabled systems to information linked to AI
models, usually stored in model files. Before, during, or after model deployment,
AI models may suffer from malicious attacks ranging from physical adversarial
samples [26], backdoors [6], malware injection [40], active learning, gradual poi-
soning, or replacing the authentic model by a malicious one, compromising an
AI-enabled system.

For instance, [3] coined AI model authentication forensics as a subfield of AI
model forensics. Recent work identified watermarking techniques to authenticate
the ownership of AI models. Behzadan et al. [4] proposed a novel scheme for
the watermarking of Deep Reinforcement Learning (DRL) policies. In [20,41],
watermarks are generated samples, almost indistinguishable from their origins,
and infused into the deep neural network model by assigning specific labels to
them. The specific labels are the basis for copyright claims.

However, watermarked models can still be tampered with or forged [3], which
impedes AI model authentication and verification. In addition, watermarking in
itself does not hinder an adversary from publishing or deploying a new model
under the name of an authentic model provider or creator. The possibility of
such events leads to the need for procedures and protocols that help determine
the forensic soundness of AI model digital evidence.

Within the new field of AI model forensics, we ask the questions: “What
evidence is left behind in terms of AI model artifacts such as files, examined
samples, label predictions, logs, etc.?”, “How to examine such evidence?”, and
“What conclusions can be made about the type of event that occurred and its
source?”. We propose to establish AI model ballistics as a subfield of AI Model
Forensics, focusing on digital forensic investigations that involve AI systems [3].
In general, the study of forensic ballistics refers to examining evidence left behind
from firearms which would lead to conclusions about the type of firearm and its
owner. Model ballistics could possibly help investigators identify information,
such as the intention of the AI model, whether or not the output of the model
differs from the creator’s intention, the framework the model was created on, and
any other relevant information that can be used in a digital forensic investigation.

Our work provides the following contributions:

– We provide the primary in-depth discussion of AI model forensics.
– We provide an overview of digital forensic practices for domains that are

strongly connected to AI and are useful in initiating protocols and procedures
tailored for AI investigations.

– We provide a primary case study to motivate the sub-domain of AI model
forensics.

– We share a cohesive view of the intersection of AI model forensics with soft-
ware forensics, cloud forensics, and network forensics.

– We enumerate primary challenges in AI model forensics.

The remainder of this paper is divided into the following sections: Sect. 2
describes the basic principles of digital forensics and establishes the motivation.
Work from related forensic areas is discussed in Sect. 3. An example case study
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is presented in Sect. 4. Section 5 discusses the use of Blockchain technology in
AI model forensics. The subfield AI model ballistics is formally introduced in
Sect. 6. Section 7 explores the challenges and limitations of AI model forensics.
Lastly, we conclude our work in Sect. 8 and discuss future directions.

2 Background and Motivation

2.1 Principles of Digital Forensics Overview

Digital forensics (DF) is formally defined by the National Institute of Standards
and Technology (NIST) as the application of science to the identification, col-
lection, examination, and analysis, of data while preserving the integrity of the
information and maintaining a strict chain of custody for the data [15]. Under
this definition, many subfields exist such as cloud forensics [31], software foren-
sics [37], and network forensics [14]. Digital forensics and its subfields come with
continuously evolving policies and procedures that protect the forensic sound-
ness of digital data during investigations. Digital data is forensically sound when
the scientific process follows the five major principles [12]:

1. Authenticity: Digital data is proved to be unchanged after collection and
analysis; if necessary, only minimal changes are made to the data.

2. Error: All known errors in the forensic process are thoroughly documented.
3. Reliability: All utilized procedures must be published and accepted within

the scientific community.
4. Reproducibility: All procedures should produce consistent results on the dig-

ital data each time the procedure(s) is performed.
5. Experience: All investigators handling the digital data should have a sufficient

amount of experience or knowledge.

AI Forensics aims at replicating these principles when creating policies and
procedures that are suitable for investigating failures in AI-enabled systems.
AI model forensics, considered a subset of the AI forensics, focuses on how to
address AI model artifacts, such as files, logs, model authenticity, classification
history, etc., and how to promote the forensic soundness of these artifacts.

AI-related crime has two major categories: AI as a tool crime and AI as a
target crime [12]. AI as a tool crime implies that AI systems or services are used
to commit physical crimes or aid in cybercrimes. [34] conducted experiments
related to AI as a tool crime from an AI forensic standpoint. The research
viewed a “malicious by design” AI system and set out to determine if an AI
system caused a malicious incident and why the incident was caused. From their
perspective, AI as a tool can become “malicious by design” through methods of
tampering and then be used as a malicious tool by a perpetrator.

In contrast, AI as a target crime implies that vulnerabilities in AI-enabled
systems are exploited or hijacked. Potential threats include but are not limited
to: manipulation of training data, malicious code change or replacement, and
tricking AI systems into improper operation.
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With any forensic approach, the collected evidence should answer questions
related to the when and where of the crime, who is the criminal, what was
the crime’s target, and how the crime occurred. Defining a forensic approach
for model ballistics will help investigators answer these key questions about AI
systems, whether it falls under the category of AI as a tool crime or AI as a
target crime.

To gain a clear picture of what investigators will encounter when dealing
with AI models, model files, and artifacts, it is imperative to provide insights
and a general understanding about how model files are generated and how AI
models are deployed in production.

2.2 Model Generation and Deployment Overview

Deploying, or serving, a model simply means to turn it into a usable model
to host in a production platform. For example, the macro steps leading to the
deployment of a typical Machine Learning (ML) model are depicted in Fig. 1.
The outlined steps are data collection and preparation, feature selection, model
training and testing, model packaging, and deployment.

Data Preparation

Feature Engineering

Model Train-
ing & Testing

Model Packaging

Deployment

Fig. 1. Simplistic pipeline of the development and deployment of an AI model

Usually an AI model, a machine/deep learning one in particular, is saved
to a single file containing the architecture and the parameters of the model,
e.g. layers and weights (deep learning), support vectors (SVM), cluster centroids
(K-means clustering), etc. The file is the output of the three first steps of the
pipeline. Usually an inner loop that goes back to the first step may take place
here if the model performance was not sufficiently satisfying.
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Creators have the option to save the entire AI model, or some specific parts of
it, into a file, known as the model file. Saving an AI model is useful for restoring
it at any time in the future without having to repeat any previous training and
parameter tuning. The saved model can be used for transfer learning, to train
over new datasets, packaging, distribution, hosting, and deployment. Examples
of frameworks using this approach are TensorFlow [38] and PyTorch [30]. For
instance, we can restore only the architecture of a deep learning (DL) network
(layers, nodes, layer types, activation functions, etc.), or the architecture along
with the parameters (e.g. weights, biases, dropout, etc.).

We collected in Table 1 information about popular AI and ML platforms
along with model file format, model file extension and other options of model sav-
ing. We also note that some frameworks allow models to be imported/exported
from/to different formats.

Table 1. Popular AI/ML frameworks and their model formats

Framework File format File extension Saving options

Tensorflow tf or HDF5 .tf or .h5 weights & checkpoints, or entire model

Scikit-Learn Pickled Python .pkl Compression

Keras tf or HDF5 .tf or .h5 checkpoints, optimizer state, whole model

PyTorch Torchscript .pt or .pth state dict

iOS Core ML Apple ML Model .mlmodel Add to App.

SparkML model: JSON, data: Parquet .json, .parquet Save a Pipeline

spaCy model:Config, metadata: JSON .cfg, .json Save a Pipeline and its metadata

AI and ML models are usually deployed as cloud services, and not necessarily
in form of model files. Cloud deployment helps in connecting the AI model to
clients and mobile applications, either for further data collection and improve-
ment, such as in the case of federated learning [16], or for providing prediction
and recommendation services for the model clients, whether they are AI agents,
IoT devices, mobile applications, or browser-based users. Prediction services can
be provided in batch mode or in single mode.

3 Literature Review

AI model forensics is strongly tied to other forms of forensics, and is useful
when examining and analyzing model files and model deployments. We estimate
that three areas in particular, namely cloud, software, and network forensics, are
related to AI model forensics and may support the creation of its standards and
procedures.

3.1 Cloud Forensics

The NIST defines Cloud Computing Forensic Science as “the application of sci-
entific principles, technological practices and derived and proven methods to
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reconstruct past cloud computing events through identification, collection,
preservation, examination, interpretation and reporting of digital evidence [11]”.
Cloud forensics [32] has emerged from both the digital forensics and the cloud
computing fields. Cloud forensics is in high demand today because of the impor-
tance of these two emerging fields. The Market Research Firm report [8] classi-
fies cloud forensics as a type of digital forensics and estimates the global digital
forensics market to grow to 9.68 billion by year 2022. The report correlates the
prolific spread of cloud-based applications in North America with an increase in
cyber-attacks and a growing sophistication of these attacks.

Challenges of Cloud Forensics. Since cloud forensics is a fairly new field,
compared to its predecessors cloud computing and digital forensics, there are
still many challenges in the field. Different challenges can be attributed based
on the cloud service model. Three service models are identified in [22]:

– Infrastructure as a service (IaaS): Delivery of bare metal and virtual machines,
e.g. AWS;

– Platform as a service (PaaS): serves application development and deployment,
e.g. AWS Elastic Beanstalk;

– Software as a service (SaaS): provides packaged software such as office apps
or an AI engine.

Many of these challenges are identified in [35]. Cloud resources are virtualized
and shared in nature. Cloud data is described as “fragile and volatile,” which
makes correct data extraction a very sensitive process. Remote data collection
and preservation is more difficult than its standardized counterpart for collect-
ing physical evidence at a crime scene. The remote collection requires contact
and agreements with the cloud service provider. [10] suggests using a separate
cloud to store collected data due to its large amount and the peculiarities of the
cloud storage structure. Maintaining the chain of custody within cloud forensics
is another challenge. For instance, logs can be located within different layers of
the cloud, and are sometimes volatile in nature. Lastly, during presentation, it
may be difficult for the members of a jury to understand the concepts and tech-
nicalities of the cloud. We expect AI model forensics to inherit these challenges.
Nevertheless, cloud forensics may help answer some of the essential questions
related to AI model forensics.

3.2 Software Forensics

Software forensics is another branch of digital forensics that specifically focuses
on “areas of author discrimination, identification, and characterization, as well as
intent analysis” based on software source code [21]. One of the original motives
for software forensics was disabling the authorship anonymity of distributed
malicious code. Any remnants of the malware code left behind on the target
system may point back to the author(s). Inspired by handwriting analysis tech-
niques, software forensics adapted new methods to uniquely identify a source
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code author based on distinguishing features, such as programming language,
coding style, level of expertise, etc.

Source Code Analysis and Authorship Attribution. The four principal
applications of software forensics according to [21] are author discrimination,
author identification, author characterization, and author intent determination.
Author discrimination is the task of deciding whether the code was written by a
single author or by a number of authors. Author identification is the process of
attributing authorship to software code, sometimes based on extracted statistics
and similarity measures to other compiled code samples. Author characterization
is similar to suspect profiling in criminal investigations. Its task is to determine
personal characteristics of the software creator, such as educational background
and personality traits. Author intent determination is the principle of determin-
ing whether or not software code failures or unexpected behaviours were written
purposefully by the software developer or were the result of a human-error during
the software development process. The same principles apply to AI model foren-
sics, even though the techniques may be different. AI software is a special case
of general-purpose software. Malicious AI software is, however, very different
in nature than malicious general-purpose software, such as rootkits and worms.
For instance, maliciousness can be hidden in the model parameters rather than
being manifested in the flow control directives.

The feasibility of software forensics is questioned in [37]. Author identifi-
cation may be subject to false positives due to insufficient amounts of data
or recurring anti-forensic techniques, such as code reuse from other authors to
increase the similarity to legitimate code. However, it has been shown that,
with a sufficient amount of data and a careful choice of appropriate and distinc-
tive characteristics, software forensics proves useful in reverse engineering and
authorship attribution. [33] later proposed to build an author profile based on
measurable authorship identifiers, namely program layout, program style, and
program structure metrics. [33] also stated that combining techniques from soft-
ware metric analysis and computational linguistics may lead to a more accurate
plagiarism detection and author identification.

The applications of source code analysis and software forensics were extended
in [9] to include plagiarism detection. The paper outlined new methods of analy-
sis, such as discriminant analysis, neural network classification, code-based rea-
soning, and similarity calculation. [5] emphasized on clone detection, debugging,
reverse engineering, and the visualization of analysis results. New application
areas of source code analysis include middleware, software reliability engineer-
ing, and model checking in formal analysis. The paper also outlined the future
challenges of software code analysis. Code written by a small number of soft-
ware engineers is widely reusable by other programmers and can be combined
into custom applications and model-based programming. This requires a new
approach to source code analysis based on both the models itself and source
codes. In a way, the need for AI model forensics was predicted in [5].
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More recently, approaches to source code analysis and authorship attribu-
tion started utilizing ML and DL techniques. [1] achieved state-of-the-art results
in source code authorship attribution based on automatic learning of efficient
representations for Abstract Syntax Tree (AST) features. The representation
learning is implemented through two types of DL models: Long Short-Term
Memory (LSTM) and Bidirectional Long Short-Term Memory (BiLTSM). DL
models that were deemed successful in natural language processing (NLP) tasks
show good performance for authorship attribution in [17].

Challenges of Software Forensics. Source code such as notebooks, scripts,
and model files can be found left after an attack event. Software forensics based
on the analysis of source code files may prove difficult in the special case of AI
programs because of code reuse. Moreover, AI model files eliminate the need to
have access to the original source code. None of the code written by a program-
mer is actually stored in the model files. Without the source code, it is difficult to
tie a model file to a specific author using the current software forensic approaches.
This presents a research opportunity for the forensics community.

3.3 Network Forensics

Network forensics is “the use of scientifically proven techniques to collect, fuse,
identify, examine, correlate, analyze, and document digital evidence from mul-
tiple, actively processing and transmitting digital sources for the purpose of
uncovering facts related to the planned intent, or measured success of unautho-
rized activities meant to disrupt, corrupt, and or compromise system components
as well as providing information to assist in response to or recovery from these
activities [29].”

Similar to the digital forensics model, network forensics follows the process
of preservation, collection, examination, analysis, and reporting. Evidence can
be found within the network or outside of the network. Evidence that can be
seized from within the network includes device logs, network traffic, and the
volatile memory from the devices in question. Evidence processed from outside
the network can include internet archives and logs from the domain hosting
provider, domain name controller, and internet service providers [7]. The stag-
gering amount of the evidence that can be collected from within and outside the
network alludes to some of the challenges within this field. [25] acknowledges
that the analysis of log data is extensive because the system has to account for
all actions performed. Additionally, those logs must be processed, converted, and
compared against a set of accepted misuse and attack patterns.

The future direction of network forensics corresponds to the rise of cloud-
based applications and the importance of cloud forensics. [36] recommends that
instead of only using packet capture files of network segments for analysis, the
investigation needs to include packet capturing and analysis in cloud environ-
ments.
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4 Case Study: Model Forensics of an Autonomous
Need-for-Surgery Classifier

To better understand the context of AI model forensics, we present a case study
where an AI-based model decides on surgery, based on patient information.
Examples of patient information are: age, life quality, symptoms, past medi-
cal records, past family history, medical tests results, etc. In this scenario, the
system has to decide on the need for a surgery, whether it is microsurgery, radio-
surgery, or just active observation. The system helped medical staff make good
decisions. Suddenly, the system started outputting bad decisions, which led to
the confusion of medical staff and the occurrence of several deaths. An investi-
gation has to take place.

A digital forensic investigator is hired to examine the system. Some of the
hypotheses an investigator may consider are:

– The model has been completely replaced (Malicious). For example, a simple
wget or git clone command in the system logs (or network traces) may reveal
that a replacement model has been downloaded. The investigator may find
the actual source code and other useful information in the git repository.

– The model has been gradually modified and poisoned (Malicious).
– The model was always malicious, but the malicious aspects remained dormant

(Malicious).
– The problem occurred after an update of the libraries or some of the depen-

dencies (Benign).
– A problem in feature extraction and prepossessing occurred following a recent

code pull (Benign).
– The addition of new features to the model decreased its accuracy (Benign).

To begin, the investigator needs to determine the following:

– Where the model is hosted: locally in the internal network, or deployed as a
web service on a cloud platform?

– What is the access control policy (who has access to the model, and who has
access to the hosting system)?

– In the case of cloud deployment, what is the service model (e.g. PaaS, SaaS,
or IaaS)?

– Is the hosting system properly protected, patched and updated?

If the model is deployed from the local system, forensic evidence about the
model may reside in memory. If the model is served and deployed from the cloud,
most of the evidence resides in the cloud; however, some residual evidence may
also reside on the end-user machine. Methods of cloud forensics are applicable
to collect evidence about the model. Figure 2 depicts possible locations where
forensic evidence pertaining to AI model forensics is likely to reside.

It is also important to identify the model’s framework and libraries used in
order to gather information about the author’s intent. The model file has to
be examined to determine this information. Typically, most model files have
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Fig. 2. Diagram of where evidence and information related to AI model forensics is
likely to be located

plaintext framework information within the first few lines of the file; however,
sometimes this information may not be as easy to find. For example, Fig. 3
depicts the contents of the saved iris classification model in PyTorch. From the
files contents, we can see PyTorch libraries that help us correctly identify the
model framework. Other information, such as parameters and function calls, can
also be seen in the file.

In cases where plaintext is not found within a saved model file, we should
still not only rely on the file extension or the header information. Additional
fingerprinting is required to provide a clear answer. Figure 4 displays some of
the most popular AI platforms, AI tools & frameworks, and Model deployment
& services. Popular cloud providers such as Amazon AWS and Microsoft Azure
have different paradigms for storing and serving AI models. The diversity, inter-
operability, and heterogeneity of the AI sphere is in the challenge list of AI model
forensics.

The investigator has to check when the model file was last modified, and
figure out whether the modification is performed by an adversary or a legitimate
user. A typical defense against unsolicited model modification is to create a read-
only database of cryptographic hashes for production-plan AI models, store these
hashes offline, and regularly compare hashes of the active models to the stored
hashes looking for changes.

The more important questions our investigator will face are determining the
original intent of the model, who made the modification, was the modification
authorized, what exactly was the modification, and to what degree did it alter
the model’s intent. Software forensic methods and techniques, such as author
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Fig. 3. Contents of the saved model file for the iris classification system written in
PyTorch

identification, characterization, and intent, may help the investigator find some
of the answers to the above questions. Model files offer the internal architecture,
parameters of the model, and input features; however, the investigator might not
have access to the training and testing dataset, the source code that generated
the model, or previous versions of the same model. A list of non-comprehensive
techniques that may help the investigation are:

Malware Check whether the host was infected by any kind of malware or was
the target of offensive black-hat penetration testing.

Adversarial Samples The investigator may test the sensitivity of the model
to adversarial samples generated by well known algorithms. If the model is
vulnerable to these samples, the investigator may test logged input vectors
to check if they are adversarial as well.

Visualization Techniques such as t-distributed stochastic neighbor embedding
(t-SNE) and Uniform Manifold Approximation & Projection (UMAP) may
help determine whether the classifier is a poor one or whether the input data
is noisy and inconsistent.

XAI The investigator may employ well-known eXplainable AI (XAI) techniques
to generate explanations for the inquiry decisions. The explanations can be
checked by experts to see if they make sense or not. Good explainers tell a
lot about possible model overfitting, underfitting, or adversarial behaviour.
In case the explanations are incoherent with human expert reasoning given
the input features, the investigator has to turn back to earlier parts in the AI
pipeline such as data inputting and feature extraction.
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Fig. 4. Diagram of popular AI platforms, AI tools & frameworks, and model deploy-
ment & services

Note that the above list is not comprehensive. Digital forensics, in general, is
a domain requiring a lot of innovation and where new techniques continuously
arise. The overall goal of using these techniques in AI model forensics are to
distinguish factors, such as author identification, author characterization, and
author intent, if possible. The exact methods for utilizing these techniques and
answering the aforementioned investigative questions need to be established.
Storing and arbitrating AI models using Blockchain helps preemptively solve a
lot of issues for AI model forensics. We discuss this context in the next section.

5 Blockchain and AI Model Forensics

Blockchain systems provide properties of transparency, visibility, immutability,
traceability, nonrepudiation, and smart contracts. These properties reveal impor-
tant information for AI model forensics; it makes it straightforward to answer
questions about who is responsible for the inquired model behaviour.

All the transactions taking place within a Blockchain are stored in a public,
decentralized, and append-only ledger. The ledger is accessible to anyone with
access to the Blockchain and is secure and tamper-proof. Each transaction in
the Blockchain is cryptographically signed by all involved parties. The signed
transactions must be verified by a majority of the Blockchain users before being
officially added to the ledger. The Blockchain provides an ecosystem where AI
developers, utility providers, deployment engineers, and other participants can
interact. This allows AI models to be tracked back to their origins. Such an
ecosystem supporting both AI and XAI is described in [27].

With Blockchain support, the causes of misconduct of an AI model and the
liability for bad behaviour become easily identified. During investigation, the AI
model left over is compared to the one stored in the Blockchain. If there is no
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match, the model has been modified without the consent of the participants. If
there is a match, the investigation may trace the source of the buggy behavior
causing the deficit. Examples include a library update, a previously committed
buggy version, a shortage in training data, or a misconfiguration in the number
of training epochs. Using Blockchain in this way can offer potential solutions to
author identification, which can further lead to author characterization. That
said, we cannot expect that a wide adoption of Blockchain for arbitrating AI
models is occurring anytime soon. AI model forensics must not solely rely on
the existence of cryptographic ledgers.

Intellectual Property or copyright can be managed through transactions and
smart contracts. Privacy of the entities involves the life-cycle of the AI model,
which can be achieved by using public keys instead of real identities. For instance,
identities such as the forensic investigator, a witness, or an AI expert can be
masked using public keys. Of course, the topic of blockchain for AI forensics can
be further developed and detailed in a future research. Blockchain as a solution
is promising but needs more investigation in future work.

6 AI Model Ballistics

The first documented use of ballistics in forensics occurred in 1835 [39]. Matching
the unique bullet mold to one in the possession of the suspect led to a confession
and eventual conviction. Forensic ballistics has evolved and now the microscopic
indentations on the bullet and cartridge case after a gun is fired can be used
to create a ballistic fingerprint [28]. When the term ballistics is used in relation
to forensics, conventionally, it implies firearm analysis. However, in recent years
some areas have adapted this term, in particular, camera ballistics. Camera
ballistics uses the camera sensor to match a photo to a camera, like a bullet to
a gun [24]. In a similar fashion, AI model ballistics is needed to match a creator
to an AI model.

The motivation behind AI model ballistics is to identify and manipulate AI
model artifacts in a crime scene investigation in a forensically sound manner. The
goal of AI model ballistics is to identify relevant information for the investigation,
such as: the type and creator of an AI model, the intention of an AI model, the
compliance of the model’s behaviour with the creator’s intended behaviour, the
framework, tools and datasets used in model creation, and more. Fingerprinting
a model is another way to view AI model ballistics. To acquire the fingerprint
of a model, an investigator would need to interrogate a model, such as passing
various inputs and analyzing the outputs.

For this reason, we tentatively define AI model ballistics as the subfield of AI
model forensics pertaining to the processing and analysis of AI model artifacts
left behind. These artifacts could potentially lead to the identification of the
model’s creation framework, creator’s intent (benign or malicious), and any other
relevant identifiers or information that can be extracted.
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7 Challenges of AI Model Forensics

While incorporating methods from cloud, software, and network forensics, AI
model forensics inherit their challenges and manifest unprecedented ones. For
example, an AI model stored in the cloud inherits a major limitation of cloud
forensics, which is the inability to physically acquire and seize evidence. In stan-
dard digital forensic investigations, the digital device in question is collected for
analysis; however, in cloud forensics the evidence cannot be physically collected
and the data can be dispersed through numerous servers and architectures. The
AI model service may be dependent on other web micro services or federated
learning. Investigation relies on help from cloud service providers, which makes
the chain of custody and the validity of the evidence less credible.

Other challenges include legal issues, such as jurisdictional boundaries and
obtaining a search warrant. AI models are generated by AI code that is linked
to different developers, researchers, and providers. AI models are also typically
located in shared storage and use shared computational resources. User privacy
in these settings is an additional challenge. It is difficult investigating one user’s
data without accessing and violating the privacy of other users.

Applying methods of software forensics are not directly applicable to AI mod-
els and source code. The swift development in AI frameworks and deployment
models makes the search space even larger. AI model forensics must be able to
determine as much information as possible about the development frameworks
and libraries, authorship attribution, training and testing history or logs, adver-
sarial behaviour, or intentionally designed malicious backdoors.

In addition, adversarial attacks and anti-forensics are always a concern in
any form of digital forensics. We expect adversaries to perform anti-forensics in
many different ways and hinder the investigation.

8 Conclusion

In this paper, we sketched the motivation and the description for a sub-domain
of AI forensics that we dubbed AI model forensics. We elaborated on the back-
ground and nature of AI model development and deployment, and highlighted
the fact that these models can be replaced, trojanized, gradually poisoned, or
fooled by adversarial input. We suggested an extended definition of AI model
forensics, namely examining left-behind AI models, and their surrounding arti-
facts, such as logs, traces, service code, source code, datasets, and input samples
with the goal of helping an investigation reach correct conclusions about a secu-
rity incident. In particular, we focus on the identity of the model creator and
the intention of the model, which is our motivator for the new subfield AI model
ballistics.

We explored the relationships and the dependencies of the newly arising
sub-domain with the literature work from software forensics, highlighting the
importance of author identification, characterisation, and intent and cloud and
network forensics, focusing on the challenges faced in the field. The use-case
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showed the peculiarities of AI model forensics in a proper context. Blockchain
is a possible solution to support AI model forensics, but we cannot assume that
AI models are tracked and managed by a Blockchain in all cases. AI model
ballistics is a new topic as it relates to identifying the type, owner, and intent
of a AI system. Finally, we approached the challenges of this novel field. Our
work is a step towards further exploring and defining AI model forensics and
model ballistics as an interesting and fascinating subfield under the umbrella of
AI forensics.

Future work should explore applying and creating scenarios to show how to
apply a sound methodology for AI model ballistics in end-to-end investigation
use-cases and exploring their artifacts. Each scenario should address both mali-
cious and benign incidents of model files to find an appropriate solution. For
instance, each hypothesis presented in the case-scenario will be further explored
to find resolutions. Future work should also explore the contents of a model file
in depth for a better understanding of how software forensic techniques can be
applied.
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D.: Federated learning: strategies for improving communication efficiency. CoRR
abs/1610.05492 (2016). http://arxiv.org/abs/1610.05492

17. Kurtukova, A., Romanov, A., Shelupanov, A.: Source code authorship identifi-
cation using deep neural networks. Symmetry 12(12) (2020). https://doi.org/10.
3390/sym12122044. https://www.mdpi.com/2073-8994/12/12/2044

18. Levinson, J., et al.: Towards fully autonomous driving: systems and algorithms.
In: 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 163–168 (2011). https://
doi.org/10.1109/IVS.2011.5940562

19. Li, J.: Cyber security meets artificial intelligence: a survey. Front. Inf. Technol.
Electron. Eng. 19(12), 1462–1474 (2018). https://doi.org/10.1631/FITEE.1800573

20. Li, Z., Hu, C., Zhang, Y., Guo, S.: How to prove your model belongs to you.
In: Proceedings of the 35th Annual Computer Security Applications Conference
(2019). https://doi.org/10.1145/3359789.3359801

21. MacDonell, S.G., Buckingham, D., Gray, A.R., Sallis, P.J.: Software forensics:
extending authorship analysis techniques to computer programs. JL Inf. Sci. 13,
34–69 (2002)

22. Mell, P., Grance, T., et al.: The NIST definition of cloud computing. NIST Special
Publication 800–145 (2011)

23. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518, 529–33 (2015). https://doi.org/10.1038/nature14236

24. MOBILedit: Camera Ballistics. https://www.mobiledit.com/camera-ballistics
25. Mukkamala, S., Sung, A.H.: Identifying significant features for network forensic

analysis using artificial intelligent techniques. Int. J. Digit. Evid. 1, 1–17 (2003)
26. Nassar, M., Itani, A., Karout, M., El Baba, M., Kaakaji, O.A.S.: Shoplifting smart

stores using adversarial machine learning. In: 2019 IEEE/ACS 16th International
Conference on Computer Systems and Applications (AICCSA), pp. 1–6. IEEE
(2019)

27. Nassar, M., Salah, K., ur Rehman, M.H., Svetinovic, D.: Blockchain for explainable
and trustworthy artificial intelligence. Wiley Interdiscip. Rev. Data Mining Knowl.
Discov. 10(1), e1340 (2020)

28. NIST: Ballistics (2021). https://www.nist.gov/ballistics
29. Palmer, G.: A road map for digital forensic research. Technical report. DFRWS

(DTRT0010-01) (2001)

https://doi.org/10.1136/svn-2017-000101
https://doi.org/10.1016/j.diin.2015.09.002
https://www.sciencedirect.com/science/article/pii/S1742287615000985
https://www.sciencedirect.com/science/article/pii/S1742287615000985
http://arxiv.org/abs/1610.05492
https://doi.org/10.3390/sym12122044
https://doi.org/10.3390/sym12122044
https://www.mdpi.com/2073-8994/12/12/2044
https://doi.org/10.1109/IVS.2011.5940562
https://doi.org/10.1109/IVS.2011.5940562
https://doi.org/10.1631/FITEE.1800573
https://doi.org/10.1145/3359789.3359801
https://doi.org/10.1038/nature14236
https://www.mobiledit.com/camera-ballistics
https://www.nist.gov/ballistics


Subdomain of AI Model Forensics 51

30. PyTorch: PyTorch tutorials: saving and loading models (2017). https://pytorch.
org/tutorials/beginner/saving loading models.html#saving-loading-model-for-
inference

31. Ruan, K., Carthy, J., Kechadi, M.T., Baggili, I.: Cloud forensics definitions and
critical criteria for cloud forensic capability: an overview of survey results. Digit.
Investig. 10, 34–43 (2013)

32. Ruan, K., Carthy, J., Kechadi, T., Crosbie, M.: Cloud forensics. In: Peterson,
G., Shenoi, S. (eds.) Advances in Digital Forensics VII (2011). https://doi.org/10.
1007/978-3-642-24212-0 3

33. Sallis, P., Aakjaer, A., MacDonell, S.: Software forensics: old methods for a new
science. In: Proceedings 1996 International Conference Software Engineering: Edu-
cation and Practice, pp. 481–485. IEEE (1996)

34. Schneider, J., Breitinger, F.: AI forensics: did the artificial intelligence system do
it? Why? (2020)

35. Shah, J.J., Malik, L.G.: Cloud forensics: issues and challenges. In: 6th Interna-
tional Conference on Emerging Trends in Engineering and Technology, pp. 138–139
(2013). https://doi.org/10.1109/ICETET.2013.44

36. Sikos, L.F.: Packet analysis for network forensics: a comprehensive survey. Forensic
Sci. Int. Digit. Investig. 32, 200892 (2020). https://doi.org/10.1016/j.fsidi.2019.
200892. https://www.sciencedirect.com/science/article/pii/S1742287619302002

37. Spafford, E.H., Weeber, S.A.: Software forensics: can we track code to its authors?
Comput. Secur. 12(6), 585–595 (1993)

38. TensorFlow: TensorFlow core: save and load models (2021). https://www.
tensorflow.org/tutorials/keras/save and load#save the entire model

39. Tilstone, W., Tilstone, W., Savage, K., Clark, L.: Forensic Science: An Encyclope-
dia of History, Methods, and Techniques. ABC-CLIO (2006). https://books.google.
com/books?id=zIRQOssWbaoC

40. Wang, Z., Liu, C., Cui, X.: Evilmodel: hiding malware inside of neural network
models. arXiv preprint arXiv:2107.08590 (2021)

41. Zhang, J., et al.: Protecting intellectual property of deep neural networks with
watermarking. In: Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, ASIACCS 2018, pp. 159–172. Association for Comput-
ing Machinery (2018). https://doi.org/10.1145/3196494.3196550

https://pytorch.org/tutorials/beginner/saving_loading_models.html#saving-loading-model-for-inference
https://pytorch.org/tutorials/beginner/saving_loading_models.html#saving-loading-model-for-inference
https://pytorch.org/tutorials/beginner/saving_loading_models.html#saving-loading-model-for-inference
https://doi.org/10.1007/978-3-642-24212-0_3
https://doi.org/10.1007/978-3-642-24212-0_3
https://doi.org/10.1109/ICETET.2013.44
https://doi.org/10.1016/j.fsidi.2019.200892
https://doi.org/10.1016/j.fsidi.2019.200892
https://www.sciencedirect.com/science/article/pii/S1742287619302002
https://www.tensorflow.org/tutorials/keras/save_and_load#save_the_entire_model
https://www.tensorflow.org/tutorials/keras/save_and_load#save_the_entire_model
https://books.google.com/books?id=zIRQOssWbaoC
https://books.google.com/books?id=zIRQOssWbaoC
http://arxiv.org/abs/2107.08590
https://doi.org/10.1145/3196494.3196550

	 Preface
	 Organization
	 Contents
	Quantifying Paging on Recoverable Data from Windows User-Space Modules
	1 Introduction
	2 Background
	3 Related Work
	4 Quantification and Characterization of the Windows Paging Mechanism
	4.1 Description of Experiments
	4.2 Discussion of Results

	5 Detection of Malware in Memory Forensic Analysis: Current Problems and Solutions
	Issue 1. Content Discrepancy Between an Image File and Its Module Image
	Issue 2. Lack of Data in a Memory Dump
	Issue 3. Inaccuracy of a Memory Dump
	Issue 4. Stealthy Malware

	6 Conclusions and Future Directions
	References

	Forensic Investigations of Google Meet and Microsoft Teams – Two Popular Conferencing Tools in the Pandemic
	1 Introduction
	2 Literature Review
	3 Experimental Setup
	4 Experimental Findings on MS Teams
	4.1 Disk Forensics for MS Teams
	4.2 Memory Forensics for MS Teams
	4.3 Network Forensics for MS Teams
	4.4 Registry Forensics for MS Teams
	4.5 Evaluation of Findings for MS Teams

	5 Experimental Findings on Google Meet
	5.1 Memory Forensics for Google Meet
	5.2 Network Forensics for Google Meet
	5.3 Browser Forensics for Google Meet
	5.4 Evaluation of Findings in Google Meet

	6 Conclusions
	References

	On Exploring the Sub-domain of Artificial Intelligence (AI) Model Forensics
	1 Introduction
	2 Background and Motivation
	2.1 Principles of Digital Forensics Overview
	2.2 Model Generation and Deployment Overview

	3 Literature Review
	3.1 Cloud Forensics
	3.2 Software Forensics
	3.3 Network Forensics

	4 Case Study: Model Forensics of an Autonomous Need-for-Surgery Classifier
	5 Blockchain and AI Model Forensics
	6 AI Model Ballistics
	7 Challenges of AI Model Forensics
	8 Conclusion
	References

	Auto-Parser: Android Auto and Apple CarPlay Forensics
	1 Introduction
	2 Related Work
	2.1 Vehicular Forensics
	2.2 Mobile and Application Forensics

	3 Methodology
	3.1 Setup and Scenario Creation
	3.2 Data Acquisition

	4 Experimental Results
	4.1 Major Artifacts Found - Apple CarPlay
	4.2 Major Artifacts Found - Android Auto

	5 Tool Creation and Usage
	6 Conclusion and Future Work
	A  Appendix - Sample Tool Reports
	B  Appendix - Table2 - Relevant Artifacts
	References

	Find My IoT Device – An Efficient and Effective Approximate Matching Algorithm to Identify IoT Traffic Flows
	1 Introduction
	2 Related Work
	3 Approximate Matching and IoT Device Datasets
	3.1 Approximate Matching Algorithms
	3.2 IoT Device Datasets

	4 Suitable Approximate Matching Algorithms
	5 Evaluation
	5.1 Evaluation Setup of the First and Third Dataset
	5.2 Evaluation Setup of the Second Dataset
	5.3 Evaluation Methodology
	5.4 Evaluation Results on Active Data
	5.5 Evaluation Results on Setup Data
	5.6 Evaluation Results on Idle Data

	6 Conclusion and Future Work
	References

	Accessing Secure Data on Android Through Application Analysis
	1 Introduction
	2 Related Work
	3 Proposed Approach
	4 Experiment Results
	4.1 Safe Notes
	4.2 Private Notepad
	4.3 Secure Notes
	4.4 Memory Artifacts

	5 Discussion
	6 Conclusion
	References

	Research on the Method of Selecting the Optimal Feature Subset in Big Data for Energy Analysis Attack
	1 Introduction
	1.1 Relevant Work
	1.2 Our Contribution
	1.3 Structure of This Paper

	2 Selection of Attack Points
	2.1 SBOX Output Hamming Weight Model
	2.2 SBOX Output Bit-by-Bit Attack Model

	3 The Optimal Feature Subset Selection Method in Big Data
	3.1 Feature Point Selection Strategy
	3.2 First Feature Point Selection Based on F-test
	3.3 Second Feature Point Selection Based on Recursive Feature Elimination and Cross Validation

	4 Experimental Results and Analysis
	4.1 Comparison of Feature Selection Between F-test and PCC Method
	4.2 Comparison of Feature Selection Between Recursive Feature Elimination Plus Cross Validation (RFECV) and Principal Component Analysis (PCA)

	5 Summary
	References

	Cheating Sensitive Security Quantum Bit Commitment with Security Distance Function
	1 Introduction
	2 Preliminaries
	2.1 Definition of Security Distance Function
	2.2 Construction of Security Distance Function

	3 Quantum Bit Commitment with Security Distance Function
	3.1 QBC with SDF in Ideal Case
	3.2 QBC with SDF in Defective Case

	4 Security Analysis
	4.1 Concealing
	4.2 Binding
	4.3 Error Rate Introduced by Alice's Cheating

	5 Comparison
	6 Conclusion
	References

	Towards Mitigation of Data Exfiltration Techniques Using the MITRE ATT&CK Framework
	1 Introduction
	2 Related Work
	3 Cyber Threat Intelligence
	4 MITRE ATT&CK Framework
	5 Information Security Management Systems
	6 Concept and Example to Integrate CTI with ISMS
	6.1 Concept to Integrate CTI with ISMS
	6.2 Example to Apply Our Concept

	7 Conclusion
	References

	PCWQ: A Framework for Evaluating Password Cracking Wordlist Quality
	1 Introduction
	2 Background and Related Work
	2.1 Password Cracking Techniques
	2.2 Analysis of Password Trends
	2.3 Password Strength Meter

	3 How Can Quality Be Measured?
	3.1 Final Percentage of Passwords Cracked
	3.2 Number of Guesses Until Target
	3.3 Progress over Time
	3.4 Size of Wordlist
	3.5 Better Performance with Stronger Passwords
	3.6 Compound Metric

	4 Methodology
	5 Preliminary Analysis
	5.1 Dataset Selection and Creation
	5.2 Example Use Case
	5.3 Breakdown of Comb4

	6 Discussion
	7 Conclusion and Future Work
	References

	No Pie in the Sky: The Digital Currency Fraud Website Detection
	1 Introduction
	2 Background and Related Work
	2.1 Digital Currency
	2.2 Ponzi Scheme
	2.3 Smart Ponzi Schemes Detection
	2.4 Phishing Scam Detection

	3 Methodology
	3.1 Data Collection and Preprocessing
	3.2 Website Feature Extraction
	3.3 Digital Currency Fraud Website Detection Model

	4 Experiment
	4.1 Dataset
	4.2 Experimental Environment and Evaluation Metrics
	4.3 Experimental Settings
	4.4 Results and Discussion
	4.5 Case Study

	5 Conclusion
	References

	Understanding the Brains and Brawn of Illicit Streaming App
	1 Introduction
	2 Background
	3 Our Methodology
	3.1 Detection of Illicit Streaming Libraries and Potential ISAs
	3.2 Network Traffic Analysis

	4 Findings
	4.1 Data Collection
	4.2 Key Findings on Illicit Streaming Libraries
	4.3 Key Findings on Detection of Potential ISA
	4.4 Network Analysis Result
	4.5 Case Studies

	5 Related Work and Discussions
	5.1 Illicit Streaming Services
	5.2 Mobile Application Similarity
	5.3 Limitations and Future Developments

	6 Conclusion
	References

	Fine-Grained Obfuscation Scheme Recognition on Binary Code
	1 Introduction
	2 Background
	3 Overview of Our Approach
	3.1 Function Abstraction
	3.2 Instruction Embedding
	3.3 The BiGRU-CNN Model

	4 Experiments and Evaluation
	4.1 Dataset Construction
	4.2 Implementation and Experimental Setup
	4.3 Experimental Results

	5 Related Work
	6 Conclusion
	References

	Backdoor Investigation and Incident Response: From Zero to Profit
	1 Background
	2 Challenge in Analyzing Backdoor and Incident Response
	2.1 Limitation of Behavioral Analysis
	2.2 Emerging Backdoor Threat
	2.3 Lack of Practical Backdoor-Specific Incident Response Methodology

	3 Incident Response Model
	3.1 Static Analysis of Backdoor
	3.2 Similarity Comparison with published Backdoor
	3.3 Scanning Potential Backdoors
	3.4 Deobfuscation of Binary and Network Traffic Content
	3.5 Backdoor Entropy Analysis

	4 Related Work
	5 Discussion
	6 Conclusion
	References

	Automated Software Vulnerability Detection via Pre-trained Context Encoder and Self Attention
	1 Introduction
	2 Related Work
	3 The Methodology
	3.1 Pre-processing
	3.2 Fine-Tuning
	3.3 Embedding
	3.4 Classifier Training

	4 Experiment and Results
	4.1 Datasets
	4.2 Evaluation Metrics
	4.3 Implementation Details
	4.4 Results Analysis

	5 Conclusion
	References

	A CNN-Based HEVC Video Steganalysis Against DCT/DST-Based Steganography
	1 Introduction
	2 Analysis of Pixel Change in DCT/DST-Based HEVC Steganographic Video
	2.1 Analysis on Intra-frame Distortion of DCT/DST-Based HEVC Steganography
	2.2 Analysis of Pixel Value Changes in DCT/DST-Based Steganography

	3 Proposed Steganalysis Network
	3.1 High Pass Filter Convolution Layer
	3.2 Steganalysis Residual Block
	3.3 Squeeze-and-Excitation (SE) Block

	4 Experiment Results and Analysis
	4.1 Data Set and Experimental Setup
	4.2 Experimental Results
	4.3 Comparative Analysis

	5 Conclusion
	References

	Do Dark Web and Cryptocurrencies Empower Cybercriminals?
	1 Introduction
	2 Background: Dark Web and Cryptocurrencies
	3 Cryptocurrency: A New Stage for Economic Globalization
	4 Cryptocurrency Trustworthiness Analysis
	4.1 Legitimacy Analysis of Cryptoasset Source
	4.2 Price Explosiveness Analysis
	4.3 Correlation of Price Changes with Other External Factors

	5 Discussion and Future Suggestions
	6 Concluding Remarks
	References

	Lightweight On-Demand Honeypot Deployment for Cyber Deception
	1 Introduction
	2 Related Work
	3 Implementation
	3.1 Including Real Networks
	3.2 Ad-Hoc Virtual Machine Instantiation
	3.3 Decision Node Configuration

	4 Case Study
	5 System-in-the-Middle Overhead Analysis
	5.1 Static Connections
	5.2 Dynamic Connections Using CDES

	6 CDES System Utilization
	7 CDES Performance Against Network Probes
	8 Future Work
	References

	Gotta Catch'em All! Improving P2P Network Crawling Strategies
	1 Introduction
	2 Motivation
	2.1 Churn
	2.2 Random Address Responses
	2.3 Unreachable Nodes

	3 Related Work
	3.1 Internet-Wide Scanning
	3.2 Peer-to-Peer Crawler
	3.3 Bitcoin Crawler

	4 Design Considerations
	4.1 Architecture
	4.2 Bogon Filtering
	4.3 Status Checking
	4.4 Optimal Timeout

	5 Data Gathering
	5.1 Crawling Etiquette
	5.2 Gathered Data

	6 Evaluation
	6.1 Increased Scan Rate
	6.2 Increased Hit Rate

	7 Conclusion
	References

	Parcae: A Blockchain-Based PRF Service for Everyone
	1 Introduction
	2 Related Work
	3 Overview
	4 Parcae Protocol
	5 Implementation Details
	5.1 Low Level API Details

	6 Performance Evaluation
	7 Conclusions
	References

	A Hybrid Cloud Deployment Architecture for Privacy-Preserving Collaborative Genome-Wide Association Studies
	1 Introduction
	2 Background Information
	2.1 Genetic Association Tests
	2.2 Intel's Software Guard Extensions (SGX)
	2.3 Data Fragmentation and De-identification
	2.4 Homomorphic Encryption
	2.5 Watermarking of Homomorphically Encrypted Genetic Data

	3 Privacy-Preserving GWAS Hybrid Cloud Deployment
	3.1 System Infrastructure
	3.2 Key Distribution
	3.3 Attacker Model
	3.4 Protocol Workflow
	3.5 Deployment Choices

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Results

	5 Conclusion
	References

	Understanding the Security of Deepfake Detection
	1 Introduction
	2 Background and Related Work
	2.1 Face Synthesis
	2.2 Face Manipulation
	2.3 Detecting Deepfakes
	2.4 Security of Deepfake Detection

	3 Measurement Setup
	3.1 Datasets
	3.2 Training Face Classifiers
	3.3 Evaluation Metrics

	4 Security of Face Extractor
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Cross-Method Generalization of Face Classifier
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Security of Face Classifier Against Data Poisoning Attacks
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Discussion and Limitations
	8 Conclusion
	References

	Author Index

