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Abstract. Mobile device features like Apple CarPlay and Android Auto
provide drivers safer hands-free navigation methods to use while driving.
In crash investigations, understanding how these applications store data
may be crucial in determining the what, when, where, who and why.
By analyzing digital artifacts generated by Android Auto and Apple
CarPlay, investigators can determine the last application displayed on the
head unit, the application layout of the user’s home display screen, and
other evidence which points to the utilization of the mobile device and
its features while driving. Additionally, usage data can be found within
other applications compatible with Android Auto and Apple CarPlay. In
this paper, we explore the digital evidence produced by these applications
and propose a proof of concept open source tool to assist investigators
in automatically extracting relevant artifacts from Android Auto and
Apple CarPlay as well as other day-to-day essential applications.

Keywords: Android auto · Apple CarPlay · Mobile forensics ·
Artifacts

1 Introduction

Digital evidence acquired from mobile devices supporting vehicular hands-free
navigation and communication may prove useful in crash investigations. Accord-
ing to the Centers for Disease Control and Prevention (CDC), a distraction while
driving could simply be using one’s cell phone to send a text message or place a
call, etc. Unfortunately, in 2019, texting or emailing while driving was a common-
ality seen more in older teens than younger teens. The consequences of driving
while being distracted could be fatal. In fact, in 2018, the CDC reported that
over 2,800 people died as a result of distracted driving [7], while in 2019, this
number increased by 9.9% [1]. The advancement, and increased consumption of
mobile and vehicular technology is growing exponentially [9,14,34]. This caused
the need for safer and tighter integration between mobile devices and cars.

Apple’s CarPlay1 was introduced in 2014 and is native to iOS. Once enabled
by the user, it can only be paired to the vehicle via a USB connection or
1 https://www.apple.com/ios/carplay/.
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Bluetooth, however, only a few cars support the Bluetooth feature [31]. On
the other hand, Android Auto2 is a non-native application that was created in
2015 and can be downloaded from the Google Play store. Android Auto must
also be paired via USB and Bluetooth. Since the development of these mobile
applications, car manufacturers have been working to integrate them into their
frameworks. Today, over 600 car models offer support for CarPlay3, while close
to 60 manufacturers offer or will soon offer support for Android Auto [3].

Consequently, our work provides a forensic analysis of the Android Auto and
Apple CarPlay applications. We also present an open source Python tool, Auto-
Parser, to extract relevant data from digital artifacts and present them in an
HTML report. To the best of our knowledge, this tool is the first of its kind.
Auto-Parser may be added as part of an investigator’s forensic workflow to shed
light on actions taken when using these services and applications while driving.

Our work provides the following contributions:

– A primary review of the forensic disk analysis of Apple CarPlay and Android
Auto applications.

– A collection of Android Auto and Apple CarPlay digital forensic artifacts
publicly shared on the Artifact Genome Project4 [15].

– An open-source tool for the automated retrieval, analysis, and reporting of
relevant digital artifacts acquired from forensic images of the mobile devices.5

The remainder of this paper includes related work found in Sect. 2. Section 3
discusses the approach and methodology for this work. Section 4 outlines the
experimental results, while Sect. 5 explains the creation and usage of the parsing
tool. Lastly, Sect. 6 concludes the paper and presents future work.

2 Related Work

At the time of writing, no peer reviewed work existed on the forensic analysis
of Android Auto and Apple CarPlay applications. Moreover, to the best of our
knowledge, there has not been an open source tool developed to address the type
of evidence that could be collected from these applications.

Nevertheless, some blogs and presentations explored this topic [12,19–21,29].
Our work was initially motivated by posts made by Joshua Hickman on his
personal blog “The Binary Hick” [19,21]. We expand on past work and provide
a first of its kind open source tool to automate the forensic analysis process and
present relevant data in a report. In the next sections, we highlight related work
on vehicular infotainment systems, and small scale digital device forensics.

2 https://www.android.com/auto/.
3 https://www.apple.com/ios/carplay/.
4 https://agp.newhaven.edu.
5 The tool may be downloaded from https://github.com/unhcfreg/Auto-Parser-

Android-Auto-Apple-CarPlay.

https://www.android.com/auto/
https://www.apple.com/ios/carplay/
https://agp.newhaven.edu
https://github.com/unhcfreg/Auto-Parser-Android-Auto-Apple-CarPlay
https://github.com/unhcfreg/Auto-Parser-Android-Auto-Apple-CarPlay
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2.1 Vehicular Forensics

Vehicle infotainment systems may offer digital evidence related to driving activ-
ities, phone calls, and mobile messaging [26]. Past work provided a structure of
embedded vehicle systems and discussed the long-term information that could
be found and recovered to better understand the system’s end users [26].

Other work explored the challenges of Vehicle Ad-Hoc Networks and the
forensic potential of entertainment systems were discussed [27]. The authors
then captured forensic images of a Ford F-150 vehicle’s infotainment system
and described the data that could be recovered. Another case study noted the
challenges in conducting vehicle forensics and contributed a case study on a
Volkswagen Golf [24]. It also important to note that the Berla Corporation
specializes in the development of tools and techniques for vehicle infotainment
forensics6.

2.2 Mobile and Application Forensics

The field of small scale digital device forensics is vast. There have been numerous
studies that forensically explored applications and devices. Since Android Auto
and Apple CarPlay interact with mobile devices and their applications (such as
WhatsApp), prior work in this domain is of relevance.

Past work examined the data stored in vehicle assistant applications for
notable car manufacturers and discussed digital artifacts that could be extracted
[11]. Relevant to our work is also an extensive study related to mobile GPS appli-
cations. The work was conducted on both Android and iOS mapping applications
such as Waze, MapQuest and Google Maps. A tool was created based on the
findings of the study to parse data found in the applications [32]. Likewise, [18]
provided an analysis and algorithm for the automated retrieval of data from
health and fitness applications. Their work discovered health information, pass-
words, geo-location data, and other private information that could be useful in
an investigation.

Let us not forget that car systems also interact with mobile messaging appli-
cations. Relevant work explored the forensics of social-messaging applications
such as WhatsApp, Tango, Viber, and ooVoo to determine their security and
forensic footprints. This work concluded that Personally Identifiable Informa-
tion (PII) could be found within application data folders as well as on servers
publicly accessible [35]. Similar work and results were also conducted recently
on the Zoom application concluding that PII such as chat messages, contacts,
profile images, and passwords could be recovered from devices [30].

Other work purely focused on network traffic analysis of the WhatsApp call
signaling protocol by decrypting its associated network traffic. The researchers
uncovered the codec used for call transfer. Metadata related to the call such as
phone numbers and duration can also be forensically found [25].

In a different domain of device forensics, [8] investigated the DJI Phantom
III Drone and the research resulted in a tool which could recover flight data
6 https://berla.co/.

https://berla.co/
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taken from the suspect device. This work provided insight into GPS locations,
speeds, flight time, and other critical information that could be recovered and
used by investigators.

Additional research on social media and mobile applications on iPhones
and Androids has been conducted [2,4,5,22,37]. Similarly, forensic analysis of
Android vault applications was conducted [38]. Other relevant work explored
the forensics of IoT devices [10], gaming consoles [33], tablets [23] and Virtual
Reality headsets [6,36].

3 Methodology

We conducted our research in four main phases: scenario/case creation, data
acquisition, data analysis, and the creation of a tool to parse, extract and report
on all relevant artifacts stored in an acquired forensic disk image for use in an
investigation. Table 1 outlines the apparatus used in our methodology. Details
of these four phases and results are elaborated on.

3.1 Setup and Scenario Creation

Fig. 1. Alpine stereo internal setup (Key - Red: Belkin Battery Supply, Blue: Rockford
Fosgate R14X2 Speakers, Green: Alpine iLX-W650 Head Unit, Pink: USB Cable for
Device Connection, Yellow: Wiring for power, speaker channels, etc.) (Color figure
online)

In this phase, a stereo head unit was constructed (Figs. 1 and 2) to conduct
testing in a controlled environment. At the time, a vehicle that supported these
features was not available to the researchers. For some tests, this engineered,



56 A. Mahr et al.

Fig. 2. Front of alpine unit

Table 1. Apparatus

Hardware/Software Use Version

Galaxy S6 Android Auto Nougat 7.0

iPhone 5s Apple CarPlay iOS 12.4.5, 12.4.6

Android Auto Android Auto 5.1, 5.4, 6.0

Alpine ILX-W650 Simulated Car Stereo Unit V1.014 1206

BELKIN Battery Backup Unit Battery Supply N/A

(2) Rockford Fosgate R14X2 Stereo Speakers N/A

2020 Subaru Crosstrek Real World Tests Rel UA.19.01.70

Magnet Acquire Full Image Creator (Android/iOS) 2.25.0.20236

Autopsy Full Image Viewer 4.17.0

Android Debug Bridge (ADB) Android Data Extraction Tool 1.0.41, Version 29.0.6-6198805

DB Browser for SQLite View Sqlite/ DB files 3.11.2

Xcode View pList & XML Files 12.5 (12E262)

iBackup Viewer pList & XML Files 4.1583

Hex Fiend Hex Editor Version 2.14 (1613443925)

checkra1n iOS Jailbreak Tool 0.9.7 BETA

SuperSU Android Jailbreak Tool V2.82

Filza File Manager File System Manager 3.7 Build 7

portable, stereo unit was placed inside a vehicle to simulate a real world expe-
rience. Specifically, an Alpine7 stereo head unit was used to serve as the inter-
face for the Android Auto and Apple CarPlay applications. The backup battery
supply and speaker units served to power the device and simulate normal car
interaction (Fig. 1). Once a compatible vehicle was available, the tests were also
conducted with a 2020 Subaru Crosstrek Premium8 to note any forensic differ-
ences between devices.

7 https://www.alpine-usa.com/.
8 https://www.subaru.com/.

https://www.alpine-usa.com/
https://www.subaru.com/
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To control the experiment, and obtain the most amount of data possible,
communication was kept between two rooted mobile phones (Table 1). In the
case of the iPhone, it was only connected via USB cable as neither head units
supported Apple CarPlay connection via Bluetooth. It is important to note that
Bluetooth for Apple CarPlay is supported on other vehicles. On the other hand,
the Android device had to be connected via both, Bluetooth, and a USB cable
for the Android Auto application to function with the head units. Additionally,
to mimic other possible distractions like listening to music, the Spotify applica-
tion was installed on both mobile devices. It is important to note that during
the course of this research, the Android Auto application versions changed and
updating the application was necessary to continue testing.

In order to simulate normal user actions with these systems, and create the
most relevant data possible, the experiments listed below were conducted with
both the custom built stereo head unit, and the Subaru’s stereo head unit.

– Sent and received text messages between testing devices.
– Sent and received phone calls between testing devices.
– Asked Siri (iOS) and Google Assistant (Android) for driving directions to an

specific address.
– Asked Siri (iOS) and Google Assistant (Android) to place phone calls and

send text messages.
– Played music through the Spotify music application and interacted with the

application’s features on the head units.

3.2 Data Acquisition

In this phase, data was acquired from the two different mobile devices. Magnet
Acquire9 was used to obtain forensic images of each device. For the rooted Sam-
sung, initially a full forensic image was taken, resulting in the acquisition of a
RAW data file. After additional tests, logical acquisitions of the Samsung were
taken as full physical images were not necessary. For the iPhone, it is important
to note that while the iPhone was jailbroken, Magnet Acquire only supported
the acquisition of logical images [28].

4 Experimental Results

To analyze all experimental results and extract relevant artifacts, different tools
shown in Table 1 were utilized along with manual analysis. The next subsec-
tions discuss all artifacts of interest identified per device. Appendix B, Table 2,
references those significant artifacts and their data directory paths.

9 https://www.magnetforensics.com/resources/magnet-acquire/.

https://www.magnetforensics.com/resources/magnet-acquire/
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4.1 Major Artifacts Found - Apple CarPlay

CarPlay Data Structure: To identify artifacts related to the Apple CarPlay
feature, understanding how data is stored on an iOS device is critical. Apple
CarPlay is part of Apple’s SpringBoard framework that manages the screen of
an iOS (or macOS) device [13]. Thus, unlike the Android Auto application, the
hands-free features of CarPlay are built in the main settings of the phone rather
than being compiled in a sole separate application. Therefore, the settings files
associated with CarPlay are spread out throughout the phone and not compart-
mentalized like a normal application. If the iPhone is connected to more than one
head unit that supports Apple CarPlay, the feature names the settings’ files with
a Globally Unique Identifier (GUID) associated with each head unit that can later
be used to correlate data found in the settings’ files [16]. Throughout our research,
it was determined that data pertaining to other applications or features used while
implementing CarPlay was not found within the CarPlay settings. CarPlay sim-
ply serves as a projection feature to assist users in viewing and accessing every day
items such as music, messages, and phone calls and any other application with sup-
port for CarPlay. However, we realized there were still relevant pieces of informa-
tion that are recoverable that can help investigators gain a glimpse into what was
being displayed or used while an individual was driving. The following subsections
denote the relevant files where this information can be found.

cache.plist: This artifact contained data pertaining to timestamps associated
with core phone settings and other location calibration information unrelated
to CarPlay (Appendix B, Table 2, File ID 1). The most important data i n
this artifact is the “Last Vehicle Connection” entry which provides the connect
and disconnect timestamps in Cocoa Core Data format for the last time the
device was connected to a vehicle. This entry also notes the name of the vehicle
the iPhone was last connected to. The latter is relevant in an investigation to
confirm a timeline of events and that in fact the user’s phone was connected to
the vehicle.

com.apple.carplay.plist: This pList file contained information about the vehi-
cle pairings associated with the car (Appendix B, Table 2, File ID 2). Since the
device was connected to two car audio head units, one custom built and one
with an actual car, two GUIDs were found, along with strings that identify the
model of the units: iLX-W650 and Subaru respectively (Fig. 3). This information
uniquely identifies and confirms pairings to different devices. Additionally, the
file contains “carPlayProtocols” which were found to be additional applications
that come as part of the standard head unit’s settings. In the case of the Subaru,
the head unit comes with support for Aha, a road map software, Pandora, and
Subaru’s global infotainment application.

com.apple.celestial.plist: This pList file contained settings for many dif-
ferent features of the phone (Appendix B, Table 2, File ID 3). Among these
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Fig. 3. Head unit pairings

features are volume settings for different connections, information about the
camera, and IDs for the applications on the display when CarPlay was discon-
nected. Data of interest in this file includes, the strings “nowPlayingAppWas-
PlayingUponCarPlayDisconnect” and “nowPlayingAppDisplayIDUponCarPlay-
Disconnect” which denote the App ID associated with the last app running on
CarPlay (Fig. 4). It is interesting to note that for some tests, the string “now-
PlayingApp” noted Apple’s “Music” app was playing although this app was
not used during the tests. Conclusions as to why this occurred were not formally
reached but in some instances the values for the “nowPlayingApp” matched that
of the strings related to the application last being used upon disconnect from
the car. Additionally, there was a “CarAudioOutput-“Car ID”” entries with a
unique identifier for each car which denoted what appeared to be the volume
level for when the phone is connected to the car.

Fig. 4. CarPlay com.apple.celestial.plist

com.apple.springboard.plist: This file contained general and user settings
for the SpringBoard application which manages the home screen for iOS devices
[17] (Appendix B, Table 2, File ID 4). While many of the entries in this file are
not relevant to CarPlay, there is an entry which provides potential insight into
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the most recent activities. The heading “CarDisplayRecentlyUsedApps” (Fig. 5)
shows values for the package names of the applications last used on the display.
In this example, while final tests were performed, calls were placed, music was
played, and map directions were given.

Fig. 5. CarPlay recently used applications

“Car GUID”-CarPlay[Desired/Display]IconState.plist: These pList files
contained data pertaining to the Icon Layout on the CarPlay display (Appendix
B, Table 2, File IDs 5, 6). Each car had its own unique application layout for
the applications installed on the phone. A user can change this by visiting
the CarPlay settings located within the General settings of the iPhone (Figs. 6
and 7).

Fig. 6. CarPlay application settings
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Fig. 7. CarPlay headunit apps

carplay connect timestamp and carplay success timestamp: It is
important to note that these artifacts did not contain any data but their name
and timestamps may be relevant to an investigation (Appendix B, Table 2, File
IDs 7, 8). These files were found in the Assistant directory, associated with Siri,
and the timestamps are associated with actions completed between CarPlay and
Siri. The “carplay connect timestamp” is the timestamp for the last initial con-
nection to the vehicle (i.e. turning the vehicle on at the start of a drive and
connecting the phone). The “carplay success timestamp” is associated with the
last time Siri was used while using CarPlay. This was verified after comparing
testing notes for asking Siri for directions to the timestamp associated with the
file.

4.2 Major Artifacts Found - Android Auto

Android Auto Data Structure: The structure of the data files stored
by Android Auto follows that of a normal application on the phone. Unlike
Apple CarPlay, Android Auto is an application that can be downloaded
from the Google Play Store. The important data files were found within the
“com.google.android.projection.gearhead” folder within the /data/data direc-
tory and are broken into XML and SQLite databases. The most important arti-
facts found are discussed in the following sub-sections.

carservicedata.db: This database (Appendix B, Table 2, File ID 9) included
information verifying the stereo head units the mobile device has connected
to. It had two tables which separated the “allowedcars” and “rejectedcars”.
Both tables contained data about the manufacturer, the vehicle ID, Bluetooth
addresses and allowed connections. It is interesting to note that the first twelve
characters of the Subaru’s vehicle ID are the same used for its Bluetooth address.
The “connectiontime” value is the timestamp associated with the first time the
phone was connected to the car within a given driving session (i.e., initially turn-
ing on vehicle and connecting to the car). To approximate the accuracy of that
timestamp, the “app state shared preferences.xml” file (Appendix B, Table 2,
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File ID 12) stored a “pref lastrun” value that depicted the date and time the
Android Auto application was last run. The timestamp in the carservicedata.db
will always be a few seconds ahead of the other as the application is opened first
before connecting to Bluetooth.

Additionally, the database made a distinction if the head unit was “After
Market”, which refers to the custom built head unit, or associated with a brand
model such as Subaru. Finally, the table had four more columns pertaining to
WiFi information such as the WiFi Service Set Identifier (SSID), Basic service
set identifier (BSSID), password and security for vehicles that have WiFi. Note,
the latter was not tested.

common user settings.xml: This XML file (Appendix B, Table 2, File ID 10
and Fig. 8) contained information about the preferred settings for each head unit
the device has connected to. For instance, enabled messaging notifications, visual
preview of messages, auto reply messages while driving and more. Furthermore,
for every vehicle, there is a section identified by the Bluetooth Address pertaining
to each vehicle and a “USB” value denoting the device was also connected via
a USB cable. It is interesting to note that for the Subaru, one could assign a
custom name to the vehicle’s Bluetooth connection. In this research, the Subaru’s
connection name was “Bluebaru.”

Fig. 8. Android auto common user settings

default app.xml: This file (Appendix B, Table 2, File ID 11) provided a
method to verify package names of the default applications that were displayed
on the Android Auto Interface of the stereo head unit (Fig. 9).

auto launch prompt.xml: This artifact (Appendix B, Table 2, File ID 12) is
associated with the application’s auto launch feature. It contains the Bluetooth
Addresses to the vehicles the device has ever connected to.

carservice.xml: This file (Appendix B, Table 2, File ID 13) contained
car module feature set values which define settings and information for the con-
nections to the car. It is important to note when the Samsung device was first
connected to the custom built stereo, this file contained minimal settings. How-
ever, after connecting to the Subaru vehicle’s head unit, this file supported addi-
tional settings such as “car night mode” and enabling/disabling “connection to
known cars only” among other settings.
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Fig. 9. Default displayed applications

5 Tool Creation and Usage

Overview: The purpose of this tool is to assist the forensic community in auto-
matically identifying relevant artifacts within Apple and Android smartphone
forensic disk images. The artifacts created while using these applications paired
to the vehicle, could possibly aid in determining causes of different incidents,
including car crashes.

A Python tool was constructed using a wordlist to search through the forensic
tar images of Apple and Android smartphones. Note, that only tar formats are
supported now, however, support for other types may be added in the future.
Based on our manual analysis and identification of relevant forensic artifacts
and their storage locations on the devices, default wordlists were created. The
“words” used in this case could be full file paths and their file names, solely
artifact file names, or other useful keywords. For a complete list, see Appendix
B, Table 2. A default wordlist containing all relevant and important paths for
an investigation is provided if the user does not add a custom one themselves.
For the default wordlist, once the critical files are extracted, they are parsed to
return specific data in the form of an HTML report. Note, if the default wordlist
is edited to add more files, these files will be extracted but will not be included
in the report. This also applies to the custom wordlist option. The high level
algorithm for this tool is shown in Algorithm 1.

For Apple devices, wav, pList and SQLite file types were the focus within the
report. The wav files store a user’s voice commands when using Apple’s Siri. The
pList files store information about the Apple device settings and the vehicle’s
head unit identifiers. The SQLite files hold information on recent phone calls and
text messages. For the Android devices Binarypb, XML, and SQLite file types
were focused on to extract and parse. The Binarypb files store a user’s voice
commands using Android Assistant. The XML and SQLite files store information
about the Androids device settings and the vehicle’s head unit identifiers. The
SQLite databases also store information on recent phone calls and text messages.
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Algorithm 1. High-level Automation Algorithm
Requirements: Python3 and a TAR image of a device.
Input: iPhone or Android Mobile tar image, (optional) inputFile with keywords
Output: Apple Carplay & Android Auto artifacts and HTML Forensics Report
Select image type:
if Apple option then

iPhone artifact();
else if Android option then

Android artifact();

Specified image analysis
if Wordlist option not set then

initial hashing(); � Obtain hashes of images for verification
search archive(default wordlist); � Searches archive for default values
extract found(); � Extracts files located during search to folder
analyze files(); � Parses data
check hashing(); � Verification of hashes
generate report(); � Generates HTML report detailing findings

else
initial hashing(); � Obtain hashes of images for verification
search archive(user wordlist); � Searches archive for user values
extract found(); � Extracts files located during search to folder
check hashing(); � Verification of hashes
generate report(); � Generates HTML report header

Usage: The tool is portable and designed to be used with the command line
terminal (Fig. 10). The user may want to use either an Apple or an Android
forensic disk image and there are two flags to denote these options. There is also
an option to select a custom user created wordlist. Since the parsing/grouping
analysis is specific to the default wordlist, if a user chooses their own wordlist an
examination will not be done to produce an actual HTML report. Instead, the
tool will only extract files or file paths that match words in the wordlist. When
the tool is run, the case number and examiners name can be entered.

Fig. 10. Tool’s usage help menu

Output: The tool will organize the recovered files into a generated folder. The
first part of the name being the timestamp the program ran and the second part
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being either “Apple” or “Android” depending on the type of image being used.
The results of the analysis will output in table form. This will be displayed to
the user on the console as well as an HTML report. Along with the data the
output will contain the timestamp taken, examiner’s name, and case number.
Both the md5 and sha256 hashes will be taken of the image before and after its
analysis to ensure changes were not made during processing. It is important to
note that this report will only be generated when the default wordlists are used.
Figures 11 and 12 in Appendix A demonstrate sample generated output from
cases that have Apple and Android forensic images as input.

6 Conclusion and Future Work

The world is heavily reliant on vehicles and mobile phones now more than ever.
Understanding the interaction between phones and vehicles can be important
to investigators. While this research confirmed that Android Auto and Apple
CarPlay only serve as projection methods for the applications that offer sup-
port for these features, we concluded there is still relevant information that can
be acquired for use in crash investigations. By determining any vehicles that a
device has been connected to, investigators can link suspects to cars left at crime
scenes or to other investigations. Additionally, investigators can determine pos-
sible areas of distraction when examining the default home application settings
for the Apple CarPlay or Android Auto interfaces. These areas of data provide
a greater insight into how the phone was connected to the vehicle and the way
in which a user interacts with it. The tool presented offers a fast and compact
solution for obtaining the relevant information such as vehicles the device has
been connected to, timestamps, text message and phone call histories, and other
relevant information investigators may need.

Future work must be focused on maintaining the tool to adapt to how the
applications’ files change over time and as new features are added to the appli-
cations and the vehicle head units. Additionally, some examiners may not have
imaging software that supports tar outputs, thus, support for additional forensic
image file types would increase the usability of the tool.

Acknowledgement. This material is based upon work supported by the National
Science Foundation under Grant Numbers 1900210 and 1921813. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation.
Additionally, the authors would like to thank Mark Morton for his help in designing
and building the stereo head unit.
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A Appendix - Sample Tool Reports

Fig. 11. Sample android auto output
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Fig. 12. Sample apple CarPlay output

B Appendix - Table 2 - Relevant Artifacts
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