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Abstract

Bulk Dirac semimetals (DSMs) exhibit unconventional transport properties and
phase transitions due to their peculiar low-energy band structure. Yet the electronic
interactions governing nonequilibrium phenomena in DSMs are not fully understood.
Here we show that electron-phonon (e-ph) interactions in a prototypical bulk DSM,
NagBi, are predominantly two-dimensional (2D). Our first-principles calculations dis-
cover a 2D optical phonon with strong e-ph interactions associated with in-plane vi-
brations of Na atoms. We show that this 2D mode governs e-ph scattering and charge
transport in NagBi, and induces a dynamical phase transition to a Weyl semimetal.
Our work advances quantitative analysis of electron interactions in topological semimet-

als and reveals dominant low-dimensional interactions in bulk quantum materials.


bmarco@caltech.edu

Topological semimetals are characterized by electronic band crossings near the Fermi energy,
which result in linear band dispersions and topologically nontrivial band structures.' There

is a vast literature on their unusual properties, including high mobility and magnetoresis-
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tance,?® anomalous transport regimes,®'? surface Fermi arcs, and topological phase
transitions. !>!% The discovery of graphene — a two-dimensional Dirac semimetal (DSM) —
has enabled studies of new physics in a carbon atom sheet.!” In contrast with graphene,
three-dimensional (bulk) DSMs are materials with rich structural and chemical complexity.
They present a wide range of possible crystal structures and arrangements of Dirac cones,
whose degeneracy is protected by crystal symmetry,! which makes bulk DSMs interesting
for device applications. !9

Although many properties of DSMs can be explained using model low-energy Hamilto-
nians, the interactions between electrons and other degrees of freedom — such as phonons,
photons, and spin — are not simple to quantify and give rise to rich physics in DSMs.
Examples include phonon nonlinearities, unconventional nonequilibrium dynamics, and topo-

logical phase transitions,?"2*

among others. Electron-phonon (e-ph) interactions play a
central role in this physics, but their understanding in bulk DSMs — and more generally
in topological semimetals — is rather limited and relies mainly on phenomenological mod-
els. 226 First-principles calculations of e-ph interactions, which have now been applied to
many classes of materials,?” 3® have been hindered in bulk DSMs by their complex atomic
and electronic structures.

Sodium bismuthate (NazBi) is a prototypical bulk DSM 139 whose Dirac cones have been
observed by scanning tunneling spectroscopy, %442 angle-resolved photoemission (ARPES), 12:3
and transport measurements.® In NagBi, first-principles calculations have examined impurity-
limited transport,*® nonequilibrium dynamics,** and spin-orbit coupling. *> However, a quan-
titative analysis of e-ph interactions is still missing. The interplay of electron spin, orbital,

and momentum degrees of freedom, combined with complex crystal structures, suggests that



Na3Bi and other bulk DSMs may host unconventional e-ph interactions yet to be discovered.
We explore this direction by carrying out a detailed first-principles study of e-ph interactions
in NazBi. We use density functional theory (DFT)%647 to obtain the electronic structure,
lattice vibrations, and their interactions; our calculations take into account spin-orbit cou-
pling (SOC) and many-body corrections to the electronic band structure (with the GW
method*®), and employ an improved treatment of acoustic phonons (see Methods).

Leveraging these accurate tools, we discover a dominant two-dimensional (2D) e-ph inter-
action in NagBi associated with a 2D optical phonon with e-ph coupling strength far greater
than that of any other mode. Our analysis shows that this 2D e-ph interaction governs the
scattering and transport of Dirac electrons, and reveals its microscopic origin. Similar “killer”
phonon modes with dominant e-ph coupling controlling charge transport have been found in
structurally complex organic crystals*® but not in topological materials. We also find that
the strongly-coupled 2D mode breaks inversion symmetry in Na3Bi and induces a dynamical
phase transition to a Weyl semimetal (WSM). This finding points to new opportunities for
ultrafast control of topological materials. 20-2444

The unit cell of NazBi, shown in Figure la, belongs to the hexagonal P63/mmc space
group. Its crystal structure alternates a layer of Bi plus Na atoms, labeled Na(1), and a layer
made up only by Na atoms, labeled Na(2). Inversion plus C5 rotational symmetry result in
a four-fold band degeneracy near the Fermi energy, with contributions from Na 3s and Bi 6p
orbitals. 11425952 The Dirac cone is made up by two electronic bands, one with Na 3s 4 Bi
6p, and the other with Bi 6p, + 6p, orbital character (the latter is denoted below as Bi-p,,
band). To obtain an accurate band structure, we start from DFT and then apply a one-shot
GW correction (see Methods), which increases the velocity of the Na 3s+ Bi 6p, band by a
factor of 1.8 and reduces the velocity of the Bi p,,-band relative to DFT (Figure 1b,c). The
Fermi velocity computed with GW about 300 meV above the Dirac node is 7.0 x 10% ms™!,
in excellent agreement with the experimental value of 8.1 x 10° ms™t.? Our computed GW

band structure agrees well with ARPES measurements by Liang et al.'? (Figure 1d).
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Figure 1: (a) Crystal structure of NagBi with P63/mmc space-group symmetry. The Bi (Na)
atoms are shown with black (yellow) spheres. (b) Band structure of NazBi comparing DFT
(black) and GW (red) results. (c) Zoom-in of the band structure in (b) near the Dirac point,
with states color-coded according to their orbital character. (d) Comparison of DFT and
GW band structures with ARPES experimental data,'? shown along the M—I'—M direction.

The computed band structure was shifted by k, = 0.02 Ao compare with experiments. 2

The computed phonon dispersion in NagBi is shown in Figure 2a. The phonon frequencies
are positive for all modes (color-coded curves in Figure 2a), indicating a dynamically stable
P63/mmc crystal structure with no soft modes or imaginary frequencies. Fine-tuning the
acoustic sum rule is crucial to obtaining this well-behaved phonon dispersion. Our results
employ an advanced acoustic sum rule which minimally affects the inter-atomic force con-
stants from DFPT;% conversely, a widely-used — so-called “simple” — acoustic sum rule,**
which modifies the inter-atomic force constants to enforce translational symmetry, leads to
spurious soft phonons near the K-point of the Brillouin zone® (gray curves in Figure 2a).

Our settings, which combine a stable crystal structure, well-defined phonon dispersions,
and electronic states with an accurate Fermi velocity allow us to carry out reliable first-
principles calculations of e-ph interactions in NazBi.?! We compute the e-ph matrix elements
9mnv (K, @), which encode the e-ph coupling between pairs of electronic states (initial state
Ink) and final state |mk + q), where n and m are band indices and k the electron crystal
momentum) due to a phonon with mode index v and wave-vector q. These calculations are

carried out with the PERTURBO code®® as described in Methods.
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Figure 2: (a) NagBi phonon dispersion overlaid with a color map of the e-ph coupling
strength, |g,(q)|, for wave-vector g along high-symmetry lines. The marker size is propor-
tional to |g,(q)| and the arrows indicate the strongly-coupled 2D phonon mode. The phonon
dispersion obtained with the simple acoustic sum rule is shown for comparison using gray
lines, with imaginary frequencies shown as negative values. (b) Brillouin zone of Na3Bi,
shown to aid the interpretation of panel (a). The I' — M and I' — K directions are in the
xy-plane, and I' — A corresponds to the z-direction.

Figure 2 shows the phonon dispersion in Na3Bi overlaid with a color map of the e-ph cou-
pling strength, defined as |g,(q)| = (32,,.. |gmnv(k = 0,@)|*/Ny)'/? (here we sum over Ny, = 2
lowest conduction bands).?® We find that the e-ph interactions are overall relatively weak
in NasBi, with an average value |g,(q)| = 5 meV. Yet one particular phonon mode, with
~12 meV energy and wave-vector q in the I'=M and I'—K directions (which correspond to
the crystal zy-plane; see Figure 2b) exhibits a much stronger e-ph coupling than any other
mode, with value |g| ~ 35 meV. This strongly-coupled 2D mode is a longitudinal optical
(LO) phonon that is infrared-active and has Ej, character at the zone center.®” Its associated
atomic vibrations, shown in Figure 3a, have primary contributions from Na(2) atoms, which
oscillate with large amplitudes in the Na-only layers of NasBi, and have negligible contri-

butions from the Na(1) and Bi atoms in the neighboring layers. Because the wave-vector



and atomic displacements of this strongly-coupled 2D mode are both in the xy-plane, the
dominant e-ph interactions in NagBi are inherently two-dimensional.
To understand the microscopic origin these strong 2D e-ph interactions, we analyze their

perturbation potential, whose local lattice-periodic part can be written as*7%

AViqlr) = 30 el 00V () )

where M, is the mass and e,(,'f,) the displacement eigenvector of atom x due to phonon mode
(v,q), and O, 4V (r) is the derivative of the local Kohn-Sham potential with respect to the
position of atom «.%% We focus on the effect of the dominant Na(2) atomic vibrations on
the Bi-p,, Dirac-cone electronic states near I'. Figure 3 shows the e-ph perturbation poten-
tial AV,4(r) generated by Na(2) atomic vibrations and plotted in the xy-plane containing Bi
atoms. For the dominant 2D LO mode (Figure 3a), which has wave-vector g in the zy-plane,
the Na(2) atoms move out-of-phase within each layer, causing large perturbations at the Bi
atoms. As a result electronic states in the Bi p,,-band couple strongly with this phonon
mode. Increasing |q| in the zy-plane leads to an even greater perturbation at the Bi site
and thus stronger e-ph coupling. In contrast, for a 2D transverse optical mode propagating
in the z-direction the Na(2) atoms move uniformly in-phase in the xy-plane (Figure 3b).
In this case, AV,4(r) has a symmetric pattern with nodes at Bi atoms, which suppresses
e-ph coupling for the Bi-p,, band. Accordingly, we find a very weak e-ph coupling for such
transverse optical modes, as shown by the dark blue color in the I'—A direction in Figure 2a.

We analyze two important consequences of the strong 2D e-ph coupling in NagBi. First,
we find that charge transport is governed by scattering of Dirac electrons with the strongly-
coupled 2D mode, which contributes nearly half of the total e-ph scattering rate (Figure 4a)
and resistivity (see below). Other individual phonon modes contribute significantly less,
up to 15% of the e-ph scattering rate for the mode with the second strongest coupling.
Therefore, this strongly-coupled 2D LO mode is analogous to the “killer” phonons control-

ling charge transport recently discovered in organic crystals.



Figure 3: Side view (left) and top view (right) of atomic motions and e-ph perturbation
potentials AV, q(r) for two phonon modes: (a) Strongly-coupled 2D longitudinal optical
phonon with wave-vector g=(1/6,0,0) in the xy-plane, associated with a large perturbation at
the Bi site leading to strong e-ph interactions; (b) transverse optical mode with g = (0,0,1/8)
along the z-axis, resulting in a negligible e-ph coupling due to the weak perturbation at the
Bi site. In both cases, we compute AV, 4(r) from Na(2)-atom vibrations and plot it in the
xy-plane containing Bi and Na(1) atoms. Red and blue colors correspond to positive and
negative values of AV,4(r), respectively.

Because of the strong 2D e-ph coupling, Dirac-cone electronic states with in-plane mo-
mentum k, which couple to each other via phonons with in-plane momenta, exhibit large
e-ph scattering rates (Figure 4b). In contrast, electrons with momentum k in the z-direction
scatter mostly via phonons with out-of-plane g, and are associated with smaller scattering
rates. This anisotropic scattering due to 2D e-ph coupling is evident in the entire tempera-
ture range we analyzed (77—300 K). We have verified that the e-ph matrix elements g(k, q)
possess a similar anisotropy, such that the e-ph coupling strength |g(k, q)| is much greater

for in-plane than for out-of-plane electron momenta.



We compute the phonon-limited mobility and resistivity using these first-principles e-ph
scattering rates in the Boltzmann transport equation® (see Methods). Our results show that
the in-plane mobility for temperatures between 150—400 K is exceptionally high (Figure 4c)
— up to ~30,000 cm?/Vs at room temperature and high electron concentration, mainly as
a result of the high Fermi velocity of the Bi p,,-band and the overall weak e-ph coupling.
This mobility limit, which applies to an ideally pure crystal of NasBi where charge transport
is impeded only by phonons, is exceptionally high and has the same order of magnitude as
the mobility in graphene.!” To our knowledge, such large electron mobilities have not yet
been measured in Na3Bi near room temperature; one possible reason is that NasBi samples
typically contain large concentrations of defects, particularly Na vacancies, which may make
the intrinsic phonon-limited mobility difficult to observe.“%* Improvements in growth tech-
niques may bring the experimental mobility of Na3Bi closer to our predicted theoretical limit.
Note that in CdsAs,, a widely studied DSM, mobility values as high as ~40,000 cm?/Vs at
130 K have been reported,® which are comparable to the ~100,000 cm?/Vs we predict in
Na3Bi for the same temperature and carrier concentration.

To complete our discussion on transport, Figure 4d shows the computed in-plane resis-
tivity as a function of temperature for Fermi energies between 100—300 meV. In this regime,
the transport behavior is metallic, and the resistivity increases with temperature following
a power law. Comparison with experiments is important despite the variability in NasBi
sample quality noted above. We compare our calculations with the measurements by Xiong
et al.,® which achieve the lowest resistivity among available experimental data®*’ indicating
higher sample quality. Our computed resistivity is lower than their measured values® by
about an order of magnitude at 50 K and a factor of 3—5 at 250 K. The lower discrepancy
at higher temperature indicates an improved agreement between theory and experiment in
the intrinsic, phonon-limited transport regime studied in this work.

It is interesting to compare these findings with graphene, a 2D DSM. In both Na3Bi and

graphene, a 2D optical phonon has the strongest e-ph coupling.®”% However, heavier atoms
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Figure 4: Calculations of transport and e-ph scattering in NazBi. (a) E-ph scattering rates
as a function of carrier energy at 300 K and Er=200 meV. We show the total scattering rate
(black) and the contributions from the strongly-coupled 2D mode (red) and the longitudinal
acoustic (LA) mode with second strongest coupling (blue). (b) Fermi surface at Fr=200 meV
color-coded according to the total e-ph scattering rates. (c¢) Electron mobility as a function
of carrier concentration for temperatures between 150—400 K. (b) Temperature dependent
resistivity for Fermi energies between 100—300 meV above the Dirac point, shown together
with the strongly-coupled 2D-mode contribution. Experimental results by Xiong et al.? are
shown for comparison.

and weaker bonding in NagBi result in softer phonons — the energy of the strongly-coupled
2D phonon in NagBi is only ~12 meV, and thus much smaller than the ~200 meV energy of
strongly-coupled 2D optical phonons in graphene.® At room temperature, where kg7 ~ 26
meV, the strongly-coupled 2D phonons are thermally excited in NagBi, while in graphene
only acoustic phonons are present. As a result, optical modes contribute less than 15% to

the resistivity in graphene at 300 K,% versus a dominant 50% resistivity contribution from
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Figure 5: Electronic band structure computed with DFT for (a) pristine and (b) 2D-mode
distorted NasBi. The displacement in (b) is 3% of the in-plane lattice constant.

the strongly-coupled 2D phonon in NagBi (Figure 4d). Note that while graphene is a 2D
material, NagBi is a bulk crystal where a dominant 2D e-ph interaction is unexpected.
Finally, we find that the atomic vibrations from the strongly-coupled 2D mode dynam-
ically induce a phase transition to a Weyl semimetal (WSM) in NasBi. Due to its Ej,
character,®” this 2D mode dynamically breaks inversion symmetry and removes the four-fold
degeneracy at the Dirac point, splitting each Dirac cone into a pair of Weyl cones separated
in momentum space. Figure 5 shows the DEF'T band structure in the k,-%, plane containing
the Dirac node, comparing results for the pristine structure (Figure 5a) and for the lattice
distorted from the strongly-coupled 2D mode (Figure 5b), which is computed with frozen-in
atomic displacements along the 2D-mode eigenvector (see Methods). The atomic displace-
ments split each Dirac node into a pair of Weyl nodes separated along £, by about 0.01 A_l;
the system remains metallic throughout this phase transition. Inversion symmetry breaking
from the strongly-coupled FE;, mode is crucial to obtaining the WSM phase: phonon dis-
tortions that preserve inversion symmetry but break the threefold rotational symmetry —
for example, Fs, modes, which are however weakly coupled — are not robust against a gap

opening, and instead cause a phase transition to a topological insulator.

10



These results imply that 2D phonons with strong e-ph coupling can provide a versatile
knob for ultrafast control in NasgBi. In particular, because the strongly-coupled 2D LO
mode is infrared active® (but not Raman active), one could induce a topological phase tran-
sition in NasBi by coherently driving this 2D mode using a THz pulse® or through carrier
optical excitation followed by strong e-ph coupling.%® Interestingly, Hiibener et al.** have
shown that a similar phase transition from a DSM to a WSM can be achieved in Na3Bi with
a different mechanism — strong light-matter coupling, which dresses the electronic states
inducing Floquet-Weyl nodes. These predictions contribute to the thriving area of driven
nonequilibrium dynamics in topological materials, where recent experiments on bulk DSMs %2
and WSMs?2%2! have demonstrated nonequilibium topological phase transition using electric
fields or optical pulses.

In conclusion, we have shown that the dominant e-ph interactions in a prototypical bulk
DSM, NagBi, are inherently two-dimensional and govern the scattering and transport of
Dirac electrons. Our first-principles analysis reveals the microscopic origin of this strong
2D e-ph coupling; it also shows that the strongly-coupled 2D mode can induce a dynamical
phase transition to a WSM, suggesting new routes for ultrafast control of Dirac electrons
in bulk DSMs. These results seed the question of whether other bulk materials may host
dominant low-dimensional e-ph interactions governing their physical properties. For exam-
ple, MgB,, a superconductor with a relatively high critical temperature of ~40 K, has a
crystal structure similar to NagBi and has been hypothesized to host a 2D phonon with

64,65 Pirst-principles calculations such as those shown in this work can

strong e-ph coupling.
contribute to address these questions and advance future discoveries of electronic interactions

and nonequilibrium dynamics in topological materials.

11



Methods

DFT, DFPT and GW calculations

We perform DFT calculations in a plane-wave basis set using the QUANTUM ESPRESSO**
code. We employ the PBEsol%® exchange-correlation functional and fully-relativistic norm-
conserving pseudopotentials from Pseudo Dojo.®” These calculations use a coarse 12 x 12 x 8
k-point grid, a kinetic energy cutoff of 90 Ry, and relaxed lattice constants (a = 5.42 A and
¢ =9.67 A) which are in excellent agreement with the experimental values (¢ = 5.45 A and
c = 9.66 A). ' The phonon dispersions and perturbation potentials are computed using coarse
grids with 6 x 6 x 8 g-points using DFPT.*” We employ the crystal acoustic sum rule from
ref.?® to compute phonon dispersions. The GW correction to the electronic band structure is
computed using the YAMBO code® by employing 120 unoccupied bands and a 10 Ry energy
cutoff for the dielectric screening combined with the Bruneval-Gonze terminator. % We have
verified that increasing the number of unoccupied bands to 600 and the energy cutoff to

30 Ry has a negligible effect.

Electron-phonon matrix elements and perturbation potentials

We use the PERTURBO code®® to obtain the e-ph coupling matrix elements on the coarse k-

and g-point grids given above. The e-ph matrix elements g, (k, q) are defined as

gmnu(ka q) - <77Z)mk:+q| Aqu |¢nk> 5 (2)

2w

vq

where [,x) and [Ynk44) are Bloch states with momenta k and k 4 g, and AV, is the
lattice-periodic part of the phonon perturbation potential. ¢ Since the dominant contribution

to g(k, q) for the 2D mode comes from Na(2) atomic vibrations, we only analyze the effect

12



of Na(2) motions on the Bi p,,-band. This is achieved by setting el?) to 0in eq 1 for N a(1)
and Bi atoms. A similar analysis can be performed for Na(1) and Bi atomic motions, or
using the Na s + Bi p, band, but their contributions to g(k, q) are significantly smaller and

do not affect our conclusions.

Electron-phonon scattering rates and charge transport

We interpolate the e-ph matrix elements on fine BZ grids with up to 130 x 130 x 90 k-
and g-points using maximally localized Wannier functions™ generated with the Wannier90

code.™ Then we compute e-ph scattering rates using

[(NVQ +1- fmk+q>5(5nk — Emk4q — MWyq) (3)

+ (qu + fmk+q)5(5nk — Emk+q T+ ﬁqu)],

where e, and frtq are electron band energies and occupations, respectively, while fiw,q
and N,4 denote phonon energies and occupations.
Using PERTURBO,?® we obtain the carrier mobility as a function of temperature and

doping concentration by solving the linearized Boltzmann transport equation: °°

Tnk v
Fnk = UnkTnk + ./7 Z Wnlg,mk—i—quk‘Fq <4>

q m7yq

where Wl . . . are e-ph scattering rates from electronic state |nk) to |mk + gq) due to
phonon mode (v, q); v, and 7, represent the band velocity and relaxation times; N is the
number of g-points used in the Brillouin zone summation. F,;(7) is a term proportional

to the first-order deviation of the electron occupations f, from their equilibrium values f9,

13



due to the electric field F, and is defined through

ek
—fo(1— Sk)kB_T Foge = fok — [k (5)

. The conductivity tensor o,z is computed using

G = €2 / dE (=0 JOE) Sus(E,T), (6)
where o and § are Cartesian directions, and X,5(E,T') is the transport distribution function

at energy E and temperature T, defined as®’

1
Yap(E,T) = N D Vi Fu(T)3(E — eng). (7)
nk

Here, N}, is the number of k-points in the Brillouin zone and € is the unit cell volume.
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